
Multi-Authority Attribute-Based Encryption

from LWE in the OT Model

Sam Kim
Stanford University

skim13@cs.stanford.edu

Abstract

In a (ciphertext policy) attribute-based encryption (ABE) scheme, a ciphertext is associated
with a predicate φ and a secret key is associated with a string x such that a key decrypts
a ciphertext if and only of φ(x) = 1. Moreover, the scheme should be collusion-resistant
meaning that no colluding set of users can learn about the message if none of their secret
keys can individually decrypt the ciphertext. Traditionally, in an ABE scheme, there exists a
central authority that generates the keys for each users. In a multi-authority attribute-based
encryption (MA-ABE) scheme, individual components of the secret keys are generated by different
key-generating authorities.

Although the notion of MA-ABE is a natural extension of the standard ABE, its realization
has so far been limited. Indeed, all existing MA-ABE constructions rely solely on bilinear
maps and can only support predicates that are computable by monotone boolean formulas. In
this work, we construct the first collusion-resistant MA-ABE scheme that can support circuit
predicates from the Learning with Errors (LWE) assumption. Our construction works in a new
model that we call the OT model, which can be viewed as a direct relaxation of the traditional
GID model that previous MA-ABE constructions consider. We believe that the new OT model
is a compelling alternative to the traditional GID model as it captures the core requirements for
an MA-ABE scheme. The techniques that are used to construct MA-ABE in this model can also
be used as a stepping stone towards constructing MA-ABE in the stronger GID model in the
future.

1 Introduction

A (ciphertext-policy) attribute-based encryption scheme [SW05, GPSW06] is an advanced form
of public-key encryption where a ciphertext for a message µ is bound under a policy predicate
φ : {0, 1}` → {0, 1}, and a decryption key skx is associated with an attribute string x ∈ {0, 1}`. A
key skx can be used to decrypt a ciphertext ctφ if and only if φ(x) = 1. The security requirement
of an attribute-based encryption scheme states that no colluding set of users can learn about the
plaintext µ if none of their keys are authorized to decrypt the ciphertext.

Since its introduction, attribute-based encryption (ABE) has become a well-studied notion in
cryptography due to the many advantages that it provides for enforcing complex access control
of encrypted data. Even beyond applications, ABE is an important theoretical object of study
as it serves as a natural “middle-ground” between the two popular notions of identity-based
encryption [Sha84, BF01, Coc01] and general-purpose functional encryption [BSW11]. As a result,
significant amount of effort has been put into constructing ABE in the past two decades. By now,
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we know how to construct ABE schemes from a variety of standard cryptographic assumptions. In
particular, we can construct ABE schemes that support predicates computable by boolean formulas
from standard assumptions on bilinear groups [GPSW06, LOS+10, OT10, Wat12, HW13] and
schemes that support predicates computable by bounded depth circuits using the Learning with
Errors (LWE) assumption [Boy13, GVW13, BGG+14, BV14].

Multi-authority attribute-based encryption. Although the traditional notion of attribute-
based encryption is useful for both theory and practice, it suffers from a fundamental limitation:
the decryption keys skx must be issued by a single central authority who holds a master secret key
msk. The need for a central authority (CA) can be problematic for several reasons. As the CA can
generate a decryption key for any attribute string x ∈ {0, 1}`, it can decrypt all ciphertexts that are
generated in the system, forcing complete trust in the CA. Furthermore, in many practical scenarios,
each of the bits of an attribute string x ∈ {0, 1}` are naturally associated with separate authorizing
parties in the real-world. For example, a predicate that one might consider in an application is as
follows:

φ(x[PhD], x[Work Experience]) = x[PhD] ∨ x[Work Experience].

The predicate φ allows decryption of a ciphertext if and only if a decryptor either holds a PhD or
has some years of work experience. In this situation, instead of having a single trusted authority
who generates the entire ABE key, it is more natural for a university to issue a key component sk[PhD]

and for a company to issue a key component sk[Work Experience]. In the case where the attribute bits
x[Phd], x[Work Experience] are sensitive information, it also makes sense for the university to not learn
any information about a user’s work experience, and an employer to not learn any information
about a user’s education. Motivated by these type of situations, Sahai and Waters [SW05] proposed
the problem of constructing ABE with multiple authorities.

In theory, an ABE scheme can be decentralized generically using secure multiparty computation
(MPC) techniques. For instance, the university and the employer can hold a secret share of a
standard ABE master secret key msk. Whenever a user requests a key, the parties can participate
in an MPC protocol that securely combines the shares to msk and runs the ABE key generation
algorithm for the user. This solution, however, is not viable for many practical situations as all key
generating authorities must interact in an MPC protocol for each user in the whole system.

To solve this problem, Chase [Cha07] as well as Lewko and Waters [LW11] proposed a natural
extension to the standard notion of ABE called multi-authority attribute-based encryption (MA-
ABE). In an MA-ABE scheme, the master secret key of a standard ABE scheme msk can be further
divided into multiple master secret keys msk1, . . . ,msk` that are assigned to separate key-generating
authorities. An authority who holds mskj can generate a decryption key component skj,x for a single
attribute bit xj ∈ {0, 1} without interacting with any other key-generating authorities. The collection
of these individual key components that are generated by each authorities skx = (sk1,x1 , . . . , sk`,x`)
make up a single decryption key for the attribute string x ∈ {0, 1}`. The key skx can be used to
decrypt a ciphertext ctφ if and only if φ(x) = 1. The key security requirement of an MA-ABE
scheme states that a ciphertext ctφ remains secure even when some of the key-generating authorities
are corrupt and therefore, collude with the adversary.

Over the years, there have been great progress in constructing MA-ABE from standard crypto-
graphic assumptions [Cha07, CC09, LW11]. In particular, the state of the art construction of Lewko
and Waters [LW11] provide an MA-ABE scheme that satisfies a very strong form of functionality
and security. However, all of these previous work on MA-ABE have so far been limited to the setting
of bilinear groups and are restricted to support only predicates that are computable by monotone
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boolean formulas. Constructing an MA-ABE scheme for circuits from lattices that satisfies any
reasonable notion of functionality and security has so far been a challenging task. Very recently,
some progress was made by Wang et al. [WFL19]; however, their construction provides security
only against bounded collusion of parties.

1.1 Our Contributions

In this work, we propose a new multi-authority attribute-based encryption scheme from the LWE
problem. Our construction supports predicates that are computable by bounded depth circuits and
works in a new model called the oblivious transfer (OT) model, which can be viewed as a relaxation
of the traditional GID model that previous MA-ABE constructions consider. We elaborate on the
new OT model below and provide the high level ideas of our construction in Section 2.

Traditional GID model. In an MA-ABE scheme, each of the decryption key components
skx = (sk1,x1 , . . . , sk`,x`) must be generated independently by the ` authorities who each hold master
secret keys msk1, . . . ,msk`. Since the model does not allow any communication among the key-
generating authorities to generate these key components, there is no way for the authorities to even
agree on the specific recipient of a decryption key. Therefore, an MA-ABE scheme is traditionally
defined in the global identifier (GID) model [Cha07, LW11] where each recipient of a decryption key
is identified by some global identity string gid ∈ {0, 1}∗. For example, gid can consist of a user’s
driver’s license, student ID, or voter registration number that the users provide to each key-generating
authorities. To generate a key, each authority with master secret key mskj takes in as input a
recipient’s identity string gid and produces a decryption key component skgid,j,xj that is bound
under gid and an attribute bit xj ∈ {0, 1}. The complete key skgid,x = (skgid,1,x1 , . . . , skgid,`,x`) for
a single gid can then be used to decrypt a ciphertext ctφ if and only if φ(x) = 1.1

OT model. The OT model is similar to the GID model where individual key components are
bound under some string gid ∈ {0, 1}∗. However, in contrast to the GID model where a gid

can be an arbitrary string, we allow a gid to be a structured string that is generated by the
key-recipients as a form of a key-request. Specifically, to receive a key skx for an attribute string
x ∈ {0, 1}`, each key-recipient generates a formal key-request reqx ∈ {0, 1}∗ to provide to each of
the key-generating authorities. Upon request for a decryption key reqx, each authority with mskj
generates a key component skreq,j,xj to provide to the corresponding recipient. The components
that are generated for the same request string req can be combined to form a complete decryption
key skreq,x = (skreq,1,x1 , . . . , skreq,`,x`). Just like before, the key skreq,x can decrypt a ciphertext
ctφ if and only if φ(x) = 1. We note that in the OT model, the key-generating authorities still
generate the key components independently without the need to communicate with each other.
In fact, if we define a user’s request string reqx ∈ {0, 1}∗ to simply be the global identity string
gid ∈ {0, 1}∗, then this is equivalent to the GID model. In this respect, the OT model can be
viewed as a generalization/relaxation of the GID model.

We note that one of the motivations for a multi-authority ABE scheme is to attain privacy
of attributes. Namely, a user with an attribute bit xj ∈ {0, 1} for an index j ∈ [`] must not be
forced to reveal xj to any other key-generating authority other than the authority who holds mskj .
In the GID model, the key-generating authorities only require a global identity string gid of the
user to generate the key components. Therefore, privacy is achieved innately. In the OT model,

1In the technical sections, we revert this convention such that decryption is allowed if and only if φ(x) = 0 as is
commonly done in lattice-based ABE papers.
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however, a user submits a formal request string reqx that may reveal the entire attribute string
x ∈ {0, 1}`. Therefore, in addition to the standard ciphertext security condition for an MA-ABE
scheme, we define a receiver privacy requirement for the OT model. We refer to this model as the
OT model as both the syntax of the key generation procedure as well as the security requirements
(ciphertext security and receiver privacy) for the MA-ABE scheme largely resembles those of an
oblivious transfer protocol. In fact, our construction of MA-ABE relies on an oblivious transfer
protocol as a fundamental building block. We provide the formal definitions of MA-ABE in the OT
model in Section 5.

Decomposable Attribute-based Encryption. The main intermediate notion that we introduce
to construct our MA-ABE schemes is called decomposable attribute-based encryption (DABE), which
can be viewed as a standard ABE scheme with an additional decomposability property on the
decryption keys. The syntax of the algorithms for a decomposable ABE scheme largely remains
identical to that of a standard ABE scheme. In particular, the master secret key msk still remains
a single object that is needed to generate the entire decryption key skx. The only additional
requirement that we make on a DABE scheme is that the decryption keys skx are decomposable into
multiple components sk0, skx1 , . . . , skx` . The components skxj for j ∈ [`] are part of the key skx that
correspond to each bit of the attribute string xj ∈ {0, 1}. The component sk0 is a part of the key
that is independent of the attribute x ∈ {0, 1}` and its only functionality is to bind the attribute
components skx1 , . . . , skx` together. We refer to the key component sk0 as the binding component of
the key and the key components skx1 , . . . , skx` as the attribute components. We provide the precise
definitions in Section 6.

To construct an MA-ABE scheme, we first show that a DABE scheme can be upgraded to
an MA-ABE scheme using a fully-homomorphic encryption (FHE) scheme, a key-homomorphic
PRF, and an oblivious transfer protocol. At a conceptual level, the main additional property
that an MA-ABE scheme must provide over a DABE scheme is the decomposability of master
secret keys. To achieve this decomposability of master secret keys in a DABE scheme, we use the
ideas in the recent work of Boneh et al. [BGG+18]. Specifically, we define the setup algorithm to
encrypt msk using FHE and include the FHE ciphertext as part of the public parameters. Each
key-generating authorities are then provided a share of the FHE decryption key that allows threshold
decryption on any FHE ciphertexts. With these shares, the key-generating authorities can generate
the key components of a DABE decryption key in a decentralized way. Namely, each authority can
homomorphically evaluate the DABE key generation algorithm on the FHE ciphertext and provide
its partial decryption using the FHE key share. There are a number of technical difficulties that
must be overcome to make this approach work and we provide a detailed overview in Section 2. We
provide the full construction in Section 6.2.

Finally, we construct DABE from the LWE problem. Our construction is a modification of the
standard ABE scheme of Boneh et al. [BGG+14]. We provide a detailed overview in Section 2 and
the full construction in Section 7.

1.2 Comparison to Lewko-Waters Construction

In addition to the fact that our MA-ABE construction works in the OT model (as opposed to the
GID model), there are two additional desirable properties of the state-of-the-art Lewko-Waters
construction [LW11] that our MA-ABE construction do not satisfy. We explain these two limitations
of our construction in the following:
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1. Static vs. dynamic set of authorities: In the Lewko-Waters construction, even the setup
algorithm is decentralized. Namely, each key-generating authority generates its own master
secret key mskj independently without the need to communicate with any other authority.
There does exist a global setup algorithm, but it is only used to generate a set of public
parameters for the system.

In our construction, all master secret keys msk1, . . . ,msk` must be generated under a single
setup algorithm. If the set of key-generating authorities are static, then the setup algorithm
can just be run once in the beginning and therefore, the authorities can use general MPC to
generate the master secret keys msk1, . . . ,msk` in a secure way. When the set of authorities
are dynamic, however, the setup algorithm must be run multiple times. For instance, if a
new key-generating authority joins the system, then all existing key-generating authorities
must participate in a new MPC protocol. This limitation is not satisfied by the Lewko-Waters
construction since a new key-generating authority can generate its own master secret key.

2. Flexibility in decryption keys: Let skgid,x = (skgid,1,x1 , . . . , skgid,`,x`) be a decryption key
for a user corresponding to an attribute string x ∈ {0, 1}` (in the GID model). Then, in the
Lewko-Waters construction, the key components skgid,j,xj for j ∈ [`] that correspond to the
zero-bit attribute xj = 0 are just empty strings skgid,j,0 = ε. Therefore, for all indices j ∈ [`]
for which xj = 0, there is no need for the jth key-generating authority to participate in the
key generation procedure.

In our construction, the key components skreq,j,0 are not empty strings and therefore, must be
generated by the corresponding key-generating authorities. This means that for any attribute
string x ∈ {0, 1}`, all ` key-generating authorities in the system must provide a decryption
key component to a key recipient. If any single authority fails to provide its key component,
then the rest of the recipient’s key components are incomplete and become useless.

We believe that despite these limitations, our constructions still satisfy the core properties that are
needed for an MA-ABE scheme. Furthermore, while the pairing-based constructions rely on random
oracles, our construction works in the standard model. Given the fact that no collusion-resistant MA-
ABE scheme from lattices was known prior to this work, we believe that our construction represents
a significant step forward in decentralizing trust in lattice-based attribute-based encryption schemes.

2 Technical Overview

In this section, we provide a technical overview of our constructions. We begin by recalling the
learning with errors assumption.

The LWE assumption. The learning with errors (LWE) assumption [Reg05], parameterized
by n,m, q, χ, states that for a uniformly random vector s ∈ Znq and a uniformly random matrix

A ∈ Zn×mq , the distribution (A, sTA + eT ) is computationally indistinguishable from the uniform
distribution over Zn×mq ×Zmq , where e is sampled from a (low-norm) error distribution χ. To simplify
the presentation in this section, we will ignore the precise generation and evolution of the error term
e and just refer to it as “noise.”
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2.1 General Approach towards MA-ABE in the GID Model

We demonstrate the main ideas of our construction by first describing a natural approach to
constructing a lattice-based MA-ABE scheme in the GID model. To do so, we first review the
existing ABE constructions of Boneh et al. [BGG+14] and the technique of matrix embeddings.

Matrix embeddings. The matrix embedding technique, which was first formalized by Boneh
et al. [BGG+14] is a way of encoding a sequence of bits y1, . . . , yN ∈ {0, 1} into vectors

sT
(
A1 + y1 ·G | · · · | AN + yN ·G

)
+ noise ∈ ZmNq , (2.1)

where A1, . . . ,AN ∈ Zn×mq are uniformly random matrices, s ∈ Znq is a uniformly random vector,
and G ∈ Zn×mq is a special fixed matrix (called the “gadget matrix”). Embedding bits in this way
enables homomorphic operations on these bits while keeping the noise small. In particular, given an
input y ∈ {0, 1}N and any polynomial-size circuit C : {0, 1}N → {0, 1}, there is a public operation
that allows computing the following vector from Eq. (2.1):

sT
(
AC + C(y) ·G

)
+ noise ∈ Zmq , (2.2)

where the matrix AC ∈ Zn×mq depends only on the circuit C, and not on the encoded input y.
Thus, we can define a homomorphic operation Evalpk on the matrices A1, . . . ,AN where on input a
sequence of matrices A1, . . . ,AN and a circuit C, Evalpk(C,A1, . . . ,AN )→ AC .

ABE from LWE. The matrix embeddings technique can be used to construct a ciphertext policy
ABE scheme [BGG+14] as follows. We define the master secret key of the ABE scheme to consist of
a trapdoor for a public matrix A ∈ Zn×mq denoted tdA = A−1. The ABE ciphertext for a predicate

φ : {0, 1}` → {0, 1} and a message µ is defined to be a set of vectors ctφ = (ct0, ct1, ct2) that are
defined as follows:

• ct0 = sTd + noise + bq/2e · µ,
• ct1 = sTA + noise,
• ct2 = sT

(
A1 + φ1 ·G | · · · | AN + φN ·G

)
+ noise,

for a secret vector s ∈ Znq , a set of public matrices A1, . . . ,AN ∈ Zn×mq , and public vector d ∈ Znq .

A decryption key for an attribute string x ∈ {0, 1}` then corresponds to a short vector ux ∈ Z2m

such that (
A | Ax

)
· ux = d,

where Ax ← Evalpk(Ux,A1, . . . ,AN ) and Ux is the universal circuit Ux
(
φ
)

= φ(x). The vector ux
can be generated from trapdoor A−1 using standard lattice trapdoor techniques. To decrypt the
ciphertext ctφ, a user homomorphically evaluates the universal circuit Ux on the ciphertext vector
ct2 to produce

sT
(
A | Ax + Ux(φ) ·G

)
+ noise ∈ Zmq ,

which can then be combined with ux to unmask the message in ct0 as long as φ(x) = 0.2

Decentralization via FHE. One approach in constructing an MA-ABE scheme is to use fully-
homomorphic encryption (FHE)3 to divide the master secret key into multiple components. We note

2As is commonly done in lattice-based ABE papers, we revert the convention on the predicate φ such that a key skx
can decrypt a ciphertext ctφ bound under φ if and only if φ(x) = 0.

3In our actual construction, we use a (leveled) homomorphic encryption scheme as opposed to a fully homomorphic
encryption scheme.
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that in existing LWE-based FHE constructions, a decryption key fhe.sk and a (homomorphically
evaluated) ciphetext fhe.ct are vectors in Znq , and the decryption algorithm consists of simply taking
their inner product

〈
fhe.sk, fhe.ct

〉
and rounding the result. Since inner products are linear, we can

divide the FHE secret key vector fhe.sk into multiple additive shares fhe.sk1, . . . , fhe.sk` in Znq such
that

〈
fhe.sk1, fhe.ct

〉
+ . . .+

〈
fhe.sk`, fhe.ct

〉
=
〈
fhe.sk, fhe.ct

〉
.

Using this property on FHE, our idea in constructing an MA-ABE scheme is as follows. We
first define the setup algorithm such that it first generates an FHE secret key fhe.sk, encrypts
the trapdoor fhe.ctA−1 ← FHE.Encrypt(fhe.sk,A−1), and includes fhe.ctA−1 as part of the public
parameters. In addition, the setup algorithm divides the key fhe.sk into ` shares fhe.sk1, . . . , fhe.sk`
and distributes them to each of the ` key-generating authorities. Now, to generate an attribute key
skx, each authority with fhe.skj can homomorphically evaluate the ABE key generation algorithm
on the FHE ciphertext to produce an encryption of the vector ux,

fhe.ctA−1 −→ fhe.ctux ,

and provide
〈
fhe.skj , fhe.ctux

〉
+ noise to the key recipient. The recipient can recover the key ux by

linearly combining each of these partial decryptions.

Problem with functionality. The problem with the approach above is that to generate the
key ux, each key-generating authority j ∈ [`] must be provided the entire string x ∈ {0, 1}`. The
MA-ABE functionality requires that each authority j ∈ [`] generates the key components only given
an attribute bit xj ∈ {0, 1} that it controls without interacting with any of the other authorities.
To fix this problem, we modify the construction above as follows. First, we modify the setup
algorithm to generate an additional set of trapdoor matrices (B1,B

−1
1 ), . . . , (B`,B

−1
` ) that are to

be distributed to the key-generating authorities. Next, we include an extra vector in the ciphertext

• ct3 = sT
(
B1 | · · · | B`

)
+ noise.

Now, to generate a key component skj,xj for an index j ∈ [`] and a bit xj ∈ {0, 1}, the jth key

authority who holds a share of the FHE secret key fhe.skj and the trapdoor B−1
j proceeds as follows:

1. Derive a set of matrices (C1, . . . ,C`)← H(gid) from a public hash function

H : {0, 1}∗ → (Zn×mq )`.

2. Use B−1
j to sample a short matrix Rj,xj ∈ Zm×m such that

Bj ·Rj,xj = Cj + xj ·G.

3. Compute AU ← Evalpk(U ,A1, . . . ,AN ,C1, . . . ,C`) where U is the universal circuit

U(φ, x) = φ(x).

4. Homomorphically evaluate the FHE ciphertext fhe.ctA−1 to produce an FHE ciphertext fhe.ctu
that encrypts the vector u ∈ Z2m satisfying(

A | AU
)
· u = d.
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5. Define the short matrix Rj,xj and the partial FHE decryption pj =
〈
fhe.skj , fhe.ctu

〉
+ noise

as the key component
skgid,j,xj =

(
Rj,xj , pj

)
.

Now, given all the key components skgid,x =
(
skgid,1,x1 , . . . , skgid,`,x`

)
, a decryptor can first recombine

the FHE partial decryption shares p1, . . . , p` to recover u. Then, it can apply the short matrices
R1,x1 , . . . ,R`,x` to ct3 to produce the vector

sT
(

A
∣∣ A1 + φ1 ·G | · · · | AN + φN ·G

∣∣ C1 + x1 ·G | · · · | C` + x` ·G
)

+ noise.

Finally, the decryptor can homomorphically derive the vector

sT
(

A | AU + U(φ, x) ·G
)

+ noise,

which can be combined with u to unmask the message in ct0 as long as φ(x) = 0.

Problem with security. The MA-ABE scheme above satisfies the functionality requirements
for an MA-ABE scheme. However, it still fails to satisfy the security requirements. In an MA-
ABE scheme, even a colluding set of key-generating authorities should not be able to decrypt a
ciphertext that they are not authorized to do so. For instance, if the policy predicate φ is an
all-one function 1(x) = 1 for all x ∈ {0, 1}`, then even an adversary who holds all the master secret
keys msk1, . . . ,msk` must not be able to decrypt a ciphertext ct1 that is bound under 1. In the
construction above, any single authority can decrypt any ciphertext ctφ as it holds a trapdoor B−1

j

for some j ∈ [`]. This trapdoor information can be used to recover the secret vector s from the
ciphertext component sTBj + noise, which can be used to unmask the message.

