
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 1

Leia: A Lightweight Cryptographic Neural Network
Inference System at the Edge

Xiaoning Liu, Bang Wu, Xingliang Yuan, Xun Yi

Abstract—The advances in machine learning have revealed its
great potential for emerging mobile applications such as face
recognition and voice assistant. Models trained via a Neural
Network (NN) can offer accurate and efficient inference services
for mobile users. Unfortunately, the current deployment of
such service encounters privacy concerns. Directly offloading the
model to the mobile device violates model privacy of the model
owner, while feeding user input to the service compromises user
privacy. To address this issue, we propose Leia, a lightweight
cryptographic NN inference system at the edge. Leia is designed
from two mobile-friendly perspectives. First, it leverages the
paradigm of edge computing wherein the inference procedure
keeps the model closer to the mobile user to foster low latency
service. Specifically, Leia’s architecture consists of two non-
colluding edge services to obliviously perform NN inference on
the encoded user data and model. Second, Leia’s realization
makes the judicious use of potentially constrained computational
and communication resources in edge devices. We adapt the
Binarized Neural Network (BNN), a trending flavor of NN
with low inference overhead, and purely choose the lightweight
secret sharing techniques to realize secure blocks of BNN. We
implement Leia and deploy it on Raspberry Pi. Empirical
evaluations on benchmark and medical datasets via various
models demonstrate the practicality of Leia.

Index Terms—Secure computation, Privacy-preserving mobile
application, Binary neural network inference, Edge computing.

I. INTRODUCTION

Recent flourishment of Machine Learning has promoted the
Neural Network (NN) powered mobile applications such as
face detection cameras and speech recognition assistants. An
NN prediction service is typically deployed through two sce-
narios. One is the on-device NN prediction service, where the
application downloads the pre-trained model from a company
owning the model, and performs an inference task over user’s
data on mobile device [1]. Another scenario relies on the cloud
service provider (e.g., Google Cloud AI [2]), where user data
and model are delivered to cloud who runs the NN inference
task and sends back the prediction result to the mobile
device. Unfortunately, both scenarios are troublesome due to
the increasingly raised privacy issues. User’s data contains
sensitive information about their daily activities. Uploading
such data to cloud in plaintext can put individual’s privacy

This work was supported in part by Australian Research Council
(ARC) Discovery Projects (No. DP200103308, No. DP180103251, and No.
DP190102835), and ARC Linkage Project (No. LP160101766).

X. Liu and X. Yi are with the School of Computing Technolo-
gies, RMIT University, Melbourne, VIC 3001, Australia. E-mail: xiaon-
ing.trust@gmail.com; xun.yi@rmit.edu.au

B. Wu and X. Yuan are with the Faculty of Information Technology, Monash
University, Clayton, VIC 3800, Australia. E-mail: bang.wu@monash.edu;
xingliang.yuan@monash.edu

in danger [3], [4]. On the other hand, from the aspect of
model owners, their models are valuable and often trained
on proprietary data [4], [5]. The unauthorized exposure of
the proprietary model and underlying confidential data inflects
severe commercial damages.

To alleviate the privacy issues, one approach seems plausi-
ble is to delegate the inference tasks with encrypted model
and user data to a centralized cloud server. However, this
approach relies on heavy cryptographic techniques like (fully)
homomorphic encryption (HE). An efficient alternative tends
to use secure multi-party computation (MPC) techniques with
specialized designs that can execute NN inference over en-
crypted user input data and/or encrypted models. For ex-
ample, Delphi [4] and MiniONN [5] proceed the inference
tasks between the mobile device and the model owner, while
continuous interaction is involved between them during se-
cure computation. Namely, both parties have to be online
and connected throughout the entire inference process. It is
noteworthy that the above rigid operational confinement might
not be always feasible in cellular networks. Other systems like
XONN [6] and Quotient [7] employ constant-round secure 2-
party computation protocols that result in less engagement of
mobile device and model owner. But these systems consume
large bandwidth costs due to the MPC techniques relied on,
i.e., Garbled Circuits (GC), which may become the bottleneck
at the edge. Later in Section VI, we demonstrate the consider-
able bandwidth saving by our design compared to GC based
realization.

Our Contributions: In this paper, we propose and enable
Leia, a cryptographic NN inference system executing at the
edge. Leia takes the edge based architecture as a starting
point, harnessing the novelty from system, cryptographic and
machine learning domains. The combination endows Leia
privacy assurance and seamless embracement of NN powered
mobile applications.

Our first insight is to leverage edge computing, wherein
the processing keeps the model closer to the mobile user so
as to foster low latency service of NN inference [8], [9].
However, devising edge based architecture is non-trivial for
Leia’s scenario. Both models and user’s data should fully
be protected against edge nodes during inference. Moreover,
relaxing the constraint of the model owner and mobile device
being online is expedient because of the dynamic network
effects in cellular networks. To this end, we resort to the
edge nodes as two non-colluding computational services to
fulfill the above privacy objective and operational requirement
simultaneously. The model owner encodes the model and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 2

sends the encoded one to edge nodes only once. After that, the
user mobile device can submit the encoded input and obtain
the encoded inference result. Within the process, edge nodes
obliviously perform inference without further interacting with
either the model owner or user mobile device.

The edge based paradigm entails judicious usage of com-
putational and communication resources. We thus choose the
relatively lightweight secret sharing techniques to offer Leia
security guarantee. Yet, merely transforming the NN inference
procedure into cryptographic operations does not necessarily
achieve satisfied efficiency in communication and computation
for mobile and edge devices. Instead, our second insight is
the adoption of the Binarized Neural Network (BNN) [15], a
special flavor of NN model with weights and activations are all
confined to ±1. Because the small BNN model can drastically
reduce the resource demand, and the beneath operations over
binary values are more compatible with cryptographic primi-
tives, it becomes our natural choice. Thereby, we subtly build
Leia from ground up with secure layer functions, including
the secure linear layers (secure convolutional layer SCONV
and the secure fully connected layer SFC), the secure batch
normalization function (SecBN), the secure binary activation
function (SecBA), and the secure max pooling layer (SMP).
They are highly customized for the BNN and securely realized
based on secret sharing as the building blocks of Leia.

We implement and deploy Leia to Raspberry Pi. Our evalu-
ation is comprehensively performed over benchmark datasets
(i.e., MNIST and CIFAR-10) and multiple real-world medical
datasets on breast cancer, diabetes, liver disease and thyroid.
We apply eight different models to evaluate Leia’s perfor-
mance. Our results show that Leia can produce a 97% accurate
prediction result by 4s in the edge environment for MNIST.
For a 23-layer network on CIFAR-10, Leia achieves up to 22×
bandwidth saving compared to the prior art. In addition, all
medical inference tasks are performed within 3.6s and require
less than 50µs and 10ms on the user and model owner side.
Organization. The rest of the paper is organized as fol-
lows. Sec. II investigates related work. Sec. III introduces
the preliminaries used in this paper. Sec. IV overviews the
system architecture and threat model. Sec. V expatiates on the
protocol designs. Empirical evaluation is given in Sec. VI. The
paper is concluded in Sec. VII.

II. RELATED WORKS

Privacy-Preserving Neural Network Training and Infer-
ence: CryptoNets [10] adapts the leveled HE to perform
privacy-preserving NN inference in an outsourced environ-
ment. Despite some optimizations have been employed, Cryp-
toNets still suffers from intensive computational overheads
due to heavy weight HE. Some other systems [12], [4],
[5] consider a different setting, in which the client directly
communicates with the model owner for inference, but does
not want to reveal its input. Gazelle [12] devises a 2PC
secure NN inference framework combining the lattice-based
HE and Yao’s Garbled Circuits (GC). After that, Delphi [4]
and MiniONN [5] are proposed with careful optimizations
and achieve higher efficiency. Different from our work, the

above systems require continuous interactions between the
client and the model owner during secure computation. Our
work, instead, leveraging edge computing paradigm, delegates
the whole secure inference protocol to the edge and as such
relaxes both parties from always being online.

SecureML [11] is the first to propose privacy-preserving
training and inference system with tailored MPC protocols.
The proposed system considers various learning problems
including linear regression, logistic regression, and NN. Be-
sides, the more MPC-friendly activation functions are subtly
devised and realized with GC and designed Oblivious Transfer
(OT) protocols. Quotient [7], XONN [6], and BANNERS [13]
design privacy-preserving NN inference over quantized NN
models with weights which are restricted within {−1,+1, 0}
and {−1,+1}, respectively. Such quantization allows for the
conversion from arithmetic operations to Boolean operations,
and thus are more compatible with the protocols realized
with GC free-XOR optimizations [7], [6] and Boolean sharing
techniques [13]. The GC-based designs [7], [6] usually require
substantial bandwidth and thus are more suitable for the
steady and high-throughput network. However, the escalated
bandwidth can be prohibitive and the bottleneck at the edge
and may incur additional charges by cellular network service
providers. Meanwhile, the work BANNERS [13] is specially
tailored under a three-party setting which requires a more
complex deployment overhead at the edge. Our work subtly
builds a privacy-assured collaborative inference protocol from
ground up, harnessing the novelty from both cryptographic and
machine learning literature. Our system originates a design
where an all-binarized neural network inference procedure is
securely carried out with customized layer functions under
lightweight MPC primitives, and thus is particularly suitable
for the application deployment for mobile devices. Empirical
evidence shown in Section VI confirms that, for the equivalent
functionalities, Leia’s realizations introduce 30-2500× less
bandwidth costs than the GC-based realizations. To be more
clear, we compare our work with prior art and summarize the
main difference in Table I.

Meanwhile, recent years have drawn a growing interest in
secure learning and inference protocols thwart the malicious
parties. Notable works include a fully-decentralized linear
model learning proposed in Helen [3], an end-to-end 3PC
NN training and inference proposed in FALCON [16], 3PC
inference framework over quantized NN proposed by Keller et
al. [17], and the 3PC inference over BNN in BANNERS [13].
Leia’s design lays a solid foundation for extending towards a
mobile-friendly secure NN inference system against malicious
edge nodes. We leave a careful study to our future work. Some
prior works [18], [13], [16] also focus on lightweight NN in-
ference based on secret sharing techniques. We note that these
systems are specially designed for three-party secure protocols
that require a more complicated practical deployment than
Lei’s two-server setting.

Secure Multi-Party Computation Framework: Privacy-
preserving machine learning protocols can be carried out via
generic MPC techniques, such as Garbled Circuits, Secret
Sharing [19], [20], [21], and the frameworks mixed with

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 3

TABLE I
HIGH-LEVEL COMPARISON OF DIFFERENT CRYPTOGRAPHIC NN SYSTEMS.

system crypto. primi-
tives

system model client engagement multi-inter.
with client

comm.
cost�

plaintext
accu. presrv.

model
privacy

co-design

CryptoNets [10] FHE centralized server homomorphic enc./dec. 7 high 7 7 -
SecureML [11] GC, SS 2 servers† shares generation 7 - 7 3 -
MiniONN [5] HE, GC, SS client-server∗ build GC 3 high 3 3 -
Gazelle [12] HE, GC, SS client-server∗ homomorphic enc./dec., build GC 3 low 7 3 -
Quotient [7] GC, SS 2 servers† shares generation 7 - 3 3 ternarized NN
XONN [6] GC client-server∗ build GC, OT-based computation 3 low 3 3 BNN
BANNERS [13] Replicated SS 3 servers shares generation 7 low 3 3 BNN
Delphi [4] HE, GC, SS client-server∗ GC evaluation 3 low 3 3 -
Chameleon [14] GC, SS 2 servers† shares generation 7 medium 3 3 -
Leia (this work) SS 2 servers† shares generation 7 low 3 3 BNN
∗ Client-sever two-party computation.
† Outsourced computation to two non-colluding servers.
� The communication cost is evaluated based on the bandwidth reported in their papers, and [7], [11] have not reported their inference bandwidth costs.

multiple primitives [22], [23], [24]. Among these, a line
falls into devising machine learning specified MPC frame-
works, such as (1) the two-party frameworks proposed in
Chameleon [14], EzPC [25], (2) the three-party frameworks
proposed in ABY3 [23], SecureNN [18], FALCON [16],
and the work [17], and (3) the four-party framework in
Trident [24]. For performance consideration, recent privacy-
preserving machine learning systems opt for specialized and
optimized designs instead of direct adoption of generic MPC
frameworks [3], [4], [6], [7].

III. BACKGROUND

In this section, we introduce the preliminaries underlying
Leia’s construction. Our notation is summarized in Table II.

