
The proceedings version of this paper appears at CRYPTO 2020. This is the full version.

Quantifying the Security Cost
of Migrating Protocols to Practice

Christopher Patton and Thomas Shrimpton

Florida Institute for Cybersecurity Research
Computer and Information Science and Engineering

University of Florida

{cjpatton,teshrim}@ufl.edu

Abstract

We give a framework for relating the concrete security of a “reference” protocol (say, one appear-
ing in an academic paper) to that of some derived, “real” protocol (say, appearing in a cryptographic
standard). It is based on the indifferentiability framework of Maurer, Renner, and Holenstein (MRH),
whose application has been exclusively focused upon non-interactive cryptographic primitives, e.g., hash
functions and Feistel networks. Our extension of MRH is supported by a clearly defined execution model
and two composition lemmata, all formalized in a modern pseudocode language. Together, these allow
for precise statements about game-based security properties of cryptographic objects (interactive or not)
at various levels of abstraction. As a real-world application, we design and prove tight security bounds
for a potential TLS 1.3 extension that integrates the SPAKE2 password-authenticated key-exchange into
the handshake.

Keywords: real-world cryptography, protocol standards, concrete security, indifferentiability

Contents

1 Introduction 2

2 The Translation Framework 6
2.1 Objects . 7
2.2 Experiments and Indifferentiability . 10
2.3 The Lifting Lemma . 13
2.4 Games and the Preservation Lemma . 19

3 Protocol Translation 22
3.1 eCK-Protocols . 23
3.2 Case Study: PAKE Extension for TLS 1.3 . 28
3.3 Discussion . 39

1 Introduction

The recent effort to standardize TLS 1.3 [54] was remarkable in that it leveraged provable security results
as part of the drafting process [49]. Perhaps the most influential of these works is Krawczyk and Wee’s
OPTLS authenticated key-exchange (AKE) protocol [43], which served as the basis for an early draft of the
TLS 1.3 handshake. Core features of OPTLS are recognizable in the final standard, but TLS 1.3 is decidedly
not OPTLS. As is typical of the standardization process, protocol details were modified in order to address
deployment and operational desiderata (cf. [49, §4.1]). Naturally, this raises the question of what, if any, of
the proven security that supported the original AKE protocol is inherited by the standard. The objective of
this paper is to answer a general version of this question, quantitatively:

Given a reference protocol Π̃ (e.g., OPTLS), what is the cost, in terms of concrete security [8],
of translating Π̃ into some real protocol Π (e.g., TLS 1.3) with respect to the security notion(s)
targeted by Π̃?

Such a quantitative assessment is particularly useful for standardization because real-world protocols tend
to provide relatively few choices of security parameters; and once deployed, the chosen parameters are likely
to be in use for several years [41].

A more recent standardization effort provides an illustrative case study. At the time of writing, the
CFRG1 was in the midst of selecting a portfolio of password-authenticated key-exchange (PAKE) proto-
cols [11] to recommend to the IETF2 for standardization. Among the selection criteria [61] is the suitability
of the PAKE for integration into existing protocols. In the case of TLS, the goal would be to standardize an
extension (cf. [54, §4.2]) that specifies the usage of the PAKE in the handshake, thereby enabling defense-
in-depth for applications in which (1) passwords are available for use in authentication, and (2) sole reliance
on the web PKI for authentication is undesirable, or impossible. Tight security bounds are particularly im-
portant for PAKEs, since their security depends so crucially on the password’s entropy. Thus, the PAKE’s
usage in TLS (i.e., the real protocol Π) should preserve the concrete security of the PAKE itself (i.e., the
reference protocol Π̃), insofar as possible.

The direct route to quantifying this gap is to re-prove security of the derived protocol Π and compare
the new bound to the existing one. This approach is costly, however: particularly when the changes from Π̃

to Π seem insignificant, generating a fresh proof is likely to be highly redundant. In such cases it is common
to instead provide an informal security argument that sketches the parts of the proof that would need to
be changed, as well as how the security bound might be affected (cf. [43, §5]). Yet whether or not this
approach is reasonable may be hard to intuit. Our experience suggests that it is often difficult to estimate
the significance of a change before diving into the proof.

Another difficulty with the direct route is that the reference protocol’s concrete security might not be
known, at least with respect to a specific attack model and adversarial goal. Simulation-style definitions, such
as those formalized in the UC framework [22], define security via the inability of an environment (universally
quantified, in the case of UC) to distinguish between attacks against the real protocol and attacks against
an ideal protocol functionality. While useful in its own right, a proof of security relative to such a definition
does not immediately yield concrete security bounds for a particular attack model or adversarial goal.

This work articulates an alternative route in which one argues security of Π by reasoning about the
translation of Π̃ into Π itself. Its translation framework (described in §2 and introduced below) provides a
formal characterization of translations that are “safe”, in the sense that they allow security for Π to be argued
by appealing to what is already known (or assumed) to hold for Π̃. The framework is very general, and so
we expect it to be broadly useful. In this work we will demonstrate its utility for standards development by

1Cryptography Forum Research Group.
2Internet Engineering Task Force.

2

MAINψ

W

A

~R

1

2

2

1

ψ(tx)

w

SR-INDIFFψ

W

A

~R

1

2

2

1

ψ(tx)

a

V

A

~Q

S

1

2
2
3

1

2

ψ(tx)

a

Figure 1: Illustration of the MAINψ (Def. 1) and SR-INDIFFψ (Def. 3) security experiments for worlds W,V ,
resources ~R, ~Q, adversary A, simulator S, and transcript predicate ψ.

applying it to the design and analysis of a TLS extension for SPAKE2 [4], one of the PAKEs considered by
the CFRG for standardization. Our result (Theorem 2) precisely quantifies the security loss incurred by this
usage of SPAKE2, and does so in a way that directly lifts existing results for SPAKE2 [4, 7, 1] while being
largely agnostic about the targeted security notions.

Overview. Our framework begins with a new look at an old idea. In particular, we extend the notion of
indifferentiability of Maurer, Renner, and Holenstein [47] (hereafter MRH) to the study of cryptographic
protocols.