To prevent this problem, we modify the construction above further. Instead of distributing the
trapdoor information B−1

1 , . . . ,B−1
` to each of the key-generating authorities in the clear, we move

these trapdoor information inside the FHE ciphertext. Specifically, the setup algorithm groups all
trapdoor information into a single master secret key

msk′ = (A−1,B−1
1 , . . . ,B−1

` ),

and generates a ciphertext fhe.ctmsk′ ← FHE.Encrypt(fhe.sk,msk′) to be included as part of the
public parameters. Now, each key-generating authority, who holds an FHE secret key share fhe.skj
for some j ∈ [`], homomorphically evaluates each steps of the key-generation procedure described
above on fhe.ctmsk′ to produce the following ciphertexts:

• fhe.ctu that encrypts the vector u,

• fhe.ctRj,xj
, which encrypts the short matrix Rj,xj ∈ Zm×m such that

Bj ·Rj,xj = Cj + xj ·G.

Then, it computes the partial decryption of these two ciphertexts and includes them in the key
component skj,xj .

4

4In the actual construction, we also include a PRF key as part of the master secret key msk′ and replace the public
hash function H with a PRF. This allows us to remove the dependence on random oracles.
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If the key component skgid,j,xj consisted only of these two components, then there is no way for
a recipient to recover the matrix Rj,xj from the partial decryptions. Therefore, each key-generating
authority j ∈ [`] homomorphically computes (under FHE) all matrices(

R1,0

R1,1
· · · Rj−1,0

Rj−1,1

Rj+1,0

Rj+1,1
· · · R`,0

R`,1

)
,

such that
Bi ·Ri,b = Ci + b ·G ∀i ∈ [`]\{j}, b ∈ {0, 1},

to produce the set of ciphertexts {fhe.ctRi,b
}i∈[`]\{j},b∈{0,1}. It includes the partial decryption of all

of these ciphertexts as part of skgid,j,xj .
Now, given the decryption key components skgid,x = (skgid,1,x1 , . . . , skgid,`,x`), the recipient

can recover the vector u as well as the matrices R1,x1 , . . . ,R`,x` by combining the ` FHE partial
decryptions from the authorities. The matrices R1,1−x1 , . . . ,R`,1−x` that does not correspond to the
attribute bits x1, . . . , x` still remain hidden from the recipient as the key components only include
`− 1 partial decryption of their ciphertexts.

2.2 MA-ABE in the OT Model

Additional problems with security. The construction above comes close to a fully secure
MA-ABE scheme, but not quite enough. The insecurity is not due to the way we are using FHE to
split the master secret key msk′, but due to the algebraic structure of the ABE key itself. Consider
a user who holds two keys skgid,x = (skgid,1,x1 , . . . , skgid,`,x`) and skgid,x′ = (skgid,1,x′1 , . . . , skgid,`,x′`)

for x 6= x′ ∈ {0, 1}`. The security requirement of an MA-ABE scheme requires that the user cannot
decrypt a ciphertext ct1 that is encrypted under the all-one function 1. However, since x 6= x′, there
exists an index j ∈ [`] for which the user can derive two short matrices Rj,0,Rj,1 ∈ Zm×m such that

Bj ·Rj,0 = Cj + 0 ·G
Bj ·Rj,1 = Cj + 1 ·G

The matrix ∆R = Rj,0 −Rj,1 directly translates into a trapdoor matrix for Bj , which can be used
to decrypt any ciphertext.

One can hope that adding extra components or additionally modifying the construction may
prevent a user from deriving the trapdoor information ∆R. However, as long as we resort to the
algebraic structure of the Boneh et al. ABE construction, this insecurity seems inevitable as any
single corrupt authority must be able to generate both key components skgid,j,0 and skgid,j,1 for
some j ∈ [`] simply by the functionality of MA-ABE.

Using oblivious transfer. We get around this limitation using oblivious transfers. The reason
why an adversary can extract trapdoor information ∆R from duplicate key components is that each
key generating authority j ∈ [`] homomorphically evaluates (under FHE) each of the matrices(

R1,0

R1,1
· · · Rj−1,0

Rj−1,1
Rj,xj

Rj+1,0

Rj+1,1
· · · R`,0

R`,1

)
,

and provide the partial decryption of each of these 2` − 1 ciphertexts as part of a single key
component skgid,j,xj . This means that any user with key components

{
skgid,i,xi

}
i∈[`]\{j} already has
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access to ` − 1 decryption shares for the ciphertexts of each of the matrices Rj,0 and Rj,1. The
duplicate key components skgid,j,0 and skgid,j,1 provide the `th decryption shares for Rj,0 and Rj,1.

Now, the reason why a key-generating authority j ∈ [`] must provide the partial decryption of
all 2`− 2 ciphertexts for the matrices(

R1,0

R1,1
· · · Rj−1,0

Rj−1,1

Rj+1,0

Rj+1,1
· · · R`,0

R`,1

)
,

is that it only knows the single attribute bit xj ∈ {0, 1} that it controls and not the rest of the
bits x1, . . . , xj−1, xj+1, . . . , x` ∈ {0, 1}. Our observation is that if the key-recipient can somehow
provide a “hint” on the rest of the attribute bits {xi}i 6=j to the key-generating authority, then
the authority may not need to provide all 2` − 2 partial decryptions, but only the ` − 1 partial
decryptions that correspond to the key-recipient’s attribute x ∈ {0, 1}`. A natural tool for such
situation is an oblivious transfer protocol.

Using an oblivious transfer (OT) protocol, we can make the following modification to our
construction. We first require that to generate a key, each key-recipient sends an OT commitment of
its attribute bits x ∈ {0, 1}` as a form of a key-request to be sent to the key-generating authorities.
Each authority j ∈ [`] still computes the partial decryption of the FHE ciphertexts that encrypts
the matrices (

R1,0

R1,1
· · · Rj−1,0

Rj−1,1
Rj,xj

Rj+1,0

Rj+1,1
· · · R`,0

R`,1

)
,

like before, and provides the partial decryption of the ciphertexts that encrypts Rj,xj . How-
ever, for the partial decryption of the ciphertexts that correspond to the rest of the matrices
{Ri,b}j∈[`]\{j},b∈{0,1}, the authority encodes each pair (Ri,0,Ri,1) for i ∈ [`]\{j} as OT messages
before providing them to the key-recipient. By the security of an oblivious transfer protocol, the
key-recipient can only recover the `−1 components that correspond to the attribute bits {xi}i∈[`]\{j}.

This demonstrates the main intuition for our MA-ABE. We note that in this construction
a key-recipient must send a formal key-request (in the form of an OT message) to each of the
key-generating authorities and therefore, the construction violates the syntactical requirements for
an MA-ABE scheme in the GID model. However, in our construction, each of the key components
are still generated independently by each of the key generating authorities without any form of
interaction among them. Furthermore, the receiver privacy property of an oblivious transfer protocol
guarantees that any irrelevant components of the attribute string x1, . . . , x` remains hidden from
each of the key-generating authorities and therefore, our construction satisfies the main conceptual
requirements of an MA-ABE scheme. We model our construction in a new model that we call the
OT model and prove correctness and security in this model.

3 Preliminaries

We begin by introducing some of the notations that we use in this work. For any two integers
n < m, we write [n,m] to denote the set of integers {n, n+ 1, . . . ,m}. When n = 1, we simply write
[n] to denote the set of integers {1, . . . , n}. We write Funs[X ,Y] to denote the set of all functions
mapping from a domain X to a range Y . Unless specified otherwise, we use λ to denote the security
parameter. We say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all
c ∈ N. We say that an event happens with overwhelming probability if its complement happens
with negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial
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time in the length of its input. We use poly(λ) to denote a quantity whose value is bounded by
a fixed polynomial in λ. For our security experiments, we often write A = (A1,A2) to denote
separate components of a single algorithm A that participate in different phases of an experiment.
We assume that the components A1 and A2 share local state.

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote vectors and bold
uppercase letter (e.g., A,B) to denote matrices. Throughout this work, we always use the infinity
norm for vectors and matrices. Namely, for a vector x ∈ Zn, we write ‖x‖ to denote maxi |xi|.
Similarly, for a matrix A = (Ai,j) ∈ Zn×m, we write ‖A‖ to denote maxi,j |Ai,j |.

Modular rounding. For two integers p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. Here, the operation b·e is the
rounding operation over the real numbers.

3.1 Statistical Distance

For two distributions X,Y over a finite domain Ω, the statistical distance between X and Y is
defined by ∆(X,Y ) = 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. If X,Y are distribution ensembles parameterized by

the security parameters, we say that X and Y are statistically indistinguishable denoted X
s
≈ Y if

∆(X,Y ) is negligible. For a distribution X, we write x← X to denote the procedure of sampling x

according to distribution X. For a finite domain Ω, we write x
r← Ω to denote the procedure of

sampling x uniformly from Ω. For a distribution ensemble χ = χ(λ) over the integers, and integer
bounds B = B(λ), we say that χ is B-bounded if Prx←χ(λ)

[
|x| ≤ B(λ)

]
= 1.

We recall two statistical facts that we use throughout the analysis of our constructions. Since
we do not require the most general formulations of these statements, we tailor them specifically for
our needs.

Lemma 3.1 (Leftover Hash Lemma [ILL89, DORS08]). Let n,m, q be positive integers with m =

Θ(n log q). Then, for A
r← Zn×mq , r

r← {0, 1}m, and u
r← Znq , the following two distributions are

statistically indistinguishable:

(A,A · r)
s
≈ (A,u).

Lemma 3.2 (Smudging Lemma [AJLA+12]). Let B1 = B1(λ), and B2 = B2(λ) be positive integers

and let e1 ∈ [−B1, B1] be a fixed integer. Let e2
r← [−B2, B2] be chosen uniformly at random. Then,

the distribution of e1 +e2 is statistically indistinguishable from that of e1 as long as B1/B2 = negl(λ).

3.2 Lattice Preliminaries

In this section, we provide background on the learning with errors assumption and lattice trapdoors.

Learning with errors. The learning with errors (LWE) assumption was first introduced by
Regev [Reg05]. In the same work, Regev showed that solving LWE in the average case is as hard
as (quantumly) approximating several standard lattice problems in the worst case. We state the
assumption below.
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Definition 3.3 (Learning with Errors [Reg05]). Fix a security parameter λ and integers n = n(λ),
m = m(λ), q = q(λ), and an error distribution χ = χ(λ) over the integers. Then, the (decisional)

learning with errors (LWE) assumption LWEn,m,q,χ states that for A
r← Zn×mq , s

r← Znq , e
r← χm,

and u
r← Zmq , the following two distributions are computationally indistinguishable:

(A, sTA + eT ) and (A,uT )

When the error distribution χB is a B-bounded discrete Gaussian distribution, then the LWEn,m,q,χB
assumption is true assuming that various worst-case lattice problems such as GapSVPγ and SIVPγ
on an n-dimensional lattice are hard for γ = Õ(n · q/B) by a quantum algorithm [Reg05]. Similar
reductions of LWE to the classical hardness of approximating worst-case lattice problems are also
known [Pei09, ACPS09, MM11, MP12, BLP+13].

The gadget matrix. We define the “gadget matrix” G = g ⊗ In ∈ Zn×n·dlog qe
q where g =

(1, 2, 4, . . . , 2dlog qe−1). We define the inverse function G−1 : Zn×mq → Zndlog qe×m
q which expands

each entry x ∈ Zq in the input matrix into a column of size dlog qe consisting of the bits of the
binary representation of x. To simplify the notation, we always assume that G has width m (in
our construction, m = Θ(n log q)). Note that this is without loss of generality since we can always
extend G by appending all-zero columns. It is easy to see that for any matrix A ∈ Zn×mq , we have
G ·G−1(A) = A.

Lattice trapdoors. Although LWE is believed to be hard, the problem becomes easy with some
auxiliary trapdoor information. Lattice trapdoors have been used in a wide variety of context and
are studied extensively in the literature [Ajt99, GPV08, AP09, MP12, LW15]. Since the specific
details of the trapdoor constructions are not necessary for this work, we highlight just the properties
that we require in this work.

Theorem 3.4 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12, LW15]). Let λ be the security param-
eter and n,m, q be a set of lattice parameters, and B be a norm bound such that that m = Ω(n log q)
and a bound B = Ω(

√
n) Then, there exists a tuple of efficient algorithms (TrapGen, Invert, Sample)

with the following properties:

• TrapGen(1λ)→ (A, td): On input the security parameter λ, the trapdoor generation algorithm
returns a matrix A ∈ Zn×mq and a trapdoor td.

• Invert(A, td,y, γ)→ x: On input a matrix A ∈ Zn×mq , trapdoor td, target vector y ∈ Znq , and
norm bound γ ∈ N, the inversion algorithm returns a vector x ∈ Zm such that A · x = y and
‖x‖ ≤ γ.

• Sample(1λ, γ)→ x: On input the security parameter λ and a norm bound γ ∈ N, the sampling
algorithm returns a vector x ∈ Zm such that ‖x‖ ≤ γ.

The algorithms above satisfy the following property. For any y ∈ Znq and γ ≥ B, setting (A, td)←
TrapGen(1λ), y

r← Znq , x ← Invert(A, td,y, γ), A′
r← Zn×mq , x′ ← Sample(1λ, γ), and y′ = A′ · x′,

we have have
(A,x,y)

s
≈ (A′,x′,y′).
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Traditionally, lattice trapdoors for A ∈ Zn×mq consist of a set of short generating vectors of the
lattice that is induced by A. In this work, we make use of an alternative form of lattice trapdoors
called a G-trapdoor formalized in [MP12]. A G-trapdoor of a matrix A ∈ Zn×mq consists of a
full-rank, low-norm matrix R ∈ Zm×m satisfying the relation AR = G. These types of trapdoor
matrices have additional statistical properties that we use in our multi-authority attribute-based
encryption constructions. We highlight the key properties in the following theorem.

Theorem 3.5 ([CHKP10, ABB10, MP12, BGG+14]). Let λ be a security parameter and n,m, q be
lattice parameters, and B be a noise bound such that m = Ω(n log q) and B = Ω(

√
n). Then, there

exist a pair of algorithms (SampleLeft,SampleRight) with the following syntax:

• SampleLeft(A, tdA,B,y, γ) → x: On input a matrix A ∈ Zn×mq , trapdoor tdA, matrix B ∈
Zn×mq , target vector y ∈ Znq , and a norm bound γ, the SampleLeft algorithm returns a vector
x ∈ Z2m.

• SampleRight(A,B,R,y, γ)→ x: On input matrices A,B ∈ Zn×mq , R ∈ Zm×m, target vector
y ∈ Znq , and a norm bound γ, the SampleRight algorithm returns a vector x ∈ Z2m.

The algorithms above satisfy the following properties. For any (A, tdA) ← TrapGen(1λ), B ∈
Zn×mq , R ∈ Zm×m such that A · R + G = B, and B ≤ ‖R‖ · ω(m

√
logm) ≤ γ, and setting

x← SampleLeft(A, tdA,B,y, γ) and x′ ← SampleRight(A,B,R,y, γ), we have

1. [A|B] · x = [A|B] · x′ = y and ‖x‖ , ‖x′‖ ≤ γ.

2. The vectors x and x′ are statistically indistinguishable.

3.3 Pseudorandom Functions

We review the basic definition of a pseudorandom function.

Definition 3.6 (Pseudorandom Function [GGM84]). Let K, X , and Y be sets. Then, an efficiently
computable deterministic function F : K × X → Y is a secure pseudorandom function (PRF) if for

all efficient adversaries A, k
r← K, and f

r← Funs[X ,Y], we have∣∣Pr[AF (k,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]
∣∣ = negl(λ).

In this work, we use a special family of pseudorandom functions called key-homomorphic PRFs that
satisfy additional algebraic properties. Specifically, the key space K and the range Y of the PRF
exhibit certain group structures such that its evaluation on any fixed input x ∈ X is homomorphic
with respect to these group structures. Formally, we define a key-homomorphic PRF as follows.

Definition 3.7 (Key-Homomorphic PRF [BLMR13]). Let (K,⊕), (Y,⊗) be groups. Then, an
efficiently computable deterministic function F : K ×X → Y is a key-homomorphic PRF if

1. F is a secure PRF (Definition 3.6)
2. For every key k1, k2 ∈ K and every x ∈ X , we have F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).

We note that the function Fk(x) = F (k, x) is a group homomorphism from K to Y. This implies
that for the identity elements 0K ∈ K and 0Y ∈ Y, we have F (0K, x) = 0Y for any x ∈ X .
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Although key homomorphic PRFs are natural primitives, we currently do not know how to
construct them without either relying on the random oracle heuristic or using strong cryptographic
tools such as multi-linear maps [BLMR13]. Since the goal in this work is to instantiate our
construction from LWE alone, we work with a relaxed notion called almost key-homomorphic PRFs,
which we can currently construct from LWE.

Definition 3.8 (γ-Almost Key-Homomorphic PRF [BLMR13]). Let (K,⊕) be a group and p be
a positive integer. Then, an efficiently computable deterministic function F : K × X → Zp is an
γ-almost key-homomorphic PRF if

1. F is a secure PRF (Definition 3.6)
2. For every key k1, k2 ∈ K and every x ∈ X , we have F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e for

an error term |e| ≤ γ.

3.4 (Leveled) Homomorphic Encryption

Following the presentation of [GVW15], we give a minimal definition of a (leveled) homomorphic
encryption scheme that suffices for our construction. Note that a leveled homomorphic encryption
scheme is one that only supports an a priori bounded number of homomorphic operations. This
is to contrast it with the notion of a fully homomorphic encryption scheme (FHE) scheme, which
supports an arbitrary number of homomorphic operations on ciphertexts

Definition 3.9 (Homomorphic Encryption). A (leveled) homomorphic encryption scheme for the
message space {0, 1}∗ is a tuple of algorithms ΠHE = (KeyGen,Encrypt,Eval,Decrypt) with the
following syntax:

• KeyGen(1λ, 1d)→ sk: On input the security parameter λ and depth bound d, the key generation
algorithm returns a secret key sk.

• Encrypt(sk, µ) → ct: On input a secret key sk and a message µ ∈ {0, 1}∗, the encryption
algorithm returns a ciphertext ct.

• Eval(C, ct)→ ĉt: On input a circuit C : {0, 1}∗ → {0, 1} and a ciphertext ct, the evaluation
algorithm returns a homomorphically evaluated ciphertext ĉt.

• Decrypt(sk, ĉt)→ µ: On input a secret key sk and a ciphertext ĉt, the decryption algorithm
returns a message µ ∈ {0, 1}.

A homomorphic encryption must satisfy the following compactness, correctness, and security
properties.

Definition 3.10 (Compactness). Let ΠHE = (KeyGen,Encrypt,Eval,Decrypt) be a homomorphic
encryption scheme for the message space {0, 1}∗. We say that ΠHE satisfies compactness if there
exists a polynomial poly(·, ·) such that for all λ, d ∈ N, µ ∈ {0, 1}∗, C : {0, 1}∗ → {0, 1}, and setting
sk← KeyGen(1λ), ct← Encrypt(sk, µ), and ĉt← Eval(C, ct), we have |ĉt| ≤ poly(λ, d).

Definition 3.11 (Correctness). Let ΠHE = (KeyGen,Encrypt,Eval,Decrypt) be a homomorphic
encryption scheme for the message space {0, 1}∗. We say that ΠHE satisfies correctness if for all
λ, d ∈ N, µ ∈ {0, 1}∗, C : {0, 1}∗ → {0, 1}, and setting sk← KeyGen(1λ), ct← Encrypt(sk, µ), and
ĉt← Eval(C, ct), we have

Pr[Decrypt(sk, ĉt) = C(µ)] = 1.
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Definition 3.12 (Security). Let ΠHE = (KeyGen,Encrypt,Eval,Decrypt) be a homomorphic encryp-
tion scheme for the message space {0, 1}∗. We say that ΠHE satisfies security if for all λ, d ∈ N,

efficient adversary A = (A1,A2), and setting (µ0, µ1) ← AEncrypt(sk,·)
1 (1λ) where |µ0| = |µ1|, and

ctβ ← Encrypt(sk, µβ) for β ∈ {0, 1}, we have∣∣Pr[AEncrypt(sk,·)(ct0) = 1]− Pr[AEncrypt(sk,·)(ct1) = 1]
∣∣ = negl(λ).

3.5 Oblivious Transfer

Finally, we recall the notion of an oblivious transfer protocol. Following the presentation of [PVW08,
BD18], we define an oblivious transfer protocol with respect to the concrete algorithms that are
run by each of the participants in the protocol. We label each of these algorithms with names
that intuitively describes their algebraic instantiations from lattices. In particular, we refer to the
algorithms that are run by the receiver as the KeyGenR and DecryptR algorithms and the algorithm
that is run by the sender as the EncryptS algorithm.

Definition 3.13 (Oblivious Transfer). An (1-out-of-2) oblivious transfer protocol ΠOT for a message
spaceM consists of a tuple of efficient algorithms ΠOT = (Setup,KeyGenR,EncryptS,DecryptR) with
the following syntax:

• Setup(1λ) → (crs, td): On input the security parameter λ, the setup algorithm returns a
common reference string crs and a trapdoor td.

• KeyGenR(crs, β)→ (pk, sk): On input a common reference string crs and a bit β ∈ {0, 1}, the
(receiver) key generation algorithm returns a public key pk and a secret key sk.

• EncryptS(crs, (µ0, µ1), pk)→ ct: On input a common reference string crs, a pair of messages
µ0, µ1 ∈M, and a public key pk, the (sender) encryption algorithm returns a ciphertext ct.

• DecryptR(crs, sk, ct) → µ′: On input a common reference string crs, a secret key sk, and a
ciphertext ct, the decryption algorithm returns a message µ′ ∈M.

An oblivious transfer protocol must satisfy the following correctness property.

Definition 3.14 (Correctness). Let ΠOT = (Setup,KeyGenR,EncryptS,DecryptR) be an oblivious
transfer protocol for a message space M. Then, we say that ΠOT satisfies correctness if for all
λ ∈ N, β ∈ {0, 1}, setting (crs, td)← Setup(1λ), (pk, sk)← KeyGenR(crs, β), we have

Pr
[
DecryptR(crs, sk,EncryptS(crs, (µ0, µ1), pk)) = µβ

]
= 1.

