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Abstract. We close the gap between black-box and non-black-box constructions of composable secure
multiparty computation in the plain model under the minimal assumption of semi-honest oblivious
transfer. The notion of protocol composition we target is angel-based security, or more precisely, security
with super-polynomial helpers. In this notion, both the simulator and the adversary are given access to
an oracle called an angel that can perform some predefined super-polynomial time task. Angel-based
security maintains the attractive properties of the universal composition framework while providing
meaningful security guarantees in complex environments without having to trust anyone.
Angel-based security can be achieved using non-black-box constructions in max(ROT, Õ(logn)) rounds
where ROT is the round-complexity of the semi-honest oblivious transfer. However, currently, the best
known black-box constructions under the same assumption require max(ROT, Õ(log2 n)) rounds. If ROT

is a constant, the gap between non-black-box and black-box constructions can be a multiplicative
factor log n. We close this gap by presenting a max(ROT, Õ(logn))-round black-box construction. We
achieve this result by constructing constant-round 1-1 CCA-secure commitments assuming only black-
box access to one-way functions.
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1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87] enables two or more mutually distrustful
parties to compute any functionality without compromising the privacy of their inputs. These early
results [Yao86, GMW87], along with a rich body of followup work that refined and developed the
concept [GL91, Bea92, MR92, Can00, PW01, Can01], demonstrated the feasibility of general secure
computation and its significance to secure protocol design. The existence of semi-honest oblivious
transfer (OT) was established by Kilian [Kil88] as the minimal, i.e., necessary and sufficient, as-
sumption for general secure computation. The focus of this work is on black-box constructions of
composable MPC protocols. We discuss these two aspects.

Black-Box Constructions. A construction is black-box if it does not refer to the code of any
cryptographic primitive it uses, and only depends on their input/output behavior. Such construc-
tions are usually preferable since their efficiency is not affected by the implementation details of
the underlying cryptographic primitives; moreover, they remain valid and applicable if the code of
the underlying primitives is simply not available, e.g., in case of constructions based on hardware
tokens [MR04, GLM+04, Kat07, GIS+10, HPV16].

Early constructions of general-purpose MPC were non-black-box in nature particularly due
to NP-reductions required by underlying zero-knowledge proofs [GMW87]. Ishai et al. [IKLP06]
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presented the first black-box construction of general purpose MPC based on enhanced trapdoor
permutations or homomorphic public-key encryption schemes. Together with the subsequent work of
Haitner [Hai08], this provided a black-box construction of a general MPC protocol under minimal
assumptions (i.e., semi-honest OT). The round complexity of black-box MPC was improved to
O(log∗ n) rounds by Wee [Wee10], and to constant rounds by Goyal [Goy11]. In the two party
setting, a constant round construction was first obtained by Pass and Wee [PW09], and subsequently
a 5-round construction was given by Ostrovsky, Richelson, and Scafuro [ORS15], which is known
to be optimal by the results of Katz and Ostrovsky [KO04].

Composable Security. The notion of security considered in early MPC works is called standalone
security since it only considers a single execution of the protocol. Stronger notions of security are
required for complex environments such as the Internet where several MPC protocols may run
concurrently. This setting is often referred to as the concurrent setting, and unfortunately, as
shown by Feige and Shamir [FS90], stand-alone security does not necessarily imply security in the
concurrent setting.

To address this issue, Canetti [Can01] proposed the notion of universally composable (UC)
security which has two important properties: concurrent security and modular analysis. The former
means that UC secure protocols maintain their security in the presence of other concurrent protocols
and the latter means that the security of a larger protocol in the UC framework can be derived from
the UC security of its component protocols. This latter property is stated as a composition theorem
which, roughly speaking, states that UC is closed under composition [Can01]. Unfortunately, UC
security turns out to be impossible in the plain model for most tasks [Can01, CF01, CKL03].
Relaxations of UC that consider composing the same protocol were also ruled out by Lindell
[Lin03, Lin04].

These strong negative results motivated the search for alternative notions of concurrent security
in the plain model by endowing more power to the simulator such as super polynomial resources
[Pas03, PS04, BDH+17], ability to receive multiple outputs [GJO10, GJ13], or resorting to weaker
notions such as bounded concurrency [Bar02, Pas04], input indistinguishability [MPR06], or a
combination thereof [GGJ13]. While all of these notions were (eventually) achieved under polyno-
mial hardness assumptions [PS04, BS05, MMY06, CLP10, GGJS12, LP12, PLV12, KMO14, Kiy14,
GLP+15, BDH+17, GKP18], only angel-based security by Prabhakaran and Sahai [PS04] (including
its extension to interactive angels by Canetti, Lin, and Pass [CLP10]) and shielded-oracle security
by Broadnax et al. [BDH+17] are known to have the modular analysis property, i.e., admitting a
composition theorem along the lines of UC. We focus on angel-based security in this work since it
arguably has somewhat better composition properties than shielded oracles.1

Angel based security is similar to UC except that it allows the simulator as well as the adversary
access to a super-polynomial resource called an “angel” which can perform a pre-defined task
such as inverting a one-way function. Early constructions of angel-based security were based on
non-standard assumptions [PS04, BS05, MMY06]. The beautiful work of Canetti et al. [CLP10]
presented the first construction under polynomial hardness assumptions, and the subsequent work
of Goyal et al. [GLP+15] improved the round complexity to Õ(log λ) under general assumptions.

The first black-box construction of angel-based security was obtained by Lin and Pass [LP12],
under the minimal assumption of semi-honest OT. The main drawback of [LP12] is that it requires

1 As noted in [BDH+17], shielded oracle security does not technically have the modular analysis property and
is actually strictly weaker than angel-based. Nevertheless, it is still “compatible” with the UC framework—the
security of a composed protocol can be derived from that of its components.
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polynomially many rounds even if the underlying OT protocol has constant rounds. To address
this situation, Kiyoshima [Kiy14] presented a Õ(log2 λ)-round construction assuming constant-
round semi-honest OT (or alternatively, max(Õ(log2 λ), O(ROT)) rounds where ROT is OT’s round-
complexity). We remark that Broadnax et al. [BDH+17] present a constant-round black-box con-
struction for (the weaker but still composable) shielded-oracle security (utilizing prior work by
Hazay and Venkitasubramaniam [HV15] who provide a constant-round protocol in the CRS-hybrid
model); however, they require stronger assumptions, specifically, homomorphic commitments and
public-key encryption with oblivious public-key generation.

State of the Art. To summarize our discussion above, under the minimal assumption of poly-
nomially secure semi-honest OT, the best known round complexity of black-box constructions for
angel-based security, and in fact any composable notion with modular analysis property, is due
to Kiyoshima [Kiy14] which requires max(Õ(log2 λ), O(ROT)) rounds. This is in contrast to the
non-black-box construction of Goyal et al. [GLP+15] which requires only max(Õ(log λ), O(ROT))
rounds. Therefore, there is a multiplicative gap of Õ(log λ) between the round-complexities of state-
of-the-art black-box and non-black-box constructions of angel-based MPC if, e.g., semi-honest OT
has at most logarithmic rounds.

1.1 Our Results

In this work, we prove the following theorem, thus closing the gap between the round complexity
of black-box and non-black-box constructions of angel-based MPC under minimal assumptions:

Theorem 1 (Main). Assume the existence of ROT-round semi-honest oblivious transfer protocols.
Then, there exists a max(Õ(log λ), O(ROT))-round black-box construction of a general MPC protocol
that satisfies angel-based UC security in the plain model.

Note that this yields a Õ(log λ)-round construction under the general assumption of enhanced
trapdoor permutations since they imply constant-round semi-honest OT.

We follow the framework of [CLP10] and its extensions in [LP12, Kiy14]. The main building
block [CLP10] is a special commitment scheme called a CCA-Secure Commitment. Roughly speak-
ing, a CCA-secure commitment is a tag-based commitment scheme that maintains hiding even in
the presence of a decommitment oracle O. More specifically, the adversary receives one commitment
from an honest committer and may simultaneously make concurrently many commitments to O
(similar to non-malleable commitments [DDN91]). The oracle immediately extracts and sends back
any value adversary commits successfully provided that it used a tag that is different from the one
used by the honest committer. Lin and Pass [LP12] show that O(max(RCCA,ROT))-round black-
box angel-based MPC can be obtained from a RCCA-round CCA commitment and a ROT-round
semi-honest OT protocol. Kiyoshima [Kiy14] demonstrated that Õ(k · log λ)-round CCA-secure
commitments can be obtained in a black-box manner from a k-round commitment scheme with
slightly weaker security called “one-one CCA” where the adversary can open only one session each
with the committer as well as the oracle; they further construct a O(log λ)-round one-one CCA
scheme from one-way functions in a black-box manner. We instead present a constant round con-
struction of one-one CCA, which implies Õ(log λ)-round (full) CCA commitments using [Kiy14]
(and Theorem 1 using [LP12]):

Theorem 2 (CCA Secure Commitments). Assume the existence of one-way functions. Then,
there exists a Õ(log λ)-round black-box construction of a CCA-secure commitment scheme.
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1.2 Overview of Techniques

1.2.1 Current Approaches

Let us briefly review the current approaches for constructing CCA secure commitments. The main
difficulty in constructing CCA secure commitments under polynomial hardness is to move from the
real world—which contains the exponential time decommitment oracle O—to a hybrid where O’s
responses can be efficiently simulated. A standard way to do this is to use a proof-of-knowledge
(PoK): the protocol should require the (man-in-the-middle) adversary, say A, to give a PoK of the
value it commits. The main difficulty in employing this is that A may open concurrently many
sessions with O (referred here to as “right” side sessions), interleaved in an arbitrary manner;
furthermore, these values have to be extracted immediately within each session irrespective of
what happens in other sessions. This is precisely the issue in xonstructing (black-box simulatable)
concurrent zero-knowledge (CZK) protocols [DNS98] as well, and ideas from there are applied in
this setting too. A second difficulty is that these extractions must happen without rewinding the
commitment A receives (referred to as “left” side session).

It is worthwhile to quickly recall the (tag based) non-malleable commitment construction in
the original work of [DDN91]. In this cosntruction, A has only one right session; to prove that the
value on the right is (computationally) independent from that on the left, the value on the right
is extracted without rewinding the sensitive parts of the left side commitments. This is done by
creating two types of PoK— one each for two possible values of a bit. These PoK create rewinding
“slots” for extraction such that if A uses a different bit in the tag, it risks the possibility of having
to perform a PoK on its own—i.e., without any “dangerous” rewinding on the left—in one of the
slots (called a “free” slot). These special PoK are performed for each bit of the tag sequentially
so that at least one free slot is guaranteed since the left and right tags are different by definition.
While this requires n rounds n-bit tags, it is possible to split the tag into n smaller tags of log n bits
and run the protocol for each of them in parallel [DDN91, LPV08]. Referred to as “LOG trick,”
this yields a O(log n)-round protocol.