Indifferentiability has become an important tool for provable security. Most famously, it provides a
precise way to argue that the security in the random oracle model (ROM) [13] is preserved when the random
oracle (RO) is instantiated by a concrete hash function that uses a “smaller” idealized primitive, such as
a compression function modeled as an RO. Coron et al. [28] were the first to explore this application of
indifferentiability, and due to the existing plethora of ROM-based results and the community’s burgeoning
focus on designing replacements for SHA-1 [63], the use of indifferentiability in the design and analysis of
hash functions has become commonplace.

Despite this focus, the MRH framework is more broadly applicable. A few works have leveraged this,
e.g.: to construct ideal ciphers from Feistel networks [29]; to define security of key-derivation functions in the
multi-instance setting [12]; to unify various security goals for authenticated encryption [5]; or to formalize
the goal of domain separation in the ROM [9]. Yet all of these applications of indifferentiability are about
cryptographic primitives (i.e., objects that are non-interactive). To the best of our knowledge, ours is the
first work to explicitly consider the application of indifferentiability to protocols. That said, we will show
that our framework unifies the formal approaches underlying a variety of prior works [38, 19, 51].

Our conceptual starting point is a bit more general than MRH. In particular, we define indifferentiability
in terms of the world in which the adversary finds itself, so named because of the common use of phrases
like “real world”, “ideal world”, and “oracle worlds” when discussing security definitions. Formally, a world is
a particular kind of object (defined in §2.1) that is constructed by connecting up a game [17] with a scheme,
the former defining the security goal of the latter. The scheme is embedded within a system that specifies
how the adversary and game interact with it, i.e., the scheme’s execution environment.

Intuitively, when a world and an adversary are executed together, we can measure the probability of
specific events occurring as a way to define adversarial success. Our MAINψ security experiment, illustrated
in the left panel of Figure 1, captures this. The outcome of the experiment is 1 (“true”) if the adversary A
“wins”, as determined by the output w of world W , and predicate ψ on the transcript tx of the adversary’s
queries also evaluates to 1. Along the lines of “penalty-style” definitions [57], the transcript predicate deter-
mines whether or not A’s attack was valid, i.e., whether the attack constitutes a trivial win. (For example,

3

if W captures IND-CCA security of an encryption scheme, then ψ would penalize decryption of challenge
ciphertexts.)

Shared-Resource Indifferentiability and The Lifting Lemma. Also present in the experiment is
a (possibly empty) tuple of resources ~R, which may be called by both the world W and the adversary A.
This captures embellishments to the base security experiment that may be used to prove security, but are
not essential to the definition of security itself. An element of ~R might be an idealized object such as an
RO [13], ideal cipher [29], or generic group [53]; it might be used to model global trusted setup, such as
distribution of a common reference string [24]; or it might provide A (and W) with an oracle that solves
some hard problem, such as the DDH oracle in the formulation of the Gap DH problem [48].

The result is a generalized notion of indifferentiability that we call shared-resource indifferentiability.
The SR-INDIFFψ experiment, illustrated in the right panel of Figure 1, considers an adversary’s ability to
distinguish some real world/resource pairW/~R (read “W with ~R”) from a reference world/resource pair V/~Q
when the world and the adversary share access to the resources. The real world W exposes two interfaces to
the adversary, denoted by subscripts W1 and W2, that we will call the main and auxiliary interfaces of W ,
respectively. The reference world V also exposes two interfaces (with the same monikers), although the
adversary’s access to the auxiliary interface of V is mediated by a simulator S. Likewise, the adversary has
direct access to resources ~R in the real experiment, and S-mediated access to resources ~Q in the reference
experiment.

The auxiliary interface captures what changes as a result of translating world V/~Q into W/~R: the job
of the simulator S is to “fool” the adversary into believing it is interacting with W/~R when in fact it is
interacting with V/~Q. Intuitively, if for a given adversary A there is a simulator S that successfully “fools”
it, then this should yield a way to translate A’s attack against W/~R into an attack against V/~Q. This
intuition is captured by our “lifting” lemma (Lemma 1, §2.3), which says that if V/~Q is MAINψ-secure
and W/~R is indifferentiable from V/~Q (as captured by SR-INDIFFψ), then W/~R is also MAINψ-secure.

Games and The Preservation Lemma. For all applications in this paper, a world is specified in terms of
two objects: the intended security goal of a scheme, formalized as a (single-stage [55]) game; and the system
that specifies the execution environment for the scheme. In §2.4 we specify a world W = Wo(G,X) whose
main interface allows the adversary to “play” the game G and whose auxiliary interface allows it to interact
with the system X.

The world’s auxiliary interface captures what “changes” from the reference experiment to the real one,
and the main interface captures what stays the same. Intuitively, if a system X is indifferentiable from Y ,
then it ought to be the case that world Wo(G,X) is indifferentiable from Wo(G, Y), since in the former
setting, the adversary might simply play the game G in its head. Thus, by Lemma 1, if Y is secure in the
sense of G, then so is X. We formalize this intuition via a simple “preservation” lemma (Lemma 2, §2.4),
which states that the indifferentiability of X from Y is “preserved” when access to X’s (resp. Y ’s) main
interface is mediated by a game G. As we show in §2.4, this yields the main result of MRH as a corollary
(cf. [47, Theorem 1]).

Updated Pseudocode. An important feature of our framework is its highly expressive pseudocode. MRH
define indifferentiability in terms of “interacting systems” formalized as sequences of conditional probability
distributions (cf. [47, §3.1]). This abstraction, while extremely expressive, is much harder to work with than
conventional cryptographic pseudocode. A contribution of this paper is to articulate an abstraction that
provides much of the expressiveness of MRH, while preserving the level of rigor typical of game-playing
proofs of security [17]. In §2.1 we formalize objects, which are used to define the various entities that run in
security experiments, including games, adversaries, systems, and schemes.

Execution Environment for eCK-Protocols. Finally, in order define indifferentiability for cryp-
tographic protocols we need to precisely specify the system X (i.e., execution environment) in which the

4

protocol runs. In §3.1 we specify the system X = eCK(Π) that captures the interaction of the adversary
with protocol Π in the extended Canetti-Krawczyk (eCK) model [46]. The auxiliary interface of X is used
by the adversary to initiate and execute sessions of Π and corrupt parties’ long-term and per-session secrets.
The main interface of X is used by the game in order to determine if the adversary successfully “attacked” Π.

Note that our treatment breaks with the usual abstraction boundary. In its original presentation [46], the
eCK model encompasses both the execution environment and the intended security goal; but in our setting,
the full model is obtained by specifying a game G that codifies the security goal and running the adversary
in world W = Wo(G, eCK(Π)). As we discuss in §3.1, this allows us to use indifferentiability to prove a
wide range of security goals without needing to attend to the particulars of each goal.

