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ABSTRACT
Recently, the NIST launched a competition for lightweight cryptog-

raphy and a large number of ciphers are expected to be studied and

analyzed under this competition. Apart from the classical security,

the candidates are desired to be analyzed against physical attacks.

Differential Fault Analysis (DFA) is an invasive physical attack

method for recovering key information from cipher implementa-

tions. Up to date, almost all the block ciphers have been shown to

be vulnerable against DFA, while following similar attack patterns.

However, so far researchers mostly focused on particular ciphers

rather than cipher families, resulting in works that reuse the same

idea for different ciphers.

In this article, we aim at bridging this gap, by providing a generic

DFA attack method targeting Substitution-Permutation Network

(SPN) based families of symmetric block ciphers. We provide the

overview of the state-of-the-art of the fault attacks on SPNs, fol-

lowed by generalized conditions that hold on all the ciphers of

this design family. We show that for any SPN, as long as the

fault mask injected before a non-linear layer in the last round

follows a non-uniform distribution, the key search space can al-

ways be reduced. This shows that it is not possible to design an

SPN-based cipher that is completely secure against DFA, without

randomization. Furthermore, we propose a novel approach to find

good fault masks that can leak the key with a small number of

instances. We then developed a tool, called Joint Difference Distri-
bution Table (JDDT) for pre-computing the solutions for the fault

equations, which allows us to recover the last round key with a

very small number of pairs of faulty and non-faulty ciphertexts.

We evaluate our methodology on various block ciphers, including

PRESENT-80, PRESENT-128, GIFT-64, GIFT-128, AES-128, LED-64,
LED-128, SKINNY-64-64, SKINNY-128-128, PRIDE and PRINCE. The
developed technique would allow automated DFA analysis of sev-

eral candidates in the NIST competition.
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1 INTRODUCTION
Substitution-Permutation Network (SPN) is a fundamental design

strategy for block ciphers, with many primitives using SPN either

for a part of their design or as the main design concept. An SPN

consists of one or more (usually many) iterations of the following

three operations:

(1) Substitution (confusion): The state of the network is divided

into words and a non-linear substitution is applied to each

of them. The substitution function can be the same for all of

them, or different functions can be used for different words.

(2) Permutation (diffusion): A state-wise permutation is applied.

This step is responsible for propagating the information

between the internal state words as fast as possible.

(3) Key mixing: A secret key is mixed with the state, usually

using an XOR operation.

The maximum security level possible for a block cipher is mea-

sured by its resistance against brute force attacks, hence by the

bit-size of the master key used to generate the round keys. However,

there are many cryptanalytic techniques that try to push this bound-

ary, by studying the specific properties of the building blocks of

the cipher. Most of these techniques fall into one of two categories:

(1) Linear Cryptanalysis: the attacker tries to approximate the

cipher as a group of linear equations between the input,

output and key bits, with high probability.

(2) Differential Cryptanalysis: the attacker tries to leak informa-

tion about the key bits by observing the differences between

different input/output pairs.

Over the years, many design techniques and studies have been es-

tablished in order to build ciphers that are secure against these two

types of attacks. The idea in case of SPN is that the substitution layer

provides highly non-linear relations between bits of internal words,

with low maximum difference probability, while the permutation

layer mixes these relations together, increasing the complexity. By



repeating these two operations many times (rounds), mixing with

(random) key bits in every iteration, the plaintext/ciphertext pair

should be practically indistinguishable from two uniformly random

vectors. However, if the number of iterations is not enough, the

previous statement cannot be true. Thus, usually cryptanalysts start

by analyzing reduced-round versions of the SPNs in question, while

the cipher designers try to increase the number of rounds beyond

the maximum number of rounds with non-ideal properties.

Surprisingly, the reduced-round properties of SPNs have been

useful beyond the theoretical analysis and/or defining the minimum

required number of rounds for a cipher. With the emergence of

fault attacks as a rising domain in the field of hardware security,

the attacker can change some of the internal bits of the cipher in

the last few rounds and use the properties of only these rounds to

leak information about the key. For example, there are practical

fault attacks against AES that use the differential properties of 1,

2, 3 or 4 rounds, while classical attacks require the properties of

10 full rounds. However, in case of fault analysis such as Differ-

ential Fault Analysis (DFA), the attacks generally either rely on

heuristic analysis, empirical data or on general ideas that do not

take the specifics of the cipher into consideration. Similarly, the

countermeasures for these attacks are generally either at the imple-

mentation level [20, 24, 25, 31] or at the the protocol/encryption

mode level [4, 14, 15, 29].

The systemization of DFA on SPNs started by the work of Piret

and Quisquater [32], where they proposed a somewhat general

DFA analysis of AES-like ciphers. Although their attack has been

enhanced in several subsequent works, it was still exclusive to

AES-like ciphers. Besides, the complexity of the attack is high and

the complexity analysis is approximate (Section 2). Moreover, the

attack did not discuss how to identify the optimal faults thoroughly.

On the other hand, in [36], the authors provided a discussion on the

optimality of different DFA attacks, which we revisit in our paper

and identify the advantages and shortcomings of their approach.

Hence, we identified a need for the systemization of DFA attacks on

SPNs, in order to have a general methodology for analyzing SPNs,

as opposed to analyzing each cipher independently. This helps not

only to study and compare the available SPNs in literature, but to

analyze future SPNs, as well.

The goal of this paper is to understandwhy different SPNs behave

differently against DFA, and what properties make an SPN stronger

or weaker in this context, achieving a better understanding of how

the two layers of an SPN interact with each other in the context

of DFA. We study some of the available DFA attacks against SPNs,

identifying the weak points of the SPN design strategy against DFA.

We also find general vulnerabilities of SPNs against these attacks,

enabling us to find new attacks against modern SPN ciphers. The

main idea is to find a new approach to identify a good location for

fault injection and quantify the corresponding expected amount

of information leakage. For most SPNs, the attack of choice is a

single-word fault injected in round r − 2 for an SPN with r rounds,
using a 2-round distinguisher. We identify what are the weaknesses

that are common for all SPN ciphers and what are the differences

between them. In the process, we also propose a method for ef-

ficiently performing the attacks using a Time-Memory trade-off,

which allows to pre-compute a big part of the analysis, with the

ability to reuse it for any attack instance. We believe the proposed

methodology will serve as a useful tool in analyzing a plethora of ci-

phers expected to be submitted for NIST lightweight cryptography

competition.

Our Contributions.
(1) We revisit the information theoretic approach from [36],

providing new insights on how the differential properties

of the function attacked and the fault distribution affect the

information leakage, showing that, for any deterministic non-
linear bijective function of the form S (x ) ⊕K , where x and K
are unknown, the entropy ofK can be reduced by calculating

S (x ⊕∆x ) ⊕K , as long as ∆x is non-uniform. Hence, we show
that it is not possible to design an SPN-based cipher that is
inherently secure against DFA (Sections 3 and 4).

(2) We formalize the complexity of retrieving the master key

by injecting a fault into the last round of an SPN. Next, we

propose an approach to accelerate such attack by reducing

the number of faults andmaximizing the information leakage

per fault (Section 4).

(3) Once a good fault location is identified, we propose a new

tool for pre-computing the solutions of the fault equations,

called the Joint Difference Distribution Table (JDDT), based
on the fault model, and the properties of the substitution

and permutation layers (Section 4.2).

(4) We describe a class of SPNs that share a similar 2-round

distinguisher and provide a new method to analyze the dif-

ferential properties of related attack and use it to find key

candidates for the last round key by observing a single pair

of faulty and non-faulty ciphertexts (Section 5). We vali-

date this analysis on modern ciphers, such as PRESENT-80,
PRESENT-128, GIFT-64, GIFT-128, AES-128, SKINNY-64-64,
SKINNY-128-128, PRINCE, LED-64 and LED-128 (Section 6).

We report three different kinds of results:

M Match optimal results of well-studied ciphers, like AES
O Find optimal attacks for less studied ciphers, superseding

previous known best attacks like PRESENT, LED, PRIDE
N Find new attacks on recently proposed ciphers with no (or

little) public fault analysis like SKINNY, GIFT
(5) We discuss some general intuitions or good practices which

can help cipher designers to improve security of their cipher

against DFA.

Table 1 shows the ciphers analyzed in this paper using our tech-

nique, which is also illustrated in Figure 1. It shows that some of

the lightweight ciphers are harder to break. However, none of these

ciphers can be considered secure, since the key can be uniquely

identified using at most 12 faulty and non-faulty ciphertext pairs.

2 BACKGROUND
Differential Fault Analysis (DFA) is the oldest and most popular

fault analysis method targeting symmetric cryptography. Since its

inception in 1997 [7], almost all the symmetric block ciphers have

been shown vulnerable against it.

The working principle of DFA is as follows. The attacker first

runs an encryption procedure on plaintext P with a secret key K
without disturbing the computation. Then, she repeats the encryp-

tion with the same inputs, but injects a fault, normally during the

last few rounds of the cipher. She compares the faulty ciphertext

2



Table 1: Comparison between the different ciphers analyzed by our analysis technique. The location of the fault is considered
to be known. N denotes new results, O denotes optimal results compared to previous results.