A. Binarized Neural Networks

Binarized Neural Network [15] (BNN), i.e., neural networks
with weights and possible activations restricted to ±1. It
comprises a sequence of linear and non-linear layers, where
the number of layers L indicates the depth of network. The
BNN inference takes as input a tensor representing the task-
specific raw data, and produces a prediction result based on
a trained model tensor. The all binarized weights make BNN
model significantly smaller than an equivalent network with
high precision weights [26].
Linear Layers: The linear layers typically can be of two
types: the fully connected layers (FC) and the convolutional
layers (CONV). Both types can be formulated as the vector dot
product (VDP(·, ·)) between two vectors x ∈ Rn and w ∈ Rn
as: VDP(x,w) =

∑n
k=1 wk · xk , where wk, xk indicate the

k-th element of vector x,w. Let the parameters cin (cin×co),
nin (and nw), min (and nw) denote the number of channel,
the width and height of input (and model), respectively.

The FC layer takes as input a vector x ∈ Rnin , applies a set
of the weight vectors w1, . . . ,wno ∈ {−1,+1}nin and bias
vector bias ∈ Rno , and outputs a vector z ∈ Rno . For k ∈
[1, no], it repeatedly proceeds the zk = VDP(x,wk) + biask,
where zk is the k-th element of the resulting vector z. The
result z can be submitted to the non-linear operations.

The CONV layer is normally applied for image classifica-
tion. It takes as input an image tensor X ∈ Rcin×nin×min ,
applies the weight tensor W ∈ {−1,+1}co×cin×nw×nw and
bias vector bias ∈ Rco , and outputs a feature map tensor

Z ∈ Rco×no×mo . For each input matrix X ∈ Rnin×min ,
the CONV layer repeatedly moves the weight matrix W ∈
{−1,+1}nw×nw as a sliding window, from left to right
and top-down with given stride, until passing through the
entire image matrix. Let T be the total moves to slide the
window. For τ -th move that τ ∈ T , it flattens Xτ inside the
sliding window and W as vectors xτ and w, and proceeds
zτ = VDP(x,w) + biasτ to obtain zτ as one element in
resulting matrix Z ∈ Rno×mo . A concrete illustration is given
in Appendix B.
Binary Activation: The non-linear binary activation function
(BA) is attached on each neuron. It takes as input the real-
valued activation a ∈ R outputted from previous operation,
performs element-wise sign(·) function: sign(a) = +1, if a ≥
0; and sign(a) = −1, otherwise; and outputs the sign bit as
the binarized activation a ∈ {−1,+1}.
Batch Normalization: Batch Normalization [27] (BN) is
widely adopted in modern NN to regularize the model to avoid
the activations growing too large to unstablize the model. The
procedure of the BN function during inference performs as
follows: (1) it performs element-wise normalization on each
neuron’s feature a via â = (a− µ)/σ where µ is the running
mean and the non-zero σ is running variance the of training
dataset; and (2) it applies the scale parameter γ ∈ R and
the shift parameter β ∈ R to get the output z = γ · â + β.
Parameters µ, δ, γ, β are highly dependent on the training data
and indicate the data distribution, thus have to be protected
during secure computation.
Max Pooling Layer: Max pooling layer (MP) is normally
applied straight after the CONV layer to downsample the
image. It takes the matrices outputted from the CONV layer,
and obtains the maximum value within a sliding window as
an element of the output matrix.

B. Cryptographic Primitives

Correlated Oblivious Transfer: Correlated Oblivious Trans-
fer (COT) [28] is a cryptographic primitive allowing for secure
two-party computation. It is one particular OT flavor with
improved practicality. Given engaged two parties, a sender P0

holding its input a pair of binary strings m0,m1 ∈ {0, 1}`, and
a receiver P1 holding its input a choice bit b ∈ {0, 1}, a COT
performs as follows. P0 constructs and inputs a correlation
function f∆(·) to link m0 and m1 in a way that m0 is a random

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 4

TABLE II
NOTATION USED IN OUR PAPER.

X, X,x Input image tensor, matrix, vector
W,W,w Weight tensor, matrix, vector whose elements ∈ {−1,+1}
a, a Activation vector, an activation on a neuron
µ, δ, γ, β Batch normalization parameters: the running mean, the

running variance, the scale, the shift
`, κ Bit length
n, m Vector length n, number of vectors m
xk,xk The k-th element of vector x, the k-th vector of set x
xb Superscript b denotes encoded data xb ∈ {0, 1}
i Identifier of a party i that i ∈ {0, 1}
〈x〉Ai Arithmetic shares of value x held by party i
JxKi Boolean shares of value x held by party i
〈x〉Ai ±〈y〉Ai Addition/subtraction over arithmetic shares
〈x〉A · 〈y〉A Multiplication over arithmetic shares
JxKi + JyKi Bitwise XOR over boolean shares
JxK · JyK Bitwise AND over boolean shares
mtrii, atrii Multiplication triples, Boolean AND triples held by party i

value and m1 = f∆(m0). On input m0, f∆ from P0 and b
from P1, the COT outputs mb ∈ {m0,m1} to P1. It ensures
that P0 learns nothing about b, and P1 learns nothing about
m1−b. Note that the function f∆(·) is a correlation robust
random oracle H : {0, 1}` → {0, 1}`. We denote the above de-
scribed COT functionality as (⊥;mb)← COT (m0, f∆(·); b).
The n-times COT` (i.e., n×COT`) can be run in parallel,
where each COT` is used for transferring the `-bit strings.
Arithmetic Sharing and Multiplication Triple: Arithmetic
sharing [20] additively shares an `-bit secret value x in the
ring Z2` as 〈x〉A0 + 〈x〉A1 ≡ x (mod 2`). In this paper,
all operations over Arithmetic shares are performed under
mod 2` unless explicitly mentioned. Addition/subtraction over
shares (〈z〉Ai = 〈x〉Ai ± 〈y〉Ai), multiplication by a public
value (〈z〉Ai = η · 〈x〉Ai) can be efficiently calculated by
each party Pi (i ∈ {0, 1}) at local without any interaction.
Multiplication over two shares (〈z〉A = 〈x〉A · 〈y〉A) requires
assistance with pre-computed multiplication triple (denoted
as mtrii), i.e., a type of Beaver’s triple [29] in the format
〈c〉A = 〈a〉A · 〈b〉A. To multiplying two shares, each party
Pi sets 〈e〉Ai = 〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai . The
parties interact to reconstruct e and f . At the end, Pi sets
〈z〉Ai = i·e·f+f ·〈a〉Ai +e·〈b〉Ai +〈c〉Ai . Note that multiplication
triples are data-independent and can be generated through
cryptographic approaches [22], or by a third party [30].
Boolean Sharing and Boolean AND Triple: Boolean shar-
ing [19], [22] can be viewed as the Arithmetic sharing over
Z2. It produces two Boolean shares JxK0 and JxK1 of a
secret bit x between two parties P0 and P1, respectively.
Reconstruction of x is performed via x = JxK0 ⊕ JxK1. The
XOR operation (⊕) over two Boolean shares is identical to
the addition over Arithmetic shares in Z2, i.e., each party Pi
computes locally JzKi = JxKi ⊕ JyKi. Meanwhile, the bitwise
AND operation (∧) over Boolean shares works similar to the
multiplication as JzK = JxK ∧ JyK. It is calculated with the
assistance of pre-computed Boolean AND triple (denoted as
atrii) JcK = JaK ∧ JbK.

IV. SYSTEM OVERVIEW

A. Architecture

1) System Overview: Fig. 1 illustrates Leia’s system ar-
chitecture, which involves three entities: the mobile device,

the model owner, and the two distinct edge nodes S0

and S1. The model owner obtains a customized NN model
based on proprietary data and resorts to Leia to provide
secure inference service for its users without revealing the
model in cleartext. In practice, the model owner can be an
ML-powered mobile application developing company (e.g.,
SnapML [31] and Apple Safari) or the enterprise providing
ready-made intelligence for those applications (e.g., Amazon
Rekognition [32], Google DeepMind Health [33]). The mobile
device of the user collects user’s data input and asks the mobile
application for inference tasks without revealing the private
user input. The two edge nodes can be deployed from separate
edge computing service providers like Azure IoT Edge [34]
and AWS Lambda@Edge [35].

2) Workflow: From a high level point of view, Leia’s
cryptographic NN inference service is operated as follows. The
model owner holds a BNN model and deploys the encoded
model tensor W to the two edge nodes S0 and S1, where
W is secret-shared (i.e., Boolean shares) into JWK0 and
JWK1. Once the mobile device invokes an NN inference
request, the raw input will be protected as a secret-shared (i.e.,
Arithmetic shares) tensor 〈X〉A0 and 〈X〉A1 , and be submitted
to corresponding edge nodes. After that, the two nodes run
secure collaborative inference procedure (green box in Fig. 1),
and send the encoded inference result vector 〈z〉A0 and 〈z〉A1 to
the mobile device who can reconstruct the result z to produce
a label to classify the user’s input. Leia’s secure inference
procedure consists of a series of essential computational blocks
in BNN. A typical block in Leia assembles several layer
functions, including the secure convolutional layer (SCONV)
or secure fully connected layer (SFC), the secure batch normal-
ization function (SecBN), the secure binary activation function
(SecBA) and the secure max pooling layer (SMP). Note that,
for efficient realization, we craft a secure normalized binary
activation function (SecNBA) combing the SecBN and SecBA
functions (see details in Section V-B2).

3) Usage Scenarios: Before formalizing Leia’s threat
model, we demonstrate our usage scenarios in real-world
applications.
Face Verification for Payment Authorization: A typical use
case can be a mobile banking application, which authorizes
a legitimate user to do payment via the face verification.
In a cleartext version, a user photo is taken by the mobile
device and submitted to the application. The banking appli-
cation evaluates the user photo under its NN model trained
over its customer profiles and sends the validation result
to the mobile device. By integrating Leia into the banking
application, the entire verification procedure is delegated and
securely proceeded at the edge. Both the photo containing
user’s biometric and home interior information and the bank’s
proprietary model are perfectly protected.
Medical Imaging on Portable Device: The usage of Leia in-
cludes but is not limited to the mobile devices. Instead, we note
that Leia’s deployment can be generalized to any resources-
constrained devices, such as the IoT cameras, potable medical
imaging devices. Herein we give an example to deploy Leia
into a handheld medical imaging scanner, like the handheld
CT scanner [36]. In this scenario, the CT scanner images

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 5

Model 𝑾

Model owner

Edge node S0

Secure collaborative inference

Edge node S1

Data 𝑿

Inference result 𝒛

Mobile devices
“Dog”

𝑿 𝟎
𝑨

𝑿 𝟏
𝑨

𝒛 𝟎
𝑨

𝒛 𝟏
𝑨

𝑾 𝟎

𝑾 𝟏

SC
O
N
V

Se
cB
N

Se
cB
A

SM
P

Secure blocks of BNN

Fig. 1. System architecture.

the patient’s chest as a CT scan. It aims to evaluate the
patient’s CT under the NN provided by some medical imaging
service providers (the model owner), like Google DeepMind
Health [33]. However, the CT scan indicating patient’s health
information is forbidden to share with the service provider in
cleartext due to legislation. They thus can proceed the above
evaluation via Leia. The scanner can install Leia and submits
the protected patient’s CT through Leia’s API. Meanwhile, the
edge nodes in Leia have already equipped with the protected
NN supplied by the medical imaging service provider. Leia
securely proceed the NN inference over encrypted CT scan and
returns only the inference result to the scanner side. Neither
the user of scanner or the service provider can learn the private
data about each other.

B. Threat Model and Privacy Goal

Leia considers the following threat model: all entities are the
semi-honest parties, and the two edge nodes are non-colluding
computing devices. Specifically, each party will faithfully
follow the prescribed secure inference protocol yet trying to
deduce the information from the transcripts exchanged during
the protocol execution. When corruption happens, a semi-
honest adversary can compromise at most one of the edge
nodes and either the mobile user or the model owner, while
the other parties remain honest. We note that our considered
semi-honest threat model is consistent with a great majority
of prior works [6], [7], [4], [14], [22], [11], [30]), including
the works under the two-server model [7], [11], [30].