Case study: Design of a PAKE extension for TLS. Our framework lets us make precise statements of
the following form: “protocolΠ is G-secure if protocol Π̃ is G-secure and the execution ofΠ is indifferentiable
from the execution of Π̃.” This allows us to argue that Π is secure by focusing on what changes from Π̃

to Π. In §3.2 we provide a demonstration of this methodology in which we design and derive tight security
bounds for a TLS extension that integrates SPAKE2 [4] into the handshake. Our proposal is based on
existing Internet-Drafts [6, 45] and discussions on the CFRG mailing list [20, 65].

Our analysis (Theorem 2) unearths some interesting and subtle design issues. First, existing PAKE-
extension proposals [6, 64] effectively replace the DH key-exchange with execution of the PAKE, feeding
the PAKE’s output into the key schedule instead of the usual shared secret. As we will discuss, whether
this usage of the output is “safe” depends on the particular PAKE and its security properties. Second, our
extension adopts a “fail closed” posture, meaning if negotiation of the PAKE fails, then the client and server
tear down the session. Existing proposals allow them to “fail open” by falling back to standard, certificate-
only authentication. There is no way to account for this behavior in the proof of Theorem 2, at least not
without relying on the security of the standard authentication mechanism. But this in itself is interesting,
as it reflects the practical motivation for integrating a PAKE into TLS: it makes little sense to fail open if
one’s goal is to reduce reliance on the web PKI.

Partially Specified Protocols. TLS specifies a complex protocol, and most of the details are irrelevant
to what we want to prove. The Partially Specified Protocol (PSP) framework of Rogaway and Stegers [56]
offers an elegant way to account for these details without needing to specify them exhaustively. Their
strategy is to divide a protocol’s specification into two components: the protocol core (PC), which formalizes
the elements of the protocol that are essential to the security goal; and the specification details (SD), which
captures everything else. The PC, fully specified in pseudocode, is defined in terms of calls to an SD oracle.
Security experiments execute the PC, but it is the adversary who is responsible for answering SD-oracle
queries. This formalizes a very strong attack model, but one that yields a rigorous treatment of the standard
itself, rather than a boiled down version of it.

We incorporate the PSP framework into our setting by allowing the world to make calls to the adversary’s
auxiliary interface, as shown in Figure 1. In addition, the execution environment eCK and world-builderWo
are specified so that the protocol’s SD-oracle queries are answered by the adversary.

Related work. Our formal methodology was inspired by a few seemingly disparate results in the literature,
but which fit fairly neatly into the translation framework. Recent work by the authors [51] considers the
problem of secure key-reuse [38], where the goal is design cryptosystems that safely expose keys for use in
multiple applications. They formalize a condition (GAP1, cf. [51, Def. 5]) under which the G-security of a
system X implies that G-security of X holds even when X’s interface is exposed to additional, insecure, or
even malicious applications. This condition can be formulated as a special case of SR-INDIFFψ security, and
their composition theorem (cf. [51, Theorem 1]) as a corollary of our lifting lemma. (See Remarks 1 and 2.)

5

The formal study of secure key reuse was initiated by Haber and Pinkas [38], who proposed security
definitions for pairs of public-key encryption (PKE) and signature schemes that use the same public/secret
key pair. As a simple, illustrative demonstration of the power of our framework, in §2.4 we show how to
generalize their security notions.

The lifting lemma can be thought of as a computational analogue of the main technical tool in Bhargavan
et al.’s treatment of downgrade resilience [19]. In order to simplify analysis of real-world protocols, Bhargavan
et al. extract from a protocol’s specification the “sub-protocol” that captures the features essential to the
security property being considered. Downgrade resilience is proven for the sub-protocol, then lifted to the
full protocol by applying their “downgrade security lifting” theorem [19, Theorem 2]. (The name “lifting” is
inspired by their work.) We discuss this connection in detail in §3.1.

The UC Framework. MRH point out (cf. [47, §3.3]) that the notion of indifferentiability is inspired by
ideas introduced by the UC framework [22]. There are conceptual similarities between UC (in particular,
the generalized UC framework that allows for shared state [23]) and our framework, but the two are quite
different in their details. We do not explore any formal relationship between frameworks, nor do we consider
how one might modify UC to account for things that are naturally handled by ours (e.g., translation and
partially specified behavior [56]). Such an exploration would make interesting future work.

Provable Security of SPAKE2. The SPAKE2 protocol was first proposed and analyzed in 2005 by
Abdalla and Pointcheval [4], who sought a simpler alternative to the seminal encrypted key-exchange (EKE)
protocol of Bellovin and Merritt [18]. Given the CFRG’s recent interest in SPAKE2 (and its relative
SPAKE2+ [27]), there has been a respectable amount of recent security analysis. This includes concur-
rent works by Abdalla and Barbosa [1] and Becerra et al. [7] that consider the forward secrecy of (variants
of) SPAKE2, a property that Abdalla and Pointcheval did not address. Victor Shoup [59] provides an analy-
sis of a variant of SPAKE2 in the UC framework [22], which has emerged as the de facto setting for studying
PAKE protocols (cf. OPAQUE [40] and (Au)CPace [37]). Shoup observes that the usual notion of UC-secure
PAKE [25] cannot be proven for SPAKE2, since the protocol on its own does not provide key confirmation.
Indeed, many variants of SPAKE2 that appear in the literature add key confirmation in order to prove it
secure in a stronger adversarial model (cf. [7, §3]).

A recent work by Skrobot and Lancrenon [60] characterizes the general conditions under which it is secure
to compose a PAKE protocol with an arbitrary symmetric key protocol (SKP). While their object of study
is similar to ours—a PAKE extension for TLS might be viewed as a combination of a PAKE and the TLS
record layer protocol—our security goals are different, since in their adversarial model the adversary’s goal
is to break the security of the SKP.

2 The Translation Framework

This section describes the formal foundation of this paper. We begin in §2.1 by defining objects, our
abstraction of the various entities run in a security experiment; in §2.2 we define our base experiment and
formalize shared-resource indifferentiability; in §2.3 we state and prove the lifting lemma, the central technical
tool of this work; and in §2.4 we formalize the class of security goals to which our framework applies.