Remaining Brute-force Complexity

Cipher Fault Model Implementation 1 pair 2 pairs 3 pairs 4 pairs 16 pairs Attack Type

AES-128 Random Byte Any 2
8.06

1 1 1 1 M[38]

AES-128 1-Bit Flip Any 2
0.15

1 1 1 1 O

LED-64 Random Nibble Any 2
10.4

1 1 1 1 M[23]

LED-64 1-Bit Flip Any 2
9.5

1 1 1 1 O

LED-128 Random Nibble Any 2
74.4

2
20.8

2
10.4

1 1 M[23]

LED-128 1-Bit Flip Any 2
73.5

2
19

2
9.5

1 1 O

PRESENT-80 4-Bit Flip Any 2
41

2
2

1 1 1 O

PRESENT-80 Random Nibble Bit-Sliced 2
41

2
2

1 1 1 O

PRESENT-128 4-Bit Flip Any 2
95

2
67

2
34

2
6

1 O

GIFT-64 4-Bit Flip Any 2
111.175

2
100.2

2
86.3

2
72.4

1 N

GIFT-128 4-Bit Flip Any 2
111.175

2
100.2

2
86.3

2
72.4

1 N

PRIDE 4-Bit Flip Any 2
104.6

2
87.2

2
72.4

2
64

1 O

SKINNY-64-64 Random Nibble Any 2
51

2
40.4

2
34.8

2
5.6

1 M[40]

SKINNY-128-128 Random Byte Any 2
102.4

2
81.28

2
69.76

2
11.52

1 M [40]

PRINCE Random Nibble Any 2
93.2

2
48

2
13.2

1 1 M[37]

PRINCE 4-Bit Flip Any 2
84.16

2
48

2
4.16

1 1 O

Other Differential Fault Analyses in Literature

PRESENT-80 [9] 16-bit Flip Any 2
40

2
16

2
6

1 1

PRESENT-80 [30] 1-bit Flip + Side Channel Any 2
80

2
76

2
66

2
64

1

PRIDE [26] 16-bit Flip Any 2
86.4

2
64

2
22.4

1 1
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AES-128 Random Byte AES-128 1-Bit Flip
LED-64 Random Nibble LED-64 1-Bit Flip
LED-128 Random Byte LED-128 1-Bit Flip
PRESENT-80 4-Bit Flip PRESENT-80 Random Nibble
PRESENT-128 4-Bit Flip GIFT-64 4-Bit Flip
GIFT-128 4-Bit Flip SKINNY-64-64 Random Nibble

SKINNY-128-128 Random Byte PRIDE 4-Bit Flip
PRINCE Random Nibble PRINCE 4-Bit Flip

Figure 1: The number of remaining key candidates vs. the
number of faulty and non-faulty ciphertext pairs for the ci-
phers in Table 1

with the correct one and gets information about one of the round

keys. Depending on attacker model and the cipher structure, she re-

peats the fault injection several times until the guessing complexity

of the key is low enough to get K .
The trend in analyzing block ciphers with DFA usually follows

the same pattern for different encryption algorithms – first, an

intuitive approach appears, requiring more faults but lower brute-

force complexity. Later, researchers tend to develop more sophisti-

cated techniques that can reveal the secret key with either single

or very low number of faults, while increasing the complexity of

the analysis step. As an example, one can take DFA on AES, that

improved from the early approaches requiring 35-250 faulty encryp-

tions [16, 17], to more recent one that needs just a single fault [38].

Similarly, first DFA of PRESENT required 65 faults [41], later de-

creased to 2 [13].

A complementary approach to this is automated analysis that is

focusing either on DFA [11] or Algebraic Fault Analysis (AFA) [43].

Related work about DFA on SPNs. The work presented in our

paper is closely related and inspired by the work of Piret and

Quisquater [32], which was later extended and optimized by Tun-

stall et al. [38]. In this paper, we extend this line of work in three

directions:

(1) Instead of performing an approximate analysis of the attack

complexity, assuming ideal primitives (Sbox and diffusion

layers), we incorporate the details of the cipher in question

into the analysis. While this leads to similar results in case of

AES, since the Sbox of AES is well designed (almost ideal) and

the diffusion layer uses an MDS matrix, the results concern-

ing lightweight ciphers are different, due to the non-ideal

primitives used. This analysis enables us to compare ciphers

with respect to DFA security, beyond the simple bit secu-

rity, showing that SPN ciphers with the same block and key

sizes are not necessarily the same when it comes to security

against DFA.

(2) The analysis from [32] was targeting AES-like SPNs. We

extend our analysis to a wider class of SPNs to include also

bit-permutation based ciphers, such as PRESENT and GIFT,
and SPNs with a diffusion layer that depends on an almost-

MDS matrix, such as SKINNY.
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(3) We provide a framework for efficiently implementing the

computational part of the attack, showing that a huge part

of the attack can be pre-computed only once per cipher and

reused to attack as many instances as required, as opposed

to the random search approach used in previous works.

Multiple-Fault Attacks on SPN.While the definition of whether

a fault is considered a single fault or multiple fault is vague and

generally implementation-dependent, it is usually the case that

a single fault is either a single-bit fault or a fault that is limited

to b bits, which is the input size of 1 Sbox. In our analysis, we

consider any fault distribution over more thanb bits to be a multiple

fault attack and out of the scope of our paper. However, recently a

similar analysis to ours has been presented by Lac et al. [27] which

discusses a multiple-fault model. Their analysis was described for

the LS family of block ciphers, then extended to AES-like cipher, e.g.
AES and LED. The idea of their analysis is to accelerate the attack

in Section 4 by injecting a multiple-word fault to the input of the

diffusion layer in the second last round, such that all the Sboxes in

the last round are active, with known input differences. However,

the multiple-word known fault model is less practical compared to

our work and is not suitable for some implementations. Moreover,

in [27] only a special class of Sboxes was considered. Hence, in

Section 5, we propose a single fault DFA for a wide class of SPNs.

Multiple-fault attacks were also used to attack PRESENT [9] and

PRIDE [26], with each of these attacks requiring to flip 16 bits

simultaneously.

Definitions.
Throughout this paper, we use some definitions for fault models

that are listed below:

• Single fault: a fault whose maximum width is ≤ b, where b
is the number of input bits to the Sbox used in the cipher in

question.

• Uniform/Random fault: a fault that can have any value be-

tween 1 and 2
b − 1, where all the values are equiprobable.

• Constant/Known fault: a fault that has a specific value de-

fined by the attacker.

For all the faults used in this paper, the location and timing of

the faults are assumed to be known to the attacker. In practice, if

the attacker is uncertain about the timing or location of the fault,

he needs to repeat the analysis for every possibility.

Practical Fault Models. Three fault models are used throughout

this paper:

(1) Random fault model: A random byte/nibble is added to an

internal byte/nibble of the cipher. This is the most practical

fault model used in this paper and it has been used in several

practical attacks [23, 37, 38].

(2) Single bit flip: A specific internal bit of the cipher is flipped.

In practice, it is more complex than the random fault, but it

has been shown to be practical in several papers/attacks [1,

3, 21, 39].

(3) Four-bit flip: 4 adjacent internal bits are flipped together.

While this requirement can be challenging, it was shown

in [9] that such fault is practically possible. Moreover, there

are a few tricks the attacker can use to get around this re-

quirement. In Section B.1.2, we show some tricks that work

around the requirements of this model, showing that for

Table 2: Notation used in the rest of the paper.

Xi input to the function S (x ) at a certain invocation

Yi output of the function S (x ) at a certain invocation

K secret key

Zi Yi ⊕ K
∆X X1 ⊕ X2

∆Y Y1 ⊕ Y2
∆Z Z1 ⊕ Z2

some implementations, the attacker can achieve the required

fault with only a random fault injection. The idea is that

with some knowledge on the nature of the implementation,

the attacker can use a random fault that can only lead to the

required fault value.

3 INFORMATION THEORETIC DFA MODEL:
TOWARDS A THEORETICAL SECURITY
METRIC FOR DFA

In an effort to find a theoretical metric for studying the security of

ciphers against DFA, the authors of [36] introduced an information

theoretic approach for evaluating whether a DFA is optimal or not.

Given a fault model at the input of a function S (x ) + k , the authors
provided an information theoretic equation that can be used to

calculate the maximum amount of information leakage under that

fault model. First, we present the equation and then we present

some results based on that equation, which contradicts with one of

the inferential conclusions the authors made, due to the ambiguity

of the mathematical definition of the fault model in the original

paper.

Notation. Xi ,Yi ,Zi ,K ,∆X ,∆Y and ∆Z are random variables de-

fined in Table 2.

H (K |Z1Z2) = H (∆X |∆Y ) + H (X1 |∆X∆Y ) (1)

Equation 1 can be used to calculate the entropy of the Secret Key,

knowing a single pair of faulty and correct ciphertexts [36] (or,

generally, any pair of ciphertexts). The first thing to notice is that

∆Y = ∆Z = Z1 ⊕ Z2, which is public. However, the equation does

not show how to calculate X1 and ∆X . These two variables implic-

itly hold the information about the function S (x ) and the assump-

tion about the fault model. Assuming a uniform fault model and no

knowledge about S (x ), it is straightforward to deduce that no infor-
mation about the key is leaked and hence H (K |Z1Z2) = n. In [36],

the authors also calculate the entropy of the key HAES (K |Z1Z2)
assuming a uniform fault model and analyze the AES Sbox. Since
HAES (K |Z1Z2) = n, the authors infer that AES Sbox is a good cryp-

tographic function. While we are not challenging this conclusion,

we can show that this analysis is not conclusive, as this result is

achieved due to the uniformity of the fault model and not because

of the properties of the AES Sbox. In addition, we show that it is
not possible to design any SPN that is inherently secure against DFA
without randomization, where the target security level is considered to
be at least the brute force complexity of searching for x , i.e. O (2 |x | ).

First, we define s∆x,∆y as the number of solutions of Equation 2.

Hence, H (X1 |∆X = ∆x ,∆Y = ∆y) = loд(s∆x,∆y ). Additionally,

since S (x ) is a bijective function, Pr (∆X = ∆x ,∆Y = ∆y) =
s∆x,∆y
2
n .

Finally, Pr (∆X = ∆x |∆Y = ∆y) = Pr (∆X = ∆x ,∆Y = ∆y), since
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∆Y is public and Pr (∆Y ) = 1.

S (x ) ⊕ S (x ⊕ ∆x ) = ∆y (2)

Theorem D.1 is used to find the amount of information leakage

when the input difference follows a known distribution. The proofs

of required for this section are available in Appendix D.

Theorem 3.1. If ∆X is sampled from S, such that |S| = z and
P (∆X ) = px .then the expected number of leaked bits of K , when ∆Y
is observed is

n −
∑

∆X ∈S

px s∆x,∆y∑
∆X j ∈S s∆x j ,∆ypx j

loд(

∑
∆X j ∈S s∆x j ,∆ypx j

px
) (3)

Corollary 3.2. Given a pair of faulty and correct ciphertexts
Z1 and Z2, if ∆X ∈ {0, 1}n is a uniform random variable, then
H (K |Z1Z2) = n, regardless of the properties of the function S (x ).

From Corollary D.2, we can see that if the fault model is unbiased

and unrestricted, the key space is not reduced, regardless of the

cryptographic properties of S (x ). Hence, any fault model used in

DFA must be non-uniform, with respect to S (x ).