There are many ways of defining security for oblivious transfer protocols. For instance, their security
conditions can be most rigorously formulated in the universally composable (UC) framework [Can01].
In this work, we work with simpler (and weaker) privacy definitions for oblivious transfer protocols
that we define as follows.

Definition 3.15 (Receiver Privacy). Let ΠOT = (Setup,KeyGenR,EncryptS,DecryptR) be an oblivi-
ous transfer protocol for a message space M. Then, we say that ΠOT satisfies receiver privacy if for
all efficient adversaries A, setting (crs, td)← Setup(1λ) and pkβ ← KeyGenR(crs, β) for β ∈ {0, 1},
we have ∣∣Pr[A(crs, pk0) = 1]− Pr[A(crs, pk1) = 1]

∣∣ = negl(λ),
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Definition 3.16 (Sender Security). Let ΠOT = (Setup,KeyGenR,EncryptS,DecryptR) be an oblivious
transfer protocol for a message space M. Then, we say that ΠOT satisfies (statistical) sender
security if there exists an efficient extractor OTExt such that for any message µ0, µ1 ∈ M for
which |µ0| = |µ1|, public key pk ∈ {0, 1}∗, and (unbounded) adversary A = (A1,A2), setting

(crs, td)← Setup(1λ), β ← OTExt(td, pk), ctreal ← EncryptS(pk, µ0, µ1), ct
(0)
ideal ← EncryptS(pk, µ0,⊥),

and ct
(1)
ideal ← EncryptS(pk,⊥, µ1), we have∣∣Pr[A2(crs, pk, ctreal) = 1]− Pr[A2(crs, pk, ct

(β)
ideal) = 1]

∣∣ = negl(λ).

We note that by a standard hybrid argument, the sender security property can be extended to hold
over multiples pairs of messages (µ1,0, µ1,1), . . . , (µQ,0, µQ,1) and multiple public keys pk1, . . . , pkQ
in a straightforward way.

4 Universal Thresholdizers

One of the main building blocks of our multi-authority attribute-based encryption is a notion called a
universal thresholdizer, which was introduced by Boneh et al. [BGG+18] as a general tool for threshold
cryptography. They showed that existing homomorphic encryption schemes [BGV12, GSW13] based
on the LWE assumption can be used to construct universal thresholdizer schemes for arbitrary
message spaces and bounded depth circuits. Unfortunately, the security guarantee that their
construction satisfies is not fully sufficient for our multi-authority attribute-based encryption scheme.
In this section, we augment the construction of [BGG+18] using key-homomorphic PRFs to satisfy
a stronger security definition that we need for our construction in Section 5. We begin by recalling
the formal definitions of a universal thresholdizer scheme in Section 4.1. Then, in Section 4.2, we
describe some of the general properties of the existing key-homomorphic PRFs and homomorphic
encryption schemes that we use for our new thresholdizer construction. Finally, we present our
universal thresholdizer construction in Section 4.3 and provide the formal proof of correctness and
security in Appendix A.

4.1 Definitions

A universal thresholdizer (UT) scheme allows a user to divide a secret message x ∈ {0, 1}∗ into a
number of shares s1, . . . , s` such that independent parties can evaluate a function C : {0, 1}∗ → {0, 1}
on the shares pi ← Eval(C, si) to derive new sets of shares p1, . . . , p` of the message C(x). A key
property that a universal thresholdizer scheme must satisfy is that the shares s1, . . . , s` are reusable.
Namely, the evaluated shares p1, . . . , p` that are output by the evaluation algorithm Eval(C, sj)
for j ∈ [`] must not only hide information about the original message x, but also hide enough
information about the original shares s1, . . . , s` such that the shares can be reused for an a priori
unbounded number of evaluations.

Formally, we define the algorithms of a universal thresholdizer scheme as follows. We note that
the original syntax of a universal thresholdizer in [BGG+18] is defined very generally with respect to
arbitrary access structures. For our multi-authority ABE schemes in Section 5, we will only require
a universal thresholdizer that supports `-out-of-` access structures. Therefore, for simplicity, we
restrict our definition for the special case of `-out-of-` access structures.
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Definition 4.1 (Universal Thresholdizer [BGG+18]). A universal thresholdizer (UT) scheme
ΠUT with input space {0, 1}∗ and output space {0, 1} consists of a tuple of efficient algorithms
ΠUT = (Setup,Eval,Combine) with the following syntax:

• Setup(1λ, 1`, 1d, x) → (s1, . . . , s`): On input the security parameter λ, number of shares `,
depth bound d, an input x ∈ {0, 1}∗, the setup algorithm returns a set of shares s1, . . . , s`.

• Eval(C, sj) → pj : On input a circuit C : {0, 1}∗ → {0, 1} and a share sj , the evaluation
algorithm returns an evaluation share pj .

• Combine(p1, . . . , p`) → y: On input a set of evaluation shares p1, . . . , p`, the combining
algorithm returns a final evaluation y ∈ {0, 1}.

We now define the correctness and security requirements for a universal thresholdizer scheme.

Definition 4.2 (Correctness). Let ΠUT = (Setup,Eval,Combine) be a universal thresholdizer
scheme. Then, we say that ΠUT satisfies correctness if for all λ, `, d ∈ N, input x ∈ {0, 1}∗,
circuit C : {0, 1}∗ → {0, 1} of depth at most d, and setting (s1, . . . , s`) ← Setup(1λ, 1`, 1d, x),
pj ← Eval(C, sj) for j ∈ [`], we have

Pr
[
Combine({pj}j∈[`]) = C(x)

]
= 1− negl(λ).

For security, we require that the evaluation shares p1, . . . , p` do not leak any information about the
original message x other than what can be derived from the final output output of the computation
C(x). Furthermore, we require that this property holds even when the shares s1, . . . , s` are reused
for an unbounded number of evaluations. A natural way to formalize this property is to define
an experiment between an adversary and a challenger where the adversary makes an unbounded
number of (adaptive) evaluation queries consisting of circuits C1, . . . , CQ. The challenger in the
experiment must then respond to the adversary’s queries with the evaluations pi,j ← Eval(Ci, sj)
for i = 1, . . . , Q. We say that a universal thresholdizer is secure if there exists a simulator that
can simulate the partial evaluations pi,j just given the final output C1(x), . . . , CQ(x) such that the
adversary cannot distinguish whether these evaluation shares are generated by the honest evaluation
algorithm or by the simulator. This is the standard universal thresholdizer security definition as
formalized in [BGG+18].

Definition 4.3 (Security). Let ΠUT = (Setup,Eval,Combine) be a universal thresholdizer scheme.
Then, we say that ΠUT satisfies security if there exists a simulator Sim = (Sim1, Sim2) such
that for all λ, `, d ∈ N, and adversary A = (A1,A2), setting (x, S) ← A1(1λ, 1`) where S ( [`],
(s1, . . . , s`)← Setup(1λ, 1`, 1d, x), (s̃1, . . . , s̃`)← Sim1(1λ, 1`, 1d, S, 1|x|), we have∣∣∣Pr

[
AOreal(·,·)

2 ({sj}j∈S) = 1
]
− Pr

[
AOideal(·,·)

2 ({s̃j}j∈S) = 1
]∣∣∣ = negl(λ),

where the oracles Oreal and Oideal are defined as follows:

• Oreal(C, j): On input a circuit C : {0, 1}∗ → {0, 1} and an index j ∈ [`]\S, the oracle computes
pj ← Eval(C, sj) and returns pj .

• Oideal(C, j): On input a circuit C : {0, 1}∗ → {0, 1} and an index j ∈ [`]\S, the oracle invokes
the simulator pj ← Sim2

(
C, {s̃j}j∈[`], C(x)

)
and returns pj .
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For our multi-authority attribute-based encryption construction in Section 5, we require a universal
thresholdizer scheme to satisfy a stronger security definition. Namely, we require that the evaluation
shares p1, . . . , p` not only hide information about the message x, but they are computationally
indistinguishable from perfect secret shares of the output C(x). In other words, we require that,
to an efficient adversary, the evaluation shares p1, . . . , p` are computationally indistinguishable
from uniformly random elements p̃1, . . . , p̃` for which Combine(p̃1, . . . , p̃`) = C(x). We refer to this
property as strong security and formally define it as follows.

Definition 4.4 (Strong Security). Let ΠUT = (Setup,Eval,Combine) be a universal thresholdizer
scheme. Then, we say that ΠUT satisfies strong security if there exists a simulator Sim = (Sim1,Sim2)
such that for all λ, `, d ∈ N, and adversary A = (A1,A2), setting (x, S) ← A1(1λ, 1`, 1d) where
S ⊆ [`], (s1, . . . , s`)← Setup(1λ, 1`, 1d, S, |x|), we have∣∣∣∣Pr

[
AOreal(·,·)

2 ({sj}j∈S) = 1
]

Pr
[
AO

(strong)
ideal (·,·)

2 ({s̃j}j∈S) = 1
]∣∣∣∣ = negl(λ),

where the oracles Oreal and Oideal are defined as follows:

• Oreal(C, j): On input a circuit C : {0, 1}∗ → {0, 1} and an index j ∈ [N ]\S, the oracle
computes pj ← Eval(C, sj) and returns pj .

• O(strong)
ideal (C, j): Throughout the experiment, the oracle keeps record of A’s queries (C, j). For

each query (C, j), the oracle invokes the simulator Sim2 depending on A’s previous queries.

– If there exists an index i ∈ [`] for which A did not previously make a query (C, i), then

the oracle samples and returns pj
r← {0, 1}t where t is the maximum bit length of an

evaluation share.

– Otherwise, if A had previously queried (C, i) for all i ∈ [`]\{j}, then the oracle returns

pj ← Sim2

(
C, {s̃j}j∈[`], C(x), {pi}i∈[`]\{j}

)
where {pi}i∈[`]\{j} denotes O(strong)

ideal ’s previous
responses to A’s oracle queries (C, i) for i ∈ [`]\{j}.

Remark 4.5 (Standard vs. Strong Security). The key distinction between the standard notion of
security [BGG+18] and strong security that we define in Definition 4.4 is in the amount of information
that is revealed by the evaluation shares p1, . . . , p`. The standard security definition guarantees that
a single evaluation share pi hides information about x, but not necessarily information about the
output C(x). Specifically, the simulator Sim2 in Definition 4.3 requires the final message C(x) as
part of its input to simulate the shares p1, . . . , p`. The strong security definition, on the other hand,
guarantees that a single evaluation share pi does not reveal any information about the output C(x).
In fact, it guarantees that any strict subset of the shares p1, . . . , p` appear to be purely random
strings. It is only when an adversary gets access to all of the evaluation shares p1, . . . , p` (and
therefore, can reconstruct C(x)) that it learns the output C(x). This property plays a key role in
proving the security of our multi-authority attribute-based encryption scheme in Section 5 that
must handle an adversary’s adaptive key queries.

Remark 4.6 (Robustness). In addition to the security requirement of Definition 4.4, we can also
require that a universal thresholdizer scheme satisfies robustness [BGG+18]. The robustness property
guarantees that any improperly (maliciously) generated evaluation share pi can be efficiently detected
by any user in the system. A universal thresholdizer scheme that satisfies robustness can be used to
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provide a similar verifiability guarantee for our multi-authority attribute-based encryption scheme.
Since the primary focus of this work is to construct multi-authority attributed-based encryption
schemes that satisfies traditional ciphertext security, we leave the formal treatment of robustness
and verifiability for universal thresholdizers and multi-authority attribute-based encryption schemes
for future work.

Remark 4.7 (Arbitrary Message Space). We note that in Definition 4.1, we restrict the evaluation
algorithm Eval to take in as input a circuit C : {0, 1}∗ → {0, 1}. This is done purely for simplicity,
and the definition can be straightforwardly extended to support circuits of arbitrary polynomial
lengths C : {0, 1}∗ → {0, 1}∗. A universal thresholdizer scheme that supports circuits with range
{0, 1} can generically support circuits of arbitrary lengths C : {0, 1}∗ → {0, 1}∗ via standard
techniques (i.e., parallel repetition).

4.2 Key-Homomorphic PRFs and Homomorphic Encryption

To construct a universal thresholdizer scheme that satisfies our strong notion of security (Defini-
tion 4.4), we rely on existing key-homomorphic PRFs and homomorphic encryption schemes from
LWE. As we do not require the full details of these constructions, we summarize the key properties
that we need from them in the following theorem.

Theorem 4.8 ([BLMR13, BP14, BGV12, GSW13]). Let λ be the security parameter, (n,m, q, χB)
be a set of parameters for the learning with errors problem, and let p be a rounding modulus such
that m = O(n log q) and q = p · nω(1). Then, assuming the hardness of the LWEn,poly(n,q),q,χ problem,
there exists a 1-almost key-homomorphic PRF F : K×{0, 1}∗ → Y with key space K = (Znq ,+), and
Y = (Zp,+), and a homomorphic encryption scheme ΠHE = (KeyGen,Encrypt,Eval,Decrypt) for the
message space {0, 1}∗ with the following properties:

• On input 1λ and 1d, the homomorphic encryption setup algorithm Setup outputs a secret key
sk ∈ Znp .

• On input a circuit C : {0, 1}∗ → {0, 1} of depth d and a ciphertext ct, the homomorphic
evaluation algorithm Eval outputs a ciphertext ĉt ∈ Znp .

• The decryption algorithm takes a ciphertext ct ∈ Znp and proceeds in two steps:

1. It first computes the inner product
〈
sk, ct

〉
which produces y = bp/2e · µ + e ∈ Zp for

some noise term e ∈ [−BHE, BHE] where BHE = B ·mO(d).

2. It outputs 0 if |y| ≤ bq/4e and outputs 1 otherwise.

4.3 Universal Thresholdizer Construction

In this section, we construct a universal thresholdizer scheme that satisfies strong security (Defini-
tion 4.4). The construction is a simple augmentation of the universal thresholdizer construction
of [BGG+18] with key-homomorphic PRFs. In the construction of Boneh et al.., the setup algorithm
generates a homomorphic encryption key sk∗ ∈ Znp and breaks it into shares sk1, . . . , sk` such that
sk1 + · · · + sk` = sk∗. Then, a single share sj of a message x ∈ {0, 1}∗ is defined to consist of a
homomorphic encryption of x, ct ← HE.Encrypt(sk∗, x), as well as a share of the encryption key
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skj . The evaluation of the shares on a circuit C : {0, 1}∗ → {0, 1} then consists of homomorphi-
cally evaluating the ciphertext ĉt ← HE.Eval(C, ct) and computing a “noisy” partial decryption
pj ←

〈
sj , ĉt

〉
+noise. Then, using the linearity of inner products, the combine algorithm can decrypt

the message C(x) by summing up the evaluation shares pj for j ∈ [`].
This construction does not satisfy the strong requirements of Definition 4.4 because the partial

decryptions
〈
sj , ĉt

〉
+ noise are structured elements in Zp. To achieve strong security, we modify the

construction such that the setup algorithm additionally generates a set of (almost) key-homomorphic
PRF keys k1, . . . , k` ∈ Znq such that k1 + · · · + k` = 0. We then define a share sj of a message
x ∈ {0, 1}∗ to consist of the ciphertext ct, a decryption key share skj , and a PRF key kj ,

sj = (ct, skj , kj) j ∈ [`].

Now, the evaluation algorithm remains unchanged except that it additionally blinds the partial
decryptions

〈
sj , ĉt

〉
+noise with PRF evaluations zj ← F (kj , ĉt). By the key-homomorphic property,

the elements z1, . . . , z` are shares of zero (i.e. z1 + · · ·+ z` ≈ 0) and therefore, do not interfere with
the correct decryption of the ciphertext by the combining algorithm. Since F is a PRF, however,
each partial decryption

〈
skj , ĉt

〉
+noise+ zj is now computationally indistinguishable from uniformly

random elements in Zp.

Construction 4.9. Let λ be the security parameter, (n,m, q, χB) be a set of parameters for the
learning with errors problem, and let p be a rounding modulus such that Our universal thresholdizer
scheme relies on the following primitives that satisfy the properties of Theorem 4.8:

• Let F : Znq × {0, 1}∗ → Zp be a 1-almost key-homomorphic PRF (Definition 3.8).

• Let ΠHE = (KeyGen,Encrypt,Eval,Decrypt) be a homomorphic encryption scheme for the
message space {0, 1}∗ (Definition 3.9).

Using these algorithms, we construct a universal thresholdizer ΠUT = (Setup,Eval,Combine) for the
same message space {0, 1}∗ as follows:

• Setup(1λ, 1`, 1d, x): On input the security parameter λ, number of shares `, depth bound d,
and a message x ∈ {0, 1}∗, the setup algorithm samples ` keys for the homomorphic encryption
scheme ΠHE and ` keys for the PRF F as follows:

– Sample ΠHE keys skj ← HE.KeyGen(1λ, 1d) for j ∈ [`].

– Sample k1, . . . , k`−1
r← Znq and set k` = −(k1 + . . . k`−1).

It then combines the keys sk∗ = sk1 + . . .+ sk` and encrypts the message x under the combined
key ct← HE.Encrypt(sk∗, x). Finally, it sets each share as sj = (ct, skj , kj) for j ∈ [`].

• Eval(C, sj): On input a circuit C : {0, 1}∗ → {0, 1} and a share sj , the evaluation algorithm
parses sj = (ct, skj , kj), and homomorphically evaluates ĉt← HE.Eval(C, ct). It then generates

a smudging error term e
(sm)
j

r← [−Bsm, Bsm], a zero share zj ← F (kj , ĉt), and returns pj =〈
skj , ĉt

〉
+ e

(sm)
j + zj .

• Combine(p1, . . . , p`): On input a set of evaluation shares p1, . . . , p`, the combining algorithm
adds p∗ = p1 + . . .+ p`, and returns 0 if |p∗| ≤ p/4 and returns 1 otherwise.
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We now state the correctness and security theorems for Construction 4.9.

Theorem 4.10 (Correctness). Suppose that B·mO(d)+`·Bsm+` < bp/4e, the PRF F : Znq×{0, 1}∗ →
Zp satisfies 1-almost key-homomorphism (Definition 3.7), and the homomorphic encryption scheme
ΠHE satisfies correctness (Definition 3.11). Furthermore, suppose that F and ΠHE satisfy the
properties in Theorem 4.8. Then, the universal thresholdizer scheme in Construction 4.9 satisfies
correctness (Definition 4.2).

Theorem 4.11 (Security). Suppose that (B ·mO(d) + `)/Bsm = negl(λ), F : Znq × {0, 1}∗ → Zp is a
secure 1-almost key-homomorphism (Definition 3.7), and ΠHE is a secure homomorphic encryption
scheme (Definition 3.12). Furthermore, suppose that F and ΠHE satisfy the properties in Theorem 4.8.
Then, the universal thresholdizer scheme in Construction 4.9 satisfies security (Definition 4.4).

We provide the proof of Theorems 4.10 and 4.11 in Appendix A.

Parameter instantiation. The parameters for Construction 4.9 can be set to satisfy the conditions
of Theorems 4.8, 4.10, and 4.11 in a straightforward way. One possible instantiation is as follows:

• n = poly(λ),
• `, d = poly(λ),
• χB = DZ,

√
n,

• Bsm = B · 2Õ(d),
• p = B · 2Õ(d),
• q = p · nω(1),
• m = Θ(n log q),

where DZ,
√
n is the discrete Gaussian distribution over the integers. An (almost) key-homomorphic

PRF can be based on the LWE assumption via the constructions of [BLMR13, BP14]. A homomorphic
encryption scheme can be based on the LWE assumption via the constructions of [BGV12, GSW13].

5 Multi-Authority ABE in the OT Model

In this section, we define the notion of a multi-authority attributed-based encryption (MA-ABE)
scheme. Recall that in a ciphertext-policy attribute-based encryption (ABE) scheme [SW05,
GPSW06], a ciphertext ctφ is generated with respect to a policy circuit φ : {0, 1}` → {0, 1}, and a
decryption key skx is bound to an attribute string x ∈ {0, 1}`. A key skx can be used to decrypt a
ciphertext ctφ if and only if φ(x) = 0.5 In a standard ABE scheme, a single authority who holds the
master secret key msk generates the whole decryption key skx for each user.

In a multi-authority ABE scheme [SW05], the master secret key msk can be further divided
into multiple master secret keys msk1, . . . ,msk` that are distributed among separate key-generating
authorities. An authority who holds mskj can generate a decryption key component skj,xj for a
single attribute bit xj ∈ {0, 1} without interacting with any other key-generating authorities. The
collection of these key components that are generated by each authorities skx = (sk1,x1 , . . . , sk`,x`)
make up a single decryption key for the attribute string x ∈ {0, 1}` and can be used to decrypt a
ciphertext ctφ if and only if φ(x) = 0.

5Like in many previous papers that treat attribute-based encryption constructions from lattices, we use φ(x) = 0 to
specify the condition for correct decryption as it is more natural for our algebraic construction in Section 7. This is
in contrast to the traditional convention, which uses φ(x) = 1 as the condition for correct decryption.
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If no communication is allowed among the authorities when generating the keys, there is no
way for the authorities to even agree on the specific recipient of a decryption key. Therefore, a
multi-authority ABE is generally defined in the GID model [Cha07, LW11] where each recipient of
a decryption key is identified by some global identity string gid ∈ {0, 1}∗. For instance, a gid can
be a user’s driver’s license, student ID, or voter registration number that the recipient provides to
the key-generating authorities. A key-generating authority takes in the string gid and produces a
decryption key component skgid,j,xj that is bound under a single gid and an attribute bit xj ∈ {0, 1}.
The complete key skgid,x = (skgid,1,x1 , . . . , skgid,`,x`) bound under a single gid can then be used to
decrypt a ciphertext ctφ if and only if φ(x) = 0.

In this work, we consider a new relaxed model called the oblivious transfer (OT) model. The
OT model is similar to the traditional GID model where individual key components are bound
under some string gid ∈ {0, 1}∗. However, in contrast to the GID model where a gid can be an
arbitrary string, we allow a gid to be a structured string that is generated by the key-recipients.
Specifically, to receive a key skx for an attribute string x ∈ {0, 1}`, each key-recipient generates a
formal key-request reqx ∈ {0, 1}∗ to provide to each of the key-generating authorities. Upon request
for a decryption key reqx, each authority with mskj generates a key component skreqx,j,xj to provide
to the corresponding recipient. The components that are generated for the same request string req
can be combined to form a complete decryption key skreq,x = (skreq,1,x1 , . . . , skreq,`,x`). An MA-ABE
scheme in the OT model must guarantee correctness and ciphertext security meaning that a key
skreqx can decrypt a ciphertext ctφ encrypted under φ : {0, 1}` → {0, 1} if and only if φ(x) = 0.
Furthermore, an MA-ABE scheme in the OT model must satisfy an additional recipient privacy
condition, which guarantees that a key-request reqx does not reveal information about an attribute
string x ∈ {0, 1}` to the authorities. As the correctness and security requirements of an MA-ABE
scheme in this model are largely analogous to an oblivious transfer protocol, we refer to this model
as the OT model.

