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Abstract. Oblivious linear-function evaluation (OLE) is a secure two-party protocol al-
lowing a receiver to learn a secret linear combination of a pair of field elements held by a
sender. OLE serves as a common building block for secure computation of arithmetic circuits,
analogously to the role of oblivious transfer (OT) for boolean circuits.
A useful extension of OLE is vector OLE (VOLE), allowing the receiver to learn a linear
combination of two vectors held by the sender. In several applications of OLE, one can
replace a large number of instances of OLE by a smaller number of long instances of VOLE.
This motivates the goal of amortizing the cost of generating long instances of VOLE.
We suggest a new approach for fast generation of pseudo-random instances of VOLE via a
deterministic local expansion of a pair of short correlated seeds and no interaction. This pro-
vides the first example of compressing a non-trivial and cryptographically useful correlation
with good concrete efficiency. Our VOLE generators can be used to enhance the efficiency
of a host of cryptographic applications. These include secure arithmetic computation and
non-interactive zero-knowledge proofs with reusable preprocessing.
Our VOLE generators are based on a novel combination of function secret sharing (FSS) for
multi-point functions and linear codes in which decoding is intractable. Their security can be
based on variants of the learning parity with noise (LPN) assumption over large fields that
resist known attacks. We provide several constructions that offer tradeoffs between different
efficiency measures and the underlying intractability assumptions.
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1 Introduction

Secret correlated randomness is a valuable resource for cryptographic protocols. For in-
stance, a pair of identical secret random strings can be used for fast and perfectly secure
communication, and more complex correlations such as “multiplication triples" [Bea92,
BDOZ11,DPSZ12] provide an analogous speedup for secure computation. A major differ-
ence between these two types of correlations is that while the former can be easily expanded
locally from a short common seed by using any pseudorandom generator, it seems much
harder to apply a similar compression procedure to the latter without compromising secu-
rity.

More generally, consider the following loosely defined notion of a pseudorandom correla-
tion generator. For a “long” target two-party correlation (Z0, Z1), we would like to locally
expand a pair of correlated “short” strings (seed0, seed1) into a pair of outputs (z0, z1),
where z0 = Expand(seed0) and z1 = Expand(seed1). This should be done so that the joint
output is indistinguishable from (Z0, Z1) not only to the outside world, but also to an
insider who learns one seed seedb and is trying to infer information about the other output
z1−b beyond what is implied by its output zb.

For non-trivial two-party correlations, such correlation generators were only constructed
using indistinguishability obfuscation [HIJ+16], homomorphic secret sharing [BCG+17],
and key-homomorphic pseudorandom functions [Sch18]. However, despite optimization ef-
forts, none of these constructions is sufficiently efficient to offer a competitive alternative
to traditional interactive protocols.
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The focus of this work is on a special type of correlation related to oblivious linear-
function evaluation (OLE). The OLE functionality allows a receiver to learn a secret linear
combination of two field elements held by a sender. OLE is a common building block for
secure computation of arithmetic circuits [NP06, IPS09,DGN+17], analogously to the role
of oblivious transfer (OT) for boolean circuits [GMW87,Kil88, IPS08,DGN+17].

A useful extension of OLE is vector OLE (VOLE), allowing the receiver to learn a
linear combination of two vectors held by the sender. In several applications of OLE, one
can replace a large number of instances of OLE by a small number of long instances of
VOLE [ADI+17]. This motivates the goal of amortizing the cost of implementing long
VOLE. Despite recent progress (see Section 1.3 below), the concrete communication and
computation costs of the best VOLE protocols still leave much to be desired.

Motivated by the above goal, we study the question of compressing a random VOLE
correlation, or VOLE correlation for short. In a VOLE correlation of length n over a finite
field F, the sender P0 obtains a pair of random vectors Z0 = (u,v), where u and v are
uniformly distributed over Fn, and the receiver P1 obtains a random linear combination
of the two vectors, namely Z1 = (x,ux+ v) for x ∈R F. A VOLE correlation can be used
to realize the VOLE functionality via a simple and efficient protocol, similarly to protocol
implementing string OT from a random string OT [Bea95]. In fact, string OT is equivalent
to VOLE over the field F = F2.

A natural approach for generating a VOLE correlation is via reduction to random string
OT. Indeed, random string OT correlation can be easily compressed using any pseudoran-
dom generator (PRG), and moreover a length-n VOLE over F can be realized with perfect
security (against a semi-honest adversary) using ` = dlog2 Fe instances of string OT of
length n` each [Gil99]. The factor-` communication overhead of this reduction can be sig-
nificant for computations over large fields, which often arise in applications. But more
importantly, the construction of VOLE from string OT requires the sender to feed the OT
oracle with correlated random strings, even when the goal is to obtain a random instance
of VOLE. This correlation makes the natural reduction of random VOLE to random string
OT fail in the non-interactive setting we consider here.

1.1 Our Contribution

We give simple and efficient constructions of VOLE correlation generators based on con-
servative variants of the Learning Parity with Noise (LPN) assumption over large fields.1

As far as we know, our work gives the first non-trivial example for a useful correlation
generator with good concrete efficiency.

To give just one example, we estimate that for a field F with dlog2 |F|e = 128, we can
generate a length-106 VOLE correlation from a pair of correlated seeds whose length is less
than 1000 field elements using about 100 milliseconds2 of local computation on a standard
laptop using a single core and a common GPU.

Our VOLE generators can be useful in a variety of cryptographic applications. We
discuss a few such applications below.
1 Roughly speaking, the LPN assumption says that in a random linear code, a noisy random codeword is
pseudo-random. Unlike the case of LWE, here the noise is restricted to have low Hamming weight. LPN
can be equivalently formulated by requiring that the syndrome of a random low-weight noise vector is
pseudo-random. Our constructions require a slightly sub-constant noise rate, but otherwise can be quite
flexible about the choice of the code and its information rate. See Section 2.3 for more details.

2 This and other running time estimates have not been empirically validated, and only take the cost
of arithmetic and cryptographic operations into account (ignoring, e.g., possible cache misses). Their
accuracy also depends on our estimates for the concrete security of the underlying LPN variants, which
should be further studied.
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Rate 1/2 VOLE. As a direct application, we get a standard VOLE protocol in the plain
model with unique efficiency features. This protocol is obtained by using general-purpose
(OT-based) secure two-party computation to distribute the seed generation, locally ex-
panding the seeds, and then using the simple reduction from VOLE to random VOLE. The
protocol has asymptotic rate 1/2 (namely, the asymptotic communication complexity is
dominated by communicating 2n field elements) and almost the entire computational work
can be performed offline, following the seed generation, without any interaction. Beyond
its direct efficiency benefits, this “local preprocessing” feature has several other advantages,
including the ability to make decisions about who to interact with in the future (and how
much) without revealing these decisions to the outside world. See [BCG+17] for further dis-
cussion. Our protocol can be compared to the recent VOLE protocol from [ADI+17], which
under similar assumptions achieves rate 1/3 and does not enjoy the local preprocessing
feature. An additional unique feature of our protocol (unlike other VOLE protocols from
the literature) is that achieving security against malicious parties has vanishing amortized
cost. As long as the seed generation sub-protocol is secure against malicious parties, the
entire VOLE protocol is secure.

Secure arithmetic computation and beyond. Our efficient implementation of VOLE
can serve as a useful building block in secure computation protocols. For instance, given
an additively shared scalar x ∈ F and an additively shared vector u ∈ Fn, one can securely
compute an additive sharing of ux via two invocations of length-n VOLE. Such scalar-vector
multiplications are common in applications that involve linear algebra. See [IPS09,MZ17,
ADI+17,DGN+17,JVC18] and references therein. More generally, VOLE is useful for secure
computation of arithmetic circuits in which multiplication gates have a large fan-out, as well
as round-efficient secure arithmetic computation via arithmetic garbling [AIK11]. Finally,
VOLE can be helpful even for secure computation tasks that are not arithmetic in nature.
For instance, OLE has been applied for efficiently realizing secure keyword search [FIPR05]
and set intersection [GN17]. These applications can benefit from long instances of VOLE,
e.g., when securely computing the intersection of one set with many other sets.

NIZK with reusable setup. Finally, we demonstrate the usefulness of VOLE generators
in the context of non-interactive zero-knowledge proofs (NIZK). We consider the follow-
ing setting for NIZK with reusable interactive setup. In an offline setup phase, before the
statements to be proved are known, the prover and the verifier interact to securely generate
correlated random seeds. The seeds can then be used to prove any polynomial number of
statements by having the prover send a single message to the verifier for each statement.
In this setting, we can leverage our fast VOLE generators towards NIZK proofs for arith-
metic circuit satisfiability in which the proof computation and verification involve just a
small number of field operations per gate, and the setup cost is comparable to the circuit
complexity of (a single instance of) the verification predicate.

Our NIZK protocols are based on simple honest-verifier zero-knowledge protocols for
arithmetic circuit satisfiability that consist of parallel calls to VOLE, where the honest
verifier’s VOLE inputs are independent of the statement being proved. Such protocols, in
turn, can be obtained from linear PCPs for circuit satisfiability [IKO07,GGPR13,BCI+13].
This application of VOLE generators crucially relies on the field being large for eliminating
selective failure attacks. (Similar NIZK protocols based on OT [KMO89, IKOS09] are not
fully reusable because they are susceptible to such attacks.) The honest-verifier VOLE-
based NIZK protocols we use are simplified variants of a NIZK protocol from [CDI+18],
which provides security against malicious verifiers using only parallel calls to VOLE and
no additional interaction. The price we pay for the extra simplicity is that our setup phase
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needs to rely on general-purpose interactive MPC for ensuring that the verifier’s (reusable)
VOLE inputs are well formed.

We conclude by summarizing the two advantages of VOLE correlation over the string
OT correlation which is easier to generate. A quantitative advantage is that VOLE natively
supports arithmetic computations without the log2 |F| communication overhead of the OT-
based approach discussed above. A qualitative advantage is that in certain applications
(such as the NIZK protocol from [CDI+18] and our honest-verifier variants), VOLE can
be used to eliminate selective failure attacks by ensuring that every adversarial strategy is
either harmless or leads to failure with overwhelming probability.

1.2 Overview of the Techniques

Our VOLE generators are based on a novel combination of function secret sharing (FSS) [BGI15]
and noisy linear encodings. For the purpose of explaining the technique, it is convenient
to view a VOLE correlation as a “shared vector-scalar product.” That is, the sender knows
a random vector u ∈ Fn, the receiver knows a random scalar x ∈ F, and they both hold
additive shares of ux. The key idea is that efficient PRG-based FSS techniques allow com-
pressing this correlation in the special case where u is sparse, namely it has few nonzero
entries. However, this alone is not enough, since u must be pseudorandom to the receiver,
which is certainly not the case for a sparse vector.

To convert “sparse” to “pseudorandom” we rely on the LPN assumption. This can be
achieved in two different ways. In the primal variant of our construction, we achieve this by
adding to the sparse u a random vector in a linear code C in which the LPN assumption
is conjectured to hold. To do this, the sender gets a short message a and ax is shared
between the parties. By locally applying the linear encoding of C to a and the shares of
ax, the VOLE correlation is maintained, except that the sparse u is masked with a random
codeword C(a) where both u and the codeword are unknown to the receiver. If C satisfies
the LPN assumption with the level of noise corresponding to the sparsity of u, the sum
looks pseudorandom to the receiver.

The main advantage of the primal construction is that it is conjectured to be secure
even with a code C that has constant locality, namely each codeword symbol is a linear
combination of a constant number of message symbols [Ale03,ADI+17]. This enables fast
incremental generation of VOLE, one entry at a time. Its main disadvantage is that its
output size can be at most quadratic in the seed size. Indeed, a higher stretch would make
it possible to guess a sufficiently large number of noiseless coordinates to allow efficient
decoding via Guassian elimination.

To achieve an arbitrary polynomial stretch, one can use the dual variant of our con-
struction. Here the parties shrink both the sparse u and the shares of ux by applying a
public compressive linear mapping H. If H is a parity check matrix of a code for which
LPN holds, the output of H looks pseudorandom even when given H. A disadvantage of
the dual approach is that the compressive mapping H cannot have constant locality.

We propose several different optimizations of the above approaches. These include LPN-
friendly mappings C andH that can be computed in linear time, improved implementations
of the FSS component of the construction, and secure protocols for distributing the setup
algorithm that generates the seeds. Under plausible variants of the LPN assumption, the
asymptotic time complexity of the seed expansion is linear in the output size. We discuss
further optimizations and give some concrete efficiency estimates in Section 5.
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1.3 Related Work

The idea of compressing cryptographically useful correlations was first put forward in [GI99],
who focused on the case of multi-party correlations that are distributed uniformly over a
linear space. This idea was generalized in [CDI05]. The problem of compressing useful two-
party correlations was studied in [BCG+17], who presented solutions that rely on “group-
based” homomorphic secret sharing. However, the compression schemes from [BCG+17]
have poor concrete efficiency, despite significant optimization efforts.

Variants of the LPN assumption were used as a basis for secure arithmetic computation
in several previous works [NP06, IPS09, ADI+17, DGN+17]. The core idea is to use the
homomorphic property of a linear code to compute a linear function on a noisy encoded
message, and then filter out the noisy coordinates using OT. This technique is quite different
from ours. In particular, it inherently relies on erasure-decoding that we completely avoid.

Finally, it is instructive to compare our notion of a VOLEgenerator with the notion of
OT extension [Bea96, IKNP03]. While OT extension protocols reduce the amortized com-
putational cost of n instances of OT, their communication complexity grows linearly with
n even if one settles for producing pseudo-random OT correlation instances. In contrast,
a VOLE generator implies a sublinear-communication protocol for generating a length-n
VOLE correlation, or alternatively a non-interactive algorithm for creating a long pseudo-
random instance of a VOLE correlation from a pair of short correlated seeds.

2 Preliminaries

We consider algorithms that take inputs and produce outputs from a finite field F or finite
Abelian group G. All of our protocols are fully arithmetic in that they only require a black-
box access to the underlying algebraic structure in the same sense as in [IPS09,ADI+17].
In particular, the number of arithmetic operations performed by our protocols does not
grow with the field or group size. By default vectors v are interpreted as row vectors.