Notation. When X is a random variable we let Pr
[
X = v

]
denote the probability that X is equal to v; we

write Pr
[
X
]
as shorthand for Pr

[
X = 1

]
. We let x← y denote assignment of the value of y to variable x.

When X is a finite set we let x ←← X denote random assignment of an element of X to x according to the
uniform distribution.

A string is an element of {0, 1}∗; a tuple is a finite sequence of symbols separated by commas and
delimited by parentheses. Let ε denote the empty string, () the empty tuple, and (z,) the singleton tuple
containing z. We sometimes (but not always) denote a tuple with an arrow above the variable (e.g., ~x).

6

astub → | stub
astubs → astub | astub, astubs
avar → | var
avars → avar | avar, avars
dec → var typedvars
decs → ε | dec | dec; decs
interface → interface type: {ops}
op → oporacles (pattern) otype: {block}
ops → ε | op | op; ops
otype → ε | type
oracles → ε | astubs
pattern → ε | . . . | literal | avars type | (pattern) | patterns
patterns → pattern | pattern, patterns
proc → procedure type(vars): {block}
spec → spec type: {decs; ops}
typedvars → vars type | vars type, typedvars
vars → var | var, vars

spec Ro:
1 var X ,Y set, q, p int
2 var T table, i, j int
3 op (SETUP): T ← []; i, j ← 0
4 op (x elemX):
5 if i ≥ q then ret ⊥
6 if T [x] = ⊥ then
7 i← i+ 1; T [x]←← Y
8 ret T [x]
9 op (SET,M object):

10 var x elemX , y elemY
11 if j ≥ p then ret ⊥
12 j ← j + 1; ((x, y), σ)←M()
13 T [x]← y
14 ret ((x, y), σ)

Figure 2: Left: Context-free grammar for specifications. Production begins with term spec. Variables type, var,
literal, block, and stub are undefined. Code blocks will usually be denoted by indentation rather than “{” and “}”.
The semicolon “;” will usually be denoted by a new line. Right: Specification of a random oracle (RO) object.
When instantiated, variables X and Y determine the domain and range of the RO, and integers q and p determine,
respectively, the maximum number of distinct RO queries, and the maximum number of RO-programming queries
(via the SET-operator), (cf. Def. 7).

Let |x| denote the length of a string (resp. tuple) x. Let xi and x[i] denote the i-th element of x. Let x ‖ y
denote concatenation of x with string (resp. tuple) y. We write x � y if string x is a prefix of string y, i.e.,
there exists some r such that x ‖ r = y. Let y % x denote the “remainder” r after removing the prefix x
from y; if x 6� y, then define y % x = ε (cf. [21]). When x is a tuple we let x . z = (x1, . . . , x|x|, z) so that z is
“appended” to x. We write z ∈ x if (∃ i)xi = z. Let [i..j] denote the set of integers {i, . . . , j}; if j < i, then
define [i..j] as ∅. Let [n] = [1..n].

For all sets X and functions f, g : X → {0, 1}, define function f ∧ g as the map [f ∧ g](x) 7→ f(x) ∧ g(x)

for all x ∈ X . We denote a group as a pair (G, ∗), where G is the set of group elements and ∗ denotes the
group action. Logarithms are base-2 unless otherwise specified.

2.1 Objects

Our goal is to preserve the expressiveness of the MRH framework [47] while providing the level of rigor of
code-based game-playing arguments [17]. To strike this balance, we will need to add a bit of machinery to
standard cryptographic pseudocode. Objects provide this.

Each object has a specification that defines how it is used and how it interacts with other objects. We first
define specifications, then describe how to call an object in an experiment and how to instantiate an object.
Pseudocode in this paper will be typed (along the lines of Rogaway and Stegers [56]), so we enumerate the
available types in this section. We finish by defining various properties of objects that will be used in the
remainder.

Specifications. The relationship between a specification and an object is analogous to (but far simpler
than) the relationship between a class and a class instance in object-oriented programming languages like
Python or C++. A specification defines an ordered sequence of variables stored by an object—these are akin
to attributes in Python—and an ordered sequence of operators that may be called by other objects—these
are akin to methods. We refer to the sequence of variables as the object’s state and to the sequence of
operators as the object’s interface.

7

We provide an example of a specification in Figure 2. Spec Ro is used throughout this work to model
functions as random oracles (ROs) [13]. It declares seven variables, X , Y, q, p, T , i, and j, as shown on
lines 1-2 in Figure 2. (We will use shorthand for line references in the remainder, e.g., “2:1-2” rather than
“lines 1-2 in Figure 2”.) Each variable has an associated type: X and Y have type set, q, p, i, and j have
type int, and T has type table. Variable declarations are denoted by the keyword “var”, while operator
definitions are denoted by the keyword “op”. Spec Ro defines three operators: the first, the SETUP-operator
(2:3), initializes the RO’s state; the second operator (2:4-8) responds to standard RO queries; and the third,
the SET-operator (2:9-14), is used to “program” the RO [36].

Pseudocode. The syntax of specifications is given by the context-free grammar in Figure 2. We have
omitted the production rules for type, var, literal, and block since they are standard. Briefly, a var denotes a
variable. A type denotes a type, e.g., set, int, table, or elemX , or the name of a specification, e.g., Ro.
A literal is a finite sequence of symbols from some alphabet, e.g., an integer or a bit string. We often write
bit-string literals as alphanumeric strings, e.g., SETUP or SET, which are understood to be distinct elements of
{0, 1}∗. A block is a sequence of statements such as variable declarations, (random) assignment statements,
if-then-else blocks, for-loops, return statements, etc. A stub is an interface oracle, written calligraphically like
A, B, C, and so on. (Note that we also write sets calligraphically.) It is the name used by the operator to
refer to an oracle passed to it, as we describe below.

Calling an Object. An object is called by providing it with oracles and passing arguments to it. An
oracle is always an interface, i.e., a sequence of operators defined by an object. The statement “out ←
obj I1,...,Im(in1, . . . , inn)” means to invoke one of obj ’s operators on input of in1, . . . , inn and with oracle
access to interfaces I1, . . . , Im and set variable out to the value returned by the operator. Objects will
usually have many operators, so we must specify the manner in which the responding operator is chosen.
For this purpose we will adopt a convention inspired by “pattern matching” in functional languages like
Haskell and Rust. Syntactically, a pattern is defined by the pattern term in Figure 2. It is comprised of a tuple
of literals, typed variables, and nested tuples. A value is said to match a pattern if they have the same type
and the literals are equal. For example, value val matches pattern (elemX) if val has type elemX . (The
symbol “ ” contained in the pattern denotes an anonymous variable.) Hence, if object R is specified by Ro
and x has type elemX , then the expression “R(x)” calls R’s second operator (2:4-8). We write “val ∼ pat”
if the value of variable val matches pattern pat .