Considering semi-honest mobile user, model owner, and the
edge nodes makes sense and is practical in Leia’s targeted NN
inference applications. First, the engaged model owner and the
edge nodes are from business-driven companies which do not
willing to ruin their reputation and business models to behave
in a malicious way and collusion. Moreover, we follow the
existing works in the literature and consider the mobile user
to be semi-honest. The primary objective is to protect the con-
fidentiality of the valuable neural network model. For the non-
colluding assumption, we can regard them as from two distinct
and well-established edge service providers (e.g., Microsoft
Azure IoT Edge service [34] and Amazon Lambda@Edge
service [35]), belonging to separated administrative domains
and are hosted by the economical service providers to avoid
collusion. It is worth noting that leveraging such a two
non-colluding servers has become increasingly appealing in

many industrial projects as well. Examples include Facebook’s
CrypTen [37] and Cape Privacy’s TFEncrypted [38].

Leia guarantees both the privacy of mobile user’s data
and the model privacy. It hides both the user’s data and the
model values (i.e., the trained weights and coefficients) from
being known by the edge nodes. Meanwhile, Leia is consistent
with the security guarantees in prior neural network inference
works [5], [4], [7], [11]. That is, the parameters of network
architecture are considered as hyper-parameters already known
by the edge nodes, including the number of layers, the
sizes of weight matrices, and types of operations used in
each layer. Such hyper-parameters are data independent and
not proprietary since they are usually described in scientific
and white papers. We are aware that a malicious user can
exploit the inference service as a blackbox oracle to perform
attacks to extract auxiliary information from prediction results.
Like prior cryptographic inference systems [4], [5], [6], we
emphasize that protecting against such attacks is a comple-
mentary problem beyond Leia’s security scope [39]. Mitigation
strategies can consider the adoption of differentially private
training algorithms [40].

V. OUR PROPOSED DESIGN

A. Secure Linear Layers

We present in this section the secure realizations of linear
layers, i.e., the secure convolutional layer (SCONV) and the
secure fully connected layer (SFC). As mentioned above, they
can be expressed as VDP(x,w) + bias over n-dimensional
layer input vector x, weight vector w, and the bias ∈ R
attached on each neuron. Note that the hidden layer’s input
is the activation vector a. All weights and activations are
restricted as ±1 in BNN, except the real-valued first layer
input x ∈ Rn. In Leia, we encode w,a ∈ {+1,−1}n to
wb,ab ∈ {1, 0}n based on the sign bits, i.e., +1 → 1 and
−1 → 0. Here, we make an important observation from the
machine learning literature [27] that the bias can be removed
if applying batch normalization, because the shift β in BN
achieves the same effect as the bias. Well-known open source
learning framework follows this treatment like PyTorch [41].
Likewise, we set the bias as 0 to avoid the involvement of
real-valued bias and make our design more compatible with
the MPC techniques.

To realize private linear transformation, our design carefully
protects both mobile user’s data (i.e., the input) and the BNN

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 6

model (i.e., the weights) with lightweight secret sharing tech-
niques (Arithmetic sharing and Boolean sharing). In particular,
we introduce the secure Boolean-VDP function, and the secure
Boolean-Arithmetic-VDP function which performs VDP over
mixed share representations. They are the main building blocks
to realize the linear layers.

1) Secure Hidden Layer VDP: The secure Boolean-VDP
function (SecBVDP) computes VDP for the hidden layers. It
takes as input a set of Boolean shared binary activation vector
JabKi and weight vector JwbKi, and outputs the Arithmetic
shares 〈z〉Ai of their Boolean-VDP result, where i ∈ {0, 1} is
the identifier of each edge node. The activation vector ab is
the output of the binary activation function in BNN, which is
naturally binarized. We note that the VDP operation on two
plaintext binary vectors can be converted to a simpler XNOR-
PopCount operation [15]. That is, for a,w ∈ {−1,+1},
the element-wise multiplication pk = ak · wk is switched
to bitwise-XNOR via pbk = XNOR(abk, w

b
k) = ¬(abk ⊕ wbk)

when ab,wb ∈ {0, 1}, where k ∈ [1, n]. Meanwhile, the
accumulation over all multiplication results p =

∑n
k=1 pk for

pk ∈ {−1,+1} is converted to PopCount followed by a 2p-n.
That is, counting the number of “1”s in the resulting binary
vector pb = (pb1, p

b
2, ..., p

b
n) ∈ {0, 1} as p and setting the result

to 2p− n.

Following this convention, Fig. 2 gives a high-level illus-
tration of the SecBVDP function on secret-shared data. It
consists of four atomic operations: the secure XNOR, the
secure B2A gadget, the secure PopCount, and the secure 2p-
n. The secure XNOR performs element-wise XNOR operation
over every element of the shared binary input vector JabkK and
weight vector JwbkK, and outputs the Boolean-shared XNOR
results JpbkK, where k ∈ [1, n]. Prior to the secure PopCount
operation, the secure B2A gadget needs to be applied to every
JpbkK, converting from over Z2 to over Z2` . With the assist
of pre-generated multiplication triples mtri0,mtri1, it outputs
the Arithmetic-shared XNOR result 〈pk〉A. This is because
that JpbkK is shared as JpbkK0 + JpbkK1 (mod 2), whereas the
PopCount result is an aggregated integer that should be shared
as Arithmetic shares 〈p〉A. Naive sum 〈p〉Ai =

∑n
k=1Jp

b
kKi

cannot correctly perform the modular addition over Z2` . Given
an obvious example that pb=(0,0) with two “0”s and shared
as JpbK0=(1,1) and JpbK1=(1,1), direct aggregation produces
a wrong result “4” instead of the expected result “0”. The
secure PopCount then aggregates 〈pk〉A to 〈p〉A. At the end,
the secure 2p-n is calculated with the system parameter n, i.e.,
the length of the vector.

Fig. 3 expatiates on the realization of the SecBVDP function
corresponding to the above four operations. The secure XNOR
is realized in step 1. Each edge node Si locally calculates
JpbkKi = JabkKi ⊕ JwbkKi ⊕ i to obtain its shared XNOR result.
The secure B2A gadget is conducted in step 2. To do so,
two variables are set to uk = JpbkK0 and vk = JpbkK1. S0

and S1 jointly perform the conversion to obtain their shares
〈pk〉Ai , following the expression 〈pk〉A = 〈uk + vk − 2 · uk ·
vk〉A (mod 2`). Thereafter, Si locally computes the secure
PopCount in step 3 and the secure 2p-n in step 4, and obtains
the shared result 〈z〉Ai at the end.

𝑺𝟎 𝑺𝟏

𝑎#$ %, 𝑤#
$

%
𝑎#$ &, 𝑤#

$
&

Secure XNOR

𝑝#$ &

Secure B2A gadget

mtri0 mtri1

𝑝# %
' 𝑝# &

'

Secure PopCount

Secure 2p-n

𝑧 %
' 𝑧 &

'

n n
𝑝 %

' 𝑝 &
'

𝑝#$ %

Fig. 2. An overview of the SecBVDP function.

Input: Boolean shares of binary activation vector ab ∈ {0, 1}n,
and binary weight vector wb ∈ {0, 1}n.
Output: Arithmetic shares of Binary-VDP result z =
VDP(ab,wb).
Secure XNOR:
1) For each k ∈ [1, n], Si sets JpbkKi = JabkKi ⊕ JwbkKi ⊕ i.
Secure B2A(·) gadget:

2) S0 and S1 convert JpbkK ∈ Z2 to 〈pk〉A ∈ Z2` as follows:
a) S0 sets two variables 〈uk〉A0 = JpbkK0, 〈vk〉A0 = 0;
b) S1 sets two variables 〈uk〉A1 = 0, 〈vk〉A1 = JpbkK1;
c) S0 and S1 set 〈pk〉Ai = 〈uk〉Ai +〈vk〉Ai −2·〈uk〉A ·〈vk〉A.

Secure PopCount:

3) Si counts the number of “1” via 〈p〉Ai =
∑n
k=1〈pk〉

A
i ;

Secure 2p-n:

4) At the end, Si sets 〈z〉Ai = 2〈p〉Ai − i · n.

Fig. 3. The secure Boolean-VDP function SecBVDP(·, ·) based on XNOR-
PopCount.

2) Secure First Layer VDP: This subsequent section
presents Leia’s secure realization of the first layer, where the
two inputs submitted to VDP calculation are the real-valued
matrix of the user’s data (e.g., image) and the binarized weight
matrix.
Common Approach and Its Limitation: To realize the first
layer, a common way seems plausible is to protect both real-
valued data matrix and binarized weight matrix via Arithmetic
sharing, and then perform VDP on Arithmetic-shared data.
However, protecting the weights as Arithmetic shares would
substantially exaggerate the bandwidth to transmit the model
and waste BNN’s advancement. Besides, the multiplications
over Arithmetic shares require the assistant of multiplication
triples [29], and generating the disposable triples incurs in-
tensive bandwidth costs that scale linearly with the number
of triples. As the bandwidth is the bottleneck at the edge,
overwhelming amount of bandwidth will decrease the overall
performance and introduce additional charges by cellar net-
work service provider.
The Secure Boolean-Arithmetic-VDP Function: To min-
imize the overall bandwidth costs at the edge, we craft
the secure Boolean-Arithmetic-VDP function (SecBAVDP) in
Fig. 4, allowing for direct multiplication on mixed share

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 7

Input: Arithmetic shares of integer input vector x ∈ Zn,
Boolean shares of binary weight vector wb ∈ {0, 1}n.
Output: Arithmetic shares of result z = VDP(x,wb).
The n×COT` protocol with f∆:

1) The k-th COT` that k ∈ [1, n] computes 〈uk〉A of Eq. 1 as:
a) S0 is the sender, and S1 is the receiver;
b) S0 sets f∆ to Eq. 3, m0 = ru ∈R Z2` ; S1 sets bu =

JwbkK1;
c) S0 and S1 run (⊥;mbu)← COT (m0, f∆(m0); bu);
d) S1 obtains mbu and sets 〈uk〉A1 = mbu .
e) S0 sets 〈uk〉A0 = −ru + JwbkK0 · 〈xk〉A0 ;

The n×COT` protocol with g∆:

2) The k-th COT` that k ∈ [1, n] computes 〈vk〉A of Eq. 2 as:
a) S1 is the sender, and S0 is the receiver;
b) S1 sets g∆ to Eq. 4,m0 = rv ∈R Z2` ; S0 sets bv =

JwbkK0;
c) S1 and S0 run (⊥;mbv)← COT (m0, g∆(m0); bv);
d) S0 obtains mbv and sets 〈vk〉A0 = mbv ;
e) S1 sets 〈vk〉A1 = −rv + JwbkK1 · 〈xk〉b1.

3) At the end, Si sets 〈z〉Ai =
∑n
k=1(〈uk〉

A
i + 〈vk〉Ai).

Fig. 4. The secure Boolean-Arithmetic-VDP function SecBAVDP(·, ·) based
on COT.

representations. It takes as input the Boolean shares JwbK
of the binary weight vector w ∈ {0, 1}n and the Arith-
metic shares 〈x〉A of the real-valued input vector x ∈ Zn.
and outputs the Arithmetic-shared result of VDP(x,wb) as
〈z〉A. Our observation is that the element-wise multiplication
〈zk〉A = JwbkK · 〈xk〉A can be expressed as

〈zk〉A = 〈uk〉A + 〈vk〉A;

〈uk〉A = 〈(JwbkK0 ⊕ JwbkK1) · 〈xk〉A0 〉A; (1)

〈vk〉A = 〈(JwbkK0 ⊕ JwbkK1) · 〈xk〉A1 〉A. (2)

Eq. 1 and Eq. 2 then can be efficiently calculated by two
customized COT` protocols corresponding to the correlation
functions f∆ and g∆, respectively.

The first COT` protocol with f∆ calculates 〈uk〉A, where
S0 acts as the sender and S1 acts as the receiver. By treating
JwbkK1 as the choice bit bu, the logic can be expressed as

〈uk〉A = (1− bu) · (JwbkK0 · 〈xk〉A0) + bu · (¬JwbkK0 · 〈xk〉A0)

= (JwbkK0 · 〈xk〉A0)︸ ︷︷ ︸
S0 at local

+ bu · (¬JwbkK0 · 〈xk〉A0 − JwbkK0 · 〈xk〉A0)︸ ︷︷ ︸
COT` with f∆ and a choice bit bu

.

The former part of above formula is calculated by S0 at local,
while the latter part is performed by COT` with correlation
function f∆. In particular, S0 sets the correlation function as

f∆(s) = s+ (¬JwbkK0 · 〈xk〉A0 − JwbkK0 · 〈xk〉A0), (3)

where s is any input from S0. Once invoked, S0 sets his input
m0 as a random number ru, while S1 sets his input to bu.
Then S0 and S1 run (⊥;mbu) ← COT`(m0, f∆(m0); bu).
Meanwhile, S0 computes 〈uk〉A0 = −ru + JwbkK0 · 〈xk〉A0 . The
reconstructed 〈uk〉A is equivalent to Eq. 1.

