
Maliciously Secure Matrix Multiplication with
Applications to Private Deep Learning?

Hao Chen1, Miran Kim2, Ilya Razenshteyn3, Dragos Rotaru4,5, Yongsoo Song3,
and Sameer Wagh6,7

1 Facebook
2 Ulsan National Institute of Science and Technology

3 Microsoft Research, Redmond
4 imec-COSIC, KU Leuven, Belgium

5 Cape Privacy
6 Princeton University, NJ

7 University of California, Berkeley
haoche@fb.com, mirankim@unist.ac.kr,

{ilyaraz,yongsoo.song}@microsoft.com, dragos@capeprivacy.com,

swagh@alumni.princeton.edu

Abstract. Computing on data in a manner that preserve the privacy
is of growing importance. Multi-Party Computation (MPC) and Homo-
morphic Encryption (HE) are two cryptographic techniques for privacy-
preserving computations. In this work, we have developed efficient UC-
secure multiparty protocols for matrix multiplications and two-dimensional
convolutions. We built upon the SPDZ framework and integrated the
state-of-the-art HE algorithms for matrix multiplication. Our protocol
achieved communication cost linear only in the input and output dimen-
sions and not on the number of multiplication operations. We eliminate
the “triple sacrifice” step of SPDZ to improve efficiency and simplify the
zero-knowledge proofs. We implemented our protocols and benchmarked
them against the SPDZ LowGear variant (Keller et al. Eurocrypt’18).
For multiplying two square matrices of size 128, we reduced the commu-
nication cost from 1.54 GB to 12.46 MB, an improvement of over two
orders of magnitude that only improves with larger matrix sizes. For
evaluating all convolution layers of the ResNet-50 neural network, the
communication reduces cost from 5 TB to 41 GB.

Keywords: Multi-party computation · Dishonest majority · Homomor-
phic encryption

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute over
their inputs while keeping them private. Over the span of few decades this field
turned theoretical ideas into practical implementations that allow to compute

? Work done while Sameer, Dragos, and Hao were at Microsoft Research, Redmond.

2

even one billion Boolean gates per second [2] with an honest majority of par-
ties. The growth of computing on encrypted data has sparked interest in com-
bining MPC with Machine Learning (ML), which allows distrusting parties to
perform ML tasks such as evaluating private decision trees and support vector
machines [36] or evaluating and training neural networks, on their joint data
[35,31,34,38,4].

One important building block in all these works is secure matrix multiplica-
tion, which is often achieved by computing many dot products ~a ·~b. In the case
of honest majority this problem has a straightforward solution: parties multiply
locally each entry ai ·bi and then re-randomize the sum

∑
i ai ·bi to the other par-

ties. Hence, the cost of a dot product is a single opening which is independent
of the vector sizes. However, in the case of dishonest majority the dot prod-
uct protocol must use some correlated randomness (e.g. Beaver triples) for each
multiplication since the secret sharing scheme is no longer multiplicative. Such a
triple requires expensive public key operations and a lot of research focused on
computing triples more efficiently via somewhat homomorphic encryption (HE)
or oblivious transfer [6,19,26,27].

The SPDZ framework [19,18,27,5] is a state-of-the-art protocol for dishonest-
majority MPC under one of the strongest adversarial settings – it assumes all-
but-one corruption and malicious security, meaning that all parties except one
can be controlled by the adversary, and can arbitrarily deviate from the protocol
description. Moreover, SPDZ is proven secure under the Universal Composabil-
ity (UC) framework of Cannetti [11], which means in particular that it is still
secure when composed arbitrarily with other MPC protocols. Under this frame-
work, even if a fast matrix multiplication algorithm such as Strassen’s algorithm
is used, securely multiplying two n × n matrices in SPDZ uses at least O(n2.8)
authenticated Beaver triples. This is prohibitively expensive when targeting ap-
plications with a large number and sizes of matrix multiplications. For instance,
the deep convolutional neural network (CNN) ResNet50 [24] requires more than
4 billion multiplications of plaintext values8. Currently, the best two-party triple
generation algorithm over a 128-bit prime field produces 30, 000 triples per sec-
ond on modest hardware and requires a communication of 15 kbits per party
[27]. Using such an approach, the preprocessing phase for evaluating convolu-
tion layers of ResNet50 will require each party to send 5 TB of data. Our work
reduces the communication by a factor of about 121×, while keeping the same
adversarial setting.

1.1 Our Contributions

We summarize our contributions below:

1. We integrate the idea of classical Beaver triples to multiple matrices into the
dishonest majority SPDZ framework (this idea has been explored previously

8 This is considering the scenario that both the model (i.e., ResNet weights) and
inference inputs are secret shared.

3

in the semi-honest setting in works such as [15,35,38]). This enables comput-
ing any bilinear operation efficiently in a dishonest majority MPC setting.
We focus on two types of bilinear operations, matrix multiplications and two-
dimensional convolutions. We call the correlated randomness ‘matrix triple’
and ‘convolution triple’, respectively. We then applied the state-of-the-art
algorithm for HE matrix multiplication [25] to efficiently generate authen-
ticated matrix triples with low communication complexity. Such algorithms
allow us to have a communication cost linear in the size of the input and
output, and independent of the complexity of the operation itself, in both
offline and online phases. For example, in terms of matrix multiplication
of n-by-n matrices, our method reduced the communication from O(n3) to
O(n2) required by SPDZ, with similar computational overhead.

2. We introduced some further optimizations to the offline phase of SPDZ:

– We avoid the “sacrifice” procedure in SPDZ via switching to slightly
larger HE parameters which supports circuits of one more depth. By
doing this, we saved a factor of (almost) two in overall communication
and computation.

– We optimized the zero-knowledge proof of plaintext knowledge in the
offline phase of SPDZ, reducing the amortized communication overhead
for proving each ciphertext from 2.5 to roughly 1.5.

3. We demonstrated the concrete efficiency of our protocols for (1) private ma-
trix multiplications and (2) private neural network inference in the two-party
case. In the former case, we benchmarked the private matrix multiplications
over various matrix sizes while in the latter, we benchmarked evaluation of all
convolution layers of ResNet-50, a massive, state-of-the-art neural network
for image classification with 52 layers. The preprocessing phase improves by
a factor of at least 121 compared to SPDZ. We integrated the convolution
triples in MP-SPDZ [20] to evaluate the online phase ResNet-50 convolu-
tions. Our approach reduces the online communication overhead from 86.9
GB to only 0.54 GB (for a plaintext modulus p ≈ 2128), which amounts to a
factor of at least 150× improvement over the existing matrix multiplication
in SPDZ using Strassen’s algorithm.

1.2 Related Works

To the best of our knowledge, our work is the first to consider efficient linear
algebra in the context of dishonest majority MPC. Previous research works pri-
marily focused on evaluating relatively small ML models such as support vector
machines or decision trees [32,16]. However, for deep convolutional neural net-
works (CNN) the linear operations occupy a significant part of the computation.
We give a brief overview on some recent protocols for combining MPC with ML:

1. In ABY3 [34], Mohassel and Rindal mix secret sharing with garbled circuits
for the three party case with honest majority. While their work introduces
many clever techniques to perform share conversions, it is hard to estimate

4

its performance on deep neural networks such as ResNet50 since their op-
timizations are circuit dependent and precision sensitive. It is also unclear
how to extend their techniques to support an arbitrary number of parties
with a dishonest majority.

2. SecureNN [38] operates under the same trust assumption as ABY3: three
party protocols with honest majority. While they also introduced some clever
techniques to compute the sign function in MPC over rings, these only work
for their specific setting.

3. Barak et al. [4] used quantized datatypes instead of fixed point arithmetic
to realize secure inference on Google’s MobileNets. They have implemented
secure quantized dot products to perform the convolutions in MobileNets for
various adversary structures (semi-honest, honest majority, and dishonest
majority). If the convolutions are done by evaluating dot products, they
incur an O(n3) communication cost for convolving two n×n matrices in the
dishonest majority case. Our work would cut down a factor of n from their
communication cost.

4. Helen [39] proposed a protocol for distributed convex optimization by con-
verting between SPDZ and the Paillier additively homomorphic encryption
(AHE) scheme. They use zero-knowledge proofs on top of Paillier for secure
matrix-vector multiplication in the dishonest majority setting. Instead, our
work does not need costly conversions, utilizes more efficient lattice-based
AHE scheme, and is fully compatible with the SPDZ framework.

5. Jiang et al. [25] is a more recent protocol and strictly outperforms [33] – the
latter takes 19 seconds to multiply two 128x128 matrices whereas the former
only takes 5 seconds. Our work outperforms that of Jiang et al. [25].

1.3 Roadmap

We present preliminary materials in Section 2. In Section 3, we introduce our
changes to the SPDZ framework to better support bilinear operations, including
an algorithm to generate authenticated matrix triples, an optimization which
removes the sacrifice procedure, and optimizations on the ZKPoPK. We go on to
present the experimental results for private matrix multiplication, private nearest
neighbor search, and pirvate evaluation of ResNet-50 in Section 4. Finally, we
conclude in Section 5.

2 Preliminaries

2.1 Notation

We use ~x to denote vectors i.e., ~x = (x1, . . . , xk) for some k specified in the
context. We also use the notation [k] to denote the set {1, 2, . . . , k}. For a positive
integer q, we identify Zq = Z ∩ (−q/2, q/2]. For a finite set S, U(S) denotes a
uniform distribution over S.

5

Adversarial setting. Our protocols in this work follow the same adversarial
setting as SPDZ, meaning that they are secure under all-but-one corruption and
malicious security (we will refer to this setting as dishonest majority for short).
Also, our protocol is proven secure under the UC framework [10], a property
inherited from SPDZ.

2.2 Authenticated Shares in SPDZ

Let n be the number of parties involved in the multi-party computation. In the
SPDZ framework, all computations are performed over the finite field Zp with
prime p. We use JxKα to denote “authenticated shares”, i.e., the i-th party holds
(xi, mi) such that x ≡ x0 + . . . + xn−1 (mod p) and α · x ≡ m0 + . . . + mn−1
(mod p). The parties also hold shares αi of the global MAC key α ≡ α0 + . . .+
αn−1 (mod p). In other words,

JxKα := {(xi,mi, αi)}ni=1 such that∑
i

mi ≡

(∑
i

αi

)
·

(∑
i

xi

)
(mod p)

(1)

2.3 Bilinear Triples

Beaver’s multiplication triple technique is widely used in secure computation
in both semi-honest and malicious settings. [6,19,35,38]. Let F be a finite field.
Recall that a multiplication triple is a tuple ([a], [b], [c]) where a, b ∈ F are
random elements such that c = a · b. Here [x] represents an additive sharing of
x where each party has a share xi such that

∑n
i=1 xi = x. These multiplication

triples can be utilized to perform private multiplication: in order to multiply
secret-shared values x and y. The parties reveal x − a and y − b, and compute
[x · y] = (x−a) · (y− b) + [a] · (y− b) + (x−a) · [b] + [c]. In the dishonest majority
malicious adversarial setting, SPDZ enhances the above to authenticated triples
(JaK,JbK,JcK).

Mohassel and Zhang [35] generalized the above notion to “matrix triples”
and applied it to secure training of machine learning models in the semi-honest
setting. We take this idea further and consider triples for any bilinear operation.
Then, we integrate them with the SPDZ preprocessing framework to provide
security in the dishonest majority malicious adversarial setting.

Bilinear triples. Let l,m, k be positive integers and let ~ : Fl × Fm → Fk
be a bilinear function9. Then, we define a ~-triple as a tuple of secret sharings
[a], [b], [a~ b] where a, b are uniformly random. Given such a triple, it is simple
to securely compute a secret sharing of x ~ y given secret sharings of x and y

9 A function ~ is called bilinear if it satisfies the relations (αx1 + x2) ~ y = α(x1 ~
y) +x2~ y and x~ (αy1 + y2) = α(x~ y1) +x~ y2 for arbitrary α ∈ F, x1, x2, x ∈ Fl
and y1, y2, y ∈ Fk.