2.1 Vector OLE

Vector OLE (VOLE) is the arithmetic analogue of string OT. Concretely, the VOLE func-
tionality is a two-party functionality that takes a pair of vectors from the sender P0, and
allows the receiver P1 to learn a chosen linear combination of these vectors. More formally,
given a finite field F, the VOLE functionality takes a pair of vectors (u,v) ∈ Fn × Fn from
P0 and a scalar x ∈ F from P1. It outputs w = ux + v to P1. We will also consider a
randomized version of VOLE where the sender’s inputs (u,v) are picked at random by the
functionality and delivered as outputs to the sender. The deterministic VOLE functionality
can be easily reduced to the randomized one analogously to the reduction of OT to random
OT [Bea95] (see Section 6.1).

We note that our results can apply to generating VOLE over non-field rings (e.g., Z2k)
under suitable variants of the underlying intractability assumptions [IPS09]. This can be
useful in turn for secure arithmetic computation over rings [CFIK03,IPS09,CDE+18]. For
simplicity, we focus here on the case of VOLE over fields.

2.2 Function Secret Sharing

Informally, a function secret sharing (FSS) scheme [BGI15] splits a function f : I → G
into two functions f0 and f1 such that f0(x) + f1(x) = f(x) for every input x, and each
fb computationally hides f . In this work we rely on efficient constructions of FSS schemes
for simple classes of functions, including multi-point functions and comparison functions.
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Definition 1 (Adapted from [BGI16]). A 2-party function secret sharing (FSS) scheme
for a class of functions F = {f : I → G} with input domain I and output domain an abelian
group (G,+), is a pair of PPT algorithms FSS = (FSS.Gen,FSS.Eval) with the following
syntax:

– FSS.Gen(1λ, f), given security parameter λ and description of a function f ∈ F , outputs
a pair of keys (K0,K1);

– FSS.Eval(b,Kb, x), given party index b ∈ {0, 1}, key Kb, and input x ∈ I, outputs a
group element yb ∈ G.

Given an allowable leakage function Leak : {0, 1}∗ → {0, 1}∗, the scheme FSS should satisfy
the following requirements:

– Correctness. For any f : I → G in F and x ∈ I, we have Pr[(K0,K1)
R←FSS.Gen(1λ, f) :∑

b∈{0,1} FSS.Eval(b,Kb, x) = f(x)] = 1.
– Security. For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for any

polynomial-size function sequence fλ ∈ F , the distributions {(K0,K1)
R←FSS.Gen(1λ, fλ) :

Kb} and {Kb
R← Sim(1λ, Leak(fλ))} are computationally indistinguishable.

Unless otherwise specified, we assume that for f : I → G, the allowable leakage Leak(f)
outputs (I,G), namely a description of the input and output domains of f .

Some applications of FSS require applying the evaluation algorithm on all inputs. Given
an FSS (FSS.Gen,FSS.Eval), we denote by FSS.FullEval an algorithm which, on input a bit
b, and an evaluation key Kb, outputs a list of |I| elements of G corresponding to the
evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in some arbitrary specified order).
While FSS.FullEval can always be realized with |I| invocations of FSS.Eval, it is typically
possible to obtain a more efficient construction. Below, we recall some results from [BGI16]
on FSS schemes for useful classes of functions.

Distributed Point Functions. A distributed point function (DPF) [GI14] is an FSS
scheme for the class of point functions fα,β : {0, 1}` → G which satisfy fα,β(α) = β, and
fα,β(x) = 0 for any x 6= α. A sequence of works [GI14, BGI15, BGI16] has led to highly
efficient constructions of DPF schemes from any pseudorandom generator (PRG), which
can be implemented in practice using block ciphers such as AES.

Theorem 2 ( [BGI16]). Given a PRG G : {0, 1}λ → {0, 1}2λ+2, there exists a DPF
for point functions fα,β : {0, 1}` → G with key size ` · (λ + 2) + λ + dlog2 |G|e bits. For
m = d log |G|λ+2 e, the key generation algorithm Gen invokes G at most 2(` + m) times, the
evaluation algorithm Eval invokes G at most `+m times, and the full evaluation algorithm
FullEval invokes G at most 2`(1 +m) times.

Note that a naive construction of FullEval from Eval would require 2`(`+m) invocations
of G.

FSS for Multi-Point Functions Our results crucially rely on FSS schemes for multi-
point functions, a natural generalization of point functions. A t-point function evaluates to
0 everywhere, except on t specified points. When specifying multi-point functions we often
view the domain of the function as [n] for n = 2` instead of {0, 1}`. Formally:

Definition 3 (Multi-Point Function). An (n, t)-multi-point function over an abelian
group (G,+) is a function fS,y : [n] → G, where S = {s1, · · · , st} is a subset of [n] of
size t, y = (y1, · · · , yt) ∈ Gkt, and fS,y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any
x ∈ [n] \ S.
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We assume that the description of S includes the input domain [n] so that fS,y is fully
specified.

A Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme for the class of
multi-point functions, where a point function fS,y is represented in a natural way. An
MPFSS can be easily obtained by adding t instances of DPF. We discuss optimizations of
this simple MPFSS construction in Section 4.

We assume that an MPFSS scheme leaks not only the input and output domains but
also the number of points t that the multi-point function specifies.

2.3 Learning Parity with Noise

Our constructions rely on variants of the Learning Parity with Noise (LPN) assumption
over large fields. Unlike the LWE assumption, here the noise is assumed to have a small
Hamming weight: namely it takes a random value from the field in a small fraction of the
coordinates and 0 elsewhere. Similar assumptions have been previously used in the context
of secure arithmetic computation [NP06, IPS09,ADI+17,DGN+17,GNN17]. Unlike most
of these works, the flavors of LPN on which we rely do not require the underlying code
to have an algebraic structure and are thus not susceptible to algebraic (list-)decoding
attacks.

For a finite field F, we denote by Berr(F) the Bernoulli distribution obtained by sampling
a uniformly random element of F with probability r, and 0 with probability 1−r. We define
below the Learning Parity with Noise assumption over a field F.

Definition 4. Let C be a probabilistic code generation algorithm such that C(k, q,F) out-
puts (a description of) a matrix A ∈ Fk×q. For dimension k = k(λ), number of queries (or
block length) q = q(λ), and noise rate r = r(λ), the LPN(k, q, r) assumption with respect
to C states that for any polynomial-time non-uniform adversary A, it holds that

Pr[F← A(1λ), A R←C(k, q,F), e R← Berr(F)q,

s
R← Fk, b← s ·A+ e : A(A, b) = 1]

≈Pr[F← A(1λ), A R←C(k, q,F), b R← Fq : A(A, b) = 1].

By default, we assume that C outputs a uniformly random matrix, but other distributions
of codes will be used for better efficiency.

Note that the decision LPN assumption, given above, can be reduced in polynomial
time to its search variant (where the attacker must find the secret vector s). While this
reduction is not tight, in practice, no substantially better attacks are known on decision
LPN compared to search LPN. Note also that the LPN assumption is equivalent to its
dual version, which states that it is infeasible to distinguish e · B from a random vector,
where e is a noise vector and B is the parity-check matrix of the matrix A ∈ Fk×q (i.e.,
B is a full-rank matrix in Fq×(q−k) such that A · B = 0). The equivalence to LPN follows
immediately from the relation e · B = (s · A + e) · B for any s ∈ Fk. The dual variant of
LPN is also known as the syndrome decoding problem.

Attacks on the LPN Problem. In spite of its extensive use in cryptography, few crypt-
analytic results are known for the general LPN assumption. We briefly outline below the
main results; we refer the reader to [EKM17] for a more comprehensive overview.
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– Gaussian elimination. The most natural attack on LPN recovers s from b = s ·A+e
by guessing k non-noisy coordinates of b, and inverting the corresponding subsystem
to verify whether the guess was correct. This approach recovers s in time at least
(1/(1− r))k using at least O(k/r) samples. For low-noise LPN, with noise rate 1/kc for
some constant c ≥ 1/2, this translates to a bound on attacks of O(ek

1−c
) time using

O(k1+c) samples.
– Information Set Decoding (ISD) [Pra62]. Breaking LPN is equivalent to solving

its dual variant, which can be interpreted as the task of decoding a random linear code
from its syndrome. The best algorithms for this task are improvements of Prange’s ISD
algorithm, which attempts to find a size-t subset of the rows of B (the parity-check
matrix of the code) that spans e ·B, where t = rq is the number of noisy coordinates.

– The BKW algorithm [BKW00]. This algorithm is a variant of Gaussian elimination
which achieves subexponential complexity even for high-noise LPN (e.g. constant noise
rate), but requires a subexponential number of samples: the attack solves LPN over F2

in time 2O(k/ log(k/r)) using 2O(k/ log(k/r)) samples.
– Combinations of the above [EKM17]. The authors of [EKM17] conducted an

extended study of the security of LPN, and described combinations and refinements of
the previous three attacks (called the well-pooled Gauss attack, the hybrid attack, and
the well-pooled MMT attack). All these attacks achieve subexponential time complexity,
but require as many sample as their time complexity.

– Scaled-down BKW [Lyu05]. This algorithm is a variant of the BKW algorithm, tai-
lored to LPN with polynomially-many samples. It solves LPN in time 2O(k/ log log(k/r)),
using k1+ε samples (for any constant ε > 0) and has worse performance in time and
number of samples for larger fields.

– Low-Weight Parity Check [Zic17]. Eventually, all the previous attacks recover the
secret s. A more efficient attack (by a polynomial factor) can be used if one simply
wants to distinguish b = s · A+ e from random: by the singleton bound, the minimal
distance of the dual code of C is at most k + 1, hence there must be a parity-check
equation for C of weight k+1. Then, if b is random, it passes the check with probability
at most 1/|F|, whereas if b is a noisy encoding, it passes the check with probability at
least ((q − k − 1)/q)rq.

In this paper, we will rely on the LPN assumption with high dimension k, low-noise
(noise rate 1/kε for some constant ε), and a polynomially bounded number of samples
(q < k2, or even q = k+ o(k)). We note that in this regime of parameters, no improvement
is known over the standard Gaussian elimination attack for the search version of LPN,
both in the asymptotic setting (BKW and the attacks of [EKM17] require a subexponential
number of samples, and the attack of [Lyu05] does not perform well on low-noise LPN),
and in the concrete setting for any reasonable parameters (according to the detailed recent
estimations of [EKM17]). For a very limited number of samples (which is the case in our
setting), variants of ISD are expected to provide relatively good results. However, they
do not perform well in our specific scenario: when the LPN instance has high dimension
and very low error rate (r(λ) → 0 when λ → ∞), according to the analysis of [TS16], all
known variants of ISD (e.g. [Pra62, Ste88, FS09, BLP11,MMT11, BJMM12,MO15]) have
essentially the same asymptotic complexity 2cw(1+o(1)) for a constant c ≈ − log(1 − k/q)
(with w = rq the number of noisy coordinates). Therefore, their gain compared to the
initial algorithm of Prange vanishes in our setting.

For the decision version of LPN, the low-weight parity check attack essentially elimi-
nates the need for solving a large linear system (which is only necessary to fully recover
the seed), hence it improves upon Gaussian elimination by polynomial factors in general.
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In the concrete instances we consider, we estimated the security of the corresponding LPN
instance using low-weight parity check, Gaussian attacks, and ISD (using the detailed
concrete efficiency analysis of ISD given in [HOSSV18]).

LPN-friendly codes For the purpose of optimizing the computational complexity of LPN-
based constructions, one can use a code generator C that outputs (the description of) an
encoding matrix C such that encoding is fast and yet LPN is still conjectured to hold. (For
the dual version of the construction, we need LPN to hold for the dual code.) For instance,
if C is a random Toeplitz matrix, encoding can be done in quasi-linear time but no better
attacks on LPN are known compared to a random choice of C. There are in fact candidates
for asymptotically good LPN-friendly codes that can be encoded by linear-size circuits over
F [DI14,ADI+17]. Finally, since we do not require the code to have good minimal distance
or support fast erasure-decoding, there is a big space of heuristic LPN-friendly encoding
procedures whose systematic exploration remains for further study.

3 Pseudorandom VOLE Generator

In this section, we formally define our main notion of a pseudorandom VOLE generator (or
VOLE generator for short), and provide two constructions that are dual to each other (in a
sense that will be made formal). These constructions form the core technical contribution
of our paper.

3.1 Defining VOLE Generator

Informally, a VOLE generator allows stretching a pair of short, correlated seeds into a
long (pseudo)random VOLE, by locally applying a deterministic function Expand to the
seeds. Defining the security notion for this primitive requires some care. Ideally, we would
have liked to require that the protocol in which a trusted dealer distributes the seeds
and the parties output the result of applying Expand to be a secure realization of the
VOLE correlation according to the standard real vs. ideal paradigm for defining secure
computation. However, as pointed out in [GI99], this security notion cannot be achieved in
general. Intuitively, this stems from the fact that each party holds a short representation
of its correlated string. For instance, consider a very simple correlation, where both parties
should obtain the same long pseudorandom string. Then any generator for this correlation
will reveal to the first party a short representation of the string of the other party, which
cannot happen in an ideal implementation.

To overcome this issue, we rely on an alternative security notion, which roughly asserts
the following. Consider the real-world experiment of distributing the two seeds and locally
expanding them. We require that the seed seedσ observed by party σ together with the
expanded second output Expand(seed1−σ) are indistinguishable from seedσ together with a
random output of party 1−σ conditioned on Expand(seedσ) in a perfect VOLE correlation.
We prove that this notion suffices for securely instantiating the standard protocol for
computing a chosen-input VOLE from a random VOLE (see Section 6.1), and is hence
sufficient for the applications we consider.

We allow the setup algorithm of the VOLE generator to fix the receiver’s input x rather
than choose it at random. This stronger flavor of VOLE generator, which is needed by some
of the applications, is formalized below.