Similarly, the second COT` protocol with g∆ treats JwbkK0

as the choice bit bv and computes 〈vk〉A as

〈vk〉A = (JwbkK1 · 〈xk〉A1)︸ ︷︷ ︸
S1 at local

+ bv · (¬JwbkK1 · 〈xk〉A1 − JwbkK1 · 〈xk〉A1)︸ ︷︷ ︸
COT` with g∆ and a choice bit bv

,

where S1 acts as the sender and S0 acts as the receiver. In
particular, S1 sets the correlation function as

g∆(s) = s+ (¬JwbkK1 · 〈xk〉A1 − JwbkK1 · 〈xk〉A1), (4)

where s is any input from S1. Once invoked, S1 sets his input
m0 to a random number rv , while S0 sets his input to bv .
S1 and S0 run (⊥;mbv) ← COT`(m0, g∆(m0); bv). S1 sets
〈vk〉A1 = −rv + JwbkK1 · 〈xk〉A1 . This 〈vk〉A is equivalent to
Eq. 2. At the end, S0 and S1 locally aggregate Σnk=1(〈uk〉Ai +
〈vk〉Ai) as his shared result 〈z〉Ai . Note that our COT-based
SecBAVDP requires to 2n calls of COT` with 2n(`+ λ) bits
and computing 2n·3 hashing, where λ is the security parameter
(128 in our work), while the OT-based approach requires 4n
calls of OT with 4n`(`+λ) bits. Proof of correctness is given
in Appendix C-A.

The Secure First Layer VDP Function: To perform the
secure first layer VDP function (Sec1VDP), we encode the
weight vector w as a tuple (+w

b
,−w

b
), where +w

b
,−w

b ∈
{0, 1}n. That is, when an element w = +1, the corresponding
tuple is +w ← 1 and −w ← 0; while when w = −1,
it is encoded as +w ← 0 and −w ← 1. The Sec1VDP
function takes as input the Arithmetic shares of integer in-
put vector 〈x〉A, Boolean shares of binary weight vectors
J+w

bK, J−wbK, and outputs the Arithmetic shares of feature
〈z〉A. Given the two edge nodes and the SecBAVDP function,
the Sec1VDP(〈x〉A, J+w

bK, J−wbK) proceeds as follows:
1) S0 and S1 run to get 〈+z〉Ai ← SecBAVDP(J+wbK, 〈x〉A).
2) S0 and S1 run to get 〈−z〉Ai ← SecBAVDP(J−wbK, 〈x〉A).
3) Si locally computes 〈z〉Ai = 〈+z〉Ai − 〈−z〉Ai .

B. Secure Batch Normalization and Binary Activation

1) Common Approach and Its Limitation: Batch normaliza-
tion and binary activation are usually applied as a combination
on each linear layer, following the linear transformation. Apart
from the output layer, the prediction results are the output
from the batch normalization without binary activation. At a
high level, the combination of such two functions proceeds
the functionality via

ab = sign(ε1 · a+ ε2), (5)

ε1 =
γ

δ
, ε2 = β − γµ

δ
(6)

where ε1, ε2 are preprocessed parameters derived from the
trained BN parameters µ, δ, γ and β. During our model
training procedure over plaintext, we observe that the trained
ε1, ε2 are real-valued, where their integer parts before radix
point are usually very small (i.e., 0 or 1) and the the fractional
parts can last for a few digits (e.g., 10 digits). To handle
the real-valued numbers in secure computation, a common

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 8

way is to scale the ε1, ε2 to integers with a certain precision
factor 2q , followed by a ring conversion applied on the
secret-shared a. Such a conversion is normally scaling up the
〈a〉A ∈ Z2` to 〈a′〉A ∈ Z2κ where κ > ` + q. After sharing
the ε1, ε2 in Z2κ as 〈ε1〉A, 〈ε2〉A ∈ Z2κ , the computation
〈y〉A = 〈ε1〉A · 〈a′〉A + 〈ε2〉A can be securely carried out
over Z2κ . And the sign(〈y〉A) can be securely realized via a
most significant bit (MSB) extraction.

The limitations of such a common way are two-fold. First,
an additional ring conversion operation has to be applied on
each neuron leading to higher computational costs. Second,
the enlarged ring Z2κ leads to a more complicated bitwise
MSB extraction. In general, this MSB extraction operation
follows the bit extraction protocol in [30] that performs non-
local operations on the bit string of 〈y〉A ∈ Z2κ . It requires the
interactions between the two edge nodes with the complexity
scaling linearly with the length of the bit string (i.e., κ). So,
a larger ring size leads to heavier bandwidth costs which
is undesired at the edge. To address the above challenges,
we propose two secure functions with special treatments: 1)
the secure normalized binary activation function (SecNBA)
for the first layer and hidden layers; and 2) the secure batch
normalization function (SecBN) in the output layer.

2) Secure Normalized Binary Activation: The SecNBA
function combines the secure batch normalization and the
secure binary activation. We observe that its functionality
defined as Eq. 5 can be transformed to

ab = sign(ε1) · sign(a+ ε) = XNOR(ζ, z); (7)
z = sign(y), y = a+ ε; (8)

ζ = sign(ε1), ε =
ε2
ε1

=
δβ

γ
− µ. (9)

Such a transformation results in a much simpler problem
without the ring conversion. Through our careful examination,
we identify that ε = ε2/ε1 is real-valued number with large
integer part. We thus quantize ε directly as integer and share
it in Z2` , so as to circumvent the conversion between different
rings. It is noteworthy that, a similar transformation has been
also proposed in XONN [6] and BANNERS [13]. However,
their designs do not consider the case that the parameter ε1
is negative value. In fact, during our plaintext model training,
we observed that ε1 in batch normalization can be a negative
value, and thus its sign bit ζ = sign(ε1) can not be ignored.
Moreover, the multiplication between the sign bits ζ and z
can be carried out via XNOR operation. Since ζ and ε are
independent of inference input, they can be pre-generated by
the model owner.

Given above equations, we present details of the secure
realization of the SecNBA function. It takes as input the
Arithmetic shares of the feature 〈a〉A that outputted from
the linear transformation, the shares of two preprocessed
parameters 〈ε〉A and JζK, and outputs the Boolean shares of
binary normalized activation JabK. As summarized in Fig. 5,
we decompose the computation as three atomic operations
at a high-level, i.e., the secure y, the secure sign (secure
MSB gadget + secure MSB to sign), the secure XNOR.
The secure y takes as input the shares of the preprocessed

𝑺𝟎 𝑺𝟏

𝑎 #
$, 𝜖 #

$

Secure 𝑦

𝑦 #
$

Secure MSB gadget

atri0 atri1

𝑦ℓ #

Secure MSB to sign

Secure XNOR
𝑎& ' 𝑎& #

𝜁 #

𝑧 ' 𝑧 #

𝑦 '
$

Secure sign

𝜁 '

𝑦ℓ '

𝑎 '
$, 𝜖 '

$

Fig. 5. An overview of the SecNBA function.

Input: Arithmetic shares of integer feature a ∈ Z, Arithmetic
shares of param. ε ∈ Z, Boolean shares of param. ζ ∈ {0, 1}.
Output: Boolean shares of binarized activation ab ∈ {0, 1}.
Secure y:

1) Si calculates 〈y〉Ai = 〈a〉Ai + 〈ε〉Ai .
Secure sign(·):
2) Secure MSB(·) gadget: S0 and S1 run Jy`Ki ←

MSB(〈y〉A).
3) Secure MSB to sign: Si sets JzKi = Jy`Ki ⊕ i.
Secure XNOR:
4) Si sets JabKi = JzKi ⊕ JζKi ⊕ i.

Fig. 6. The secure normalized binary activation function SecNBA(·, ·, ·).

parameter 〈ε〉A and feature 〈a〉A and produces the shares 〈y〉A
defined in Eq. 8. The secure sign consists of the secure MSB
gadget and the secure MSB to sign operations to extract the
Boolean-shared sign bit JzK. The secure MSB gadget extracts
the shared MSB Jy`K of the input 〈y〉A with the assist of
already generated Boolean AND triples atri0, atri1. Then Jy`K
is converted to the shared sign bit JzK through the secure MSB
to sign. The last secure XNOR produces the shared binary
normalized activation JabK based on Eq. 7, given the shares of
the sign bit JzK and preprocessed JζK.

Given above atomic operations, Fig. 6 details the corre-
sponding realization of the SecNBA function. The secure y is
realized in step 1, where each edge node Si locally computes
〈y〉Ai by adding 〈ε〉Ai to 〈a〉Ai . Steps 2, 3 realize the secure
sign. In step 2, the edge nodes S0 and S1 jointly execute the
secure MSB gadget to obtain their shares of MSB, i.e., Jy`Ki.
This gadget employs the bit extraction protocol in [30], which
is able to efficiently extract the MSB of the Arithmetic-shared
values and produce a Boolean-shared MSB. The MSB is 0
of non-negative values (including 0) and 1 of the negative
values, which is exactly the one’s complement of a given sign
bit. Then in step 3 (the secure MSB to sign), Si performs
logical negation on each Jy`Ki at local to obtain the shared
sign bit JzKi. The secure XNOR is realized in step 4, where Si
conducts local XNOR operation over JzKi and JζKi, and finally
gets its share of binary normalized activation JabKi. Details of
the secure MSB gadget is given in Appendix A.

3) Secure Batch Normalization for Output Layer: The
secure batch normalization function (SecBN) is applied right

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 9

after the secure linear transformation (SecBVDP) in the output
layer. It takes as input the Arithmetic shares of activation
〈a〉A ∈ Z2κ outputted from SecBVDP, and shares of two
parameters 〈ε1〉A, 〈ε2〉A ∈ Z2κ , and outputs the Arithmetic
shares of the normalized activation 〈z〉A ∈ Z2κ . Here, the
B2A gadget, i.e., the step 2 in the SecBVDP, performs the
conversion from over Z2 to Z2κ , and thus the output of
SecBVDP is a feature already secret-shared in Z2κ . Note that
this ring conversion operation will not affect the following
binary activation, as the output of SecBN is the shared
inference result. The parameters ε1, ε2 are already enlarged
during preprocessing, and secret shared in Z2κ .

Given the two edge nodes, the pre-generated mtrii ∈ Z2κ ,
the SecBN(〈a〉A, 〈ε1〉A, 〈ε2〉A) proceeds as follows: S0 and
S1 compute 〈z〉Ai = 〈ε1〉A · 〈a〉A+ 〈ε2〉Ai to obtain their shares
of normalized activation.

C. Secure Binary Max Pooling Layer

The secure binary max pooling layer (SMP) is used to
obtain the maximum values among the secret-shared binary
activations within a certain sliding window. The number of
n binary activations within the window can be denoted as
a n-dimensional binary activation vector ab = (ab1, ..., a

b
n) ∈

{0, 1}n. We assume that there are overall m-number of vectors
as ab1, ...,a

b
m. We observe that its functionality over plaintext

ab can be realized as the bitwise-OR operation on all bits of
the vectors, i.e., the maximum value is zb = ab1∨ab2∨...∨abn, so
as to find if ab constitutes with any “1” bit. However, the key
takeaway of a secure realization is to achieve obliviousness,
i.e., for every step in a certain computation, both edge nodes
have to proceed equivalent operations. Through carefully ex-
amination, we transform the logic to

zb = ¬(¬ab1 ∧ ¬ab2 ∧ ... ∧ ¬abn) (10)

which is more compatible with our secret sharing based
realization.

Input: Boolean shares of m-number of n-dimensional binary
activation vectors ab1, ...,a

b
m ∈ {0, 1}n, where the dimension

n matches the size of pooling window.
Output: Boolean shares of m-number of binary pooling result
zb1, ..., z

b
m ∈ {0, 1}.

1) For t ∈ [1,m], S0 and S1 compute the shares of maximum
element in JabtKi = (Jabt,1Ki, ..., Jabt,nKi) based on Eq. 10:
a) For k ∈ [1, n], Si sets JabkKi = JabkKi ⊕ i;
b) Si sets variable JcbtKi = Jabt,1Ki;
c) For k ∈ [2, n], S0 and S1 set JcbtKi = JcbtK ∧ Jabt,kK.
d) Si sets Jzbt Ki = JcbtKi ⊕ i.

Fig. 7. The secure max pooling function SecMP(·).