6

following Beaver’s method verbatim. Note that when ~ is scalar multiplication,
we get back Beaver’s multiplication triple; when ~ is matrix multiplication, we
get the matrix triple in [35]. Another example is convolution, described in more
detail below.

Using ~-triples instead of Beaver triples for securely computing bilinear op-
erations has an advantage of lower communication cost in the triple consumption
phase. For example, multiplying two n-by-n matrices with Beaver triples would
cost O(n3) field elements being communicated, or O(nlog 7+o(1)) using Strassen’s
algorithm, whereas using matrix triple only amounts to O(n2) communication
cost. Importantly, we will see that using ~-triples could also reduce the commu-
nication cost in the triple generation phase, via homomorphic encryption.

Convolutions. Convolution is a bilinear operation between tensors widely used
by deep neural networks [30,28]. Here we will define and discuss two-dimensional
convolutions, since they are used by a ResNet network [24] we use for bench-
marking, but our approach can be easily generalized to all dimensions.

Let Aijk be an input tensor, where 1 ≤ i ≤ h and 1 ≤ j ≤ w are spatial
coordinates, and 1 ≤ k ≤ s is the channel. Suppose we would like to compute
an (2l + 1)× (2l + 1)-convolution for some l ≥ 0, given by a tensor B∆i,∆j,k,k′ ,
where −l ≤ ∆i,∆j ≤ l are shifts of the spatial coordinates, and 1 ≤ k ≤ s and
1 ≤ k′ ≤ s′ are the channels. The resulting tensor Cijk′ = conv(A,B) has h×w
spatial coordinates and s′ channels and is defined via the formula:

Cijk′ =
∑

∆i,∆j,k

Ai+∆i,j+∆j,k ·B∆i,∆j,k,k′ ,

where in the right-hand side, we set the entries of A to be zero if i + ∆i or
j +∆j are outside of the ranges [1;h] and [1;w], respectively. Since convolution
is bilinear, we can consider convolution triples, that is secret shares of uniformly
random tensors A,B and secret shares of conv(A,B).

We can reduce convolution to matrix multiplication as follows: we create
an wh × (2l + 1)2 · s matrix A with A(i,j)(∆i,∆j,k) = Ai+∆i,j+∆j,k, as well as
an (2l + 1)2 · s × s′ matrix B defined as: B(∆i,∆j,k)k′ = B∆i,∆j,k,k′ . Then one
can extract C from the product C = AB (which is of size wh × s′) as follows:
Cijk′ = C(i,j)k′ . Note that 1 × 1 convolution (l = 0) is exactly matrix multipli-
cation. When l > 0, one of the matrices A is obtained from (2l + 1)2 stacked
permuted instances of the flattening of A. Overall, using this reduction, we can
compute the convolution in O((2l + 1)2 · whss′) operations10. Thus, evaluat-
ing the convolution using the authenticated Beaver triples in SPDZ requires
O((2l + 1)2 · whss′) communication. In contrast, using our convolution triples
yields a communication cost of merely O((wh + s′) · s · (2l + 1)2). Sometimes,
one is willing to stride the convolution. This simply corresponds to the regular
sampling of the i, j coordinates of the answer. In terms of matrix multiplications,
this corresponds to sampling a subset of rows of A.

10 In principle, one can speed it up using Fourier or Winograd transforms [29], but we
leave the study of these algorithms in the secure setting for the future work.

7

2.4 The BFV Scheme

We use the Fan-Vercauteren variant of Brakerski’s scale-invariant HE scheme [8,21],
which we shall refer to as the BFV scheme. For a power-of-two integer N , we
denote by R = Z[X]/(XN + 1) and Rq = Zq[X]/(XN + 1) the ring of integers
of (2N)-th cyclotomic field and its residue ring modulo q. We define ‖a‖∞ of an
element a ∈ Rq as the infinite norm of its coefficient vector in ZNq . A secret key
sk = s ∈ R is sampled uniformly from the set R3 of ternary polynomials with
coefficients in {0,±1}. A public key of BFV is generated by

pk = (−a · s+ e, a) ∈ R2
q , (2)

for a ← U(Rq) and e ← χ from the error distribution χ over R. We set χ to
be a discrete Gaussian with a small variance and let ρ be an upper bound of
χ, i.e., |e| ≤ ρ holds with an overwhelming probability where e ← χ. The BFV
encryption and decryption procedures are given by the following formulas:

Enc : m 7→ cm = u · pk + (∆ ·m+ e0, e1) (mod q),

Dec : cm 7→ m = b∆−1 · (c0 + c1 · s)e (mod p),
(3)

where cm = (c0, c1), m ∈ Rp is the message to be encrypted, ∆ = bq/pc, u ←
U(R3), e0, e1 ← χ, and b·e denotes the nearest integer function. For the remain-
der of the paper, we use the shorthand rm = (u, e0, e1) ∈ R3 to denote the
randomness used for encrypting a plaintext m. We write cm = Enc(m, rm) when
the randomness is taken as input of encryption.

We define the normalized norm of randomness rm by ‖rm‖ = max{‖u‖∞ , ρ−1·
‖e0‖∞ , ρ−1 · ‖e1‖∞}. For B > 0, we call c a B-ciphertext if there exists m ∈ Rp
and rm = (u, e0, e1) ∈ R3 such that ‖rm‖ ≤ B and c = Encpk(m, rm). We also use
UB to denote a uniform distribution over the set of triples r = (u, e0, e1) ∈ R3

such that ‖r‖ ≤ B.
The native plaintext space of BFV is Rp, but we can exploit the Discrete

Fourier Transform (DFT) over Zp to pack multiple values in a single ciphertext
and support parallel computation in a single instruction multiple data (SIMD)
manner. We choose a plaintext modulus satisfying p = 1 (mod 2N) so that
XN +1 =

∏
i∈Z×2N

(X−ζi) for a primitive 2N -th root of unity ζ of the finite field

Zp. Hence, we can use the packing technique via the ring isomorphism Rp → ZNp ,

m(X) 7→ (m(ζi))i∈Z×2N
.

Recall that the multiplicative group Z×2N is isomorphic to Z2 × ZN/2. In our
implementation, we encode two vectors of length N/2 into a single element of
Rp using this algebraic structure. The BFV scheme support the simultaneous
rotation of these two based on the homomorphic evaluation of automorphism
X 7→ X5. More generally, we can perform an arbitrary linear transformation on
these two vectors by combining homomorphic rotation and plaintext-ciphertext
multiplication in BFV. The complexity of a linear transformation is mainly
dominated by k rotations where k ≤ N/2 is the number of nonzero diago-

nals (A0,i, A1,i+1 . . . , AN/2−1,i−1) of its matrix representation A ∈ ZN/2×N/2p .
We refer the reader to [22] for details.

8

2.5 Matrix Multiplication Using HE

We recall the protocol from [25] which transforms square matrix multiplications
into HE-friendly operations. For a d×d square matrix A = (ai,j)0≤i,j<d, we first
define useful permutations σ, τ , φ, and ψ on the set Zd×dp . For simplicity, we
assume that N/2 = d2. All the indices will be considered as integers modulo d.
Let σ(A)i,j = ai,i+j , τ(A)i,j = ai+j,j , φ(A)i,j = ai,j+1, and ψ(A)i,j = ai+1,j .
Then for two square matrices A,B of order d, we can express the matrix product
A×B as follows:

A×B =

d−1∑
k=0

(
φk ◦ σ(A)

)
�
(
ψk ◦ τ(B)

)
, (4)

where � denotes the component-wise multiplication between matrices (see Sec-
tion 3.1 of [25] for more detail).

We can identify a matrix of order d × d with a vector of length d2 via the
encoding map Zd2p → Zd×dp , ~a = (a0, . . . , ad2−1) 7→ A = (ad·i+j)0≤i,j<d. A ci-
phertext will be called an encryption of A if it is an encryption of the plaintext
vector ~a. Suppose that we are given two ciphertexts cA and cB that encrypt σ(A)
and τ(B), respectively. Then we define the homomorphic matrix product by

cA ~ cB =

d−1∑
k=0

(
φk(cA)� ψk(cB)

)
, (5)

where c� c′ denotes the homomorphic multiplication between two ciphertexts c
and c′. The permutations φk and ψk are fixed linear transformations over Zd2p ,
which can be evaluated as described above. The evaluation of a permutation
includes only two homomorphic rotations since the matrix representation of φk

or ψk has two nonzero diagonals. It follows from Eq. (4) that cA ~ cB is an
encryption of A×B.

The authors of [25] implemented the matrix multiplication algorithm over
the CKKS scheme [14], while we apply the same algorithm to the BFV scheme
encrypting two vectors of dimension (N/2) with entries in Zp. We will encrypt

two square matrices A and B of size d =
√
N/2 in a single ciphertext. As noted

in Section 2.4, the BFV scheme supports parallel arithmetic operations and
permutations on two vectors. Hence, we can perform two homomorphic matrix
multiplications simultaneously by fully utilizing the slots.

3 Protocol Specification

We describe our major contributions in this section. First, we propose our algo-
rithm for generating authenticated matrix triples. Then, we introduce two other
optimizations. The first one improves the triple generation phase, by carefully
choosing the HE parameters to avoid the sacrifice stage. The second one improves
the zero-knowledge proof of knowledge in SPDZ.

9

ΠPrep

Usage: We execute ΠPoPK by batching u ciphertexts together. At the same time,
we use the SIMD properties of HE to optimally compute on N plaintext ele-
ments at the same time (cf. Sec 4.1). Calls to ΠPoPK are amortized in batches
of u, a detail omitted for simplicity. Also, randomness used in the encryption
is implicit and is the randomness used for a fresh ciphertext (cf. Sec 2)

Initialize: All parties first invoke FKeyGenDec to obtain the public key pk. Then,
each party does the following:
1. Each party generates αi ← Zp. Let α :=

∑
i α

i (mod p).
2. Each party computes and broadcasts a fresh encryption ciα ← Encpk(α

i)
(Note that this ciphertext has αi in all the N slots. Refer Sec. 2).

3. The parties invoke protocol ΠPoPK on ciphertexts cαi for i ∈ [n].
4. All parties compute cα ←

∑
i c
i
α.

Authenticated Singles: Parties run this protocol to generate u ·N random au-
thenticated shares in Zp in one invocation. Let i ∈ [n] and k ∈ [u].
1. All parties sample random rik ← U(Rp). Each party computes and broad-

casts cirk = Encpk(r
i
k). Let crk ←

∑
i c
i
rk .

2. The parties invoke protocol ΠPoPK on the u ciphertexts cirk
3. Parties run ΠAddMacs to generate

(
γ(rk)1, . . . , γ(rk)n

)
← AddMacs(crk).

4. Parties output JrkKα =
((
r1k, γ(rk)1

)
, . . . , (rnk , γ(rk)n)

)
.

Matrix Triples: For the ease of exposition, we encode one matrix in one cipher-
text. Refer to Section 4.1 for more details on how to optimally use all the
ciphertext slots. Let ~ refer to the HE ciphertext-ciphertext matrix multiplica-
tion relation defined in Section 2.5. Let j ∈ [d1], k ∈ [d2], and l ∈ [d3]. Steps 1-10
are done for all j, k, l in their respective ranges. Set v = (secs +2)/ log2(2N+1)
1. Each party generates random Aijk ← U(Rp) and Bikl ← U(Rp).
2. Compute and broadcast ciAjk

← Enc(σ(Aijk)) and ciBkl
← Enc(τ(Bikl)).

3. All parties invoke ΠPoPK for ciAjk
and ciBkl

for each i ∈ [n].