Corollary 3.3. If ∆X = ∆x (constant), then using one pair
(Z1,Z2), the key space can be reduced from 2

n to s∆x,∆y .

Corollary 3.4. Only linear (affine) Boolean functions achieves
the theoretical security bound H (K |Z1Z2) = n∀∆x , regardless of the
distribution of ∆X .

Despite that linear/affine functions achieve the required bound

in terms of differential cryptanalysis, they are not helpful as they

can be analyzed using linear cryptanalysis. For example, a function

that looks like z = L(x )+k , where L(x ) is affine and z is known, can
be analyzed as L−1 (z) = x + L−1 (k ) and the cipher is then attacked

neglecting this function, with the target to find L−1 (k ) instead of k ,
since we can easily derive one from the other. Theorem D.5 can be

used to compare the quality of different fault values and to design

attacks that maximize the information leakage.

Theorem 3.5. If ∆X = ∆x (constant), then the expected number of
leaked bits ofK is n−

∑
∆y∈{0,1}n loд(s∆x,∆y )P (∆Y = ∆y |∆X = ∆x ).

4 DFA AGAINST THE LAST ROUND OF SPN
Theorem D.3 and Corollary D.4 can be used to provide a generic

attack against any Substitution-Permutation-Network (SPN) that

follows the description in Section 1. An important observation is

that any linear function at the end of the last round can be effectively

neglected. In other words, if the last step of the SPN is of the form

C = L(x ) ⊕ Kr , where L(x ) is a linear function and Kr is the last

round key, it can be converted into L−1 (C ) = x ⊕ L−1 (Kr ) and
attack the cipher for the effective key Kef f = L−1 (Kr ). Then, the
real key is calculated as Kr = L(Kef f ). Hence, in the generic attack

we consider this a standard step of no additional cost.

Using this structure, the space of last round key Kr of any SPN

can be reduced using the following procedure.We assume the cipher

has w words per state and the state size is n. Each word has size

b = n
w .

(1) For each substitution function in the last round, the Differ-

enceDistribution Table (DDT) is calculated and theminimum

entry value is located. An input difference with such value

in the corresponding row is selected for each function.

(2) If the cipher includes a linear function L(x ) before the ad-
dition of Kr , we concatenate the function L−1 to the cipher,

such that the output is L−1 (C ).
(3) Iteratively, we inject a fault by flipping the bits of one word

according to the corresponding input difference. By observ-

ing the output difference and applying Theorem D.3, the

space of the last round key Kef f bits XORed with this word

is reduced to s∆x,∆y , which is the number of solutions of the

DDT for the input/output difference pair (∆x ,∆y).
(4) By repeating this for every word, the overall space of Kef f

is reduced from 2
n
to

∏w−1
i=0 swi

∆x,∆y , where swi
∆x,∆y is the

number of solutions for wordwi of the last round, based on

the corresponding input/output difference pair. The number

of faults is equal tow .

For widely used ciphers, such as AES, LED, PRESENT and GIFT,
the value of s∆x,∆y = 2 for most of the possible input/output dif-

ference pairs, and w = 16. Hence, they require at most 16 faults

and the resulting space for the last round key is 2
16
. This is the

simplest DFA attack against SPN. However, depending on the un-

derlying cipher, optimizations can be found. For example, for the

4 mentioned ciphers, we can double the number of faults by re-

peating the fault injection operation for every word. While every

DFA gives 2 candidates for a key word, the overlap between these

candidates is the right key word, i.e. we get the actual key value.

Another optimization is to use more sophisticated/smart fault in-

jection mechanism to trigger many words simultaneously [9, 35].

However, we think that these optimizations are cipher-dependent

and still follow the outline of the generic attack. Another aspect

that is cipher dependent is the relation between the last round

key Kr and the master key. If the master key cannot be uniquely

determined from the last round key, the attacker can brute force

the undetermined bits, which means that the number of candidates

of the master key is the number of candidates for the last round

key multiplied by the exponent of difference between the sizes of

the two keys, 2
|Km |− |Kr |

, where, Km is the master key and |X | is
the bit length of X . Another solution, is to use the last round key

candidates to decrypt the last round and use the same DFA attack to

get candidates for the second-to-last round keys and try to compute

the master key using the two sets of candidates, this can be repeated

until enough round keys are obtained.

Since this is a generic attack, we can characterize the cipher by

2
|Km |− |Kr | ·min(

∏n−1
i=0 swi

xy ) = 2
|Km |− |Kr | ·

∏w
−
1

i=0min(∆x,∆y ) (s
wi
xy ).

This shows the complexity of retrieving the master key using an

instantiation of the attack.

4.1 Reduction of the number of faults
In this section, we describe a framework for accelerating the key

recovery using lesser number of faults than what is described in

Section 4. The goal of the attacker is to recover the key with the

minimum number of faults possible, while keeping the differential

analysis simple. For example, injecting the difference in the input

block will maximize the number of active Sboxes, but the analysis

of the faulty ciphertexts requires the full differential cryptanalysis

of the cipher to be feasible, which contradicts the security of the

cipher. In order to achieve that, he has to trigger more than one Sbox

at once, while trying to maintain that the difference propagation
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remains simple. While it is hard to find the exact minimum number

of faults required, we describe a heuristic approach to approximate

this minimum value. First, we define two properties of the Sboxes

involved in the SPN.

Definition 4.1. Interacting Sboxes two Sboxes are interacting if

the outputs of these two Sboxes are combined together in the Linear

Diffusion Layer.

Definition 4.2. Active Sbox is an Sbox for which the input dif-

ference is not equal to 0 when a certain fault is injected in the

SPN.

The goal of the attacker is to find the fault value/location that

maximizes the number of active Sboxes while keeping the number

of interacting Sboxes minimal. For example, for an attacker who

can inject a known-byte fault at the input/output of any of the

Sboxes of AES, his goal to maximize the number of active Sboxes in

the final few rounds, while the number of interacting Sboxes has

to be 0.

4.1.1 Example 1: Application to LS SPNs. The LS family of SPNs

was proposed by Grosso et al. in 2014 [18]. The target of this family

is to be able to have very efficient bit-sliced implementations. One

round of the cipher is described as follows: a block of n ×m bits is

organized into an array:



b0
0

b0
1

· · · b0m−1
b1
0

b1
1

· · · b1m−1
. . · · · .

. . · · · .

. . · · · .

bn−1
0

bn−1
1

· · · bn−1m−1



(4)

Then, a non-linear substitution operation is performed on each

column using an n-bit Sbox, followed by a linear diffusion operation
applied on each row, using an m-bit linear function. Finally, the

round key is XORed. The previous steps are repeated for r rounds.
In [27], the authors proposed a DFA on this family, where a fault

is injected in one of the rows before the diffusion layer in round

r − 1, such that the input to r has exactly one row where every

bit is flipped. This activates every Sbox in round r with the same

input difference ∆x and output difference ∆yi . Consequently, the
space of Kr is reduced to

∏n
i=0 s∆x,∆yi . However, since the DFA

from [27] usually requires a fault over a large word of width 8

bits or more, depending on the row length, it is considered to be a

multiple fault attack, ifm > n. An interesting question would be if

it is possible to find a set of low Hamming weight differences, such

that the bits whose value is 1 are located near each other, i.e. the

set bits are spread over ≤ n bits, such that when these differences

are applied to the input of the linear diffusion layer, the output

difference has a high Hamming weight value. In other words, we

trigger as much Sboxes as possible with a low Hamming weight

fault. For example, we describe a toy-cipher that is constructed in

an LS structure, using the AES Sbox and MixColumn operations.

The state consists of an 8×32 bit array, as follows:



b0
0

b0
1
· · · b0

31

b1
0

b1
1
· · · b1

311

. . · · · .

. . · · · .

. . · · · .

b7
0

b7
1
· · · b7

31



(5)

Each round of the cipher consists of 32 column-wise Sbox op-

erations, followed by 8 row-wise MixColumn operations. If the

attacker can flip any 8 adjacent bits, there are 130 32-bit fault values

that are spread over only 8 bits and trigger at least 24 Sboxes. How-

ever, the highest number of Sboxes that can be triggered with such

model is 29 out of 32 Sboxes, with only a single value achieving this

bound. Hence, for our toy cipher, the maximum number of active

Sboxes, while maintaining the number of interacting Sboxes at 0,

is 29. It is also noticeable that it is impossible for this toy cipher to

have exploitable faults in any round except the last round where

the number of active Sboxes is larger and the number of interacting

Sboxes is 0.

In case of SCREAM [19], the state is a 16×16 bit array. Hence, a

single fault according to our definition can be up to 16 adjacent bits.

However, since 16-bit Sboxes are not common in practice, and since

the bit-sliced implementation provided by the designers targets

8-bit microcontrollers, we search for fault masks that are spread

over at most 8-bits. We consider two cases, the first case is when

the 8 bits are any 8 adjacent bits at the input of the linear layer,

while the second is when the 8 bits are exactly either the top half or

the bottom half of the input. In the first case, the maximum number

of active Sboxes is 14, while in the second case, it is 13. This means

that in order to attack the last round of the cipher and activate more

than 14 Sboxes, the fault has to be spread over 9 or more bits.

4.1.2 Example 2: Application to SKINNY. SKINNY is an AES-like
block cipher presented in CRYPTO 2016 by Beierle et al. [6]. It is

targeted for lightweight applications and uses the Tweakey frame-

work to provide the possibility of using it as a tweakable block

cipher [22]. It has 6 versions, 3 of which use 64-bit blocks and 4-bit

nibbles/Sboxes, while the other 3 use 128-bit blocks and 8-bit nib-

bles/Sboxes. The master key sizes are 64, 128, 192, 128, 256, 384, for

each of them, respectively. Generally, a version tagged SKINNY-n-m
uses n-bit blocks andm-bit tweakeys. Being an AES-like cipher, it
follows our description nicely, except that the mixing layer uses a

non-MDS MixColumn matrix given below:



1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0



(6)

Since 2 columns have 3 non-zero elements and 2 columns have

1 non-zero element, injecting a fault in round r − 2 activates at

most 3 Sboxes only in round r − 1, and if the fault is injected in

the proper nibble/byte, it can activate at most 7 Sboxes in round r ,
which is less than half the number of Sboxes, distributed as follows:

2 columns with 3 Sboxes, 1 column with 1 Sbox and 1 column with

0 Sboxes. If a nibble/byte fault is injected in round r −3, the number

of interacting Sboxes cannot be equal to 0.
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4.2 Joint Difference Distribution Table (JDDT)
We can define a single round of an SPN as a group of non-linear

functions S (x ), where S (x ) consists of a linear part (diffusion layer)

and a non-linear part (Sbox). The main idea of the JDDT is that

when a single word difference ∆ is injected into the input of the

diffusion layer in round j, the inputs to n corresponding Sboxes

in round j + 1 are not independent, but are {l1 (∆), l2 (∆), ...ln (∆)},
where li (x ) is a linear function from 1 word to 1 word, which

corresponds to the difference propagation through the diffusion

layer. Hence, instead of analyzing each of the Sboxes in round j + 1
independently, we develop a Joint Difference Distribution Table

(JDDT) for the n Sboxes, which is actually a portion of the DDT

of the function [A1,A2, ...An]← S ({a1,a2, ...an }). The JDDT of n
Sboxes consists of exactly 2

−(n−1)b
rows of the overall DDT of S (x ).