Formally, we define the algorithm syntax of a multi-authority attribute-based encryption scheme
in the OT model as follows.

Definition 5.1 (MA-ABE). A multi-authority attribute-based encryption (MA-ABE) scheme
ΠMA-ABE for a message space M and a circuit class C consists of a tuple of algorithms ΠMA-ABE =
(Setup,KeyRequest,KeyGen,KeyCombine,Encrypt,Decrypt) with the following syntax:

• Setup(1λ, 1`)→ (pp,msk1, . . . ,msk`): On input the security parameter λ and the number of
authorities in the system `, the setup algorithm generates a set of public parameters pp and a
set of master secret keys msk1, . . . ,msk` for the authority.

• KeyRequestpp(x) → (reqx, st): On input an attribute string x ∈ {0, 1}`, the key-request
algorithm returns a request string req ∈ {0, 1}∗ and a recipient state st.

• KeyGenpp(mskj , req, b) → skreq,j,b: On input a master secret key mskj , a key-request req ∈
{0, 1}∗, and an attribute bit b ∈ {0, 1}, the key generation algorithm returns a key component
skreq,j,b.

• KeyCombinepp(st, skreq,1,x1 , . . . , skreq,`,x`) → skx: On input a recipient state st, and a set of
secret key components skreq,1,x1 , . . . , skreq,`,x` , the key combining algorithm returns a key skx.

• Encryptpp(φ, µ)→ ct: On input a policy circuit φ : {0, 1}` → {0, 1} in C and a message µ ∈M,
the encryption algorithm returns a ciphertext ct.
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• Decryptpp(skx, ct) → µ: On input a decryption key skx and a ciphertext ct, the decryption
algorithm returns a message µ ∈M∪ {⊥}.

To simplify notation in the paper, we remove the public parameters pp from the algorithm syntax
and assume that all algorithms excluding Setup have access to pp as part of their input.

In the description of the algorithms above, the tuple (Setup,Encrypt,Decrypt) specify the standard
setup, encryption, and decryption algorithms of an attribute-based encryption scheme. The tuple of
algorithms (KeyRequest,KeyGen,KeyCombine) specify a distributed key-generation procedure. Specif-
ically, a recipient of a decryption key for an attribute string x ∈ {0, 1}` generates a formal key-request
by invoking the algorithm (reqx, st)← KeyRequest(x), and each key-generating authority invokes the
algorithm skreq,j,xj ← KeyGen(mskj , reqx, xj) to generate a single key component. These individual
components can then be combined by the key-recipient skx ← KeyCombine(st, skreq,1,x1 , . . . , skreq,`,x`)
to produce a complete decryption key skx.

We note that even though a key-recipient generates a request string reqx for an attribute string
x ∈ {0, 1}`, it is up to the authorities with mskj for j ∈ [`] to determine which key component
skreq,j,0 or skreq,j,1 that the recipient receives. As is formally captured by the correctness and security
definitions below, if a recipient produces a request string reqx for an attribute string x ∈ {0, 1}`, but
an authority produces a key component skreq,j,1−xj ← KeyGen(mskj , reqx, 1− xj), then skreq,j,1−xj
loses any functionality as a key component. This prevents a malicious key-recipient from “tricking”
a key generating authority into providing a key for an unsuitable attribute for the user.

Correctness. We define the correctness condition for an MA-ABE scheme in the natural
way. Namely, the correctness condition guarantees that for properly generated key components
skreq,1,x1 , . . . , skreq,`,x` for an attribute string x = (x1, . . . , x`) ∈ {0, 1}` can be combined to form a
complete key skx that can decrypt any ciphertext encrypted under a policy circuit φ : {0, 1}` → {0, 1}
for which φ(x) = 0.

Definition 5.2 (Correctness). Let ΠMA-ABE = (Setup,KeyRequest,KeyGen,KeyCombine,Encrypt,
Decrypt) be a multi-authority attributed-based encryption scheme for a message space M and
circuit class C. Then, we say that ΠMA-ABE satisfies correctness if for all λ, ` ∈ N, request strings
req ∈ {0, 1}∗, messages m ∈M, policy circuit φ : {0, 1}` → {0, 1} in C, attribute string x ∈ {0, 1}`
for which φ(x) = 0, if we set (pp,msk1, . . . ,msk`) ← Setup(1λ, 1`), (req, st) ← KeyRequest(x),
skreq,j,xj ← KeyGen(mskj , req, xj), skx ← KeyCombine(st, skreq,1,x1 , . . . , skreq,`,x`), we have

Pr
[
Decrypt

(
skx,Encrypt(φ, µ)

)
= µ

]
= 1− negl(λ).

Security. The security of a standard attribute-based encryption scheme guarantees that any
colluding set of users, who hold decryption keys skx for φ(x) = 1, must not be able to learn any
information from any ciphertexts ctφ that are bound to φ. In an MA-ABE scheme, we additionally
take into account any colluding set of corrupt authorities who hold master secret keys. To define
the security requirement formally, we first define the MA-ABE ciphertext security experiment as
follows.

Definition 5.3 (Ciphertext Security Experiment). Let ΠMA-ABE = (Setup,KeyRequest,KeyGen,
KeyCombine,Encrypt,Decrypt) be a multi-authority attribute-based encryption scheme for a message
spaceM and circuit class C. Then, for λ, ` ∈ N, adversary A, and β ∈ {0, 1}, we define the MA-ABE
ciphertext security experiment ExptCSΠMA-ABE

(λ, `,A, β) between an adversary A and a challenger as
follows:
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ExptCSΠMA-ABE
(λ, `,A, β):

• Setup phase: At the start of the experiment, the adversary A specifies a set of corrupt
authorities S ( [`] to the challenger. The challenger then generates the public parameters
and the master secret keys (pp,msk1, . . . ,msk`) ← Setup(1λ, 1`), and provides pp and
{mskj}j∈S to A.
• Query phase: The adversary A can make two types of (adaptive) oracle queries to the

challenger:

– Key queries : The adversary A makes a polynomial number of (adaptive) key queries.
Each query consists of a tuple (req, j, b) for a request string req ∈ {0, 1}∗, authority
index j ∈ [`], and attribute bit b ∈ {0, 1}. For each query, the challenger generates
skreq,j,b ← KeyGen(mskj , req, b) and provides skreq,j,b to A.

– Challenge query : The adversary A makes a single challenge query of the form
(φ, µ0, µ1) consisting of a policy circuit φ : {0, 1}` → {0, 1}, and a pair of messages
µ0, µ1 ∈M. The challenger computes ctβ ← Encrypt(C, µβ) and provides ctβ to A.

• Output phase: At the end of the experiment, the adversaryA outputs a guess β′ ∈ {0, 1}.
The challenger outputs β′ as the output of the experiment.

Since an adversary in the MA-ABE security experiment gets access to master secret keys, formally
defining security requires some care. At the intuitive level, we require that an MA-ABE scheme
satisfies “best possible” security against an adversary who holds a set of master secret keys
and decryption key components. The functionality of an MA-ABE scheme inherently allows an
adversary A, who holds a master secret key mskj , to generate both decryption key components
skreq,j,0 ← KeyGen(mskj , req, 0), and skreq,j,1 ← KeyGen(mskj , req, 1) for any request string req ∈
{0, 1}∗. Therefore, we view an adversary A who holds a master secret key mskj to have in possession
(in addition to the key components that it receives from the key queries) an infinite set of decryption
key components {skreq,j,0, skreq,j,1}req∈{0,1}∗ . Then, we say that an MA-ABE scheme is secure if
an adversary A cannot learn any information from a ciphertext ctφ as long as A cannot form a
complete set of decryption key components skreq,x = (skreq,1,x1 , . . . , skreq,`,x`), for an attribute string
x = (x1, . . . , x`) for which φ(x) = 0, by combining all the decryption key components that it has in
its possession: the components that it can derive using its own set of master secret keys and the
components that it receives from the key queries.

Although this security requirement is natural and intuitive, defining it formally can be quite
cumbersome. To simplify the notation, we use special wildcard notations that we define as follows.

Definition 5.4. Let x ∈ {0, 1, ?}` be a string with wildcards and φ : {0, 1}` → {0, 1} be a circuit.
Then, we say that x satisfies φ, denoted φ(x) = 0, if there exists a string x̂ ∈ {0, 1}` such that

1. φ(x̂) = 0,
2. xj = x̂j for all indices j ∈ [`] where xj 6= ?.

Using this notation, we define the ciphertext security requirement for an MA-ABE scheme as follows.

Definition 5.5 (Ciphertext Security). Let ΠMA-ABE = (Setup,KeyRequest,KeyGen,KeyCombine,
Encrypt,Decrypt) be a multi-authority attribute-based encryption scheme for a message space M,
let A be an adversary, and let ExptCSΠMA-ABE

(λ, `,A, β) be the ciphertext security experiment as

defined in Definition 5.3. Then, for each req ∈ {0, 1}`, we assign an attribute vector with wildcards
xreq ∈ {0, 1, ?}` ∪ {⊥} according to A’s queries during the query phase of the experiment:
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• We set xreq = ⊥ if there exists an index j ∈ [`] for which j /∈ S, but A does not make any key
query (req, j, 0) or (req, j, 1).

• Otherwise, we set each component of xreq = (xreq,1, . . . , xreq,`) as follows:

– We set xreq,j = 0 if j /∈ S and A makes a key query (req, j, 0), but not (req, j, 1).

– We set xreq,j = 1 if j /∈ S and A makes a key query (req, j, 1), but not (req, j, 0).

– We set xreq,j = ? if either j ∈ S or A makes both key queries (req, j, 0) and (req, j, 1).

Then, we say that an adversary A is admissible if φ(xreq) = 1 for all req ∈ {0, 1}∗ for which
xreq 6= ⊥. We say that a multi-authority attribute-based encryption scheme ΠMA-ABE satisfies
ciphertext security if for all λ, ` ∈ N and (efficient) admissible adversaries A, we have∣∣∣Pr

[
ExptCSΠMA-ABE

(λ, `,A, 0) = 1
]
− Pr

[
ExptCSΠMA-ABE

(λ, `,A, 1) = 1
]∣∣∣ = negl(λ).

Remark 5.6 (Selective Security). In the ciphertext security experiment of Definition 5.3, the
adversary A submits the policy circuit φ ∈ C for the challenge ciphertext after it receives the
public parameters and the challenger’s responses to its key queries. An MA-ABE scheme that
satisfies ciphertext security with respect to this experiment is often referred to as satisfying adaptive
ciphertext security. We can define a weaker (but still useful) ciphertext security experiment that
is identical to Definition 5.3, but where the adversary A must declare the challenge policy circuit
φ ∈ C before the start of the experiment. An MA-ABE scheme that satisfies security with respect
to this weaker experiment is said to satisfy selective ciphertext security. Our MA-ABE construction
in Section 6 will be shown to satisfy selective security. An MA-ABE scheme that satisfies selective
security can be shown to satisfy adaptive security via complexity leveraging [BB04] albeit with a
subexponential loss in the reduction.

We note that one of the main motivations for a multi-authority ABE scheme is privacy of attributes.
Namely, a key-recipient with an attribute xj ∈ {0, 1} for some j ∈ [`] must not necessarily reveal
xj to any other key-generating authority other than the authority who holds mskj . In the GID
model, each key-generating authority is only provided a global identity string gid of the user, which
is completely independent of a user’s attribute. Therefore, in the GID model, the privacy of a
key-recipient’s attribute string x ∈ {0, 1}∗ is captured innately. In the OT model, however, we
allow a user to submit a request string reqx that can encode the entire attribute string x ∈ {0, 1}`.
Therefore, to guarantee the privacy of a user’s attribute, we must specifically define a receiver
privacy requirement. We formally define receiver privacy for MA-ABE in the OT model as follows.

Definition 5.7 (Receiver Privacy). Let ΠMA-ABE = (Setup,KeyRequest,KeyGen,KeyCombine,Encrypt,
Decrypt) be a multi-authority attribute-based encryption scheme in the OT model for a message
space M and circuit class C. Then, we say that ΠMA-ABE satisfies receiver privacy if for all efficient
adversaries A = (A1,A2), (pp,msk1, . . . ,msk`)← Setup(1λ, 1`), (x0, x1)← A1(pp,msk1, . . . ,msk`),
and (stβ, reqβ)← KeyRequest(xβ) for β ∈ {0, 1}, we have∣∣Pr[A2(req0) = 1]− Pr[A2(req1) = 1]

∣∣ = negl(λ).

Remark 5.8 (Comparison to GID Model). We note that the OT model is a relaxation of the
traditional GID model where each key-recipient is identified by a global string gid ∈ {0, 1}∗. Namely,
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if we restrict the request algorithm (req, st) ← KeyRequest(x) to set req = gid and st = ε, then
the syntax of the MA-ABE algorithms in the OT model precisely matches those of the MA-ABE
algorithms in the GID model. The main conceptual difference between the two models is in the
way the string req = gid depends on an attribute. In the GID model, the request string req = gid

is required to be completely independent of any attribute string x ∈ {0, 1}`. In the OT model,
we require the request string reqx to be computationally independent of the attribute string x (as
guaranteed by the receiver privacy condition in Definition 5.7), but still allow reqx to depend on x
at an information theoretic level. Since a request string reqx can depend now depend on x, it can
be used as a key-recipient’s binding commitment to a single attribute string x. It is this property
that we take advantage of to construct our MA-ABE scheme in the OT model in Sections 6 and 7.

6 Decomposable ABE

In this section, we define the notion of a decomposable attribute-based encryption scheme. We use
this notion as a stepping stone for constructing a full MA-ABE scheme. We first provide the formal
definitions of a decomposable ABE scheme in Section 6.1. Then, in Section 6.2, we show how to
combine a decomposable ABE scheme with a universal thresholdizer to construct an MA-ABE
scheme in the OT model.

6.1 Definitions

A decomposable attribute-based encryption scheme can be viewed as a standard ABE scheme with
an additional decomposability property on the decryption keys. The syntax of the algorithms for a
decomposable ABE scheme largely remains identical to a standard ABE scheme. In particular, the
master secret key msk is still a single object that is required for generating an entire decryption key
skx for an attribute string x = (x1, . . . , x`) ∈ {0, 1}`. The only additional property that we require
from a decomposable ABE scheme is that the decryption keys skx are naturally decomposable into
multiple components sk0, skx1 , . . . , skx` . The components skxj for j ∈ [`] are part of the key skx
that correspond to each bit of the attribute string xj ∈ {0, 1}. The component sk0 is a part of the
key that is independent of the attribute string x ∈ {0, 1}` and its only functionality is to bind the
attribute components skx1 , . . . , skx` together. We refer to the key component sk0 as the binding
component of the key and the key components skx1 , . . . , skx` as the attribute components.

To enforce this decomposability property in the definition, we define the (randomized) key
generation algorithm to take in a master secret key msk and return a binding component sk0 and
all possible attribute components(

sk1,0 sk2,0

sk1,1 sk2,1
· · · sk`−1,0 sk`,0

sk`−1,1 sk`,1

)
.

An ABE decryption key for an attribute string x ∈ {0, 1}` is then defined to be the collection of key
components skx = (sk0, sk1,x1 , . . . , sk`,x`).

Formally, we define the algorithms of a decomposable ABE scheme as follows.

Definition 6.1 (Decomposable Attribute-Based Encryption). A decomposable attributed-based
encryption (DABE) scheme ΠDABE for a message spaceM and a circuit class C consists of a tuple of
algorithms ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Encrypt,DABE.Decrypt) with the following
syntax:
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• Setup(1λ, 1`)→ (pp,msk): On input the security parameter λ and the number of attributes `,
the setup algorithm generates a set of public parameters pp and a master secret key msk.

• KeyGenpp(msk)→
(
sk0, {skj,b}j∈[`],b∈{0,1}

)
: On input a master secret key msk, the key genera-

tion algorithm returns a set of key components(
sk0

sk1,0 sk2,0

sk1,1 sk2,1
· · · sk`,0

sk`,1

)
.

• Encryptpp(φ, µ)→ ct: On input a policy circuit φ : {0, 1}` → {0, 1} in C and a message µ ∈M,
the encryption algorithm returns a ciphertext ct.

• Decryptpp(sk0, sk1,x1 , . . . , sk`,x` , ct)→ µ: On input a set of secret key components sk0, sk1,x1 , . . . ,
sk`,x` , and a ciphertext ct, the decryption algorithm outputs a message µ ∈M∪ {⊥}.

To simplify notation in the paper, we remove the public parameters pp from the algorithm syntax
and assume that all algorithms excluding Setup have access to pp as part of their input.

Correctness. The correctness requirement for a DABE scheme is identical to the correctness
requirement for a standard ABE scheme. Namely, for any properly generated set of key components(
sk0, {skj,b}j∈[`],b∈{0,1}

)
← KeyGen(msk), the collection of components skx = (sk0, skx1 , . . . , skx`)

must decrypt ciphertexts ctφ for any policy circuit φ : {0, 1}` → {0, 1} in C for which φ(x) = 0.

Definition 6.2 (Correctness). Let ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Encrypt,DABE.Decrypt)
be a decomposable attribute-based encryption scheme for a message space M and circuit class C.
Then, we say that ΠDABE satisfies correctness if for all λ, ` ∈ N, µ ∈ M, φ : {0, 1}` → {0, 1} in C,
and x ∈ {0, 1}` for which φ(x) = 0, if we set (pp,msk) ← Setup(1λ, 1`), (sk0, {skj,b}j∈[`],b∈{0,1}) ←
KeyGenpp(msk), and ct← Encrypt(φ, µ), we have

Pr
[
Decrypt(sk0, sk1,x1 , . . . , sk`,x` , ct) = µ

]
= 1− negl(λ).

Security. The security requirement for a DABE scheme is defined identically to the security
requirement for a standard ABE scheme. As in the standard ABE security definition, an adversary
who holds a decryption key skx = (sk0, sk1,x1 , . . . , sk`,x`) should not be able to learn any information
from a ciphertext ctφ for which φ(x) = 1.

Definition 6.3 (Security Experiment). Let ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Encrypt,
DABE.Decrypt) be a decomposable attribute-based encryption scheme for a message space M and
circuit class C. Then, for λ, ` ∈ N, adversary A, and β ∈ {0, 1}, we define the decomposable
attribute-based encryption security experiment ExptΠDABE

(λ, `,A, β) between an adversary A and a
challenger as follows:

ExptΠDABE
(λ, `,A, β):

• Setup phase: At the start of the experiment, the challenger generates the public
parameters and master secret key (pp,msk)← Setup(1λ, 1`) and provides pp to A.
• Query phase: The adversary A can make two types of (adaptive) oracle queries to the

challenger:
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– Key queries: The adversary A makes a polynomial number of (adaptive) key
queries. Each query consists of an attribute string x ∈ {0, 1}`. For each query,
the challenger invokes (sk0, {skj,b}j∈[`],b∈{0,1}) ← KeyGen(msk) and provides skx =
(sk0, sk1,x1 , . . . , sk`,x`) to A.

– Challenge query : The adversary A makes a single challenge query of the form
(φ, µ0, µ1) consisting of a policy circuit φ : {0, 1}` → {0, 1}, and a pair of messages
µ0, µ1 ∈M. The challenger computes ctβ ← Encrypt(C, µβ) and provides ctβ to A.

• Output phase: At the end of the experiment, the adversaryA outputs a guess β′ ∈ {0, 1}.
The challenger outputs β′ as the output of the experiment.

We define the admissibility condition of an adversary analogously to the standard ABE security
definition.

Definition 6.4 (Security). Let ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Encrypt,DABE.Decrypt)
be a decomposable attribute-based encryption scheme for a message spaceM, let A be an adversary,
and let ExptΠDABE

(λ, `,A, β) be the ciphertext security experiment as defined in Definition 6.3. We
say that an adversary A is admissible if for any key query x ∈ {0, 1}` and challenge query (φ, µ0, µ1)
that it makes during the experiment, we have φ(x) = 1. We say that a decomposable attribute-based
encryption scheme ΠDABE satisfies security if for all λ, ` ∈ N and (efficient) admissible adversaries
A, we have ∣∣Pr

[
ExptΠDABE

(λ, `,A, 0) = 1
]
− Pr

[
ExptΠDABE

(λ, `,A, 1) = 1
]∣∣ = negl(λ).

Remark 6.5 (Selective Security). As in the case of MA-ABE (Remark 5.6), we can define a selective
variant of the DABE security experiment. Here, the adversary must declare a policy φ for the
challenge ciphertext before the start of the experiment. Our DABE constructions in Section 7 will
be shown to be secure in the weaker selective security. Any DABE scheme that satisfies selective
security can be shown to satisfy full adaptive security via complexity leveraging [BB04] albeit with
a subexponential loss in the reduction.

6.2 DABE to MA-ABE in the OT Model

In this section, we construct an MA-ABE scheme in the OT model by combining a DABE scheme with
a universal thresholdizer scheme (Definition 4.1) and an oblivious transfer protocol (Definition 3.13).
The high level intuition for the construction is simple. The encryption algorithm for the MA-ABE
scheme remains identical to the DABE encryption algorithm. During setup, the key-generating
authorities of the MA-ABE scheme are provided UT shares of a DABE master secret key dabe.msk.
The key request algorithm for x ∈ {0, 1}` simply consists of ` OT (receiver) messages corresponding
to each of the attribute bits x = (x1, . . . , x`). Upon a key-request, an authority with share sj
homomorphically evaluates the key generation algorithm to produce shares(

p
(bind)
0

p
(att)
1,0 p

(att)
2,0

p
(att)
1,1 p

(att)
2,1

· · ·
p

(att)
`−1,0 p

(att)
`,0

p
(att)
`−1,1 p

(att)
`,1

)
,

where each shares correspond to the decryption key components(
sk0

sk1,0 sk2,0

sk1,1 sk2,1
· · · sk`−1,0 sk`,0

sk`−1,1 sk`,1

)
.
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Then, it defines the key component skreq,j,b to consist of the evaluation shares p0 and pj,b, as well as
the OT encodings of the pairs of evaluation shares {(pi,0, pi,1)}i∈[`]\{j}. The key combining algorithm
decodes the OT messages, combines the UT share evaluations to generate (sk0, sk1,x1 , . . . , sk`,x`).
The security properties of the universal thresholdizer scheme and oblivious transfer protocol
guarantees that a malicious key-recipient does not gain access to the attribute key components
sk1,1−x1 , . . . , sk`,1−x` . The security then follows from DABE security.