4. All parties set cAjk ← 2 ·
∑
i c
i
Ajk

and cBkl ← 2 ·
∑
i c
i
Bkl

.
5. All parties compute cCjl ←

∑
k cAjk ~ cBkl .

6. Parties run ΠAddMacs to generate (γ(Ajk)1, . . . γ(Ajk)n) ← AddMacs(cAjk)

and (γ(Bkl)
1, . . . γ(Bkl)

n)← AddMacs(cBkl).
7. Parties run ΠDDec to generate

(
C1
jl, . . . C

n
jl

)
← DDec(cCjl).

8. Parties run ΠAddMacs to generate
(
γ(Cjl)

1, . . . γ(Cjl)
n
)
← AddMacs(cCjl).

9. Set Aijk ← 2 ·Aijk and Bikl ← 2 ·Bikl.
10. Generate a large matrix by using Aijk as sub-matrix blocks – k blocks per

row and j blocks per column. This forms a matrix of dimensions (dm ·
block size) where m ∈ {1, 2} Similarly, rearrange the γ(Ajk)i and call this
group of 2 matrices as JAK. Similarly, set JBK and JCK (except without
scaling by factor of 2 for C).

Convolution Triples: This uses matrix triples to generate convolution triples.
1. Parties call Authenticated Singles to generate 2D tensors JXK, JY K.
2. Parties call Matrix Triples (cf. Sec 2.3 for dimensions of the matrices) to get

a matrix multiplication triple JAK, JBK, JCK.
3. All parties open ε = JX ′ −AK and δ = JY ′ −BK, where X ′, Y ′ are matrices

generated by converting convolutions into matrix multiplications.
4. Compute JZK = JCK + ε× JBK + JAK× δ + ε× δ. Output JXK, JY K, JZK.

Fig. 1: Protocol for generating various preprocessing material

10

ΠDDec

Distributed Decryption: Parties run the following protocol:
1. Parties generate ri ← U(Rp). Let cm := (c0, c1).
2. Compute vi as follows:

vi =

{
c0 + c1 · si if i = 1

c1 · si if i 6= 1

3. Broadcast ti ← ∆ · ri + vi + ei (mod q) where ei ← U(RB·2secdd)
4. Party i = 1 outputs m1 = b∆−1 · (

∑
i t
i)e − r1 (mod p) while all other

parties (i 6= 1) output mi = −ri (mod p)
5. Finally, Decode(mi) to obtain of vector of plaintexts encoded in each mi.

Fig. 2: Protocol for distributed decryption.

3.1 Generation of Bilinear Triples

In this section we present our main contribution, which can be thought of as an
improvement to the SPDZ framework to support efficient bilinear operations, in
particular matrix multiplications and convolutions. Recall that the offline phase
of the SPDZ framework generates Beaver triples, which means that to multiply
two square matrices of size d we need to consume M(d) triples, where M(d)
is the complexity of the matrix multiplication algorithm of choice. In order to
minimize the communication overhead, we designed new offline phases for gen-
erating matrix and convolution triples. We use HE algorithms to generate these
triples in the offline phase. In the online phase, they are consumed in essentially
the same way as Beaver triples. Such triples allow us to have communication
linear in the size of the input and output, and independent of the number of
multiplications, in both offline and online phases.

On a high level, our protocol for generating authenticated matrix triples
works as follows. First, each party Pi select uniformly random matrices Ai, Bi
and send an encryption of these matrix. Then, the parties engage in the n-party
zero-knowledge proof, and obtain encryptions of A =

∑
Ai and B =

∑
Bi with

bounded noise. Next, parties use the homomorphic matrix multiplication algo-
rithm recalled in Section 2.5 to compute an encryption of C = AB. Finally, the
parties use homomorphic multiplication to compute encryptions of αA,αB, αC,
and perform distributed decryption on the resulting ciphertexts. In this way, the
parties end up with a valid authenticated triples (JAKα, JBKα, JCKα). We provide
the formal description of our pre-processing protocol in Figure 1, with the dis-
tributed decryption protocol in Figure 2. Our functional dependence is presented
in Figure 5d and our main results presented below.

Theorem 1. In the (FPrep, FCommit)-hybrid model, the protocol ΠOnline (Fig-
ure 12)implements FOnline with statistical security against any static, active ad-
versary corrupting up to n− 1 parties.

11

Theorem 2. If the underlying cryptosystem is somewhat homomorphic and
IND-CPA secure, then ΠPrep (Figure 1) implements FPrep with computational
security against any static, active adversary corrupting up to n − 1 parties, in
the (FKeyGen, FRand)-hybrid model.

Theorem 3. The protocol ΠDDec securely implements FKeyGenDec in the FKeyGen-
hybrid model with statistical security against any static adversary corrupting upto
n − 1 parties if B′ is an upper bound on the noise of the input ciphertext, and
B′ · 2n · 2secdd < ∆.

Proof of Theorems 1, 2, and 3 are presented in Appendix B.

3.2 Authenticating Triples Without Sacrifice

To introduce this optimization, we first recall the technique of authenticated
multiplication triples as proposed by the SPDZ line of work [19,18]. In the frame-
work, there is a global MAC key α ∈ Fp and parties have access to a ciphertext
cα encrypting α, here the ciphertext is generated via an HE scheme, whose pub-
lic key is known to all parties and the secret key is secret-shared among the
parties11. During the triple generation phase, parties obtain ciphertexts cx, cy, cz
where supposedly the relation z = xy holds. In order to authenticate the secret
values x, y and z, the parties engage in an AddMacs subroutine (this is a com-
mon procedure to prevent malicious behavior for dishonest majority protocols,
cf [19,18]), in which parties compute and then jointly decrypt cα � ct to obtain
secret shares of α · t for t ∈ {x, y, z}. However, a malicious adversary can inject
an error term ε into z such that z = xy + ε, and the AddMacs subroutine could
authenticate such an incorrect triple, which corrupts the final computation re-
sult. In order to resolve this issue, a step called sacrifice was introduced, where
one triple is consumed to check the correctness of the other. Sacrificing brings a
two times overhead to the complexity of the triple generation phase.

We begin by noting that SPDZ only uses a depth-1 HE, i.e., the underlying
HE scheme could support one multiplication. Recall that in the SPDZ triple
generation, after computing a ciphertext cz = cx � cy, the Reshare procedure is
called which outputs secret shares of z′ and a new ciphertext cz′ with smaller
noise than cz. Then, the AddMacs procedure is called, which produces authenti-
cated share Jz′Kα. In particular, to generate shares of the MAC on z, prior work
requires that the distributed decryption subroutine to be called on z to get a
level-1 ciphertext (z′) that enables adding the MAC on it. This way, an additive
error introduced in z can be “authenticated” using the AddMacs procedure by
the adversary. To prevent against such an attack, prior work required a sacri-
fice of one triple with other which was proved to ensure that the triples do not
have an error. The MacCheck ensures that any such additive error introduced is
caught with high probability.

11 The initialize phase in ΠPrep will require Diag flag similar to [19,18] to ensure that
the ciphertext encodes the same MAC key in the same slots.

12

In our work, we modify the HE parameters to support larger depth, in par-
ticular depth-2 computation. The homomorphic encryption product (z = xy) is
done over public ciphertexts and hence z is guaranteed to equal xy. However,
to add MACs to the product z, we do not need to run a distributed decryption
protocol (we only need it for generating the shares of z but not for the MAC
generation). In our work, we directly call the AddMacs routine on the public
ciphertext for z, i.e., cαz = cz � cα, and perform distributed decryption on cαz
to obtain the MAC shares. This ensure that the additive error introduced by
the adversary when running DDec on cz to get shares of z is independent of α
from the additive error introduced in the DDec of cαz. This way, we eliminate
the need for a sacrifice and simply rely on the MacCheck subroutine to catch
malicious behavior.

Thus, we save the computation and communication by a factor of two, with
a less-than-two additional overhead due to the need to increase underlying HE
parameters to support larger depth computations. This optimization is particu-
larly useful in our bilinear triple generation protocol, since in this case we already
need to increase the HE parameters in order to run the homomorphic matrix
multiplication algorithm, and the overhead of supporting just one more depth is
small.

3.3 Improved ZKPoPK Based on BFV Scheme

In the SPDZ offline phase, parties need to use a homomorphic encryption scheme
(the BGV scheme of Brakerski, Gentry, and Vaikuntanathan [9]) to encrypt ran-
dom values, and broadcast these encryptions. Then, they run homomorphic eval-
uation and distributed decryption to generate the multiplication triples. Since
parties could be malicious, each party needs to prove that it is providing a valid
ciphertext. In the context of BGV, this means the coefficients of the message and
randomness used in the encryption method must be bounded in size. This zero-
knowledge proof of plaintext knowledge (ZKPoPK) follows a 3-move Schnorr
protocol pattern. The goal is to prove knowledge of message x and encryption
randomness r with bounded size, such that cx,r = b. The prover chooses some
random mask values yx, yr and sends cyx,yr to the verifier. After the verifier se-
lects a challenge e the prover sends back the masked values zx = yx + e · x and
zr = yr + e · r. Finally, the verifier checks whether czx,zr = cyx,yr + e · b and
whether the noise and plaintext bounds are correct on producing cx by checking
the norm of zx and zr. The state-of-the-art ZKPoPK in [5] enhances the above
approach by designing an n-prover protocol which adds the ability to prove the
validity of sum of n ciphertexts instead of proving each individual ones.

Our modification. We note that the BFV homomorphic encryption scheme of
Brakerski/Fan-Vercauteren [8,21] provides the same functionalities as the BGV
scheme, while the two schemes have some subtle differences, which we will exploit
for our improved zero-knowledge proof. In particular, BFV allows selecting the
plaintext modulus p to divide the ciphertext modulus q, which is not allowed

13

in BGV12. We will use this fact to simplify and reduce the complexity of the
zero-knowledge proof of plaintext knowledge (ZKPoPK) component in SPDZ.

Recall that the BGV encryption of a message m with public key pk and
randomness (u, e0, e1) is

c = u · pk + (m+ pe0, pe1) (mod q). (6)

Although an honest party would encrypt a message m ∈ Rp with ‖m‖∞ ≤ p/2,
a malicious party can use any m ∈ R, and the excess part m− [m]p goes into the
noise of the ciphertext. Hence the prover needs to prove that ‖m‖∞ is not too
large. This is done by having the prover send encryptions of random messages y
with log ‖y‖∞ ≈ seczk + log p and later reveal a linear combination of y and m.
On the other hand, in the BFV scheme, an encryption of m is the form of

c = u · pk + (∆ ·m+ e0, e1) (mod q), where ∆ = bq/pe. (7)

Suppose p divides q, then ∆ = q/p exactly, and using a message m ∈ R in the
encryption algorithm is equivalent to using [m]p due to the automatic reduction
modulo q on the ciphertexts. Therefore, the prover in our ZKPoPK only needs
to prove upper bounds on the encryption randomness, and it suffices to sample
the “masking elements” y as random elements in Rp. This reduces the size of
the proof, since we reduce the coefficients of the masked plaintexts sent by the
prover (the terms zi in [5, Figure 1]) from log p+log seczk bits down to log p bits.

ZKPoPK. The zero-knowledge proof of knowledge we describe next (Figure 3)
is a n-party ZKP used in the preprocessing phase. The n players all simultane-
ously act as the provers and the verifiers. Sampling is an algorithm that describes
the behavior of honest parties to generate their ciphertexts and broadcast them
to the other parties. This algorithm satisfies the relation given in Eq. 8. How-
ever, ΠPoPK provides weaker guarantees as given in Eq. 9 which will be sufficient
for the preprocessing phase13. In particular, the protocol introduces a soundness
slack in the bounds that can be proven on the witness. The protocol works in
the standard 3-move Schnorr protocol pattern as described below:

1. Each party Pi independently runs the “commitment” algorithm on (xi, wi)
to get (commi, statei) ← Commit(xi, wi) and broadcasts commi to all the
other parties.