With this philosophy in mind, we present in Fig. 7 the
proposed secure max pooling function (i.e., SecMP) design
specialized for the two edge nodes case as the main building
block of the MP layer. It takes as input the Boolean shares
of m-number of n-dimensional binary activation vectors JabtK,
determines the maximum element for each vector, and out-
puts their Boolean shares as the pooling result Jzbt K, where
t ∈ [1,m]. For each JabtK, S0 and S1 securely proceeds Eq. 10

via the steps below. In step 1.a, Si securely realizes ¬abt,k by
XORing the share Jabt,kKi to its identifier i, where k ∈ [1, n].
In steps 1.b and 1.c, S0 and S1 iteratively perform AND over
all of its shares, i.e., JcbtKi = Jabt,1K ∧ ... ∧ Jabt,nK. In step
1.d, Si sets its output share Jzbt Ki as its identifier i XOR with
JcbtKi. We emphasis that all operations performed by the two
nodes are identical, and thus endowing our SecMP function
obliviousness. Appendix C-B provides the proof of correctness
of the SecMP function.

D. Secure BNN Inference Protocol

Given above layer functions, we now describe our secure
BNN inference protocol φ. It comprises two phases: the
preprocessing phase performed by each entity individually,
and the secure inference phase jointly carried out by the two
non-colluding edge nodes.

1) Preprocessing Phase: During the preprocessing phase,
the mobile user converts its task-specific raw input to a tensor
X ∈ Zcin×nin×min and deploys the corresponding Arithmetic-
shared tensors to S0 and S1, respectively. Once received, they
partition and flatten the shared tensor into a set of vectors, and
the size of each vector equals to the sliding window size for
the ease of subsequent VDP operations. Let T 1 be the total
moves to slide the window for the first layer. After flattening,
S0 and S1 hold vectors 〈(x)c,τ 〉A, where c ∈ [1, cin] denotes
the input channel, and τ ∈ [1, T 1] indicates the τ -th sliding
window. They also prepare triples during vacant time.

The model owner holds an L-layer BNN model. Each layer
l ∈ [1, L] is formed from a set of binarized weight vectors
(w)lk, i.e., a number of k vectors in the layer l. For the CONV
and MP, k = clo (the number of output channels) and the
length |w| = nw×nw. For FC, k = nl (the neurons of current
layer) and |w| = nl−1 (the neurons of previous layer). For the
first layer, the weight vectors are encoded as tuples (+1 →
(1, 0) and −1 → (0, 1)) as input of the Sec1VDP function,
denoted as J(+w

b
)1
kK, J(

−w
b
)1
kK. For hidden layers, the weight

vectors are encoded based on the sign (+1 → 1 and −1 →
0), denoted as J(wb)lkK. For BN, the model owner computes
ε1, ε2, ε, ζ according to Eq. 6 and Eq. 8, and generates shares
J(ζ)lkK, 〈(ε)lk〉A ∈ Z2` , 〈(ε1)Lk 〉A, 〈(ε2)Lk 〉A ∈ Z2κ . To this end,
the model owner deploys all shares to the corresponding edge
nodes S0 and S1 for coordinate processing.

2) Secure Inference Phase: Fig. 8 depicts the secure infer-
ence phase of an L-layer BNN. The inputs are the shares
generated during preprocessing, including the shared user
input vectors from the mobile user, the shared weight vectors
and parameters from the model owner. The outputs are the
last layer’s activations mapping a certain classification label
after reconstruction. As NN can have distinct architectures
assembled with layer functions, we present a typical one for
demonstration purpose. It comprises the first SCONV layer,
followed by an SMP layer, and L − 2 number of the SFC
layers. For each linear layer, the SecNBA function is applied
after the linear transformation. And the SecBN function is
applied to the output layer.

For the first SCONV layer, S0 and S1 repeatedly execute the
Sec1VDP function on shared weight and user’s data, inside

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 10

Let k ∈ [1, clo], τ ∈ [1, T 1] for SCONV, SMP; k ∈ [1, nl] for SFC.
First SCONV layer, l = 1:

1) S0, S1 run 〈(a)1k,τ 〉
A
i =

∑cin
c=1 Sec1VDP (J(+w

b
)1kK, J(−wb

)1kK,
〈(x)c,τ 〉A).

2) S0, S1 run J(ab)1k,τ Ki ← SecNBA (〈(a)1k,τ 〉
A, 〈(ε)1k,τ)〉

A, J(ζ)1k,τ K).
SMP layer, l = 2:

3) S0, S1 run J(ab)lk,τ K ← SecMP(J(ab)l−1
k,τ K).

Remaining SFC layers, l ∈ [3, L]:

4) Si flattens J(ab)l−1Ki = J(ab)l−1
1 Ki, . . . , J(ab)l−1

nl−1Ki.
5) S0, S1 run 〈(a)lk〉

A
i ← SecBVDP (J(ab)l−1K, J(wb)lkK), where

(ab)l−1, (wb)lk ∈ {0, 1}
nl−1

.
6) If l 6= L, S0, S1 run J(ab)lkKi ← SecNBA (〈(a)lk〉

A, 〈(ε)lk)〉
A, J(ζ)lkK).

7) Else, S0, S1 run 〈(z)Lk 〉
A
i ← SecBN (〈(a)Lk 〉

A, 〈(ε1)Lk 〉
A, 〈(ε2)Lk 〉

A).
8) Si outputs 〈(z)Lk 〉

A
i .

Fig. 8. Secure BNN inference phase of protocol φ.

every τ -th sliding window. The outputs are then summed
across input channels as a set of features 〈(a)1

k,τ 〉A for each
output channel k, and submitted to the SecNBA function to
obtain the shares of normalized binary activations. Afterwards,
the SMP layer run the SecMP function to down sample the
previous layer’s activation vector into a single activation within
each τ -th pooling window. The remaining L−2 layers are the
SFC layers. S0 and S1 firstly flatten the feature map outputted
from the SMP layer as an one channel vector J(ab)l−1K across
all cl−1

o channels. Thereafter, for the l-th SFC layer, S0 and S1

execute the SecBVDP function on J(wb)lkK and J(ab)l−1K, and
obtain features 〈(a)lk〉A, where nl is the number of neurons
of the current layer and k ∈ [1, nl]. For every feature, the
SecNBA function is applied to obtain the activations J(ab)lK.
Likewise, the SecBN function is applied to the output layer
L to obtain the results 〈(z)Lk 〉A, where k ∈ [1, nL]. To
this end, S0 and S1 obtain the shares of inference result
mapping a certain classification label. They then send back
the shares of result to the mobile user who can reconstruct to
get the prediction. The remark of complexity is provided in
Appendix D.

Security Guarantees: For our secure BNN inference protocol
φ, we define security based on the Universally Composable
(UC) security framework [42]. Under a general protocol
composition operation (universal composition), the security of
φ is preserved. Given a semi-honest admissible adversary A
who can compromise at most one of the two non-colluding
edge nodes S0, S1 and either the mobile user or the model
owner. This reflects on the property that S0, S1 are non-
colluding servers, i.e., if S0 is compromised by A, S1 acts
honestly; vice versa. Leia’s protocol follows the security of the
Arithmetic sharing [20], Boolean sharing [19] and COT [28].
Leia properly protects the user data, model, Beaver’s triples,
and intermediate results outputted from layer functions as
secret shares in Z2` and Z2. Given above, we argue that φ
UC-realizes an ideal functionality F against A. The security
captures the property that the only data learned by any
compromised parties are their inputs and outputs from φ, but
nothing about the data of the remaining honest parties.

Differences from Prior Art: We emphasis that Leia and
XONN are different regarding the system models, application

scenarios, the utilized cryptographic tools, and the designs of
the secure layer functions.

Leia’s overreaching goal is to design secure NN inference
system amiable for the recourse-constrained mobile devices.
Such resources encompass the hardware designs with limited
computational power, stringent energy consumption, and more
importantly, the unstable cellular network environment. To
embrace the above rigid operational demands, we leverage
edge computing to fully delegate our system to the edge
devices, and as such the mobile devices do not need to alway
stay online during the secure inference. In particular, all secure
computations are executed amongst the co-located edge nodes
including the interactions. In comparison, XONN focuses on
the scenario where an interactive protocol is executed between
the client and the server. That is, XONN requires the client
have symmetric computational capabilities to the server and
always engaging in the whole secure inference with contin-
uous interactions, which is not applicable to deploy in the
dynamic cellular network and constrained resources devices.
Meanwhile, Leia’s edge-aided system architecture facilitates
the model owner dynamically fine-tuning its service, where
the neural network model can be regularly updated without
republishing the mobile application, which in contrast is not
enabled in XONN.

Despite the different system models, the realizations of
the secure layer functions in XONN and Leia are entirely
different. At a high-level, XONN directly resorts to the
generic two-party secure computation framework, i.e., Yao’s
GC (with optimizations) and OT, to securely realize each
layer function involved in BNN. In comparison, Leia crafts
and realizes the secure layer functions fully with lightweight
cryptographic tools, i.e., the Secret Sharing techniques and
COT; wherein each proposed building block underpinning the
secure layer functions are carefully designed to be suitable
for the edge computing paradigm. The GC based approaches
require substantial network resources and typically introduce
larger latency than the secret-sharing based realizations [18],
[43], [22]. Moreover, our designed COT for the secure binary-
integer vector dot product saves half of the communication
rounds to the oblivious condition addition based function, and
this saving could be very significant enhancement due to the
massive multiplication operations in processing NN inference.

We observe that our work [44] is concurrent and indepen-
dent with prior art FALCON [16] and BANNERS [13], yet
their designs are fundamentally different from ours Both FAL-
CON and BANNERS focus on the honest-majority malicious
security under the three-server setting. Their secure protocols
are built upon the 2-out-of-3 replicated secret sharing, while
Leia is built upon additive secret sharing techniques [19],
[20] and correlated oblivious transfer [28]. Besides, the imple-
mentation and real-world deployment of three-server protocols
are more complex, whereas our secure and lightweight two-
server inference protocol is advantageous in implementation
and practical deployment to the edge devices.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 11

Fig. 9. Deployment on Raspberry Pi with power
meter.

0 1 2 3 4 5 6

Time (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

SecBAVDP (3x3)

SecBAVDP (5x5)

SecBVDP (3x3)

SecBVDP (5x5)

Fig. 10. Unit time of linear functions.

0 0.5 1 1.5 2 2.5 3

Time (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

SNBA

SMP

SBN

Fig. 11. Unit time of nonlinear functions.

TABLE III
BANDWIDTH COST OF ATOMIC LAYER FUNCTIONS (IN KB).

inputs SecBVDP SecBAVDP SecNBA SecBN SecMP
3× 3 5× 5 3× 3 5× 5 2× 2

Leia 0.3 0.8 16.0 17.3 0.2 0.03 0.01
GC-baseline 22.1 24.4 468.0 1257.4 25.9 78.3 20.9

savings 73× 30× 29× 130× 146× 2610× 2090×

TABLE IV
TIME COST OF ATOMIC LAYER FUNCTIONS (IN S).

inputs SecBVDP SecBAVDP SecNBA SecBN SecMP
3× 3 5× 5 3× 3 5× 5 2× 2

103 0.5 0.5 4.8 4.9 0.6 0.4 0.06
104 3.1 3.4 20.4 22.8 5.1 2.6 0.4
105 29.4 31.6 198.3 217.9 50.1 23.0 3.1

VI. PERFORMANCE EVALUATION

A. Implementation and Setup

We implement a prototype of Leia in Java. All experiments
are executed on two Raspberry Pi devices to simulate the
edge environment. The devices are Raspberry Pi 4 Model B
running Raspbian Linux 10 (buster) and equipped with Quad
core Cortext-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor,
4GB RAM, and gigabit ethernet. Consist with prior art [6],
[5], we evaluate Leia in the LAN setting. We use FlexSC [45]
for the Extended OTs [28] and implement our designed COT
protocol (i.e., the SecBAVDP function). Regarding Arithmetic
sharing, we set the size of the ring as Z232 for the first layer
and output layer, and Z216 for the remaining hidden layers.
The reported measurements make use of the MNIST and
CIFAR-10 datasets, i.e., the two commonly-used classification
benchmarks in prior work [7], [6]. We evaluate Leia on a
variety of different BNN models, where the models M1 and
M2 are trained on MNIST, and the models C1 and C2 are
trained on CIFAR-10. To demonstrate Leia’s practicability
in real-world applications, we further evaluate Leia on four
medical datasets, i.e., breast cancer [46], diabetes [47], liver
disease [48], and thyroid [49] on the models D1, D2, D3, D4,
respectively. The details of our adopted model architectures
can be found in Appendix E. For model training, we use
PyTorch backend with standard BNN training algorithm [15].
We further use COOWOO power meter [50] to evaluate the
energy consumption of Leia when deploying the real-world
medical applications. Fig. 9 demonstrates our deployment.