Definition 5 (Pseudorandom VOLE generator). A pseudorandom VOLE generator is
a pair of algorithms (Setup,Expand) with the following syntax:
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– Setup(1λ,F, n, x) is a PPT algorithm that given a security parameter λ, field F, output
length n, and scalar x ∈ F outputs a pair of seeds (seed0, seed1), where seed1 includes
x;

– Expand(σ, seedσ) is a polynomial-time algorithm that given party index σ ∈ {0, 1} and
a seed seedσ, outputs a pair (u,v) ∈ Fn × Fn if σ = 0, or a vector w ∈ Fn if σ = 1;

The algorithms (Setup,Expand) should satisfy the following:

– Correctness. For any field F and x ∈ F, for any pair (seed0, seed1) in the image
of Setup(1λ,F, n, x) (for some n), denoting (u,v) ← Expand(0, seed0), and w ←
Expand(1, seed1), it holds that ux+ v = w.

– Security. For any (stateful, nonuniform) polynomial-time adversary A, it holds that

Pr

[
(F, 1n, x, x′)← A(1λ),
(seed0, seed1)

R← Setup(1λ,F, n, x)
: A(seed0) = 1

]
≈Pr

[
(F, 1n, x, x′)← A(1λ),
(seed0, seed1)

R← Setup(1λ,F, n, x′)
: A(seed0) = 1

]
.

Similarly, for any (stateful, nonuniform) adversary A, it holds that

Pr

(F, 1n, x)← A(1λ),(seed0, seed1)
R← Setup(1λ,F, n, x),

(u,v)← Expand(0, seed0)

: A(u,v, seed1) = 1


≈Pr

(F, 1n, x)← A(1λ),u R← Fn,
(seed0, seed1)

R← Setup(1λ,F, n, x),
w ← Expand(1, seed1),v ← w − ux

: A(u,v, seed1) = 1

 .
The reader might observe that one can trivially realize the above definition, simply by

letting Setup directly output seed0 ← (u,v), and seed1 ← ux+v, and defining Expand to be
the identity function. We will be interested in non-trivial realizations of VOLE generators,
where the seed produced by Setup is significantly shorter than the number n of the pseudo-
random VOLE instances being produced.

3.2 Primal VOLE Generator

We present the first of two VOLE generator constructions. To simplify the presentation, we
introduce a “spreading function” spreadn (for any integer n) which takes as input a subset
S = {s1, · · · , s|S|} of [n] (with s1 < s2 < · · · < s|S|) and a vector y = (y1, · · · , y|S|) ∈ F|S|,
such that spreadn(S,y) is the vector z satisfying zj = 0 for any j ∈ [n] \ S, and zsi = yi
for i = 1 to |S|. Note that the function spreadn(S, ·) is a linear function. Our construction
of a pseudorandom VOLE generator Gprimal is given in Figure 2.

Theorem 6. Let n = n(λ), k = k(λ), t = t(λ),F = F(λ) be such that LPN(k, n, t/n) holds
over F with respect to the code with generating matrix Ck,n, and let MPFSS be a secure
MPFSS scheme. Then Gprimal is a secure VOLE generator.

In the following, we prove Theorem 6.
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VOLE Generator Gprimal

– Parameters: dimension k = k(λ), noise parameter t = t(λ)
– Building blocks: a code generator C, such that C(k, n,F) defines a public matrix Ck,n ∈ Fk×n,

and a multi-point function secret sharing MPFSS = (MPFSS.Gen,MPFSS.Eval,MPFSS.FullEval).
– Gprimal.Setup(1

λ,F, n, x) : pick a random size-t subset S of [n], two random vectors (a, b) R←Fk×Fk, and
a random vector y R←Ft. Let s1 < s2 < · · · < st denote the elements of S. Set c← ax+ b. Compute
(K0,K1)

R← MPFSS.Gen(1λ, fS,xy). Set seed0 ← (F, n,K0, S,y,a, b) and seed1 ← (F, n,K1, x, c).
Output (seed0, seed1).

– Gprimal.Expand(σ, seedσ) :
If σ = 0, parse seed0 as (F, n,K0, S,y,a, b). Set µ ← spreadn(S,y). Compute ν0 ←
MPFSS.FullEval(0,K0). Output (u,v)← (a · Ck,n + µ, b · Ck,n − ν0).
If σ = 1, parse seed1 as (F, n,K1, x, c). Compute ν1 ← MPFSS.FullEval(1,K1), and set w ← c ·
Ck,n + ν1. Output w.

Fig. 1. VOLE Generator Gprimal

Correctness. By the MPFSS correctness, it holds that

MPFSS.FullEval(0,K0)

+MPFSS.FullEval(1,K1) = spreadn(S, xy) = µx.

Therefore,

ux+ v = (a · Ck,n + µ)x+ b · Ck,n − ν0
= (ax+ b) · Ck,n + µx−MPFSS.FullEval(0,K0)

= c · Ck,n + µx+MPFSS.FullEval(1,K1)− µx
= c · Ck,n + ν1 = w,

which concludes the proof of correctness.

Security. We start by proving that Gprimal satisfies the first security requirement of VOLE
generators under the secrecy property of the MPFSS. Recall that this first requirement
states that no PPT adversary can distinguish the pair (seed0, x) from (seed0, x

′), where
(F, 1n, x, x′) R←A(1λ) and (seed0, seed1)

R←Setup(1λ,F, n, x), for a field F and a size parameter
n chosen byA. Note that the only part of seed0 = (F, n,K0, S,y,a, b) which depends on x is
the MPFSS key K0. By the secrecy property of the MPFSS, there exists a simulator which,
given only the allowable leakage (F, n, t), outputs a key K ′0 which is indistinguishable from
K0. As this simulator does not know any information about x, this immediately implies
the first requirement.

We now turn our attention to the second requirement, which states that no effi-
cient adversary A can distinguish (u,v, seed1) from (u′,v′, seed1), where (seed0, seed1)

R←
Setup(1λ,F, n, x), (u,v) ← Expand(0, seed0), u′ R← Fn, and v′ ← Expand(1, seed1) − u′x,
with (F, n, x) chosen by A.

Let A be a stateful PPT adversary, and let (F, 1n, x) ← A(1λ). We prove the second
security requirement through a sequence of games.

– Game 0. Compute (seed0, seed1)
R← Setup(1λ,F, n, x), set (u,v) ← Expand(0, seed0),

and send (u,v, seed1) to A. Denote β0 the output of A in this game. Note that the input
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of A in this game is seed1 = (F, n,K1, x, c), u = a · Ck,n + µ, and v = b · Ck,n + ν0 =
b ·Ck,n+ ν1−µx = c ·Ck,n+ ν1− (a ·Ck,n+µ)x (using the fact that c = ax+ b and
ν0 + ν1 = µx).

– Game 1. In this game, compute the input of A as before, except that K1 is now
computed solely from (F, n, t) using the simulator for the secrecy of the MPFSS. Note
that in this game, K1 carries no information whatsoever about µ. Denote β1 the output
of A in this game; by the secrecy of the MPFSS, |Pr[β1 = 1]− Pr[β0 = 1]| = negl(λ).

– Game 2. In this game, pick u′ R←Fn and set v′ ← c·Ck,n+ν1−u′x = Expand(1, seed1)−
u′x. Note that the only difference between this game and the previous one is that we
replaced u = a · Ck,n + µ by a uniformly random vector u′. Observe that u is exactly
a noisy linear encoding of a, using the linear code Ck,n ∈ Fk(λ)×n, with noise vector
µ. Since seed1 carries no information about µ, u is therefore a noisy linear encoding
of a, where the number of noisy coordinates is exactly t(λ) (as µ = spreadn(S,y)
and |y| = k), and each noisy coordinate is masked by a uniformly random element of
F. Therefore, distinguishing Game 2 from Game 1 is equivalent to breaking the LPN
assumption of dimension k(λ) over F, with n samples and a noise rate t(λ)/n: denoting
β2 the output of A in this game, under the LPN(k(λ), n, t(λ)/n) assumption over F,
|Pr[β1 = 1]− Pr[β2 = 1]| = negl(λ); this concludes the proof of security of Gprimal.

Efficiency. Instantiating the MPFSS with the PRG-based construction outlined in Sec-
tion 2.2, the setup algorithm of Gprimal outputs seeds of size t · (dlog ne(λ+2)+λ)+(t+k) ·
log2 |F| = Õ(λ·(k+t)) for a field of size |F| = 2O(λ). Asymptotically, the best known attacks
on LPN(k, n, t/n) are the Gaussian elimination attack, which takes time O((1−t/n)k), and
the low-weight parity check attack, which takes time O((1−k/n)t). This implies that, over
a large field F (such that log2 |F| ≥ λ), the optimal expansion factor is obtained by setting
k = t = O(n1/2+ε) for some ε > 0, in which case the Expand algorithm of the VOLE gener-
ator expands a seed of size Õ(n1/2+ε) into a pseudorandom VOLE of size O(n) (counting
size as a number of elements of F), and the best known attack takes subexponential time
O(en

2ε
). Regarding computational efficiency, expanding the seed requires O((k + t) · n)

arithmetic operations, and t · n PRG evaluations.
Instantiating Gprimal with parameters (k, n, t) over a field F yields a VOLE generator

with seed length t · (dlog ne(λ+2)+ λ) + (t+ k) · log2 |F| bits and output length 2n group
elements (for Expand(0, ·)) or n group elements (for Expand(1, ·)). This VOLE generator is
(T, ε)-secure iff LPN(k, n, t/n) with code Ck,n is (T ′, ε)-secure and the MPFSS is (T ′′, ε)-
secure, with T ′ = T −O((k+ t) ·n · log2 |F|+ t ·n ·λ) and T ′′ = T −O((k+ t) ·n · log2 |F|).

A downside of this approach is that the expansion factor of the VOLE generator is lim-
ited to subquadratic. Below, we describe an alternative “dual” approach which overcomes
this limitation and allows for an arbitrary polynomial expansion.

3.3 Dual VOLE Generator

Theorem 7. Let n = n(λ), n′ = n′(λ), t = t(λ),F = F(λ) be such that LPN(n′−n, n′, t/n′)
holds over F with respect to the code with parity-check matrix Hn′,n, and let MPFSS be a
secure MPFSS scheme. Then Gdual is a secure VOLE generator.

In the following, we prove Theorem 7.

Correctness. ux+ v = (µx− ν0) ·Hn′,n = (µx+ ν1 − µx) ·Hn′,n = ν1 ·Hn′,n = w.



Compressing Vector OLE 13

VOLE Generator Gdual

– Parameters: noise parameter t = t(λ).
– Building blocks: a (dual) code generator C′ (which generates on input (n, n′,F) a public matrix
Hn′,n ∈ Fn

′×n, a random matrix by default), and a multi-point function secret sharing MPFSS =
(MPFSS.Gen,MPFSS.Eval,MPFSS.FullEval).

– Gdual.Setup(1
λ,F, n, n′, x) : pick a random size-t(λ) subset S of [n′], and a random vector y R← Ft.

Let s1 < s2 < · · · < st denote the elements of S. Compute (K0,K1)
R←MPFSS.Gen(1λ, fS,xy). Set

seed0 ← (F, n, n′,K0, S,y) and seed1 ← (F, n, n′,K1, x). Output (seed0, seed1).
– Gdual.Expand(σ, seedσ).

If σ = 0, parse seed0 as (F, n, n′,K0, S,y). Set µ ← spreadn(S,y). Compute ν0 ←
MPFSS.FullEval(0,K0). Output (u,v)← (µ ·Hn′,n,−ν0 ·Hn′,n).
If σ = 1, parse seed1 as (F, n, n′,K1, x). Compute ν1 ← MPFSS.FullEval(1,K1), and set w ←
ν1 ·Hn′,n. Output w.

Fig. 2. VOLE Generator Gdual.

Security. The first security requirement follows from the same argument as in the proof
of Theorem 6. We now turn our attention to the second requirement.

Let A be a stateful PPT adversary, and let (F, n, n′, x) ← A(1λ). We now prove
the second security requirement. Consider the following game: compute (seed0, seed1)

R←
Setup(1λ,F, n, n′, x), set (u,v) ← Expand(0, seed0), and send (u,v, seed1) to A. Denote
by β0 the output of A in this game. Note that the input of A in this game is seed1 =
(F, n, n′,K1, x), u = µ · Hn′,n, and v = −ν0 · Hn′,n = ν1 · Hn′,n − µx · Hn′,n. Under the
secrecy of the MPFSS, the key K1 can be simulated solely from (F, n, n′). It remains to
show that the distribution of (u,v) is indistinguishable from the following distribution:
pick u′ R← Fn, set v′ ← Expand(1, seed1)− u′x = ν1 ·Hn′,n − u′x, and output (u′,v′). To
show it, it suffices to show that the distribution of µ ·Hn′,n is indistinguishable from the
uniform distribution over Fn.

Let Dn′−n,n ∈ Fn′−n×n′ be a generating matrix of the dual code of Hn′,n (i.e., Dn′−n,n ·
Hn′,n = 0n

′−n×n). Observe that for any vector a ∈ Fn′−n, it holds that µ · Hn′,n =
(µ+ a ·Dn′−n,n) ·Hn′,n. As µ is a uniformly random noise vector with k non-zero coordi-
nates over Fn′ (given that the simulatedK1 is independent of µ), it holds that µ+a·Dn′−n,n
is indistinguishable from a uniformly random vector over n′, under the LPN(n′−n, n, t/n′)
over F (using the fact that the dual matrix of a uniformly random matrix is itself a uni-
formly random matrix). Therefore, the distribution of µ · Hn′,n is indistinguishable from
the distribution obtained by picking a′ R← Fn′ and outputting a′ ·Hn′,n, which is exactly
the uniform distribution over Fn. This concludes the proof of security of Gdual.