2. The n parties jointly generate a challenge w (produced via a call to an ideal
functionality FRand)

3. Each party Pi independently runs the “response” algorithm to get respi ←
Response(statei, w)

4. Each party Pi independently runs the “verification” algorithm and accept if
the output is true: Verify({commi, respi}i∈[n], w) == True.

12 gcd(p, q) = 1 is required for security of BGV
13 This is the worst case gaurantee when all provers are dishonest while at least one

verifier is honest, which in the case when provers and verifiers are the same entities
is the dishonest majority model.

14

Ru,HonestPoPK =
{(

(x1, . . . , xn) , (w1, . . . , wn)
)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai1, r

i
a1), . . . (aiu, r

i
au)
)

:

cak = Encpk(ak, rak) and

‖rak‖ ≤ n where

cak =
∑
i

ciak and rak =
∑
i

riak

}
(8)

Ru,2PoPK =
{(

(x1, . . . , xn) , (w1, . . . , wn)
)
,

xi =
(
ci1, . . . , c

i
u

)
, wi =

(
(ai1, r

i
a1), . . . (aiu, r

i
au)
)

:

2 · cak = Encpk(2 · ak, 2 · rak) and

‖2rak‖ ≤ Nnu · 2seczk+1 where

cak =
∑
i

ciak and rak =
∑
i

riak

}
(9)

Before we describe the protocol, we reiterate some key notation. The normal-
ized norm of randomness rm by ‖rm‖ = max{‖u‖∞ , ρ−1 · ‖e0‖∞ , ρ−1 · ‖e1‖∞}.
For B > 0, we call c a B-ciphertext if there exists m ∈ Rp and rm = (u, e0, e1) ∈
R3 such that ‖rm‖ ≤ B and c = Encpk(m, rm). We also use UB to denote a uni-
form distribution over the set of triples r = (u, e0, e1) ∈ R3 such that ‖r‖ ≤ B.
We set ρ = 20 following [5] to ensure the randomness r from an honest party
satisfies ‖r‖ ≤ 1 with overwhelming probability. Furthermore, we also use the
following distributions (specifically the third) in the description of the protocol:

1. ZO(0.5, k): This distribution generates a vector of size k with elements
{xi}ki=1 chosen from {−1, 0,+1} such that the Pr(xi = −1) = 0.25,Pr(xi =
+1) = 0.25, and Pr(xi = 0) = 0.5 for all i ∈ [k].

2. DN (σ2, k): This distribution generates a vector of size k with elements drawn
according to an approximation to the discrete Gaussian distribution with
variance σ2.

3. RG(0.5, σ2, k): This distribution generates a triple of elements (u, e0, e1)
where u← ZO(0.5, k) and e0, e1 ← DN (σ2, k).

Improvements compared to prior work. In our protocol, the hiding on
the message (zil) is information-theoretic (as opposed to statistical hiding in
TopGear) and hence does not need any check during the verification phase. This
is due choosing p | q in underlying BFV scheme. In addition, the ZKPoPK in
[5] sends the polynomials zil and rizl as elements in Rq, which is more than
necessary since q is typically large but these polynomials are supposed to have
bounded norm. We can reduce this cost by sending zil and rizl in bounded size

15

ΠPoPK

Proof of Plaintext Knowledge (PoPK): This protocol is run between n parties –
each acting as a prover and verifier simultaneously. The protocol flow is a standard
three-move structure (commitment, challenge, and response) called Σ-protocol
with a single challenge produced using an ideal functionality FRand. Let u, v be two
proof parameters, Flag ∈ {Diag,⊥}. We use i to denote party index and k, l for
variables iterating across ciphertexts (k ∈ [u], l ∈ [v]). Let n denote the number of
parties and N denote the degree of the cyclotimic polynomial used for HE. Ensure
that v ≥ (secs + 2)/ log2(2N + 1).

Sampling (Sampling phase)

1. On input i ∈ [n], if Flag =⊥ sample aik ← U(Rp) for each k ∈ [u]. If Flag = Diag,
sample aik as a random diagonal element in U(Rp) for each k ∈ [u].

2. Generate riak ←RG(0.5, σ2, N).
3. Compute ciphertexts ciak = Encpk(a

i
k, r

i
ak).

4. Define vectors ~ca = (cia1 , . . . , c
i
au), ~ai = (ai1, . . . a

i
u) and ~ria = (ria1 , . . . r

i
au).

Output (xi, wi) = (~cia, (~a
i, ~ria)).

Commit (Commitment phase)

1. Party Pi generates v ciphertexts ciyl = Encpk(y
i
l , r

i
yl) where l ∈ [v], yil ← U(Rp),

and riyl ← Uu·2seczk .
2. Party Pi broadcasts a commitment commi ← {ciyl}∀l.

Challenge (Challenge phase)

1. Parties call FRand to obtain a v × u challenge matrix w with random entries. If
Flag =⊥, entries of w come from {±Xj}0≤j<N ∪ {0}. If Flag = Diag, entries of
w come from {0, 1}.

Response (Response phase)

1. Party Pi computes zil = yil + (w · ~ai)l and rizl = riyl + (w · ~ria)l.
2. Party Pi sets respi ← {zil , rizl}∀l and broadcasts respi.

Verify (Verification phase)
Each party then performs the following computations and verifications:

1. Compute cizl = Encpk(z
i
l , r

i
zl).

2. Compute ~ca ←
∑
i
~cia, cyl ←

∑
i c
i
yl , czl ←

∑
i c
i
zl , zl ←

∑
i z
i
l , and rzl ←∑

i r
i
zl .

3. Verify czl = cyl + (w ·~ca)l and ‖rzl‖ ≤ n · u · 2
seczk .

4. If Flag = Diag then additionally verify that zl is a diagonal plaintext element.
5. If all checks pass, parties accept otherwise they reject.

Fig. 3: Protocol for proof of plaintext knowledge.

16

(since zil ∈ U(Rp) and all the coefficients of rizl should be bounded by u · 2seczk
or ρ · u · 2seczk). In this way, we can also omit the check on size of rzl in Step 3
of Verify phase.

Note that the “slack” in the ZKP provides looser bounds on the norms of
values as well as multiplied the values themselves by a factor of 2. This is a
consequence of the zero-knowledge proof. Figure 1 shows how to account for this
by modifying the preprocessing protocol to takes these slacks into consideration.
The above describes the zero-knowledge proof protocol. We define the security
of the ZKPoPK similar to prior work [5] and present it below for completeness.

Theorem 4. The n-party ZKPoPK-protocol defined by ΠPoPK satisfies the fol-
lowing three properties:

1. Correctness: If all parties Pi, with inputs sampled using the Sampling al-
gorithm (in ΠPoPK, Figure 3), follow the protocol honestly, then an honest
verifier will accept with probability one.

2. Soundness: Let A = (A1,A2,A3) be a tuple of PPT algorithms and let
ε ∈ [0, 1). Consider the following game:

(1a) A1 takes no input and outputs I ⊂ [n], {xi}i∈I and stateA1
.

(1b) Choose (xj , wj)← Sampling(j) for each Pj , j /∈ I.
(1c) Compute (commj , statej)← Commit(xj , wj) for j /∈ I.
(2a) A2 on input stateA1

, {xj , commj}j /∈I output stateA2
, {commi}i∈I .

(3a) Choose a uniformly random w and compute respj ← Response(statej , w)
for j /∈ I.

(4a) A3 on input stateA2
, w, {respj}j /∈I outputs {respi}i∈I .

(4b) A wins the game if Verify({commi, respi}i∈[n], w) = True.
Suppose A wins the game with probability δ > ε. Then there exists a PPT
algorithm Extract which for any fixed output of A1, honestly generated inputs
given by {xj , wj , commj , statej}j /∈I , and black-box access to A2,A3 outputs

{wi}i∈I such that Ru,2PoPK (Eq. 9) holds in at most f(secs)/(δ−ε) steps, where
f(·) is a positive polynomial and ε = 2−secs (secs is the soundness security
parameter).

3. Honest-verifier zero knowledge: There exists a PPT algorithm SI in-
dexed by a set I ⊂ [n], which takes as input an element in the language

given by relation Ru,HonestPoPK (Eq. 8) and a challenge w, and outputs tuples
{commi, respi}i∈I such that this output is statistically indistinguishable from
a valid execution of the protocol (the statistical indistinguishability parameter
is denoted by seczk).

Proof of Theorem 4 is presented in Appendix A.

4 Experimental Results

We present our experimental results for the applications of our protocols to
private matrix multiplication and neural network inference. We start with de-
scribing some further optimizations. Then, we present noise growth estimates

17

for the homomorphic matrix multiplication algorithms, followed by our concrete
parameter instantiation, before proceeding to present our experimental results.
The main results are presented over 3 application scenarios (1) private matrix
multiplications (2) private nearest neighbor search and (3) private inference of
ResNet-50.

4.1 Evaluation Set-up and Parameter Estimation

Next, we describe the optimization used for the homomorphic matrix multi-
plication, the general noise estimation bounds, and lastly, describe a choice of
parameters that satisfy all these constraints which we use in the following eval-
uations.

Further Optimizations. On top of the baseline implementation, we apply the
following optimization techniques for the homomorphic matrix multiplication.

– A lazy key-switching technique can be applied to the last multiplication
step of Eq. (5). To be precise, we compute tensor products between φk(cA)
and ψk(cB) and aggregate all the resulting ciphertexts. In the end, the key-
switching operation is performed only once to relinearize the output cipher-
text.

– The hoisting technique of [23] can be applied to our case to reduce the com-
plexity of rotations in the generation of φk ◦σ(A) and ψk ◦ τ(B). Since there
are many rotations done on the same input ciphertext, one can compute the
common part of computation that only depend on the input, and therefore
it can be significantly faster than applying each rotation separately.

– As described in [25], homomorphic matrix multiplication can be extended
to matrices of an arbitrary size. Given the packing structure of BFV (pre-
sented in Sec. 2), the two rows of BFV encoding operate identically and
without interference, so it is easy to pack two matrices in a single cipher-
text. Additionally, we can use the interlacing technique of [25] to encrypt
multiple matrices in each plaintext row and carry out matrix operations in
parallel, thereby amortizing it over many operations. On the other hand,
when an input matrix is too large to be encrypted in a single ciphertext,
we split it into block-size matrices and encrypt them separately in different
ciphertexts. A large matrix operation can be expressed as a composition of
several block-size matrix operations. Instead of computing block-wise mul-
tiplications separately, we precompute and store the permutations of block
matrices not to repeat the same computation in individual products.

Noise Estimation of Homomorphic Matrix Multiplication. In order to
optimally choose the parameters of the HE scheme, we perform a noise analy-
sis of our algorithms. The noise bounds of ciphertexts are updated during the
computation with respect to the following analysis.

18

– Encryption: Suppose that c = Encpk(m, rm) for a message m and randomness
rm = (u, e0, e1) such that ‖rm‖ ≤ B. Then, we have

c[0] + c[1] · s = ∆ ·m+ (u · e+ e0 + e1 · s) (mod q)

and the encryption noise eenc = u · e+ e0 + e1 · s is bounded by ‖eenc‖∞ ≤
Bρ(1 + 2N). If a ciphertext is honestly generated, then we derive the bound
Bclean = ρ(1 + 2N) since ‖rm‖ ≤ 1. However, our ZKPoPK only guarantees
that 2cm = Encpk(2m, 2rm) for some ‖2rm‖ ≤ Nnu ·2seczk+1 and so the noise
of 2cm is bounded by Bdishonest

clean = Nnu · 2seczk+1 · ρ(1 + 2N).