The key idea for CCA commitments in [CLP10], at a high level, is to ensure that in the con-
current setting, many free slots exist for each session so that extraction succeeds before the end
of that session. This is achieved by creating a polynomial round protocol consisting of sequential
repetition of special PoK as above and then relying on an analysis that is, at a high level, similar
to early rewinding techniques from CZK literature [RK99, CGGM00]. Once the issue of concurrent
extraction is handled, the additional ideas in [LP12] are (again, at a high level) to enforce this ap-
proach using cut-and-choose protocols to obtain a black-box construction. The work of Goyal et al.
[GLP+15] shows how to separate the tasks of “concurrent extraction” and“non-malleability” in this
approach by proving a “robust extraction lemma.” This allows them to follow a structure similar
to that of concurrent non-malleable zero-knowledge (CNMZK) from [BPS06] which matches the
round complexity of CZK, i.e., Õ(log n). However, their approach requires non-black usage of one-
way functions. Kiyoshima [Kiy14] shows that the robust-extraction lemma can actually be applied
to the previous black-box protocol of [LP12] to get Õ(k · log n) rounds if one has a slightly stronger
primitive than non-malleable commitments: namely k-round 1-1 CCA commitments. To build such
commitments, Kiyoshima builds non-malleability “from scratch” by combining the DDN “LOG
trick” with cut-and-choose components of [LP12] so that the extraction on right in the standalone
setting, can be done without any dangerous rewinding on left. This however results in O(log n)
rounds for 1-1 CCA and Õ(log2 n) for full CCA.
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1.2.2 Our Approach

We significantly deviate from current approaches for constructing 1-1 CCA commitments. Instead
of attempting to build non-malleability from scratch, our goal is to have a generic construction built
around existing non-malleable commitments. The resulting protocol will not only have a simpler
and more modular proof of security, but will also benefit from the efficiency and assumptions of
the underlying non-malleable commitment (NMCom). Towards this goal, we return to investigate
the structure of CNMZK protocols even for the simpler case of 1-1 CCA.

Setting aside the issue of round-complexity for the moment, a key idea in the construction of
CNMZK protocols [BPS06, LPTV10, OPV10, LP11] is to have the prover give a non-malleable
commitment (NMCom) which can later be switched to a “trapdoor value” set by the verifier; the
non-malleability of NMCom ensures thatA cannot switch his value to a trapdoor on the right (unless
he did so in the real world, which can be shown impossible through other means). The prover later
proves that either the statement is true or it committed the trapdoor. The main problem with this
approach is that it requires us to prove a predicate over the value committed in NMCom which
requires non-black-box use of cryptographic primitives.

Non-Malleable Commit-and-Prove. One potential idea to avoid non-black-box techniques is
to turn to black-box commit-and-prove protocols in the literature and try to re-develop them in
the context of non-malleability. Commit-and-prove protocols allow a committer to commit to a
value v so that later, it can prove a predicate φ over the committed value in zero-knowledge. These
protocols can be constructed in constant rounds using the powerful “MPC-in-the-head” approach
introduced by Ishai et al. [IKOS07]. The approach allows committing multiple values v1, . . . , vn
and then proving a joint predicate φ over them. One such construction is implicit in the work
of Goyal et al. [GLOV12]. Such commitments were also used extensively by Goyal et al. to build
size-hiding commit-and-prove [GOSV14] and an optimal four round construction was obtained by
Khurana, Ostrovsky, and Srinivasan [KOS18]. As noted above, if we can develop an appropriate
non-malleable version of such protocols, it is conceivable that they can yield constant-round 1-1
CCA commitment. Note however that non-malleable commitments are not usually equipped to
handle proofs. Therefore, such an approach will necessarily have to “open up” the construction
of non-malleable commitments. In particular, like previous constructions, this approach cannot be
based on non-malleable commitments in a black-box manner.

Changing the Direction of NMCom. In order to rely on non-malleable commitments directly, it is
essential that we do not prove anything about the values committed inside the NMCom. Instead, we
should restrict all proofs to be performed only over standard commitments since for them we can use
standard black-box commit-and-prove protocols. Towards building this property, what if we change
the direction of NMCom and ask the receiver of 1-1 CCA to send non-malleable commitments,
which, for example, can be opened later? More specifically, in our 1-1 CCA protocol, the receiver
will send a NMCom to a random value σ which it will open subsequently. The committer will send a
“trapdoor commitment” t before it sees σ opened. Later, the committer will commit to the desired
value v and give a PoK that either it knows v or t is a commitment to σ (the “trapdoor”). Observe
that this structure completely avoids any proof directly over non-malleable commitments; all proofs
only need to be performed over ordinary commitments. Therefore, if we use the commit phase of
black-box commit-and-prove protocols to commit to σ and v we can easily complete the PoK in a
black-box manner: the predicate φ in the proof phase will simply test for the presence of trapdoor
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σ. Some standard soundness issues arise in this approach but they can be handled by ensuring that
the commit phase is extractable.

Although this approach yields a black-box construction directly from NMCom, it is hard to
prove the 1-1 CCA property. At a high level, this is because of the following: if in the 1-1 CCA
game, A schedules the completion of the left NMCom before the right one2, the simulator in the
security proof must extract σ from this NMCom while the right NMCom is still in play (so that it
can generate t to be a commitment to σ). This involves rewinding the left NMCom (assuming it is
extractable) which in turn rewinds the right session.3 A similar issue arises in the work of Jain and
Pandey [JP14] on black-box non-malleable zero-knowledge where it is resolved by using a NMCom
that is already 1-1 CCA secure. We do not have this flexibility in our setting.

A possible fix for this issue is to rely on some kind of “delayed input” property: i.e., the
commitment to t will be an extractable commitment that does not require the message m to be
committed until the last round. This property can be obtained by committing to a key k in an
extractable manner and then in the last round committing to m by simply encrypting with k. This
however will no longer be compatible with the black-box commit-and-prove strategy since we will
now have to take encryption into account.

We overcome this issue by making extensive use of extractable commitments. More specifically,
we first prepend the NMCom with a standard “slot-based” extractable commitment which commits
to the same value σ as the NMCom. If the NMCom also has a slot like extractable structure (e.g., the
three round scheme of [GPR16]), we can argue that non-synchronous adversaries must always leave
a free slot either on top or at the bottom of NMCom. For example, in the troublesome scheduling
discussed above, A can be easily rewound in the last two messages of NMCom (if we use [GPR16])
without rewinding the right NMCom. In other non-synchronous schedules it will have a free slot in
the top extractable commitment on the left. On the other hand, synchronous adversaries will fail
in the NMCom step (and synchronous non-malleability suffices for our purposes). In summary, this
will suffice for us to show that even if our simulator sets up the trapdoor statement on the left (by
committing σ in t), A cannot do the same on the right. Other NMCom, particularly public-coin
extractable NMCom also seem sufficient.

A second issue here is the intertwining of the left PoK4 with “extractable” components on the
right, e.g., the right PoK (or extractable commitment steps). In order to prove that A cannot setup
the trapdoor, extraction from right PoK will be necessary in the proof and this will be troublesome
when changing the witness in the left PoK during hybrids. This issue can be handled using the
sequential repetition technique from [LP09]: we use k+1 PoK where k is the (constant) rounds in a
single PoK. It is worthwhile to note that other common methods for handling this issue do not work:
e.g., we cannot rely on statistical WI since it requires stronger assumptions for constant rounds;
we also cannot use proofs that are secure against a fixed number of rewinds since they usually
allow a noticeable probability of extraction which is insufficient for a 1-1 CCA commitment, where
extraction must succeed with overwhelming probability.

2 Note that NMCom’s direction is opposite to that of 1-1 CCA: the receiver of 1-1 CCA is the sender of right NMCom.
3 This is not an issue in the synchronous schedule since in that case, the value A commits to in NMCom is provided

to the distinguisher along with the joint view.
4 Observe that the PoK will just be the proof part of appropriate black-box commit-and-prove with right parameters

to ensure black-box property; they will also satisfy witness-indistinguishability [FS90].
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1.3 Other Related Works

The focus of our work is constructions in the plain model. Hazay and Venkitasubramaniam [HV16]
gave a black-box construction of an MPC protocol without any setup assumptions that achieves
composable security against an adaptive adversary. UC security can be achieved by moving to other
trusted setup models such as the common reference string model [CLOS02, CF01, GO07], assuming
an honest majority of parties [CKL03], trusted hardware [MR04, GLM+04, Kat07, CCOV19],
timing assumptions on the network [KLP05], registered public-key model [BCNP04], setups that
may be expressed as a hybrid of two or more of these setups [GGJS11], and so on. Lin, Pass, and
Venkitasubramaniam [LPV09, PLV12] show that a large number of these setup models could be
treated in a unified manner, and black-box analogues of these results were obtained by Kiyoshima,
Lin, and Venkitasubramaniam [KLV17].

2 Preliminaries

Notations. We use λ for the security parameter. We use
c
≈ to denote computational indistinguisha-

bility between two probability ensembles. For a set S, we use x
$←− S to mean that x is sampled

uniformly at random from S. PPT denotes probabilistic polynomial time and negl(·) denotes neg-
ligible functions.

We assume familiarity with standard concepts such as commitment schemes, witness indistin-
guishability. We provide in the following the definitions for extractable commitments, non-malleable
commitments and CCA commitments. We recall the MPC-related definitions in Section A.

2.1 Extractable Commitments

Definition 1 (Extractable Commitment Schemes). A commitment scheme ExtCom = (S,R)
is extractable if there exists an expected polynomial-time probabilistic oracle machine (the extractor)
Ext that given oracle access to any PPT cheating sender S∗ outputs a pair (τ, σ∗) such that:

– Simulation: τ is identically distributed to the view of S∗ at the end of interacting with an
honest receiver R in commitment phase.

– Extraction: the probability that τ is accepting and σ∗ = ⊥ is negligible.

– Binding: if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than σ∗.

The following construction of ExtCom (Protocol 1) is standard [DDN91, PRS02, Ros04]. We will
call it the standard ExtCom.

2.2 Non-Malleable Commitments

We follow the definition of non-malleability from [LPV08, GPR16]. This definition is based on the
comparison between a real execution with an ideal one. In the real interaction, we consider a man-
in-the-middle adversary A interacting with a committer C in the left session, and a receiver R in
the right. We denote the relevant entities used in the right interaction as “tilde’d” version of the
corresponding entities on the left. In particular, suppose that C commits to v in the left interaction,
and A commits to ṽ on the right. Let MIMv denote the random variable that is the pair (view, ṽ),
consisting of the adversary’s entire view of the man-in-the-middle execution as well as the value

7



Protocol 1: Extractable Commitment Scheme 〈S, R〉

The extractable commitment scheme, based on any commitment scheme Com, works in the fol-
lowing way. The scheme has 3 rounds if Com is non-interactive.

Input:

– both S and R get security parameter 1λ as the common input.

– S gets a string σ as his private input.

Commitmment Phase:

– The sender (committer) S commits using Com to λ pairs of strings {(v0i , v1i )}λi=1 where
(v0i , v

1
i ) = (ηi, σ ⊕ ηi) and ηi are random strings in {0, 1}`(λ) for 1 ≤ i ≤ λ.a

– Upon receiving a challenge c = (c1, . . . , cλ) from the receiver R, S opens the commitments to
(vc11 , . . . , v

cλ
λ ).

– R checks that the openings are valid.

Decommitment Phase:

– S sends σ and opens the commitments to all λ pairs of strings.

– R checks that all the openings are valid, and also that σ = v01 ⊕ v11 = · · · = v0λ ⊕ v1λ.

a The scheme supports extraction as long k = ω(log λ) pairs are used.

committed to by A on the right (assuming C commits to v on the left). The ideal interaction is
similar, except that C commits to some arbitrary fixed value (say 0) on the left. Let MIM0 denote
the pair (view, ṽ) in the ideal interaction. We use an tag-based (or “identity-based”) specification,
and ensure that A uses a distinct tag ĩd on the right from the tag id it uses on the left. This is done
by stipulating that MIMv and MIM0 both output a special value ⊥id when A uses the same tag in
both the left and right executions. The reasoning is that this corresponds to the uninteresting case
when A is simply acting as a channel, forwarding messages from C on the left to R on the right
and vice versa. We let MIMv(z) and MIM0(z) denote the real and ideal interactions respectively
when the adversary receives auxiliary input z.

Definition 2 (Non-Malleable Commitment Schemes). A (tag-based) commitment scheme
〈C,R〉 is non-malleable if for every PPT man-in-the-middle adversary A, and for all values v, we
have

{MIMv(z)}z∈{0,1}∗
c
≈ {MIM0(z)}z∈{0,1}∗ .

Synchronizing Adversaries: This notion refers to man-in-the-middle adversaries who upon re-
ceiving a message in one session, immediately respond with the corresponding message in the other
session. An adversary is said to be non-synchronizing if it is not synchronizing.
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2.3 CCA Commitments

We define the notion of CCA-secure commitments (and 1-1 CCA security in particular). These
definitions rely on the notion of a decommitment oracle, which provide decommitments given valid
transcripts to a particular (tag based) commitment protocol. Specifically, a decommitment oracle
O for a given commitment protocol acts as follows:

– O acts as an honest reciever against some committer C, participating faithfully according to
the specified commitment scheme. C is allowed to pick a tag for this interaction adaptively.

– At the end of this interaction, if the honest reciever were to accept the transcript as containing
a valid commitment with respect to the given tag, O returns the value v committed by C to it.
Otherwise, it returns ⊥.

We denote an adversary with access to the decommitent oracle as AO. CCA security then
essentially constitutes preservation of the hiding property even against adversaries enjoying such
oracle access. More formally, we define the following game INDb(〈C,R〉,A,O, n, z) (b ∈ {0, 1}) as
follows: given the public parameter 1n and auxillary input z, the adversary AO adaptively generates
two challenge values v0, v1 of length n, and a tag tag ∈ {0, 1}n. Then, AO receives a commitment
to vb with tag tag from the challenger. Let y be the output of A in this game. The output of the
game is ⊥ if during the game, A sends O any commitment using tag tag. Otherwise, the output of
the game is y. We abuse notation to denote the output of the game INDb(〈C,R〉,A,O, n, z) by the
same symbol INDb(〈C,R〉,A,O, n, z).

Definition 3 (CCA Commitment). Let 〈C,R〉 be a tag-based commitment scheme, and O be
an associated decommitment oracle. Then 〈C,R〉 is said to be CCA secure w.r.t. O, if for every
nonuniform PPT machine A, the following ensembles are computationally indistinguishable:

– {IND0(〈C,R〉,A,O, n, z)}n∈N,z∈{0,1}∗

– {IND1(〈C,R〉,A,O, n, z)}n∈N,z∈{0,1}∗

It is customary to call any commitment scheme that is CCA secure with respect to some
decommitment oracle as just CCA secure (but in general the oracle is usually also described, and
is of course necessary to prove such security). It is also customary to call the interaction between
the challenger and adversary as the left interaction, and that between adversary and oracle as the
right interaction, in the fashion of non-malleable commitments, where the security property chiefly
considers man in the middle attacks.

1-1 CCA. A scheme is 1-1 CCA secure (denoted as CCA1:1) if the corresponding adversary is only
allowed one interaction with the oracle.

3 A New CCA1:1 Commitment Scheme

We will require the following ingredients for our CCA1:1 protocol:

– A statistically-binding commitment Com. Naor’s commitment works.

– A 3-round slot-based extractable commitment scheme ExtCom; for concreteness we will use the
standard 3-round scheme (shown in Protocol 1) based on Naor’s commitment (the first message
ρ of Naor’s commitment is not counted in rounds and assumed to be available from other parts
of the protocol).
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– An (extractable) commitment scheme ENMC that is non-malleable against synchronizing adver-
saries. We will need this protocol to be “compatible with slots” of the ExtCom defined above.
For concreteness, we assume that ENMC is the 3-round commitment scheme of [GPR16] which
satisfies all our requirements.

– A k round witness indistinguishable argument of knowledge WIAoK.

We stress that all of these ingredients have constant rounds, and can be constructed from standard
OWFs in a black-box manner.

Our Protocol. We now describe our first protocol for CCA1:1 commitments. This protocol does not
specifically try to achieve the black-box usage of cryptographic primitives. This allows us to focus
on proving CCA security. However, it achieves two important properties: it is based on minimal
assumptions, and it has a constant number of rounds. Moreover, the structure of this protocol is
chosen in such a way that later, it will be possible to convert into a fully black-box construction. We
remark that we also directly use identities of length λ directly (this is in keeping with the [GPR16]
construction which does the same).

The formal description of the protocol appears in Protocol 2. At a high level, the protocol
proceeds as follows. First, it requires the receiver to commit to a trapdoor string α using two
extractable primitives: ExtCom as well as ENMC. Next, the committer will commit to an all zero-
string β using ExtCom. Jumping ahead, in the security proof a “simulator machine” on left will set
β = α and use it as a “fake witness” in a WIAoK; later we shall instantiate ExtCom with, roughly
speaking, a “black-box commit-and-prove” to obtain a black-box construction. The receiver simply
opens α in the next step, and the committer commits to the desired value, say v, followed by a
proof of knowledge of v or that β = α. A crucial observation here is that proofs are not required to
deal with values inside ENMC—by ensuring that ENMC values opened in the protocol execution.

Theorem 3. The protocol 〈C,R〉CCA (described in Protocol 2) is a 1-1 CCA commitment scheme.

Proof. The statistical-binding property of protocol 〈C,R〉CCA is straightforward. The computational
hiding property is implied by the 1-1 CCA security as per Definition 3. In what follows, we focus
on the proof of 1-1 CCA security. We prove this property in two steps: we first exhibit a proof
of security against synchronizing adversaries in Section 3.1, and then consider non-synchronizing
adversaries in Section 3.2.

3.1 Proof for Synchronous Adversaries

1-1 CCA Security. Recall that in the CCA challenge for commitments, the adversary is a man-
in-the-middle adversary that interacts with an honest committer on the left and a decommitment
oracle on the right that acts as an honest reciever till the end of the interaction and then reveals
the committed value to the adversary if the commitment was valid. The idea is that such an
adversary cannot tell apart two different values being committed on the left even given access to
the decommitment returned by the oracle on the right.

We will show that the adversary’s ultimate output in such a game is indistinguishable for any
two distinct values being committed on the left (this is because the values to be committed can be
chosen adaptively by the adversary).

Thus consider that there is a man-in-the-middle adversary A that participates in the CCA
challenge outlined above. As before, we will use the convention that unmarked symbols indicate
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Protocol 2: CCA1:1 Commitment Scheme 〈C, R〉CCA

We let λ ∈ N denote the security parameter. All primitives used in the protocol by default have 1λ

as part of their input. We omit this detail in the following. Further, we assume that the execution
involves a tag or identity id ∈ {0, 1}λ.

Input: The committer C and reciever R have common input as the security parameter 1λ. Ad-
ditionally, C has as private input a value v which it wishes to commit to.

Commitment Phase. This proceeds as follows:

– Stage 0: C commits to the value v using Com, and sends this along with the identity id to R.

– Stage 1: This consists of the following steps:

(a) R picks a value α
$←− {0, 1}λ.

(b) R commits to α1 = α using ExtCom.

– Stage 2: R commits to α2 = α using ENMC, using identity id.
For future reference, we denote by CombinedCom the joint execution of Stage 1 and 2 up to
this point. Observe that CombinedCom is a statistically binding commitment scheme.

– Stage 3: C now commits to β = 0λ using ExtCom.

– Stage 4: This goes as follows:

1. R decommits to both its commitments so far, revealing α1 and α2.

2. C checks these decommitments, aborting if α1 6= α2.

– Stage 5: C and R engage in k + 1 WIAoK protocols sequentially. We denote these WIAoK
executions as WIAoKi for i = 1, . . . , k+1. In all these WIAoKs, C proves the same (compound)
statement which is true if and only if:

(a) there exists randomness η s.t. c = Com(v; η); or

(b) β = α1 = α2, where β is the unique string committed in the transcript of Stage-3.

Note that an honest prover will always use the witness for part-(a) of the above compound
statement, which we refer as the “original witness”. We will refer the witness for part-(b) of
the compound statement. Looking ahead, some hybrids will use the trapdoor witness to go
through the WIAoKs.

Decommitment Phase. The committer C decommits to v and β. R checks if these decommit-
ments are valid, and accepts if so.

values used in the left interaction and symbols marked with a tilde indicate values used in the right
interaction. Fix two arbitrary values v0 and v1 in the message space. We will now show

{IND0(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗
c
≈ {IND1(〈C,R〉CCA,A,O, n, z)}n∈N,z∈{0,1}∗

To this end, we will use a hybrid argument.
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We now describe the hybrids, and prove indistinguishability between contiguous ones. In the
process, we will also mark out particular concerns that may render these arguments invalid in the
non-synchronous case, and resolve these concerns later.

An Invariant Condition. In each hybrid we will need to refer to the value committed by the
man-in-the-middle A in Stage 3 of the protocol, denoted by β̃. Since ExtCom is a statistically
binding commitment, the value β̃ is always uniquely defined given the transcripts of ExtCom5. We
can formally refer to this value w.r.t. any given machine M : if t is the output of M , we parse t to
uniquely obtain the transcript corresponding to ExtCom in the right execution. We then define β̃ to
be the value in that transcript and β̃ = ⊥ if this transcript in t is not uniquely defined. Furthermore,
we define α̃ to be the value that corresponds to the opening in Stage 3 on right in the output t,
setting α̃ = ⊥ if this value is not uniquely defined for the given t or the decommitments are invalid.
We refer to these values by β̃(t) and α̃(t) if we wish to be explicit about t, and unless specified
otherwise, M is assumed to receive a parameter λ as its first input. Note that the role of M will
be taken by hybrid machines in the proof. We can now define:

Definition 4 (Invariant Condition). For a Turing machine M , the invariant condition is said
to hold for M if there exists a negligible function negl(·) such that:

Pr
t←M(1λ)

[
β̃(t) = α̃(t)

]
≤ negl(λ).

Hybrid H0
0 : This hybrid is identical to the experiment IND0(〈C,R〉CCA,A,O, n, z) where the man-

in-the-middle A receives a commitment to v0 on left. We view H0
0 (and all other subsequent hybrids)

as a machine.

Lemma 1. The invariant condition holds for H0
0 .

Proof. Observe that Stage-1 and Stage-2 together are referred to as CombinedCom; this defines
a secure statistically binding commitment scheme since it consist of a sequential execution of two
commitments (ExtCom and ENMC) which commit to the same value α̃. We show that if the invariant
condition does not hold for H0

0 then, we can construct a PPT adversary Ahid to break hiding of
CombinedCom. More specifically, Ahid incorporates H0

0 ; it sends two random values (α̃0, α̃1) to an
outside committer of CombinedCom; it then starts to run machine H0

0 with the following exception:

– It does not run the exponential time oracle or the Stage-1 and Stage-2 executions internally;
instead it forwards the message from the outside committer to complete these two stages.

– It halts once the left Stage-2 execution is done, outputting the its view viewAhid
(which is the

same as the view of H0
0 but “truncated” at the end of the right Stage-2).

Next, we construct a distinguisher D who incorporates A (and hence H0
0 ); it gets as input the view

viewAhid
and proceeds as follows: D continues the execution of H0

0 from the state where A halts,
denoted st. Observe that D has all the information it needs to continue this execution. D halts at
the end of Stage-3 on right. If A completes right Stage 3 successfully, D runs the extractor of
ExtCom to extract the committed value. By definition, if the invariant condition does not hold, it
follows that A commits to valid value such that β̃ = α̃ with noticeable probability ε (for infinitely
many λ), and therefor (by using standard averaging argument to account for good values of st) D
learns α̃ in expected PPT time. This violates hiding of CombinedCom.

5 If the transcript can be decommitted to more than one value or no value at all, we define β̃ = ⊥.
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Hybrid H0
1 : This hybrid is identical to H0

0 , except that it does not run the exponential time oracle
O; instead, if the right executions are accepting, it learns the committed value ṽ by extracting it
from WIAoKk+1 (on right). If extraction fails, the extracted value is assumed to be ⊥. Note that
H0

1 is expected PPT.
Observe that H0

1 and H0
0 have identical executions up until the A finishes its execution on right.

Therefore, invariant condition holds in H0
1 . Consequently, by properties of the extractor for WIAoK,

this hybrid always (i.e., with probability 1) extracts a valid witness (which includes the committed
value) in expected PPT time. Thus, H0

1 and H0
0 are identically distributed.

Hybrid H0
2 : This hybrid is identical to H0

1 , except that whenever the left ENMC is accepting, H0
1

extracts the committed value α from the left ENMC. If extraction fails, H0
1 outputs ⊥ and halts;

otherwise it continues as H0
1 .

The outputs of H0
1 and H0

2 differ only when extraction fails, which happens with negligible prob-
ability. Therefore the two hybrids have statistically close outputs, and consequently, the invariant
condition also holds in H0

2 .

Remark 1. The above proofs for both indistinguishability and invariant condition are independent
of A’s scheduling, and work for the non-synchronizing case.

Hybrid H0
3 : This hybrid is identical to H0

2 , except that H0
3 sets β = α (the value extracted from

the left ENMC in H0
2 ) in Stage-3 ExtCom on left.

First, note that if the invariant condition holds in H0
3 , the indistinguishability of H0

2 and H0
3

follows directly from the hiding property of left ENMC. The proof of the invariant condition for
this hybrid is rather involved. We prove it in Lemma 2 towards the end. In the following, let us
continue to assume that the invariant condition holds in H0

3 .
We will now define a number of hybrids in sequence:

– Hybrid H0
3+i (i ∈ [k]): This hybrid switches from proving statement (1) to statement (2) in

WIAoKi (and also therefore switching from using the “original” witness to the “fake” one).

Indistinguishability. We note that if the invariant condition holds in H0
3 , it should also hold

in H0
3+1 through H0

3+k. This is because for each i ∈ [k], H0
3+i and H0

3 are identical up to the
end of Stage-4, and any changes after this stage do not affect the invariant condition in the
synchronizing case. Now, if the invariant condition holds in H0

3+i (i ∈ [k]), indistinguishability
between H0

3+i−1 and H0
3+i for every i follows directly from the WI property (since the extraction

only happens from WIAoKk+1).

– Hybrid H0
3+k+1: This hybrid is identical to H0

3+k, except that instead of extracting the “wit-
ness” (i.e., the committed value ṽ) from WIAoKk+1, it extracts from WIAoK1 (which are both
on the right).

Indistinguishability. Hybrids H0
3+k and H0

3+k+1 proceed identically until the extraction is per-
formed on right. Therefore, the invariant condition holds in H0

3+k+1. Consequently, by the
knowledge soundness of WIAoK, H0

3+k and H0
3+k+1 are statistically close. This implies both

that the invariant holds in H3+k+1, and also that the outputs in hybrids H3+k and H3+k+1 are
indistinguishable.

– Hybrid H0
3+k+2: This hybrid is identical to H0

3+k+1 except that it switches from the original
witness to the trapdoor witness (i.e., values and randomness corresponding to β = α) in the
left WIAoKk+1.
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Indistinguishability. The proofs of both indistinguishability as well as the invariant condition
are exactly as for H0

3+k (or any of the other similar hybrids).

Note that in hybrid H0
3+k+2, we can safely substitute v0 with v1(thanks to the hiding of Com).

Then we can build a sequence of hybrids similar to the above one, but in the reverse order, to
finally reach the real execution IND1(〈C,R〉CCA,A,O, n, z). More formally, for j = 0, . . . , 3 + k+ 2,
define hybrid H1

j analogously to hybrid H0
j (by replacing v0 with v1 on left).

First, note that the indistinguishability of H0
3+k+2 and H1

3+k+2 follows from that of Com since
these hybrids do not use the “real witness” (i.e., the committed values) in their executions and
they are both expected PPT. Then, using the same arguments as above, we conclude that H1

3+k+2

and H1
0 are computationally indistinguishable and invariant condition holds in each of them. This

eventually finishes the proof for 1-1 CCA security against synchronous adversaries.

We now prove the following Lemma, used earlier in the proof.

Lemma 2. The invariant condition holds for (hybrid) machine H0
3 .

Proof. We reduce the veracity of the invariant in this experiment to the (synchronous) non-
malleability of ENMC. Recall that A is the adversary for our CCA1:1 scheme in H0

3 . We construct
two machines to violate non-malleability of ENMC: a man-in-the-middle adversary ANMC who at-
tempts to commit a related value, and a corresponding distinguisher DNMC who distinguishes the
(joint) distribution of values committed by ANMC on right.

At a high level, we cannot directly reduce to non-malleability of ENMC due to the presence
of ExtCom in Stage-1 which commits to the same value as ENMC. Since ExtCom is not non-
malleable, adversary A may be able to rely on this commitment to create related values on right
in our protocol. Specifically, in Stage-3, when the hybrid sets β = α on left, A may succeed in
violating the invariant condition since Stage-3 uses the (possibly malleable) ExtCom. It is also not
sufficient to replace the Stage-1 ExtCom with a non-malleable commitment since committed value
is well defined only when both stages (1 and 2) commit to the same value. This is a relation over
two values but ENMC is not concurrently non-malleable. We therefore proceed in a different manner
where adversary ANMC will simulate stage 1 on right (by commiting one of the two random values
of its choice) while receiving an ENMC commitment from outside for Stage-2. This will simulate
the conditions of hybrid H0

3 with noticeable probability; and thus, if the invariant condition does

not hold, the distinguisher can extract the committed value β̃ to violate hiding of ENMC on right.

Adversary ANMC. This adversary participates in the non-malleability experiment w.r.t. commit-
ment scheme ENMC. It does so by proceeding exactly as hybrid H0

3 internally while interacting
with an outside committer as follows:

– ANMC picks two random values a0 and a1 and sends them to the outside committer of ENMC.
(Note that the outside committer will commit to one of a0 or a1, but ANMC does not know
which one).

– ANMC also starts the execution of adversary A internally, proceeding exactly as H0
3 except that

in Stage-1 ExtCom on right, it commits to a randomly chosen value from {a0, a1}. We denote
this value by ab where b is a random bit.

– Next, in Stage-2, ANMC does not run the ENMC internally. Instead, it sends all messages of the
external (ENMC) committer as Stage-2 messages of the right session for the internal adversary
A. Likewise, the messages of the left side stage 2 are sent to an outside receiver of ENMC.
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– ANMC halts at the end of Stage-2. For future reference, let state be state of machine ANMC at
this point.

Note that if outside committer commits to ab, the state state of ANMC is distributed identically to
that of hybrid H0

3 at the end of stage 2. Let us now describe the distinguisher DNMC.

Distinguisher DNMC. The input to the distinguisher is a pair (m, view) distributed either as
MIMANMC

ENMC (a0, λ, z) or MIMANMC
ENMC (a1, λ, z) where z is an arbitrary advice string for algorithm ANMC.

Note that m is the value committed by ANMC and view is the joint view of both executions it
participates in. The distinguisher incorporates ANMC and proceeds as follows:

– By definition, view includes the joint view of ANMC, which in turn contains the view of A and
hence state state as well as (a0, a1). Recall that hybrid H0

3 extracts the value committed in the
left ENMC, denoted α2; this value is exactly equal to m.

– DNMC defines the following machine C∗: C∗ incorporates machine ANMC and has values (m, view)
hardwired. It starts the machine ANMC from state state and continues to proceed exactly as H0

3

in the next stage. In particular, it does not extract anything from ENMC and simply uses m in
its place. That is, it sets β = m in the Stage-3 execution of ExtCom on left. Furthermore, C∗

forwards all messages corresponding to right stage 3 to an external receiver of ExtCom. Note
that C∗ is simply a valid committer of ExtCom.

– DNMC runs C∗ interacting with it as an honest receiver. If the commitment is accepting, it
extracts the value β̃ committed by C∗ (using the extractor of ExtCom).

– If β̃ = a0, it outputs 0; if β̃ = a1, it outputs 1. Otherwise, it outputs a random bit.

Let ν := ν(λ) denote the probability that the claim is false, i.e., the invariant condition does
not hold in this hybrid: ν = Pr[β̃ = α̃] where the probability is taken over transcripts (suppressed
in the notation) sampled by H0

3 . Let us calculate the advantage |∆| of DNMC where

∆ := Pr
[
D
(
MIMANMC

ENMC (a0, λ, z)
)

= 1
]
− Pr

[
D
(
MIMANMC

ENMC (a1, λ, z)
)

= 1
]

For succinctness, let Xλ,z(a) := MIMANMC
ENMC (a, λ, z). We have,

Pr
[
DNMC

(
MIMANMC

ENMC (a0, λ, z)
)

= 1
]

= Pr [DNMC (Xλ,z(a0)) = 1]

= 1
2 ·
(

Pr [DNMC (Xλ,z(a0)) = 1|b = 0]︸ ︷︷ ︸
:=z0

+ Pr [DNMC (Xλ,z(a0)) = 1|b = 1]︸ ︷︷ ︸
:=δ0

)

Observe that 1− z0 = Pr [DNMC (Xλ,z(a0)) = 0|b = 0]. Note that in this equation, since b = 0, the
input to DNMC has distribution identical to that of stage 1 and 2 on right in the execution H0

3 . We

split the probability based on the invariant condition (i.e., whether β̃ = α̃0). That is,

1− z0 = Pr
[
DNMC (Xλ,z(a0)) = 0 ∧ (β̃ = α̃0)|b = 0

]
+ Pr

[
DNMC (Xλ,z(a0)) = 0 ∧ (β̃ 6= α̃0)|b = 0

]
= ν + (1− ν) ·

(
1

2
− 2−λ

)
⇒ z0 = 1/2− ν/2 + negl(λ).
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where the first term (of the second equality above) comes from our assumption about the invariant
condition, and in that case, the extractor always extracts α̃0 and hence outputs 0; otherwise (i.e.,
with 1− ν probability), it outputs a random guess; note that in this case it is possible that β̃ = α̃1

(the other string) in which case DNMC will output the “wrong” guess 1 but since α̃1 is outside the
view of (internal) A, this happens only with probability 2−λ. We use an analogous calculation for
the case when outside committer commits to a1.

Pr
[
DNMC

(
MIMANMC

ENMC (a1, λ, z)
)

= 1
]

=
1

2
·
(

Pr [DNMC (Xλ,z(a1)) = 1|b = 1]︸ ︷︷ ︸
:=z1

+ Pr [DNMC (Xλ,z(a1)) = 1|b = 0]︸ ︷︷ ︸
:=δ1

)
where,

z1 = Pr
[
DNMC (Xλ,z(a1)) = 1 ∧ (β̃ = α̃1)|b = 1

]
+ Pr

[
DNMC (Xλ,z(a1)) = 1 ∧ (β̃ 6= α̃1)|b = 1

]
= ν + (1− ν) ·

(
1

2
− 2−λ

)
⇒ z1 = 1/2 + ν/2− negl(λ).

Finally, we observe that δ0 = δ1 since both of these cases correspond to committing two random
and independently chosen strings in stage 1 and 2 on right respectively; in other words, the input
to DNMC in these cases are identically distributed. Putting everything together, we obtain |∆| =
ν/2 + negl(λ). This violates the non-malleability of ENMC if ν is not negligible.

3.2 Proof for Non-synchronous Adversaries

We first define some terms and notations.

Alignments and Free Slots. Recall that ExtCom has exactly 3-rounds. Let (m1,m2,m3) and
(m̃1, m̃2, m̃3) be messages of stage-1 ExtCom on left and right respectively. We say that stage-1
ExtCom on left and right are aligned in a schedule, if m1 follows immediately after m̃1, m̃2 follows
immediately after m2, and finally m3 follows immediately after m̃3. We define the aligning of stage-
2 ENMC on left and right, as well as stage-3 ExtCom on left and right, analogously. We refer to
the last two messages of ExtCom and ENMC as slots. Next, recall that CombinedCom refers to the
sequential execution of stage 1 and stage 2 (see Protocol 2); since the last message of stage 1 and
first message of stage 2 can be sent together as a single message, and both stages commit to the
same value, protocol CombinedCom is a 5-round commitment scheme which has 2 slots (one for
ExtCom and one for ENMC). We say that left and right executions of CombinedCom are aligned if
its component stages 1 and 2 are aligned with their left and right counterparts respectively.

Consider an arbitrary schedule of left and right sessions. A free slot of left CombinedCom is a
slot that does not contain any message of the CombinedCom on right; it may however contain other
protocol messages. It is not hard to see that by definition of alignment (and our modeling that
the honest parties immediately respond with their next message) it follows that if left and right
CombinedCom sessions are not aligned in a schedule, there must exist a free slot on left. which does
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not contain any message of the right execution of CombinedCom. The existence of free slot is not
required until later in the proof; we will do a case-by-case analysis to demonstrate that such a free
slot must exist.

Hybrids. We now define the hybrids for the non-synchronous case following roughly the same
structure as the synchronous case. The new hybrids will be called NewH0

i for i = 1, . . . , 3+2(k+1).

Hybrid NewH0
0: Identical to H0

0 .

Hybrid NewH0
1: Identical to H0

1 .

Hybrid NewH0
2: Identical to NewH0

1 except that it extracts a value α∗ on left as follows: if the left
and right executions of CombinedCom are not aligned, it extracts from the free slot. Such a free slot
always exists by definition. Otherwise, it proceeds exactly as H0

2 and extracts from ENMC.

We remark that if A chooses to commit different values in stage-1 and 2 on left, depending
upon which slot is free, extractor may get different values for α∗.

Hybrid NewH0
3: Identical to NewH0

2 except that it sets β = α∗.

Now, for i ∈ [k + 1], we define:

Hybrid NewH0
3+(2i−1): Identical to the previous hybrid, except that instead of extracting the

“witness” (i.e., the committed value ṽ) as in the previous hybrid, this hybrid extracts from WIAoKj
on the right where j ∈ [k] is an index such that WIAoKj does not contain any message of left
WIAoKi. Note that such an index j must exist: the left WIAoKi execution has but k messages,
and each message can occur within at most one WIAoK execution on the right (recall that the
right WIAoK executions are all sequential, so they cannot overlap by definition), and we have k+ 1
WIAoK executions on the right.

Hybrid NewH0
3+(2i): Identical to the previous hybrid except that it switches from the original

witness to the trapdoor witness (i.e., values and randomness corresponding to β = α∗) in the left
WIAoKi.

Recall that from Remark 1, the proofs for indistinguishability and the invariant condition remain
unchanged up to hybrid NewH0

2. We now prove similar claims for the remaining hybrids.

Indistinguishability of NewH0
2 and NewH0

3: The main concern here is if A overlaps the left stage-
3 ExtCom with the right WIAoKk+1, then since these hybrids extract from WIAoKk+1 via rewinding,
we cannot rely directly on the hiding of left stage-3 ExtCom. This is easy to fix by considering some
intermediate hybrids where we first switch to extraction from a ‘free’ WIAoK on the right and later
switch back. We describe the intermediate hybrids below.

– Hybrid NewH0
2,1: This hybrid is identical to NewH0

2 except that if last two messages of stage-3
ExtCom on left appear after the first message of WIAoKk+1 on right, then this hybrid performs
extraction from a ‘free’ WIAoK session WIAoK∗ (instead of WIAoKk+1 used by the previous
hybrid).

Hybrids NewH0
2 and NewH0

2,1 are statistically close since they only differ when the extractor
fails, which happens with negligible probability. Thus the invariant condition holds for H0

2,1

since it holds for H0
2 .

– Hybrid NewH0
2,2: This hybrid is identical to NewH0

2,1 except that it sets β = α∗.
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(a) Right ExtCom occurs before left ExtCom (b) Right ExtCom occurs after left ExtCom

(c) Left CombinedCom occurs before right Combined-
Com

(d) Left CombinedCom occurs after right Combined-
Com

Fig. 1: Various representative schedulings considered for invariant in NewH0
3

In hybrid NewH0
3, we will show that (a) NewH0

2,2 is statistically close to NewH0
3, and (b) invariant

condition holds in NewH0
3. It follows that invariant condition must also hold in this hybrid.

We now prove the indistinguishability of NewH0
2,2 and NewH0

2,1. This follows directly from the
hiding of stage-3 ExtCom since if it does not then we can define a machine B to break hiding of
ExtCom as follows: B receives ExtCom to either 0λ or α∗ and uses it as the stage-3 commitment.
Observe that this machine does not rewind the outside ExtCom when performing extraction
from right side WIAoK: this is because stage-3 ExtCom on left has only 3 rounds, and thus,
the last two messages of this stage can only be contained in one of the WIAoKi executions on
the right—so all the others are always “free”. The hybrid only rewinds and extract from a free
WIAoK.

– Hybrid NewH0
2,3: This hybrid is identical to the previous hybrid except that it always extracts

from WIAoKk+1 on right.

It is straightforward to see that NewH0
2,2 is statistically close to the previous hybrid and thus

invariant condition also holds.

Observe that NewH0
2,2 is in fact the original hybrid NewH0

3. Therefore, NewH0
3 and NewH0

2,2 are also
statistically close as claimed above.

Invariant Condition in NewH0
3. Recall that this hybrid involves setting β to be the extracted

value. It seems reasonable to expect that the invariant condition will depend on the relationship
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between the left and right executions of the stage 3 ExtCom (this makes intuitive sense because we
expect a cheating adversary to gain in success by possibly ‘mauling’ this changed β and trying to
violate the invariant). Accordingly, consider the following three cases involving the relative positions
of the left and right stage 3 ExtCom executions:

– Right stage 3 ExtCom occurs before left stage 3 ExtCom: If this is the case (see Fig. 1a),
then it must be that the first message of the right stage 3 ExtCom is sent before any message of
the left ExtCom is sent. Note that that the first message of ExtCom binds the commitment to
the underlying value, this implies that the right stage 3 ExtCom cannot possibly commit to a
value that depends on the left ExtCom. Thus the invariant holds in NewH0

3 for such schedulings
by the same argument as used for NewH0

2,2 (and therefore NewH0
2).

– Right stage 3 ExtCom aligns with left stage 3 ExtCom: Note that this hybrid (just as
NewH0

2) uses a conditional extraction strategy on the left. Accordingly, we consider the following
two subcases:

• Left ENMC aligns with right ENMC: In this case, our reduction to non-malleability of
ENMC (arguing the validity of the invariant in H0

3 in the synchronous case) again applies
(note that in this case, all of stage 0 through stage 3 is aligned on the left and the right, so
that A is synchronous up till stage 3, and our argument in that case makes no assumptions
about what happens after that stage).

• Left ENMC does not align with right ENMC: Recall that we had defined CombinedCom
in Protocol 2. We claim in this case that if the left and right ENMC executions are not
aligned, then there must be a ‘free slot’ in the left CombinedCom (i.e., one of stage 1 ExtCom
or ENMC on the left). There are 4 possible representative schedulings, and we deal with
each separately.

1. Left CombinedCom ‘occurs before’ right CombinedCom: By this we mean that the
left CombinedCom both starts and ends before the right CombinedCom (see Fig. 1c). In
this case, the first slot in the left stage-1 ExtCom is free since no slot in CombinedCom
on the right occurs within it.

2. Left CombinedCom ‘occurs after’ right CombinedCom: By this we mean that the left
CombinedCom both starts and ends after the right CombinedCom (see Fig. 1d). In this
case, the final slot in the left stage-2 ENMC is free since no slot in CombinedCom on the
right occurs within it.

3. Left CombinedCom ‘occurs inside’ right CombinedCom: By this we mean that the left
CombinedCom both starts after and ends before the right CombinedCom. This implies
that the left stage-1 ExtCom ends after the right one, and the left ENMC starts after the
right one. Then both the final slot in the left stage-1 ExtCom and the first slot in the
left stage-2 ENMC are free.

4. Left CombinedCom ‘envelopes’ right CombinedCom: By this we mean that the left
CombinedCom both starts before and ends after the right CombinedCom. Then both the
first slot in the left stage-1 ExtCom and the final slot in the left stage-2 ENMC are free.

We claim that if the invariant condition is violated in this case, then we can break hiding
of CombinedCom. In fact, we can apply the same proof as for lemma 1, noting that the
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reduction is unchanged because we do not rewind any slot in the right CombinedCom (since
we extract from a free slot on the left).

– Right stage 3 ExtCom occurs after left stage 3 ExtCom: The argument presented for the
previous case also applies to this one (see Fig. 1b).

– Right stage 3 ExtCom ‘occurs inside’ left stage 3 ExtCom: In this case again the first
message for the right stage-3 ExtCom is sent before the corresponding first message for the left
stage-3 ExtCom. So our argument for the first case applies here too.

– Right stage 3 ExtCom ‘envelopes’ left stage 3 ExtCom: Once again, we can use our argument
for the case where the left and right stage-3 ExtCom sessions are aligned, without change.

Indistinguishability of NewH0
3+(2i−1) and NewH0

3+(2i): These hybrids are statistically close since
they only differ when the extractor fails, which happens with negligible probability. This implies
that the invariant condition must also hold in the latter hybrids. Indistinguishability of outputs
follows immediately.

Note that this argument also serves to prove indistinguishability between NewH0
3 and NewH0

4,
in particular.

Invariant Condition in NewH0
3+(2i): We consider two cases: if the execution of the stage 3 ExtCom

on the right is aligned with or occurs after that on the left, then we can resort to the same argu-
ment as for NewH0

3 (for the corresponding schedulings). If not, then we can use the corresponding
argument showing the invariant for H0

3+i in the synchronous case, since that relies only on the right
ExtCom occurring before or during the stage 3 ExtCom on the left.

Indistinguishability of NewH0
3+(2i) and NewH0

3+(2i+1): This follows directly from the witness in-
distinguishability of WIAoKi since if it does not then we can define a machine B that breaks witness
indistinguishability of WIAoK as follows: B receives prover messages proving either statement (i)
(using real witness) or (ii) (using trapdoor witness) and uses it as the WIAoKi messages on the left
(it forwards the replies of A outside to this prover). Observe that this machine does not rewind
the outside WIAoK execution when performing extraction from right side WIAoK: this is because
we have ensured that the left WIAoKi and the right WIAoKj we extract from do not overlap. We
conclude that these hybrids are indeed indistinguishable.

Thus we show that the outputs of hybrids NewH0
0 and NewH0

3+(2k+3) are indistinguishable. As

before, we can define an analogous set of hybrids NewH1
0, . . . ,NewH

1
3+(2k+3) where hybrids commit

to v1 on the left. Further, once again we observe that the indistinguishability of NewH0
3+(2i+1) and

NewH1
3+(2k+3) follows from the hiding of Com since these hybrids do not use the “real witness”

(i.e., the committed values) in their executions and they are both expected PPT (this is the same
argument as in the synchronous case, because it does not depend on the adversary’s scheduling:
this commitment is sent at the start of the execution on the left and takes only one round, hence
cannot be rewound by the adversary). This finishes the proof of the non-synchronous case, and
hence that of Theorem 3.

4 Our Black-Box CCA Commitment

In this section, we describe a fully black-box instantiation of our commitment scheme. We first
describe black-box versions of all components of our protocol which involve a proof. The final
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construction follows by simply plugging in the black-box components into our protocol. To this
end, we require an instantiation of a WIAoK scheme that can handle proofs over committed values
in a black-box manner and is consistent with commitments performed in multiple stages. To achieve
this, we also need a new instantiation for our extractable commitment scheme.

4.1 Black-Box Commit-and-Prove ZKAoK

There are several formulations of “black-box commit-and-prove” protocols in the literature, usually
tailored to their intended applications. For our purposes, we need a black-box commit-and-prove
that, has the argument-of-knowledge property (i.e., an appropriate witness can be extracted from
the prover), as well as the ZK property. We will also need the ability to give proofs over multiple
commitments, each of which may have been performed independently at different times. But the
proof, given the witnesses for each of these executions, should be able to prove any predicate φ
in zero-knowledge; furthermore sequential composition of a constant number of such proofs (for
potentially different predicates) should be zero-knowledge. To capture these properties, we start by
defining the primitive we need below.

Definition 5. A black-box s-commit-and-prove ZKAoK scheme consists of a pair of protocols (BBCom,
BBProve) executed between a pair of PPT machines P and V . BBCom is a statistically binding com-
mitment scheme, and BBProve is an interactive argument system. These protocols are executed in
the following stages:

– Commit Stage: P and V invoke BBCom(x) such that at the end of this protocol, P is statis-
tically committed to the value x.
If desired, P can commit to up to s values by invoking s independent BBCom instances. For
i ∈ [s], we use τi to denote the transcript from BBCom(xi) execution. P stores private state
state.

– Prove Stage: P and V take the transcripts {τ1, . . . , τs} and a predicate φ as common input.
P takes state as its private input. P proves to V using BBProve that there exists some values
(x1, . . . , xs) such that {τ1, . . . , τs} are valid commitments to them, and also φ(x1, . . . , xs) = 1.

We require that the following properties are satisfied:

– Black-Box. Both stages only require black-box access to cryptographic primitives.

– Completeness. If P and V are honest, then V accepts the proof with probability 1.

– Zero-Knowledge. For every PPT verifier V ∗, there exist an (expected) PPT simulator Sim
such that for all (x1, . . . , xs), for every polynomial time predicate φ, for every auxiliary input
z ∈ {0, 1}∗, it holds that

SimV ∗
(z, φ)

c
≈ {〈P (x1, . . . , xs), V

∗(z)〉}φ

where 〈P (x1, . . . , xs), V
∗(z)〉φ denotes the view of V ∗ at the end of both the Commit Stage and

the Prove Stage.

– Argument of Knowledge. There exists an (expected) PPT oracle algorithm E such that
for every PPT machine P ∗ aand every polynomial time predicate φ, and every auxiliary in-
put z ∈ {0, 1}∗, if 〈P ∗, V 〉φ constitutes an accepting view of V , with corresponding commit
stage transcripts (τ1, . . . , τs, E

P ∗
) will output (x̃1, . . . , x̃s) such that φ(x̃1, . . . , x̃s) = 1 and it is

statistically impossible to decommit (τ1, . . . , τs) to any tuple other than (x̃1, . . . , x̃s).
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Some remarks are in order. First, the prover can sequentially prove multiple predicates φ1, . . . , φk
over the same commit stage transcripts (τ1, . . . , τs) (or any subset of these). The zero knowledge
property of this sequential composition is implied by the auxiliary input nature of the zero knowledge
definition above. Furthermore, even though the simulator simulates the commit stage as well, the
presence of such a simulator trivially guarantees witness indistinguishability of the proof stage as
well; that is, if there are multiple witnesses for (τ1, . . . , τs), polynomial time verifiers cannot tell
which witness was used in the proof stage.

We remark that known black-box commit-and-prove protocols (such as in [KOS18]) do not
directly satisfy Definition 5. In fact, it is unclear if the construction in [KOS18] can be easily
modified for our purposes. At a high level, this is since:

(a) there is no stand-alone “commitment stage”, by the end of which the committer is statistically
bound to some (committed) value; this is because [KOS18] considers “commit-and-prove” as
a single object so that at the end of the execution, it is guaranteed that the committer is
committed to a value m such that φ(m) = 1; we need the guarantee that m is already defined
after a “commitment stage”, which will be used in a “proof stage” that happens latter;

(b) it is also not clear how to extend [KOS18] to support multiple commitments and multiple proofs;
in fact it seems that it can only support one proof since two valid responses from the prover in
their protocol may lead to extraction of the committed value.

4.1.1 Constructions against Honest Verifiers

We note that the “MPC-in-the-head” construction in [IKOS07] already achieves the honest-verifier
version of Definition 5. In the following, we recall their protocol ΠIKOS. This protocol makes use of
the following primitives:

– A statistically-binding commitment scheme Com (e.g. Naor’s commitment [Nao90]);

– (n+ 1, t)-perfectly verifiable secret sharing scheme ΠVSS = (VSSShare,VSSRecon)

– A t-secure MPC protocol in the malicious model.6

We will pick our parameters such that t is a constant multiple of the security parameter λ, and n is
a constant multiple of t. The prover of ΠIKOIS first commits to a value x and then prove a predicate
φ on x. It consists of the following two stages:

Commit Stage (IKOS-Com(x)): To commit to a value x, the prover P runs an MPC protocol
“in his head” where one dealer and n parties runs a (n+1, t)-VSS protocol such that each party
holds one VSS share of x in the end. P commits to the views of each party (separately) using
Com.

Prove Stage (IKOS-Prove(φ)): This consists of the following steps:

(1) To prove that a predicate φ is satisfiable, the prover asks the n parties “in his head” to
execute an MPC protocol where each party learns the value φ(x) as the output (note
that this can be done as each party holds a VSS share of x at the end of BBCom(x)).
When the computation is finished, the prover commits to the views of each party.

(2) The verifier sends a random subset ch ⊂ [n] of size t as his challenge.

6 In fact, we only need the MPC protocol to be t-private in the semi-honest model and (perfectly or statistically)
t-robust in the malicious model (as defined in Definition 10). See [IKOS07] for more details.

22



(3) The prover then decommits to the views (in both BBCom(x) and the computation of
φ(x)) of the parties specified by ch. The verifier accepts only if all the decommitments
are valid and all the views are consistent as per Definition 7.

Remark 2 (Committing to Multiple Strings). In the above, the commit-and-prove is performed on
a single value x. It can be extended to multiple values {x1, . . . , xs} by invoking BBCom on each of
them independently (where s is polynomially related to the security parameter λ). In the proving
stage, simply run the MPC protocol w.r.t. the functionality φ(x1, . . . , xs). This construction is due
to Goyal et al. (in the works [GLOV12, GOSV14]).

4.1.2 Security against Dishonest Verifiers

The above ΠIKOIS protocol only achieves honest-verifier ZKAoK property. To make it secure against
malicious verifiers (and also to prevent selective-opening attacks), [GLOV12, GOSV14] ask the
verifier to commit its challenge ch before BBCom(x) starts. However, this approach only gives us a
zero-knowledge protocol, which does not have the AoK property.

Remark 3. We notice that [IKOS07] also presented a constructions that achieves ZKAoK against
dishonest verifiers. However, they did that by invoking polynomially-many instances of Blum’s coin-
tossing protocol [Blu82] sequentially. It does not satisfy our needs as we aim to have a constant-
round construction.

To satisfy our purpose, we show how to make above construction to be a ZKAoK based on a
modified approach of [Lin13].7 At a high level, we substitute the verifier’s challenge ch in the above
honest-verifier construction by a coin-tossing between P and V , whose result will be “interpreted”
as the verifier’s challenge to finish the remaining execution. This coin-tossing step is based on a
ExtCom protocol, such that a ZK simulator can extract the verifier’s share, thus bias the coin-
tossing result to its advantage to finish the execution. In addition, since the coin-tossing happens
after the prover’s first message, a knowledge extractor can be constructed by rewinding the prover
with different queries (which is done by sending different shares in the coin-tossing) to extract the
witness, thus obtains AoK property. We show our construction in Protocol 3.

The security of Protocol 3 is established by the following lemma.

Lemma 3. The protocol ΠBB
ZKAoK is a black-box commit-and-prove zero-knowledge argument of knowl-

edge (Definition 5).

Proof. First, note that BBCom is a statistically-binding commitment due to the statistical binding
property of the underlying Com and the reconstruction guarantees of VSS scheme. Also, complete-
ness and black-box property are immediate. Soundness follows from the AoK property,8 which will
be proved in the following. The ZK and AoK properties are achieved in the standard manner, using
rewinding, to bias the coin-toss and issuing new challenges respectively. A more detailed sketch is
provided below:

7 The objective in [Lin13] is to construct a proof (of knowledge) system in (optimal) five rounds which requires the
stronger assumption of two-round statistically hiding commitments. We can avoid this assumption since we only
seek a constant-round argument system

8 We remark that the standard definition of ZKAoK ([Gol01, Definition 4.7.2]) treats soundness and AoK property
separately. Although there are definitions that build soundness directly into the AoK property, treating these
properties separately is arguably the better choice (see [BG93]). In the current proof, AoK does imply soundness
as our extractor does not assume that x ∈ L.
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Protocol 3: Black-Box Commit-and-Prove ZKAoK ΠBB
ZKAoK

This protococol, denoted by ΠBB
ZKAoK, makes use of the same Com, ExtCom, ΠVSS and t-secure MPC

protocol (with the same parameter settings) as in ΠIKOS. It consists of the following two stages:

Commit Stage (BBCom): this is the same as in protocol ΠIKOS. We remark that to commit to s
values {x1, . . . , xs}, P and V invokes IKOS-Com(xi) for each i ∈ [s] separately.

Prove Stage (BBProve(φ)): This stage consists of the following steps:

(1) Same as step (1) of protocol IKOS-Prove (i.e., Prove Stage of ΠIKOS). We remark that the
MPC is used to compute the functionality on s committed values φ(x1, . . . , xs).

(2) In this stage, P and V execute a coin-tossing to decide a value ch as V ’s challenge:

(a) V samples a random string ch1
$←− {0, 1}poly(λ), and commits to ch1 using the standard

ExtCom (Protocol 1).

(b) P sends a random string ch2
$←− {0, 1}poly(λ).

(c) V sends ch2 along with the corresponding decommitment.

We remark that both parties agree on a size-t subset ch ⊂ [n], determined by the random-
ness ch1 ⊕ ch2.

(3) Same as Step (3) of IKOS-Prove. We remark that both parties use the ch defined in last
step to do the corresponding execution.

Zero-Knowledge. Our ZK simulator Sim can be built in the following way. For the commitment

stage, Sim commits to 0-strings (i.e. it sets x1 = . . . = xs = 0λ ). For the proof stage, Sim proceeds
as follows: it samples a random challenge ch′ ⊂ [n], and invokes the ΠIKOS simulator HVSim on
ch′ to get the simulated zk′1 and zk′3 messages. It then executes the protocol using the honest
prover’s strategy up to the end of step (2)-(a) of the Prove Stage. The simulator first extracts
the value ch1 committed by V ∗ in ExtCom, and then sends a string ch2 as the step (2)-(b) message,
such that ch1 ⊕ ch2 is the randomness deciding the challenge ch′. Finally, it finishes the protocol
with zk′3 as the step-(3) message. It is obvious that Sim runs in (expected) polynomial time. The
indistinguishability of the simulated view and the view from real execution can be proved using
standard techniques.

AoK Property. Our knowledge extractor E works during the Prove Stage, and can be built as
follows. E executes the protocol using the honest verifier’s strategy until the end. If P ∗ gives a
convincing proof (otherwise, E aborts), E rewinds P ∗ to the beginning of step-(2) and finish the
protocol from there with fresh randomness. E repeats this procedure until it gets to accepting
transcript with different step-(2) coin-tossing results for sufficiently many challenges (e.g., t + 1
if that is the threshold of our VSS). By the property of VSS, E can recover the witness x from
these (sufficiently many) VSS shares. One caveat here is that P ∗ may try to bias the coin-tossing
results to a single or a small set of challenges so that it manages to successfully complete the proof
even if it does not “know” a witness. However, observe that doing so reveals information about the
committed value in ExtCom which compromises hiding.
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Remark 4 (Multi-Proof Extension). In the Prove Stage of Protocol 3, P proves a single predicate
φ. Actually, this scheme allows P to give proofs to (constantly) many predicates w.r.t the same
commitments in the Commit Stage. Notice that the security of this above construction is guar-
anteed once we set t to be a constant fraction of n.9 To support k (k is some constant) proofs, we
simply use a (kn+ 1, kt)-VSS schemes to run BBCom. Later in the Prove Stage, we run the proof
for each φ sequentially, where we still open t views (i.e. the coin-tossing result ch is still a size-t
random subset of [kn]) in BBCom for the proof of each φ.

4.1.3 A “Proof-Compatible” Extractable Commitment

As mentioned at the beginning of this section, we want to make our protocol 〈C,R〉CCA (Protocol
2) black-box using the black-box commit-and-prove scheme to conduct the Stage-0, Stage-3 com-
mitment and Stage-5 proofs. Note that the Stage-3 commitment should be extractable. But in our
commit-and-prove protocol, the commitment BBCom does not support extraction. Therefore, we
have to modify the committing stage of ΠBB

ZKAoK such that it becomes a extractable commitment,
while still being compatible with the (black-box) proving stage. Fortunately, this can be done in
the following way.

Observe that in Protocol 3, if we commit to a single value x in the committing stage, and use
the identity predicate which outputs 1 on any valid input10 in the proving stage, this protocol is
already an extractable commitment to x. The (statistical) binding property follows from that of
BBCom(x). The computational hiding property follows from ZK. The extractability follows from
AoK property. Moreover, as discussed in Remark 4, we can set the parameters properly such that
after the proof of φ(x) ≡ 1 there are still enough unopened views (in BBCom(x)) which can be used
to support more proof stages later.

We refer to this commitment scheme as ΠVSSCom. For completeness, we provide the full description
of ΠVSSCom in Section B. Jumping ahead, we will use ΠVSSCom (instead of the standard ExtCom) to
instantiate Stage-3 of our protocol.

4.2 Black-Box Instantiation of Our CCA1:1 Commitment

In this subsection, we show how we can instantiate our CCA1:1 protocol 〈C,R〉CCA (Protocol 2) with
the commit-and-prove ZKAoK protocol ΠBB

ZKAoK we built in previous subsection, to get a constant-
round black-box CCA1:1 commitment ΠBB

CCA.
This protocol makes use of a

(
(k + 2)n+ 1, (k + 2)t

)
-perfect VSS scheme and a (k + 2)t-secure

MPC protocol against malicious adversaries. The Stage-1, Stage-2 and Stage-4 of ΠBB
CCA are the

same as those of 〈C,R〉CCA. In the following, we show the modifications to the remaining stages
using ΠBB

ZKAoK:

– Stage-0: C commits to the value v using BBCom of ΠBB
ZKAoK. In the “MPC-in-the-head” execution,

C uses (k + 2)n+ 1 (imaginary) parties. In addition, C sends the tag id to R in the plain.

– Stage-3: C now commits to β = 0λ using ΠVSSCom (Figure ??). We remark that the first stage
of ΠVSSCom is exactly a BBCom commitment to β. Recall that in Coin-Tossing stage of ΠVSSCom,
a size-t random subset ch is determined such that C will open t views specified in ch. Note that
ch is still a fraction-t subset of [(k + 2)n] even though we now have (k + 2)n committed views.

9 This is inherited from the original protocol ΠIKOS. See the soundness proof in [IKOS07] for more details.
10 I.e., φ(x) ≡ 1 if and only if x is a valid bit string of appropriate size.
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– Stage-5: C and R engage in k + 1 sequential executions of BBProve(φ) of protocol ΠBB
ZKAoK

over the commit-stage transcripts of the two BBCom corresponding to Stage-0 and Stage-3.
Predicate φ is true if and only if:

1. c = Com(v); or

2. β = α1

As remarked in Stage-3, here too ch is still a size-t random subset of [(k + 2)n] in each of
the k+ 1 independent BBProve(φ) instances. Note BBProve(φ) proves statements over multiple
commitments and thus is the multi commitment extension of ΠBB

ZKAoK. I.e., C will decommit to
both Stage-0 and Stage-3 commitments in addition to the views committed in the first-round
of BBProve(φ).

Remarks on the Security Proof. The security of ΠBB
CCA follows from that of 〈C,R〉CCA since each

of the primitives we have used achieve the properties necessary in the security proof of 〈C,R〉CCA.
This is due to the ZK and AoK properties of commit-and-prove protocol ΠBB

ZKAoK. Indeed, ΠBB
ZKAoK is

used to instantiate the WIAoK and it is WI due to being ZK.

The modifications to the commitments are also “proper” in the sense that they maintain hiding
and binding properties. This is since our choice of parameters guarantees that the number of opened
views is no more than (k+ 2)t. In particular, we open (k+ 2)t views during Stage-0, and (k+ 1)t
views during Stage-3, each of which is at most (k + 2)t. Therefore, the ZK property of ΠBB

CCA is
preserved. Also, in each instance of BBProve(φ), we continue to open at least a constant fraction
of n committed views, and therefore the AoK property is maintained as well (see Remark 4).

This completes the proof of the following theorem:

Theorem 4 (Black-Box 1-1 CCA Commitments). Assume the existence of one-way func-
tions. Then, there exists a constant round black-box construction of a 1-1 CCA secure commitment
scheme.

5 Angel-Based MPC in Õ(log λ) Rounds

As mentioned in the introduction, the security model that we consider is angel-based security, or
UC security with superpolynomial helpers. Very briefly, this is essentially the same as the UC model
used in [Can01], except that the adversary (in the real world) and the environment (in the ideal
world) both have access to a superpolynomial time functionality that acts as an oracle or a helper.
Formal definitions for this security model can be found in [CLP10] and [LP12]. In terms of notation,
if there is a protocol Π that emulates a functionality H with helper H in this setting, we say that
Π H-EUC-realizes F .

Kiyoshima [Kiy14] presents a black-box construction of a CCA-secure commitment scheme with
the following ingredients:

– a two-round statistically-binding commitment scheme, and a constant round “strongly ex-
tractable” commitment, both of which are known from (black-box) one-way functions;

– a concurrently-extractable commitment (due to Micciancio et al. [MOSV06]) with a “robustness
parameter” `;

– an R-round 1-1 CCA-secure commitment provided that ` = O(R · log λ · log log λ).
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The round-complexity of the resulting protocol is O(`).

We first remark that if R is a constant, Kiyoshima’s technique will yield a Õ(log λ)-round CCA-
secure commitment. More precisely, Kiyoshima states his results with a specific value of `, namely,
O(log2 λ · log log λ), since R = O(log λ) in his case. However, his construction and proof work for
any value of R if ` is as described above, i.e., as long as the 1-1 CCA commitment has R rounds,
the resulting (fully) CCA commitment will have O(R · log λ · log log λ) rounds. Next, note that we
did construct a black-box 1-1 CCA commitment scheme with round number R = O(1) (Theorem
4). This yields the Theorem 2.

Now, as in [Kiy14], we combine Theorem 2 with the following two results due to Canetti et al.
[CLP10, CLP16] and Lin and Pass [LP12] respectively to obtain Theorem 1, the main theorem of
this paper.

Theorem 5 ([LP12]). Assume the existence of an RCCA-round robust CCA-secure commitment
scheme 〈C,R〉 and the existence of an ROT-round semi-honest oblivious transfer protocol 〈S,R〉.
Then, there is an O(max(RCCA, ROT))-round protocol that H-EUC-realizes FOT. Furthermore, this
protocol uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

Theorem 6 ([CLP10, CLP16]). For every well-formed functionality F , there exists a constant-
round FOT-hybrid protocol that H-EUC-realizes FOT .
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Appendix

A Relevant MPC Definitions

Secure Multiparty Computation: Secure multiparty computation protocols allow several par-
ties to compute a function f on their joint private inputs even in the presence of corrupted parties
that try to glean other parties’ inputs. Formally, we consider n different parties, of whom t parties
are corrupted. Further, let A denote a real world adversary for protocol Π that recieves auxillary
input z, and S denote an ideal world adversary for Π. Denote by REALΠ,A(z),I(x̄) the random
variable consisting of the output of A controlling a set of corrupted parties I, and the outputs of
the honest parties with respect to an execution of Π where party Pi has input xi for i ∈ [n], and
x̄ = (x1, . . . xn). Similarly, denote by IDEALf,S(z),I(x̄) the corresponding output of S and other
honest parties after an ideal execution with a trusted party computing f on inputs x̄.

Definition 6 (MPC in BGW). Let f : ({0, 1}∗)n −→ ({0, 1}∗)n be an n-ary functionality, and
let Π be a protocol. We say that Π (n,t)-statistically securely computes f if for every probabilistic
adversary A in the real model, there exists a probabilistic adversary S of comparable complexity (i.e.,
with runtime polynomial in that of A) in the ideal model, such that for every I ⊂ [n] of cardinality
at most t, every x̄ = (x1, . . . , xn) ∈ ({0, 1}∗)n (where |x1| = · · · = |xn|), and every z ∈ {0, 1}∗, it
holds that:

{REALΠ,A(z),I(x̄)} ≡ {IDEALf,S(z),I(x̄)}

Relating to the above, we have the following definition regarding views of parties running an
MPC execution.

Definition 7 (View Consistency). A view V iewi of an honest player Pi during an MPC com-
putation Π contains input and randomness used in the computation, and all messages received from
and sent to the communication tapes. We have that a pair of views (V iewi, V iewj) are consistent
with each other if

1. Both corresponding players Pi and Pj individually computed each outgoing message honestly by
using the random tapes, inputs and incoming messages specified in V iewi and V iewj respectively,
and:

2. All output messages of Pi to Pj appearing in V iewi are consistent with incoming messages of
Pj received from Pi appearing in V iewj (and vice versa).

We further define the notions of correctness, privacy and robustness for multiparty protocols.

Definition 8 (Correctness). Let Π be an MPC protocol. We say that Π realizes a deterministic
n-party functionality f(x,w1, . . . , wn) with perfect (resp., statistical) correctness if for all inputs
x,w1, . . . , wn, the probability that the output of some party is different from the output of some
party is different from the actual output of f is 0 (resp., negligible in k), where the probability is
over the independent choices of the random inputs r1, . . . , rn of these parties.

Definition 9 (t-Privacy). Let 1 ≤ t < n, and let Π be an MPC protocol as above. We say
that Π realizes a function f : ({0, 1}∗)n −→ ({0, 1}∗)n with perfect t-privacy if there is a PPT
simulator SIM such that for any inputs x,w1, . . . , wn, and every set of corrupted players T ⊂ [n],
where |T | ≤ t, the joint view viewT (x,w1, . . . , wn) of players in T is distributed identically to

31



SIM(T, x, (wii)i∈T , fT (x,w1, . . . , wn)). The relaxations to statistical or computational privacy are
defined in the natural way. That is, in the statistical (resp., computational) case we require that for
every distinguisher D (resp. D with circuit size at most poly(λ)) there is a negligible function δ(·)
such that∣∣Pr[D(viewT (x,w1, . . . , wn)) = 1]− Pr[D(SIM(T, x, {wi}i∈T , fT (x,w1, . . . , wn))) = 1]

∣∣ ≤ δ(λ)

Definition 10 (t-Robustness). Assume the same setting as the previous definition. We say that
Π realizes f with perfect (resp., statistical) t-robustness if in addition to being perfectly (resp.,
statistical) correct in the presence of a semi-honest adversary as above, it enjoys the following
robustness property against any computationally unbounded malicious adversary corrupting a set
T of at most t parties, and for any inputs (x,w1, . . . , wn): if there is no (w′1, . . . , w

′
n) such that

f(x,w′1, . . . , w
′
n) = 1, then the probability that some uncorrupted player outputs 1 in an execution of

Π in which the inputs of the honest parties are consistent with (x,w1, . . . , wn) is 0 (resp., negligible
in λ).

Verifiable Secret Sharing. We present the definition for verifiable secret sharing (VSS) scheme.

Definition 11 (Verifiable Secret Sharing). An (n + 1, t)-perfectly secure VSS scheme ΠVSS

consists of a pair of protocols (VSSShare,VSSRecon) that implement respectively the sharing and re-
construction phases as follows.

– Sharing Phase VSSShare: Player Pn+1 (referred to as dealer) runs on input a secret s and
randomness rn+1, while any other player Pi (i ∈ [n]) runs on input a randomness ri. During
this phase players can send (both private and broadcast) messages in multiple rounds.

– Reconstruction Phase VSSRecon: Each shareholder sends its view vi (i ∈ [n]) of the sharing
phase to each other player, and on input the views of all players (that can include bad or empty
views) each player outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally unbounded adver-
sary can corrupt up to t players that can deviate from the above procedures. The following security
properties hold.

– Commitment: if the dealer is dishonest then one of the following two cases happen: 1) during
the sharing phase honest players disqualify the dealer, therefore they output a special value ⊥
and will refuse to play the reconstruction phase; 2) during the sharing phase honest players do
not disqualify the dealer, therefore such a phase determines a unique value s∗ that belongs to
the set of possible legal values that does not include ⊥, which will be reconstructed by the honest
players during the reconstruction phase.

– Secrecy: if the dealer is honest then the adversary obtains no information about the shared
secret before running the protocol Recon.

– Correctness: if the dealer is honest throughout the protocols then each honest player will output
the shared secret s at the end of protocol Recon.

B Full Description of Our Extractable Commitment

We show the extractable commitment in Protocol 4. It makes use of the following primitives:
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Protocol 4: Black-Box Extractable Commitment ΠVSSCom Compatible with Proofs

Input: The committer C and receiver R have the security parameter λ as common input. Addi-
tionally, C has as private input a value v which it wishes to commit to.

Commitment Phase: We describe the commitment protocol.
– Share-and-Commit: This consists of the following steps: C starts emulating n + 1 players

“in his head”. C sets the input of Pn+1 (i.e., the Dealer) to the value v, while each other player
has no input. Then C runs VSSShare and each player Pi obtains shares wi, for any i ∈ [n]. Let
{view1, . . . , viewn+1} be the views of the n+1 players describing the execution of this VSSShare.
C sends commitment {cmi = Com(viewi)}i∈[n].

– Coin-Tossing: This consists of the following steps:

1. R commits to a random string (of proper length) ch1
$←− {0, 1}poly(λ) using ExtCom.

2. C sends a random string ch2
$←− {0, 1}poly(λ).

3. R sends ch1 along with the corresponding decommitment.

We remark that both parties agree on a (pseudo) random size-t subset ch ⊂ [n], determined
by the randomness ch1 ⊕ ch2.

– Response: C sends {viewi}i∈ch with the corresponding decommitments information.

– Receiver’s Decision: the receiver accepts if and only if the following three conditions hold:

• the committer’s decommitments in Response stage is consistent with the set ch defined
towards the end of Coin-Tossing stage;

• all the decommitments R received are valid, and the dealer Pn+1 has not been disqualified
by any player;

• all pairs of views in {view}i∈ch that R received in Response stage are consistent (according
to ΠVSS).

Decommmitment phase: This proceeds as follows:

1. C decommits to {cmi}i∈[n] as {viewi}i∈[n].
2. R checks that all commitments to the views are opened correctly in the previous step. If

not, R outputs ⊥ and halts.

3. R runs VSSRecon using {viewi}i∈[n] as inputs to reconstruct a value v as its output.

– A statistically-binding commitment scheme Com;

– An extractable commitment scheme ExtCom;

– (n+ 1, t)-perfectly verifiable secret sharing scheme ΠVSS = (VSSShare,VSSRecon)

– A t-secure MPC protocol in the malicious model. In fact, we only need th MPC protocol to
be t-private in the semi-honest model and (perfectly or statistically) t-robust in the malicious
model, as defined in Definition 10.

Parameter Settings. We will pick our parameters such that t is a constant multiple of the security
parameter λ, and n is a constant multiple of t.
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