The purpose of the JDDT is to provide candidates for the output

value of S (x ), given ∆ and the output difference.

We compute the JDDT as follows: we consider all the 2
4b

possible

output differences and divide them into four b-bit differences. We

use each of these values to access the corresponding DDT and

find all the possible input differences corresponding to this value.

Typically, for good Sboxes, these would be four lists of around 2
b−1

values each, which means 2
4(b−1)

possible values for the difference

at the output of the diffusion layer. However, only a subset of these

values satisfies the relation {l1 (∆), l2 (∆), l3 (∆), l4 (∆)}. Hence, they
are tested and only the solutions corresponding to valid differences

are stored into the JDDT.

5 THREE ROUND DFA ATTACK ON SPNS
In this section, we describe a single fault DFA attack against a fam-

ily of SPN-based block ciphers. This family includes majority of

the widely used SPNs, such as AES, LED, PRESENT and GIFT. The
advantage of the attack described in this section is that it uses

a single-fault injection and a single pair of faulty and correct ci-

phertexts. It can be used as a security metric for an SPN against

DFA attacks. The family of SPNs we consider has the following

properties:

(1) The state of the cipher consists of w words, each of b bits

divided into д groups, wherew = 4д and д mod 4 ≡ 0 .

(2) Each round consists of a substitution layer that operates on

every word individually, using a non-linear Sbox, followed

by a diffusion layer that consists of two parts: shuffling and

mixing.

(3) The shuffling step generates new groups, such that every

group consists of 4 words from 4 different groups in the

previous round.

(4) The mixing step performs a linear operation on the words

of every group, such that every output word depends on the

4 input words. In other words, the mixing step operates on

each group independently.

(5) Every word at the output of the substitution layer of the

current round affects exactly one group of the next round.

(6) Every 4 groups before shuffling are mapped into 4 groups

after shuffling.

(7) There exists at east one word difference value δo , such that

when exactly one word is active in round j, with difference

δo at the input of the diffusion layer, 4 words are active at

the beginning of round j + 1 and 4 groups are active at the

beginning of round j + 2.

These steps are depicted in Figure 2.

In case of AES, and LED, the last property is satisfied by all word

differences, hence the attack can be launched with a random differ-

ence. On the other hand, in case of PRESENT or GIFT, this property
is only satisfied when all the bits of the chosen word are inverted,

i.e. δ = [1111]2. A random fault in the case of AES is not to be

confused with the uniform fault model in Theorem D.2, since S (x )
in this attack will be a 4 word to 4 word function consisting of the

mixing layer followed by 4 Sboxes. Hence, the fault model used for

AES is a restricted fault, picked from only 256 possible input values

out of 2
32

values.

The attack consists of an offline phase and an online phase. In

the offline phase, first, we perform a slight modification to the SPN

during the analysis. Instead of each round consisting of Substitution,

Shuffling, Mixing and Addition of the round key Kr , we consider it
to consist of Substitution, Shuffling, Addition of the effective round

key L−1 (Kr ) and finally, Mixing. In this view, we merge Mixing

and Substitution into one function S (x ). Then, we generate the

extended DDT of the Sboxes in this function. Finally, we compute

the JDDT for this function.

In the online phase of the attack, once the output difference of

a group is obtained, the JDDT is accessed, and based on the as-

sumptions on the input difference values (fault model, Sbox/Mixing

differential properties, etc), a set of potential output values is re-

quired. These values are XORed with the ciphertext to get a set of

key-words candidates of this group. The time complexity of the

attack is O (24b+2) S (x ) operations. Since a full encryption consists

of around д × r S (x ) operations, the time complexity can be repre-

sented as O ( 2
4b+2

д×r ) encryptions. The space complexity is the space

required to store the JDDT, O (25b ). The number of key candidates

is |Ks | × 2
4b (д−4)+ |Km |− |Kr |

, where |Ks | is the size of the key space
for the four attacked groups after the analysis and is a characteristic

of the cipher.

The number of key candidates can be further reduced by generat-

ing all the candidates for the outputs of round r − 1 and performing

the online phase again for each, then keeping only the keys that sat-

isfy a specific relation between Kr and Kr−1, such that both round

keys represent a valid key schedule from the same master key. In

round r − 1 only one group is active, hence we can solve only for 4

key words. For everyKr candidate, we get |K
′

s | ≤ 2
4b

candidates for

these four words. Eventually, the key space size temporarily grows

to |K
′

s | × |Ks | × 2
4b (д−4)+ |Km |− |Kr |

. However, given the key sched-

uling algorithm of the cipher, which is used to generate round keys,

we consider the relationship between the 4 words of round r − 1
and the 16 words of round r . Pks ≤ 1 is the probability that such

relation holds, assuming uniformly random bit assignment. Hence,

the final key space size is Pks × |K
′

s | × |Ks | ×2
4b (д−4)+ |Km |− |Kr |

and

the overall complexity of the online phase of the attack is bounded

by O ( |KS |×2
4b (д−4)

r ), which is the brute force cost of the second step

of the attack. It is to be noted that the second step may not always

lead to better results, as it depends on the key schedule of the cipher.

For the attacker to gain from this step, the condition Pks × |K
′

s | ≪ 1

should be satisfied.
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Figure 2: 3 Round DFA on SPNs

6 SINGLE FAULT ATTACKS AGAINST REAL
WORLD SPNS

In this section, we first study the DFA on PRESENT-80, an SPN

based on bit permutations. To the best of our knowledge, no single

fault attack with a small number of pairs have been reported so

far against it. We also discuss applying our technique to AES-128,
showing it matches the best known attack against AES. Besides, we
apply our technique to SKINNY, since is has some unique properties

that can be exploited to achieve more efficient attacks. We provide

more case studies in Appendix B.

6.1 PRESENT-80/128: Finding Optimal Attack
PRESENT [8] is a lightweight block cipher proposed by Bogdanov

et al. in CHES 2007. It targets applications such as RFID tags and

sensor networks. It has been extensively studied over the years.

[42] provides an analysis of the differential properties of PRESENT.
In [9], the authors use a multiple fault model to attack it, flipping

all the bits of 4 specific words at the same time. Since the fault

model is specific and hard to achieve, they rely on a hardware

Trajan to inject it. In [30], the authors presented a single fault attack

on PRESENT. However, the attack requires side-channel assistance

(namely power measurements) in order for the analysis to work,

which is not required in this paper. At the end of this section we

compare the attack from [30] to our attack.

PRESENT consists of 31 rounds, each round operates on a 64-bit

block and contains three operations: addRoundKey, sBoxLayer and

pLayer. addRoundKey is described as follows

sj ← sj ⊕ kj (7)

where j is the round index and sj ,kj are the cipher state and
round key at round j, respectively. The next step is to divide the

Table 3: The 4-bit Sbox used in the PRESENT cipher

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

sb (x ) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 4: The bit permutation used in PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i ) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i ) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i ) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i ) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

state sj into 16 4-bit nibbles b
(i )
j , i.e. sj = b

(0)
j b

(1)
j . . .b

(15)
j . Each

nibble is replaced using the Sbox function sb (x ), defined using

Table 3. The 16 parallel Sboxes represent the sBoxLayer.

Finally, the pLayer is described as a bit permutation P (i ) over 64
bits, where i refers to the bit index. The permutation is described in

Table 4. For the purpose of the analysis in this paper, we describe

the permutation using a different, yet equivalent, representation.

The new representation consists of the shuffling and mixing opera-

tions described in Section 5. The shuffling operation starts after the

sBoxLayer, by grouping the 16 b
(i )
j into four groups, where each

group is a column in the following matrix.

M =



b
(0)
j b

(1)
j b

(2)
j b

(3)
j

b
(4)
j b

(5)
j b

(6)
j b

(7)
j

b
(8)
j b

(9)
j b

(10)
j b

(11)
j

b
(12)
j b

(13)
j b

(14)
j b

(15)
j



(8)

Then, the shuffling operation is defined as the matrix transpose

operationMt
. Hence, the mixing operation can be described as 4
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Table 5: The mixing operation in PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
′

(i ) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

parallel instances of the permutation in Table 5, where a bit i is
i-th bit of the nibble д + ⌊i/4⌋ × 4, and д ∈ {0, 1, 2, 3} is the group
number. A somewhat similar representation of PRESENT was used

for efficient software implementations in [34].

This representation makes some of the properties of the pLayer

more clear:

(1) The bits of nibbles b
(д)
j ,b

(д+4)
j ,b

(д+8)
j ,b

(д+12)
j (before shuf-

fling) depend completely on the bits of nibbles

b
(4д)
j ,b

(4д+1)
j ,b

(4д+2)
j ,b

(4д+3)
j .

(2) If only one nibble in group д is active at the input of the

mixing operation with difference δ , the number of active

nibbles after mixing is equal to the Hamming weight of δ .
(3) If only one nibble 0 ≤ i ≤ 3 in groupд is active at the input of

the mixing operation, then all the active nibbles after mixing

have the same difference δ
′

= 2
i
.