– Plaintext-ciphertext product: The noise of resulting ciphertext is the product
of an initial noise e ∈ R and a plaintext p such that ‖p‖∞ ≤ p. Hence a new
noise bound is ‖p · e‖∞ ≤ N · ‖p‖∞ ‖e‖∞ ≤ Np · ‖e‖∞.

– Rotation: In our protocols, all ciphertexts are generated with PoPKs which
provide an upper bound Nnu · 2seczk of the size of encryption randomness
r = (u, e0, e1). Hence the noise of a ciphertext u·(pk[0]+pk[1]·s)+(e0+e1 ·s)
also has an exponential bound in seczk. Since we introduce a special modulus
to use the modulus-raising technique in our key-switching algorithm, the
noise from homomorphic rotation is Õ(N) which is negligible compared to
the noise parameter of ciphertexts. Hence the homomorphic rotation does
not change the upper bound of noise.

– Multiplication: Given two ciphertexts c1, c2, we have ci[0] + ci[1] · s = qIi +
∆ ·mi+ei over R for some Ii ∈ R, plaintext mi ∈ Rp and noise ei ∈ R. Their
product scaled by ∆ is ∆ ·m1m2 + e′ modulo q for some noise e′ ≈ p(I1e2 +
I2e1) (other terms are exponentially small compared to this dominating one).
We note that ‖Ii‖∞ ≤ N and so ‖e′‖∞ ≤ 2N2p · max{‖e1‖∞ , ‖e2‖∞}. In
certain cases, multiplication is followed by a key-switching procedure, which
introduces a negligible noise, similar to the case of rotation.

– Matrix product: The permutation ψk(·) is not simply a rotation but the
composition of two maskings and rotations, where a masking refers a spe-
cific scalar multiplication which zeros out some values in plaintext slots. It
increases the noise bound of input ciphertext by a factor of Np. To sum up,
for input ciphertexts cA, cB of noise eA and eB , respectively, the noise of each
term σk(cA)� τk(cB) is bounded by 2N2p · 2Np ·max{‖eA‖∞ , ‖eB‖∞} and
their sum cA~cB has a noise with the upper bound 4dN3p2·max{‖eA‖∞ , ‖eB‖∞}.

Concrete Parameter Choices. In our experiments, we set seczk = 128,
secdd = 80, and log p = 128. For the BFV scheme, we chose N = 215, log q = 720
and the standard deviation σ = 8/

√
2π, same as in [5] and [27]. This parameter

set enjoys computational security of more than 128 bits [12]. In the ZKPoPK
protocol (Figure 3), we use u = 2v and similar to TopGear [5] set v = 16. For
notational convenience, we let |Rm| denote the set of polynomials of degree N
with non-negative integer coefficients bounded above by m, and let |Rm| denote
the number of bits needed to represent an element of Rm. Hence |Rm| = N logm.

19

4.2 Private Matrix Multiplication

Communcation cost. We calculate the communication cost of our private
matrix multiplication protocol for 128 × 128 matrices, noting that the commu-
nication cost scales linearly with the number of entries in the matrix 14. In the
online phase, the parties open two matrices (say of size d× d), so the communi-
cation is 2d2 log p bits per matrix multiplication. The dominating cost occurs in
the offline phase, which we break down further into three parts: the ciphertexts,
the ZKPoPK procedure, and the distributed decryption (i.e. DDec) procedure.
Each ciphertext takes 2|Rq| bits; the ZKPoPK can be used to prove u cipher-
texts while it sends v = u/2 additional ciphertexts together with v “openings”.
Here, as seen in Figure 3, each opening consists of one element in in Rp, one
element in Ru·2seczk and two elements in Rρ·u·2seczk ; finally, the protocol requires 4
invocations to DDec, which requires each party to send 4|Rq| bits.

Note that one invocation of the protocol generates two matrix triples, due to
the fact that we optimally use the 215 = 1282 · 2 slots in our HE scheme. Hence,
the amortized communication cost sent by each party in the offline phase is

1

2

(
6|Rq|+

1

u
v(2|Rq|+ u · log2N + (1 + 2 log2 ρ)|Ru·2seczk |+ |Rp|)

)
≈ 1

2

(
6|Rq|+

1

u
v(2|Rq|+ u · log2N + 9.64|Ru·2seczk |+ |Rp|)

) (10)

With our parameter settings, this amounts to around 12.46MB of data sent
by each party.

Comparison with LowGear [27]. We compare our communication cost with
the preprocessing required by the SPDZ protocol to multiply 128×128 matrices:
the LowGear protocol takes 15 kbits per triple, and we assume that we need
d2.8 triples. Setting d = 128, this amounts to a 1.54GB communication cost of
sent by each party. So we reduced the communication by roughly two orders of
magnitude for 128-dimensional matrix multiplication.

Concrete efficiency. We now present the performance of our secure matrix
multiplication protocol over various matrix sizes. Our source code was developed
in C++ with Microsoft SEAL version 3.3 [37]. All the experiments were done
on a machine with an Intel Xeon Platinum 8168 at 2.7 GHz featuring 16 cores.
The compiler was GNU version 7.4.0 (-O3), and we used GMP version 6.1.2 and
NTL version 11.3.3.

Table 1 shows results for microbenchmarks on homomorphic matrix com-
putation for a two party scenario and various components of the matrix triple
generation process. We split the input matrices into 128×128 matrix blocks. We

14 Note that we did not include the cost of one-time set-up, which consists of gener-
ating all the required keys keys for the HE scheme and generating and proving the
encryptions of shares of the MAC key.

20

found that key generation takes about 83 seconds and it takes about 191 mil-
liseconds to encrypt two input square matrices of size 128 as a single ciphertext,
yielding an amortized rate of 96 milliseconds per matrix. The second column
gives the amortized encryption timing per matrix. We note that a one time set-
up cost is to prepare appropriate masking plaintext polynomials that will be
used for performing permutation ψk(·), which takes around 14.5 seconds. In the
third and fourth columns labeled “Permutation”, we give timings per matrix for
generating the encrypted permutations of blocks of A and B, respectively. The
fifth column labeled “Block comp.” gives the amortized time taken for additions
and multiplications on block matrices.

Theoretical complexity. Suppose the input matrix of size n is partitioned
into k2 blocks of size d (we have d = 128 in our experiments). Then the encryp-
tion cost is O(k2). On the other hand, the computational costs of generating
permutations of block matrices and performing block computation are O(k2)
and O(k3), respectively. These trends can be seen in Table 1.

In Table 2 we document the experimental latency associated with the com-
munication cost of our protocol. In the LAN setting, two parties are deployed
in the same geographic network (N. Virginia on Amazon EC2, bandwidth about
5Gbps, ping time 20 ms). In the WAN setting, they were deployed in different
geographic settings (N. Virginia and N. California on Amazon EC2, bandwidth
about 320 Mbps, ping time 70 ms). SPDZ uses a 25 Gbps link for LAN and 50
Mbps for WAN (WAN numbers are extrapolated from Overdrive [27]).

Matrix Encrypt Permutation Block ZkPoPK AddMacs DDec

size time of A of B comp. Prover Verifier time time

128× 128 0.10 1.8 0.9 1.4 0.047 0.09 0.6 1

256× 256 0.38 5.6 2.3 10.1 0.188 0.35 2.4 4

384× 384 0.86 12.8 4.9 34.0 0.79 0.81 5.4 9

512× 512 1.52 21.8 8.0 79.6 1.41 1.44 9.6 16

1024× 1024 6.08 79.6 32.9 648 3 5.63 38.4 64

Table 1: Microbenchmarks: All timings measured in seconds; 16 threads were
used for columns labeled “Permutation” and “Block comp”, and a single thread
was used for other operations; the ZkPoPK time is amortized over u = 32 ci-
phertexts.

Finally, Tables 3 provides total time estimates on matrix multiplications in
the LAN and WAN settings respectively. Total-16, SPDZ-16 refer to timings
using 16 threads and Total-1, SPDZ-1 refer to single-threaded implementations.
As can be seen from the table, our approach is between 16×-40× faster than
prior art and improves with larger matrix sizes.

21

4.3 Private Nearest Neighbors

In the batched version of the private nearest neighbor search (NNS) problem,
one party holds a dataset X of n vectors in d-dimensional Euclidean space, and
the other party holds several d-dimensional query vectors q1, q2, . . . , qb. The task
is to compute securely for each query k nearest data vectors with respect to
the Euclidean distance. There is a large body of work on this topic (see [13] for
an overview). However, we are not aware of any previous work that solves the
problem in the dishonest majority malicious adversarial model. Most of the se-
cure NNS algorithms first (securely) compute secret shares of distances between
every query vector and every dataset vector and then perform top-k selection.
Distance computation can easily be reduced to matrix multiplication for matri-
ces of size n× d and d× b and thus in the dishonest majority security model, we
can use our protocol to perform distance computation.

Matrix Communication Time

Sizes LAN WAN

128× 128 0.010 sec 2.05 sec

256× 256 0.039 sec 8.19 sec

384× 384 0.091 sec 18.44 sec

512× 512 0.161 sec 32.78 sec

1024× 1024 0.647 sec 131.15 sec

Table 2: Communication overhead accounting for the round complexity and
amount of data sent between parties.

As an example, we will consider the largest NNS instance that was solved
securely to date [13]: the subset of the Deep1B dataset [3] with n = 107, d = 96.
If we would like to compute distances between b = 128 queries and the whole
dataset, we would need to multiply 78125 pairs of square matrices of size 128.
Since each matrix multiplication requires 12.46 MB of communication per party
in the offline phase, the overall distance computation requires 7.6 GB per party
per query. On 16 threads, our protocols roughly require 30 minutes per query.
LowGear equipped with the Strassen algorithm, on the other hand, requires at
least 500 million Beavers triples per query. Running on 16 threads, this amounts
to at least 80 minutes, and takes more than 1 TB of communication. Note that
these performances numbers are obtained from our microbenchmarks rather than
from running actual experiments.

4.4 Private Inference of ResNet-50

We can use our protocol to perform convolutions of a neural network securely.
Here we discuss it in the context of the ResNet-50 network [24]. Note that for
this discussion we ignore ReLUs, batch normalization, and pooling layers and
focus on convolutions only.

22

Matrix sizes
Total-16 Total-1

SPDZ-16 SPDZ-1
time time

LAN

128× 128 5.9 sec 36.1 sec 8.41 sec 128 sec

256× 256 25.5 sec 214.5 sec 58.9 sec 900 sec

384× 384 68.3 sec 653.6 sec 3 min 46.8 min

512× 512 2.3 min 24.5 min 6.87 min 105 min

1024× 1024 14.5 min 173 min 52.02 min 735 min

WAN

128× 128 7.95 sec 38.15 sec 1.61 min 24.6 min

256× 256 33.5 sec 222.6 sec 11.32 min 2.88 hours

384× 384 68.34 sec 672.0 sec 34.6 min 9 hours

512× 512 2.35 min 25.0 min 1.32 hours 20.2 hours

1024× 1024 16.51 min 175.1 min 10 hours 5.88 days

Table 3: Benchmarks for private matrix multiplication over various sizes. Note
that the timings for SPDZ are obtained by measuring the throughput of triple
generation.

All the convolutions in the ResNet-50 network require 3298 multiplications
of pairs of 128× 128 matrices. We will now follow the benchmarks from Table 3
to estimate the preprocessing cost of computing these products securely. Since
each multiplication requires 12.46 MB of communication per party, the total
communication would be 41 GB per party. Estimating the running time for
preprocessing phase on 16 threads, we obtain 7.4 hours per query.

On the other hand doing Strassen multiplications with LowGear would re-
quire at least 2.7 billion Beavers triples, so when run with 16 triple generation
threads, this amounts to at least 7.6 hours of running time and 5 TB of commu-
nication.