Efficiency. Instantiating the MPFSS with the PRG-based construction outlined in Sec-
tion 2.2, the setup algorithm of Gdual outputs seeds of size t · (dlog ne(λ+2)+λ+ log2 |F|)
bits, which amounts to Õ(t) field elements over a large field (log2 |F| = O(λ)). The low-
weight parity check attack on LPN(n′ − n, n′, t/n′) takes time O((n′/n)t), the Gaussian
elimination attack takes time O(1/(1 − t/n′)n

′−n) ≈ O(e(n
′−n)·t/n′) when t/n′ is suffi-

ciently small, and the ISD attack takes time 2f(n/n
′)·t, where f(n/n′) ≈ − log2(1 − n/n′)

when t/n′ is sufficiently small [TS16]. This implies that this approach leads to a VOLE
generator with arbitrary expansion factor; furthermore, taking n′ to be a small multiple
of n, e.g. n′ = 2n, leads to a (conjectured) security of 2O(t) which does not degrade with
the expansion factor (and depends only on the seed size t). However, expanding the seed
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requires more work than for Gprimal: it involves t · n′ PRG evaluations and O(n · n′) > n2

arithmetic operations.
Instantiating Gdual with parameters (t, n, n′) over a field F yields a VOLE generator with

seed length t · (dlog ne(λ+2)+ λ+ log2 |F|) bits and output length 2n group elements (for
Expand(0, ·)) or n group elements (for Expand(1, ·)). This VOLE generator is (T, ε)-secure
iff LPN(n′−n, n′, t/n′) with code Dn′−n,n is (T ′, ε)-secure and the MPFSS is (T ′′, ε)-secure,
with T ′ = T −O(n′ · (tλ+ n log2 |F|)) and T ′′ = T −O(n′ · n · log2 |F|).

3.4 Optimizations via Structured Matrices

We describe optimizations to the VOLE generators described so far. These optimizations
allow us to obtain VOLE generators with constant computational overhead.

A downside of using both Gprimal and Gdual with a random code is that this in-
curs quadratic computational complexity. Ideally, we would like to be able to compute
Gprimal.Expand and Gdual.Expand in time O(n) (counted as a number of arithmetic opera-
tions and PRG evaluations).

Note that the complexity of Gprimal.Expand and Gdual.Expand is dominated by multipli-
cation by the matrix Ck,n (or Hn′,n) as well as evaluation of MPFSS.FullEval. In Section 4,
we discuss optimization of MPFSS.FullEval. We now discuss an approach for decreasing the
cost of the matrix-vector multiplication. These optimizations together allow us to reduce
the computational complexity of both VOLE generators from quadratic to linear in the
size parameter n.

Primal construction A significant optimization of Gprimal can be obtained by replacing the
uniformly random matrix Ck,n with a local linear code, where each column contains a small
(constant) number of random non-zero coordinates. We note that using local alternatives
to random linear encoding is relatively standard and is not known to weaken the security.
Similar hardness conjectures were made in [Ale03,ADI+17]. Using such codes, computing
a·Ck,n for any vector a can be done using O(n) arithmetic operations. Note that arithmetic
pseudorandom generators with constant computational overhead can be obtained from the
LPN assumption for some linear-time encodable code, see, e.g., [IKOS08]. This is needed
for implementing the primal construction in linear time.

Dual construction In the dual case, we need the matrix Hn′,n to define a compressive linear
mapping, such that the code whose parity-check matrix is Hn′,n satisfies the LPN assump-
tion. There are several alternative possibilities to implement this compressive mapping in
linear time, which we outline below.

– One possibility is to use the transpose of the (randomized) linear-time encodeable
code from [DI14]. As discussed in [DI14], LPN is a plausible assumption for these
linear-time encodable codes as well as their dual codes. Moreover, the (compressive)
transpose mapping can be computed with the same circuit complexity as the encoding
(cf. [IKOS08]).

– Alternatively, one can replace the code from [DI14] by an LDPC code. The parity-
check matrix of an LDPC code is a sparse matrix, for which LPN is conjectured to
hold [Ale03,ADI+17]. Furthermore, while a naive encoding of an LDPC code requires
quadratic time, recent results have established the existence of very efficient linear-
time encoding algorithms for LDPC codes, both in the binary case [LM10] and in
the general case, for codes over arbitrary fields [KS12]. The latter requires at most
n′ · rw(Dn′−n,n) + w(Dn′−n,n) field multiplications, where Dn′−n,n is the parity check
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matrix ofHn′,n, rw(Dn′−n,n) denotes the row-weight ofDn′−n,n, and w(Dn′−n,n) denotes
its total weight (i.e., the number of its non-zero elements); for n′ = O(n), this gives a
linear time algorithm since Dn′−n,n is sparse.

– Eventually, we observe that the only property we require from the encoding is to “suffi-
ciently mix” the encoded vector: we do not require any structure or decoding properties.
Hence, we conjecture that any suitable (linear-time) heuristic mixing strategy should
work. A possibility is to apply a sequence of random atomic operations (switching two
coordinates, multiplication by a constant, summing two coordinates). A better heuristic
procedure (which achieves a better randomization with fewer steps) can be obtained
using a mixing strategy based on expander graphs, such as the approach developped
by Spielman in [Spi96].

4 MPFSS Constructions

An (n, t)-MPFSS for a multi-point function fS,y : [n]→ G can be readily constructed using
t invocations to a DPF over G:

– MPFSS.Gen(1λ, fS,y): denoting s1, · · · , st (an arbitrary ordering of) the elements of
S, for any i ≤ t, compute (Ki

0,K
i
1)

R← DPF.Gen(1λ, fsi,yi), where fsi,yi is the point
function over G which evaluates to yi on si and to 0 otherwise. Output (K0,K1) ←
((Ki

0)i≤t, (K
i
1)i≤t).

– MPFSS.Eval(σ,Kσ, x): parseKσ as (Ki
σ)i≤t and compute zσ ←

∑t
i=1DPF.Eval(σ,K

i
σ, x).

As with DPF, we can enhance an MPFSS with a full domain evaluation algorithm
MPFSS.FullEval which, on input (σ,Kσ), outputs the vector (MPFSS.Eval(σ,Kσ, x))x∈[n].

Plugging the construction of Theorem 2 leads to an (n, t)-MPFSS with key size t ·
(dlog ne(λ + 2) + log2 |G|), where the computational cost of the evaluation algorithm is
dominated by t group operations and tdlog ne evaluations of a PRG, and the cost of a full
domain evaluation is dominated by tn group operations and evaluations of a PRG.

4.1 Optimizing MPFSS Evaluation

The above simple reduction means that in MPFSS.FullEval the parties must make t passes
over the entire domain [n] for privately “writing” t entries (corresponding to the noisy co-
ordinates) in a shared size-n vector. Below, we show how to improve this asymptotically,
to writing a batch of t coordinates making a constant number of passes on the data. We
discuss two alternatives: a concretely efficient approach which relies on a stronger (yet
well-established) assumption than LPN, namely, the regular syndrome decoding assump-
tion, and an asymptotically efficient approach using batch codes [IKOS04] which relies
directly on LPN. Intuitively, the idea for the second approach is the following: evaluating
MPFSS.FullEval on a vector shared between two parties can be seen as writing t entries (the
noisy coordinates, known to the party who holds x) at secret locations (known to the other
party), on a database secretly shared between the parties. A naive writing strategy makes
t passes over the entire database, each pass writing a single entry at a secret position. Our
goal, therefore, is to write a batch of t entries at secret positions using only a constant
number of passes on the database.

A closely related problem involves secretly reading a batch of t secret entries from a
database shared between several servers. This problem has been studied at length (see [IKOS04]
and follow ups), and can be solved using a combinatorial object called batch codes. Our
solution essentially applies the same strategy, formulating the task as a private writing
problem, and shows that the same batch-code-based strategy can similarly be used for this
related task.
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Optimized MPFSS Evaluation using Regular Syndrome Decoding (RSD) The
RSD assumption is a strengthening of the LPN assumption which was introduced in [AFS03]
as the assumption underlying the security of a candidate for the SHA-3 competition, and
which has been studied at length (see [HOSSV18] for a recent survey about the cryptanaly-
sis of the RSD assumption and a detailed discussion about its security). It states that LPN
remains hard, even if the sparse noise vector is regular, meaning that it is divided into t
blocks of size n/t each, each block containing a single random 1, and zeroes everywhere else.
Furthermore, there is a smooth tradeoff between the underlying assumption (from LPN to
RSD) and the complexity (from tn to n operations): one can consider overlapping subsets
instead of disjoint subsets, with larger subsets leading to a longer MPFSS evaluation time
but a noise pattern closer to uniform (hence an assumption closest to plain LPN).

While the noise distribution obtained with this procedure is not uniform anymore, it
seems to resist all known attacks [HOSSV18]. In particular, note that it is not broken
by the attack of [AG10], (which, in particular, does not apply when we use random large
enough overlapping subsets instead of small non-overlapping subsets): the attack of [AG10]
requires at least a quadratic number of samples (note that for Gdual, the number of samples
is N + o(N), where N = n′ − n is the dimension).

Using a regular noise pattern instead of a random noise pattern directly allows to reduce
MPFSS.FullEval to t calls to a DPF on length-n/t vectors, for a total cost of n operations
in the underlying field F and at most n(1 + dlog |F|/(λ + 2)e) PRG evaluations [BGI16].
However, this comes at the cost of relying on the stronger RSD assumption; below, we
outline an alternative strategy which also leads to an O(n) cost, without relying on RSD.

Batch Codes. We first recall the definition of batch codes, from [IKOS04].

Definition 8 (Batch Code [IKOS04]). An (n,N, t,m)-batch code over an alphabet Σ
encodes any string x ∈ Σn into an m-tuple of strings (z1, · · · , zm) ∈ Σ∗ (called buckets)
of total length N , such that any t-tuple of coordinates of x can be recovered by reading at
most a single entry from each bucket.

Specifically, we will rely on a combinatorial batch code (CBC) [IKOS04, SWP09], a
special type of batch code in which an encoding of a string x consists only of replicating
the coordinates of x over “buckets” (i.e., each bucket contains a subset of the coordinates
of x).

A CBC can be represented by a bipartite graph, with n left-nodes, m right-nodes, and
N edges. Each string zj , j ∈ [m] corresponds to the j-th right-node, where the value of zj
is set to the concatenation of (xi) for i ∈ [n] such that (i, j) is an edge (with some canonical
ordering). The CBC requirement states that any subset of t left-nodes has a matching to
the m right nodes. By Hall’s theorem, such a bipartite graph represents an (n,N, t,m)-
CBC if and only if it satisfies the following weak expansion property: each subset S of at
most t left-nodes has at least |S| neighbors on the right.

From CBC to Better MPFSS Assume for now that, for given parameters t and n =
O(ts) (for some constant expansion factor s), there is a (n,N = O(n), t,m = t1+ε)-CBC
(for some constant ε > 0).

Loosely speaking we use such a batch code to construct an efficient MPFSS.FullEval
by the following steps. Instead of t instances of DPF with domain size n, we will use m
DPF instances, each with domain size |zj | (for j ∈ [m]). Namely, the multi-point function
over [n] maps n − t inputs to 0 and t values to group elements. Concatenating these n
values together we obtain a string x which can be batch-encoded into m strings z1, . . . , zm
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with total length N . By the property of batch codes the t points defined by the multi-
point function can be recovered by reading one entry of each of the m strings. Therefore,
MPFSS.FullEval can be implemented by running DPF.FullEval m times, with the domain
size of the j-th invocation corresponding to the length of zj for a total length of O(N)
(instead of total length tn in the simple reduction of MPFSS.FullEval to DPF.FullEval). The
details follow.

Let T1, · · · , Tm ⊂ [n] denote the left neighbors of each right-node of the graph associated
to the CBC. Let fS,y : [n] → F be a t-point function, with S = {s1, · · · , st}. Let DPF =
(DPF.Gen,DPF.Eval,DPF.FullEval) be a function secret sharing for the class of all point
functions from |zj | to F.

– MPFSS.Gen(1λ, fS,y) : let I = {i1, · · · , im} denote a size-m subset of [n] such that
ij ∈ Tj for any j ≤ m, and S ⊂ I (such a subset necessarily exists by definition
of a CBC). For j = 1 to m, define fj : [|zj |] → F to be the following function:
if there exists ` such that s` = ij , fj is the point function that outputs y` on ij ,
and 0 otherwise. Else, fj is the all-zero function, which is a point function with a 0

value defined for the designated point. Compute (Kj
0 ,K

j
1)

R← DPF.Gen(1λ, fj). Output
(K0,K1)← ((Kj

0)i≤m, (K
j
1)i≤m).

– MPFSS.FullEval(σ,Kσ) : parse Kσ as (Kj
σ)i≤m. Output

α =

m∑
j=1

DPF.FullEval(σ,Kj
σ).

The correctness of the above construction immediately follows from the CBC property.
Regarding efficiency, a key that MPFSS.Gen outputs is slightly longer compared to the
simple construction outlined in the beginning of this section (the length is O(t(λdlog ne+
log |G|)) in the simple construction and O(t1+ε(λdlog n/te + log |G|)) in the batch-code
based construction). However, the computational cost of the simple construction is domi-
nated byO(tn) PRG evaluations while the batch-code based method requiresO(

∑m
j=1 |zi|) =

O(n) PRG evaluations saving a factor of O(t) in computation.

Instantiating CBC. Unfortunately, known explicit constructions of (provable) expander
graphs fail to match our efficiency requirements. We outline below two standard ways of
getting around this issue.

– First, consider a random construction of the graph, as follows: pick any constant ε, set
d ← (1 + s) · ε+ 1, and m ← t1+ε. For each left-node u, repeat the following d times:
pick a uniformly random right-node v, and add the edge (u, v) to the graph if it does
not already exist. By a standard union bound, with probability at least 1 − t−2(d−1),
the graph will satisfy the required expansion property. Note that this is a one-time
setup, which fails with a probability 1/tΩ(d) that can be made as small as we want,
and which is independent of both the running time of any adversary, and the number
of executions of the MPFSS algorithms.

– Second, one can consider a heuristic approach using some fixed sequence of bits (say,
e.g., the digits of π) and interpreting it as the graph of a (n,N, k,m)-CBC under
some fixed translation. Assuming that this heuristic leads to a graph with the required
expansion property can be viewed as a relatively weak combinatorial assumption, which
we refer to as the existence of explicit polynomially unbalanced bipartite expanders. This
assumption has been made (either explicitly or implicitly) in prior works on expander-
based cryptography [Gol00, IKOS08,App12,AL16,ADI+17].
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Indeed, in the context of this work, this issue is in fact even less of a concern. Observe
that if the graph of the CBC fails to be sufficiently expanding then the noise distribution
will slightly deviate from being uniform. However, the LPN assumption for such slightly
skewed noise distributions remains a very conservative assumption. Therefore, we get the
following guarantee: either a simple combinatorial assumption holds, and our VOLE gen-
erators are secure under the standard LPN assumption; or it fails, in which case our VOLE
generators remain secure assuming a plausible variant of LPN.