Calls to objects are evaluated as follows. In the order in which they are defined, check each operator of
the object’s specification if the input matches the operator’s pattern. If so, then execute the operator until
a return statement is reached and assign the return value to the output. If no return statement is reached,
or if val does not match an operator, then return ⊥.

Let us consider an illustrative example. Let Π be an object that implements Schnorr’s signature
scheme [58] for a group (G, ·) as specified in Figure 3. The expression Π(GEN) calls Π’s first operator,
which generates a fresh key pair. If s ∈ Z and msg ∈ {0, 1}∗, then expression ΠH

s (SIGN,msg) evaluates the
third operator, which computes a signature (x, t) of message msg under secret key s (we will often write the
first argument as a subscript). The call to interface oracle H on line 3:5 is answered by object H. (Presum-
ably, H is a hash function with domain G × {0, 1}∗ and range Z|G|.) If PK ∈ G, msg ∈ {0, 1}∗, and x, t ∈ Z,

spec Schnorr:
1 op (GEN): s←← Z|G|; PK ← gs; ret (PK , s)

2 opH (PK elemG ,VERIFY,msg str, (x, t int)):
3 ret t ≡ H(gx · PK t,msg) (mod |G|)

4 opH (s int, SIGN,msg str):
5 r ←← Z|G|; t← H(gr,msg)
6 ret (r − st, t)

Figure 3: Specification of Schnorr’s signature scheme.

8

then expression ΠH
PK (VERIFY,msg , (x, t)) evaluates the second operator. On an input that does not match any

of these patterns—in particular, one of (GEN), (elemG , VERIFY, str, (, int)), or (int, SIGN, str)—the
object returns ⊥. For example, ΠI1,...,Im(foo bar) = ⊥ for any I1, . . . , Im.

It is up to the caller to ensure that the correct number of interfaces is passed to the operator. If the
number of interfaces passed is less than the number of oracles named by the operator, then calls to the
remaining oracles are always answered with ⊥; if the number of interfaces is more than the number of
oracles named by the operator, then the remaining interfaces are simply ignored by the operator.

Explanation. We will see examples of pattern matching in action throughout this paper. For now, the
important takeaway is that calling an object results in one (or none) of its operators being invoked: which
one is invoked depends on the type of input and the order in which the operators are defined.

Because these calling conventions are more sophisticated than usual, let us take a moment to explain their
purpose. Theorem statements in this work will often quantify over large sets of objects whose functionality
is unspecified. These conventions ensure that doing so is always well-defined, since any object can be called
on any input, regardless of the input type. We could have dealt with this differently: for example, in their
adaptation of indifferentiability to multi-staged games, Ristenpart et al. require a similar convention for
functionalities and games (cf. “unspecified procedure” in [55, §2]). Our hope is that the higher level of rigor
of our formalism will ease the task of verifying proofs of security in our framework.

Instantiating an Object. An object is instantiated by passing arguments to its specification. The state-
ment “obj ← Object(in1, . . . , inm)” means to create a new object obj of type Object and initialize its state
by setting obj .var1 ← in1, . . . , obj .varm ← inm, where var1, . . . , varm are the first m variables declared
by Object. If the number of arguments passed is less than the number of variables declared, then the
remaining variables are uninitialized. For example, the statement “R← Ro(X ,Y, q, p, [], 0, 0)” initializes R
by setting R.X ← X , R.Y ← Y, R.q ← q, R.p ← p, R.T ← [], R.i ← 0, and R.j ← 0. The statement
“R ← Ro(X ,Y, q, p)” sets R.X ← X , R.Y ← Y, R.q ← q, and R.p ← p, but leaves T , i, and j uninitial-
ized. Object can also be copied: the statement “new ← obj ” means to instantiate a new object new with
specification Object and set new .var1 ← obj .var1, . . . ,new .varn ← obj .varn, where var1, . . . , varn is the
sequence of variables declared by obj ’s specification.

Types. We now enumerate the types available in our pseudocode. An object has type object. A set of
values of type any (defined below) has type set; we let ∅ denote the empty set. A variable of type table
stores a table of key/value pairs, where keys and values both have type any. If T is a table, then we let Tk
and T [k] denote the value associated with key k in T ; if no such value exists, then Tk = ⊥. We let [] denote
the empty table.

When the value of a variable x is an element of a computable set X , we say that x has type elemX . We
define type int as an alias of elemZ, type bool as an alias of elem{0,1}, and type str as an alias of elem{0,1}∗ .
We define type any recursively as follows. A variable x is said to have type any if: it is equal to ⊥ or ();
has type set, table, or elemX for some computable set X ; or it is a tuple of values of type any.

Specifications declare the type of each variable of an object’s state. The types of variables that are local
to the scope of an operator need not be explicitly declared, but their type must be inferable from their
initialization (that is, the first use of the variable in an assignment statement). If a variable is assigned a
value of a type other than the variable’s type, then the variable is assigned ⊥. Variables that are declared but
not yet initialized have the value ⊥. For all I1, . . . , Im, in1, . . . , inn the expression “⊥I1,...,Im(in1, . . . , inn)”
evaluates to ⊥. We say that x = ⊥ or ⊥ = x if variable x was previously assigned ⊥. For all other
expressions, our convention will be that whenever ⊥ is an input, the expression evaluates to ⊥.