Property 2 can be used to show that if one nibble is active at

the input of the mixing operation, then only δ = [1111]2 leads to 4

active nibbles at the output. Property 3 can be used to find the value

of the output differences from {1, 2, 4, 8}. Hence, by injecting a fault

δ in nibble i in the output of the sBoxLayer in round 29, a difference

equal to 2
i mod 4

is injected in the 4 nibbles of group ⌊i/4⌋. In round
30, the sBoxLayer changes these differences into {δ0,δ1,δ2,δ3}, then
the shuffling operation distributes these four differences into 4 dif-

ferent groups. By using property 2, we can show that the number of

active Sboxes in round 31 (the final round), is the Hamming weight

of the vector v = [δ0 δ1 δ2 δ3]. In order to study the properties of

the vectorv , we need to study the differential properties of the Sbox.
The analysis here refers to the differential cryptanalysis of PRESENT
performed by Wang [42]. Depending on where the fault [1111]2 is

injected in round 29, four Sboxes in round 30 are triggered with

difference 2
i mod 4 ∈ {1, 2, 4, 8}. Table 6 represents the part of the

DDT of the Sbox used in PRESENT corresponding to these values.

The second-to-last column, µHW , is the average Hamming weight

of the output difference, corresponding to the given input difference

and a random value. It is clear that the maximum average number

of active Sboxes in round 31, given a fault of [1111]2 in round 29,

is 12 and it is achieved when i ≡ 3mod 4. In other words, the best

locations, in terms of diffusion, to inject the fault are nibbles 3, 7,

11, or 15. Similarly, the value of the differences at the input of the

active Sboxes in round 31 depends on the fault locations: [0001]2

for i = 3, [0010]2 for i = 7, [0100]2 for i = 11, and [1000]2 for i = 15.

The last column of Table 6 shows the expected number of solutions

of the Sbox output value, assuming the given input difference and

a random value, calculated using Theorem D.5. It shows that the

information leakage is maximized when i ∈ {7, 11}. Analyzing the
last round using the attack described in Section 5, the number of

candidates of the last round key |Ks | is given by

|Ks | = 2
1.25×12 × 164 = 2

31
(9)

which shows a leakage of 34 bits by applying. In order to perform

the second step of the attack, we need to look at the key scheduling

Table 6: Part of the DDT of the Sbox used in PRESENT

0 1 2 3 4 5 6 7 8 9 A B C D E F µHW EXP(SOLs)

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0 2.5 2
2

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0 2.25 2
1.25

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0 2.25 2
1.25

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4 3 2
1.5

algorithm of PRESENT and study the relation between the active

bits of rounds 30 and 31.

6.1.1 PRESENT-80. The key scheduling algorithm for PRESENT-80
works as follows:

(1) Themaster keyKm is stored in an 80-bit register as: [K79K78...K0].
(2) The current round key Ki is given by [K79K78...K16].
(3) [K79K78...K0]← [K18K17...K0K79K78...K19]
(4) [K79K78K77K76]← sb ([K79K78K77K76]).
(5) [K19K18K17K16K15]← [K19K18K17K16K15] ⊕ round_counter.

Assuming the contents of the register at round 31 are [κ79κ78...κ0],
then the contents at round 30 are

[κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]sb
−1 ([κ79κ78κ77κ76])[κ75κ74...κ61]

(10)

Besides, the round keys are given by

K31 = [κ79κ78...κ16]
(11)

K30 = [κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]truncate(sb
−1 ([κ79κ78κ77κ76], 3))

(12)

where truncate(x, 3) return the 3 most significant bits of x .
If the fault is injected in round 29 in nibble 7, then nibbles 1, 5, 9

and 12 are active in round 30, with an Sbox input difference equal

[1000]2. The correct solutions for these nibbles of K30 must satisfy

[κ52κ51κ50κ49κ36κ35κ34κ33κ20 ˜κ19 ˜κ18 ˜κ17κ4κ3κ2κ1] (13)

Since κ4,κ3,κ2, and κ1 are not used in K31, the probability of satis-

fying the condition Pks = 2
−12

. Besides, since the 4 nibbles have an

input difference of [1000]2, and using Table 6, the number of solu-

tions |K−1s | for the 4 active nibbles of K30 is 2
6
. Hence, combining

steps one and two of the attack, the number of candidates of K31

becomes 2
25
, and the number of master key candidates becomes

2
41
, with complexity 2

31
.

On the other hand, if the fault is injected in round 29 in nibble 11,

then nibbles 1, 5, 9 and 12 are active in round 30, with an Sbox input

difference equal [1000]2. The correct solutions for these nibbles of

K30 must satisfy

[κ56κ55κ54κ53κ40κ39κ38κ37κ24κ23κ22κ21κ8κ7κ6κ5] (14)

Similar to the previous case, 12 conditions must be satisfied. Hence,

the analysis is the same. If the attack is applied twice (2 fault injec-

tions), the second time leads to a new set of 2
41

keys is calculated.

However, the probability of one or more of the wrong key can-

didates overlapping the first set, i.e. the probability that the size

of intersection between the two sets ≥ 1, can be computed using

the Binomial distribution. The experiment is defined as selecting

a uniform random key 80-bit vector, and it is successful if the se-

lected key is one of the 2
41

keys calculated during the first attack.

Hence, p = 2
−39

and Pr (X ≤ k ) =
∑k
i Pr (X = i ), which is also the

probability of the key space size to k with 2 faults. Table 7 shows
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Table 7: The probability of having a key space of size k after
2 fault injections

k 0 1 2 3 4 5 6 7 8 Pr (x ≤ 8)

Pr (x = k ) 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030 0.979

that the key space is reduced to at most 8 keys (77-bit leakage) after

2 fault injections, with probability 97.9%.

6.2 AES-128: Matching Best Known DFA Attack
AES [33] is considered as the standard block cipher for most applica-

tions. It was selected in 2001 by NIST through a public international

competition. The design details can be found in [12]. It follows the

description in Section 5 directly, with the ShiftRows operation rep-

resenting shuffling and the MixColumns operation representing

mixing. Moreover, since the MixColumns operation is designed to

achieve the maximum branching number of 5, it follows immedi-

ately that if exactly a single byte at the input of MixColumns is

active, all the four output bytes must be active. Hence, a uniform

random byte fault model will serve the purpose of the attack de-

scribed in Section 5. However, as shown in the attack in PRESENT,
sometimes it is easier to achieve a single-bit fault, e.g. bit-sliced

implementation. We are going to study both cases in this section.

We refer to [33] for a full description of AES.
Similar to PRESENT, the number of solutions of Equation 2 where

S (x ) is the Sbox function, s∆x,∆y , is either 0, 2 or 4 for any given

pair (∆x ,∆y) except (0,0). However, as the AES Sbox is an 8-bit

function, this means that the probability of any of these pairs where

the number of solutions is not zero is much lower. Moreover, the

DDT of the AES Sbox is more structured, such that for any given

non-zero ∆x , the number of values ∆y that correspond to 0, 2

and 4 solutions s∆x,∆y are 129, 126 and 1, respectively. Hence, for

any input fault difference and a random input value, the expected

number of solutions for the output value of that Sbox is 2
1.0156

solutions, according to Theorem D.5. On the other hand, unlike

the case of PRESENT, the diffusion in AES does not depend on any

properties of the output value of the Sbox.

In order to asses the attack in Section 5, we need to study not

just the properties of the DDT, but also the properties of the JDDT

described in the attack. By injecting a single byte fault ∆ in the

input of the MixColumns operation, the four byte differences at the

input of the Sboxes are {δ ,δ , 2 · δ , 3 · δ }, or a rotation of this set,

depending on which byte in the input is faulted. Hence, the number

of solutions in the JDDT for an input difference δ and output dif-

ference {∆1,∆2,∆3,∆4}, is the number of solutions {y1,y2,y3,y4},
such that δ1 = 2 · δ ,δ2 = δ ,δ3 = 2δ , and δ4 = 3 · δ . This number is

equal to s
2·δ,∆1

×sδ,∆2
×sδ,∆3

×s
3·δ,∆4

. We can apply Theorem D.1

on the 32-bit function constructed by performing the MixColumns

operation followed by 4 parallel Sboxes for two cases:

(1) δ ∈ {0, 1}8 − {0}8 is a uniformly random variable (px =
1

255
):

This case is valid when the attack in Section 5 with a uni-

formly random fault. Given the output difference value,

{δ1,δ2,δ3,δ4} represent a 32-bit random vector, selected

from 127
4
possible values. However, 24 conditions are im-

posed by the MixColumns equations. This limits the num-

ber of possibilities to
127

4

2
24
= 2

3.95
. First, for simplicity, we

assume that all the possibilities are equiprobable. Using

Theorem D.5, the expected number of solutions for any

given 32-bit difference at the output of the mixing operation

is 2
4×1.0156 = 2

4.0624
solutions, then the overall expected

number of solutions is 2
8.01

. Since the AES state 4 columns

(groups), step 1 of the attack in Section 5 reduce the last

round key space from 2
128

values to |KS | = 2
32.05

. Apply-

ing step 2 of the attack, we get |KS
′

| = 2
8.01

. For AES-128,
|Km | = |K10 | and a single round key is enough to deduce the

master key and, hence, all the other round keys. Therefore,

every candidate for K10 imposes 32 conditions on the 32

active bits of K9, leading to Pks = 2
−32

. To sum up, after

applying the two steps of the attack, the expected number of

key candidates is 2
8.06

, with complexity O (232.05). To assess
the expected number of key candidates after applying the at-

tack twice, we use a similar binomial distribution to the one

used to assess PRESENT. Since, Pr (X = 0) = 1 − 2−111.88 ≈ 1,

therefore, it is expected that the attacker can uniquely iden-

tify the key using two faults with overwhelming probability.

A similar result has been achieved by Tunstall et al. in [38],

where they concluded that when a single fault is injected

in round 8 at the input of the MixColumns operation, the

key space can be reduced to 2
8
candidates. The analysis was

specific to AES-128 and it used an approximation regarding

the expected number of solution for each Sbox. Hence, the

analysis in our paper is more generic and more conservative,

showing that the number of key candidates after one fault

is expected to be ≈ 4.2% more than what they originally

estimated.

(2) δ is the output difference of an AES Sbox triggered by a

constant input difference: This case is valid the attack in

Section 5 with a constant fault. As discussed earlier, for some

implementations, e.g. bit-sliced software implementations,

it might be easier to inject a fault in a specific bit of the state.