B. Evaluation

1) Microbenchmarks: We present performance benchmarks
of secure layer functions as the basic building blocks used for
secure BNN inference. For demonstration purpose, we choose
3×3 and 5×5 sliding windows to show the performance of the
SecBVDP and the SecBAVDP functions, i.e., the secure VDP
operations over 9-dimensional vectors and 25-dimensional
vectors, respectively. These two window sizes are common-
used and adapted to our CONV layer. Likewise, we employ the
2× 2 window to demonstrate the performance of the SecMP
function.

We summarize the computational cost of the proposed
secure layer functions in Table IV. The time consumption of
the SecBAVDP function consists of two parts: 1) the constant
initialization cost of the COT protocol (∼3s); and 2) the time
to compute VDP over mixed share representations raising
linearly with the number of calls. For the rest functions,
their latencies ascend linearly in the growth of the number
of executions yet with slight fluctuations. Besides, we grasp
10K executions of each secure layer function, and utilize the
empirical cumulative distribution function (ECDF) to shed
light on the distribution of their unit execution time. Fig. 10
depicts the distribution of unit run time of the secure linear
functions, i.e., the SecBVDP and SecBAVDP functions. For
overwhelming amount of executions, the unit executions of
the SecBVDP function with 3× 3 and 5× 5 windows can be
completed within 0.5ms. Besides, the unit execution time of
the SecBAVDP function without the aforementioned constant
COT initialization cost. As shown, more than 90% executions
take 1ms and 4.5ms for 3×3 and 5×5 windows, respectively.
Fig. 11 exhibits the time costs of single executions of the non-
linear functions, i.e., the SecNBA, SecBN, SecMP (with 2×2
window) functions. All three functions can be done within
1ms.

Comparison with GC-based Realization: The communi-
cation costs of the secure layer functions are reported in
Table III. We implement and evaluate the baseline based on
GC with its free-XOR and half-AND optimizations, which
realizes the equivalent functionality for each of the secure
layer function. In general, Leia’s realizations require 30−79×,
and 150− 2500× less communication for the linear and non-
linear functions than the corresponding GC-based realizations.
In detail, for the secure linear functions, the communication
of Leia is 73× and 30× less for the SecBVDP function, and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 12

TABLE V
PERFORMANCE OF THE SCONV FUNCTION OF HIDDEN LAYERS.

model input kernel feature stride, #SecBAVDP time comm.
padding (s) (MB)

M2 16×12×12 16×16×5×5 16×8×8 1, - 16× 1024 0.9 12.5
C1 16×32×32 16×16×3×3 16×32×32 1, 0 16× 16384 6.2 63.3
C2 16×32×32 32×16×3×3 32×32×32 1, 0 16× 32768 14.5 126.6

input: cin × nin ×min; kernel: co × cin × nw × nw ; output: co × no ×mo.

TABLE VI
PERFORMANCE OF THE SCONV FUNCTION OF FIRST LAYER.

model input kernel feature stride, #SecBAVDP time comm.
padding (s) (MB)

M2 1×28×28 16×1×5×5 16×24×24 1, - 1× 18432 30 310
C1/C2 3×32×32 16×3×3×3 16×32×32 1, 0 3× 32768 46 490

input: cin × nin ×min; kernel: co × cin × nw × nw ; output: co × no ×mo.

TABLE VII
PERFORMANCE SUMMARY OF THE MEDICAL APPLICATIONS.

network time (s) a comm. (MB) time (µs) time (ms) accuracy accuracy
edge edge mobile user model owner Leia plaintext

D1 3.15 0.57 42.1 2 98.23% 97.37%
D2 3.19 0.65 24.2 1.5 74.14% 80.17%
D3 3.22 1.06 24.8 2.4 78.45% 80.17%
D4 3.64 3.67 47.4 9.7 92.04% 93.64%

a time at edge includes ∼3s OT initialization time.

64 128 256 512 1024
Size of layer (n x n)

10 1

100

101

Ti
m

e(
s)

SFC (First Layer)
SFC (Hidden Layers)

Fig. 12. Time cost of the SFC layer.

64 128 256 512 1024
Size of layer (n x n)

10 1

100

101

102

B
an

dw
id

th
(M

B
)

SFC (First Layer)
SFC (Hidden Layers)

Fig. 13. Comm. cost of the SFC layer.

29× and 130× less for the SecBAVDP function, over 3 × 3
and 5× 5 windows respectively. For the non-linear functions,
Leia achieves 146×, 2610×, and 2090× bandwidth savings
of the SecNBA, SecBN and SecMP costs compared with GC-
based realizations. The reported results testify that the prior
constructions relying on GC [7], [6], [11], [12] require a
network environment with high bandwidth. They might not
be applicable for our considered application scenario, i.e., the
secure inference deployed at the edge with limited network
conditions.

In particular, for the COT-based SecBAVDP function, we
emphasis that the adoption of such regime saves the overall
bandwidth consumption at a system level. Such retrenchment
includes the cost of protecting each weight element as 32-
bit shares in Z232 to a tuple of 1-bit shares in Z2, and
the cost of generation of multiplication triples in Z232 . As
shown by the empirical result, the GC-based realizations
produce 30× and 73× bandwidth consumptions higher than
the Leia’s realizations for 9-dimensional and 25-dimensional
vectors, respectively. We further report the bandwidth costs
of the realizations based on multiplication triples as 270KB
and 790KB, amounting to one magnitude larger than Leia’s
bandwidth.

2) Linear Layers: We report the performance of secure
linear transformations (i.e., SCONV and SFC) below, which
comprise the majority of Leia’s overall inference overhead.

Table VI and Table V benchmark the performance of the
SCONV layer function as the first layer and the hidden layer,
respectively. The reported results are in line with our specified
network architectures of M2, C1, and C2. As they consist
plenty of convolutional hidden layers, we choose to show
the performance of their second layers (the most complicated
hidden layers) for the ease of demonstration. Note that, the
M1, D1, D2, D3, D4 networks consist of only fully connected
layers. The complexity of the SCONV layer function is
determined by a set of parameters: 1) the number of input

channels cin and output channels co; 2) the dimensions of
input image; 3) the kernel size (i.e., the sliding window size s),
stride, and padding regime. These parameters directly reflect
on the number of invocations of SecBAVDP/SecBVDP as
shown. The key takeaway here is our runtime optimization
of batch processing to amortize the overhead of executing
SecBAVDP/SecBVDP. In detail, we flatten the input matrices
across multiple channels yet within the same sliding window
as a single vector, and conduct SecBAVDP/SecBVDP over it
in a batch. We take as an example the complexity of C1’s
hidden SCONV layer reported in Table V. It is proceeded
in the batch integrating with 16-channel input matrices. As
a result, the calls of SecBVDP (3 × 3 window) are reduced
from 230400 to 16384, speeding up the time from 68s to 6.2s
accordingly.

Fig. 12 and Fig. 13 depict the computational and communi-
cation overheads of the SFC layer function as the first layer and
hidden layers, respectively. They are evaluated over a series
of n×n fully connected layers, i.e., both the input and weight
are n-dimensional vectors. Followed by the growth of n, the
time of the hidden SFC layer ascends linearly attributed to our
batch processing optimization, while the bandwidth ascends
quadratically with the growth of dimension n. For the first
SFC layer, the computational overhead is primarily dominated
by the constant COT initialization time, and the bandwidth
growths with the layer size.

3) Leia’s Protocol on MNIST and CIFAR-10.: We evalu-
ate Leia’s cryptographic inference protocol on MNIST and
CIFAR-10 datasets. Table VIII summarizes the overall per-
formance. We overview the network architectures here, and
present more details in Section III of the supplementary
materials. The online phase of Leia is executed at the edge.
The networks M1 and M2 for MNIST dataset are relatively
simple, and Leia can produce high-quality prediction results
within 4s and 37.4s, respectively. The more complex C1 and
C2 for CIFAR-10 dataset involve 13 layers (23 stages), and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 13

TABLE VIII
PERFORMANCE SUMMARY OF THE BENCHMARKING NETWORKS.

dataset network time (s) a comm. (MB) time (ms) b time (s) c accuracy accuracy layers
edge edge mobile user model owner Leia plaintext

MNIST M1 4.0 19.7 0.4 0.05 97.0% 97.0% 3SFC, 2SecNBA, 1SecBN
M2 37.4 328.1 0.4 0.5 99.12% 99.12% 2SCONV, 2SFC, 2SMP, 3SecNBA, 1SecBN

CIFAR-10 C1 123.1 919.4 1.1 5.1 71.68% 69.03%
9SCONV, 1SFC, 3SMP, 9SecNBA, 1SecBN d

C2 199 1829.9 1.2 15.7 81.0% 77.88%
a Time at edge includes ∼3s OT initialization time.
b Cost of generating shares of an image during preprocessing.
c One-time cost of generating shares of the model during preprocessing.
d C1 and C2 have same layers but with different weight size.

SF
C

Se
cN

B
A

SF
C

Se
cN

B
A

SF
C

Se
cB

N

Stage 1 to 6

10 2

10 1

100

Ti
m

e(
s)

SCONV/SFC
SecNBA/SecNA

SF
C

Se
cN

B
A

SF
C

Se
cN

B
A

SF
C

Se
cB

N

Stage 1 to 6

10 3

10 1

101

B
an

dw
id

th
(M

B
)

SCONV/SFC
SecNBA/SecNA

Fig. 14. Performance breakdown of M1. Left: time cost. Right:
bandwidth cost.

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SM
P

SF
C

Se
cN

B
A

SF
C

Se
cB

N

Stage 1 to 10

10 2

10 1

100

101

Ti
m

e(
s)

SCONV/SFC
SecNBA/SecNA
SMP

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SM
P

SF
C

Se
cN

B
A

SF
C

Se
cB

N

Stage 1 to 10

10 2

100

102

B
an

dw
id

th
(M

B
)

SCONV/SFC
SecNBA/SecNA
SMP

Fig. 15. Performance breakdown of M2. Left: time cost. Right: bandwidth cost.

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SF
C

Se
cB

N

Stage 1 to 23

10 1

101

Ti
m

e(
s)

SCONV/SFC SecNBA/SecNA SMP

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SC
O

N
V

Se
cN

B
A

SM
P

SF
C

Se
cB

N

Stage 1 to 23

10 1

102

B
an

dw
id

th
(M

B
)

SCONV/SFC SecNBA/SecNA SMP

Fig. 16. Performance breakdown of C1. Top: time cost. Bottom: bandwidth
cost.

their executions require about 2min and 3.3min respectively.
The workload of the mobile user is light, which confirms that
Leia is amiable to the resource limited portable devices. The
one-time overhead of the model owner is determined by the
model size. Such cost dost not aggravate workload on the
model owner, as generating shares of the most complicated
network C2 can be completed within 15.7s.
Performance Breakdown: To gain a more comprehensive
understanding of resource consumption, we demonstrate the
performance breakdown of each network. Fig. 14 and Fig. 15
show the time cost (left figure) and bandwidth cost (right
figure) for each stage of M1 (6 stages) and M2 (10 stages)
on MNIST dataset, respectively. Since C1 and C2 share the
same architecture (different weight size), Fig. 16 reports the
time (top figure) and bandwidth (bottom figure) for each stage

of C1 (23 stages) for demonstration purpose. As seen, the first
layer occupies most of the resources, and the linear functions
usually require more workload than the non-linear functions.
Accuracy: The effectiveness is demonstrated in Table VIII via
the accuracy comparison between Leia’s prediction results and
the plaintext’s results. For the M1 and M2 networks evaluated
on MNIST dataset, Leia’s prediction results are accurate as
the plaintext (i.e., 97% and 99%, respectively). Besides, Leia
achieves the accuracy of 69% and 81% for the C1 and
C2 networks evaluated on CIFAR-10 dataset, amounting to
slight accuracy impactions compared with the plaintext results.
Such variations can be attributed to the quantization of batch
normalization parameters, which imposes regularization on
weights to prevent overfitting [51], [52].
Comparison with Prior Art: To demonstrate that Leia is
suitable for edge, Table IX compares the bandwidth of Leia
with prior art on CIFAR-10 dataset with the same accuracy
(81%). All reported measurements are directly adopted the
results reported from their papers, where the cost of Gazelle
with all-ReLU activations is given in Delphi. As seen, Leia
requires the least bandwidth cost among the others except
the Gazelle with polynomial approximation of activation
functions. However, Gazelle’s client-server protocol requires
much heavier workload on client, including the homomorphic
encryption/decryption and interactions with the model owner.