Properties of Operators and Objects. An operator is called deterministic if its definition does not
contain a random assignment statement; it is called stateless if its definition contains no assignment statement

9

procedure RealΦ
W/~R

(A):
1 A(SETUP); W (SETUP)
2 for i← 1 to u do Ri(SETUP)
3 tx ← (); a← AW1,W2,R

1 (OUT)
4 w ←W1(WIN); ret Φ(tx , a, w)

procedure W(i, x):
5 y ←WA2,R

i (x); tx ← tx . (i, x, y); ret y

procedure A(i, x):
6 if S = ⊥ then ret AW1,W2,R

i (x) //Real

7 ret AW1,S2,S3
i (x) //Ref

procedure Ref Φ
W/~R

(A,S):
8 S(SETUP); A(SETUP); W (SETUP)
9 for i← 1 to u do Ri(SETUP)

10 tx ← (); a← AW1,S2,S3
1 (OUT)

11 w ←W1(WIN); ret Φ(tx , a, w)

procedure R(i, x):
12 ret Ri(x)

procedure S(i, x):
13 ret SW2,R

i (x)

Figure 4: Real and reference experiments for world W , resources ~R = (R1, . . . , Ru), adversary A, and simulator S.

in which one of the object’s variables appears on the left-hand side; and an operator is called functional if it
is deterministic and stateless. Likewise, an object is called deterministic (resp. stateless or functional) if each
operator, with the exception of the SETUP-operator, is deterministic (resp. stateless or functional). (We make
an exception for the SETUP-operator in order to allow trusted setup of objects executed in our experiments.
See §2.2 for details.)

Resources. Let t ∈ N. An operator is called t-time if it always halts in t time steps regardless of its random
choices or the responses to its queries; we say that an operator is halting if it is t-time for some t <∞. Our
convention will be that an operator’s runtime includes the time required to evaluate its oracle queries. Let
~q ∈ N∗. An operator is called ~q-query if it makes at most ~q1 calls to its first oracle, ~q2 to its second, and so
on. We extend these definitions to objects, and say that an object is t-time (resp. halting or ~q-query) if each
operator of its interface is t-time (resp. halting or ~q-query).

Exported Operators. An operator f1 is said to shadow operator f2 if: (1) f1 appears first in the
sequence of operators defined by the specification; and (2) there is some input that matches both f1 and f2.
For example, an operator with pattern (x any) would shadow an operator with pattern (y str), since y is of
type str and any. An object is said to export a pat-type-operator if its specification defines a non-shadowed
operator that, when run on an input matching pattern pat , always returns a value of type type.

2.2 Experiments and Indifferentiability

This section describes our core security experiments. An experiment connects up a set of objects in a
particular way, giving each object oracle access to interfaces (i.e., sequences of operators) exported by other
objects. An object’s i-interface is the sequence of operators whose patterns are prefixed by literal i. We
sometimes write i as a subscript, e.g., “Xi(· · ·)” instead of “X(i, · · ·)” or “X(i, (· · ·))”. We refer to an
object’s 1-interface as its main interface and to its 2-interface as its auxiliary interface.

A resource is a halting object. A simulator is a halting object. An adversary is a halting object that
exports a (1,OUT)-bool-operator, which means that on input of (OUT) to its main interface, it outputs a
bit. This operator is used to in order to initiate the adversary’s attack. The attack is formalized by the
adversary’s interaction with another object, called the world, which codifies the system under attack and
the adversary’s goal. Formally, a world is a halting object that exports a functional (1,WIN)-bool-operator,
which means that on input of (WIN) to its main interface, the world outputs a bit that determines if the
adversary has won. The operator being functional means this decision is made deterministically and in a
“read-only” manner, so that the object’s state is not altered. (These features are necessary to prove the
lifting lemma in §2.3.)

10

MAIN Security. Security experiments are formalized by the execution of procedure Real defined in
Figure 4 for adversary A in world W with shared resources ~R = (R1, . . . , Ru). In addition, the procedure
is parameterized by a function Φ. The experiment begins by “setting up” each object by running A(SETUP),
W (SETUP), and Ri(SETUP) for each i ∈ [u]. This allows for trusted setup of each object before the attack
begins. Next, the procedure runs A with oracle access to procedures W1, W2, and R, which provide A with
access to, respectively, W ’s main interface, W ’s auxiliary interface, and the resources ~R.

Figure 1 illustrates which objects have access to which interfaces. The world W and adversary A share
access to the resources ~R. In addition, the world has access to the auxiliary interface of A (4:5), which allows
us to formalize security properties in the PSP setting [56]. (Interestingly, it also turns out to be essential to
MRH’s argument of the necessity of indifferentiability; see Proposition 2.) Each query to W1 or W2 by A is
recorded in a tuple tx called the experiment transcript (4:5). The outcome of the experiment is Φ(tx , a, w),
where a is the bit output by A and w is the bit output by W . The MAINψ security notion, defined below,
captures an adversary’s advantage in “winning” in a given world, where what it means to “win” is defined by
the world itself. The validity of the attack is defined by a function ψ, called the transcript predicate: in the
MAINψ experiment, we define Φ so that RealΦ

W/~R
(A) = 1 holds if A wins and ψ(tx) = 1 holds.

Definition 1 (MAINψ security). Let W be a world, ~R be resources, and A be an adversary. Let ψ be a
transcript predicate, and let winψ(tx , a, w) := (ψ(tx) = 1)∧(w=1). The MAINψ advantage of A in attacking
W/~R is

Advmainψ

W/~R
(A) := Pr

[
Realwin

ψ

W/~R
(A)

]
.

Informally, we say that W/~R is ψ-secure if the MAINψ advantage of every efficient adversary is small. Note
that advantage for indistinguishability-style security notions is defined by normalizing MAINψ advantage
(e.g., Def. 11). �

This measure of advantage is only meaningful if ψ is efficiently computable, since otherwise a compu-
tationally bounded adversary may lack the resources needed to determine if its attack is valid. Following
Rogaway-Zhang (cf. computability of “fixedness” in [57, §2]) we will require ψ(tx) to be efficiently computable
given the entire transcript, except the response to the last query. Intuitively, this exception ensures that, at
any given moment, the adversary “knows” whether its next query is valid before making it.

Definition 2 (Transcript-predicate computability). Let ψ be a transcript predicate. Object F computes ψ if
it is halting, functional, and F (t̄x) = ψ(tx) holds for all transcripts tx , where t̄x = (tx 1, . . . , tx q−1, (iq, xq,⊥)) ,

q = |tx |, and (iq, xq,) = tx q. We say that ψ is computable if there is an object that computes it. We say
that ψ is t-time computable if there is a t-time object F that computes it. Informally, we say that ψ is
efficiently computable if it is t-time computable for small t. �

Shorthand. In the remainder we write “W/~R” as “W/H” when “ ~R = (H,)”, i.e., when the resource tuple
is a singleton containing H. Similarly, we write “W/~R” as “W ” when ~R = (), i.e., when no shared resources
are available. We write “win” instead of “winψ” whenever ψ is defined so that ψ(tx) = 1 for all transcripts tx .
Correspondingly, we write “MAIN” for the security notion obtained by letting Φ = win.