5 Efficiency of VOLE Generation

In this section, we discuss the asymptotic and concrete efficiency we can obtain with the
VOLE generators Gprimal and Gdual.

We start with asymptotic efficiency. Using an “LPN-friendly” code which is linear-time
encodable (alternatively, its dual is linear-time encodable for the dual construction), and
using the CBC-based MPFSS (alternatively, using the “regular noise” variant of LPN, as
in Section 4.1) our VOLE generators can be computed using O(n) arithmetic operations.
This is captured by the following theorem.

Theorem 9. Assume the existence of explicit constant-degree polynomially unbalanced bi-
partite expanders (see Section 4.1). Then the following holds.

– Primal. For any ε > 0 and 1 < c < 2, under the LPN(n1/c, n, nε−1/c) assumption over
F for a linear-time encodable code, there exists a VOLE generator Gprimal over F with
seed length n1/c field elements and output length n.

– Dual. For any ε > 0 and c > 1, under the LPN(n/2, n, nε−1/c) assumption over F for
a code whose dual H is linear-time encodable, there exists a VOLE generator Gdual over
F with seed length n1/c field elements and output length n.

In both cases, computation of G requires O(n) field operations. Furthermore, using the
regular syndrome decoding assumption instead of LPN (with the same parameters) removes
the need for explicit expanders.

We note that the random local encoding of Alekhnovich or the code ensemble from [DI14]
(see [ADI+17] and Section 3.4) can be used to instantiate the linear-time LPN assumption.

5.1 Minimizing Seed Size

We turn to analyze the concrete efficiency of our VOLE generators, starting with a con-
crete optimization of the seed size. By the overview in Section 2.3, the three main attacks
that apply in our setting are the inverse syndrom decoding (ISD) attack, the Gaussian
elimination attack, and the low-weight parity-check attack. We represent on Table 1 and
Table 2 the optimal choices of parameters to minimize the size of the seed for a given
output size, for Gprimal and Gdual, under the constraint that the corresponding LPN prob-
lem requires 280 arithmetic operations to be solved with either low-weight parity check,
Gaussian elimination, or ISD. The corresponding seed size is counted as a number of field
elements (bitsize divided by 128) to facilitate comparison with the trivial solution (directly
sharing the output vector-OLE). Ratio is n divided by the seed size (in field elements); it
measures the gain in storage with respect to the trivial solution.

For Gprimal, the corresponding LPN instance is LPN(k, n, t), where n is the target output
size, t is the number of noisy coordinates, and k is the message length of the code. The seed
length is t ·(dlog ne(λ+2)/ log2 |F|+λ)+ t+k. Setting λ = log2 |F| = 128, the optimal seed
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size is obtained by solving a 2-dimensional optimization problem over the integers, with
constraints 0 ≤ k ≤ n, 0 ≤ t ≤ n, and the constraints given by the requirement that the
low-weight parity check attack, the Gaussian elimination attack, and the ISD attack, all
require at least 280. This is a highly non-convex constrained optimization problem, with a
very large number of local minima, making the estimation of the global minimum relatively
complex. We used extensive numerical analysis to compute (close to) minimal seed sizes
offering 80 bits of security against each of the attacks; in Table 1, we report values (t, k)
at which a local minimum is attained, which is expected to be very close to the global
minimum.

For Gdual, the corresponding LPN instance is LPN(n′−n, n′, t/n′), where n is the target
output size, t is the number of noisy coordinates, and n′ is a parameter that can be set
arbitrarily. We let c← n′/n; the seed size is equal to (t · dlog2 ne · (λ+2)+λ)/ log2 |F|+1.
We give in Table 2 the minimal value of t (the number of noisy coordinates), for fixed n
and c = n′/n, such that all three attacks (ISD, Gaussian, parity-check) require at least 280

operations with the above analysis. We arbitrarily set c = 4; higher values of c allow to
choose slightly smaller values for t, leading to slightly reduced seed sizes, but negatively
impact the computational efficiency.

Below, we provide formulas to upper-bound the cost of all three attacks in our setting.
We consider an LPN instance with dimension n0, number of queries n1, and number of
noisy coordinates t. The bounds for Gprimal are obtained by setting (n0, n1)← (k, n). The
bounds for Gdual are obtained by setting (n0, n1)← (n′ − n, n′).

Gaussian Elimination. The Gaussian elimination attack requires on average (1/(1 −
t/n1))

n0 iterations, where the adversary must invert an n0 × n0 matrix, which takes time
at least n2.80 using Strassen’s matrix multiplication algorithm (algorithms with a smaller
exponent perform less well in our range of parameters, due to their huge hidden constants).
The entry “Gaussian cost” in Table 1 and Table 2 provides a lower bound on the bit-security
of the LPN instance with respect to the Gaussian elimination attack, computed as

log2

(
n2.80 ·

(
1

1− t/n1

)n0
)
.

Low-Weight Parity-Check. The low-weight parity-check attack requires (n1/(n1−n0−
1))t iterations on average, where at each iteration the adversary must compute a weight-
(n0+1) parity-check, which requires (n0+1) arithmetic operations. The entry “parity-check
cost” in Table 1 and Table 2 provides a lower bound on the bit-security of the LPN instance
with respect to the low-weight parity check attack, computed as

log2

(
(n0 + 1) ·

(
n1

n1 − n0 − 1

)t)
.

Inverse Syndrome Decoding. We now turn our attention to the ISD attack. Many
variants of the attack have been developped in the past years, and the asymptotic costs
of these attacks are often non-trivial to estimate. However, in our parametter setting,
the noise rate t/n1 is tiny, and the advantages of the variants of the original algorithm of
Prange [Pra62] vanish in this situation, as shown in the analysis of [TS16]. We will therefore
focus on bounding the cost of the original algorithm of Prange; since we will find this attack
to have much worst performances than the Gaussian elimination and low-weight parity-
check attacks, this leaves a large security gap. We rely on the detailed concrete efficiency
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Table 1. Optimal parameters of Gprimal for a given output size n. Both the security parameter λ and
the bitsize of field elements log2 |F| are set to 128. The parameters are optimized under the constraint
that solving the corresponding LPN instance must require at least 280 arithmetic operations with either
low-weight parity check, Gaussian elimination, or ISD.

n t k ISD cost Gaussian cost parity-check cost seed size ratio

210 57 652 115 80 93 1288 0.8
212 98 1589 104 85 80 2881 1.4
214 198 3482 108 94 80 6495 2.5
216 389 7391 112 99 80 14101 4.6
218 760 15336 117 103 80 29990 8.7
220 1419 32771 121 106 80 63013 16.6
222 2735 67440 126 108 80 131285 31.9

Table 2. Optimal parameters of Gdual for a given output size n. Both the security parameter λ and
the bitsize of field elements log2 |F| are set to 128. The parameters are optimized under the constraint
that solving the corresponding LPN instance must require at least 280 arithmetic operations with either
low-weight parity check, Gaussian elimination, or ISD.

n t c = n′/n ISD cost Gaussian cost parity-check cost seed size ratio

210 44 4 117 80 100 535 1.9
212 39 4 112 80 92 553 7.4
214 34 4 107 80 84 551 29.7
216 32 4 109 84 82 584 112
218 31 4 112 88 82 629 417
220 30 4 116 93 82 669 1566
222 29 4 120 97 82 706 5941

analysis of ISD given in [HOSSV18], which shows that the bit-security of the LPN instance
with respect to Prange’s algorithm is upper-bounded by

log2

( (
n1

t

)(
n1−n0

t

) · (n1 − n0)2.8) ,
using again Strassen’s algorithm for the Gaussian elimination step. We use this upper
bound to calculate the entry “ISD cost” in Table 1 and Table 2. The ratios obtained in
Table 1 and Table 2 show that Gdual performs considerably better than Gprimal in terms of
optimal seed size; however, this comes at the cost of a worst computational efficiency.

5.2 Time-Complexity Optimizations

In this section, we describe optimizations that improve the computational efficiency of
Gprimal and Gdual. While using uniformly random matrices Ck,n and Hn′,n in Gprimal and
Gdual reduces their security to the standard LPN assumption, this choice is wasteful in
terms of computation since a random linear mapping takes quadratic time to compute. We
discuss different methods to improve the computational complexity by using LPN-friendly
codes that are efficiently encodable.

Efficiently Encodable LPN-Friendly Codes. While the standard LPN assumption is
defined with respect to uniformly random linear codes, it is common to assume the hardness
of LPN with respect to other kinds of codes. We list below a few possible alternatives.

– Local Codes. The hardness of LPN for local linear codes is a well-established assump-
tion [Ale03]. A local linear code with a (constant) locality parameter d is one where
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each codeword symbol is a linear combination of d message symbols. Equivalently, each
row of the generating matrix has at most d nonzero entries. Such local codes have a
trivial linear-time encoding algorithm. Consider implementing Gprimal with a d-local
code. By the analysis of [ADI+17], picking d = 10 leads to a reasonable security level
with respect to known attacks, provided that the dimension is sufficiently large (as it
will be in our concrete estimations). With a d-local code, the primal linear mapping
can be computed using d · n multiplications over F.
However, local codes cannot be used with Gdual: in Gdual, we require the dual code to
be LPN-friendly. The dual code of a local code is an LDPC code, for which efficient
decoding algorithms exist, hence LPN does not hold with respect to such codes.

– LDPC Codes. An alternative that works forGdual is to use the transpose of an LDPC en-
coder (we need to transpose since we want to define a compressing mapping), hence ob-
taining a security reduction to the hardness of LPN with respect to local codes [Ale03].
While the encoding matrix of an LDPC code is not sparse, it admits a linear-time
encoding algorithms over arbitrary fields [KS12]. By the transposition principle (see
e.g. [Bor57, IKOS08]) the transposed mapping can be computed with essentially the
same circuit complexity as the encoding (it essentially consists in reversing the compu-
tation while interchanging XORs and fan-out operations). Using this code, computing
the compressive linear mapping requires at most d · (2n′ − n) multiplications (since it
is bounded by n′ · rw(Dn′−n,n) + w(Dn′−n,n), rw(Dn′−n,n) = d, see Section 3.4, and
w(Dn′−n,n) < (n′ − n) · rw(Dn′−n,n) = d · (n′ − n)). Using n′ = c · n gives a cost of
(2c− 1) · d · n multiplications over F, where here too we choose d = 10.

– MDPC Codes. A more conservative variant of the above is to rely on MDPC codes
(medium-density parity-check codes), where the parity-check matrix has row weight
O(
√
n) (instead of constant). MDPC codes have been thoroughly studied, since they

are used in optimized variants of the famous McEliece cryptosystem [MTSB12].
– Quasi-Cyclic Codes. A third alternative option is to rely on quasi-cyclic codes, which ad-

mit fast (albeit superlinear) encoding algorithms. Quasi-cyclic codes have been recently
used to construct optimized variants of the LPN-based cryptosystem of Alekhnovich
and the code-based cryptosystem of McEliece [ABD+16,MBD+18].

– Druk-Ishai Codes. Another possibility is to rely on the linear-time encodable codes de-
velopped by Druk and Ishai in [DI14]. Their construction of linear-time encodable code
is essentially a concatenation of good a linear encoding and its transpose, intertwined
with random local mixing. This design strategy leads to codes satisfying the combinato-
rial properties of random linear codes (e.g. meeting the Gilbert-Varshamov bound) and
do not support efficient decoding, while having a fast (linear-time) encoding algorithm;
this makes it a strong candidate in our scenario.

– Other Codes. As mentioned in Section 3.4, many other alternatives can be envisioned:
since we do not require the code to have structure, or decoding algorithms. There-
fore, any sufficiently good heuristic mixing strategy (e.g. a strategy based on expander
graphs, such as the approach developped by Spielman in [Spi96]) will likely lead to a
secure LPN instance in our setting.

In the following, we will provide time-complexity estimations for the computational
efficiency of Gprimal and Gdual. In our estimates, we will consider implementing Gprimal with
a local code (with d = 10) and Gdual with an LDPC code (with d = 10). Other choices
of codes would lead to different running times; in particular, more conservative choices
(quasi-cyclic codes, MDPC codes) should lead to worst performances (albeit remaining
quite efficient), and Druk-Ishai codes should lead to somewhat comparable performances
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(but this would heavily depend on the exact choice of parameters, since Druk-Ishai codes
are a family of codes, and not a specific code).

Simplified Full Domain Evaluation. To unify the discussion, we define m to be equal
to n in the case of Gprimal, and to n′ = c ·n in the case of Gdual. We described in Section 4.1
a strategy to optimize the full evaluation procedure of the MPFSS. Using, e.g., the RSD-
based solution, the entire cost of MPFSS.FullEval is 2m PRG evaluations for field sizes that
are roughly the size of the security parameter.

Time Complexity Estimates. The computational cost of our VOLE generators is dom-
inated by computing a linear mapping over the field F and by computing MPFSS.FullEval.
The following estimates of the running time are not based on an actual implementation.
Instead, they are based on the cost of standard arithmetic and cryptographic operations on
a powerful personal computer, using benchmarks available in the literature for the running
time of these operations. We believe that our parameters should not incur significant cache
misses, however this has not been empirically validated. Our reported numbers should
therefore be viewed as rough estimates that count only the cost of atomic operations on
the standard hardware specified below.

Emmart et al. [ELWW16] report 12.2 billion modular multiplications per second over
a field Fp for a 128-bit prime p using a common graphics card (Nvidia GTX 980 Ti).
Hence, the linear mapping can be performed in approximately T/(12.2 · 109) seconds on a
personal computer with the appropriate graphics card (note that this estimation ignores
cache-misses), where T is the number of multiplications over F (for example, T = d · n
using a d-local code for Gprimal, and T ≤ (2c− 1)d · n using an LDPC code for Gdual with
n′ = cn).