For the state-of-the-art work (XONN [6]), it consumes over-
all 2599MB bandwidth over the trimmed NNs and 3461MB
bandwidth without applying the network trimming techniques.
In comparison, Leia only needs 1830MB bandwidth, amount-
ing to 1.4× and 1.9× improvements, respectively. These
improvements stem from the lightweight secret sharing tech-
niques used in Leia, while XONN mainly resorts to the GC-
based approaches. The optimizations proposed in XONN, i.e.,
the neural network pruning and scaling techniques, can be
integrated in Leia to make further performance improvement.
We note that XONN requires the client allocating sufficient

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 14

TABLE IX
BANDWIDTH COMPARISON OF LEIA WITH PRIOR ART.

prior art bandwidth (MB) accuracy
MiniONN 9272 81%
Chameleon 2650 81%

EzPC 40683 81%
Gazelle (polynomial approx.) 1236 81%

Gazelle (ReLU activation) ∼5000 81%
XONN (trimmed NN) 2599 81%

XONN (untrimmed NN) 3461 81%
Leia (network C2) 1829.9 81%

TABLE X
DESCRIPTION OF THE MEDICAL APPLICATIONS.

dataset network # train # test layer functions
Breast Cancer [46] D1 5K 500 3SFC, 2SecNBA, 1SecBN

Diabetes [47] D2 615 115 3SFC, 2SecNBA, 1SecBN
Liver Disease [48] D3 467 115 3SFC, 2SecNBA, 1SecBN

Thyroid [49] D4 3.7K 3.4K 3SFC, 2SecNBA, 1SecBN

memory to garble the circuits (less than 2GB for each layer),
which could be undesirable for the mobile devices. Leia
circumvents the occupation of substantial memory usage, as
the mobile device only needs to encrypt its user input (an
image) as 32-bit secret shares, while the edge devices conduct
the secure inference in an interactive way without constructing
a large monolithic circuit.

4) Leia’s Protocol on Medical Applications: Privacy-
preserving inference on medical data is one important ap-
plication of Leia’s protocol. Table VII summarizes Leia’s
performance of four medical applications: breast cancer, di-
abetes, liver cancer, and thyroid. The corresponding datasets
and networks are described in Table X. Leia’s inference of all
above applications can be accomplished within 4s (including
∼3s OT initialization time) and a few MB bandwidth. Notably,
the offline preprocessing requires less than 50µs and 10ms on
the user side and the model owner side, respectively. Such
tiny workload confirms that Leia can particularly benefit the
healthcare stakeholders with resources-constraint IoT devices,
like a patient in the wearable health monitoring device.
Energy Cost: As energy is one of the precious resources for
edge computing, we further explore the energy performance of
Leia’s inference over real-world medical applications. In par-
ticular, we measure the amount of energy consumed through-
out the entire secure inference via the usage of COOWOO
power meter [50]. Table XI summarizes the energy consumed
of Leia’s secure inference system running over the four
medical datasets.

C. Further Discussion

We discuss on the generalization of Leia regarding more
deployment scenarios and the supported NN models. Our
primary goal of designing Leia is to present the proof-of-
concept solution of a mobile-friendly secure NN inference

TABLE XI
ENERGY COST OF THE MEDICAL APPLICATIONS.

medical application Breast Cancer Diabetes Liver Disease Thyroid
energy cost (J) 439.2 532.8 788.4 2761.2

system at the edge. The deployment scenarios are not just
limited to the mobile devices, rather, the scenarios can be
extended to any resources-constrained devices, such as the
IoT cameras, potable medical imaging devices. A typical
example can be the handheld medical imaging scanner used
by the COVID-19 pandemic screening centers, as given in
Sec. IV-A3. Beyond edge, our system can be generalized to the
cloud deployment, whereby two non-colluding cloud services
collaboratively execute Leia.

In addition, we have designed Leia’s secure inference pro-
cedure consists of all essential secure computational blocks
in BNN, including the binarized linear layers, the commonly
used non-linear binary activation function (the sign function),
and the max pooling over binarized weights. These essential
secure computational blocks can be scaled to support more
neural networks. For example, our secure sign function can be
used as a building block of secure ReLU function and secure
max pooling over integers. Moreover, our proposed secure
inference system can be deployed to other inference tasks,
ranging from medical image segmentation, object detection,
to natural language processing.

VII. CONCLUSION

In this paper, we propose Leia, a lightweight cryptographic
NN inference system at the edge. Leia resorts to the edge
based architecture, to foster a low-latency service and relax
the constraint of the model owner and mobile device being
online. To cater for the operational needs of edge environment,
Leia is co-designed with the advancement from both machine
learning and cryptographic areas. With the highly customized
secure layer functions on binarized neural network, Leia
enables an oblivious inference service guaranteeing both user
and model privacy. Comprehensive empirical validation on
benchmark and medical datasets demonstrates Leia practical
and applicable for the real-world scenarios.

REFERENCES

[1] “Machine learning and the future of mobile app development.” Online
at https://heartbeat.fritz.ai/machine-learning-and-the-future-of-mobile-a
pp-development-13dd2aeda533.

[2] “Google Cloud AI.” Online at https://cloud.google.com/products/ai/.
[3] W. Zheng, R. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously

secure coopetitive learning for linear models,” in Proc. of IEEE S&P,
2019.

[4] “Delphi: A cryptographic inference service for neural networks,” in
Proc. of 29th USENIX Security, 2020.

[5] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proc. of ACM CCS, 2017.

[6] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “Xonn: Xnor-based oblivious deep neural network inference,” in
Proc. of 28th USENIX Security, 2019.

[7] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón,
“Quotient: two-party secure neural network training and prediction,” in
Proc. of ACM CCS, 2019.

[8] “AI at the Edge: The next frontier of the Internet of Things.” Online at
https://iotbusinessnews.com/download/white-papers/AVNET-ai-at-the-
edge-whitepaper.pdf.

[9] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proc. of ACM/IEEE Symposium on Edge Computing,
2019.

[10] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. of ICML, 2016.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 15

[11] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in Proc. of IEEE S&P, 2017.

[12] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in Proc. of 27th
USENIX Security, 2018.

[13] A. Ibarrondo, H. Chabanne, and M. Önen, “Banners: Binarized neural
networks with replicated secret sharing,” in Proceedings of the 2021
ACM Workshop on Information Hiding and Multimedia Security, pp. 63–
74, 2021.

[14] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proc. of AsiaCCS, 2018.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[16] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” Proceedings on Privacy Enhancing Technologies,
vol. 2021, no. 1, pp. 188–208.

[17] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of quantized
neural networks,” Proceedings on Privacy Enhancing Technologies,
vol. 4, pp. 355–375, 2020.

[18] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure
computation for neural network training,” Proc. of PETS, 2019.

[19] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or a completeness theorem for protocols with honest majority,” in
Proc. of STOC, 1987.

[20] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private
collaborative forecasting and benchmarking,” in Proc. of WPES, 2004.

[21] M. Blanton, A. Kang, and C. Yuan, “Improved building blocks for secure
multi-party computation based on secret sharing with honest majority,”
in Proc. of ACNS, Springer, 2020.

[22] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.,” in Proc. of
NDSS, 2015.

[23] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in Proc. of ACM CCS, 2018.

[24] R. Rachuri and A. Suresh, “Trident: Efficient 4pc framework for privacy
preserving machine learning,” 2020.

[25] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
programmable, efficient, and scalable secure two-party computation for
machine learning,” ePrint Report, vol. 1109, 2017.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. of ECCV, 2016.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[28] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in Proc.
of ACM CCS, 2013.

[29] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proc. of Crypto, 1991.

[30] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
outsourcing of machine learning classification,” in Proc. of ESORICS,
Springer, 2019.

[31] “SnapML for Snapchat Lens Studio.” Online at https://lensstudio.snapc
hat.com/guides/machine-learning/ml-overview/.

[32] “Amazon Rekognition.” Online at https://aws.amazon.com/rekognition.
[33] “Google DeepMind Health.” Online at https://deepmind.com/blog/anno

uncements/deepmind-health-joins-google-health, 2020.
[34] “Azure IoT Edge.” Online at https://azure.microsoft.com/en-au/services

/iot-edge/.
[35] “Lambda@Edge.” Online at https://aws.amazon.com/lambda/edge/.
[36] D. D. Bates, A. Vintonyak, U. M. Rennie Mohabir, P. Soto, J. S.

Groeger, M. S. Ginsberg, and M. J. Gollub, “Use of a portable computed
tomography scanner for chest imaging of covid-19 patients in the urgent
care at a tertiary cancer center,” Emergency Radiology, p. 1, 2020.

[37] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “Crypten: Secure multi-party computation meets
machine learning,” in Proceedings of the NeurIPS Workshop on Privacy-
Preserving Machine Learning, 2020.

[38] Cape Privacy, “Tf encrypted: Encrypted deep learning in tensorflow..”
online at https://tf-encrypted.io/, 2020.

[39] Y. Lindell and B. Pinkas, “Privacy preserving data mining.,” Journal of
cryptology, vol. 15, no. 3, 2002.

[40] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private
model publishing for deep learning,” in Proc. of S&P, IEEE, 2019.

[41] “Pytorch for densenet.” Online at https://github.com/pytorch/vision/bl
ob/master/torchvision/models/densenet.py.

[42] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols.” Cryptology ePrint Archive, Report 2000/067,
2000.

[43] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “Aby2. 0: Improved
mixed-protocol secure two-party computation,” in USENIX Security,
vol. 21, 2020.

[44] X. Liu, B. Wu, X. Yuan, and X. Yi, “Leia: A lightweight cryptographic
neural network inference system at the edge.,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 463, 2020.

[45] X. Wang, “Flexsc.” https://github.com/wangxiao1254/FlexSC, 2018.
[46] “Breast cancer.” https://www.kaggle.com/uciml/breast-cancer-wisconsin

-data/.
[47] “Diabetes.” https://www.kaggle.com/uciml/pima-indians-diabetes-datab

ase.
[48] “Liver disease.” https://www.kaggle.com/uciml/indian-liver-patient-re

cords.
[49] “Thyroid.” https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease.
[50] “COOWOO USB Digital Power Meter Tester.” Online at http://www.co

owootech.com/tools.html.
[51] R. Balestriero and R. Baraniuk, “Mad max: Affine spline insights into

deep learning,” Proc. of ICML, 2018.
[52] H. Yang, L. Duan, Y. Chen, and H. Li, “Bsq: Exploring bit-level sparsity

for mixed-precision neural network quantization,” Proc. of ICLR, 2021.

APPENDIX A
THE SECURE MSB GADGET

Input: Arithmetic shares of integer feature y ∈ Z.
Output: Boolean shares of MSB y` ∈ {0, 1}.
1) Si decomposes 〈y〉Ai to a bit string 〈y1〉Ai , . . . , 〈y`〉Ai ;
2) For each k ∈ [1, `]:

S0 sets JukK0 = 〈yk〉A0 , JvkK0 = 0, JtkK0 = 〈yk〉A0 ;
S1 sets JukK1 = 0, JvkK1 = 〈yk〉A1 , JtkK1 = 〈yk〉A1 ;
S0 and S1 set JdkKi = JukK ∧ JvkK in a batch;

3) Si sets variable Jc1Ki = Jd1Ki;
4) For k ∈ [2, `− 1]:

Si sets JdkKi = JdkKi ⊕ i;
S0 and S1 set JekKi = JtkK ∧ Jck−1K⊕ i;
S0 and S1 set JckKi = JekK ∧ JdkK⊕ i;

5) Si sets the MSB to Jy`Ki = Jt`Ki ⊕ Jc`−1Ki.

Fig. 17. The secure MSB(·) gadget.

Fig. 17 presents the secure MSB(·) gadget. It follows the
bit extraction protocol in [30], which is able to efficiently
extract the MSB of the Arithmetic-shared values and produce
a Boolean-shared MSB. The protocol takes as input the
Arithemetic shared of integer feataure 〈y〉A ∈ Z2` , extracts the
`-th bit as MSB of y, and outputs its Boolean shares Jy`K. Let
y = u+ v (mod 2`). The idea is that the difference between
the sum of bit strings of u, v and the bitwise-XOR of the bit
strings of u, v, y is equal to the carry bits c1, . . . , c`. This can
be realized by an `-bit ripple carry logic, where every carry
bit is calculated by a full adder and propagated to the next full
adder, and finally the MSB of y is outputted by the `-th full
adder.