Adding RELUs into the costs. ResNet-50 architecture requires a total
of 9,608,704 ReLUs. To compute a RELU in MPC, one needs to have access to
a protocol for random shared bit generation JbK. Using existing techniques, the
cost of such a RELU protocol is two-fold: in terms of preprocessing, it requires
122 triples and 105 random bits15 whereas the online cost of RELU is 8 rounds
of communication and 1 extra openings. A more careful analysis of SCALE/MP-
SPDZ implementation of RELU reveals that there are exactly 119 field elements
sent per party in the online phase.

On top of the RELUs, each multiplication involving a Beaver triple requires
two field elements opened per party hence some extra 256 bits. In Table 4 we
summarize the estimated costs using LowGear and SPDZ-online versus our im-
plementation of the online phase which uses convolution triples. Note that our
current implementation does not support RELUs so we estimate that part. In
Table 4 the “Conv” keyword denotes the evaluation of the convolution layers
only. As can be seen from the table, our approach brings down the online cost of

15 This is assuming p ≈ 2128 and a comparison with statistical security secs = 40 - see
SCALE-MAMBA documentation for more details [1].

23

Protocol Communication (GB)

Preprocessing Online

Conv [27] 5,092 }
124× 86.91 }

160×
Conv (ours) 41 0.54

Conv + RELUs [27] 9,225 }
2.2× 105.2 }

5.6×
Conv + RELUs (ours) 4,133 18.83

Table 4: Estimated communication costs for 2-party private inference in a dis-
honest majority malicious adversarial setting on ResNet-50 without the batch
norm layers.

the convolution layers by at least two orders of magnitude compared with classic
SPDZ Beaver triples.

5 Conclusion

In this work, we reduced the overhead of computing linear operations in the
SPDZ framework for dishonest-majority MPC. First, we demonstrate a novel
way of generating pre-processing data for bilinear operations such as matrix
multiplication and convolutions in the SPDZ framework, where the communi-
cation cost does not depend on the number of multiplications but only depends
on the input and output size. We achieved this by leveraging state-of-the-art
homomorphic encryption algorithms for linear operations into SPDZ. We gen-
eralized the notion of authenticated Beaver triples to arbitrary bilinear opera-
tions and adapted the state-of-the-art homomorphic matrix multiplication al-
gorithm to generate authenticated “matrix triples” and “convolution triples.”
We also removed the sacrifice stage of SPDZ via increasing the parameters of
the HE scheme to allow one more multiplication, and optimized the SPDZ zero-
knowledge proof via the usage of BFV homomorphic encryption scheme, which
further improved performance. Our protocol requires O(n2) total communica-
tion to multiply two n× n matrices, compared to O(n2.8) from SPDZ. In terms
of concrete efficiency, to securely multiply two 128× 128 matrices, our protocol
is at least one order of magnitude faster in terms of latency and as much as
two orders of magnitude more communication efficient compared to prior art.
Furthermore, this improvement only increases as the dimensions of the matrices
increase. We believe our protocols improves the state-of-the-art in dishonest-
majority secure computation, particularly in tasks that require a large number
of linear operations such as private machine learning inference and training.

Acknowledgements. The authors thank the anonymous reviewers for their
valuable comments and suggestions. The work of Miran Kim was supported by
Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2020-0-01336, Arti-
ficial Intelligence graduate school support (UNIST)). Dragos Rotaru has been

24

supported in part by the Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under con-
tract No. N66001-15-C-4070, by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via
Contract No. 2019-1902070006, by the CyberSecurity Research Flanders with
reference number VR20192203 and by ERC Advanced Grant ERC-2015-AdG-
IMPaCT. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the ODNI, United States Air Force, IARPA, DARPA, the US Government,
FWO or ERC. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

References

1. Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter
Scholl, Nigel P. Smart, and Tim Wood. SCALE-MAMBA v1.2: Documentation,
2018.

2. Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority
MPC for malicious adversaries - breaking the 1 billion-gate per second barrier. In
2017 IEEE Symposium on Security and Privacy, pages 843–862, San Jose, CA,
USA, May 22–26, 2017. IEEE Computer Society Press.

3. Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets
of deep descriptors. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2055–2063, 2016.

4. Assi Barak, Daniel Escudero, Anders Dalskov, and Marcel Keller. Secure evaluation
of quantized neural networks. Cryptology ePrint Archive, Report 2019/131, 2019.
https://eprint.iacr.org/2019/131.

5. Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in overdrive: A
more efficient zkpok for spdz. Cryptology ePrint Archive, Report 2019/035, 2019.
https://eprint.iacr.org/2019/035.

6. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture
Notes in Computer Science, pages 169–188, Tallinn, Estonia, May 15–19, 2011.
Springer, Heidelberg, Germany.

7. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and
Gregory Neven. Better zero-knowledge proofs for lattice encryption and their
application to group signatures. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 551–572. Springer, 2014.

8. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Advances in Cryptology—CRYPTO, pages 868–886. Springer,
2012.

9. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):13, 2014.

https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/035

25

10. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, pages 136–, 2001.

11. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, January 2000.

12. Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Jeffrey
Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Security of homomorphic encryption. Technical
report, HomomorphicEncryption.org, Redmond WA, USA, July 2017.

13. Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn, and
M Sadegh Riazi. Sanns: Scaling up secure approximate k-nearest neighbors search.
arXiv preprint arXiv:1904.02033, 2019.

14. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

15. Martine de Cock, Rafael Dowsley, Anderson CA Nascimento, and Stacey C New-
man. Fast, privacy preserving linear regression over distributed datasets based
on pre-distributed data. In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, pages 3–14, 2015.

16. I. Damg̊ard, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev.
New primitives for actively-secure mpc over rings with applications to private
machine learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1102–1120, May 2019.

17. Ivan Damg̊ard. On σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, 2002.

18. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P Smart. Practical covertly secure mpc for dishonest majority–or: breaking
the spdz limits. In European Symposium on Research in Computer Security, pages
1–18. Springer, 2013.

19. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 643–662, Santa Barbara, CA, USA,
August 19–23, 2012. Springer, Heidelberg, Germany.

20. Data61. MP-SPDZ, 2019. https://github.com/data61/MP-SPDZ.

21. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

22. Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Confer-
ence, pages 554–571. Springer, 2014.

23. Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in
HElib. In Annual International Cryptology Conference, pages 93–120. Springer,
2018.

24. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

25. Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced
matrix computation and application to neural networks. In ACM Conference on
Computer and Communications Security (CCS), pages 1209–1222, 2018.

https://github.com/data61/MP-SPDZ

26

26. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pages 830–842, Vienna, Austria, October 24–28, 2016. ACM Press.

27. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great
again. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer Sci-
ence, pages 158–189, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg,
Germany.

28. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

29. Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4013–4021, 2016.

30. Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recog-
nition: A convolutional neural-network approach. IEEE transactions on neural
networks, 8(1):98–113, 1997.

31. Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions
via MiniONN transformations. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer
and Communications Security, pages 619–631, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

32. Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. EPIC:
Efficient private image classification (or: Learning from the masters). In Mitsuru
Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of Lecture
Notes in Computer Science, pages 473–492, San Francisco, CA, USA, March 4–8,
2019. Springer, Heidelberg, Germany.

33. Pradeep Kumar Mishra, Deevashwer Rathee, Dung Hoang Duong, and Masaya Ya-
suda. Fast secure matrix multiplications over ring-based homomorphic encryption.
IACR Cryptol. ePrint Arch., 2018:663, 2018.

34. Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for ma-
chine learning. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communica-
tions Security, pages 35–52, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

35. Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
pages 19–38, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

36. M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure com-
putation framework for machine learning applications. In Jong Kim, Gail-Joon
Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors, ASI-
ACCS 18: 13th ACM Symposium on Information, Computer and Communications
Security, pages 707–721, Incheon, Republic of Korea, April 2–6, 2018. ACM Press.

37. Microsoft SEAL (release 3.3). https://github.com/Microsoft/SEAL, 2019. Mi-
crosoft Research, Redmond, WA.

38. Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party Secure
Computation for Neural Network Training. Privacy Enhancing Technologies Sym-
posium (PETS), 2019.

https://github.com/Microsoft/SEAL

27

39. Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. He-
len: Maliciously secure coopetitive learning for linear models. arXiv preprint
arXiv:1907.07212, 2019.

A Security proof of our Zero Knowledge protocol

We split the proof into the 3 components – completeness, soundness, and the
zero-knowledge property.

Completeness For completeness, a true statement must be verified correctly
when both the prover and verifier are honest. In this case, completeness follows
directly from the construction as the relation czl = cyl + (w · ~ca)l is linear in
its arguments and works component-wise as well as from the fact that the BFV
encryption procedure is linear in the message and the randomness. The noise
bound (in Verify 3 of Fig. 3) is obtained by:

‖rzl‖ =

∥∥∥∥∥∑
i

rizl

∥∥∥∥∥ ≤∑
i

(∥∥riyl∥∥+
∥∥(w · ~ria)l

∥∥)
≤ nu · 2seczk

(11)

where the last equality holds with an overwhelming probability since
∥∥(w · ~ria)l

∥∥ ≤
u and riyl is a sample from Uu·2seczk .

Zero-Knowledge To prove zero-knowledge, we need to show that for a true
statement, the verifier learns nothing more than the fact that the statement is
true. This is done by showing that the verifier (in this case all the parties), given
access only to the statement to be proven (cak = Encpk(ak, rak)) but no access
to prover, can produce a transcript that is statistically indistinguishable from
the real transcript, in this case, {ciak}, {c

i
yl
}, w, {zil}, {rizl} where k ∈ [u], l ∈ [v],

and i ∈ [n].
Assuming a set of corrupt parties A ⊂ [n], we simulate an accepting tran-

script for the set of honest parties, i.e., Pi where i /∈ A by first choosing the
challenge matrix w. Once w is fixed, generate zil ← Rp and rizl ← Uu·2seczk for
i /∈ A. Finally, compute ciyl ← Encpk(z

i
l , r

i
zl

) − (w · ~cia)l. Next, we argue that

each of {rizl}, {z
i
l}, and {ciyl} has the same distribution in the real and simulated

transcripts (w is straightforward and {ciak} are in the proof statement). rizl has
the same distribution in both the transcripts as it is generated from the same
distribution except for an additive factor which is from an exponentially smaller
distribution. The distributions of zil are uniformly random elements from Rp
and hence are exactly the same. Finally, the distribution of ciyl is a uniformly

random u · 2seczk -ciphertext in both the real and simulated transcript as (w ·~cia)l
is a u-ciphertext.

Soundness To prove knowledge soundness, we follow the techniques of [7,5].
Informally, we show that if there exists a prover P (as a function of the adver-
sarial corruptions) that can succeed with probability ε > 2−secs , then there exists

28

a knowledge extractor running in poly(secs) · ε−1 that can extract the witnesses
{(aik, riak)}k∈[u]. We effectively construct a polynomial time extractor Ek for each
witness (aik, r

i
ak

) and k ∈ [u]. The extractor Ek, which acts as the verifier, given
access to such a prover P , performs the following steps:

(i) Send random challenges w to the prover P until it outputs an accepting
transcript. Let us denote this accepting transcript by (zil , r

i
zl

). This runs in
expected time 1/ε.

(ii) Select a new random challenge w̃ identical to w except the k-th column.
This ensures that w− w̃ is a matrix with all zeros except in the k-th column,
where the entries are elements of R of the form a − b 6= 0 where a, b ∈
{0} ∪ {±Xj}0≤j<N .

(iii) Send challenge matrices to the prover P until one of two things happen
(a) A successful transcript is generated with w̃.
(b) There are t = dsecs · ε−1e unsuccessful challenges.

(iv) The extractors aborts in case (iii)(b). In case (iii)(a), the extractor outputs
the two successful transcripts along with the challenges.