Implementing the PRG using AES3, each PRG evaluation amounts to 2 calls to AES
(hence 256 bits of AES ciphertexts). A computer equipped with an Intel i7-6700 can encrypt
2607 megabytes per second using AES-128-GCM.4 Therefore, a computer equipped with
the same processor can execute a heuristically optimized full domain evaluation, dominated
by 4m AES encryption operations in m/(4.27 · 107) seconds. We report running time
estimates for Gprimal and Gdual in Table 3.

As an example for this estimate, consider a VOLE output size of 220 field elements
for a prime field with a 128-bit prime. In the primal generator, the linear mapping part
requires d · 220/12.2 · 109 ≈ 0.085 · d milliseconds. In the same setting, the MPFSS scheme
uses 4 · 220 AES operations which require 24.5 milliseconds. Taken together the time for
the primal VOLE generation for P1 is approximately 0.085 · d+ 24.5 milliseconds (e.g. for
d = 10, the running time is approximaltely 25.4 milliseconds; it’s slightly larger for P0,
since P0 must evaluate a linear mapping twice). For the dual generator with the same n
and F we have that m = c ·220 (denoting c = n′/n) and therefore the linear mapping takes
(2c− 1) · 220 · d/12.2 · 109 ≈ (2c− 1) · 0.085d ms, MPFSS.FullEval takes c · 24.5 ms and the
total is (2c− 1) · 0.085d+ c · 24.5 ms (e.g. for c = 4 and d = 10, we get 102ms).

Note that for a smaller field size, e.g. a prime field of length 64 bits, the MPFSS.FullEval
is about twice as fast, using the “early termination” optimization of [BGI16]. This opti-
3 The PRG can either be defined to use AES in counter mode, i.e. PRG(s) is AESs||0(0), AESs||0(1) for a
seed s ∈ {0, 1}127 or a fixed key alternative AESk0(s||0)⊕ s||0, AESk1(s||0)⊕ s||0 for fixed keys k0, k1.
The choice of AES is motivated by the hardware support for AES encryption and decryption in modern
CPUs.

4 See https://calomel.org/aesni_ssl_performance.html. Note that using AES-GCM is an overkill
here, since fixed-key AES suffices for distributed point functions, hence this choice leads to a conservative
estimate.

https://calomel.org/aesni_ssl_performance.html
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Table 3. Estimated running time of Gprimal and Gdual, for a 128-bit field size. Gprimal is instantiated with a
local code, while Gdual is instantiated with an LDPC code. We use d = 10 and c = 4 in the calculations. We
use the reported number [ELWW16] of 12.2 billion modular multiplications per second using a common
graphics card (Nvidia GTX 980 Ti), and the reported number of 2607 megabytes per second using AES-
128-GCM over an Intel i7-6700 processor (see the footnote).

Gprimal

n 210 212 214 216 218 220 222

Linear Mapping (ms) 0.001 0.003 0.013 0.054 0.21 0.86 3.44
Full domain evaluation (ms) 0.024 0.10 0.38 1.53 6.14 24.5 98.2
Total running time for P0 (ms) 0.026 0.11 0.41 1.65 6.56 26.3 105
Total running time for P1 (ms) 0.025 0.10 0.40 1.59 6.35 25.4 102

Gdual

n 210 212 214 216 218 220 222

Linear Mapping (ms) 0.006 0.02 0.09 0.38 1.50 6.02 24.1
Full domain evaluation (ms) 0.10 0.38 1.53 6.14 24.5 98.2 393
Total running time for P0 (ms) 0.11 0.43 1.72 6.89 27.6 110 441
Total running time for P1 (ms) 0.10 0.41 1.63 6.51 26.1 104 417

Table 4. Actual running times for evaluating a compressive quasi-cyclic mapping which maps 4n ring
elements to n ring elements, over a ring whose modulus is a product of two 62-bit primes, on one core of
a personal computer equipped with a 2.8 GHz Intel i7-7600U.

n 210 212 214 216 218 220

QC-code encoding (ms) 0.14 0.67 2.9 14.4 66 338

mization results (for λ = 127 and |F| ≤ 264) in halving the time of MPFSS.FullEval and
therefore requiring about 13 ms for the primal generator (with d = 10 and n = 220).

Conservative Estimates from Quasi-Cyclic Codes. The above estimates are based
on reported running times for field multiplications, and ignore potential cache-misses. We
complement the above estimation with a much more conservative estimate, based on the
actual running time for encoding with quasi-cyclic codes. Quasi-cyclic codes exhibit good
performances, although they perform much worse than LDPC codes or sparse codes (in
particular, they do not admit linear-time encoding). Therefore, the numbers below should
only be seen as a (very) conservative upper-bound on the running time of the linear-
mapping part (the running times given in the previous paragraphs for the full domain
evaluation are already conservative).

The encoding with quasi-cyclic codes were ran on one core of a personal computer
equipped with a 2.8 GHz Intel i7-7600U, with simple preprocessing and optimizations
to reduce the number of NTTs, using the library NFLLib. It is likely that the numbers
could be further improved with additional optimizations. The running time estimates are
reported on Table 4. As shown by the table, the actual running time of the linear mapping
for Gdual with (non-heavily optimized) quasi-cyclic codes is about twenty times slower than
our estimates with LDPC codes. For example, for n = 220, the total running time for P0

would be about 437 ms. We note that using variants of LPN with quasi-cyclic codes has
been widely investigated in the literature.
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5.3 Distributed Generation of MPFSS

So far we thought of the VOLE generator Setup as being performed by a trusted dealer
who samples and sends seed0 and seed1 to the respective parties. In practice, the trusted
dealer can be emulated via secure two-party computation. For both of our VOLE generator
constructions, the complexity of Setup is dominated by the execution of MPFSS.Gen which
in turn consists of a series of executions of DPF.Gen. More specifically, for each DPF.Gen,
one party (VOLE sender) selects and knows the position of the designated DPF point and
the evaluation of the DPF is taken to be the product of the noise value yi known to the
VOLE sender and the secret x known to the second party (VOLE receiver). Note that this
is also the case for the batch-code based and RSD based constructions of MPFSS.

In the DPF.Gen construction of [BGI16] for point functions over the domain Fn the two
output keys areK0 = (s

(0)
0 , cw1, . . . , cwν+1) andK1 = (s

(0)
1 , cw1, . . . , cwν+1) where s

(0)
0 , s

(0)
1

are two random seeds for the PRG and ν = min{dlog n − log λ
log |F|e, log n}. Gen proceeds

in ν+1 steps. In the i-th step it expands s(i−1)0 and s(i−1)1 by using one PRG invocation for
each seed and obtains s(i)0 , s

(i)
1 and cwi. In the final step the algorithm computes cwν+1 as a

function of the expanded seeds and the target value. We discuss and analyze two different
approaches for distributing DPF.Gen.

Generic 2PC. Any protocol for 2PC can be used to compute the output of Gen securely.
Both the communication and computation of the protocol are dominated by two factors:
λ+ν OTs for a seed and location of the designated point and by 2(ν+µ) secure evaluations
of the PRG for µ = d log |G|λ+2 e. Setting λ = 127 and the PRG to two AES evaluations, as
suggested previously, results in 127+ ν OTs and 4(ν + µ) secure evaluations of AES (with
secret-shared inputs and outputs).

Assume that securely evaluating AES is implemented by an efficient protocol such as
[RR16] or [WRK17]. Wang, Ranellucci and Katz [WRK17] use an Amazon EC2 c4.8xlarge
instance over a LAN, with statistical security parameter ρ = 2−40, and securely evaluate a
single AES instance in 16.6 milliseconds, while the amortized cost of 1024 AES evaluations
is 6.66 milliseconds in the malicious model. In the semi-honest model they achieve a single
evaluation in 2.1 milliseconds. The evaluation of the base OTs for an AES evaluation
requires about 20 milliseconds. OT extension beyond the base OTs can be done at much
higher rate, 500, 000 per second in [NNOB12].

The amortized communication complexity reported in [WRK17] for securely computing
an AES circuit in the malicious model is 2.62 Mbytes. In the semi-honest model, assuming
an AES circuit of 6800 AND gates [WRK17] and using the free-XOR [KS08] and half-
gate [ZRE15] optimizations, the garbled circuit is of size 6800 · 2 · 16 = 217.6 Kbytes.

Assuming that the amortized cost of an AES evaluation for our likely range of parame-
ters, i.e. several hundred AES evaluations, is about 7 milliseconds in the malicious setting
implies that the total execution time of the protocol (without OT) is about 28(ν + µ)
milliseconds in the malicious setting and 8.4(ν+µ) milliseconds in the semi-honest setting.

For example, if n = 220 and |F| ≤ 2128 then ν = 20, µ = 1 and by Table 2 the number
of times that DPF.Gen is executed in the dual generator is t = 30. Therefore, the running
time in the malicious setting is estimated to be 30 ·588 ms for computing AES circuits and
20 + 30(21 + 127)/500000 ms for the OTs, which together give roughly 18 seconds. The
running time in the semi-honest setting is roughly 5 seconds. The total communication in
the malicious setting is about 78.6 Mbytes and the total communication in the semi-honest
setting is 6.5 Mbytes.5

5 The OTs add only marginally to this number, see calculation in the next section.
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These numbers can be further improved using an MPC-friendly PRG with few AND
gates instead of AES; e.g., using LowMC [ARS+15] would give approximately a 23-time
improvement for communication and computation of the setup.

Black-Box Approach. The most expensive part of using generic 2PC to distribute
DPF.Gen is the multiple evaluations of AES. An alternative approach which treats the
PRG as a black box was offered by Doerner and shelat in [DS17]. The method works only
in the semi-honest model, but in that model it is quite competitive with the generic 2PC
approach for concrete parameter ranges of interest.

The idea is to compute the seed by a communication round for each level of the tree
described by DPF.FullEval. In each such level, if both parties expand all the strings in the
level then the only difference between the expanded strings is the result of the two expanded
seeds along the path to the designated point. That difference is exactly maintained if each
party XORs all the left children into one 128-bit string and all the right children into
another 128-bit string. Computing the correction cwi for the i-th level is possible using
two OTs of 129-bit strings. In our case, where one party knows the location of the special
path (as opposed to secret shares of the path bits, as in [DS17]), this can be further
simplified to just one string OT per level.

The total computation time of this protocol to distribute DPF.Gen is dominated by
(ν + 1) string OTs for 129-bit strings and 2ν+1 locally computed AES operations. The
communication is dominated by the (ν + 1) string OTs. Using the RSD assumption with
output n′ and noise t/n′ (where n′ = c · n; we choose as before c = 4 in our estimations),
the seed which the distributed Gen algorithm outputs is exactly t seeds of DPF.Gen with
output length n′/t. Therefore, the running time and communication of the protocol are
dominated by t(νt + 1) OTs for νt = min{dlog n′/t − log λ

log |F|e, log n
′/t} and t2νt+1 local

AES operations.
For the example of output size n = 220 and field size |F| ≤ 2128 we get for the dual

generator that t = 30 and νt = 17. Therefore, the distributed generation protocol requires
18 · 30 = 540 OTs and 2.23 million AES operations.

Using the previous estimate of 2607 MBPS for AES on a standard PC we get that the
computation requires about 13 ms for the AES operations and about 20 ms for the OTs
or 23 ms together. The communication for each of the base OTs can be as low as 4 · 256
bits using the Naor-Pinkas OT [NP01] and for the rest of the OTs λ + 2m for a security
parameter λ and string length m, which can be reduced to λ +m since we only require
correlated OTs [ALSZ13]. Since in our case λ = 128 and m = 129 the communication
complexity of this protocol is 27 Kbytes.

6 Applications

As discussed in the Introduction, VOLE generators can be used as a general-purpose tool
in any application that benefits from large VOLE instances. We discuss several such appli-
cations below.

6.1 Secure Arithmetic Computation

There are numerous applications of secure computation that benefit from representing
the function being computed as an arithmetic circuit. See, e.g., [IPS09,MZ17, ADI+17,
DGN+17, JVC18] and reference therein. Many of these applications involve multiplying a
secret scalar by a secret vector, where the two inputs can either be held by a single party of
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secret-shared by the two parties. Such scalar-vector multiplication is a useful building block
for more complex protocols that involve matrix-vector or matrix-matrix multiplication.

More concretely, suppose that a scalar x ∈ F and vector u ∈ Fn are additively shared
between P0 and P1. Let x0, x1 and u0,u1 denote the shares. Then, an additive sharing of
x·u can be obtained via two invocations of VOLE, by breaking the product (x0+x1)(u0+u1)
into four terms and using the two VOLE instances to obtain additive shares of the cross-
terms x0 ·u1 and x1 ·u0 (the other two terms can be computed locally). Other than being
directly useful for secure linear algebra, this sub-protocol can be used to speed up protocols
for arithmetic circuits that have a large multiplication fan-out.

Vector OLE from Pseudorandom VOLE Generator. We now describe and analyze
the standard method for converting random VOLE into standard VOLE (cf. [IPS09]), and
prove its security when using the output of the VOLE generator to produce a random VOLE.
This justifies the security notion of VOLE generators we put forward in Definition 5.

We start by recalling the standard protocol for implementing VOLE from an ideal
random VOLE correlation.

Preprocessing. A trusted dealer picks (ru, rv, rx)
R← Fn × Fn × F, sets rw ← rurx + rv,

and outputs (ru, rv) to P0 and (rw, rx) to P1.
Input. P0 has input (u,v), and P1 has input x.
Protocol. P1 sends mx ← x− rx. P0 sends mu ← u− ru and mv ← mxru + v − rv. P1

outputs w ←mux+mv + rw.

Correctness:w =mux+mv+rw = (u−ru)x+(x−rx)ru+v−rv+rurx+rv = ux+v.
Security is straightforward.

We now consider a modification of the above protocol that replaces the ideal random
VOLE correlation by the output of the VOLE generator:

Preprocessing. A trusted dealer picks rx
R← F, proceeds to compute (seed0, seed1)

R←
Setup(1λ,F, n, rx), and outputs seed0 to P0 and (rx, seed1) to P1.

Offline Expansion. P0 computes (ru, rv) ← Expand(0, seed0) and P1 computes rw ←
Expand(1, seed1).