SR-INDIFF Security. The Real procedure executes an adversary in a world that shares resources with
the adversary. We are interested in the adversary’s ability to distinguish this “real” experiment from a
“reference” experiment in which we change the world and/or resources with which the adversary interacts.
To that end, Figure 4 also defines the Ref procedure, which executes an adversary in a fashion similar to
Real except that a simulator S mediates the adversary’s access to the resources and the world’s auxiliary
interface. In particular, A’s oracles W2 and R are replaced with S2 and S3 respectively (4:7 and 10), which
run S with access to W2 and R (4:13). SR-INDIFFψ advantage, defined below, measures the adversary’s

11

spec NoDeg: //W points to W1; W′ to W2;
//R to resources

1 var M,SD object
2 op (SETUP): M(SETUP); SD(SETUP)

3 opW,W
′,R (1, x any): ret MW,W

′,R(x)

4 opW,W
′,R (2, x any): ret SDR(x)

spec Shλ: //A points to A2 in the experiment.

5 var W,R1, . . . , Rλ object
6 op (SETUP): W (SETUP)
7 for i← 1 to λ do Ri(SETUP)
8 opA (1,WO, x any): ret WR,A

1 (x)

9 opA (2,WO, x any): ret WR,A
2 (x)

10 opA (2, RO, i int, x any): ret Ri(x)

procedure R(i, x):
11 ret Ri(x)

Figure 5: Left: Specification of n.d. (non-degenerate) adversaries. Right: Specification Shλ used in Proposition 1.

ability to distinguish between a world W/~R in the real experiment and another world V/~Q in the reference
experiment.

Definition 3 (SR-INDIFFψ security). Let W,V be worlds, ~R, ~Q be resources, A be an adversary, and S

be a simulator. Let ψ be a transcript predicate and let outψ(tx , a, w) := (ψ(tx) = 1) ∧ (a= 1). Define the
SR-INDIFFψ advantage of adversary A in differentiating W/~R from V/~Q relative to S as

Advsr-indiff
ψ

W/~R,V/~Q
(A,S) := Pr

[
Realout

ψ

W/~R
(A)

]
− Pr

[
Ref out

ψ

V/~Q
(A,S)

]
.

By convention, the runtime of A is the runtime of Realout
ψ

W/~R
(A). Informally, we say that W/~R is ψ-

indifferentiable from V/~Q if for every efficient A there exists an efficient S for which the SR-INDIFFψ

advantage of A is small. �

Shorthand. We write “out” instead of “outψ” when ψ is defined so that ψ(tx) = 1 for all tx . Correspondingly,
we write “SR-INDIFF” for the security notion obtained by letting Φ = out.

Non-Degenerate Adversaries. When defining security, it is typical to design the experiment so that it is
guaranteed to halt. Indeed, there are pathological conditions under which RealΦ

W/~R
(A) and Ref Φ

W/~R
(A,S)

do not halt, even if each of the constituent objects is halting (as defined in §2.1). This is because infinite
loops are possible: in response to a query from adversary A, the world W is allowed to query the adversary’s
auxiliary interface A2; the responding operator may call W in turn, which may call A2, and so on. Con-
sequently, the event that RealΦ

W/~R
(A) = 1 (resp. Ref Φ

W/~R
(A,S) = 1) must be regarded as the event that

the real (resp. reference) experiment halts and outputs 1. Defining advantage this way creates obstacles for
quantifying resources of a security reduction, so it will be useful to rule out infinite loops.

We define the class of non-degenerate (n.d.) adversaries as those that respond to main-interface queries
using all three oracles—the world’s main interface, the world’s aux.-interface, and the resources—but respond
to aux.-interface queries using only the resource oracle. To formalize this behavior, we define n.d. adversaries
in terms of an object that is called in response to main-interface queries, and another object that is called
in response to aux.-interface queries.

Definition 4 (Non-degenerate adversaries). An adversary A is called non-degenerate (n.d.) if there exist
a halting object M that exports an (OUT)-bool-operator and a halting, functional object SD for which
A = NoDeg(M,SD) as specified in Figure 5. We refer to M as the main algorithm and to SD as the
auxiliary algorithm. �

Observe that we have also restricted n.d. adversaries so that the main and auxiliary algorithms do not
share state; and we have required that the auxiliary algorithm is functional (i.e., deterministic and stateless).
These measures are not necessary, strictly speaking, but they will be useful for security proofs. Their purpose

12

is primarily technical, as they do not appear to be restrictive in a practical sense. (They do not limit the
primary application considered in this work (§3.2). Incidentally, we note that Rogaway and Stegers make
similar restrictions in [56, §5].)

Equivalence of SR-INDIFF and INDIFF. An analogue of MRH’s notion of indifferentiability is obtained
by removing the shared resources from the SR-INDIFF experiment, i.e., letting ~R, ~Q = ().

Definition 5 (INDIFFψ security). Let W,V be worlds, A an adversary, S a simulator, and ψ a transcript
predicate. Let Advindiff

ψ

W,V (A,S) :=Advsr-indiff
ψ

W,V (A,S) denote the INDIFFψ advantage of A in differentiat-
ing W from V relative to S. �

In this sense, SR-INDIFFψ security can be viewed as a generalization of the standard notion. An
alternative view is that shared-resource indifferentiability merely captures a particular class of indiffer-
entiability problems. Indeed, for world W and resources ~R = (R1, . . . , Ru), Figure 5 specifies a world
Ŵ = Shu(W,R1, . . . , Ru) that is functionally equivalent to W/~R, except that the resources are codified by
the world Ŵ rather than defined externally.

Proposition 1. Let ψ be a transcript predicate, f : N → N be a function, W,V be worlds, and ~R =

(R1, . . . , Ru), ~Q = (Q1, . . . , Qv) be resources. Let Ŵ = Shu(W,R1, . . . , Ru) and V̂ = Shv(V,Q1, . . . , Qv).
Let A be a tA-time, n.d. adversary, let T be a tT -time simulator, and suppose that ψ is f(tA)-time computable.