Formally, we define our MA-ABE construction as follows.

Construction 6.6. Let λ be the security parameter. Our multi-authority attributed based encryp-
tion relies on the following algorithms:

• Let ΠDABE = (DABE.Setup,DABE.KeyGen,DABE.Encrypt,DABE.Decrypt) be a decomposable
attribute-based encryption scheme for a message space M and circuit class C (Definition 6.1).
Furthermore, we define the following parameters:

– Let d be the maximum depth of any circuit computing the key generation algorithm
DABE.KeyGen(·),

– Let r be the maximum number of random bits that are required by DABE.KeyGen(·).
– Let t be the maximum bit length of a single decryption key component such that
|sk0|, |skj,b| ≤ t for any j ∈ [`], b ∈ {0, 1}.

• Let ΠUT = (UT.Setup,UT.Eval,UT.Combine) be a universal thresholdizer with input space
{0, 1}∗ and output space {0, 1}k (Definition 4.1, Remark 4.7).

• Let ΠOT = (OT.Setup,OT.KeyGenR,OT.EncryptS,OT.DecryptR) be an oblivious transfer pro-
tocol for the message space M = {0, 1}∗.

• Let F0 : K × {0, 1}∗ → {0, 1}r be a PRF (Definition 3.6).

• Let F1 : K × {0, 1}∗ → {0, 1}`t be a PRF (Definition 3.6).

Using these algorithms, we construct a multi-authority attribute-based encryption scheme ΠMA-ABE =
(Setup,KeyRequest,KeyGen,KeyCombine,Encrypt,Decrypt) in the OT model for the message space
M and circuit class C as follows:

• Setup(1λ, 1`): On input the security parameter λ, and the number of attributes `, the setup

algorithm samples a PRF key prf.k
r← K and also instantiates:

– (dabe.pp, dabe.msk)← DABE.Setup(1λ, 1`),

– (s1, . . . , s`)← UT.Setup
(
1λ, 1`, 1d, (dabe.msk, prf.k)

)
,

– (ot.crs, td)← OT.Setup(1λ).

It sets pp = (dabe.pp, ot.crs) and mskj = sj for j ∈ [`].

• KeyRequest(x): On input an attribute string x ∈ {0, 1}`, the key request algorithm gener-
ates the OT keys (ot.pkj , ot.skj) ← OT.KeyGenR(ot.crs, xj) for all j ∈ [`]. It sets reqx =
{ot.pkj}j∈[`], st = {ot.skj}j∈[`], and returns (reqx, st).

• KeyGen(mskj , req, xj): On input a master secret key mskj = {ot.pki}i∈[`], a request req, and
an attribute bit xj ∈ {0, 1}, the key generation algorithm first constructs 2`+ 1 circuits
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C
(bind)
req (dabe.msk, prf.k):

1. ρ← F0(prf.k, req).
2.
(
dabe.sk0, {dabe.skk,b}k∈[`],b∈{0,1}

)
← DABE.KeyGen(dabe.msk; ρ).

3. (αk,1, . . . , αk,`)← F1(prf.k, (req, k)) for k ∈ [`].
4. αk,0 ← αk,1 ⊕ · · · ⊕ αk,` for k ∈ [`].
5. Return

(
dabe.sk0 ⊕ α0,0, {αk,0}k∈[`]

)
.

C
(att)
req,i,b(dabe.msk, prf.k):

1. ρ← F0(prf.k, req).
2.
(
dabe.sk0, {dabe.skk,b}k∈[`],b∈{0,1}

)
← DABE.KeyGen(dabe.msk; ρ).

3. (αk,1, . . . , αk,`)← F1(prf.k, (req, k)) for k ∈ [`].
4. αk,0 ← αk,1 ⊕ · · · ⊕ αk,` for k ∈ [`].
5. Return

(
dabe.ski,b ⊕ αi,i, {αk,i}k∈[0,`]\{i}

)
.

and evaluates each of these circuits on the share sj :

– p
(bind)
0,j ← UT.Eval

(
C

(bind)
req , sj

)
.

– p
(att)
i,b,j ← UT.Eval

(
C

(att)
req,i,b, sj

)
for i ∈ [`], b ∈ {0, 1}.

Then, it generates OT ciphertexts ot.cti,j ← OT.EncryptS
(
ot.crs,

(
p

(att)
i,0,j , p

(att)
i,1,j

)
, ot.pki

)
for all

i ∈ [`]\{j}. It sets

skreq,j,xj =
(
p

(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}
)
.

• KeyCombine(st, skreq,1,x1 , . . . , skreq,`,x`): On input a recipient state st, and a set of secret
key component skreq,1,x1 , . . . , skreq,`,x` , the key combining algorithm first parses each key

components skreq,j,xj =
(
p

(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}
)

for j ∈ [`]. Then, it decrypts the

OT messages p
(att)
i,xj ,j

← OT.DecryptR(ot.skj , ot.cti,j) for all i, j ∈ [`], and combines the UT
evaluation shares

–
(
dabe.sk′0, {αk,0}k∈[`]

)
← UT.Combine

(
p

(bind)
0,1 , . . . , p

(bind)
0,`

)
.

–
(
dabe.sk′i,xi , {αk,i}k∈[0,`]\{i}

)
← UT.Combine

(
p

(att)
i,xi,1

, . . . , p
(att)
i,xi,`

)
for i ∈ [`],

It sets

– dabe.sk0 = dabe.sk′0 ⊕
(⊕

k∈[`] α0,k

)
,

– dabe.ski,xi = dabe.sk′i,xi ⊕
(⊕

k∈[0,`]\{i} αi,k

)
for i ∈ [`],

and returns skx = (dabe.sk0, dabe.sk1,x1 , . . . , dabe.sk`,x`).

• Encrypt(φ, µ): On input a circuit φ : {0, 1}` → {0, 1} and a message µ ∈ M, the encryption
algorithm computes ct← DABE.Encrypt(φ, µ), and returns ct.

• Decrypt(st, skx, ct): On input a state st = {ot.skj}j∈[`], secret key skx = (dabe.sk0, dabe.sk1,x1 ,
. . . , dabe.sk`,x`), and ciphertext ct, the decryption algorithm decrypts the message µ ←
DABE.Decrypt

(
dabe.sk0, dabe.sk1,x1 , . . . , dabe.sk`,x` , ct

)
, and returns µ.
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We now state the correctness and security theorems for Construction 6.6.

Theorem 6.7 (Correctness). Suppose that the decomposable attribute-based encryption scheme
ΠDABE satisfies correctness (Definition 6.2), the universal thresholdizer ΠUT satisfies correctness
(Definition 4.2), and the oblivious transfer protocol ΠOT satisfies correctness (Definition 3.14).
Then the multi-authority attribute-based encryption scheme ΠMA-ABE in Construction 6.6 satisfies
correctness (Definition 5.2).

Theorem 6.8 (Ciphertext Security). Suppose that the decomposable attribute-based encryption
scheme ΠDABE satisfies selective security (Definition 6.4), the universal thresholdizer ΠUT satisfies
strong security (Definition 4.4), the oblivious transfer protocol ΠOT satisfies statistical sender privacy
(Definition 3.16), and the PRFs F0 and F1 satisfy security (Definition 3.6). Then the multi-authority
attribute-based encryption scheme ΠMA-ABE in Construction 6.6 satisfies selective ciphertext security
in the OT model (Definition 5.5).

Theorem 6.9 (Receiver Privacy). Suppose that the oblivious transfer protocol ΠOT satisfies receiver
privacy (Definition 3.15). Then the multi-authority attribute-based encryption scheme ΠMA-ABE in
Construction 6.6 satisfies receiver privacy (Definition 5.7).

Instantiation. The UT scheme ΠUT and the DABE scheme ΠDABE that are required for Con-
struction 6.6 can be instantiated with our constructions in Section 4 and 7. The PRF F can be
instantiated from any existing lattice-based PRF (i.e. [GGM84]). The oblivious transfer protocol
can be instantiated with the construction of Peikert et al. [PVW08] whose security can be based
on LWE. We note that for security in the UC framework, the Peikert et al. OT construction can
only be used to carry out a bounded number of OT exchanges per CRS. However, for the privacy
definitions that we work with as outline in Section 3.5, the construction in [PVW08] can support an
unbounded number of OT exchanges. Alternatively, we can also use the OT protocol in the recent
work of Brakerski and Döttling [BD18] with complexity leveraging. The Brakerski-Döttling OT
construction satisfies all of our security requirements in Section 3.5 except that the extractor in
Definition 3.16 must run in super-polynomial time (hence the need for complexity-leveraging).

7 DABE for Circuits

In this section, we construct a decomposable attribute-based encryption scheme for the class of
bounded depth circuits. The construction is an adaptation of the standard attribute-based encryption
scheme of [BGG+14]. We first recall the matrix embeddings technique of [BGG+14] that we use in
our construction description in Section 7.1. We then provide our DABE construction in Section 7.2
and prove correctness and security in Appendix C.

7.1 Matrix Embeddings

The matrix embeddings technique was first introduced by Boneh et al. [BGG+14]. A matrix
embedding scheme allows one to embed a sequence of input bits x1, . . . , xρ ∈ {0, 1} into matrices
A1, . . . ,Aρ ∈ Zn×mq such that any circuit (of bounded depth) can be homomorphic evaluated on
the encoded input bits. Since the specific implementation of the homomorphic operations are not
essential to this work, we provide the basic syntax of the algorithms that we need in the theorem
below. We refer to [BGG+14] for the complete details.
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Theorem 7.1 (Matrix Embeddings [BGG+14]). Fix a security parameter λ, and parameters n,m, q
such that m = Ω(n log q). Then, there exist a tuple of efficiently computable algorithms (Evalpk,
Evalct,EvalSim) with the following syntax:

• Evalpk
(
C, (Ai)i∈[ρ]

)
→ AC : On input a circuit C : {0, 1}ρ → {0, 1}, and a set of matrices

(Ai)i∈[ρ] in Zn×mq , the Evalpk algorithm outputs a matrix AC ∈ Zn×mq .

• Evalct
(
C, x, (Ai)i∈[ρ], (ai)i∈[ρ]

)
→ aC : On input a circuit C : {0, 1}ρ → {0, 1}, an input

x ∈ {0, 1}ρ, a set of matrices (Ai)i∈[ρ] in Zn×mq , and a set of vectors (ai)i∈[ρ], the Evalct
algorithm outputs a vector aC ∈ Zmq .

• EvalSim
(
C,x, (Ai)i∈[ρ], (Ri)i∈[ρ]

)
→ RC : On input a circuit C : {0, 1}ρ → {0, 1}, an input

x ∈ {0, 1}ρ, a set of matrices (Ai)i∈[ρ] in Zn×mq , and a set of matrices (Ri)i∈[ρ] in Zm×mq , the
EvalSim algorithm outputs a vector RC ∈ Zm×mq .

Then, for any set of matrices (Ai)i∈[ρ] in Zn×mq , any input x ∈ {0, 1}ρ, and any boolean circuit C :
{0, 1}ρ → {0, 1} of depth d, the algorithms (Evalpk,Evalct,EvalSim) satisfies the following correctness
conditions.

1. Let (ai)i∈[ρ] be any set of vectors of the form

ai = sT (Ai + xi ·G) + eTi ∀i ∈ [ρ],

for some vector s ∈ Znq and where ‖ei‖ ≤ B for all i ∈ [ρ]. Then, if we compute the matrix
AC ← Evalpk

(
C, (Ai)i∈[ρ]

)
and the vectors aC,x ← Evalct

(
C, x, (Ai)i∈[ρ], (ai)i∈[ρ]

)
, we have

that
aC,x = sT (AC + C(x) ·G) + eTC,x,

for some error vector ‖eC,x‖ ≤ B ·mO(d).

2. Let A ∈ Zn×mq , (Ri)i∈[ρ] be any set of matrices such that A · Ri − xi · G = Ai for all
i ∈ [ρ] where ‖Ri‖ ≤ B. Then, if we compute the matrix AC ← Evalpk

(
C, (Ai)i∈[ρ]

)
and

RC ← EvalSim
(
C,x, (Ai)i∈[ρ], (Ri)i∈[ρ]

)
, we have that

A ·RC − C(x) ·G = AC ,

and ‖RC‖ ≤ B ·mO(d).

7.2 Construction

In this section, we present our decomposable ABE scheme that supports bounded depth circuits.
The construction is an adaptation of the standard attribute-based encryption scheme of [BGG+14].
Although the construction in [BGG+14] is a key-policy ABE scheme in its original form, it can be
translated to a ciphertext-policy ABE scheme using universal circuits. In the translated construction,
the ABE ciphertext contains a matrix-embedding of the constraint function φ : {0, 1}` → {0, 1} for
|φ| = N , {

sT (Ai + φi ·G) + noise
}
i∈[N ]

,

where A1, . . . ,AN ∈ Zn×mq are public matrices and s ∈ Znq is a random secret vector. The decryption
key skUx is then bound to a universal circuit Ux, which takes in a bit representation of a circuit φ
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and evaluates it on a hard-coded input Ux(φ) = φ(x). Algebraically, the key skUx is defined to be
a short vector in Z2m

q that allows decryption if and only if the homomorphic computation of the
universal circuit Ux on the matrix embeddings of φ is done correctly.

In its natural algebraic form, skUx is not decomposable. Therefore, to construct a decomposable
ABE, we include an additional set of vectors{

sTBj + noise
}
j∈[`]

in the ciphertext where B1, . . . ,B` ∈ Zn×mq are another set of public matrices. Conceptually, these

vectors represent the matrix encodings of yet “undetermined” set of variables in {0, 1}`. We then
define an attribute key skj,xj for a bit xj ∈ {0, 1} to be a short matrix Rj,xj ∈ Zm×m that translates
the undetermined encoding vectors sTBj + noise to an encoding of xj as follows(

sTBj + noise
)
·Rj,xj ≈ sT (Cj + xj ·G) + noise.

Finally, we define a binding key sk0 to consist of the old ABE decryption key skU for the univer-
sal circuit U(φ, x) = φ(x), which allows for decryption if and only if the correct homomorphic
computation of the universal circuit U is done correctly on the encodings{

sT (Ai + φi ·G) + noise
}
i∈[N ]

⋃ {
sT (Cj + xj ·G) + noise

}
j∈[`]

.

The decryption algorithm now works by first translating a ciphertext to valid encodings of the tuple
(φ, x) ∈ {0, 1}N × {0, 1}` using the attribute keys. It then decrypts the message using skU as in the
original ciphertext-policy attribute-based encryption scheme.

Construction 7.2. Let λ be the security parameter, and (n,m, q, χ) be a set of LWE parameters.
Our decomposable attribute-based encryption scheme relies on the following set of algorithms:

• Let (Evalpk,Evalct,EvalSim) be the set of matrix embeddings algorithms as in Theorem 7.1.

• Let (TrapGen, Invert,Sample) and (SampleLeft, SampleRight) be the trapdoor algorithms from
Theorems 3.4 and 3.5.

Using these algorithms, we construct a decomposable ABE scheme ΠDABE = (DABE.Setup,
DABE.KeyGen,DABE.Encrypt,DABE.Decrypt) for the message space M = {0, 1} and the class
of bounded depth circuits C as follows:

• Setup(1λ, 1`, 1d): On input the security parameter λ, number of attributes `, and a depth
bound d, the setup algorithm first samples a set of trapdoor matrices (A,A−1)← TrapGen(1λ),
and (Bj ,B

−1
j )← TrapGen(1λ) for j ∈ [`]. It additionally samples a set of uniformly random

matrices and vectors A1, . . .AN
r← Zn×mq , d

r← Znq . Finally, sets

pp =
(
A, {Ai}i∈[N ], {Bj}j∈[`],d

)
, msk =

(
A−1, {B−1

j }j∈[`]

)
.

• KeyGen(msk): On input a master secret key msk = A−1, {B−1
j }j∈[`], the key generation algo-

rithm samples random matrices C1, . . . ,C`
r← Zn×mq . Then, it uses the trapdoor information

B−1
1 , . . . ,B−1

` to sample short preimages Rj,b ← Invert(Bj ,B
−1
j ,Cj + b ·G) for all j ∈ [`],

b ∈ {0, 1} such that

Bj ·Rj,b = Cj + b ·G ∀ j ∈ [`], b ∈ {0, 1},
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and sets skj,b = (Cj ,Rj,b) for j ∈ [`], b ∈ {0, 1}. Then, the key generation algorithm computes
AU ← Evalpk

(
U ,
(
(Ai)i∈[N ], (Cj)j∈[`]

))
, and samples a short preimage u← SampleLeft(A,A−1,

AU ,d, γ) for γ = BmO(d). Finally, it sets sk0 = u and returns (sk0, {skj,b}j∈[`],b∈{0,1}).

• Encrypt(φ, µ): On input a policy circuit φ : {0, 1}` → {0, 1} of size |φ| = N , and a message

µ ∈ M, the encryption algorithm first samples a random vector s
r← Znq , error vectors

eA ← χm, ed ← χ, and short matrices S1, . . . ,SN
r← {0, 1}m×m, R̃1, . . . , R̃`

r← {0, 1}m×m. It
then computes the ciphertext vectors

– a = sTA + eTA,
– ai = sT (Ai + φi ·G) + eTA · Si for i ∈ [N ],

– bj = sTBj + eTA · R̃j for j ∈ [`],
– d = sTd + ed + bq/2e · µ.

and sets ct =
(
a, (ai)i∈[N ], (bj)j∈[`], d, φ

)
.

• Decrypt(sk0, sk1,x1 , . . . , sk`,x` , ct): On input a set of secret keys sk0 = u, sk1,x1 = (C1,R1), . . . ,
sk`,x` = (C`,R`), and a ciphertext ct =

(
a, (ai)i∈[N ], (bj)j∈[`], d, φ

)
, the decryption algorithm

first computes cj = bTj Rj for all j ∈ [`]. Then, it evaluates aU ← Evalct
(
U , (φ, x),

(
(ai)i∈[N ],

(cj)j∈[`]

))
, and µ̂← d− (aT ‖aTU ) ·u. Finally, the decryption algorithm returns 0 if |µ̂| ≤ bq/4e

and it returns 1 otherwise.

We now state the correctness and security statements for the decomposable ABE scheme of
Construction 7.2.

Theorem 7.3 (Correctness). Let λ be the security parameter and (n,m, q, χB) be a set of LWE
parameters such that B2mO(d) < q. Then, the decomposable attribute-based encryption scheme
ΠDABE in Construction 7.2 satisfies correctness.

Theorem 7.4 (Security). Let λ be the security parameter and (n,m, q, χB) be a set of LWE param-
eters such that m = Ω(n log q) and q = B ·mO(d). Then, assuming the hardness of the LWEn,m+1,q,χ

problem, the decomposable attribute-based encryption scheme ΠDABE from Construction 7.2 satisfies
selective, weak DABE security (Definition 6.4).

We provide the proofs for Theorems 7.3 and 7.4 in Appendix C.

Parameter instantiation. The parameters for Construction 7.2 can be set to satisfy the require-
ments of Theorems 7.1, 7.3, and 7.4 similarly to [BGG+14]. One way of instantiating the parameters
is as follows:

• n = poly(λ),
• `, d = poly(λ),
• χB = DZ,

√
n,

• q = B2 · 2Õ(d),
• m = Θ(n log q),

where DZ,
√
n is the discrete Gaussian distribution over the integers.
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Classical hardness of learning with errors. In STOC, 2013.

35



[Boy13] Xavier Boyen. Attribute-based functional encryption on lattices. In TCC. 2013.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudoran-
dom functions. In CRYPTO, 2014.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In
ITCS, 2014.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

[CC09] Melissa Chase and Sherman SM Chow. Improving privacy and security in multi-authority
attribute-based encryption. In CCS, 2009.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In TCC, 2007.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA International Conference on Cryptography and Coding, 2001.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, 1984.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In CCS, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO.
2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In CRYPTO, 2015.

[HW13] Susan Hohenberger and Brent Waters. Attribute-based encryption with fast decryption.
In PKC. 2013.

36



[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In STOC, 1989.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption. In EUROCRYPT, 2010.

[LW11] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, 2011.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad
class of distributions. In PKC, 2015.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity
of LWE search-to-decision reductions. In CRYPTO, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, 2012.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In CRYPTO, 2010.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, 2009.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop on the
theory and application of cryptographic techniques, 1984.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO. 2012.

[WFL19] Zhedong Wang, Xiong Fan, and Feng-Hao Liu. Fe for inner products and its application
to decentralized abe. In PKC, 2019.

A Proofs in Section 4

A.1 Proof of Theorem 4.10

Fix λ, `, d ∈ N, input x ∈ {0, 1}∗, and a circuit C : {0, 1}∗ → {0, 1}. We must show that for
(s1, . . . , s`)← Setup(1λ, 1`, 1d, x), and pj ← Eval(C, sj) for all j ∈ [N ], we have

Pr
[
Combine({pj}j∈[N ]) = C(x)

]
= 1− negl(λ).
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By the specification of the combining algorithm Combine, it is sufficient to show that
∣∣∑

j∈[`] pj
∣∣ ≤

bp/4e if and only if C(x) = 0.
Let sj = (ct, skj , kj) for j ∈ [`] where ct← HE.Encrypt(sk1+. . .+sk`, x), and k1+. . . , k` = 0 ∈ Znq .

Then, the evaluation algorithm Eval(C, sj) sets pj =
〈
skj , ĉt

〉
+ e

(sm)
j + zj where ĉt← HE.Eval(C, ct),

e
(sm)
j

r← [−Bsm, Bsm], and zj ← F (kj , ĉt). We first note that by the 1-almost key-homomorphic
property of F (Definition 3.8), the sum of the outputs of the PRF is short |z1 + . . . ,+z`| ≤ `.
Furthermore, by the triangle inequality, the sum of the smudging error terms are also short

|e(sm)
1 , . . . , e

(sm)
` | ≤ ` ·Bsm. Finally, by the correctness of ΠHE (Definition 3.11), the inner product

produces a noisy evaluation
〈
sk1 + sk`, ct

〉
= bq/2e ·C(x) + eHE where |eHE| ≤ B ·mO(d). Therefore,∣∣∣∑

j∈[`]

pj

∣∣∣ =
∣∣∣〈sk1 + . . . , sk`, ct

〉
+ (e

(sm)
1 + . . .+ e

(sm)
` ) + (z1 + . . .+ z`)

∣∣∣
≤
∣∣∣bq/2e · C(x)

∣∣∣+B ·mO(d) + ` ·Bsm + `

By assumption, we have B ·mO(d) + ` ·Bsm + ` < p/4. Hence, we have
∣∣∑

j∈[`] pj
∣∣ ≤ bp/4e if and

only if C(x) = 0 and the theorem follows.