Input. P0 has input (u,v), and P1 has input x.
Protocol ΠVOLE. P1 sendsmx ← x−rx. P0 sendsmu ← u−ru andmv ← mxru+v−rv.

P1 outputs w ←mux+mv + rw.

Correctness follows from the correctness of the VOLE generator and the same analysis
as before.

Proposition 10. Assuming (Setup,Expand) is a secure VOLE generator (as in Defini-
tion 5), the protocol ΠVOLE is a secure vector-OLE protocol in the preprocessing model.

Proof. We exhibit a simulator Sim that generates a view indistinguishable from an honest
run of the protocol as long as a single party is corrupted.

Case 1: P0 is corrupted. In the preprocessing phase, Sim picks a random rx
R← F, com-

putes (seed0, seed1)
R←Setup(1λ,F, n, rx), and outputs seed0 to P0. In the online phase, Sim

sendsmx
R←F. Observe that the view of P0 in this simulated protocol is perfectly equivalent

to an honest run of the protocol where P1 would pick a uniformly random r′x and send
mx ← x − r′x instead of computing mx ← x − rx using the random rx received from the
trusted dealer. This implies that distinguishing the simulated protocol from the real one
is equivalent to distinguishing a run of the protocol with the random rx picked by the
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dealer from a run of the protocol with a fresh random r′x. Therefore, the indistinguisha-
bility between the simulated protocol and the real protocol follows immediately from the
first security requirement of the VOLE generator.

Case 2: P1 is corrupted. In the preprocessing phase, Sim picks a random rx
R← F,

computes (seed0, seed1)
R← Setup(1λ,F, n, rx), and outputs (rx, seed1) to P1. In the on-

line phase, Sim receives mx from P1, and the target output w of P1. Sim computes
rw ← Expand(1, seed1), and sets mw ← w − rw and x ← mx + rx. Sim picks mu

R← Fn
and set mv ← mw −mvx. Sim sends (mu,mv) to P1. The indistinguishability between
the simulated protocol and the real protocol follows immediately from the second security
requirement of the VOLE generator.

Malicious Security. An attractive feature of ΠVOLE is that as long as the preprocessing
is trusted then ΠVOLE is secure against a malicious adversary. The reason is that if one
of the players is corrupt then any deviation it makes from the protocol can be simulated
by a corresponding change of input in the ideal model. This effectively means that our
VOLE generator can be used as a plug-and-play alternative to ideal VOLE, as long as the
setup implementation is secure (e.g., it is distributed between the parties using maliciously
secure two-party computation).

In more detail, if P1 is corrupted then since the only message it sends in the protocol
is mx = x − rx its only possible deviation is to change that message to some m′x. The
trusted setup outputs rx and therefore an honest player would send the message m′x on
input x′ = m′x + rx and output w′ = ux′ + v. As a consequence the simulator for P1 with
input x′ in the semi-honest setting simulates the malicious adversary with input x, which
proves that in this case the protocol is secure in the malicious setting.

If P0 is corrupted then it can only output two messages m′
u and m′

v that are different
from the real vectors. An honest player would send m′

u on input u′ =m′
u + ru and m′

v

on input v′ = m′
v− ← mxru + rv and the output would be w′ = u′x + v′. Again there

exists a simulator for a malicious adversary since a simulator exists in the semi-honest case
with inputs u′ and v′.

Rate-1/2 VOLE protocol in the plain model. By distributing the setup of our (primal
or dual) VOLE generators using general-purpose protocols for secure two-party computa-
tion, we get VOLE protocols in the plain model with attractive efficiency features. The
protocols can be implemented in a constant number of rounds and have asymptotic com-
munication rate of 1/2. That is, the communication complexity is dominated by the cost of
communicating two vectors in Fn. Using the dual construction, the protocol can be based
on OT together with LPN with a linear number of samples n = O(k) (in fact, n = k+o(k)
samples suffice) and a slightly sublinear noise (n1−ε noisy samples). This is strictly better
than the flavor of LPN known to imply public-key encryption [Ale03].

Combined with linear-time encodable LPN-friendly codes, we get VOLE protocols in the
plain model that have constant computational overhead and make a black-box use of the
underlying field. Compared to the recent constant-overhead VOLE protocols from [ADI+17],
the protocol ΠVOLE obtained by combining Proposition 10 and Theorem 9 has the qualita-
tive advantage of non-interactive generation and the quantitative advantage of asymptotic
rate of 1/2 (compared to 1/3 in [ADI+17]). The underlying LPN assumption is similar but
technically incomparable: our protocol requires LPN with a slightly sub-constant noise rate
(compared to constant noise rate in [ADI+17]) but also uses a smaller number of samples
(linear vs. super-quadratic). Another advantage of our protocol is that it avoids any kind
of erasure decoding or Gaussian elimination that were required in [ADI+17] and in other
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previous protocols. Finally, a unique feature of our protocol is that it can achieve security
against malicious parties at a vanishing amortized cost.

Focusing on communication complexity alone, VOLE with rate 1 could be previously
obtained via the Damgård-Jurik encryption scheme, and rate 1/2 could be obtained from
LWE, DDH, or Paillier via homomorphic secret sharing [BGI17,DHRW16,FGJI17,BCG+17].
Note that since neither our flavor of LPN nor OT are known to imply collision-resistant
hashing (CRH), rate 1/2 seems to be a barrier under these assumptions. Indeed, using the
techniques of [IKO05] one can show that any constant-round (semi-honest) VOLE protocol
that achieves better than 1/2 rate implies constant-round statistically hiding commitment,
which currently can only be based on CRH.

6.2 Non-Interactive Zero-Knowledge with Reusable Correlated Randomness
Setup

Consider the following model for non-interactive zero-knowledge (NIZK) with setup. In an
offline phase, before the statements to be proved are known, the prover and the verifier
receive correlated randomness from a trusted dealer. Alternatively, they may generate this
correlated randomness on their own using an interactive secure computation protocol that
is carried out once and for all during a preprocessing phase. Then, in the online phase, the
prover can prove each NP-statement non-interactively, by sending a single message to the
verifier.

We would like the setup to be reusable in the sense that the number of statements
that can be proved is polynomially larger than the communication cost of the setup. More-
over, the soundness of the protocol should hold even if the prover can learn whether the
verifier accepts or rejects a maliciously generated proof. NIZK protocols based on OT
(e.g., [KMO89, IKOS09]) fail to satisfy this property, since the prover can gradually learn
the verifier’s OT selections via small perturbations of an honest prover’s strategy.

We observe that a suitable type of zero-knowledge linear PCPs for NP, which exist
unconditionally, can be compiled in a simple way into information-theoretic reusable NIZK
protocols in the VOLE-hybrid model. Concretely, proving n instances of satisfiability of an
arithmetic circuit of size s over F requires O(s) instances of VOLE of length O(n) each,
where the verifier’s VOLE inputs are assumed to be honestly generated. (This is a simplified
version of a similar construction from [CDI+18] which is zero-knowledge against a malicious
verifier.) Applying our VOLE generator, the cost of the setup depends only on s and not
on n, and each circuit satisfiability instance consumes only a constant number of entries
from each of the O(s) VOLE instances.

Following the local expansion of the VOLE seeds, which does not require interaction,
generating and verifying each proof involves only O(s) field operations on both sides (and
no “cryptographic” computations), and the proof consists of O(s) elements of F. This
should be contrasted with traditional approaches to SNARGs, which can have sublinear
communication6 and verifier computation, but on the other hand are much heavier in terms
of prover computation. Our NIZK constructions are particularly attractive in settings where
the prover and verifier have comparable computational resources and where communication
is relatively cheap.

Zero-Knowledge Linear Interactive Proofs. We now define the notion of linear
proof systems on which we rely, which is a variant of the “linear interactive proof” model
6 Since our NIZK protocols are proof systems for NP (rather than arguments), there is no hope to make
them succinct [GVW02]. Moreover, the assumptions on which we rely (LPN and OT) are not known to
imply even collision-resistant hash functions, let alone succinct arguments for NP.
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from [BCI+13]. At a high level, such a proof system proceeds by multiplying a proof ma-
trix Π picked by the prover by an independently chosen query vector q picked by the
verifier, where the verifier decides whether to accept or reject based on q ·Π alone. Note
that unconditional zero-knowledge is possible in this model because of the restricted mode
of interaction. We will later use a VOLE generator to securely realize such proofs non-
interactively with reusable setup.

Definition 11 (HVZK-LIP). An honest-verifier zero-knowledge linear interactive proof
(HVZK-LIP) is a triple of algorithms (Prove,Query, Verify) with the following syntax:

– Prove(F, C, x, w) is a PPT algorithm that given an arithmetic verification circuit C :
F` × FL → F, an input (NP-statement) x ∈ F`, and witness w ∈ FL, outputs a proof
matrix Π ∈ Fm×d, where d and m depend only on C.

– Query(F, C) is a PPT algorithm that given an arithmetic verification circuit C outputs
a query vector q ∈ Fm.

– Verify(F, x, q,a) is a polynomial-time algorithm that given input x ∈ F`, query vector
q, and answer vector a, outputs acc or rej.

The algorithms (Prove,Query, Verify) should satisfy the following:

– Completness. For any arithmetic circuit C : F` × FL → F, input x ∈ F` and witness
w ∈ FL such that C(x,w) = 0 we have Pr[Π

R← Prove(F, C, x, w), q R← Query(F, C) :
Verify(F, x, q, q ·Π) = acc] = 1.

– Reusable ε-soundness. For any C : F` × FL → F, input x ∈ F` such that C(x,w) 6=
0 for all w ∈ FL, adversarially chosen Π∗ ∈ Fm×d and vector b∗ ∈ Fd, we have
Pr[q

R← Query(F, C) : Verify(F, x, q, q · Π∗ + b∗) = acc] ≤ ε. Moreover, for every
F, C, x,Π∗, b∗ the probability of Verify accepting (over the choice of q) is either 1 or
≤ ε. Unless otherwise specified, we assume that ε ≤ O(|C|/|F|).

– Honest-verifier zero-knowledge. There exists a PPT simulator Sim such that for
any arithmetic circuit C : F` × FL → F, input x ∈ F`, and witness w ∈ FL such
that C(x,w) = 0, the output of Sim(F, C, q, x) is a vector a such that {(q,a) : q

R←
Query(F, C),a← Sim(F, C, q, x)} and {(q,a) : Π R←Prove(F, C, x, w), q R←Query(F, C),
a← q ·Π} are identically distributed.

Note that the final requirement in the definition of reusable soundness guarantees that
even by observing the verifier’s behavior on a maliciously chosen input x∗ and proof Π∗,
the prover cannot obtain significant information about the query q. This ensures that q
can be reused without compromising soundness. We note that our proofs also satisfy the
knowledge property as defined in [BCI+13]. We focus here on soundness for simplicity.

NIZKs with Reusable Setup. Below, we formally define non-interactive zero-knowledge
arguments with reusable correlated randomness setup.

Definition 12 (NIZKs with Reusable Setup.). A non-interactive zero-knowledge ar-
gument with reusable correlated randomness setup (RS-NIZK) is a triple of algorithms
(NIZKSetup,NIZKProve,NIZKVerify) with the following syntax:

– NIZKSetup(1λ,F, C, T ) is a PPT algorithm that, given a security parameter (in unary)
1λ, a field F, an arithmetic verification circuit C : F` × FL → F, and a polynomial
bound T = T (λ) on the number of statements, outputs a pair (pk, vk) where pk is the
proving key, and vk is the verification key.
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– NIZKProve(pk,F, C, j, xj , wj) is a PPT algorithm that given a proving key pk, a field F,
an arithmetic verification circuit C : F` × FL → F, a proof index 1 ≤ j ≤ T , an input
(NP-statement) xj ∈ F`, and witness wj ∈ FL, outputs a proof πj.

– NIZKVerify(vk,F, j, xj , πj) is a PPT algorithm that given a verification key vk, a field
F, a proof index 1 ≤ j ≤ T , an input xj ∈ F`, and a proof πj, outputs acc or rej.

The algorithms (NIZKSetup,NIZKProve,NIZKVerify) should satisfy the following:

– Completness. For any arithmetic circuit C : F` × FL → F, bound T , index 1 ≤ j ≤
T , input x ∈ F` and witness w ∈ FL such that C(x,w) = 0 we have Pr[(pk, vk)

R←
NIZKSetup(1λ,F, C, T ), π R← NIZKProve(pk,F, C, j, x, w) : NIZKVerify(vk,F, j, x, π) =
acc] = 1.

– Adaptive reusable ε-soundness. For any C : F` × FL → F with |C| = poly(λ),
polynomial bound T , index 1 ≤ j ≤ T , and PPT adversary A, it holds that

Pr[(pk, vk)
R← NIZKSetup(1λ,F, C, T ), (x, π) R←AOj [vk](pk,F, C, j) :

(∃w,C(x,w) = 1) ∧ NIZKVerify(vk,F, j, x, π) = acc] ≤ ε,

where Oj [vk] is a stateful oracle initialized with k = 1 which, on input (xk, πk), returns
NIZKVerify(vk,F, k, xk, πk) and sets k ← k+1 if k ≤ j, and ignores the query otherwise.

– Adaptive multi-theorem zero-knowledge. There exists a PPT simulator NIZKSim
such that for any stateful PPT A, any index 1 ≤ j ≤ T , and any arithmetic circuit
C : F` × FL → F with |C| = poly(λ), it holds that

|Pr[(pk, vk) R← NIZKSetup(1λ,F, C, T ) : AO0[pk](vk,F, C, j) = 1]

−Pr[(pk, vk)
R← NIZKSetup(1λ,F, C, T ) : AO1[vk](vk,F, C, j),= 1]| = negl(λ).

where the oracles are defined as follows:
O0[pk] is a stateful oracle defined as follows: it is initialized with k = 1. On input (x,w),
if C(x,w) = 1 and k ≤ T , it outputs NIZKProve(pk,F, k, x, w), and sets k ← k + 1; it
does nothing otherwise.
O1[vk] is a stateful oracle defined as follows: it is initialized with k = 1. On input (x,w),
if C(x,w) = 1 and k ≤ T , it outputs NIZKSim(vk,F, k, x), and sets k ← k + 1; it does
nothing otherwise.