In such cases we use a stronger fault model, where δ = δo ,
such that δo is a constant known to the attacker and has a

Hamming weight of 1. For this model, the first part of the

analysis is similar. However, every difference δi at the input
of the Sbox is restricted to 127 out of 255 values (as a known

difference ∆x for the AES Sbox can lead to 127 possible values
for ∆y). Hence, the number of key candidates after step 1

is reduced by a factor of
127

255

4

, leading to a total number

of key candidates |KS | = 2
28.02

. In step 2, |KS
′

| = 2
4.0624

,

since we need to solve only for δo . Since Pks depends on

the conditions derived from the key scheduling algorithm

and not the fault model, it remains the same. Consequently,

the overall number of key candidates for this fault model is

2
0.09

.

In order to verify the previous results, we have implemented the

pre-computation algorithm described in Section 5 for each case.

We calculated the average number of leaked bits for every possible

output difference (255
4
possibilities), according to Theorem D.1.

The computation was performed on an AMD Opteron 6378 quad-

core processor. The average number of solutions for case 1 is ≈ 2
8
,

and computing the JDDT (the pre-computation phase) takes around

14 CPU-Hours. For case 2, we need two JDDTs. The first one is for

the first step of the attack, where δ can take 1 value with probability
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2
−6

and 126 values with probability 2
−7
. The second table is for the

second step of the attack, considering a constant input difference.

The first table is computed in 30 CPU-Hours on the same machine

and leads to 2
7.03

solutions per group on average. The reason of

the time overhead compared to the random case is to calculate

the conditional probability distribution used in Theorem D.1. The

second table is computed in 3 CPU-Minutes and leads to an average

of 2
4.034

solutions, for δ = 1. The resulting key space has a size of

2
0.154

or 1.1 candidates. Most of the time the key can be identified

with a single fault.

6.3 SKINNY: Matching Best Known DFA Attack
A similar analysis to the analysis of SKINNY in this section was

recently independtly reported by Vafaei et al. [40]. We briefly dis-

cussed the diffusion of SKINNY in section 4.1. While SKINNY does
not exactly fall in the family of SPNs we are considering in this sec-

tion, since the MixColumns matrix is not an MDS matrix, most of

the analysis still applies to it. If the injected fault follows a uniform

distribution, then according to Theorem D.2 and the fact that there

are no Mix-Column equations to reduce the space of this fault, the

column with 1 Sbox cannot be used to reduce the key space, but

can only be used when the input difference follows a non-uniform

distribution. For example, the JDDT of the function constructed by

3 of the SKINNY 4 bit Sbox, such that all the input difference have to

be equal shows an expected reduction from 2
12

to 2
4.36029

solutions

for a uniform fault model. By analyzing the MixColumns matrix

of SKINNY, we can find the best location for injecting the fault in

round r − 2 is any nibble/byte of the third row, i.e. b8,b9,b10 or b11
at the input of the MixColumns operations. The activity pattern of

the last round Sboxes is as follows (up to a cyclic rotation of the

columns):



1 0 1 1

1 0 0 0

0 0 1 0

1 0 1 0



(15)

However, since the round key is added only to the first two rows,

the key recovery method is slightly different from other AES-like
cipher. The output value of the Sboxes in rows 2 and 3 in the last

round is visible to the attacker. Hence, the attacker can use the

invert those Sboxes and find the input differences to them. Since

the input difference to all active Sboxes in the same column is the

same, then the attacker knows the input difference to 3 of the Keyed

Sboxes. Using this knowledge, he can reduce the key nibbles/bytes

of these Sboxes to an expected value is 2
1.4

key candidates for

SKINNY-64-64 and 2
2.88

for SKINNY-128-128, using Theorem D.5,

reducing the size of the key space of the last round key to ≈ 2
24.2

for SKINNY-64-64 and ≈ 2
48.64

for SKINNY-128-128, while the

size of the master key space is reduced to 2
56.2

and 2
112.64

respec-

tively. Since there are four potential good fault locations, in Table 8

we sum up the vulnerable Sboxes in the last round correspond-

ing to each of these faults. We can observe that after 4 pairs of

fault and non-fault ciphertexts, all the Sboxes in the last round

have been activated, with b0,b1,b2 and b3 activated twice. This

leads to reducing the number of candidates of the last round to

between an average of 2
5.6

and 2
11.52

candidates for SKINNY-64-64

Table 8: The active Sboxes in the last round of SKINNY for
every fault location

Fault location in round r − 2 Vulnerable Sboxes in round r

b8 b0,b2,b4
b9 b1,b3,b5
b10 b2,b0,b6
b11 b3,b1,b7

and SKINNY-128-128 respectively. Overall, The last round key can

be uniquely identified with high probability using 4 more pairs.

By repeating the attack for the second to last round, we can re-

duce master key space to an expected value of 2
11.2

and 2
23
, for

SKINNY-64-64 and SKINNY-128-128 respectively, after 8 pairs and
uniquely identify the key with high probability of after 16 pairs.

With this result, SKINNY seems to be the most immune cipher

against the three round attack we describe in this paper. However,

we show next that the reason it is immune against this attack is

the same reason it is vulnerable to a more efficient 4-round attack,

unlike other ciphers.

6.3.1 Four Round Attack on SKINNY. In this section we study the

attack when the fault is injected in round r − 3 instead of r − 2. The
reason this attack is possible is due to the fact that the diffusion

in SKINNY is very slow. While it may not be possible to keep the

number of interacting active Sboxes to zero after 4 rounds, we

show that a value of only 2 interacting Sboxes can be achieved

after 4 rounds. We consider the faults after 3 rounds (after applying

ShiftRows and MixColumns respectively):



a 0 c d
0 e 0 0

i 0 0 0

0 p 0 m



(16)



a ⊕ i p c d ⊕m
a 0 c d
i e 0 0

a ⊕ i 0 c d



(17)

It is worth mentioning the same property of SKINNYwas used by
Liu et al. [28], but in a different context and with less details. Since

the last round key is added only to the top two rows, our goal is to

find the output values of the top 8 Sboxes, given the information

about the bottom 8. Hence, the attacker already knows the values

of a, i, e, c and d and can reduce the key space of the corresponding

key nibbles/bytes. In Table 9, we show the active Sboxes in the

last round corresponding to each of the four good fault locations.

After one fault the number of candidates of the last round key

is expected to be 2
19

and 2
38.4

for both versions of SKINNY, by
applying Theorem D.5. We can also observe that if we use 4 pairs,

every Sbox in the last round is activated at least twice. While we can

repeat the same attack one round earlier to get the full master key,

we notice that the four pairs we have are already 4 valid pairs for the

3-round attack described in the previous section. Hence, we can use

the same pairs to reduce the space of the round key at round r − 1.
Combining the two attacks together, the number of candidates

for the master key after only 4 pairs is expected to be 2
5.6

for
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Table 9: The active Sboxes in the last round of SKINNY for
every fault location

Fault location in round r − 3 Vulnerable Sboxes in round r

b8 b0,b2,b4,b6,b7
b9 b1,b3,b5,b7,b4
b10 b2,b0,b6,b4,b5
b11 b3,b1,b7,b5,b6

SKINNY-64-64 and 2
11.52

for SKINNY-128-128. With 8 pairs, the

master key can be uniquely identified with high probability.

TheDFA attacks against SKINNY apply directly to any SKINNY-n-m
version, as long as only n bits represent the fixed master key and

the rest can be controlled by the attacker.

7 CONCLUSION
In this paper, we presented a generic DFA on SPNs.More specifically,

we formulated an information-theoretic model of fault attack in the

last round of an SPN and showed that for any non-uniform fault, the

key space can always be reduced. We proposed an attack method

which injects a single fault in the second last round of a class of SPNs

and by using a novel tool, called Joint Difference Distribution Table
(JDDT), the master key of the cipher can be recovered. Our method

was evaluated on various block ciphers, including PRESENT-80,
PRESENT-128, GIFT-64, GIFT-128, AES-128, LED-64, and LED-128.

For the future work, we would like to extend our method to

other block cipher designs. Also, we note that our work can serve

as a basis for designing fault resistant block ciphers. Besides, as

the automation of fault analysis is currently gaining attention of

the community [10], the JDDT method for analysis of SPNs can

potentially be fully automated, which can be integrated with some

cryptographic design and analysis software tools.
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A SPN VS DFA: GOOD DESIGN PRACTICES
While we have shown that it is almost impossible to design an

SPN that provides the same level of security against DFA as the

classical security, in the presence of non-uniform fault models, the

results also show that not all the SPNs with the same classical

security level provide the same level of security against DFA. For

example, GIFT-64 and GIFT-128 required 12 pairs of faulty and

non-faulty ciphertexts with very specific fault models, located in

different locations, while AES-128 requires only 2 pairs, with the

fault injected in the same location every time and can be uniformly

random. Here, we list some of the techniques we believe make DFA

harder to perform and help GIFT be harder to break than the other

ciphers considered in this paper:

(1) Using Sboxeswith irregular DDTs and higher linearitymeans

that, on average, the number of solutions when injecting

faults is higher.

(2) Using smaller Sboxes means that the gap between the num-

ber of possible solutions for each Sbox before and after ap-

plying DFA is smaller, hence, the information leakage is

lower.

(3) The lower the branching number of the diffusion layer, the

harder it is to accelerate the attack and reduce the number

of faults required.

(4) The smaller the ratio between the round key size and the

master key size, the lesser the information leaked during

applying DFA on the final rounds.

(5) Using a non-symmetric diffusion layer (e.g. GIFT) makes the

JDDT more complex, as opposed to a symmetric diffusion

layer (e.g. PRESENT).
(6) While it is a good practice to design the round key to be

smaller than the master key (e.g. LED-128) and the block

Table 10: The probability of having a key space of size k for
the last round key K31 after 2 fault injections

k 0 1 2 3 4 5 6 7 8

Pr (x = k ) 0.779 0.195 0.0.024 0.002 1×10−4 6×10−6 2×10−7 9×10−9 2×10−10

size (e.g. GIFT), it is not a good practice to skip adding the

round key to some of the final Sboxes altogether, as this may

leak vital information about other Sboxes in the same round

(e.g. SKINNY).