A.2 Proof of Theorem 4.11

We proceed via a hybrid argument. The high-level intuition for the sequence of hybrid experiments
is quite simple. Namely, we define a sequence of ` hybrid experiments to argue (using PRF security)
that the PRF evaluations zj ← F (kj , ĉt) for j ∈ [`] are computationally indistinguishable from
uniformly random elements in Zp under the condition that their sum results in a correct decryption
bp/2e · C(x) + eHE for some error term eHE. Once we make this switch, it is easy to simulate the
partial decryptions p1, . . . , p` as they are blinded by uniformly random elements in Zp. Therefore,
we can use semantic security of the homomorphic encryption scheme to change the ciphertext ct
that is generated by the setup algorithm from an encryption of x to an encryption of an all-zero
string 0|x|.

Turning this intuition into a formal proof, however, requires some care. This is mainly due to
the fact that the adversary A can ask for a set of shares S ( [`] at the beginning of each experiment,
which can be different for each hybrid experiment. In particular, for any index j ∈ S ( [`], we
cannot switch the PRF evaluations F (kj , ĉt) to uniformly random elements in Zp since A has access
to the PRF key kj . Hence, in each of the hybrid experiments, we must specify a challenger that takes
into account A’s choice of the set S ( [`]. This makes the description of the hybrid experiments
somewhat cumbersome, but the underlying intuition remains unchanged from before.

To simplify the proof, we make a simplifying assumption on the adversary A. Namely, we assume
that each of A’s queries (C, j) to the challenger is unique (A never makes the same query (C, j)
twice). This is without loss of generality as the challenger can always use a PRF to derandomize
the evaluation algorithm. With this simplification, we formally specify our hybrid experiments
hyb0,hyb1,0,hyb1,1 . . . ,hyb1,`−1,hyb2, and hyb3 as follows.

• hyb0: This is the real universal thresholdizer (adaptive) security experiment in Definition 4.4.
Specifically, we divide the experiment into three phases as follows:

– Setup phase: At the start of the experiment, the adversary A commits to a secret input
x ∈ {0, 1}∗ and a set of corrupt authorities S ( [`]. The challenger samples homomorphic
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encryption keys skj ← HE.KeyGen(1λ, 1d) for j ∈ [`], and PRF keys k1, . . . , k`−1
r← Znq ,

and sets k` = −(k1 + · · · + k`−1) as in the real Setup algorithm. It then encrypts
ct← HE.Encrypt(sk1 + · · ·+ sk`, x), sets sj = (ct, skj , kj) for j ∈ [`], and provides {sj}j∈S
to A.

– Query phase: For each query (C, j) that A makes, the challenger computes ĉt ←
HE.Eval(C, ct). It then generates an error term e

(sm)
j

r← [−Bsm, Bsm], zero shares zj ←
F (kj , ĉt), and returns pj =

〈
skj , ct

〉
+ e

(sm)
j + zj to A.

– Output phase: At the end of the experiment, adversary A outputs a bit β, which is
the output of the experiment.

• hyb1,0: This experiment is the same as hyb0 except for the way the challenger answers
A’s evaluation queries during the query phase of the experiment. Namely, at the start
of the experiment, when A commits to a set of corrupt users S ( [`], the challenger sets
imax = maxi∈[`]\S i, and instantiates a look-up table H : {0, 1}∗ → Z`p that maps circuits
to ` scalar elements in Zp. When A submits a query (C, j) during the query phase of the
experiment, the challenger first checks if C is already contained in the table H. If this is
the case, then it looks up C 7→ (p1, . . . , p`) and provides pj to A. Otherwise, the challenger
generates p1, . . . , p` as follows:

– For all i 6= imax, the challenger computes ĉt← HE.Eval(C, ct), e
(sm)
i

r← [−Bsm, Bsm], and

zi ← F (ki, ĉt). It then sets pi =
〈
ski, ct

〉
+ e

(sm)
i + zi.

– For i = imax, the challenger samples e
(sm)
i

r← [−Bsm, Bsm], computes zι ← F (kι, ĉt) for

ι ∈ [`]\{imax}, and sets pi = bp/2e · C(x)−
∑

ι∈[`]\{imax}
(〈
skι, ĉt

〉
+ zι

)
+ e

(sm)
i .

The challenger provides pj to A and stores C 7→ (p1, . . . , p`) in the table H. The rest of the
experiment remains unchanged.

The sequence of hybrid experiments hyb1,j for j = 1, . . . , `− 1 are defined as follows:

• hyb1,j : This experiment is the same as hyb1,j−1 except that the challenger replaces the PRF
evaluation F (kj , ·) with a random function f(·). Specifically, if user j is a corrupt user j ∈ S
or j = maxi∈[`] i, then the challenger proceeds exactly as in hybj,j−1. If this is not the case,
then whenever the challenger requires the evaluation of F (k, ·), it uses a truly random function
f(·). The rest of the experiment remains unchanged.

The hybrid experiments hyb2 and hyb3 are defined as follows:

• hyb2: This experiment is the same as hyb1,`−1, but we change the way the challenger answers
A’s evaluation queries during the query phase. Specifically, when the adversary A makes a
query (C, j), the challenger checks if A previously queried (C, j) for all i ∈ [`]\(S ∪ {j}). If

this is not the case, then the challenger sets pj
r← Zp.

If A previously queried (C, i) for all i ∈ [`]\(S ∪ {j}), then it looks up all of its previous

responses {pi}i∈[`]\S∪{j}, samples e
(sm)
j

r← [−Bsm, Bsm], computes zi′ ← F (ki′ , ĉt) for all i′ ∈ S,
and then sets

pj = bp/2e · C(x) +
∑

i∈[`]\S∪{j}

pi +
∑
i′∈S

〈
ski′ , ĉt

〉
+ e

(sm)
j .
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• hyb3: This experiment is the same as hyb2 except for the way the challenger generates the
homomorphic encryption ciphertext. Namely, during the setup phase of the protocol, instead of
encrypting ct← HE.Encrypt(sk1 + · · ·+sk`, x), it encrypts ct← HE.Encrypt(sk1 + · · ·+sk`, 0

|x|).
The rest of the experiment remains unchanged.

This experiment corresponds to the ideal universal thresholdizer (adaptive) security experiment
in Definition 4.4. In particular, the description of the challenger in the setup phase of the
experiment corresponds to the simulator Sim1, and the description of the challenger during
the query phase of the experiment corresponds to the simulator Sim2.

We now show that each consecutive hybrid experiments are indistinguishable to an adversary. Below,
we write hyb(A) to denote the random variable that represents the output of the experiment hyb
with respect to an adversary A.

Lemma A.1. Suppose that (B · mO(d) + `)/Bsm = negl(λ), the homomorphic encryption ΠHE

satisfies correctness, and the PRF F : Znq × {0, 1}∗ → Zp satisfies 1-almost key-homomorphism
(Definition 3.7). Then, for any (unbounded) adversary A,∣∣Pr[hyb0(A) = 1]− Pr[hyb1,0(A) = 1]

∣∣ = negl(λ).

Proof. The only difference between the hybrid experiments hyb0 and hyb1,0 is in the way the
challenger simulates the partial evaluations during the query phase of the experiment. Specifically,
for each query (C, imax) that A makes, each challenger in hyb0 and hyb1,0 defines pimax as follows:

• In hyb0, the challenger samples e
(sm)
imax

r← [−Bsm, Bsm], computes zimax ← F (kj , ĉt), and returns

pimax =
〈
skimax , ct

〉
+ e

(sm)
imax

+ zimax to the adversary A.

• In hyb1,0, the challenger samples error terms e
(sm)
imax

r← [−Bsm, Bsm], and sets

pimax = bp/2e · C(x)−
∑

ι∈[`]\{imax}

(〈
skι, ĉt

〉
+ zι

)
+ e

(sm)
imax

,

where zι ← F (kι, ĉt) for ι ∈ [`]\{imax}. In particular, pimax satisfies the following equality:

pimax = bp/2e · C(x)−
∑

ι∈[`]\{imax}

(〈
ski, ĉt

〉
+ zι

)
+ e

(sm)
imax

=
〈∑
j∈[`]

skj , ĉt
〉

+ eHE −
∑

ι∈[`]\{imax}

(〈
skι, ĉt

〉
+ zι

)
+ e

(sm)
imax

=
〈
skimax , ĉt

〉
+ eHE −

∑
ι∈[`]\{imax}

zι + e
(sm)
imax

=
〈
skimax , ĉt

〉
+
(
eHE + ekh︸ ︷︷ ︸

e∗

)
+ e

(sm)
imax

+ zimax ,

where eHE denote the decryption error and ekh denotes the error from the 1-almost key-
homomorphism. By the correctness of ΠHE and the 1-almost key-homomorphism of F , we
have |edec| ≤ B ·mO(d), |ekh| ≤ `.
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Therefore, from the perspective of the adversary A, the only difference between the hybrid ex-
periments hyb0 and hyb1,0 is the additional error term e∗ for each of its queries (C, jmax). Since
|e∗| ≤ B ·mO(d) + ` and by assumption, (B ·mO(d) + `)/Bsm = negl(λ), A’s views of the two hybrid
experiments are statistically indistinguishable by the smudging lemma (Lemma 3.2).

Lemma A.2. Suppose that the key-homomorphic PRF F : Znq × {0, 1}∗ → Zp is secure (Defini-
tion 3.6). Then, for any efficient adversary A and j ∈ [`− 1],∣∣Pr[hyb1,j(A) = 1]− Pr[hyb1,j−1(A) = 1]

∣∣ = negl(λ).

Proof. Let A be an adversary that distinguishes the experiments hyb1,j−1 and hyb1,j . Then, we
construct an algorithm B that uses A to break the PRF security of F . By definition, the experiments
hyb1,j and hyb1,j−1 are equivalent if j ∈ S or j = imax, and therefore, assume that j 6= jmax. The
algorithm B proceeds as follows:

• Setup phase: At the start of the experiment, when A commits to x ∈ {0, 1}∗ and a set
of corrupt authorities S ( [`], algorithm B samples homomorphic encryption keys ski ←
HE.KeyGen(1λ, 1d) for i ∈ [`] and encrypts ct← HE.Encrypt(sk1 + · · ·+ sk`, x) just as in the
two hybrid experiments. Then, for users i ∈ S ∪ [j, `]\{imax}, the challenger samples PRF keys

ki
r← Znq , sets si = (ct, ski, ki), and provides {si}i∈S to A. Finally, it instantiates a look-up

table H : {0, 1}∗ → Z`p.

• Query phase: When A submits a query (C, i′), algorithm B checks if C is already contained
in the table H. If this is the case, then it looks up C 7→ (p1, . . . , p`) and provides pi′ to A.
Otherwise, the challenger generates p1, . . . , p` as follows:

– For i /∈ S and i ≤ j − 1, the challenger computes ĉt← HE.Eval(C, ct), samples e
(sm)
i

r←
[−Bsm, Bsm], zi

r← Zp, and sets pi =
〈
ski, ĉt

〉
+ e

(sm)
i + zi as specified in hyb1,j−1 and

hyb1,j .

– For i = j, algorithm B computes ĉt← HE.Eval(C, ct) and samples e
(sm)
i

r← [−Bsm, Bsm].
Then, it queries ĉt to the PRF challenger to get back zi. Finally, it sets pi =

〈
ski, ct

〉
+

e
(sm)
i + zi.

– For i ∈ S ∪ [j, `]\{imax}, the challenger evaluates ĉt ← HE.Eval(C, ct) and sets pi =〈
ski, ct

〉
+ e

(sm)
i + zi for e

(sm)
i

r← [−Bsm, Bsm], and zi ← F (ki, ĉt) as specified in hyb1,j−1

and hyb1,j .

– For i = imax, the challenger sets pi = bp/2e · C(x)−
∑

ι∈[`−1]

(〈
skι, ĉt

〉
+ zι

)
+ e

(sm)
i for

e
(sm)
i

r← [−Bsm, Bsm] just as in hyb1,j−1 and hyb1,j .

Algorithm B then provides pi′ to A and stores C 7→ (p1, . . . , p`) in the table H.

• Output phase: When A outputs a bit β, algorithm B outputs the same bit β.

Correctness of the simulation. By definition, the view that B provides for A is exactly as in
the experiments hyb1,j−1 and hyb1,j except for the way it defines the partial evaluations pj during
the query phase of the protocol.
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• If B is interacting with the real PRF challenger, then the zero shares zj corresponds to the

real PRF evaluation F (kj , ĉt). Therefore, the partial evaluation pj =
〈
skj , ĉt

〉
+ e

(sm)
j + zj is

distributed exactly as in hyb1,j−1.

• If B is interacting with the ideal PRF challenger, then the error term zj is a uniformly random

element zj
r← Zp. Therefore, the partial evaluation pj =

〈
skj , ĉt

〉
+ e

(sm)
j + zj is distributed

exactly as in hyb1,j .

Therefore, depending on whether it is interacting with the real or ideal PRF challenger, algorithm
B simulates the view of hyb1,j−1 or hyb1,j . Hence, with the same distinguishing advantage as
A on the experiments hyb1,j−1 and hyb1,j , algorithm B breaks the PRF security of F . Then,
assuming that F is a secure PRF, the distinguishing advantage of A must be negligible and the
lemma follows.

Lemma A.3. For any (unbounded) adversary A,∣∣Pr[hyb1,`−1(A) = 1]− Pr[hyb2(A) = 1]
∣∣ = 0.

Proof. The difference between the hybrid experiments hyb1,`−1 and hyb2 are purely syntactical. In

hyb1,`−1, for each query (C, j) that A makes, the challenger sets pi =
〈
ski, ĉt

〉
+ e

(sm)
i + zi where

zi
r← Zp for all i ∈ [`]\(S∪{imax}) and pimax is set to satisfy the relation

∑
i∈[`]\S pi+

∑
i′∈S

〈
ski′ , ĉt

〉
+

zi′ = e
(sm)
imax

for some error terms e
(sm)
imax

r← [−Bsm, Bsm]. Since z(i) for i ∈ [`]\(S ∪ {imax}) are
sampled uniformly at random from Zp, the partial evaluations pi for i ∈ [`]\S are distributed

uniformly at random in Zp under the condition that
∑

i∈[`]\S pi +
∑

i′∈S
〈
ski′ , ĉt

〉
+ zi′ = e

(sm)
imax

for

e
(sm)
imax

r← [−Bsm, Bsm]. By specification, this is exactly the distribution of the partial evaluations in
hyb2 and the lemma follows.

Lemma A.4. Suppose that the homomorphic encryption scheme ΠHE is secure (Definition 3.12).
Then, for any efficient adversary A,∣∣Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]

∣∣ = negl(λ).

Proof. Let A be an adversary that distinguishes the experiments hyb2 and hyb3. Then, we construct
an algorithm B that uses A to break the security of ΠHE. The algorithm B proceeds as follows:

• Setup phase: At the start of the experiment, when A commits to a secret input x ∈ {0, 1}∗
and a set of corrupt authorities S ( [`], algorithm B samples homomorphic encryption keys

ski ← HE.KeyGen(1λ, 1d) and PRF keys ki
r← Znq for i ∈ S. Then, it submits the two messages

(x, 0|x|) to the encryption challenger and gets back a ciphertext ct. It sets si = (ct, ski, ki) and
provides {si}i∈S to A.

• Query phase: The query phase of the experiment in hyb2 and hyb3 are identical by definition.
Furthermore, for each query (C, j) that A makes, the partial evaluations pj ’s are either
sampled uniformly at random from Zp or simulatable given {ski}i∈S and ĉt← HE.Eval(C, ct).
Therefore, B simulates the view of A exactly as in hyb2 and hyb3.

• Output phase: When A outputs a bit β, algorithm B outputs the same bit β.
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Correctness of the simulation. Except for the ciphertext ct, algorithm B exactly simulates
the view of A in hyb2 and hyb3 simply by definition. Now, if ct = HE.Encrypt(sk∗, x) for some
encryption key sk∗, then ct is distributed exactly as in hyb2. If ct = HE.Encrypt(sk∗, 0|x|), then ct is
distributed exactly as in hyb3. Therefore, with the same distinguishing advantage of A, algorithm
B breaks the security of the homomorphic encryption scheme ΠHE. Then, assuming that ΠHE is
a secure encryption scheme, the distinguishing advantage of A must be negligible. The lemma
follows.

B Proofs in Section 6

B.1 Proof of Theorem 6.7

Fix the security parameter λ and the number of attributes `. Let µ ∈ M be any message,
φ : {0, 1}` → {0, 1} be any policy circuit in C, and x ∈ {0, 1}` be an attribute string such that
φ(x) = 0. We must show that for (pp,msk1, . . . ,msk`)← Setup(1λ, 1`), (req, st)← KeyRequest(x),
skreq,j,xj ← KeyGen(mskj , req, xj) for j ∈ [`], and skx ← KeyCombine(st, skreq,1,x1 , . . . , skreq,`,x`), we
have

Pr
[
Decrypt

(
skx,Encrypt(φ, µ)

)
= µ

]
= 1− negl(λ).

By specification, the KeySend(mskj , xj , req) algorithm sets skreq,j,xj =
(
p

(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}
)

where

• p
(bind)
0,j ← UT.Eval(C

(bind)
req , sj),

• p
(att)
i,b,j ← UT.Eval(C

(att)
req,i,b, sj) for i ∈ [`], b ∈ {0, 1},

and ot.cti,j ← OT.EncryptS
(
ot.crs,

(
p

(att)
i,0,j , p

(att)
i,1,j

)
, ot.pki

)
for all i ∈ [`]\{j}. The key combining

algorithm decrypts the OT messages p̃
(att)
i,xj ,j

← OT.DecryptR(ot.skj , ot.cti,j) for all i, j ∈ [`], combines
the UT evaluation shares

• (dabe.sk′0, {αk,0}k∈[`])← UT.Combine
(
p̃

(bind)
0,1 , . . . , p̃

(bind)
0,`

)
,

• (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i})← UT.Combine
(
p̃

(att)
i,xi,1

, . . . , p̃
(att)
i,xi,`

)
for i ∈ [`],

and sets

• dabe.sk0 = dabe.sk′0 ⊕
(⊕

k∈[`] α0,k

)
,

• dabe.ski,xi = dabe.sk′i,xi ⊕
(⊕

k∈[0,`]\{i} αi,k
)

for i ∈ [`].

The decryption algorithm returns µ′ ← DABE.Decrypt
(
dabe.sk′0, dabe.sk

′
1,x1 , . . . , dabe.sk

′
`,x`

)
. By

the correctness of ΠOT, we have p̃
(bind)
0,j = p

(bind)
0,j for all j ∈ [`] and p̃

(att)
i,xj ,j

= p
(att)
i,xj ,xj

for all i, j ∈ [`].

Therefore, by the correctness condition of ΠUT, and the specifications of the circuits C
(bind)
req and

C
(att)
req,i,b, the key components dabe.sk0, dabe.sk1,x1 , . . . , dabe.sk`,x` correspond to properly generated

key components of DABE.KeyGen(dabe.msk). Since ct ← Encrypt(φ, µ) = DABE.Encrypt(φ, µ), we
have µ′ = DABE.Decrypt

(
dabe.sk0, dabe.sk1,x1 , . . . , dabe.sk`,x`

)
= µ. The correctness now follows.
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B.2 Proof of Theorem 6.8

We proceed via a hybrid argument. In our hybrid description below, we use Sim = (Sim1,Sim2) to
denote the universal thresholdizer simulator in Definition 4.4 and OTExt to denote the OT extractor
in Definition 3.16. For simplicity in the presentation of the proof, we make two assumptions on an
adversary A:

• We first assume that all key queries (req, j, xj) that A makes during the query phase of the
experiment are unique. This is without loss of generality as the challenger can always answer
repeated queries consistently.

• Let S be the set of corrupt authorities that A commits to at the beginning of the MA-ABE
security experiment. Then we assume that for all key queries (req, j, b) that A makes during
the query phase of the experiment, we have j /∈ S. This is without loss of generality as A
already holds master secret keys {mskj}j∈S and therefore, it can answer the key queries by
itself.

With these simplifying assumptions, we define our sequence of hybrid experiments as follows:

• hyb0: This is the ciphertext security experiment Expt
(CS)
ΠMA-ABE

(λ, `,A, 0) of Definition 5.5.
Specifically, the challenger proceeds in each phases of the experiment as follows:

– Setup phase: At the start of the experiment, A specifies a set of corrupt authorities
S ⊆ [`] and a policy circuit φ ∈ C for the challenge ciphertext. The challenger samples

a PRF key prf.k
r← K, computes (dabe.pp, dabe.msk)← DABE.Setup(1λ), (s1, . . . , s`)←

UT.Setup(1λ, 1`, 1d, (dabe.msk, prf.k)), and (ot.crs, td) ← OT.Setup(1λ) as in the real
setup algorithm. It provides pp = (dabe.pp, ot.crs) and {sj}j∈S to A.

– Query phase: The challenger responds to each of A’s queries as follows:

∗ Key queries: For each query (req, j, b) that A makes, the challenger parses req =
{ot.pki}i∈[`], computes

· p(bind)
0,j ← UT.Eval(C

(bind)
req , sj),

· p(att)
i,b,j ← UT.Eval(C

(att)
req,i,b, sj) for i ∈ [`], b ∈ {0, 1},

and sets ot.cti,j ← OT.EncryptS
(
ot.crs, (p

(att)
i,0,j , p

(att)
i,1,j ), ot.pki

)
for all i ∈ [`]\{j}. It

provides skreq,j,xj =
(
p

(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}
)

to A.

∗ Challenge query : When A makes a challenge query (µ0, µ1), the challenger computes
ct← DABE.Encrypt(φ, µ0) and returns ct.

– Output phase: At the end of the experiment, the adversary A outputs a bit β′ ∈ {0, 1},
which becomes the output of the experiment.

• hyb1: In this experiment, we change the way the challenger responds to A’s key queries.
Namely, for each key query (req, j, b) for req = {pki}i∈[`] that A submits during the query
phase of the protocol, the challenger extracts x′i ← OTExt(td, pki) for all i ∈ [`] and sets

– p
(bind)
0,j ← UT.Eval(C

(bind)
req , sj),

– p
(att)
j,b,j ← UT.Eval(C

(att)
req,j,b, sj),
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– p
(att)
i,x′i,j

← UT.Eval(C
(att)
req,i,x′i

, sj) for i ∈ [`]\{j},

– p
(att)
i,1−x′i,j

← ⊥ for i ∈ [`]\{j}.

It then encrypts ot.cti,j ← OT.EncryptS
(
ot.crs, (p

(att)
i,0,j , p

(att)
i,1,j ), ot.pkj

)
for all i ∈ [`]\{j} and

provides skreq,j,xj = (p
(bind)
0,j , p

(att)
j,b,j , {ot.cti,j}i∈[`]\{j}

)
to A.

The rest of the experiment remains identical to hyb0.

• hyb2: In this experiment, we change the way the challenger responds to A’s key queries.
Namely, during the setup phase, instead of running the real universal thresholdizer setup, the
challenger invokes the simulator (s1, . . . , s`)← Sim1(1λ, 1`, 1d, S, 1κ) where κ is the maximum
bit length of any (dabe.msk, prf.k). It then provides pp = (dabe.pp, ot.crs) and {si}j∈S to A.

During the query phase of the experiment, the challenger maintains a lookup table H :
{0, 1}∗ × [0, `] × [`]\S → {0, 1}ρ that maps request-index-index tuples to evaluation shares
(req, i, k) 7→ p where |p| = ρ. Now, when A makes a key query (req, j, xj) during the query
phase (by assumption, j /∈ S), the challenger still extracts x′i ← OTExt(td, pki) for i ∈ [`].

However, instead of evaluating UT.Eval(C
(bind)
req , sj) and UT.Eval(C

(att)
req,i,b, sj) for i ∈ [`], b ∈ {0, 1},

the challenger invokes the simulator Sim2 for the evaluation shares depending on A’s previous
key queries. Specifically, on (req, j, xj), the challenger sets the evaluation shares as follows:

– To set p
(bind)
0,j , the challenger checks if A had previously made queries (req, k, 0) or (req, k, 1)

for each k ∈ [`]\S. If this is the case, then it looks up the mappings (req, 0, k) 7→ p
(bind)
0,k

for k ∈ [`]\S in H. Then, it invokes the simulator p
(bind)
0,j ← Sim2

(
C

(bind)
req , {sj}j∈[`],

(dabe.sk′0, {αk,0}k∈[`]), {p
(bind)
0,k }k∈[`]\S

)
.

Otherwise, if A had not previously made queries (req, k, 0) or (req, k, 1) for all k ∈ [`]\S,

then it samples p
(bind)
0,j

r← {0, 1}ρ and adds (req, 0, j) 7→ p
(bind)
0,j to H.

– To set p
(att)
j,xj ,j

, the challenger first checks if x′j = xj . If this is not the case, then it samples

p
(att)
j,xj ,j

r← {0, 1}ρ and adds (req, j, j) 7→ p
(bind)
j,xj ,j

to H.

Otherwise, if x′j = xj , then the challenger checks if A had previously made queries
(req, k, 0) or (req, k, 1) for each k ∈ [`]\(S ∪ {j}). If this is the case, then it looks up the

mappings (req, j, k) 7→ p
(att)
j,xj ,k

for k ∈ [`]\(S ∪ {j}) in H. Then, it invokes the simulator

p
(att)
j,xj ,j

← Sim2

(
C

(att)
req,j,xj

, {sj}j∈[`], (dabe.sk
′
j,xj , {αk,j}k∈[0,`]\{j}), {p

(att)
j,xj ,k

}k∈[0,`]\(S∪{j})
)
.

Otherwise, if A had not previously made queries (req, k, 0) or (req, k, 1) for all k ∈
[`]\(S ∪ {j}), then it samples p

(att)
j,xj ,j

r← {0, 1}ρ and adds (req, j, j) 7→ p
(att)
j,xj ,j

to H.

– To set p
(att)
i,x′i,j

for i ∈ [`]\{j}, the challenger checks if A had previously made queries

(req, k, 0) or (req, k, 1) for each k ∈ [`]\(S ∪ {i}). If this is the case, then it looks up the

mappings (req, i, k) 7→ p
(att)
i,x′i,k

for k ∈ [`]\(S ∪ {i}) in H. Then, it invokes the simulator

p
(att)
i,x′i,j

← Sim2

(
C

(att)
req,i,x′i

, {sj}j∈[`], (dabe.sk
′
i,x′i
, {αk,i}k∈[0,`]\{i}), {p

(att)
i,x′i,k
}k∈[0,`]\(S∪{i})

)
.

Otherwise, if A had not previously made queries (req, k, 0) or (req, k, 1) for all k ∈
[`]\(S ∪ {i}), then it samples p

(att)
i,x′i,j

r← {0, 1}ρ and adds (req, i, j) 7→ p
(bind)
i,x′i,j

to H.
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– For the rest of the evaluation shares p
(att)
i,1−x′i,j

for i ∈ [`]\{j}, it sets each of them

p
(att)
i,1−x′i,j

← ⊥.

The challenger then encrypts ot.cti,j ← OT.EncryptS(ot.crs, (p
(att)
i,0,j , p

(att)
i,1,j ), ot.pkj) for all i ∈

[`]\{j} and provides skreq,j,xj = (p
(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}) to A.

The rest of the experiment remains unchanged.

• hyb3: This experiment is the same as hyb2 except that the challenger replaces the PRFs
F0(prf.k, ·) and F1(prf.k, ·) with random functions. Specifically, the challenger in hyb3 emulates
the challenger in hyb2, but whenever it must evaluate F0(prf.k, ·) or F1(prf.k, ·), it uses truly

random functions f0(·) r← Funs[{0, 1}∗, {0, 1}r] and f1(·) r← Funs[{0, 1}∗, {0, 1}t`]. The rest of
the experiment remains unchanged.

• hyb4: This experiment is the same as hyb2 except that during the query phase, when
the adversary A makes the single challenge query (µ0, µ1), the challenger encrypts ct ←
DABE.Encrypt(φ, µ1) instead of encrypting µ0.

• hyb5: Starting from this experiment, we revert the changes that we made from hyb0. In
this experiment, instead of using truly random functions f0

r← Funs[{0, 1}∗, {0, 1}r] and

f1
r← Funs[{0, 1}∗, {0, 1}`t], the challenger uses the real PRFs F0(prf.k, ·) and F1(prf.k, ·).

• hyb6: In this experiment, the challenger reverts back to using the real universal thresholdizer
setup and evaluation algorithms as in hyb1.

• hyb7: In this experiment, the challenger reverts back to the way it responds to A’s key queries
in hyb0. Namely, for each key query (req, j, b) for req = {pki}i∈[`] that A submits during the
query phase of the protocol, instead of invoking the OT extractor, the challenger encrypts

both evaluation shares ot.cti,j ← OT.EncryptS
(
ot.crs, (p

(att)
i,0,j , p

(att)
i,1,j ), ot.pkj) for all i ∈ [`]\{j}.

This experiment corresponds to the ciphertext security experiment Expt
(CS)
ΠMA-ABE

(1λ, 1`,A, 1)

We now show that each consecutive hybrid experiments are either statistically or computationally
indistinguishable. For the lemma statements below, we write hyb(A) to denote the random variable
that represents the output of hyb with respect to an adversary A.

Lemma B.1. Suppose that the oblivious transfer protocol ΠOT satisfies sender security (Defini-
tion 3.16). Then, for any efficient adversary A,∣∣Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]

∣∣ = negl(λ).

Proof. The lemma follows immediately from the definition of sender security of ΠOT (Definition 3.16).

Lemma B.2. Suppose that the universal thresholdizer ΠUT satisfies strong security (Definition 4.4).
Then, for any efficient adversary A,∣∣Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]

∣∣ = negl(λ).
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Proof. Let A be an adversary that distinguishes the experiments hyb1 and hyb2. We construct an
algorithm B that uses A to break the universal thresholdizer security of ΠUT. Interacting with a
UT challenger (Definition 4.4), algorithm B simulates each phases of the experiment as follows:

• Setup phase: At the start of the experiment, adversary A specifies a set of corrupt authorities
S ( [`] and a policy circuit φ ∈ C for the challenge ciphertext. Algorithm B samples

prf.k
r← K, (dabe.pp, dabe.msk)← DABE.Setup(1λ), and submits

(
(dabe.msk, prf.k), S

)
to the

UT challenger to receive back {sj}j∈S . It then generates (ot.crs, td) ← OT.Setup(1λ) and
provides pp = (dabe.pp, ot.crs) and {sj}j∈S to A.

• Query phase: Algorithm B simulates the responses to A’s queries as follows:

– Key queries : For each query (req, j, xj) that A makes, algorithm B parses req = {pki}i∈[`],
and extracts x′i ← OTExt(td, pki) for i ∈ [`]. Then, it computes (dabe.sk′0, {αk,0}k∈[`])←
C

(bind)
req (dabe.msk, prf.k), (dabe.sk′i,b, {αk,i}) ← C

(att)
req,i,b(dabe.msk, prf.k) for i ∈ [`], b ∈

{0, 1}, and submits the following circuits and their evaluations to the UT challenger
under index j ∈ [`]:

∗ B submits
(
C

(bind)
req , (dabe.sk′0, {αk,0}k∈[`])

)
to receive p

(bind)
0,j ,

∗ B submits
(
C

(att)
req,j,xj

, (dabe.sk′j,xj , {αk,j}k∈[0,`]\{j})
)

to receive p
(att)
j,xj ,j

,

∗ B submits
(
C

(att)
req,i,x′i

, (dabe.sk′i,x′i
, {αk,i}k∈[0,`]\{i})

)
for i ∈ [`]\{j} to receive p

(att)
i,x′i,j

for

i ∈ [`]\{j},

and also sets p
(att)
i,1−x′i,j

← ⊥ for i ∈ [`]\{j}. Algorithm B then encrypts ot.cti,j ←

OT.EncryptS(ot.crs, (p
(att)
i,0,j , p

(att)
i,1,j , ot.pkj) for all i ∈ [`]\{j} and provides skreq,j,xj = (p

(bind)
0,j ,

p
(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}) to A.

– Challenge query : For A’s challenge query (φ, µ0, µ1), algorithm B encrypts ct ←
DABE.Encrypt(dabe.pp, φ, µ0) and provides ct to A.

• Output phase: When A outputs a bit β′, algorithm B also outputs β′.

Correctness of the simulation. During the setup phase, when B submits
(
(dabe.msk, prf.k), S)

to the UT challenger, it receives back a set of shares {sj}j∈S that are either properly gener-
ated shares (s1, . . . , s`)← UT.Setup(1λ, 1`, 1d, (dabe.msk, prf.k)) or simulated shares (s1, . . . , s`)←
Sim1(1λ, 1`, 1d, S, 1|dabe.msk|+|prf.k|). Therefore, depending on whether B is interacting with a real or
ideal UT challenger, it correctly simulates the setup phase of either hyb1 or hyb2.

Let us now analyze the way algorithm B simulates the query phase. It is easy to see from
definition that algorithm B perfectly simulates the response to A’s challenger query as in hyb1

and hyb2. Therefore, let us focus on the way B simulates A’s key queries. On a key query
(req, j, xj) that A makes, algorithm B first extracts x′i ← OTExt(td, pki) for i ∈ [`] and computes

(dabe.sk′0, {αk,0}k∈[`]) ← C
(bind)
req (dabe.msk, prf.k), (dabe.sk′i,b, {αk,i}) ← C

(att)
req,i,b(dabe.msk, prf.k) for

i ∈ [`], b ∈ {0, 1}. Then, it submits the circuits (and their evaluations)

• C
(bind)
req and (dabe.sk′0, {αk,0}k∈[`]),

• C
(att)
req,j,xj

and (dabe.sk′j,xj , {αk,j}k∈[0,`]\{j}),
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• C
(att)
req,i,x′i

and (dabe.sk′i,x′i
, {αk,i}k∈[0,`]\{i})

)
for i ∈ [`]\{j}

to receive the evaluation shares p
(bind)
0,j , p

(att)
j,xj ,j

, and p
(att)
i,x′i,j

for i ∈ [`]\{j}. By definition, if B is

interacting with a real UT challenger, it receives the shares

• p
(bind)
0,j ← UT.Eval(C

(bind)
req , sj),

• p
(att)
j,xj ,j

← UT.Eval(C
(att)
req,j,xj

, sj),

• p
(att)
i,x′i,j

← UT.Eval(C
(att)
req,i,x′i

, sj) for i ∈ [`]\{j},

Hence, these evaluation shares are distributed identically as in hyb1. If B is interacting with an

ideal UT challenger, then the partial evaluations p
(bind)
0,j , p

(att)
j,xj ,j

, and {p(att)
i,x′i,j
}i∈[`]\{j} are distributed

uniformly at random in {0, 1}ρ or

• p
(bind)
0,j ← Sim2

(
C

(bind)
req , {sj}j∈[`], (dabe.sk

′
0, {αk,0}k∈[`]), {p

(bind)
0,k }k∈[`]\S

)
,

• p
(att)
j,xj ,j

← Sim2

(
C

(att)
req,j,xj

, {sj}j∈[`], (dabe.sk
′
j,xj , {αk,j}k∈[0,`]\{j}), {p

(att)
j,xj ,k

}k∈[0,`]\(S∪{j})
)
,

• p
(att)
i,x′i,j

← Sim2

(
C

(att)
req,i,x′i

, {sj}j∈[`], (dabe.sk
′
i,x′i
, {αk,i}k∈[0,`]\{i}){p

(att)
i,x′i,k
}k∈[0,`]\(S∪{i})

)
for i ∈ [`]\{j},

depending on whether it previously submitted the circuits C
(bind)
req , C

(att)
req,k,xk

, and {C(att)
req,i,x′i

}i∈[`]\{j}

for all k ∈ [`]\{j}. This is precisely the distribution of the evaluation shares that are generated

by the challenger in hyb2 by design. As algorithm B sets p
(att)
i,1−x′i,j

← ⊥ for i ∈ [`]\{j}, ot.cti,j ←

OT.EncryptS(ot.crs, (p
(att)
i,0,j , p

(att)
i,1,j ), ot.pkj) for i ∈ [`]\{j}, and skreq,j,xj = (p

(bind)
0,j , p

(att)
j,b,j , {ot.cti,j}i∈[`]\{j}),

algorithm B perfectly simulates hyb1 or hyb2 depending on whether it is interacting with the real
or the ideal UT challenger.

As B correctly simulates both the setup and query phase of either hyb1 or hyb2 to A, it can
break the security of the universal thresholdizer scheme with the same distinguishing advantage
as A. Therefore, assuming that ΠHE is a secure universal thresholdizer scheme, A’s distinguishing
advantage of hyb1 and hyb2 must be negligible. The lemma follows.

Lemma B.3. Suppose that the PRFs F0 : K × {0, 1}∗ → {0, 1}r and F1 : K × {0, 1}∗ → {0, 1}`t
satisfy security (Definition 3.6). Then, for any efficient adversary A,∣∣Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]

∣∣ = negl(λ).

Proof. The lemma follows immediately from the definition of PRF security (Definition 3.6).

Lemma B.4. Suppose that the decomposable attribute-based encryption scheme ΠDABE satisfies
security (Definition 6.4). Then, for any efficient adversary A,∣∣Pr[hyb3(A) = 1]− Pr[hyb4(A) = 1]

∣∣ = negl(λ).

Proof. Let A be an (admissible) adversary that distinguishes experiments hyb3 and hyb4. We
construct an algorithm B that uses A to break the DABE security of ΠDABE. Interacting with the
DABE challenger, algorithm B simulates each phases of experiment as follows:
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• Setup phase: At the start of the experiment, adversary A specifies a set of corrupt authorities
S ( [`] and a circuit φ ∈ C for the challenge ciphertext. Algorithm B submits φ to the decen-
tralized ABE challenger to receive back dabe.pp. Then, it samples (ot.crs, td)← OT.Setup(1λ),
and instantiates the shares (s1, . . . , s`)← Sim1(1λ, 1`, 1d, S, 1κ) where κ is the maximum bit
length of any dabe.msk and prf.k. It provides pp = (dabe.pp, ot.crs) and {sj}j∈S to A.

• Query phase: Algorithm B responds to A’s queries as follows:

– Key queries: Throughout the query phase, algorithm B maintains the following lookup
tables:

∗ The table H : {0, 1}∗ × [0, `]× [`]\S → {0, 1}ρ as specified in hyb2 (and therefore in
hyb3 and hyb4),

∗ A table H(bind) : {0, 1}∗ → {0, 1}`t that maps request strings to the output values of

C
(bind)
req as req 7→ (dabe.sk′0, {αk,0}k∈[`]),

∗ A table H(att) : {0, 1}∗ × [`]× {0, 1}`t that maps request-index pairs to the output

values of C
(att)
req,i,b as (req, i) 7→ (dabe.sk′i,x′i

, {αk,i}k∈[0,`]\{i}).

When A makes a key query (req, j, xj), algorithm B first parses req = {pki}i∈[`] and
extracts x′i ← OTExt(pki) for i ∈ [`]. Then, it simulates the evaluation shares depending
on the following conditions:

1. xj = x′j ,
2. A had previously made queries (req, i, x′i) for all i ∈ [`]\(S ∪ {j}).

If any of these conditions are not satisfied, then algorithm B sets the evaluation shares
as follows:

∗ To set p
(bind)
0,j , the challenger checks if A had previously made queries (req, k, 0) or

(req, k, 1) for each k ∈ [`]\S. If this is the case, it first looks up the mappings

(req, 0, k) 7→ p
(att)
0,k for k ∈ [`]\S in H. Then, it checks whether there exists a mapping

req 7→ (dabe.sk′0, {αk,0}k∈[`]) in H(bind). If a mapping does not exist, then it samples

(dabe.sk′0, {αk,0}k∈[`])
r← {0, 1}`t and adds the mapping req 7→ (dabe.sk′0, {αk,0}k∈[`])

to H(bind). Finally, it invokes the simulator p
(bind)
0,j ← Sim2

(
C

(bind)
req , {sj}j∈[`], (dabe.sk

′
0,

{αk,0}k∈[`]), {p
(bind)
0,k }k∈[`]

)
.

Otherwise, if A had not previously made queries (req, k, 0) or (req, k, 1) for all k ∈ [`],

then it simply samples p
(bind)
0,j

r← {0, 1}ρ and adds (req, 0, j) 7→ p
(bind)
0,j to H.

∗ To set p
(att)
j,xj ,j

, the challenger first checks if x′j = xj . If this is not the case, then it

samples p
(att)
j,xj ,j

r← {0, 1}ρ and adds (req, j, j) 7→ p
(bind)
j,xj ,j

to H.

Otherwise, if x′j = xj , then the challenger checks if A had previously made queries
(req, k, 0) or (req, k, 1) for each k ∈ [`]\{j}. If this is the case, it first looks up the

mappings (req, j, k) 7→ p
(att)
j,xj ,k

for k ∈ [`]\(S∪{i}) in H. Then, it checks whether there

exists a mapping (req, j) 7→ (dabe.sk′j,xj , {αk,j}k∈[0,`]\{j}) in H(att). If a mapping does

not exist, then it samples (dabe.sk′j,xj , {αk,j}k∈[0,`]\{j})
r← {0, 1}`t and adds the map-

ping (req, j) 7→ (dabe.sk′j,xj , {αk,j}k∈[0,`]\{j}) to H(att). Finally, it invokes the simula-

tor p
(att)
j,xj ,j

← Sim2

(
C

(att)
req,j,xj

, {sj}j∈[`], (dabe.sk
′
j,xj , {αk,j}k∈[0,`]\{j}), {p

(att)
j,xj ,k

}k∈[0,`]\{j}
)
.
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Algorithm B also addes the mapping (req, j) 7→ (dabe.sk′j,xj , {αk,j}k∈[0,`]\(S∪{j})) to

H(att).
Otherwise, if A had not previously made queries (req, k, 0) or (req, k, 1) for all

k ∈ [`]\(S ∪ {j}), then it samples p
(att)
j,xj ,j

r← {0, 1}ρ and adds (req, j, j) 7→ p
(att)
j,xj ,j

to H.

∗ To set p
(att)
i,x′i,j

the challenger proceeds for each i ∈ [`]\{j} as follows. It first checks if A
had previously made queries (req, k, 0) or (req, k, 1) for each k ∈ [`]\{i}. If this is the

case, it first looks up the mappings (req, i, k) 7→ p
(att)
i,x′i,k

for k ∈ [`]\{i} in H. Then, it

checks if there exists a mapping (req, i) 7→ (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i}) in H(att). If a

mapping does not exist, then it samples (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i})
r← {0, 1}`t and

adds (req, i) 7→ (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i}) to H(att). Finally, it invokes the simulator

p
(att)
i,x′i,j

← Sim2

(
C

(att)
req,i,x′i

, {sj}j∈[`], (dabe.sk
′
i,x′i
, {αk,i}k∈[0,`]\{i}), {p

(att)
i,x′i,k
}k∈[0,`]\(S∪{i})

)
.

Algorithm B also adds the mapping (req, i) 7→ (dabe.sk′i,x′i
, {αk,i}k∈[0,`]\{i}) to H(att).

If A had not previously made queries (req, k, 0) or (req, k, 1) for all k ∈ [`]\{i}, then

it samples p
(att)
i,x′i,j

r← {0, 1}ρ and adds (req, i, j) 7→ p
(bind)
i,x′i,j

to H.

∗ For the rest of the evaluation shares p
(att)
i,1−x′i,j

for i ∈ [`]\{j}, it sets each of them

p
(att)
i,1−x′i,j

← ⊥.

Otherwise, if xj = x′j and A had previously made queries (req, i, x′i) for all i ∈ [`], then
algorithm B submits the attribute string (x′1, . . . , x

′
`) to its DABE challenger to receive

back the key components dabe.sk0, dabe.sk1,x′1
, . . . , dabe.sk`,x′` . It then sets the evaluation

shares as follows:

∗ To set p
(bind)
0,j , the challenger looks up the mapping (req, 0, j) 7→ p

(att)
0,j in H.

∗ To set p
(att)
j,xj ,j

, the challenger first looks up the mappings req 7→ (dabe.sk′0, {αk,0}k∈[`])

in H(bind) and (req, i) 7→ (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i}) for i ∈ [`]\{j}. Then, it sets
(dabe.sk′j,xj , {αk,j}k∈[0,`]\{j}) as follows:

· dabe.sk′j,xj = dabe.skj,xj ⊕
(⊕

k∈[0,`]\{j} αj,k

)
,

· αk,j = dabe.ski,x′i ⊕ dabe.sk′i,x′i
⊕
(⊕

k∈[0,`]\{i,j} αi,k

)
for i ∈ [`].

Then, it invokes the simulator to generate the evaluation shares p
(att)
j,xj ,j

← Sim2

(
C

(att)
req,j,xj

,

{sj}j∈[`], (dabe.sk
′
j,xj , {αk,j}k∈[0,`]\{j}), {p

(att)
j,xj ,k

}k∈[0,`]\{j}
)
.