If the extractor outputs two transcripts successfully, then we can use the result-
ing two conversations to compute the witness (aik, r

i
ak

) efficiently. We describe
this argument next. However, it is important to note here that the soundness
argument is not complete until we show that (1) the above extractor runs in
poly(secs)/ε time and (2) aborts with low probability. We break down the proof
into the above three steps.

Runtime. The runtime is easiest to argue and follows directly from the descrip-
tion of the extractor.

Probability of aborting. To bound the failure probability of the extractor, we
follow the line of argument from [17]. Let wk denote the k-th column of the
challenge matrix w and w−k the rest of the challenge matrix, i.e., w except the
k-th column. We construct a binary matrix H such that each row corresponds
to a choice of randomness σ used by the prover P and a choice of challenge
w−k and each column corresponds to a choice of wk. The entry Hσ,w−k,wk

is 1
if the verifier accepts the transcripts for this random choice σ and challenge w.
When the extractor uses P as a blackbox and submits a random challenge w,
it is equivalent to probing an entry in the matrix H. By rewinding the prover
P, we can probe another entry in the matrix H in the same row (same internal
randomness, i.e., w̃) and these two transcripts can be used to extract the witness
(aik, r

i
ak

) efficiently.
Now, we look at the number of ones in each row of H. We note that each row

has (2N + 1)v entries (the size of the challenge space wk). A row is called heavy
if it contains at least (ε/2) × (2N + 1)v ones. A simple application of Markov
inequality implies that at least half of the ones are located in the heavy rows
since ε is the ratio of the number of ones to the size of entire matrix H. Setting
v ≥ (secs + 2)/ log2(2N + 1), we get at least (ε/2) · (2N + 1)v ≥ 2 ones in each of
the heavy rows. Now, from the description, it is clear that the extractor aborts
in the following two cases:

29

c
1
d1

. . . cnd1
...

. . .
...

c1dv . . . cndv

 =

 e1k

~0
... ~0
evk

×

c1a1 . . . cna1

...
. . .

...

c1au . . . cnau


Fig. 4: Visual aid to assist the exposition of the witness extraction. Here cidl =

cizl− c̃
i
zl

and e = w−w̃ is a matrix with zeros everywhere except the k-th column.

1. The first successful challenge is not in a heavy row.
2. The first successful challenge is in a heavy row but we do not hit another

one in t = d4secs/εe tries.

The first probability as we just saw is ≤ 1/2. For second probability, each suc-
cessful attempt happens with probability ≥ ε/2− (2N + 1)−v > ε/4. Hence, the
probability of aborting from the second case is at most

(1− ε/4)t < exp (−t · ε/4) < 2−secs (12)

Adding these up, the probability that the extractor aborts is < 1/2 + 2−secs .

Witness extraction. The final piece of completing the soundness proof is the wit-
ness extraction and associated bounds. Given two accepting transcripts (w, {zil , rizl})
and (w̃, {z̃il , r̃izl}), we set cizl = Encpk(z

i
l , r

i
zl

) and c̃izl = Encpk(z̃
i
l , r̃

i
zl

). Let us con-
sider the matrix with entries cdl = czl − c̃zl and another matrix w − w̃ with 0’s
everywhere except the k-th column.

We can see that this set of linear constraints allows us to find the witness,
one index at a time. In particular, at least one of the elk 6= 0 and consequently,
zil , r

i
zl
, z̃il , and r̃izl along with elk can be used to extract, respectively, the plaintext

and randomness aik and riak (which encrypts to Cik). The exact relations can be
written as follows:

aik = e−1lk · (z
i
l − z̃il)

riak = e−1lk · (r
i
zl
− r̃izl)

(13)

Finally, to estimate the noise, we use the following result from [7]:

Lemma 1. The quantity 2/(Xi −Xj) for 0 ≤ i 6= j < N is a polynomial in R
with coefficients in {0,±1}.

As a consequence of the above,
∥∥2/(Xi −Xj)

∥∥
∞ ≤ 1. We use this to bound the

norm of 2 · aik and 2 · riak from Eq. 13. In particular,∥∥2 · riak
∥∥ ≤ N · ‖2/elk‖∞ · ∥∥rizl − r̃izl∥∥ ≤ 2N · u · 2seczk . (14)

Therefore, 2·ciak = Enc(2·ak, 2·riak) and ‖2 · rak‖ ≤ Nnu·2seczk+1. This completes
the proof. ut

30

B Simulation proofs for the preprocessing phase

(a) Real world interacation (b) Ideal world interacation

(c) Reduction based proof (d) Functional dependence

Fig. 5: Fig 5a, 5b represent the real-world and ideal-world interaction respectively.
Figure 5c assumes there exists an environment Z that can distinguish between Figure 5a
and Figure 5b and shows the existence of an algorithm B that can use the distinguishing
ability of such an environment to distinguish between a FKeyGen generated key and a
meaningless one. Figure 5d shows the functional dependence of our framework.

The proof for online phase ΠOnline, i.e., Theorem 1 is identical to that of [19]
and we omit its discussion here. We present proof of the distributed decryption
protocols ΠDDec, i.e., Theorem 3 later in this section with the simulator for ΠDDec

described in Figure 9 and functionality described in Figure 8. Finally, we begin
by presenting the proof for the preprocessing phase (Theorem 2) which is our
central contribution. We prove the security of our framework in the universal
composability (UC) framework [10].

B.1 Proof of Theorem 2

Figure 5 presents the proof structure for proving security of ΠPrep. The simulator
for ΠPrep is presented in Figure 7. The simulator runs a virtual copy of the
protocol to simulate interactions with the adversary. The ability to run FKeyGen

and FRand allows the simulator to decrypt the inputs of the corrupt parties (since
it knows their secret keys). Finally, the simulator then uses these extracted inputs

31

to query the ideal functionality and obtain outputs for all parties. To show that
there exists no environment Z that can distinguish between the real-world and
ideal-world, we use a contrapositive argument. In other words, if there exists such
an environment that can distinguish between these two interactions with a non-
negligible advantage (let ε denote this advantage), then we show the existence
of an algorithm B that can use the distinguishing ability of such an environment
to distinguish between a FKeyGen generated key and a meaningless one (with
advantage ≈ ε/2).

Such an algorithm B is given either a normal public key pk or a meaningless
one pk∗. It randomly decides to simulate either a real or an ideal world. To
notationally distinguish these from the real-world and ideal-world interactions
presented to the environment Z, we call the former realB, idealB and the latter
realZ , idealZ . We next prove the following two statements:

(a) (Claim 1) If the public key is meaningless, we show that the environment’s
view does not depend on whether B chooses realB or idealB.

(b) (Claim 2) However, on the other hand, if the public key is normal, we show
that realB simulated by B is statistically indistinguishable from realZ and
idealB is statistically indistinguishable from idealZ . In this case, Z can cor-
rectly guess the random choice used by B, i.e., realB or idealB.

Combining these two observations, B can correctly guess whether it was given
a meaningless key or meaningful key by estimating how well the environment Z
can guess its own random choice realB or idealB. Since, B is given meaningful
keys (with probability 1/2), the environment guesses the choice of B with ad-
vantage ε within this probability space. If that happens, B outputs a meaningful
key otherwise it outputs a meaningless key. It is easy to see that B succeeds with
advantage ≈ ε/2. Finally, note that Algorithm B works akin to Simulator S.
However, such an Algorithm B has two additional challenges compared to Simu-
lator S, we present each followed by a statistically indistinguishable workaround.

(a) (Challenge 1) B does not have access to secret keys (since it is given a public
key instead of being generated using FKeyGen).

– Extractions of the adversarial inputs is done using the knowledge ex-
tractors of zero-knowledge proofs. Note that Simulator B internally runs
copies of FRand and the distinguishing environment Z. This allows it to
rewind the adversary and issue challenges of its choice. This enables us
to run the extractors presented in the soundness argument in Sec. 3.

(b) (Challenge 2) B does not have access to the inputs of the honest parties.

– B simulates the proof using the honest verifier simulator presented in
the zero-knowledge argument in Sec. 3. The challenge matrix w of the
accepting transcript can be output from FRand (as B controls the copy
of FRand).

Other than these differences, B works exactly as Simulator S described in Fig-
ure 7. Finally, to complete the proof, we prove Claim 1 and Claim 2 above.

32

Proving Claim 1. If the key is meaningless, the encryptions contain statistically
no information about the encrypted values. Since the zero-knowledge proofs are
simulated and the outputs of ΠReshare are secret shared, the honest parties inputs
are not revealed to the environment.

Proving Claim 2. If the key is meaningful, B chooses either realB or idealB.
In idealB, the only differences between Simulator S and B are those presented
in Challenge 1 and 2 above, the workarounds for which work with statistical
indistinguishability from those of Simulator S. Similarly, in realB, B generates a
statistically indistinguishable view from the real protocol execution.

B.2 Proof of Theorem 3

Simulator SDDec for ΠDDec is described in Figure 9 and the ideal functionality is
described in Figure 8. To prove the security result, we need to show the following:

(a) (Part 1) The transcripts ti generated by the simulator (in the “internal
run”) and sent to the adversary are indistinguishable from the real-world
transcripts.

(b) (Part 2) Extract δ and the outputs of the adversary to be able to send them
to the functionality FKeyGenDec.

(c) (Part 3) Finally, generate the correct distribution of the outputs.

Proving Part 1. To see this, note that the simulator behaves honestly in generat-
ing ti for all parties except for one honest party Pj . Hence, we only need to show
that the distribution of tj when generated by the simulator is indistinguishable
from an honest generation of tj . Note that

tj − t̃j = (∆ · rj + vj + ej)− (∆ · rj + ej −
∑
i 6=j

vi) (mod q)

=
∑
i

vi (mod q)

= ∆ ·m+ e

(15)

We use a hybrid approach to show that these distributions are indistinguishable.
Let tjh = t̃j + ∆ · m. Since rj is uniformly random in Rp and ∆ = q/p, the

distributions of tjh and t̃j are statistically indistinguishable. Finally, since e ≤
ej ·2secdd , the distributions of tj = tjh+e and tjh are statistically indistinguishable.

Proving Part 2. This is easy to see, the extraction is provided in Steps 6,7 of
SDDec.

Proving Part 3. In the ideal simulation, the outputs of all parties are random
shares with the constraint that

∑
m̃i = m + δ where δ is as given in Step 7.

On the other hand, in the real simulation, the output is as given by ΠDDec, i.e.,
random shares of b∆−1 · (

∑
i t
i)e−

∑
i r
i (mod p). From the real simulation, we

33

know that (
∑
i t
i) = ∆ · (m+

∑
i r
i) + (e+

∑
i e
i) and from the ideal simulation,

we know that
(δ − 1/2) ·∆ ≤

∑
i

ei ≤ (δ + 1/2) ·∆ (16)

Hence, b∆−1 · (
∑
i t
i)e −

∑
i r
i (mod p) = m+ δ when (e+

∑
i e
i) ≤ (δ + 1/2) ·

∆. But since e <<
∑
i e
i, this holds with overwhelming probability and that

completes the proof.

SDDec

Key Generation: Key distribution stage.
1. Simulator obtains pk and {ski}i∈A and internally sets random {ski}i/∈A

such that sk is a full vector of 0’s.
2. Send pk to the adversary.

Distributed Decryption: Simulates distributed decryption
1. Upon decrypt (cm, B), compute the value vi for all players except one

honest player P j

2. For each i ∈ A, on receiving the message ti from malicious party P i, it
computes unique ei = ti − vi (mod ∆) and ri = b∆−1 · (ti − vi)e so that
∆ri + ei = ti − vi.

3. It samples rj ← U(Rp) and ej ← U(RB·2secdd) and computes

t̃j = ∆ · rj + ej −
∑
i 6=j

vi (mod q).

4. For each honest player, it computes ti honestly.
5. The simulator sends these ti for all i /∈ A, i 6= j, and t̃j to Adversary.
6. For all i ∈ A, the simulator sets m̃i = −ri.
7. The simulator sets

δ :=

⌊∑
i e
i

∆

⌉
8. The simulator sends δ, and m̃i to the functionality FKeyGenDec.