In general, as discussed in Section 4.1, the goal of the designer

should be to minimize the number of active Sboxes before they start

interacting with each other. This can be achieved by having a very

slow diffusion when the number of active Sboxes in a given round is

very small (1 or 2), and very fast diffusion, otherwise. For example,

SKINNY has very slow diffusion, but even when 7 out of 16 Sboxes

are active, the 4-round DFA attack we describe in Section 6.3.1

can be still mounted. However, even if the designer manages to

come up with a design that satisfies all of these guidelines, it is

still impossible to prevent DFA against SPNs completely. So the

ultimate goal should be to increase the number of faults required

and/or use other constructions that may prevent DFA.

B MORE CASE STUDIES TO OUR
TECHNIQUES

B.1 PRESENT-128 and Practical
Implementations of PRESENT: Finding
Optimal DFA Attack

B.1.1 PRESENT-128. The key scheduling algorithm for PRESENT-128
is similar to present PRESENT-80 (refer to [8], Appendix II, for full

description), where

K31 = [κ127κ126...κ64]
(18)

K30 = [κ60κ59... ˜κ19 ˜κ18 ˜κ17 ˜κ16 ˜κ15...κ0]truncate(sb
−1 ([κ127κ126κ125κ124], 3))

(19)

We note that only 3 bits overlap between K31 and K30: κ127,κ126,
and κ125. However, since none of these bits is active in round 30,

for both the fault locations we are considering, we conclude that

there is no gain in performing step 2 while attacking PRESENT-128.
Hence, the number of key candidates for K31 and Km are 2

31
and

2
95
, respectively. An interesting result is that the increased security

of PRESENT-128 is not just due to the increased Key size, but due

to the good design of the larger key scheduling algorithm, which

leads to Pks = 1. However, Table 10 shows that by applying the

attack twice, the last round key K31 can be identified as 1 of 8

candidates with probability almost 1. Afterwards, the attack can

be applied to a round-reduced version of PRESENT-128 for each of

these candidates, targeting K30 as the last round key, resulting in

2
34

or 2
6
master key candidates after applying one or two more

faults in round 28, respectively.

B.1.2 Practical Implementations. The attacks described in this sec-

tion require the injection of a fault δ = [1111]2 in the output of

the sBoxLayer of round 29, in either nibble 7 or nibble 11. While

this requirement can be challenging, it was shown in [9] that such

fault is practically possible. Moreover, there are a couple of tricks
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that the attacker can use to get around this requirement. First, we

notice that if instead of injecting δ = [1111]2 at the output of the

Sbox, we inject δ
′

= [1000]2 at the corresponding input, there is

a 0.25 chance that the correct fault is triggered at the output. We

can observe the occurrence of the correct value by the number of

active groups in round 31. Besides, if we inject 4 of such faults, there

is a very high probability that the required fault occurs, and the

other three pairs can be used to further decrease the key space size.

The same applies for δ
′

= [1111]2, δ
′

= [0110]2, and δ
′

= [0111]2.

Hence, depending on the precision of the equipment the attacker

has, he can target 1-, 2- or 3-bit flips with probability 0.25 of getting

the required difference, or 4-bit flips (with probability 1).

Moreover, for some specific implementations, the attack can be

performed using even a single uniform random fault. In case of a

software, bit-sliced implementation of widthw , a uniform random

fault is injected in the most significant bit of the input of the Sbox at

nibble 7, round 29. Since each instance is triggered with probability

0.5, and the instances that are triggered have probability 0.25 of

getting the required difference at the output of the Sbox at round 29,

then it is expected that
w
8
instances will have the required value and

w
2
will be active in general, potentially allowing to even uniquely

identify the key using only a single fault. This expectation can be

achieved even using architecture as small as 8-bit micro-controllers.

B.2 GIFT-64: New Results
GIFT cipher was proposed in CHES 2017 by Banik et al. [5] as a

more lightweight version of PRESENT. It has two versions: GIFT-64
and GIFT-128. Both these versions have a 128-bit master key, but

they differ in the block size, 64 bits and 128 bits, respectively. In

this section we analyze only the first version, noting that the tech-

niques from our paper can bet extended with slight modifications

to attack GIFT-128, as well. The differences between GIFT-64 and

PRESENT-128 are as follows:

(1) It runs for 28 rounds only.

(2) The Sbox and mixing layer are different.

(3) The Key Scheduling algorithm is also different, where 32

bits are extracted from the key state every round, followed

by a linear state update. The property that is of interest

to our analysis is that every 4 consecutive round keys are

independent and uniquely identify the master key.

(4) Every round, half of the bits (32 bits), only, are mixed with

key bits.

From the structure of GIFT-64, we conclude that the best single-
nibble fault value in round 26 is [1111]2 at the output of one of the

Sboxes. Similar to to PRESENT, that fault value can be achieved by

injecting a fault [1000]2 at the input of the Sbox, with probability

25% (refer to [5], Appendix C.2, for the DDT of GIFT Sbox). How-
ever, due to the properties of the mixing layer, regardless of which

nibble the fault is injected in, such fault will always trigger the four

groups of round 27 by the same four different input differences

{[0001]2, [0010]2, [0100]2, [1000]2}, up to a cyclic rotation opera-

tion. Table 11 shows the corresponding rows of the DDT of GIFT
Sbox. Instead of selecting the difference with the largest average

Hamming weight, as in the case of PRESENT, in order to find the

average number of active Sboxes in the last round, in the case of

GIFT-64 the average number of Sboxes in the last round is always

Table 11: Part of the DDT of the Sbox used in GIFT

0 1 2 3 4 5 6 7 8 9 A B C D E F µHW
1 0 0 0 0 0 2 2 0 2 2 2 2 2 0 0 2 2.25

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0 2.25

4 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0 2.5

8 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 3

Table 12: Part of the auxiliary DDT of the Sbox used in GIFT
with respect to the active key bits

0 1 2 3 4 5 6 7 8 9 A B C D E F EXP(SOLs)

1 0 0 0 0 0 2 2 0 1 2 2 2 1 0 0 2 2
0.75

2 0 0 0 0 0 4 4 0 0 2 2 0 0 2 2 0 2
1.5

4 0 0 0 2 0 4 0 4 0 2 0 0 0 2 0 0 2
1.625

8 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 2
1

Table 13: The probability distribution of different output bit
differences when a single input bit is active for GIFT Sbox

0 1 2 3 EXP(Sols)

1 0.5 0.5 0.5 0.75 2
5.452

2 0.5 0.5 0.75 0.5 2
6.204

4 1 0.5 0.75 0.5 2
3.384

8 1 1 0.5 0.5 2
3.059

10. Since only two key bits are added to the output of each Sbox,

we need to compute an auxiliary DDT, which corresponds to the

number of solutions of the active key bits, shown in Table 12. Since,

in round 28, each group is triggered with a different input difference,

in Table 13 we calculate the different probabilities for each Sbox in

round 28 to be active. Combined with the number of solutions in

Table 12, for every possible input difference, the expected number

of candidates for each group in the last round is computed, which

leads to an overall number of 2
18.1

key candidates for K28. In order

to identify K28 uniquely, we need 3 repetitions of the whole attack,

respectively, which reduces the master key space to 2
96

keys. The

attack then needs to be repeated four times for the 4 last round

keys, required 12 fault injections, on average.

B.3 GIFT-128: New Results
Any two consecutive rounds of GIFT-128 can be viewed as two

parallel independent instances of GIFT-64. We use this representa-

tion for rounds 38 and 39, while round 40 is the final round and, as

explained in Section 5, the shuffling and mixing operations in the

last round have no effect on our analysis. Hence, the same analysis

used for GIFT-64 can be used for GIFT-128. First, 3 faults are used
to recover half the bits of K40, then another three faults are used to

recover the other half. The attack is then repeated for K39.

GIFT-128 is very similar to GIFT-64 except for the following

differences:

(1) The block size is 128 bits, divided into 8 groups of 4 nibbles,

each.

(2) 64-bit round keys are used.

(3) Only every two successive round keys are independent, as

opposed to 4 rounds in the case of GIFT-64.
(4) The description of the shuffling operation is slightly different.

It can be viewed as two steps; matrix transposition, followed

by interleaving.

From this description, any two successive rounds of GIFT-128
can be viewed as a pair of parallel and independent two rounds of

GIFT-64. Since in the case of GIFT-128, we need only two round
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Table 14: The active Sboxes in the last round depending on
the fault location

Faulty Location Active Sboxes

1 0,2,3,6,7,8,11,12,15

5 0,1,4,5,6,9,10,13,14

13 0,2,3,6,7,8,11,12,15

keys, the number of faults and complexity of the attack is exactly

the same as in the case of GIFT-64.

B.4 PRIDE: Finding Optimal DFA Attack
PRIDE [2] is an SPN-based cipher that can be considered as from the

same family of ciphers as PRESENT and GIFT, but targeted towards

low latency application. Hence, it uses a more complicated diffusion

layer to achieve faster diffusion. In [26], the authors showed that

by flipping 16 adjacent bits at the input of the linear diffusion layer

in the second to last round, all the Sboxes in the last round can

be activated with known input difference. However, since flipping

16 bits is not an easy task and requires high precision, we analyze

the last round limiting the number of bits to be flipped to 4 (single-

fault model). The location of the fault is the same as [26], round

r − 1. Injecting faults in earlier rounds does not help due to the

fast diffusion of PRIDE which will increase the number of active

interacting Sboxes. This limits the possible fault locations to 16

nibbles. We tested all the 16 possibilities and found out that the

nibbles that maximize the number of active Sboxes in the last round

are nibbles: 1, 5 and 13, with a maximum of 9 active Sboxes in the

last round. The active Sboxes are shown in Table 14. We notice that

if we use all these three pairs, each Sbox has appeared at least once.

Hence, we conclude that 4 pairs of faulty and non-faulty ciphertexts

are required on average to uniquely identify the last round key,

and then the attack can be repeated for the previous round. This is

double the number of faults required in [26], but using a simpler

and less demanding fault model. The exact complexities are given

in Section 1.

C MORE DETAILS ON THREE ROUND DFA
ATTACK ON SPNS

Here we state the assumptions of the cipher we consider:

• Any intermediate value of the cipher is referred to as the

state.
• The state consists ofw words, each of b−bits.
• The state can be divided into д groups and each group con-

sists of 4 words.

• Thus, we represent the state as a 4 × д array.

• Each column of the array is a group.We refer to the (i, j )−entry
(0 ≤ i ≤ 4, 0 ≤ j ≤ д) of the array as the ith word of group j .