From HVZK-LIP to reusable NIZK over VOLE. We now describe a simple trans-
formation from any HVZK-LIP to reusable NIZK in the VOLE-hybrid model, where the
prover plays the role of the VOLE sender P0 and the verifier plays the role of the VOLE
receiver P1. The verifier’s VOLE inputs xi depend only on the query q. This allows us to
reuse the same xi for multiple proofs, where each proof instance j uses fresh values of
(uji ,v

j
i ) to mask the proof matrix Π.

The main idea behind the transformation is that the matrix-vector product a = q ·Π
can be encoded by ai = (qi · Πi + bi), 1 ≤ i ≤ m, together with c =

∑
bi, where Πi is

the i-th row of Π and the bi are random vectors in Fd. Indeed, it is easy to check that
a =

∑m
i=1 ai − c, and the information available to the verifier (namely, q,ai, c) reveals no

information about Π other than a. Thus, the value of a can be transferred to the prover
via m instances of VOLE of length d, where the VOLE inputs of the prover (sender) are
(Πi, bi) and the VOLE inputs of the verifier (receiver P1) are qi. Completeness and honest-
verifier zero-knowledge are directly inherited from the HVZK-LIP via the properties of
the encoding discussed above. Soundness follows by observing that any maliciously chosen
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(u∗i ,v
∗
i ) that the prover feeds as inputs to the VOLE instances in the NIZK protocol and

any message c∗ have the same effect as using the matrix Π∗ such that Π∗i = u∗i and the
offset b∗ =

∑
v∗i −c∗ in the HVZK-LIP protocol. This construction of NIZK from a VOLE

generator is formally described in Figure 3.

NIZK protocol from VOLE generator

– Building blocks: VOLE generator (Setup,Expand); HVZK-LIP (Prove,Query, Verify) with answer
length d.

– NIZKSetup(1λ,F, C, T ) : Given a verification circuit C over F and a bound T on the number of
statements, securely generate the following correlated randomness:
• Let q = (q1, . . . , qm)

R← Query(F, C).
• For i = 1, . . . ,m and n = dT , let (seedi0, seedi1)

R← Setup(1λ,F, n, qi).
• Set pk← (seedi0)i≤m and vk← (q, (seedi1)i≤m).

– Local computation: For i = 1, . . . ,m, Prover computes (ui,vi)
R← Expand(0, seedi0) and Verifier

computes wi = Expand(1, seedi1). Parse each ui as (uji ), 1 ≤ j ≤ T , where uji ∈ Fd, and similarly
for vi,wi.

– NIZKProve(pk,F, C, j, xj , wj) : SetΠj R←Prove(F, C, xj , wj). Output πj = (aj1, . . . ,a
j
m, c =

∑m
i=1 v

j
i ),

where aji = Πj
i − u

j
i .

– NIZKVerify(vk,F, j, xj , πj) : Set aj =
∑m
i=1(qi · a

j
i +w

j
i )− c. Output Verify(F, xj , q,aj).

Fig. 3. NIZK with reusable setup from VOLE generator.

Theorem 13. Let λ be a security parameter, and F be a field of size 2ω(λ). The protocol
given on Figure 3 is a non-interactive zero-knowledge argument with reusable setup, where
both adaptive reusable negl(λ)-soundness and adaptive multi-theorem zero-knowledge reduce
to the security of the underlying VOLE generator.

Proof. For completeness, observe that

aj =

m∑
i=1

(qi · aji +w
j
i )− c =

m∑
i=1

(qi · aji +w
j
i − v

j
i )

=

m∑
i=1

qi ·Πj
i +

m∑
i=1

(wj
i − (qi · uji + v

j
i ))

=

m∑
i=1

qi ·Πj
i by correctness of the VOLE generator

= q ·Πj ,

hence completeness follows from the completeness of the HVZK-LIP. We now prove adap-
tive reusable ε-soundness. We first consider the ‘base case’, where the adversary A is
not given access to a verification oracle. Let C : F` × FL → F be a verification cir-
cuit, T be a bound, 1 ≤ j ≤ T be an index, and A be a PPT adversary. Set (pk, vk)

R←
NIZKSetup(1λ,F, C, T ) and (x∗, π∗)

R←A(pk,F, C, j). Parse (pk, vk) as ((seedi0)i≤m, q, (seedi1)i≤m)
and π∗ as (aj1, . . . ,a

j
m, c). Compute (ui,vi)

R←Expand(0, seedi0) and wi = Expand(1, seedi1).
Parse each ui as (uji ), 1 ≤ j ≤ T , where uji ∈ Fd, and similarly for vi,wi. Define Π∗ to
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be the matrix whose i-th row is aji + u
j
i , and b

∗ to be
∑m

i=1 v
j
i )− c. It holds that

aj =

m∑
i=1

(qi · aji +w
j
i )− c

=

m∑
i=1

(qi · (aji + u
j
i ) + v

j
i )− c by correctness of the VOLE generator

= q ·Π∗ + b∗.

By the reusable ε-soundness of the HVZK-LIP, it holds that for any C : F`×FL → F, input
x ∈ F` such that C(x,w) 6= 0 for all w ∈ FL, adversarially chosen Π∗ ∈ Fm×d and vector
b∗ ∈ Fd, we have Pr[q′ R←Query(F, C) : Verify(F, x, q′, q′ ·Π∗+b∗) = acc] ≤ ε. Furthermore,
by the security of the VOLE generator,

Pr

[
(F, 1n, x, x′)← A(1λ),
(seed0, seed1)

R← Setup(1λ,F, n, x)
: A(seed0) = 1

]
≈Pr

[
(F, 1n, x, x′)← A(1λ),
(seed0, seed1)

R← Setup(1λ,F, n, x′)
: A(seed0) = 1

]
.

Therefore,

Pr[(pk, vk)
R← NIZKSetup(1λ,F, C, T ), (x, π) R←A(pk,F, C, j) :

(∃w,C(x,w) = 1) ∧ NIZKVerify(vk,F, j, x, π) = acc]

=Pr[q
R← Query(F, C), ((seedi0, seedi1)

R← Setup(1λ,F, n, qi))i≤m,

(x, π)
R←A((seedi0)i≤m,F, C, j) : (∃w,C(x,w) = 1) ∧ Verify(F, x, q, q ·Π∗ + b∗) = acc]

=Pr[q
R← Query(F, C), q′ R← Query(F, C), ((seedi0, seedi1)

R← Setup(1λ,F, n, q′i))i≤m,

(x, π)
R←A((seedi0)i≤m,F, C, j) : (∃w,C(x,w) = 1) ∧ Verify(F, x, q′, q′ ·Π∗ + b∗) = acc]

=Pr[q
R← Query(F, C), q′ R← Query(F, C), ((seedi0, seedi1)

R← Setup(1λ,F, n, qi))i≤m,

(x, π)
R←A((seedi0)i≤m,F, C, j) : (∃w,C(x,w) = 1) ∧ Verify(F, x, q′, q′ ·Π∗ + b∗) = acc]

by the security of the VOLE generator (this requires m hybrids to replace each q′i by qi)
≤ε by the reusable ε-soundness of the HVZK-LIP.

The same strategy can also be used to show that Pr[(pk, vk)
R← NIZKSetup(1λ,F, C, T ),

(x, π)
R←A(pk,F, C, j) : NIZKVerify(vk,F, j, x, π) = acc] is either 1 or bounded above by ε,

using the second part of the reusable ε-soundness property of the HVZK-LIP. Note that
q′ is chosen independently of everything else in the last probability of the above argument
(and in particular, independently of the inputs of A), hence the reusable soundness of the
HVZK-LIP applies even though the word x is adversarially chosen.

We now move to the general case, where A is given oracle access to Oj [vk]. We further
assume that |F| = 2ω(λ) and that the HVZK-LIP satisfies O(|C|/|F|)-reusable soundness;
note that |C|/|F| = negl(λ). We proceed through a sequence of j + 1 hybrids Ht for
t = 0 to j, where the oracle Oj [vk] is replaced by the following stateful oracle Otj [vk =

(q, (seedi1)1≤m)]: it is initialized with k = 1 and, on input (xk, πk), it proceeds as follows
(wi = Expand(1, seedi1) is divided into blocks wj

i ∈ Fd):

– If k ≤ t, it picks q′ R←Query(F, C), ((seed′i0, seed′
i
1)

R← Setup(1λ,F, n, q′i))i≤m, sets w′i =
Expand(1, seed′

i
1), divides it into blocks w′k

i ∈ Fd, sets ak =
∑m

i=1(q
′
i · aki +w′k

i ) − c,
returns Verify(F, xk, q′,ak), and sets k ← k + 1;
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– If k > t and k ≤ j, it sets ak =
∑m

i=1(qi ·aki +wk
i )− c, returns Verify(F, xk, q,ak), and

sets k ← k + 1;
– If k > j, it ignores the query.

Note that O0
j [vk] ≡ Oj [vk]. The indistinguishability between Ht and Ht+1 follows from the

fact that the only difference between Otj [vk] and Ot+1
j [vk] is their answer to the t-th query,

which are equal with overwhelming probability since

Pr[q
R← Query(F, C), q′ R← Query(F, C), ((seedi0, seedi1)

R← Setup(1λ,F, n, qi))i≤m,

(x, π)
R←A((seedi0)i≤m,F, C, j) : ∧Verify(F, x, q′, q′ ·Π∗ + b∗) = acc]

is either 1 or bounded above by ε = negl(λ). Furthermore, the answers of the oracle Ojj [vk]
are entirely independent of vk, hence can be simulated without using it. Therefore, the
hybrid Hj corresponds exactly to the base case, where A is not given access to any oracle,
which concludes the proof.

We now turn our attention to adaptive multi-theorem zero-knowledge. The simulator
NIZKSim, on input (vk,F, k, x), simulates πk = (ak1, . . . ,a

k
m, c =

∑m
i=1 v

k
i ) as follows: from

vk = (q, (seedi1)i≤m), it computes (wi)i≤m
R← Expand(1, seedi1)i≤m. Then, it sets ak R←

Sim(F, C, q, x), using the simulator of the honest-verifier zero-knowledge property of the
HVZK-LIP. It picks (ak1, . . . ,akm) uniformly at random, and sets c←

∑m
i=1(qi·aki+wk

i )−ak.
To show that NIZKSim produces proofs indistinguishable from honest proofs, we pro-

ceed through a sequence of hybrids. H0 corresponds to the initial game, where A is given
oracle access to O0[pk], and H1 to the game where A is given oracle access to O1[vk]. In the
hybrid H0.i, we modify O0[pk] as follows: instead of using the (ui,vi) given by extending
the seedi0, the oracle has vk hardcoded, computes the wi and q from vk, and picks uni-
formly random vectors ui. Then, it sets vi ← wi−qiui. Note that distinguishing H0.i from
H0.i−1 corresponds exactly to breaking the security property of the VOLE generator (more
precisely, the second requirement of its security property) with respect to the i-th seed. In
hybrid H0.m, the oracle does not use pk anymore.

We define the hybrid H0.m+1 to be one in which the oracle computes ak as follows: it
picks Πk R←Prove(F, C, x, w), and sets ak ← q ·Πk. Then, it picks (ak1, . . . ,akm) uniformly
at random, and sets c ←

∑m
i=1(qi · aki + wk

i ) − ak. Observe that H0.m+1 is distributed
identically toH0.m. Now, the only difference betweenH0.m+1 andH1 is that ak is computed
as q ·Πk in H0.m+1, and as Sim(F, C, q, x) in H1. Therefore, H0.m+1 and H1 are perfectly
indistinguishable, since distinguishing them corresponds exactly to breaking the honest-
verifier zero-knowledge property of the HVZK-LIP. This concludes the proof.

Instantiations. As shown in [BCI+13], any linear PCP with bounded verification degree
can be compiled into an HVZK-LIP with a small overhead. In particular, the QAP-based
linear PCP of GGPR [GGPR13] implies an HVZK-LIP proving the satisfiability of arith-
metic circuit C of size s over F with parameters m = O(s), d = 4, and ε = O(s/|F|),
where the proof Π is generated from (x,w) in time quasi-linear in s. This results in NIZK
protocols in which O(s) instances of a VOLE generator can be used to non-interactively
prove any polynomial number of statements C(xj , ·), and where each proof contains O(s)
field elements. One can further improve the prover’s time complexity from quasi-linear to
linear by partitioning the circuit gates into constant-size blocks and applying an instance of
the GGPR-based LPCP (or even the simpler “Hadamard-based LPCP” [IKO07,BCI+13])
separately to each block. This optimization exploits the fact that we give up on succinct-
ness in our setting. We leave the refined tuning of parameters and implementation of our
NIZK technique to future work.
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Comparison with other NIZK flavors. It is instructive to compare our NIZK protocols
to other flavors of NIZK from the literature. First, whereas in standard multi-theorem NIZK
the computational cost of proving each theorem is independent of the number of theorems
being proved, we only achieve this in an amortized sense. This is due to the fact that our
dual construction does not provide a PRF-like “random access” to the VOLE entries, and
needs to generate all of them together. We stress, however, that the cost of implementing the
(reusable) correlated randomness setup is independent of the number of theorems that can
be proved based on this setup. Our setup is similar to the basic variant of the preprocessing
model used in the recent lattice-based NIZK protocols from [KW18]. It is strictly stronger
than the setup required by designated-verifier NIZK protocols: see [CC18, CDI+18] and
references therein. Whereas in standard designated-verifier NIZK a verifier can post a public
key that can be used by many different provers, our setup requires correlated randomness
or interaction between a designated verifier and a designated prover. However, in cases
where the same prover proves many statements to the same verifier, the amortized cost
of this setup is small. The main advantage of our protocol is that its online phase is very
lightweight and does not involve public key cryptography. In fact, if the Expand function
of the VOLE generator is invoked in the offline phase (without any interaction), computing
and verifying each proof is less efficient than evaluating C(x,w) in the clear by only a
small constant factor. Our protocols are the first (reusable) NIZK protocols of any kind
to rely on (non-binary) LPN, or alternatively LPN and OT if the setup is generated by a
distributed protocol. Moreover, the flavor of LPN on which we rely is not known to imply
public-key encryption.
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