∗ To set p
(att)
i,x′i,j

for i ∈ [`]\{j}, the challenger looks up the mappings (req, i, k) 7→ p
(att)
i,x′i,k

for k ∈ [`]\{i} in H.

∗ For the rest of the evaluation shares p
(att)
i,1−x′i,j

for i ∈ [`]\{j}, it sets each of them

p
(att)
i,1−x′i,j

← ⊥.

Finally, algorithm B encrypts ot.cti,j ← OT.EncryptS(ot.crs, (p
(att)
i,0,j , p

(att)
i,1,j ), ot.pkj) for all

i ∈ [`]\{j} and provides skreq,j,xj = (p
(bind)
0,j , p

(att)
j,xj ,j

, {ot.cti,j}i∈[`]\{j}) to A.

– Challenge query : When A makes a challenge query (µ0, µ1), algorithm B submits (µ0, µ1)
to the DABE challenger and receives back ct. It relays ct to A.
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• Output phase: When A outputs a bit β′, algorithm B also outputs β′.

Correctness of the simulation. Algorithm B correctly simulates the setup phase of hyb3 and
hyb4 simply by definition. It is also easy to see that depending on whether B is interacting in
ExptΠDABE

(λ, `,A, 0) or ExptΠDABE
(λ, `,A, 1), it perfectly simulates the response to A’s challenge

query as in hyb3 or hyb4.
Therefore, the only component to verify is whether algorithm B perfectly simulates the responses

to A’s key queries. However, this also follows by construction. Namely, during the simulation,
when A makes a key query (req, j, xj), algorithm B samples the components (dabe.sk′0, {αk,0}k∈[`]),

(dabe.sk′j,xj , {αk,j}k∈[0,`]\{j}), and (dabe.sk′i,xi , {αk,i}k∈[0,`]\{i}) uniformly at random in {0, 1}`t under
the condition that

• dabe.sk0 = dabe.sk′0 ⊕
(⊕

k∈[`] α0,k

)
,

• dabe.ski,xi = dabe.sk′i,xi ⊕
(⊕

k∈[0,`]\{i} αi,k

)
for i ∈ [`].

This is exactly the way the challenger generates these components in the specification of the
experiments hyb3 and hyb4.

Finally, we must determine whether algorithm B is an admissible adversary for the DABE
security experiment. Let req = {pkj}j∈[`] be any request string that A submits as a key query
during the simulation and let x′j ← OTExt(td, pkj) for j ∈ [`]. Then, by construction, algorithm

B ever makes a key query on the attribute string (x′1, . . . , x
′
`) ∈ {0, 1}` to the DABE challenger if

and only if A submits the set of queries {(req, j, x′j)}j∈[`]\S during the simulation. Since A itself
is an admissible adversary for the MA-ABE security game, we have φ(x′1, . . . , x

′
`) = 1. Therefore,

algorithm B is also an admissible adversary for the DABE security experiment.
As B correctly simulates A’s view of the experiments hyb3 and hyb4 depending whether it is

interacting in ExptΠDABE
(λ, `,A, 0) or ExptΠDABE

(λ, `,A, 1), it can distinguish the two experiments
with the same advantage as A. Therefore, assuming that ΠDABE is a secure DABE, A’s distinguishing
advantage of hyb3 and hyb4 must be negligible. The lemma follows.

Lemma B.5. Suppose that the PRF F0 : K × {0, 1}∗ → {0, 1}r and F1 : K × {0, 1}∗ → {0, 1}`t
satisfy security (Definition 3.6). Then, for any efficient adversary A,∣∣Pr[hyb4(A) = 1]− Pr[hyb5(A) = 1]

∣∣ = negl(λ).

Proof. The proof is identical to the proof of Lemma B.3.

Lemma B.6. Suppose that the universal thresholdizer ΠUT satisfies strong security (Definition 4.4).
Then, for any efficient adversary A,∣∣Pr[hyb5(A) = 1]− Pr[hyb6(A) = 1]

∣∣ = negl(λ).

Proof. The proof is identical to the proof of Lemma B.2.

Lemma B.7. Suppose that the oblivious transfer protocol ΠOT satisfies sender security (Defini-
tion 3.16). Then, for any efficient adversary A,∣∣Pr[hyb6(A) = 1]− Pr[hyb7(A) = 1]

∣∣ = negl(λ).

Proof. The proof is identical to the proof of Lemma B.1.
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B.3 Proof of Theorem 6.9

The theorem follows from the definition of receiver privacy (Definition 3.15) in a straightforward
way. Let A be an adversary in the receiver privacy experiment (Definition 5.7). We construct an
algorithm B that uses B to break the receiver privacy of ΠOT. Algorithm B proceeds as follows:

• At the start of the experiment, algorithm B generates (dabe.pp, dabe.msk)← DABE.Setup(1λ, 1`)
and (s1, . . . , s`)← UT.Setup(1λ, 1`, 1d, dabe.msk) as in the real setup algorithm. For the com-
mon reference string ot.crs, algorithm B receives it from the OT challenger. It provides
pp = (dabe.pp, ot.crs) and {mskj = sj}j∈[`] to A.

• When A returns a pair of attribute strings x0, x1 ∈ {0, 1}`, algorithm B first parses x0 =
(x0,1, . . . , x0,`) and x1 = (x1,1, . . . , x1,`). Then, it submits (x0,j , x1,j) for all j ∈ [`] to its OT
challenger to receive back OT public keys pk1, . . . , pk`. It sets req = {ot.pkj}j∈[`] and provides
req to A.

• When A returns a bit β′, algorithm B returns the same bit β′.

It is easy to see that B’s simulation of the public parameters pp = (dabe.pp, ot.crs) and the master
secret keys {mskj = sj}j∈[`] are distributed exactly as in the real setup algorithm. When A returns

the strings x0, x1 ∈ {0, 1}`, algorithm B submits the pairs (x0,j , x1,j) to the OT challenger. By
definition, the OT challenger returns the set of public keys ot.pkj ← OT.KeyGenR(ot.crs, x0,j) or
ot.pkj ← OT.KeyGenR(ot.crs, x1,j) for j ∈ [`], which are the outputs of the real key request algorithm
KeyRequest(x0) and KeyRequest(x1) respectively.

Since B perfectly simulates the challenge reqβ ← KeyRequest(xβ) for β ∈ {0, 1}, it distinguishes
req0 and req1 with the same advantage as A. Therefore, assuming that ΠOT satisfies receiver privacy,
Construction 6.6 must also satisfy receiver privacy. The theorem follows.

C Proofs in Section 7

C.1 Proof of Theorem 7.3

Fix λ, ` ∈ N, µ ∈M, φ : {0, 1}` → {0, 1}, and x ∈ {0, 1}` for which φ(x) = 0. We must show that
for (pp,msk)← Setup(1λ, 1`),

(
sk0, {skj,b}j∈[`],b∈{0,1}

)
← KeyGen(msk), and ct← Encrypt(φ, µ), we

have
Pr
[
Decrypt(sk0, sk1,x1 , . . . , sk`,x` , ct) = µ

]
= 1− negl(λ).

Let ct =
(
a, (ai)i∈[N ], (bj)j∈[`], d, φ

)
be the ciphertext that is output by the encryption algorithm

Encrypt(φ, µ) and let skj,xj = (Cj ,Rj,xj ) for j ∈ [`] be the attribute key components that are output
by the attribute key generation algorithm KeyGen(msk). Then, since Bj ·Rj,xj = Cj + xj ·G for
j ∈ [`], we have

• a = sTA + eTA,
• ai = sT (Ai + φi ·G) + eTA,i for all i ∈ [N ],

• cj = bTj Rj,xj = sT (Cj + xj ·G) + eTC,j for all j ∈ [`],

• d = sTd + ed + bq/2e · µ,
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for some vector s ∈ Znq and a set of error vectors eA, {eA,i}, {eC,j}j∈[N ], ed with norm at most
m · B. Therefore, by the property of the algorithms (Evalpk,Evalct) of Theorem 7.1, the vector
aU ← Evalct

(
U , (φ, x),

(
(ai)i∈[N ], (cj)j∈[`]

))
satisfies

aU = sT (AU + U(φ, x) ·G) + eTU = sTAU + eTU ,

for some error vector eU ∈ Zm such that ‖eU‖ ≤ B · mO(d). By construction, the decryption
algorithm takes sk0 = u and returns 0 if and only if∣∣d− (aT ‖aTU ) · u

∣∣ =
∣∣sTd + ed + bq/2 · µe − sT (aT ‖aTU ) · u− (eTA‖eTU ) · u

∣∣
=
∣∣sTd + ed + bq/2 · µe − sTd− (eTA‖eTU ) · u

∣∣
=
∣∣bq/2 · µe+ ed − (eTA‖eTU ) · u

∣∣
≤ bq/4e.

Since |ed|, ‖eA‖ , ‖u‖ ≤ B and ‖eU‖ ≤ B ·mO(d), we have
∣∣ed − (eTA‖eTU ) · u

∣∣ ≤ B + 2B2md+2. The

correctness now follows from the fact that q > B2mO(d).

C.2 Proof of Theorem 7.4

We proceed via a sequence of hybrid experiments that are defined as follows:

• hyb0: This experiment corresponds to the security experiment ExptΠDABE
(λ, `,A, 0) in Defini-

tion 6.3. Specifically, the challenger proceeds in each phases of the experiment as follows:

– Setup phase: At the start of the experiment, the challenger receives a commitment to
a constraint function φ ∈ C from A. The challenger generates:

∗ (A,A−1)← TrapGen(1λ),

∗ Ai
r← Zn×mq for i ∈ [N ]

∗ (Bj ,B
−1
j )← TrapGen(1λ) for j ∈ [`],

∗ d← Znq ,

as in the real setup algorithm. It provides pp =
(
A, {Ai}i∈[N ], {Bj}j∈[`],d) to A.

– Query phase: The challenger responds to A’s queries as follows:

∗ Key queries: For each query x ∈ {0, 1}`, the challenger samples random matrices

C1, . . . ,C`
r← Zn×mq . Then, it uses the trapdoor B−1

1 , . . . ,B−1
` to sample short

preimages Rj,b ← Invert(Bj ,B
−1
j ,Cj + b ·G) and sets skj,b = (Cj ,Rj,b) for all j ∈ [`],

b ∈ {0, 1}. Then, the challenger computes AU ← Evalpk
(
U ,
(
(Ai)i∈[N ], (Cj)j∈[`]

))
and samples a short preimage u← SampleLeft(A,A−1,AU ,d, γ) for γ = BmO(d). It
sets sk0 = u and provides (sk0, skx1 , . . . , skx`) to A.

∗ Challenge query : For the challenge query (φ, µ0, µ1), the challenger samples a random

vector s
r← Znq , and error vectors eA ← χmB , ed ← χB. It computes the ciphertext

vectors

· a = sTA + eTA,
· ai = sT (Ai + φi ·G) + eTA · Si for i ∈ [N ],

· bj = sTBj + eTA · R̃j for j ∈ [`],
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· d = sTd + ed + bq/2e · µ0,

as in the real encryption algorithm and provides ct =
(
a0, (ai)i∈[N ], (bj)j∈[`], d, φ

)
to A.

– Output phase: At the end of the experiment, the adversaryA outputs a guess β′ ∈ {0, 1}.
The challenger echoes β′ as the output of the experiment.

• hyb1: This experiment is identical to hyb0 except for the way the challenger generates the
public matrices. Namely, we make the following modifications to challenger:

1. Setup phase: The challenger samples the matrices A uniformly at random from Zn×mq

as opposed to invoking the trapdoor generation algorithm TrapGen. Then, instead of
sampling the matrices A1, . . . ,AN

r← Zn×mq and (Bj ,B
−1
j )← TrapGen(1λ), the challenger

samples a set of uniform matrices S1, . . . ,SN
r← {0, 1}m×m, R̃1, . . . , R̃`

r← {0, 1}m×m,
and sets Ai = A · Si − φi ·G for i ∈ [N ], and Bj = A · R̃j for j ∈ [`]. The rest of the
setup phase remains unchanged.

2. Query phase: The challenger responds to A’s queries as follows:

– Key queries: For each query x ∈ {0, 1}`, the challenger samples matrices R1,x1 , . . . ,

R`,x`
r← χm×mB and sets Cj = B · Rj,xj − xj · G for j ∈ [`]. It sets skj,xj =

(Cj ,Rj,xj ). Then, the challenger takes the matrices R1,x1 , . . . ,R`,x` and computes

RU ← EvalSim
(
U , (φ, x),

(
(Ai)i∈[N ], (Bj)j∈[`]

)
,
(
(Si)i∈[N ], (R̃j · Rj)j∈[`]

))
. It then

samples u ← SampleRight(A,AU ,RU ,d, γ) for γ = BmO(d), sets sk0 = u, and
provides (sk0, skx1 , . . . , skx`) to A.

– Challenge query : The challenger responds to A’s challenge query identically as in
hyb0.

• hyb2: This experiment is identical to hyb1 except for the way the challenger generates
the challenge ciphertext. Namely, when A makes a challenge query (φ, µ0, µ1) during the

query phase of the experiment, the challenger samples uniformly random vectors a
r← Zmq ,

a1, . . . ,aN
r← Zmq , b1, . . . ,b`

r← Zmq , d
r← Zq, and provides ct =

(
a, (ai)i∈[N ], (bj)j∈[`], d, φ) to

A.

• hyb3: Starting from this experiment, we “revert” back the changes that we made in the
previous hybrids. This experiment is identical to hyb2 except for the way the challenge
ciphertext. When A makes a challenge query (φ, µ0, µ1) during the query phase of the

experiment, the challenger samples a random vector s
r← Znq , and error vectors eA ← χmB ,

ed ← χB. It computes the ciphertext vectors

– a = sTA + eTA,
– ai = sT (Ai + φi ·G) + eTA · Si for i ∈ [N ],

– bj = sTBj + eTA · R̃j for j ∈ [`],
– d = sTd+ ed + bq/2e · µ1,

and provides ct =
(
a, (ai)i∈[N ], (bj)j∈[`], d, φ

)
to A.

• hyb4: This experiment is defined identically to hyb0 except for the way the challenger
generates the challenge ciphertext. Namely, instead of encrypting the message µ0, the challenger
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encrypts µ1. This experiment corresponds to the security experiment ExptΠDABE
(λ, `,A, 1) in

Definition 6.3.

We now show that each consecutive hybrid experiments are indistinguishable to an adversary. Below,
we write hyb(A) to denote the random variable that represents the output of experiment hyb with
respect to an adversary A.

Lemma C.1. Suppose that m = Ω(n log q). Then, for any (unbounded) adversary A,∣∣Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]
∣∣ = negl(λ).

Proof. Let A be any distinguisher for hyb0 and hyb1. We show that A’s views of hyb0 and hyb1

for each phases of the protocol is statistically indistinguishable.

• Setup phase: We show that each components of the public parameters pp in the two
experiments are statistically indistinguishable.

– In hyb0, the challenger generates the matrix A from the trapdoor generation algorithm
(A,A−1)← TrapGen(1λ) while in hyb1, the challenger generates the matrix A′

r← Zn×mq .
By the property of TrapGen (Theorem 3.4), the matrices A and A′ are statistically
indistinguishable.

– In hyb0, the challenger samples the matrices A1, . . . ,AN
r← Zn×mq uniformly at random.

In hyb1, the challenger samples a set of matrices S1, . . . ,SN
r← {0, 1}m×m and sets the

matrices A′i = A · Si − φ ·G. By the leftover hash lemma (Theorem 3.1), the matrices
A · Si for i ∈ [`] are statistically indistinguishable from uniformly random matrices
in Zn×mq . Therefore, the matrices A1, . . . ,AN in hyb0 and A′1, . . . ,A

′
N in hyb1 are

statistically indistinguishable.

– In hyb0, the challenger samples the matrices B1, . . . ,B`
r← Zn×mq uniformly at random.

In hyb1, the challenger samples a set of matrices R̃1, . . . , R̃`
r← {0, 1}m×m and sets the

matrices B′j = A · R̃j for j ∈ [`]. By the leftover hash lemma (Lemma 3.1), the matrices
B1, . . . ,B` in hyb0 and B′1, . . . ,B

′
` in hyb1 are statistically indistinguishable.

– The rest of the public parameters pp are generated identically by construction.

• Query phase: By construction, the challenge ciphertext is generated identically in the two
experiment. We show that B’s responses to A’s key queries are statistically indistinguishable.
Let x ∈ {0, 1}` be a key query made by A:

– Attribute components: In hyb0, the challenger samples random matrices C1, . . . ,C`
r←

Zn×mq . Then, it samples preimages Rj,xj ← Invert(Bj ,B
−1
j ,Cj + xj · G), and sets

skj,xj = (Cj ,Rj,xj ).

In hyb1, the challenger samples random matrices R′1, . . . ,R
′
`

r← χm×mB , and sets C′j =
B′j ·R′j − xj ·G. It sets skj,xj = (C′j ,R

′
j,xj

). By the property of the trapdoor generation

algorithm (Theorem 3.4) and the leftover hash lemma (Lemma 3.1), the matrices (Cj ,Rj)
in hyb0 and (C′j ,R

′
j) in hyb1 are statistically indistinguishable.

– Binding components: In hyb0, the challenger evaluates AU ← Evalpk
(
U ,
(
(Ai)i∈[N ],

(Cj)j∈[`]

))
, and samples a preimage u← SampleLeft(A,A−1,AU ,d, γ). It sets sk0 = u.

55



In hyb1, the challenger evaluates R′U ← EvalSim
(
U , (φ, x),

(
(A′i)i∈[N ], (B

′
j)j∈[`]

)
,
(
(S′i)i∈[N ],

(R̃′j · R′j)j∈[`]

))
. It then samples a preimage u′ ← SampleRight(A′,A′U ,R

′
U ,d

′, γ) for

γ = BmO(d), and provides u to A. By the property of EvalSim (Theorem 7.1), we have
‖R′U‖ ≤ BmO(d). Furthermore, by the admissibility condition of A, the matrix R′U
satisfies A ·R′U −U(φ, x) ·G = A ·R′U −G. Therefore, by the property of the SampleLeft
and SampleRight algorithms (Theorem 3.5), the vectors u in hyb1 and u′ in hyb2 are
statistically indistinguishable.

• Output phase: The two experiments hyb0 and hyb1 are identical by definition.

We have shown that A’s view of the experiments hyb0 and hyb1 are statistically indistinguishable
for each phases of the experiment. It follows that any (unbounded) adversary A can distinguish the
experiments hyb0 and hyb1 with at most negligible advantage.

Lemma C.2. Suppose that the LWEn,m+1,q,χB problem is hard. Then, for any efficient adversary A,∣∣Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]
∣∣ = negl(λ).

Proof. Let A be an adversary that distinguishes hyb1 and hyb2. We construct an algorithm B that
uses A to solve the LWEn,m+1,q,χB problem. Algorithm B simulates the view of A as follows:

• Setup phase: In the beginning of the experiment, algorithm B receives a commitment to a
constraint function φ from A. It then recieves LWEn,m+1,q,χB challenge vectors

– (A,a) ∈ Zn×mq × Zmq ,

– (d, d̂) ∈ Znq × Zq,

and uses the matrix A to generate the rest of the public parameters as specified in the
experiments hyb1 and hyb2. Namely, it sets

– Ai = A · Si − φi ·G for i ∈ [N ] where Si
r← {0, 1}m×m.

– Bj = A · R̃j for j ∈ [`] where R̃j
r← {0, 1}m×m.

It provides pp =
(
A, (Ai)i∈[N ], (Bj)j∈[`],d

)
and provides pp to A.

• Query phase: Algorithm B responds to A’s key queries according to the specifications of
hyb1 and hyb2 (which are identical). For the challenge query (φ, µ0, µ1), it defines the vectors

– aTi = aT · Si for i ∈ [N ],

– bTj = aT · R̃j for j ∈ [`].

– d = d̂+ bq/2e · µ0.

It sets the ciphertext ct =
(
a, (ai)i∈[N ], (bj)j∈[`], d

)
and provides ct to A.

• Output phase: When A outputs a bit β′ ∈ {0, 1}, algorithm B also outputs β′.

We now show that depending on whether B receives real LWEn,m+1,q,χB samples or uniformly random
samples, it perfectly simulates either hyb1 or hyb2 for A.

• By definition, the matrix A ∈ Zn×mq and vector d ∈ Znq are uniformly random. Therefore,
algorithm B perfectly simulates the public parameters pp for hyb1 and hyb2.
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• Algorithm B perfectly simulates the responses for the key generation queries for hyb1 and
hyb2 simply by definition.

• Now, consider the challenge query that is generated by B.

– If ( a ‖ d̂ ) = ( sTA + eTA ‖ sTd + ed ) ∈ Zm+1
q for some secret vector s ∈ Znq and error

vectors eA, ed
r← χm+1

B , then we have

∗ aTi = aT · Si = sTA · Si + eTA · Si = sT (Ai + φi ·G) + eTA · Si for i ∈ [N ],

∗ bTj = aT · R̃j = sTA · R̃j + eTA · R̃j = sTBj + eTA · R̃j for j ∈ [`],

∗ d = d̂+ bq/2e · µ0 = sTd + ed + bq/2e · µ0.

Therefore, the ciphertext ct =
(
a, (ai)i∈[N ], (bj)j∈[`], d

)
is distributed exactly as in hyb1.

– If ( a ‖ d̂ )
r← Zm+1

q , then the components

∗ aTi = aTSi for i ∈ [N ],

∗ bTj = aT R̃j for j ∈ [N ],

∗ d = d̂+ bq/2e · µ0,

are all uniform by the leftover hash lemma (Lemma 3.1). Therefore, the ciphertext
ct =

(
a, (ai)i∈[N ], (bj)j∈[`], d

)
is distributed as in hyb3.

We have shown that depending on whether B receives real LWEn,m+1,q,χB samples or uniformly
random samples, it perfectly simulates A’s views of either hyb1 and hyb2. This means that with
the same distinguishing advantage of A, algorithm B solves the LWEn,m+1,q,χB problem. Therefore,
assuming that the LWEn,m+1,q,χB problem is hard, A’s distinguishing advantage of the experiments
hyb1 and hyb2 is negligible. The lemma follows.

Lemma C.3. Suppose that the LWEn,m+1,q,χB problem is hard. Then, for any efficient adversary A,∣∣Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]
∣∣ = negl(λ).

Proof. The proof is identical to the proof of Lemma C.2

Lemma C.4. Suppose that m = Ω(n log q). Then, for any (unbounded) adversary A,∣∣Pr[hyb3(A) = 1]− Pr[hyb4(A) = 1]
∣∣ = negl(λ).

Proof. The proof is identical to the proof of Lemma C.1.
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