Fig. 9: Simulator for distributed decryption.

ΠAddMacs

Usage: On public input ca (and cα generated during initialization phase), the
protocol generates shares γ(a)i.

AddMacs: All parties
1. All parties set cα·a ← cα � ca.
2. Parties run ΠDDec to generate γ(a)1, . . . γ(a)n ← DDec(cα·a).
3. Output

(
γ(a)1, . . . γ(a)n

)
.

Fig. 10: Sub-protocol for adding MACs.

34

FPrep

Let A denote the set of indices corresponding to the corrupt parties. GenMAC is a
macro called multiple times by the functionality.

GenMAC(a,∆, α): This subroutine will be called multiple times by the functionality.
1. Receive MAC shares {γi}i∈A from the adversary.
2. Set γ(a)← α · a and γ ← γ(a) +∆.
3. Sample random values for γ(a)i

r←− Zp for i /∈ A subject to γ =
∑n
i=1 γ(a)i.

4. Return γ(a)i to party Pi for i /∈ A.

Initialize: On input (init,p) from all the parties, do the following:
1. Receive share αi from the adversary for i ∈ A and sample αi

r←− Zp for
each i /∈ A. Set α← α1 + . . .+ αn (mod p).

2. Wait for Ok or Abort from the adversary. If the adversary sends Abort, send
Abort to all parties and abort otherwise send αi to party Pi.

Authenticated Singles: On receiving input (Authenticated Singles) from all par-
ties, do the following:
1. Wait for Ok or Abort from the adversary. If the adversary sends Abort, send

Abort to all parties and abort. Otherwise choose random values rik ∈ Zp
for i /∈ A and send them to Pi for all i /∈ A.

2. For each corrupt party Pi, i ∈ A, the adversary specifies a share ri.
3. The environment specifies MAC errors ∆k. Let rk =

∑
i r
i
k.

4. Run the Macro GenMAC(rk,∆k, α).
Matrix Triples: On receiving input (Matrix Triples, d1, d2, d3) from all parties,

do the following:
1. Wait for Ok or Abort from the adversary. If the adversary sends Abort,

send Abort to all parties and abort. Otherwise choose random matrices
Ai ← U(Rp)

d1×d2 and Bi ← U(Rp)
d2×d3 .

2. For each corrupt party Pi, i ∈ A, the environment specifies shares Ai ←
U(Rp)

d1×d2 , Bi ← U(Rp)
d2×d3 , and Ci ← U(Rp)

d1×d3 .
3. The environment specifies the MAC errors ∆A,∆B and ∆C .
4. Set A =

∑
iA

i, B =
∑
iB

i and C = A×B + δAB .
5. For each honest party Pi, i /∈ A randomly choose Ci subject to C =

∑
i C

i.
6. Run Macros GenMAC(A,∆A, α),GenMAC(B,∆B , α) and GenMAC((A ×

B),∆C , α).
Convolution Triples: Let ~ denote the 2D-convolution operation. On receiving

input Convolution Triples along with the convolutions, do the following:
1. Wait for Ok or Abort from the adversary. If the adversary sends Abort, send

Abort to all parties and abort. Otherwise choose random matrices Xi, Y i

of given dimensions.
2. Environment specifies shares Xi, Y i, Zi for i ∈ A.
3. Compute Z = X ~ Y , where X ←

∑
iX

i and Y ←
∑
i Y

i.
4. Generate shares for honest parties such that Z =

∑
i Z

i.
5. Run Macros GenMAC(X, 0, α),GenMAC(Y, 0, α) and GenMAC(Z, 0, α).

Fig. 6: Ideal functionality for ΠPrep

35

SPrep

Sext(cm): This subroutine will be called multiple times by the simulator to extract
the error ∆ introduced by ΠDDec.
1. The simulator uses SDDec as a sub-routine to extract ∆. In particular, the sim-

ulator has access to m as well as the final output m′ and sets ∆ = m′ −m (as
it runs its own FKeyGenDec)

Initialize:
1. The simulator performs initialization steps of ΠPrep. A call to simulated
FKeyGen is made and pk, sk are locally stored.

2. Simulator decrypts all encrypted ciphertexts and obtains α1, . . . , αn.
Authenticated Singles:

1. Simulator performs step 1, 2 as per protocol and decrypts every broadcast
ciphertext to obtain rik.

2. Step 3 is performed as per the protocol setting ∆k ← Sext(crk·α).
3. Call Authenticated Singles on FPrep using rik at step 2 and ∆k at step 3.

Matrix Triples:
1. Simulator performs step 1, 2 as per protocol and decrypts every broadcast

ciphertext to obtain Aijk and Bikl (using σ−1 and τ−1).
2. Steps 3, 4, 5 are performed as per protocol and generate ∆Ajk ←
Sext(cAjk·α) and ∆Bjk ← Sext(cBjk·α).

3. Compute steps 6, 7 as per the protocol and compute δCjl ← Sext(cCjl).
4. Compute steps 8 as per the protocol and compute ∆Cjl ← Sext(cCjl·α).
5. Execute steps 9, 10 as per protocol.
6. Call Matrix Triples in FPrep with inputs Ai, Bi where Ai is a matrix formed

by padding blocks Aijk appropriately and Bi is a matrix formed by padding
Bikl appropriately in step 2, inputs ∆A,∆B , and ∆C in step 4, 7 and
input δC in step 5, where ∆A,∆B ,∆C , and δC are formed by appropriately
padding ∆Ajk ,∆Bkl ,∆Cjl , and δCjl respectively.

Convolution Triples:
1. Perform step 1 along with steps 1-3 from Authenticated Singles from SPrep.
2. Perform step 2 along with steps 1-6 from Matrix Triples from SPrep.
3. Simulator runs steps 3 and 4 honestly. Finally, simulator uses the extracted

inputs Xi, Y i of the malicious party and calls Convolution Triples from FPrep

Fig. 7: Simulator for FPrep

36

FKeyGenDec

Upon receiving start, get (pk, sk)← KeyGen(). Send pk to adversary and store sk.

Key Generation:
1. Receive the shares of the secret key sj from the adversary.
2. Construct a complete set of shares {si}ni=1 consistent with the adversary’s

input and the secret key sk. Send pk to all the players and si to each honest
party Pi.

Decryption:
1. Receive from the adversary δ and shares m̃i for i ∈ A.
2. Upon receiving decrypt(cm) decrypt m← cm and store it.
3. Generate m̃i for i /∈ A such that m+ δ =

∑
i m̃

i. Send m̃i for i /∈ A to the
honest parties.

Fig. 8: Functionality for distributed key generation and decryption

C Additional protocols and functionalities

This section presents the following protocols and functionalities for the sake of
completeness.

1. Protocol for MAC check ΠMACCheck (Figure 11).

2. Protocol for online phase ΠOnline (Figure 12).

3. Ideal functionality FOnline (Figure 13).

4. Ideal functionality FRand (Figure 14).

37

ΠMACCheck

Each party has inputs αi and (γ(a)j)i for j ∈ {1, 2, . . . , t}. All players have a public
set opened values {a1, a2, . . . , at}. The protocol either succeeds or aborts (if an
inconsistent MAC value is found)

1. Parties call FRand to generate a random seed s.
2. Players sample a random set of values {rj}tj=1 using s as a seed.
3. Each player computes the following values

(a) Public value a =
∑t
j=1 rj · aj

(b) Share γi =
∑t
j=1 rj · (γ(a)j)i

(c) Share σi = γi − αi · a
4. Parties call FCommit with (Commit, σi) for i ∈ {1, 2, . . . , n}
5. Parties then call FCommit with (Open, σi) for i ∈ {1, 2, . . . , n} and all players

obtain {σi}ni=1

6. If σ1 + . . .+ σn 6= 0, players abort the protocol.

Fig. 11: The MAC check protocol verifies the consistency of a list of opened values

38

ΠOnline

Initialize: The parties first invoke the preprocessing ΠPrep to get the shared secret
key JαK and verified cα = Enc(α), a sufficient number of the following correlated
random objects of appropriate dimensions:
1. Matrix multiplication triples (JaK, JbK, JcK)
2. Convolution triples (JxK, JyK, JzK)
3. Multiplication triples (JaK, JbK, JcK)

Then the steps below are performed according to the computation circuit.

Input: To share party Pi’s input, all parties pick a fresh Authenticated SingleJaK
from the set of available ones and then the following is performed:
1. JaK is opened to Pi
2. Pi broadcasts δ = xi − a
3. The parties compute JxK = JaK + δ using local computation

Add: To add two shares JxK, JyK, parties locally compute Jx+ yK
Matrix Multiply: To multiply two matrices JXK and JY K, with each dimension

a multiple of ysl, the parties do the following:
1. Take a fresh matrix multiplication triple (JAK, JBK, JCK) from the available

set of appropriate dimensions.
2. ε = JX −AK and δ = JY −BK are opened.
3. Compute JZK = JCK + ε× JBK + JAK× δ + ε× δ

Convolution: Let ~ denote a 2D-convolution. To compute JXK~JY K, the parties
do the following:
1. Take a matrix multiplication triple (JAK, JBK, JCK) from the available set

of appropriate dimensions.
2. ε = JX −AK and δ = JY −BK are opened.
3. Compute JZK = JCK + ε~ JBK + JAK~ δ + ε~ δ

Output: Parties perform MACCheck on all openings so far. If no party aborts,
the players open the output value JOutK and if MACCheck goes through, each
receives the output Out.

Fig. 12: The online phase for multi-party computation

39

C.1 MAC-Check protocol

C.2 Online phase protocol

C.3 Online phase functionality

FOnline

Initialize: On receiving (init, p) from all parties, the functionality stores the
modulus p and initializes an empty array Value[]. If the adversary sends abort,
send abort to all parties and abort.

Input: On input (input, id, x) from Pi and (input, id,⊥) from all other parties,
with fresh identifier id, set Value[id] =x

Add: On input (Add, id1, id2, id3) with id1, id2 already defined, set
Value[id3] = Value[id1] + Value[id2]

Matrix Multiply: On input (Matrix Multiply, {idAij }, {idBjk}, {idCik})
with appropriate dimensions and OK from adversary, set
Value[idCik] =

∑
j Value[id

A
ij] · Value[idBjk]. If adversary sends Abort, send the

message abort to all parties and abort.

Convolution: On input (Convolution, {idAij }, {idBjk}, {idCik}) with appropriate di-

mensions and OK from adversary, compute Value[idC] = Value[idA]~ Value[idB]
where idA, idB, idC are taken as 2D-tensors. If adversary sends Abort, send the
message abort to all parties and abort.

Output: On input (Output, id, i) from all the parties and Value[id] is defined, then
1. Public output: If i = 0, send Value[id] to the adversary and wait for OK

or Abort. If adversary sends Abort, send Abort to all parties and abort. If
adversary sends OK, send Value[id] to all the parties.

2. Private output (corrupt): If i 6= 0 and Pi is corrupt, then send Value[id] to
the adversary and wait for OK or Abort. If the adversary sends Abort, send
Abort to all parties and abort.

3. Private output (honest): If i 6= 0 and Pi is honest, wait for the adversary
to send OK or Abort. If the adversary sends Abort, send Abort to all parties
and abort otherwise send Value[id] to party Pi.

Fig. 13: Ideal functionality for ΠOnline

C.4 FRand functionality

40

FRand

Init: On input (Init, sid,F) from all parties set the sampling field F and wait for
incoming messages.

Random: On input (Random, sid) from all parties sample r ∈ F and send r to the
Simulator S. If S replies with Abort then send Abort to all parties. If the reply
is OK then output r to all parties.

Fig. 14: Functionality for jointly sampling a random public element in MPC

	Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning

