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Abstract. We consider SPN schemes, i.e., schemes whose non-linear layer is defined
as the parallel application of t ≥ 1 independent S-Boxes over F2n and whose linear
layer is defined by the multiplication with a (n · t) × (n · t) matrix over F2. Even
if the algebraic representation of a scheme depends on all its components, upper
bounds on the growth of the algebraic degree in the literature usually only consider
the details of the non-linear layer. Hence a natural question arises: (how) do the
details of the linear layer influence the growth of the algebraic degree? We show
that the linear layer plays a crucial role in the growth of the algebraic degree and
present a new upper bound on the algebraic degree in SP-networks. As main results,
we prove that in the case of low-degree round functions with large S-Boxes: (a) an
initial exponential growth of the algebraic degree can be followed by a linear growth
until the maximum algebraic degree is reached; (b) the rate of the linear growth is
proportional to the degree of the linear layer over Ft

2n . Besides providing a theoretical
insight, our analysis is particularly relevant for assessing the security of cryptographic
permutations designed to be competitive in applications like MPC, FHE, SNARKs,
and STARKs, including permutations based on the Hades design strategy. We have
verified our findings on small-scale instances and we have compared them against
the currently best results in the literature, showing a substantial improvement of
upper bounds on the algebraic degree in case of low-degree round functions with large
S-Boxes.

1 Introduction
Most modern block ciphers and cryptographic permutations over FN

2 , for N = n · t,
are based on the iteration of a round function. In many cases, the round function
is composed of two main components, a non-linear layer S and a linear layer M
(including the addition of round constants). The non-linear layer S is defined as the
parallel application of t independent non-linear functions over Fn

2 . The linear layer
M is defined via the multiplication with a (n · t)× (n · t) matrix over F2. This design
strategy is called a Substitution-Permutation-Network (SPN).
The particular combination of these two building blocks, their details and the number
of rounds are chosen to guarantee security against all possible means of analysis present
in the literature, while at the same time achieving good performance in the target
applications. Regarding the security aspect, the analysis of symmetric schemes can
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be divided into statistical and algebraic cryptanalysis. Subsuming statistical analysis,
we can identify all methods that exploit statistical properties of the analyzed scheme,
including differential [BS91, BS93] and linear [Mat93] cryptanalysis, and all their
variants, like truncated differential [Knu94], impossible differential [Knu98, BBS99]
and zero-correlation [BR11] analysis. In contrast, algebraic analysis exploits algebraic
properties of the analyzed schemes such as degrees and/or the different algebraic
representations. In this category, we include interpolation cryptanalysis [JK97],
higher-order differential analysis [Lai94, Knu94], cube attacks[DS09] and methods
employing Groebner bases [Buc76]. While the influence of the linear layer on statistical
analysis has been largely analyzed in the literature [DR01, DR02a, BDKA21], the
same is not true for the case of algebraic analysis.

Influence of the Linear Layer on Statistical Analysis. For statistical analysis,
the impact of the linear layer on the security against this means of analysis is well
studied in the literature. If the linear layer of a scheme is defined by the multplication
with a t× t matrix over F2n , an upper bound of the probability of differential trails
can be found by considering both the maximum differential probability of the involved
S-Boxes (namely, the maximum probability that a non-zero input difference is mapped
into an output difference) and the branch number of the linear layer (that is, the
maximum number of active S-Boxes over two consecutive rounds). This is known as
the wide-trail design strategy [DR01, DR02a]. Analogous results hold for the case of
linear trails. If the linear layer does not admit an equivalent representation as a t× t
matrix over F2n , statistical analysis that makes use of this alignment is frustrated
after a few rounds, but, e.g., the wide trail design strategy does not apply anymore.
In this scenario, differential/linear bounds are often obtained by computer-aided
proofs.

Influence of the Linear Layer on Algebraic Analysis. Contrary to statistical
analysis, the influence of the linear layer on the security against algebraic analysis is
not well researched in the literature. Focusing on schemes over FN

2 , let’s consider,
e.g., higher-order differential cryptanalysis [Lai94, Knu94], probably one of the most
powerful cryptanalytic methods for symmetric primitives over FN

2 with low-degree
building blocks. Given an instance of a (keyed or keyless) cryptographic permutation
P : FN

2 → FN
2 , higher-order differential cryptanalysis exploits the fact that if the

algebraic degree of P is strictly smaller than N − 1 then for any (proper) vector
subspace V ⊆ FN

2 with dimension strictly greater than the algebraic degree of P
and for any v ∈ FN

2 , we have
⊕

x∈V⊕v
P (x) = 0. Since the same property does not,

in general, hold for a permutation drawn at random, it is possible to distinguish a
given (keyed or keyless) permutation from a random permutation. The idea was first
introduced by Lai [Lai94], albeit without a concrete application. Knudsen [Knu94]
then used higher-order differentials to analyze low-degree ciphers which were deemed
secure against standard differential cryptanalysis.
The crucial problem in higher-order differential distinguishers against iterated con-
structions is the analysis of the growth of the algebraic degree. Currently, the best
generic upper bound for the growth of the algebraic degree is given in [BCD11], where
authors upper bound the algebraic degree of the composition of two functions over
Ft

2n . More recently, for the particular case in which the round function is defined
as a low-degree polynomial over F2N , a more accurate estimate on the minimum
number of rounds to reach maximum algebraic degree has been proposed in [EGL+20].
However, in all these cases, the details of the linear layer are not taken into account.

The Scope of our Results. We pick up this problem, and we show how the details
of the linear layer influence the growth of the algebraic degree in SPN schemes. As
main results

• we generalize the upper bound given in [EGL+20] (only valid for Even–Mansour
schemes, a subset of all SPN schemes) to the whole class of SPN schemes and
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prove a linear upper bound on the growth of the degree that improves the
exponential one proposed in [BCD11];

• we analyze the impact of the linear layer on the growth of the degree. That is,
we prove that the rate of the linear growth is proportional to the degree of the
linear layer when written as a linear function over Ft

2n .
We point out that this is not only of theoretical interest. Indeed, motivated by
new applications such as secure Multi-Party Computation (MPC), Fully Homomor-
phic Encryption (FHE) and Zero-Knowledge proofs (ZKP), the need for symmetric
encryption schemes with a simple natural algebraic description has become ever
more apparent. This is an active area of research, and many dedicated symmetric
encryption schemes that aim for simple arithmetization or directly aim for a small
number of multiplications in F2n or Fp, for large n and prime p (usually, 2n, p ≈ 2128),
have recently been proposed in the literature. They include permutations, block
ciphers, and hash functions such as MiMC [AGR+16, GRR+16], GMiMC [AGP+19],
HadesMiMC [GLR+20] (and its hash variant Poseidon [GKR+21]), Jarvis & Fri-
day [AD18], Vision & Rescue [AAB+20], and Ciminion [DGGK21]. Many of these
proposed schemes use “algebraically simple” S-Boxes, e.g., based on a power mapping
x 7→ xd for a small odd integer d ≥ 3. In these schemes, our bounds are most
competitive against other state-of-the-art bounds and, furthermore, they help to
establish a more accurate estimate for the number of rounds that guarantee security
in future MPC-/FHE-/ZKP-friendly designs.

Nomenclature. Since we do not make any assumption about the round-keys, our
results equally apply to keyed and keyless permutations. Thus in this paper we refer
to both by using the term “schemes”. In this nomenclature, e.g., an SPN scheme is a
family of permutations built from an SPN construction parametrized by secret keys
or publicly known constants.

1.1 Related Work in the Literature
We focus on iterated schemes, that is, schemes consisting of several iterations of the
same round function. Algebraic analysis, like interpolation or higher-order differential
and integral distinguishers, is based on bounding the (algebraic) degree of the analyzed
scheme, which is in general a difficult task. Here, we recall the main results in the
literature that focus on this problem. For a more detailed discussion and comparison
of different approaches to bounding the algebraic degree we refer to [CXZZ21].

1.1.1 Theoretical Bounds on the Algebraic Degree
A naive bound for the algebraic degree of the composition of two functions F, G :
FN

2 → FN
2 is given by deg(G ◦ F ) ≤ deg(G) · deg(F ). If iterated, this bound leads

to an exponential bound on the algebraic degree for the composition of more than
two functions and a first estimate about the minimum number of rounds to reach
maximum algebraic degree in SPN schemes. For an SPN scheme defined over Ft

2n

with S-Box layer of algebraic degree δ, it follows that at least

logδ(n · t− 1) ≈ logδ(n) + logδ(t)

rounds are required to reach maximum degree (note that the affine layer does not
increase the algebraic degree).

Result by Boura, Canteaut and De Cannière [BCD11]. The naive exponential
bound, however, does not reflect the real growth of the algebraic degree when
considering iterated schemes, and the problem of estimating the growth of the
algebraic degree has therefore been studied in the literature. After the initial work
of Canteaut and Videau [CV02], a tighter upper bound was presented by Boura,
Canteaut, and De Cannière in [BCD11]. In there, the authors deduce a new bound
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for the algebraic degree of iterated permutations for SPN schemes over Ft
2n , which

includes functions that have a number of t ≥ 1 balanced S-Boxes over F2n as their
non-linear layer. The bound in [BCD11] only relies on the algebraic degree of the
S-Box, and no assumption on the linear layer is made. To apply the result presented
in [BCD11], one has to determine a particular parameter γ, that depends on the
details of the S-Box. As we discuss in Section 4.1, for an S-Box over F2n the cost for
computing γ is exponential in n. This means, for large S-Boxes (e.g., n ≥ 64) it is
infeasible to determine γ computationally and a further study of the analyzed scheme
is necessary. However, theoretically bounding γ is in general a difficult task. Apart
from the bound of Boura, Canteaut and De Cannière, in a follow-up work Boura
and Canteaut studied the influence of F −1 on the algebraic degree of deg(G ◦ F )
[BC13]. As main result, they discuss how the algebraic degrees of F −1 and F affect
each other, which subsequently allows them to bound the algebraic degree of G ◦ F
by means of the degrees of G and F −1.

Result by Carlet [Car20]. More recently, Carlet [Car20] presented a bound on
the algebraic degree of G ◦ F by working with the indicators of the graphs GF and
GG (where GF = {(x, F (x)) : x ∈ FN

2 }). In this work, Carlet bounds the algebraic
degree of G ◦ F via the degree of G and the degree of the indicator function of GF .
However, the bounds in [Car20] require evaluating the degree of large quantities of
products of coordinate functions (see [Car20, Theorem 5]) and, to the best of our
knowledge, it is unclear if the bounds in [Car20] practically improve upon the ones in
[BCD11] if the function F in G ◦ F is bijective. In this scenario, the deduced bound
on the algebraic degree of G ◦ F is essentially the same as in [BC13] (see discussion
after Corollary 5 in [Car20]).

Division Property. A generalization of integral and higher-order differential dis-
tinguishers is the division property [Tod15], proposed by Todo at Eurocrypt 2015.
Given u = (u0, u1, ..., un−1) ∈ Fn

2 , let xu :=
∏n−1

i=0 xui
i for each x ∈ Fn

2 . The division
property generalizes integral cryptanalysis and higher-order differential distinguishers
in the sense that it is interested in the sum of this quantity taken over all vectors
of X ⊆ Fn

2 . To the best of our knowledge and at the current state of the art, the
division property can only provide useful bounds on the algebraic degree for small
n. Indeed, currently it is infeasible to apply the two-/three-subset bit-based division
property [TM16, FTIM17, WHT+18, HSWW20] to large S-Boxes (i.e., of size bigger
than 12 bits to the best of our knowledge). Hence, such a tool does not seem to be
useful in the case of schemes defined over Ft

2n for large n (as targeted in this paper),
and a theoretical estimation is hence crucial.

Algebraic Degree in MiMC-Like Schemes. MiMC [AGR+16, GRR+16] is a
scheme natively defined over F2N , where the S-Box is given by the cube function
x 7→ x3. Only recently a new upper bound on the algebraic degree of MiMC-like
schemes (that is, of schemes defined over F2N via a round function of degree d ≥ 3)
has been proposed in [EGL+20] at Asiacrypt 2020. More precisely, the authors show
that when the round function can be described as a low-degree polynomial function
over F2N of degree at most d, the algebraic degree δ(r) of r iterations of the round
function grows linearly with the number of rounds, i.e., δ(r) ≤ log2(dr + 1). This
observation implies that at least logd(2N−1 − 1) rounds are required for reaching
maximum algebraic degree. As a concrete application, [EGL+20] shows that the
number of rounds in MiMC needs to be increased by several percent to resist all
known cryptanalysis. Nevertheless, the authors of [EGL+20] do not provide any
statements about how to generalize their findings to SPN schemes.

1.2 Our Contribution
As main contribution, we present a new theoretical upper bound on the algebraic
degree for SPN schemes over Ft

2n in Theorem 1. In more detail, we consider SPN
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Table 1: Nomenclature and parameters in our results for SPN schemes over Ft
2n

Parameter Explanation
F2n Finite field with 2n elements
Ft

2n t-fold cartesian product of F2n

n S-Box size in bits
t Number of words in the SPN

N := n · t State size in bits
d Word-level degree (over F2n) of the S-Boxes
δ Algebraic degree (over F2) of the S-Boxes

l := 2l′ Degree of the linear layer (over F2n)
d Word-level degree (over F2n) of the round function

schemes over Ft
2n for n ≥ 3 and t ≥ 2, where

• the S-Boxes are defined via invertible non-linear polynomial functions over F2n

of univariate degree d ≥ 3 and algebraic degree δ ≥ 2;

• the linear layer is defined as the multiplication with an invertible matrix in
Fn·t×n·t

2 . We denote by l = 2l′ the degree of the corresponding function over
F2n .

In Section 2.2 we give more details about the definition of an SPN scheme and
the involved degrees δ, d, l and d. As a quick reference, Table 1 provides a more
comprehensive overview about the parameters in our results. In Theorem 1 we prove
that the algebraic degree δ(r) after r rounds is upper-bounded by

δ(r) ≤

{
δr if r ≤ Rexp = 1 + ⌊logδ(t)⌋,
t · log2

(
d

r−1·d
t

+ 1
)

if Rexp < r ≤ RSPN.
(1)

It follows that at least

RSPN = 1 + ⌈log
d

(
t · (2n − 1)− 2n−1)− log

d
(d)⌉ ≈ log

d
(t · (2n − 1))

rounds are necessary to reach maximum algebraic degree n · t − 1, see Section 3.1.
Our results have been practically verified on small-scale schemes. Section 5 is devoted
to a more detailed discussion of our practical experiments. Moreover, our results
match the ones given in [EGL+20] for the particular case t = 1.

Comparison with Related Work. As discussed above, there are two possible
approaches for estimating the growth of the algebraic degree in SPN schemes: the-
oretical bounds, like the one by Boura, Canteaut and De Cannière [BCD11] and
tool-based bounds, like the division property. However, both approaches have inherent
limitations when applied to SPN schemes defined over Ft

2n for large n (as targeted
in this paper and important for MPC-/FHE-/ZKP-friendly schemes): in the first
approach, the degree of the S-Box over F2n and the alignment of the scheme (hence,
the degree of the linear layer over F2n ) are not taken into account. While this could
be an advantage in the sense that such results apply to a large class of schemes, the
resulting estimation of the growth of the algebraic degree is far from being optimal
when applied to schemes over Ft

2n with large and low-degree S-Boxes; in the second
approach, the tools cannot tackle large S-Boxes (i.e., n ≥ 12). Our new results include
both scenarios.
A concrete comparison between our new bound on the algebraic degree and the one
proposed in [BCD11] for an SPN scheme over F8

233 with cube S-Box S(x) = x3 for
several values of l is presented in Fig. 1.
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Figure 1: Comparison between our new bound and the one proposed in [BCD11] for the
case of an SPN scheme instantiated over (F233)8 with a cube S-Box S(x) = x3 for several
values of l (where n = 33, t = 8, d = 3, δ = 2 and d = d · l = 3 · l, γ = (n + 1)/2 = 17). γ is
a constant for the bound in [BCD11] that depends on the details of the S-Box function S.

2 Preliminaries
In this section, we recall the most important results about polynomial representations
of Boolean functions and we recall the definition of SPN and iterated Even–Mansour
schemes. We also introduce the classification of weak-arranged and strong-arranged
SPN schemes.

2.1 Polynomial Representations over Binary Extension Fields
We denote addition (and subtraction) in binary extension fields and polynomial
rings over binary extension fields by the symbol ⊕. For n, t ∈ N, every function
F : Ft

2n → F2n can be uniquely represented by a polynomial over F2n in t variables
with maximum degree 2n − 1 in each variable, i.e., as

F (X1, . . . , Xt) =
⊕

v=(v1,...,vt)∈{0,1,...,2n−1}t

φ(v) ·Xv1
1 · . . . ·Xvt

t , (2)

for certain φ(v) ∈ F2n . We refer to this representation as the word-level representation.
At the same time, the function F can be written as an n-tuple (F1, . . . , Fn) of functions
Fi : FN

2 → F2 and thus admits a unique representation as an n-tuple (F1, . . . , Fn) of
polynomials over F2 in N := n · t variables with maximum degree 1 in each variable.
Here, Fi takes the form

Fi(Y1, . . . , YN ) =
⊕

u=(u1,...,uN )∈{0,1}N

ρi(u) · Y u1
1 · . . . · Y uN

N , (3)

where the coefficients ρi(u) ∈ F2 can be computed by the Moebius transform with a
time complexity of O(N · 2N ) additive operations. We call this alternative description
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the bit-level representation of F . Combining Equations (3), for 1 ≤ i ≤ n, into a
single polynomial representation leads to a description of F as a single polynomial in
N = n · t variables, but now with coefficients in Fn

2 , instead of F2.
Whenever we refer to the degree of a single variable in F (or Fi), we shall speak of the
univariate degree. In contrast, the degree of F (or Fi) as a multivariate polynomial
shall be called its multivariate degree, or just its degree. We denote functions F :
Fn

2 → F2 as Boolean functions and hence functions of the form F : Fn
2 → Fn

2 , for
n ∈ N, as vectorial Boolean functions. We only work with vectorial Boolean functions
where n = m. The unique polynomial representation of a Boolean function is called
its algebraic normal form (ANF), which we emphasize with the following definition.
Definition 1. Let F : Fn

2 → F2 be a Boolean function. The algebraic normal form
(ANF) of F is the unique representation as a polynomial over F2 in n variables and
with maximum univariate degree 1, as given in Eq. (3). The algebraic degree δ(F ) of
F is the degree of this representation as a multivariate polynomial over F2.
When the function F is clear from the context, we also write δ instead of δ(F ). If
G : Fn

2 → Fn
2 is a vectorial Boolean function and (G1, . . . , Gn) is its representation

as an n-tuple of multivariate polynomials over F2, then its algebraic degree δ(G)
is defined as the maximal algebraic degree of its coordinate functions Gi, i.e., as
δ(G) = max1≤i≤n δ(Gi). The link between the algebraic degree and the univariate
degree of a vectorial Boolean function is well-known, e.g., it is established in [CCZ98,
Sect. 2.2]: due to the isomorphism of F2-vector spaces F2n ∼= Fn

2 , every function over
Fn

2 can be considered as a function over F2n and thus admits a representation as a
univariate polynomial over F2n . Hence, the algebraic degree of a vectorial Boolean
function can be computed from its univariate representation. Eq. (4) makes this link
explicit: Let F : F2n → F2n be a function over F2n and let F (X) =

∑2n−1
i=0 φi ·Xi

denote the corresponding univariate polynomial description over F2n . The algebraic
degree δ(F ) of F as a vectorial Boolean function is the maximum over all Hamming
weights1 of exponents of non-vanishing monomials, that is

δ(F ) = max
0≤i≤2n−1

{hw(i) |φi ̸= 0} . (4)

Lastly, we recall that the algebraic degree of an invertible function F over Fn
2 is at

most n− 1, while the univariate polynomial representation of F over F2n has degree
at most 2n − 2.

2.2 SPN Schemes
Here we recall the concept of SPN schemes, and we fix the notation used in the rest
of the article. Let Er

k : Ft
2n → Ft

2n denote the application of r rounds of an SPN
scheme under a fixed (secret or publicly known) key k ∈ Ft

2n with n ≥ 3, t ≥ 2, and
N := n · t. For every x = (x1, . . . , xt) ∈ Ft

2n we write

Er
k(x) := (Fr ◦ · · · ◦ F1) (x⊕ k0), (5)

where each Fi : Ft
2n → Ft

2n is defined as Fi(x) := R(x)⊕ ki. The subkeys k0, . . . , kr ∈
Ft

2n may be derived from the master key k ∈ Ft
2n by means of a key schedule, or they

may just as well be randomly chosen elements. Here, R denotes the composition of
the S-Box and the linear layer, i.e., we have R : Ft

2n → Ft
2n with

R(x) := (M ◦ S)(x) := M(S1(x1), . . . , St(xt)), (6)

where all Si : F2n → F2n are assumed to be invertible non-linear polynomial S-Boxes
of degree d ≥ 3 defined as

Si(x) :=
d⊕

j=0

c
(i)
j · x

j , (7)

1Given x =
∑s

i=0 xi · 2i ∈ N, for xi ∈ {0, 1}, then hw(x) =
∑s

i=0 xi.
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for c
(i)
j ∈ F2n and c

(i)
d ≠ 0. Finally, M denotes an invertible linear layer M : Fn·t

2 →
Fn·t

2 defined by the multiplication with an invertible (n · t)× (n · t) matrix M with
coefficients in F2. We remark, every (n · t)× (n · t) matrix M over F2 gives rise to an
F2n -linear function over Ft

2n . Moreover, every F2n -linear function over Ft
2n can be

written as a function

M(x) = (M1(x), M2(x), . . . , Mt(x)),

where Mi : Ft
2n → F2n , for i ∈ {1, 2, . . . , t}, is a function of the form

Mi(x) =
t⊕

j=1

Mi,j(xj) =
l′⊕

h=0

Mi,j;h · x2h

j , (8)

with Mi,j;h ∈ F2n for each i, j, h. In other words, each Mi,j is a linearized polynomial
over F2n with respect to the variable xj , and Mi is a sum of linearized polynomials
over F2n . In the following, we denote by l := 2l′ the degree of M as a function over
Ft

2n , i.e.,
l := deg M := max

1≤i≤t
deg(Mi) = max

1≤i,j≤t
deg(Mi,j),

and by d the degree of the round function satisfying 2δ − 1 ≤ d := min{d · l, 2n − 2}.
We always assume that the linear layer M ensures full diffusion after a finite number
of rounds, in the sense that there exists an r ∈ N such that every output word after
r rounds depends on every input word x1, . . . , xt. E.g., the smallest integer r that
satisfies the previous condition for an MDS matrix is 1, for the AES MixLayer it is 2,
while it does not exist for a diagonal matrix. We refer to [BJK+16a, BJK+16b] for
a more detailed analysis of this concept. A particular subclass of SPN schemes are
iterated Even–Mansour schemes. An iterated Even–Mansour (EM) scheme is an SPN
scheme with only one word, i.e., with t = 1.
Under above definition, examples of SPN schemes include SHARK [RDP+96], AES
[DR02b] and AES-like schemes in general, SHA-3/Keccak [BDPA11, BDPA13],
Present [BKL+07], MiMC [AGR+16], LowMC [ARS+15], and so on. Examples
of non-SPN schemes include Feistel and Lai-Massey [LM90] schemes.

2.2.1 Classification: Strong-Arranged vs. Weak-Arranged SPN Schemes
We recall that for each n, t ≥ 1, every matrix in Ft×t

2n admits an equivalent represen-
tation as a matrix in Fn·t×n·t

2 , while the opposite does not hold in general. Let us
introduce the following definition.
Definition 2. Let t ≥ 2 and let n ≥ 3, and let M : Ft

2n → Ft
2n be an invertible

F2n -linear function, represented as in Eq. (8). We say that M is (n, t)-reducible if
there exist invertible F2n -linear functions M ′, L1, L2 : Ft

2n → Ft
2n with L1, L2 ̸= M ,

deg(M ′) < deg(M) such that for i = 1, 2 it holds

Li(x1, . . . , xt) = (Li,1(x1), . . . , Li,t(xt))

and
M = L1 ◦M ′ ◦ L2. (9)

We note, deg(L1), deg(L2) are the degrees of L1, L2 when represented as in Eq. (8).
If M is not (n, t)-reducible, we call it (n, t)-irreducible.
With the requirement deg(M ′) < deg(M) we want to exclude trivial decompositions
with M ′ = L−1

1 ◦M ◦ L−1
2 , for any linear functions L1, L2 : Ft

2n → Ft
2n . The same

remark applies for the condition L1, L2 ̸= M . Thereby, we exclude decompositions
with L1 = M and M ′ = Id (Id being the identity function). We often just say that
M is (ir)reducible instead of (n, t)-(ir)reducible, the context will provide enough
clarification. Every SPN scheme admits an equivalent representation in which the
defining matrix M for the linear layer is irreducible. Indeed, if this is not the case, it
is sufficient to incorporate L1 and L2 from Eq. (9) into the non-linear layer S, that is

S ← L2 ◦ S ◦ L1, (10)
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and to adjust the round constants. We point out that this procedure may change the
degrees d and l, but not the degree d of the round function.
As a concrete example, consider the AES. Its S-Box over F28 is defined as

x 7→ c + L̂ ◦ x−1 = c + L̂ ◦ (x127)2,

for a certain linear function L̂ over F28 of degree strictly bigger than 1. In the
equivalent representation in which L̂ and x 7→ x2 would be incorporated in the linear
layer of AES (and so the AES S-Box would be x 7→ x127 over F28 ), the obtained
linear layer would not be irreducible anymore with respect to the definition just given.
Motivated by above discussion, we can assume that the linear layer M in an SPN
scheme over Ft

2n is (n, t)-irreducible.
Definition 3. Let Er : Ft

2n → Ft
2n be an r-round SPN scheme with (n, t)-irreducible

linear layer M (otherwise, consider an equivalent representation of Er in which M
is irreducible). The SPN scheme is called strong-arranged if the linear layer M has
degree 1 over Ft

2n ; weak-arranged otherwise.
Among the previous examples, AES, MiMC, HadesMiMC, and Vision are strong-
arranged SPNs, while Keccak, Present and LowMC are weak-arranged SPNs.

On the Degree of the Linearized Polynomial. Given a matrix M ∈ F(n·t)×(n·t)
2 ,

the naive way to find its polynomial representation over F2n is by interpolation. The
polynomial Mi,j contains only n different monomials (see Eq. (8)). Hence, t · n + 1
input/output pairs suffice to recover the polynomial representation of each Mi, and
thus M . Moreover, given the polynomial representation of an F2n -linear function
over Ft

2n (as in Eq. (8)), the simplest possible way to check if it is invertible or not is
by finding the corresponding matrix over F(n·t)×(n·t)

2 , and check if its determinant is
non-zero.

3 Growth of the Algebraic Degree in SPN Schemes
In this section we prove a new upper bound on the growth of the algebraic degree in
SPN schemes. Our proof proceeds analogously for SPN-derived block ciphers and
permutations, respectively, by assuming fixed and publicly known constants in the
latter case and fixed secret keys in the former one.

3.1 Minimum Number of Rounds for Preventing Higher-Order
Differential Distinguishers
Here, we provide a minimum number of rounds to reach maximum algebraic degree
in SPN schemes. We show that this number matches the minimum number of rounds
needed to provide security against the interpolation analysis [JK97].
Proposition 1. Let n ≥ 3. Consider r rounds of an SPN scheme Er

k over Ft
2n as

defined in Eq. (5), where l = 2l′
≥ 1 is the degree of the linear layer and with the

additional assumption that all S-Boxes S1, . . . , St are defined via non-linear polynomial
functions with equal univariate degree d ≥ 3. Let d be the degree of the round function.
A lower bound on the number of rounds to prevent higher-order differential distin-
guishers is given by

RSPN := 1 + ⌈log
d

(
t · (2n − 1)− 2n−1)− log

d
(d)⌉, (11)

independent of the (secret or publicly known) key k.
Note that

RSPN ≈ log
d

(2n − 1) + log
d

(t), (12)
especially for t, n≫ 1 and small d ≥ 3 (where log

d
(d) = 1 if l = 1 and 0 < log

d
(d) < 1

otherwise).
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Proof. To reach maximum algebraic degree n · t− 1 the polynomial representation
of Er

k over F2n must contain a monomial with algebraic degree n in t− 1 variables
and algebraic degree n− 1 in one variable. This happens if Er

k contains a word-level
monomial with univariate degree 2n − 1 in t − 1 variables and univariate degree
2n−1 − 1 in one variable. Since the multivariate degree of Er

k after r ≥ 1 rounds is
upper bounded by dr−1 ·d (we note, the final linear layer does not affect the algebraic
degree), we obtain

d
r−1 · d ≥ (t− 1) · (2n − 1) + 2n−1 − 1 = t · (2n − 1)− 2n−1

as a necessary condition on the number of rounds to reach maximum algebraic degree
n · t− 1. Rearranging for r yields r ≥ 1 + log

d

(
t · (2n − 1)− 2n−1)− log

d
(d).

3.2 Algebraic Degree of SPN Schemes
As main result of this paper, we prove the following upper bound on the growth of
the degree for SPN schemes.
Theorem 1. Let n ≥ 3 and t ≥ 1. Consider r rounds of an SPN scheme Er

k over
Ft

2n as defined in Eq. (5), where l = 2l′
≥ 1 is the degree of the linear layer and

with the additional assumption that all S-Boxes S1, . . . , St are defined via the same
invertible non-linear function S of univariate degree d ≥ 3 and algebraic degree δ ≥ 2.
Let d be the degree of the round function.
Let Rexp := 1 + ⌊logδ(t)⌋. Then, the algebraic degree of Er

k after r rounds, denoted by
δ(r), is upper-bounded by

δ(r) ≤

{
δr if r ≤ Rexp ,

min
{

δr, t · log2

(
d

r−1·d
t

+ 1
)}

if r > Rexp,
(13)

independent of the (secret or publicly known) key k and until the maximum algebraic
degree n · t− 1 is reached.
This means that after an initial exponential growth for the first Rexp := 1 + ⌊logδ(t)⌋
rounds, the growth of the degree is upper bounded by a linear growth of the form

t · log2

(
d

r−1 · d
t

+ 1
)
≈ r · t · log2(d) + t · log2

(
d

d · t

)
,

where the linear rate t · log2(d) is proportional to the number of words t and to the
degree d of the round function, which is related to the degrees d and l of the S-Boxes
and of the linear layer over F2n .

Idea of the proof. The roadmap for the proof of Theorem 1 reads as follows:
1. Lemma 1 makes a statement about which monomials can occur in the polynomial

representation of the encryption function;
2. In Lemma 2 we prove that the algebraic degree grows as fast as δr in the first

Rexp := 1 + ⌊logδ(t)⌋ rounds; this shows that the naive exponential bound can
indeed be achieved;

3. Lemma 3 provides the linear growth for the latter rounds by involving the
logarithmic function instead of the hamming weights, resulting in the bound
δ(r) ≤ t · log2

(
d

r−1·d
t

+ 1
)

.

3.3 Proof of Theorem 1
3.3.1 About the (Initial) Exponential Growth

Lemma 1. Let t ≥ 1 and let d′ ≥ 3 be an integer and let d′ =
∑δ

i=1 2di be the base-2
expansion of d for certain di ∈ N. Given a polynomial P =

⊕
i∈{1,...,u} ci · mi ∈
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F2n [X1, . . . , Xt] that contains the monomials m1, m2, . . . , mu ∈ F2n [X1, . . . , Xt] for
a certain u ≥ 1, the monomials in P d′

are of the form

m2d1
i1 ·m

2d2
i2 · . . . ·m2dδ

iδ
(14)

where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}.

Proof. We obtain

P d′
=

 ⊕
i∈{1,...,u}

ci ·mi

2d1 +···+2dδ

=
δ∏

j=1

 ⊕
i∈{1,...,u}

c2dj

i ·m2dj

i


=

⊕
i1,i2,...,iδ∈{1,2,...,u}

(
δ∏

j=1

c2dj

ij
·m2dj

ij

)
.

where the second equality holds since (x⊕ y)2k = x2k

⊕ y2k for each x, y ∈ F2n and
each k ∈ N. Hence, we conclude that only monomial products of the form

m2d1
i1 ·m

2d2
i2 · . . . ·m2dδ

iδ

may occur in P d, where i1, i2, . . . , iδ ∈ {1, 2, . . . , u}. The monomials mi1 , . . . , miδ

are not necessarily different, therefore the exponents in Eq. (14) are either powers of
2 or sums of powers of 2.

The next lemma shows that the naive exponential bound δr for the algebraic degree
is not only a trivial bound but can indeed be achieved.

Lemma 2. Let the same conditions as in Theorem 1 hold. Furthermore, let S(x) =∑d

i=0 ci · xi for ci ∈ F2n , and let d′ be a degree for which hw(d′) = δ and cd′ ≠ 0.
Let d′ =

∑δ

i=1 2di be the base-2 expansion of d′ for appropriate di ∈ N. In the first
Rexp = 1 + ⌊logδ(t)⌋ rounds the algebraic degree grows as fast as δr.

Proof. The idea is to observe the growth of the algebraic degree with the help of
Lemma 1. After the first round, all monomials Xd′

1 , . . . , Xd′
t are present in the

polynomial representation of Er
k and have algebraic degree δ.

According to Lemma 1, after one more round all monomials of the form (i1, . . . , iδ ∈
{1, . . . , t})

(Xd′
i1 )2d1 · (Xd′

i2 )2d2 · · · · · (Xd′
iδ

)2dδ
,

are present in the encryption polynomial and have algebraic degree δ2 if i1, . . . , iδ

are pairwise different. To see why they have algebraic degree δ2, we note that: (a)
raising a (word-level) monomial of Er

k to the power of 2k, k ∈ N, does not change
its algebraic degree, and (b) if two (word-level) monomials mα1 , mα2 of Er

k do not
contain any shared variable, the algebraic degree of the product mα1 ·mα2 is the sum
of the respective algebraic degrees.
In the same way as before, after another round, all monomials of the form (i1, . . . , iδ2 ∈
{1, . . . , t})

(Xd′·2d1
i1 · · ·Xd′·2dδ

iδ
)2d1 (Xd′·2d1

iδ+1 · · ·Xd′·2dδ

i2δ
)2d2 · · · (Xd′·2d1

i
δ2−(δ−1)

· · ·Xd′·2dδ

i
δ2 )2dδ

appear in the encryption polynomial and have algebraic degree δ3 if i1, . . . , iδ2 are
pairwise different. Continuing this way, we conclude that the algebraic degree grows
as fast as δr until all t variables are exhausted, i.e., until δr = δ · t, or equivalently,
for the first ⌊logδ(δ · t)⌋ = 1 + ⌊logδ(t)⌋ rounds.
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3.3.2 About the Linear Growth
Lemma 3. Let the same conditions as in Theorem 1 hold. Then, the algebraic degree
of Er

k after r rounds, denoted by δ(r), is upper-bounded by

δ(r) ≤ t · log2

(
d

r−1 · d
t

+ 1
)

. (15)

Proof. Since the word-level degree of a single output word of Er
k after r rounds is

upper bounded by dr−1 ·d (we note, the final linear layer does not affect the algebraic
degree) the algebraic degree δ(r) of Er

k after r rounds can be upper bounded by

δ(r) ≤ max
{(e1,...,et)∈Nt :

∑t

i=1
ei≤dr−1·d}

t∑
i=1

hw(ei),

where we use the fact that the algebraic degree of a monomial Xe1
1 · . . . ·Xet

t is given
by
∑t

i=1 hw(ei).
Let (e1, . . . , et) ∈ Nt be arbitrary with

∑t

i=1 ei ≤ dr−1 · d. We observe that 2w − 1 is
the smallest number with hamming weight w ∈ N. This means that 2hw(ei) − 1 ≤ ei,
hence hw(ei) ≤ log2(ei + 1) and

t∑
i=1

hw(ei) ≤
t∑

i=1

log2(ei + 1).

Let (e1, . . . , et) ∈ Nt such that
∑t

i=1 ei ≤ dr−1 · d. The logarithm is concave, which
means that

a · log2(x) + (1− a) · log2(y) ≤ log2(a · x + (1− a) · y)
for a ∈ [0, 1]. This is commonly generalized by induction to

t∑
i=1

ai · log2(xi) ≤ log2

(
t∑

i=1

ai · xi

)
whenever

∑t

i=1 ai = 1 and ai ∈ [0, 1] for all i. Therefore
t∑

i=1

log2(ei + 1) = t ·
t∑

i=1

1
t

log2(ei + 1)

≤ t · log2

(
t∑

i=1

ei + 1
t

)
≤ t · log2

(
d

r−1 · d
t

+ 1
)

,

where the last inequality holds because
∑t

i=1 ei ≤ d
r−1 · d and the fact that the

logarithm is an increasing function. Combining this with the initial equation results
in the desired

δ(r) ≤ t · log2

(
d

r−1 · d
t

+ 1
)

.

3.4 Discussion of Theorem 1
Forward versus Backward Direction. As originally proved in Corollary 3 of
[BC13], given a fixed key k, the algebraic degrees of Er

k and its compositional inverse
E−r

k are related in a particular way: the algebraic degree of Er
k is maximal (i.e.

n · t − 1) if and only if the algebraic degree of E−r
k is maximal. As an immediate

consequence we state the following observation: the number of rounds to reach
maximal algebraic degree in the forward and in the backward direction is the same.
This fact is particularly surprising if one direction of an SPN scheme is defined via
low-degree S-Boxes, while the inverse direction is built from S-Boxes of high degree.
For example, for the S-Box function S(x) = x3 over F2n the inverse function is given
by S−1(x) = x(2n+1−1)/3. Here, S has algebraic degree 2, while S−1 has algebraic
degree (n + 1)/2.
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Remarks on implicit assumptions. According to the remark about the connection
of forward and backward direction below, it suffices to focus only on one direction
of the scheme when attempting to reach maximal algebraic degree. We focus on
the forward direction. Furthermore, our analysis is independent of the concrete
instantiation of the linear layer, besides assuming it is invertible and it ensures full
diffusion after a finite number of rounds. Implicitly, our proof assumes the strongest
possible linear layer, i.e., a linear layer that guarantees full diffusion after one round
and whose corresponding linearized polynomial is full. Therefore, depending on the
instantiation of the linear layer, the algebraic degree might grow slower than we
predict, but never faster. Theorem 1 can easily be generalized to the case in which
the S-Boxes are defined via different invertible functions, under the assumption that
they all have the same univariate degree d and the same algebraic degree δ.

Relation to Iterated Even–Mansour Schemes. The authors of [EGL+20] state
in Section 3.3 that for an iterated Even–Mansour scheme whose round function can
be described by a low-degree polynomial that

“[...] if the round function can be described by a polynomial of low univariate
degree d over F2n , we expect a linear behavior in [the algebraic degree]
δlin(r): δlin(r) ≤ ⌊log2(dr + 1)⌋ ≈ r · log2(d)”.

However, no formal proof of this expectation is given in [EGL+20]. Our Theorem 1
comprises this situation as special case t = 1 and l = 1; thus we not only prove but
also generalize the result in [EGL+20]. Indeed, in Theorem 1 the case t = l = 1
corresponds to iterated Even–Mansour schemes and hence the algebraic degree δ(r)
after r rounds is upper bounded by log2(dr + 1).

Comparison with Interpolation Analysis. The previous bound on the necessary
number of rounds matches the number of rounds needed to guarantee security against
the interpolation analysis [JK97] introduced by Jakobsen and Knudsen at FSE 1997.
The goal of an interpolation analysis is to construct the polynomial that describes
the encryption or decryption function. Hence, if the number of monomials is too
large, such a polynomial cannot be constructed faster than via a brute force search.
Since the number of monomials can be estimated by means of the given the degree
of the function, the designers must guarantee that the polynomial that represents
the scheme is of maximum degree and full (or at least dense) to guarantee security
against this type of cryptanalysis.

4 Comparison of Theorem 1 with the Results in
[BCD11]
4.1 Iterative Application of the Bound in [BCD11]
The bounds on the algebraic degree in [BCD11] are stated for the composition of two
functions which means that the application to iterated SPN schemes (which often
comprise the composition of several dozen functions) requires an ad-hoc analysis
of the analyzed scheme. Here, we first provide a closed formuala for the bound in
[BCD11, Theorem 2] when extended to the composition of more than two functions,
which provides the basis for our comparisons in Section 5.
The bound given by Boura, Canteaut, and De Cannière in [BCD11, Theorem 2] states
the following: Let F be a function from FN

2 to FN
2 corresponding to the concatenation

of t smaller balanced2 S-Boxes S1, . . . , St defined over Fn
2 . Then, for any function G

from FN
2 to FN

2 , it holds

deg(G ◦ F ) ≤ N − N − deg(G)
γ

, (16)

2A function f : Fn
2 → Fm

2 is said to be balanced if each element in Fm
2 has exactly 2n−m preimages.

For n = m, an S-Box is balanced iff it is invertible.
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where
γ := max

i=1,...,n−1

n− i

n− δi
≤ n− 1, (17)

and δi is defined as the maximal algebraic degree of the product of any i coordinates
of any of the smaller S-Boxes.
We emphasize that γ and δi depend on the details of the S-Box. Namely, two S-Boxes
with the same algebraic degree can have in general different γ. The result in [BC13,
Theorem 2] uses the algebraic degree of the compositional inverses S−1

j , 1 ≤ j ≤ t,
for a bound on the algebraic degree of G ◦ F . Under the same assumptions as above
this result leads to the same bound as stated in Eq. (16), with the additional upper
bound on γ

γ ≤ max
1≤j≤t

max
{

n− 1
n− deg(Sj) ,

n

2 − 1, deg
(
S−1

j

)}
. (18)

Using an upper bound on γ for bounding the algebraic degree of G ◦ F in Eq. (16)
could lead to a less tight bound on deg(G ◦ F ) than using the exact value of γ.
However, Eq. (18) has the advantage that it only uses known facts about the involved
functions and thus a bound on deg(G ◦ F ) can be computed straight away. The
same remark applies to another bound in [BC13, Corollary 2], which works with the
algebraic degree of F −1 and is given by

deg(G ◦ F ) < N −
⌊

N − 1− deg(G)
deg (F −1)

⌋
.

In Proposition 2, we derive a direct upper bound of the algebraic degree of SPN
schemes in the simple but most common case where all S-Boxes are equal. With
“direct” upper bound we mean that we iteratively apply (16) to the round functions of
an SPN scheme and thus obtain a closed-form statement about the algebraic degree
after a certain number of rounds (and not only for the composition of two functions
as stated in [BCD11]).

Proposition 2. Let F be a function from FN
2 to FN

2 corresponding to the concate-
nation of t copies of a balanced S-Box S over F2n with algebraic degree δ ≥ 2. For
any affine functions L1, L2, . . . , Lr from FN

2 to FN
2 and any integer r ≥ 1 consider

the SPN scheme Er from FN
2 to FN

2 defined as

Er := Lr ◦ F ◦ Lr−1 ◦ F ◦ · · · ◦ L1 ◦ F.

Then the algebraic degree δ(r) of E after r rounds is upper-bounded by

δ(r) ≤

{
δr if r ≤ R0 :=

⌊
logδ

(
N · γ−1

γ·δ−1

)⌋
,

δR0

γr−R0 + N ·
(

1− 1
γr−R0

)
if R0 < r ≤ R[BCD11],

(19)

independent of the (secret or publicly known) key k, where

R[BCD11] :=
⌊

logδ

(
N · γ − 1

γ · δ − 1

)⌋
︸ ︷︷ ︸

=R0

+
⌈
logγ

(
N − δR0

)⌉
(20)

is the minimum number of rounds for security against higher-order differential distin-
guishers and where γ is defined as in Eq. (17).

The proof of Proposition 2 can be found in Appendix A. The strategy we adopt to
prove Proposition 2 is similar to the one proposed by Biryukov, Khovratovich, and
Perrin [BKP16]. In there, authors focused on the case in which all S-Boxes have
maximum algebraic degree δ = n− 1, while here we do not need this restriction. We
point out one more time that the details of the linear layer are not taken into account
and do not influence the bound just given.
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Cost of Computing γ. The growth of the degree predicted in (16) depends on
the value of γ. Computing γ can be very expensive for large S-Boxes. Indeed, one
has to consider all possible combinations of the product of any i coordinates of the
given S-Boxes, which implies a lower bound on the cost of order

Ω

(
n∑

i=1

(
n

i

))
≈ Ω(2n).

In the case in which t different S-Boxes are used, the previous cost must be multiplied
by t. This means that for large S-Boxes (e.g., n ≥ 64) it is infeasible to determine
γ computationally and a further analysis of the scheme is necessary. Our results
in Section 3 do not have this limitation. They depend on known parameters of the
scheme and can be computed straight away.

4.2 Comparison and Impact of the Linear Layer
Comparison. For a better insight when the bound RSPN improves upon the one
given by R[BCD11] we ask the following question: For which values of n, t, d, l and δ is

RSPN ≥ R[BCD11]

satisfied? Substituting the corresponding expressions we obtain the following inequal-
ity

1+log
d

(t · (2n − 1))−log
d

(d) ≥
⌊

logδ

(
N · γ − 1

γ · δ − 1

)⌋
+
⌈

logγ

(
N · γ · (δ − 1)

γ · δ − 1

)⌉
.

Using the relations γ · δ − 1 ≥ γ − 1 and γ · δ − 1 ≥ δ − 1 (note that δ ≥ 2), an upper
bound for R[BCD11] is given by

R[BCD11] ≤ 1 + ⌊logδ(N)⌋+ ⌈logγ(N)⌉ ≤ 1 + ⌈logδ(N)⌉+ ⌈log2(N)⌉.

Focusing on the case n≫ 1, the condition RSPN ≥ R[BCD11] is satisfied if (approxi-
mately)

1 + log
d

(t · (2n − 1))− log
d

(d) ≈ n · log
d

(2) + log
d

(t) ≥ 1 + logδ(n · t) + log2(n · t),

or to put it another way, if

n · log
d

(2) + log
d

(t)︸ ︷︷ ︸
∈O(n)

≥ (log2(n) + log2(t)) · (1 + logδ(2)) + 1︸ ︷︷ ︸
∈O(log2(n))

. (21)

It is easy to see that for any fixed values of d, δ, l and t, the previous inequality can
be satisfied if n is large enough.

Impact of the Linear Layer. According to Theorem 1, after an exponential growth,
the algebraic degree grows at most linearly with a rate equal to t · log2(d). If l = 1
(and thus d = d) the degree l of the linear layer does not infuence the algebraic
degree. However, if l ≥ 2, the initial exponential growth can take place for more
than Rexp; as an extreme case, if l is close to its maximum possible value 2n−1, the
linear growth may never occur. A concrete example of these facts is given in Fig. 1.
Concluding, the details of the linear layer play a crucial role in the growth of the
(algebraic) degree.

5 Practical Results
In this section, we present our practical results on SPN schemes over (F2n )t (defined
as in Section 3) with low-degree and large S-Boxes. Assuming d = d · l, we focus on
the two cases (1) l = 1, t ≥ 2; and (2) l ≥ 2, t = 1. This allows us to emphasize the
impact of t and l independently. Since the approach we take is the same for all of
our tests, we will first describe it.
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Algorithm 1: Evaluating the zero sum property of an SPN scheme Er
k over

(F2n)t using different input subspaces.
Data: SPN scheme Er

k using r rounds, with S-Box size n and t words, dimension
D of the subspace, number of tests nT .

Result: True if a zero sum is found in all tests, False otherwise.
1 for i← 1 to nT do
2 Randomly distribute D active bits among the N = n · t possible positions,

resulting in the input vector space V ⊆ FN
2 .

3 Randomly sample round constants c1, . . . , cr and v.
4 Randomly sample key k.
5 Fix Er

k using c1, . . . , cr and k.
6 s← 0.
7 foreach x ∈ V ⊕ v do
8 s← s⊕ E(x).
9 if s ̸= 0 then

10 return False.
11 return True.

5.1 Test Methodology
Instead of computing the ANF of a (keyed or keyless) permutation (which is quite
expensive already for small field sizes3), we evaluate the zero-sum property for
multiple random input vector spaces. For this purpose, we wrote a custom program
in C++. 4 For random keys and constants, given an input subspace of dimension
D ≤ N − 1, where N = n · t, we look for the minimum number of rounds r for
which the corresponding sum of the outputs is different from zero. Such a number
corresponds to
(1) the minimum number of rounds for reaching algebraic degree δ = D + 1, and
(2) the minimum number of rounds for preventing higher-order differential distin-

guishers for D = N − 1.
To avoid a bias by weak keys or “bad” round constants, we have repeated the tests
multiple times (with new random keys, round constants, and input subspaces).
We illustrate the approach in Algorithm 1 using a keyed permutation.

Number of Subspaces of Dimension D. We emphasize, if the algebraic degree
of an SPN scheme Er

k after r rounds is δ(r), then summing over all evaluations
from any vector space of dimension D ≥ δ(r) + 1 always results in a zero sum, i.e.,⊕

x∈V Er
k(x ⊕ v) = 0 for a generic (fixed) v. However, the converse is not true in

general. That is, having a zero sum over a vector space of dimension D, does in
general not imply that the algebraic degree is δ(r) = D − 1. Indeed, δ(r) could be
higher, and the zero sum could occur merely due to the specific structure of the
vector space and the analyzed function.
Evaluating the zero sum property for all affine subspaces of dimension D is actually
infeasible. Indeed, when working over (Fp)N , for any prime p and N ∈ N, the number
of different subspaces of dimension D ≤ N is

(pN − 1) · (pN − p) · (pt − p2) · · · · · (pN − pD−1)
(pD − 1) · (pD − p) · (pD − p2) · · · · · (pD − pD−1) ∈ O

(
pD·(N−D))

3For example, the computation of the Möbius transform is exponential in the bit size [BCB20], and
other methods (like the symbolic evaluation of the multiplication) are only feasible for small n or large n
with small d (i.e., a small number of multiplications).

4The code we used for the practical tests can be found on GitHub: https://github.com/IAIK/
higher-order-differential

https://github.com/IAIK/higher-order-differential
https://github.com/IAIK/higher-order-differential
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Table 2: Theoretical lower bound and practical number of rounds for preventing higher-
order differential distinguishers on SPN schemes over (F2n)t for several values of n and
t ≥ 2 (where N = n · t). The chosen S-Box is the cube function S(x) = x3. For the
practical number of rounds, we consider both the case of an MDS matrix and the case of a
matrix that provides the “worst” possible diffusion (e.g., a sparse matrix as in Eq. (23)).
R[BCD11] is computed assuming γ = (n + 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
N n t RSPN R[BCD11] MDS matrix Sparse matrix
35 5 7 5 6 8 15
35 7 5 6 6 8 12
36 9 4 7 6 9 11
33 11 3 8 5 10 10
39 13 3 10 6 11 12
34 17 2 12 6 12 12
38 19 2 13 6 14 14
66 11 6 9 7 - -
65 13 5 10 6 - -
60 15 4 11 6 - -
66 17 4 12 7 - -
63 21 3 15 6 - -
66 33 2 22 7 - -
132 11 12 10 8 - -
135 15 9 12 8 - -
133 19 7 14 7 - -
132 33 4 22 8 - -
129 43 3 28 7 - -
130 65 2 42 8 - -

as shown, e.g., in [Hog16], which is out of practical range even for small values of
p, N, D. For this reason, we have to limit ourselves to evaluate the zero sum property
for a limited number of subspaces only. However, in our practical tests we observed
that a small number of tests for each of the possible combinations of active bits is
sufficient to derive a stable number (e.g., around 10 tests for each combination).
Indeed, for example, we observed no differences when using an input subspace of
dimension N − 1 and changing the position of the single inactive bit in multiple tests.
The practical number of rounds to prevent higher-order differential distinguishers we
report is the smallest number of rounds among all tested keys and round constants.
This means that potentially a higher number of rounds can be cryptanalyzed by
choosing the keys and round constants in a particular way.

Randomization of Active Bits. Depending on the position of the active bits, the
final results may be very different. For example, significant differences arise when
considering a fixed number of active bits in a single word and the same number of
active bits split over multiple words. In order to counteract this problem, we choose
the input subspaces randomly such that the position of active bits is also randomized.
As a concrete example, consider t = 2 with d = 3 and arbitrary n. Clearly, after one
round the algebraic degree is upper-bounded by δ = 2, and indeed, when activating
2 bits in the same word, we do not get a zero sum. However, if we activate one bit
in each of the two words (i.e., in total also 2 bits), we do get a zero sum, since only
products of at most δ = hw(d) = 2 bit variables from the same word occur in the
polynomial representation. Hence, we randomize the input subspaces in our tests.

Computational Cost in Practice. In our practical tests we observed that with
very few trials we already reach a stable number for the algebraic degree after a
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Figure 2: Degree growth for an SPN scheme over (F233)4 instantiated with the S-Box
f(x) = x3.

certain number of rounds. It is however crucial to test every possible combination
of active words, since this has a significant impact on the final result. Concretely,
we fix the number of tests to 100 for “feasible” numbers of active bits (i.e., around
30). For the larger tests, we fix the number to 10. While this may seem like a small
sample size, we could not observe any differences when testing more often with lower
numbers of bits. As for the concrete runtime, it largely depends on the number of
active bits, but also on additional properties like the tested degree. E.g., x3 can be
evaluated faster than x7 for a given S-Box input x. Practically, a test with 30 active
bits can thus take several hours depending on the concrete tested construction.

5.2 Results for SPN Schemes with t ≥ 2, l = 1 and S-Boxes
of the form S(x) = xd

In our experiments, we focus on a SHARK-like scheme [RDP+96] with power maps
as S-Box functions. More specifically, we focus on SPN schemes over (F2n )t where the
S-Box function S : F2n → F2n is given by S(x) = xd and the mixing layer is defined
as the multiplication of the t state words with an invertible t × t matrix over F2n .
The choice of n and d is governed by the requirement gcd(d, 2n − 1) = 1, ensuring
that S(x) = xd is a permutation of F2n .
For the S-Box S(x) = x3, we report our results on the minimum number of rounds
to prevent higher-order differential distinguishers in Table 2. We observe that the
number of rounds that can be covered by a higher-order differential distinguisher is
always close to the one predicted by our formula (in some cases a little higher, but
never smaller). Moreover, especially when the size of the S-Box is not too small, the
round number RSPN predicted by our formula is significantly larger than R[BCD11].
Furthermore, our results of small-scale experiments on the growth of the algebraic
degree (according to the test methodology in Section 5.1) for S(x) = x3 and S(x) = x7

are depicted in Fig. 2 and Fig. 3, respectively.
Note that the tests made for Table 2 and, e.g., Fig. 2 use different approaches: in the
former case we maximize the number of active bits and see how many rounds we can
distinguish, whereas in the latter case we want to estimate the algebraic degree via
the number of active bits. For this reason, more test runs are needed to determine
the degree growth, especially in order to take care of the different positions of the
active bits (where the number of choices is lower for Table 2, since N − 1 bits are
active in all tests).
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Figure 3: Degree growth for an SPN scheme over (F233)3 instantiated with the S-Box
S(x) = x7.

Determining γ. To use the results from [BCD11] for our comparisons we need to
determine the parameter γ (see also Eq. (17)). Since an exact computation of γ is
too expensive for most instances we use, we derive an upper bound on γ and use this
upper bound as a benchmark. By definition of γ, it holds

γ = max
1≤i≤n−1

n− i

n− δi
= max

{
max

1≤i≤q

n− i

n− δi
, max

q+1≤i≤n−1

n− i

n− δi

}
≤ max

{
max

1≤i≤q

n− i

n− i · δ , max
q+1≤i≤n−1

n− i

n− (n− 1)

}
= max

{
n− q

n− q · δ , n− (q + 1)
}

.

where q = ⌊(n − 1)/δ⌋ and δ = hw(d) is the algebraic degree of the S-Box. For
the particular case S(x) = x3 only odd values for n are allowed (to guarantee
gcd(2n − 1, 3) = 1) and thus we obtain n− 1 = q · 2. Hence,

γ ≤ max
{

n− n−1
2

n− 2 · n−1
2

, n− n− 1
2 − 1

}
= n + 1

2 . (22)

We assume γ = (n + 1)/2 to compute the theoretical values for R[BCD11]. We also
refer to [EGL+20, Lemma 3], where authors support this assumption by practical
experiments for each odd n ≤ 33.

Influence of the Linear Layer. To understand how the linear layer influences
the minimum number of rounds to prevent higher-order differential distinguishers, in
our practical tests we consider two extreme cases: (1) we evaluate the case in which
the linear layer is defined as the multiplication with an MDS matrix (for parameters
n and t that allow us to do so5), which corresponds to the case of the “strongest”
linear layer from a diffusion point of view; (2) we also evaluate the case in which the
linear layer is “weak”, which could happen if it is defined by the multiplication with
a matrix containing a large number of zero coefficients. For this second case, we used
a t× t matrix M with coefficients Mr,c given by

Mr,c =
{

1 if r = 0 or c ≡ r + 1 mod t,

0 otherwise.
(23)

5An MDS matrix over Ft×t
2n exists if the condition log2(2t + 1) ≤ n (i.e., t ≤ 2n−1 − 1) is satisfied.
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Table 3: Theoretical lower bound and practical number of rounds for preventing higher-
order differential distinguishers on iterated Even–Mansour schemes over F2n for several
values of n and l ≥ 1. The chosen S-Box is the cube function S(x) = x3. For the practical
number of rounds, we consider two cases regarding the linearized polynomial M , namely,
M dense and M sparse. R[BCD11] is computed assuming γ = (n + 1)/2.

Parameters Theoretical # of Rounds Practical # of Rounds
n l RSPN R[BCD11] Dense M Sparse M
33 1 21 5 21 21
33 2 13 5 13 13
33 4 10 5 10 10
33 8 8 5 8 8
33 16 7 5 7 7
33 32 6 5 6 7
65 1 41 6 - -
65 2 26 6 - -
65 4 19 6 - -
65 8 15 6 - -
65 16 13 6 - -
65 32 11 6 - -
129 1 81 7 - -
129 2 50 7 - -
129 4 37 7 - -
129 8 29 7 - -
129 16 24 7 - -
129 32 21 7 - -

We note, using M from Eq. (23) we need t rounds to have full diffusion (at word
level), instead of just one round as for the MDS case. Hence, especially for large t,
we expect that more rounds than previously predicted may be necessary to guarantee
security against higher-order differential distinguishers. In Table 2 we report empirical
evidence for this expectation: the gap between the number of rounds predicted by
our formula and the one found by practical tests in the case of a sparse matrix is
close to zero for “small” t, and grows for “large” t.

5.3 Results for Iterated Even–Mansour Schemes (t = 1) with
l ≥ 2 and S-Boxes of the form x 7→ xd

We focus on an iterated Even-Mansour scheme with a power map as S-Box function.
More specifically, we focus on a scheme over F2n where the S-Box function S : F2n →
F2n is given by S(x) = xd and the linear layer is defined as a linearized permutation
polynomial of degree l := 2l′ . As in Section 5.2, n and d are chosen such that
S(x) = xd is a permutation of F2n .
We consider two different cases for the linearized polynomial:

• A dense linearized polynomial. In this case our polynomial is equal to M(x) =∑l′

i=0 λi · x2i for λi ∈ F2n \ {0} that guarantee invertibility;
• A sparse linearized polynomial. In this case our polynomial is equal to M(x) =

λ · xl + λ′ · xl0 for small l0 = 2l̃0 (usually, l0 = 1) and λ, λ′ ∈ F2n \ {0} that
guarantee invertibility.

For the S-Box S(x) = x3, we report our results on the minimum number of rounds
to prevent higher-order differential distinguishers in Table 3 and depict the growth
of the algebraic degree for smaller number of rounds in Fig. 4. We observe that
the algebraic degree grows close to our bound for both the sparse and dense cases,
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Figure 4: Degree growth for an iterated Even–Mansour scheme over F233 with a linearized
polynomial of degree l = 23 as linear layer and instantiated with the S-Box S(x) = x3.

where the sparse case grows slightly slower than the dense case. In fact, when only
looking at the minimum number of rounds required to prevent higher-order differential
distinguishers as in Table 3, almost all results coincide: the only exception is the
case of n = 33, l = 32 where a sparse linear polynomial requires one extra round. A
more substantial difference is found between the round number RSPN predicted by
our formula and R[BCD11], where the latter does not depend on l and is significantly
smaller.
For the difference in test methodology regarding Table 3 and the graph in Fig. 4 the
same remark as in Section 5.2 applies.

Special Case: M(x) = µ ·xl. Finally, we discuss the case in which the linearized
polynomial is of the form M(x) = µ · xl for l = 2l′ and µ ∈ F2n \ {0}. We remember
that this function is always invertible over F2n (x 7→ x2 is always invertible, due to
gcd(2, 2n − 1) = 1). Here, the value of l does not have any influence on the tests and
the results are the same as for strong-arranged SPN schemes (i.e., for l = 1). This
becomes evident when having a look at the relation between word-level degree and
algebraic degree in Eq. (4). Exponentiating a monomial me = Xe1

1 · . . . ·Xet
t to the

power of 2l′ is in fact only an l′-shift of all (non-zero) digits in the base-2 expansion
of e, hence

δ (me) =
t∑

i=1

hw(ei) =
t∑

i=1

hw
(

ei · 2l′
)

= δ
(

(me)2l′)
.

This means, the word-level degree is increased by a factor of l = 2l′ , but the algebraic
degree remains the same. While the case M(x) = µ · xl, for l = 2l′ , can be considered
a degenerate case of a linear layer, the results of our experiments for this case do not
contradict Theorem 1. We emphasize once more, the statement in Theorem 1 is an
upper bound, and that the growth of the degree can be slower than predicted (which
is true for every upper bound in the literature).

6 Possible Applications of Theorem 1
After the last advances in [BCD11], [BC13], and in [Car20], our findings extend the
canon of theoretical bounds for the growth of the algebraic degree in SPN schemes by
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an improved bound, see Theorem 1. While the currently best bounds are more generic
than our bound, our results substantially improve existing state-of-the-art bounds
when considering SPN schemes with large S-Boxes and for which the degrees of both
the non-linear layer and the linear layer are low, as is often the case in schemes for
MPC-/FHE-/ZKP-applications. In these domain specific schemes, it is most often
algebraic cryptanalysis, in particular higher-order differential distinguishers, that
dominates the overall security arguments. Thus, a better understanding of the growth
of the algebraic degree is not only vital for the security assessment of schemes for
MPC-/FHE-/ZKP-applications but also for navigating design choices towards a more
solid theoretical foundation.

HadesMiMC, Poseidon and Starkad. As a concrete application, HadesMiMC
[GLR+20] is probably the most suitable candidate to apply our results. In particular,
even if both HadesMiMC and Poseidon are designed over (Fp)t, there is no reason
why a scheme based on the Hades strategy cannot be designed over (F2n )t. As a
concrete example, we refer to Starkad [GKR+21], a variant of Poseidon defined
over (F2n )t.
Moreover, our upper bound for the growth of the algebraic degree plays an important
role in higher-order differential distinguishers of SPN schemes over Ft

2n that do not
exploit the largest non-trivial vector subspace (i.e., Fn·t−1

2 ), but subspaces of smaller
dimension than the state size n · t. This is not only of theoretical interest, but it
applies to all cases in which the security level is smaller than the size of the full
scheme, a scenario that is common for schemes recently proposed for MPC/FHE/ZKP-
applications.

Schemes for MPC-/FHE-/ZKP-Applications. As we have seen in Section 2.2.1,
the degree of a generic invertible (n · t)× (n · t) matrix with coefficients in F2 is in
general very high when represented as a linearized polynomial over F2n . In this case
(namely, l ≈ 2n−1), our bound does not improve the naive exponential bound.
However, the situation is different for schemes used in MPC-/FHE-/ZKP-applications.
In such applications, both the linear layer and the non-linear one are naturally defined
over F2n . One performance metric of schemes for MPC-/FHE-/ZKP-applications
is, e.g., a minimal number of multiplications in F2n , which is why usually linearized
polynomials of low degree over F2n are used as linear layers. Concrete examples are
Jarvis, and more recently the follow-up design Vision. Jarvis is an EM scheme
over F2n (analyzed in [ACG+19]) with a linearized polynomial of degree 4 as linear
layer. Compared to the possible maximum degree 2127, the degree of this linearized
polynomial is low. In a similar way, the linear layer of Vision is defined.
Consequently, in the case of SPN schemes with l ≥ 2 designed for MPC-/FHE-/ZKP-
applications , we expect that our results provide a better estimation of the algebraic
degree than the naive exponential bound and the bound in [BC13], since in this
scenario the linear layer usually has low degree when represented as a linearized
polynomial over F2n .
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A Proof of Proposition 2
Proof. Applying the naive exponential bound and the bound from [BCD11, Theorem
2] (see Eq. (16)) to E1 = L1 ◦ F yields

deg(L1 ◦ F ) ≤ min
{

δ, N ·
(

1− 1
γ

)
+ 1

γ

}
= δ.
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The last equality is justified as follows: for t = 1, this is obvious (δ is exactly the
degree of 1 round). For t ≥ 2, this follows from the fact that the non-linear layer has
degree δ (since we have parallel independent S-Boxes with algebraic δ) and that the
linear layer does not change the algebraic degree.
In other words, for at least one round the naive exponential bound for the growth of
the algebraic degree is better than the bound in [BCD11]. Therefore, we now look for
the maximum number of rounds R0 with this behavior. This corresponds to solving
the following equation for R0

δR0 = N ·
(

1− 1
γ

)
+ δR0−1

γ
,

which gives

R0 = logδ

(
N · γ − 1

γ · δ − 1

)
.

To put it another way, for any number of rounds r ≤ R0, the degree of Er is upper-
bounded by δr. As a next step, we find the minimum additional number of rounds to
prevent higher-order differential distinguishers, i.e., the minimum additional number
of rounds R1 such that the algebraic degree after R0 +R1 rounds is N−1 (the biggest
non-trivial subspace of FN

2 has dimension N − 1).
For r > R0, the bound in [BCD11] is better than the naive bound, hence, the algebraic
degree of Er after r = R0 + 1 rounds is upper-bounded by

deg (ER0+1) ≤ N ·
(

1− 1
γ

)
︸ ︷︷ ︸

=:C

+δR0

γ
= C + δR0

γ
,

and after r = R0 + 2 rounds by

deg (ER0+2) ≤ C + 1
γ
·
(

C + δR0

γ

)
= C + C

γ
+ δR0

γ2 .

Continuing this way, we conclude that after r = R0 + s rounds, for an integer s ≥ 1,
the algebraic degree is upper bounded by

deg (ER0+s) ≤ δR0

γs
+ C ·

s−1∑
i=0

1
γi

= δR0

γs
+ C ·

1− 1
γs

1− 1
γ

= δR0

γs
+ N · γs − 1

γs
.

This means, the minimum additional number of rounds R1 to prevent higher-order
differential distinguishers is given by the implicit condition

δR0

γR1
+ N · (γR1 − 1)

γR1
= N − 1,

which gives
R1 = logγ

(
N − δR0

)
.

We conclude, the minimum number of rounds R[BCD11] to prevent higher-order
differential distinguishers is given by

R[BCD11] =
⌊

logδ

(
N · γ − 1

γ · δ − 1

)⌋
+
⌈
logγ

(
N − δR0

)⌉
.
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