APPENDIX B
FURTHER ILLUSTRATION OF THE CONV LAYER

In this section, we provide a supplementary illustration of
the CONV layers. Fig. 18 shows how the CONV layers can
be reformulated as the VDP(·, ·). For simplicity purpose, it
takes as input the toy-value 4×3 input matrix X , 2×2 weight
matrix W , and shows the procedure to calculate each element
in resulting matrix Z based on the VDP operations.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 16

Fig. 18. An illustration of the CONV layer.

APPENDIX C
PROOF OF CORRECTNESS

In this section, we present the correctness proofs of the
SecBAVDP function and the SecMP function.

A. Proof of the SecBAVDP function

Lemma 1: Let x and wb be an integer and binary vectors,
respectively. They are shared between parties S0 and S1 as
Arithmetic shares 〈x〉A and Boolean shares JwbK. Given a
secure COT protocol with the correlation-robust functions
f∆, g∆, our two-party protocol SecBAVDP(〈x〉A, JwbK) over
mixed share representations correctly implements the Boolean-
Arithmetic-VDP functionality.

Proof 1: The protocol SecBAVDP(〈x〉A, JwbK) correctly
implements the logic 〈z〉A =

∑n
k=1(JwbkK0⊕JwbkK1)·(〈xk〉A0 +

〈xk〉A1) with two executions of COT` corresponding to the
correlation functions f∆ and g∆, respectively.

For the COT` with f∆(s) = s+ (¬JwbkK0 · 〈xk〉A0 − JwbkK0 ·
〈xk〉A0), S0 is the sender, S1 is the receiver, and s is any input
from S0. We show that the output of the k-th COT correctly
carries out 〈uk〉A = 〈(JwkK0⊕JwkK1) · 〈xk〉A0 〉A. We have two
cases:

1) If the choice bit JwbkK1 = 0:
Note, wbk = JwbkK0 ⊕ 0 = JwbkK0. Given the inputs ru ∈R
Z2` , f∆(ru) from S0, the choice bit bu = JwbkK1 = 0
from S1. After execution of the COT, S0 obtains 〈uk〉A0 =
−ru. Meanwhile, S1 obtains 〈uk〉A1 = mbu = m0 =
ru + JwbkK0 · 〈xk〉0 = ru + wbk · 〈xk〉0 obliviously. Upon
reconstruction, uk = wbk · 〈xk〉0.

2) If the choice bit JwbkK1 = 1:
Note, wbk = JwbkK0 ⊕ 1 = ¬JwbkK0. Given the inputs
ru ∈R Z2` , f∆(ru) from S0, the choice bit bu =
JwbkK1 = 1 from S1. After execution of the COT, S0

obtains 〈uk〉A0 = −ru. Meanwhile, S1 obtains 〈uk〉A1 =
m1 = ru +¬JwbkK0 · 〈xk〉0 = ru +wbk · 〈xk〉0 obliviously.
Upon reconstruction, uk = wbk · 〈xk〉0.

The execution of the COT` with g∆ performs in a similar
way, where S1 is the sender, and S0 is the receiver. For the k-
th COT, it takes as input rv ∈R Z2` , g∆(rv) from S1, and the
choice bit bv = JwbkK0 from S0. Upon execution, S1 always
obtains 〈vk〉A1 = −rv , and S0 obtains 〈vk〉A0 = m0 = rv +
JwbkK1 ·〈x〉A1 or 〈vk〉A0 = m1 = rv+¬JwbkK1 ·〈x〉A1 obliviously.
Upon reconstruction, vk = wbk · 〈x〉A1 . Ultimately, zk = wbk ·
(〈x〉A0 + 〈x〉A1) = wbk · xk.

B. Proof of the SecMP function

Lemma 2: Let ab1, ...,a
b
m be m-number of n-dimensional

binary activation vectors, shared between parties S0, S1 as
Boolean shares Jab1K, ..., JabmK. Given the ring Z2, our two-
party protocol SecMP(·) correctly implements the max pool-
ing functionality.

Proof 2: For the ease of demonstration and without loss of
generality, the following proof of correctness takes one binary
activation vector ab ∈ {0, 1}n as an example. The protocol
implements the logic zb = ab1∨ab2∨...∨abn to proceed the max
pooling over binarized values, i.e., finding if the binary vector
has “1” bit as mentioned above. Taken zb = xb ∨ yb as an
example, the bitwise-OR logic can be similarly reformulated
as zb = ¬(¬xb ∧¬yb). For the two-party protocol, each party
Si (for i ∈ {0, 1}) holds its shares JxbKi, JybKi, and attempts
to obtain JzbKi as the result. The above logic can be correctly
expressed as JzbKi = i ⊕ ((i ⊕ JxbKi) ∧ (i ⊕ JybKi)), given
the correctness of ¬xb = JxbK0 ⊕ ¬JxbK1 = (0 ⊕ JxbK0) ⊕
(1⊕ JxbK1). Note, all operations above are performed by each
party without interaction.

APPENDIX D
REMARK OF COMPLEXITY.

In this section, we analysis the complexity of Leia’s secure
BNN inference protocol. We summarize in Table XII the total
moves to slide a window T and the number of executions of
each secure layer function with regards to each secure layer. As
defined, the size of already padded input tensor, weight tensor
and output tensor for the first SCONV layer are cin×n1

in×m1
in,

cin × c1o × (n1
w × n1

w), c1o × n1
o ×m1

o, respectively. Similarly,
for the l-th hidden SCONV layer, the size of input, weight
and output are cl−1

o × nl−1
o ×ml−1

o , cl−1
o × clo × (nlw × nlw),

clo × nlo × ml
o, respectively. For the SMP layers, the stride

nlw to slide the pooling window is normally aligned with the
window size nlw × nlw. For the l-th SFC layer, the calls of
secure functions are only related to the length of output vector
nlo.

TABLE XII
COMPLEXITY ANALYSIS.

stride T l moves to slide the window function # calls
First SCONV

1 (nin − n1
w + 1) · (min − n1

w + 1) Sec1VDP cin · c1o · T
1

- - SecBAVDP 2 · cin · c1o · T
1

- - SecNBA c1o · T
1

Hidden SCONV

1 (nl−1
o − nlw + 1) · (ml−1

o − nlw + 1) SecBVDP cl−1
o · clo · T

l

- - SecNBA clo · T
l

SMP

nlw (nl−1
o /nlw) · (ml−1

o /nlw) SMP cl−1
o · clo · T

l

First SFC
- - Sec1VDP n1

o

- - SecBAVDP 2 · n1
o

- - SecNBA 2 · n1
o

Hidden/Output SFC
- - SecBVDP nlo
- - SecNBA nlo
- - SecBN nlo

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL.XXX, NO. XXX, XXX XXX 17

APPENDIX E
MODEL ARCHITECTURES

This section depicts the details of the model structures
adopted in the evaluation.

TABLE XIII
MODEL ARCHITECTURE OF D1.

layers #
SecBVDP/
SecBAVDP

padding,
stride

FC (input: 30, output: 16) + BN + BA 32 -, -
FC (input: 16, output: 16) + BN + BA 16 -, -
FC (input: 16, output: 2) + BN 2 -, -

TABLE XIV
MODEL ARCHITECTURE OF D2.

layers #
SecBVDP/
SecBAVDP

padding,
stride

FC (input: 8, output: 20) + BN + BA 40 -, -
FC (input: 20, output: 20) + BN + BA 20 -, -
FC (input: 20, output: 2) + BN 2 -, -

TABLE XV
MODEL ARCHITECTURE OF D3.

layers #
SecBVDP/
SecBAVDP

padding,
stride

FC (input: 10, output: 32) + BN + BA 64 -, -
FC (input: 32, output: 32) + BN + BA 32 -, -
FC (input: 32, output: 2) + BN 2 -, -

TABLE XVI
MODEL ARCHITECTURE OF D4.

layers #
SecBVDP/
SecBAVDP

padding,
stride

FC (input: 21, output: 100) + BN + BA 200 -, -
FC (input: 100, output: 100) + BN + BA 100 -, -
FC (input: 100, output: 3) + BN 3 -, -

TABLE XVII
MODEL ARCHITECTURE OF M1.

layers #
SecBVDP/
SecBAVDP

padding,
stride

FC (input: 784, output: 128) + BN + BA 256 -, -
FC (input: 128, output: 128) + BN + BA 128 -, -
FC (input: 128, output: 10) + BN 10 -, -

TABLE XVIII
MODEL ARCHITECTURE OF M2.

layers #
SecBVDP/
SecBAVDP

padding,
stride

CONV (input: 1× 28× 28, kernel: 1× 16× 5× 5
feature: 16× 24× 24) + BN + BA

1×18432 -, 1

MP (input: 16×24×24, window: 16×2×2 output:
16× 12× 12)

- -, 2

CONV (input: 16×12×12, kernel: 16×16×5×5
feature: 16× 8× 8) + BN + BA

16×1024 -, 1

MP (input: 16× 8× 8, window: 16× 2× 2 output:
16× 4× 4) + BN + BA

- -, 2

FC (input: 256, output: 100) + BN + BA 100 -, -
FC (input: 100, output: 10) + BN 10 -, -

TABLE XIX
MODEL ARCHITECTURE OF C1.

layers #
SecBVDP/
SecBAVDP

padding,
stride

CONV (input: 3× 32× 32, kernel: 3× 16× 3× 3
feature: 16× 32× 32) + BN + BA

3×32768 0, 1

CONV (input: 16×32×32, kernel: 16×16×3×3
feature: 16× 32× 32) + BN + BA

16×16384 0, 1

CONV (input: 16×32×32, kernel: 16×16×3×3
feature: 16× 32× 32) + BN + BA

16×16384 0, 1

MP (input: 16×32×32, window: 16×2×2 output:
16× 16× 16)

- -, 2

CONV (input: 16×16×16, kernel: 16×32×3×3
feature: 32× 16× 16) + BN + BA

16×8192 0, 1

CONV (input: 32×16×16, kernel: 32×32×3×3
feature: 32× 16× 16) + BN + BA

16×8192 0, 1

CONV (input: 32×16×16, kernel: 32×32×3×3
feature: 32× 16× 16) + BN + BA

16×8192 0, 1

MP (input: 32×16×16, window: 32×2×2 output:
32× 8× 8)

- -, 2

CONV (input: 32× 8× 8, kernel: 32× 48× 3× 3
feature: 48× 6× 6) + BN + BA

32×1728 -, 1

CONV (input: 48× 6× 6, kernel: 48× 48× 3× 3
feature: 48× 4× 4) + BN + BA

48×1728 -, 1

CONV (input: 48× 4× 4, kernel: 48× 64× 3× 3
feature: 64× 2× 2) + BN + BA

48×2304 -, 1

MP (input: 64× 2× 2, window: 64× 2× 2 output:
64× 1× 1)

- -, 2

FC (input: 64, output: 10) + BN 10 -, -

TABLE XX
MODEL ARCHITECTURE OF C2.

layers #
SecBVDP/
SecBAVDP

padding,
stride

CONV (input: 3× 32× 32, kernel: 3× 16× 3× 3
feature: 16× 32× 32) + BN + BA

3×32768 0, 1

CONV (input: 16×32×32, kernel: 16×32×3×3
feature: 32× 32× 32) + BN + BA

16×32768 0, 1

CONV (input: 32×32×32, kernel: 32×32×3×3
feature: 32× 32× 32) + BN + BA

32×32768 0, 1

MP (input: 32×32×32, window: 32×2×2 output:
32× 16× 16)

- -, 2

CONV (input: 32×16×16, kernel: 32×48×3×3
feature: 48× 16× 16) + BN + BA

32×12288 0, 1

CONV (input: 48×16×16, kernel: 48×64×3×3
feature: 64× 16× 16) + BN + BA

48×16384 0, 1

CONV (input: 64×16×16, kernel: 64×80×3×3
feature: 80× 16× 16) + BN + BA

64×20480 0, 1

MP (input: 80×16×16, window: 80×2×2 output:
80× 8× 8)

- -, 2

CONV (input: 80× 8× 8, kernel: 80× 96× 3× 3
feature: 96× 6× 6) + BN + BA

80×3456 -, 1

CONV (input: 96× 6× 6, kernel: 96× 96× 3× 3
feature: 96× 4× 4) + BN + BA

96×1536 -, 1

CONV (input: 96× 4× 4, kernel: 96× 128× 3× 3
feature: 128× 2× 2) + BN + BA

96×512 -, 1

MP (input: 128×2×2, window: 128×2×2 output:
128× 1× 1)

- -, 2

FC (input: 128, output: 10) + BN 10 -, -