• The cipher consists of r rounds, each round consists of the

following operations in the exact order: substitution, shuf-

fling, mixing and key xor.

Figure 2 describes the following process:

(1) If a word is changed due to the fault injection, we say that

this word is active.

Shuffling
by trans-
position

Mixing

Shuffling
by rotation

Mixing

Figure 3: Fault propagation pattern for different diffusion
functions in SPNs.

(2) We assume the shuffling takes input a 4×4 array and outputs

its transpose.

(3) We inject a fault with fault mask δo at the input of shuffling

in round r − 2. Let us assume the fault is injected in the 2nd

word of group 0. It works similarly for a fault injected in a

different word.

(4) Since shuffling in round r − 2 changes the locations of each
word, the fault mask is relocated to a word in a different

group.

(5) Mixing in round r − 2 then produces a state which contains

exactly one group whose 4 words are all active. As mixing

is a linear operation, we denote the resulting differences as

ℓ0 (δo ), ℓ1 (δo ), ℓ2 (δo ), ℓ3 (δo ) for the 4 active words. In our

figure, this particular group is group 2.

(6) After the substitution operations in round r − 1, the 4 active
words remain active and the other words remain non-active.

We denote those 4 new differences as δs
1
,δs

2
,δs

3
,δs

4
respec-

tively.

(7) The shuffling in round r − 1 distribute the 4 differences into

4 different groups.

(8) The mixing in round r − 1 then makes all the 16 words in

those 4 groups active. The differences in groups 0, 1, 2, 3 are

linear functions of δs
1
,δs

2
,δs

3
,δs

4
respectively. For the group

affected by δsj , we denote f
(j )
i (δsj ) for the difference of its

ith word as a linear function of δsj .

(9) After the substitution in round r , the same 16 words will

remain active. We denote the difference corresponding to

f
(j )
i (δsj ) as ∆

s
i j .

(10) Shuffling in round r again changes the locations of each

difference.

(11) Mixing in round r mixes the differences with linear opera-

tions. In the figure, д0,д1,д2,д3 are linear functions.
(12) The differences produced after mixing in round r are what

can be observed by attacker from the ciphertext, where we

denote the difference in the ith word of group j as ∆i j .

The JDDT gives us the following information:

(1) Given δo , what are the possible values of δ
s
1
,δs

2
,δs

3
,δs

4
.

(2) Given ∆00,∆10,∆20,∆30, what are the possible values of δ
s
1
.

(3) Given ∆01,∆11,∆21,∆31, what are the possible values of δ
s
2
.

(4) Given ∆02,∆12,∆22,∆32, what are the possible values of δ
s
3
.

(5) Given ∆03,∆13,∆23,∆33, what are the possible values of δ
s
4
.
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D PROOFS FOR SECTION 3
Theorem D.1. If ∆X is sampled from S, such that |S| = z and

P (∆X ) = px .then the expected number of leaked bits of K , when ∆Y
is observed is

n −
∑

∆X ∈S

px s∆x,∆y∑
∆X j ∈S s∆x j ,∆ypx j

loд(

∑
∆X j ∈S s∆x j ,∆ypx j

px
) (20)

Proof. Since, using Bayes’ law, we have

P (∆X = ∆x |∆Y = ∆y)

=
P (∆Y = ∆y |∆X = ∆x )P (∆X = ∆x )

P (∆Y = ∆y)

=
P (∆Y = ∆y |∆X = ∆x )P (∆X = ∆x )∑

∆x j ∈S P (∆Y = ∆y |∆X = ∆x j )P (∆X = ∆x j )

=

s∆x,∆y
2
n P (∆X = ∆x )∑

∆x j ∈S
s∆xj ,∆y

2
n P (∆X = ∆x j )

.

Therefore,

H (K |Z1, Z2)

=
∑

∆X ∈S

P (∆X = ∆x |∆Y = ∆y )×

(H (X |∆X = ∆x, ∆Y = ∆y ) − loд (P (∆X = ∆x |∆Y = ∆y )))

=
∑

∆X ∈S

s∆x,∆y
2
n P (∆X = ∆x )∑

∆xj ∈S
s∆xj ,∆y

2
n P (∆X = ∆x j )

×

*..
,
loд (s∆x,∆y ) − loд

*..
,

s∆x,∆y
2
n P (∆X = ∆x )∑

∆xj ∈S
s∆xj ,∆y

2
n P (∆X = ∆x j )

+//
-

+//
-

=
∑

∆X ∈S

s∆x,∆y
2
n px∑

∆xj ∈S
s∆xj ,∆y

2
n pxj

loд (
2
n ∑

∆X j ∈S

s∆xj ,∆y
2
n pxj

px
)

=
∑

∆X ∈S

px s∆x,∆y

2
n ∑

∆X j ∈S

s∆xj ,∆y
2
n pxj

(n + loд (

∑
∆X j ∈S

s∆xj ,∆y
2
n pxj

px
))

=
∑

∆X ∈S

px s∆x,∆y∑
∆X j ∈S s∆xj ,∆ypxj

loд (

∑
∆X j ∈S s∆xj ,∆ypxj

px
)

□

Corollary D.2. Given a pair of faulty and correct ciphertexts
Z1 and Z2, if ∆X ∈ {0, 1}n is a uniform random variable, then
H (K |Z1Z2) = n, regardless of the properties of the function S (x ).

Proof. Since

H (∆X |∆Y = ∆y)

= −
∑

∆x ∈{0,1}n
Pr (∆X = ∆x |∆Y = ∆y)loд(Pr (∆X = ∆x |∆Y = ∆y))

= −
∑

∆x ∈{0,1}n

s∆x,∆y

2
n loд(

s∆x,∆y

2
n ),

and

H (X1 |∆X∆Y )

=
∑

∆x ∈{0,1}n
H (X1 |∆X = ∆x ,∆Y = ∆y)Pr (∆X = ∆x ,∆Y = ∆y)

=
∑

∆x ∈{0,1}n

s∆x,∆y

2
n loд(s∆x,∆y ),

from Equation (1), we have

H (K |Z1Z2)

=
∑

∆x ∈{0,1}n

s∆x,∆y

2
n loд(s∆x,∆y ) −

s∆x,∆y

2
n loд(

s∆x,∆y

2
n )

=
∑

∆x ∈{0,1}n

s∆x,∆y

2
n loд(

2
n

s∆x,∆y
s∆x,∆y ) = n

∑
∆x ∈{0,1}n

s∆x,∆y

2
n = n

□

Corollary D.3. If ∆X = ∆x (constant), then using one pair
(Z1,Z2), the key space can be reduced from 2

n to s∆x,∆y .

Proof. If∆X is constant, thenH (∆X |∆Y ) = 0 andH (X1 |∆X∆Y ) =
H (X1 |∆X = ∆x ,∆Y = ∆y) = loд(s∆x,∆y ). Hence, H (K |Z1Z2) =
loд(s∆x,∆y ). □

Corollary D.4. Only linear (affine) Boolean functions achieves
the theoretical security bound H (K |Z1Z2) = n∀∆x , regardless of the
distribution of ∆X .

Proof. In order for a function S (x ) to achieve H (K |Z1Z2) =
n∀∆x for any distribution, s∆x,∆y must be equal to 2

n
or 0∀∆x ,∆y ∈

{0, 1}n , which is achieved only by linear and affine functions. □

TheoremD.5. If∆X = ∆x (constant), then the expected number of
leaked bits ofK is n−

∑
∆y∈{0,1}n loд(s∆x,∆y )P (∆Y = ∆y |∆X = ∆x ).

Proof. We have

H (K |∆X )

=
∑

∆y∈{0,1}n
H (X |∆X ,∆y)P (∆Y = ∆y |∆X = ∆x )

=
∑

∆y∈{0,1}n
loд(s∆x,∆y )Pr (∆Y = ∆y |∆X = ∆x ).

□

E THE DETAILS OF THE GIFT-128 ANALYSIS
GIFT-128 is very similar to GIFT-64 except for the following dif-

ferences:

(1) The block size is 128 bits, divided into 8 groups of 4 nibbles,

each.

(2) 64-bit round keys are used.

(3) Only every two successive round keys are independent, as

opposed to 4 rounds in the case of GIFT-64.
(4) The description of the shuffling operation is slightly different.

It can be viewed as two steps; matrix transposition, followed

by interleaving, as shown in Equation 21.
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

b
(0)
j b

(1)
j b

(2)
j b

(3)
j b

(4)
j b

(5)
j b

(6)
j b

(7)
j

b
(8)
j b

(9)
j b

(10)
j b

(11)
j b

(12)
j b

(13)
j b

(14)
j b

(15)
j

b
(16)
j b

(17)
j b

(18)
j b

(19)
j b

(20)
j b

(21)
j b

(22)
j b

(23)
j

b
(24)
j b

(25)
j b

(26)
j b

(27)
j b

(28)
j b

(29)
j b

(30)
j b

(31)
j



→ (21)



b
(0)
j b

(4)
j b

(8)
j b

(12)
j b

(16)
j b

(20)
j b

(24)
j b

(28)
j

b
(1)
j b

(5)
j b

(9)
j b

(13)
j b

(17)
j b

(21)
j b

(25)
j b

(29)
j

b
(2)
j b

(6)
j b

(10)
j b

(14)
j b

(18)
j b

(22)
j b

(26)
j b

(30)
j

b
(3)
j b

(7)
j b

(11)
j b

(15)
j b

(19)
j b

(23)
j b

(27)
j b

(31)
j



(22)

From this description, any two successive rounds of GIFT-128
can be viewed as a pair of parallel and independent two rounds of

GIFT-64. One instance takes the following nibbles as an input:



b
(0)
j b

(1)
j b

(2)
j b

(3)
j

b
(8)
j b

(9)
j b

(10)
j b

(11)
j

b
(16)
j b

(17)
j b

(18)
j b

(19)
j

b
(24)
j b

(25)
j b

(26)
j b

(27)
j



(23)

while the other one takes the following input:



b
(4)
j b

(5)
j b

(6)
j b

(7)
j

b
(12)
j b

(13)
j b

(14)
j b

(15)
j

b
(20)
j b

(21)
j b

(22)
j b

(23)
j

b
(28)
j b

(29)
j b

(30)
j b

(31)
j



(24)
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