(1) There exist a O(tA)-time, n.d. adversary B, O(tT)-time simulator S, and [O(tA)+f(tA)]-time com-
putable transcript-predicate φ such that Advindiff

ψ

Ŵ ,V̂
(A,S) ≤ Advsr-indiff

φ

W/~R,V/~Q
(B, T).

(2) There exist a O(tA)-time, n.d. adversary B, O(tT)-time simulator S, and [O(tA)+f(tA)]-time com-
putable transcript-predicate φ such that Advsr-indiff

ψ

W/~R,V/~Q
(A,S) ≤ Advindiff

φ

Ŵ ,V̂
(B, T).

Proof. We will only prove claim (1) and leave (2) to the reader. Adversary B is specified as follows. On input
of (SETUP), run A(SETUP). On input of (1,OUT) with interface oracles W,W ′,R corresponding to the world’s
main interface, the world’s aux. interface, and the resource interface respectively, return AW1,W2

1 (OUT), where
Wi(in) is evaluated as follows: if (i, in) ∼ (1,WO, x any), then return W(x); if (i, in) ∼ (2,WO, x any),
then return W ′(x); and if (i, in) ∼ (2, RO, i int, xany), then return Ri(x). On input of (2, x any) with
oracles W,W ′,R, run AW1,W2

2 (x) and return the output. Simulator S is defined as follows. On input
of (SETUP), run T (SETUP). On input of (in) with oracle W ′, run TW2,R(in), where W2(x) is evaluated as
W ′(WO, x) and Ri(x) is evaluated as W ′(RO, i, x).

Noting that the runtime of B is O(tA), the runtime of S is O(tT), and there exists a [O(tA) +f(tA)]-time
transcript predicate φ such that

Pr
[
Realout

φ

W/~R
(B)

]
= Pr

[
Realout

ψ

Ŵ
(A)

]
and Pr

[
Ref out

φ

V/~Q
(B, T)

]
= Pr

[
Ref out

ψ

V̂
(A,S)

]
(1)

yields the claim. Predicate φ is computed by first rewriting the queries in the transcript in the natural way,
then applying ψ to the result. The rewriting step can be done in time linear in the size of the transcript,
which, by definition, is linear in the runtime of the adversary. �

2.3 The Lifting Lemma

The main technical tool of our framework is its lifting lemma, which states that if V/~Q is ψ-secure and W/~R
is ψ-indifferentiable from V/~Q, then W/~R is also ψ-secure. This is a generalization of the main result of
MRH, which states that if an object X is secure for a given application and X is indifferentiable from Y ,
then Y is secure for the same application. In §2.4 we give a precise definition of “application” for which this
statement holds.

13

The Random Oracle Model (ROM). The goal of the lifting lemma is to transform a ψ-attacker against
W/~R into a ψ-attacker against V/~Q. Indifferentiability is used in the following way: given ψ-attacker A
and simulator S, we construct a ψ-attacker B and ψ-differentiator D such that, in the real experiment,
D outputs 1 if A wins; and in the reference experiment, D outputs 1 if B wins. Adversary B works by
running A in the reference experiment with simulator S: intuitively, if the simulation provided by S “looks
like” the real experiment, then B should succeed whenever A succeeds.

This argument might seem familiar, even to readers who have no exposure to the notion of indifferen-
tiability. Indeed, a number of reductions in the provable security literature share the same basic structure.
For example, when proving a signature scheme is unforgeable under chosen message attack (UF-CMA), the
first step is usually to transform the attacker into a weaker one that does not have access to a signing oracle.
This argument involves exhibiting a simulator that correctly answers the UF-CMA adversary’s signing-oracle
queries using only the public key (cf. [16, Theorem 4.1]): if the simulation is efficient, then we can argue that
security in the weak attack model reduces to UF-CMA. Similarly, to prove a public-key encryption (PKE)
scheme is indistinguishable under chosen ciphertext attack (IND-CCA), the strategy might be to exhibit a
simulator for the decryption oracle in order to argue that IND-CPA reduces to IND-CCA.

Given the kinds of objects we wish to study, it will be useful for us to accommodate these types of
arguments in the lifting lemma. In particular, Lemma 1 considers the case in which one of the resources in
the reference experiment is an RO that may be “programmed” by the simulator. (As we discuss in §2.4, this
capability is commonly used when simulating signing-oracle queries.) In our setting, the RO is programmed
by passing it an object M via its SET-operator (2:9-14), which is run by the RO in order to populate the
table. Normally we will require M to be an entropy source with the following properties.

Definition 6 (Sources). Let µ, ρ ≥ 0 be real numbers and X ,Y be computable sets. An X -source is a
stateless object that exports a ()-elemX -operator. An (X ,Y)-source is a stateless object that exports a ()-
(elemX×Y ,any)-operator. Let M be an (X ,Y)-source and let ((X,Y), Σ) be random variables distributed
according to M . (That is, run ((x, y), σ) ← M() and assign X ← x, Y ← y, and Σ ← σ.) We say that M
is (µ, ρ)-min-entropy if the following conditions hold:

(1) For all x and y it holds that Pr
[
X = x

]
≤ 2−µ and Pr

[
Y = y

]
≤ 2−ρ.

(2) For all y and σ it holds that Pr
[
Y = y

]
= Pr

[
Y = y | Σ = σ

]
.

We refer to σ as the auxiliary information (cf. “source” in [10, §3]). �

A brief explanation is in order. When a source is executed by an RO, the table T is programmed with the
output point (x, y) so that T [x] = y. The auxiliary information σ is returned to the caller (2:14), allowing the
source to provide the simulator a “hint” about how the point was chosen. Condition (1) is our min-entropy
requirement for sources. We also require condition (2), which states that the range point programmed by
the source is independent of the auxiliary information.

Definition 7 (The ROM). Let X ,Y be computable sets where Y is finite, let q, p ≥ 0 be integers, and let
µ, ρ ≥ 0 be real numbers. A random oracle from X to Y with query limit (q, p) is the objectR = Ro(X ,Y, q, p)
specified in Figure 2. This object permits at most q unique RO queries and at most p RO-programming
queries. If the query limit is unspecified, then it is (∞, 0) so that the object permits any number of RO
queries but no RO-programming queries. Objects program the RO by making queries matching the pattern
(SET,M object). An object that makes such queries is called (µ, ρ)-(X ,Y)-min-entropy if, for all such queries,
the object M is always a (µ, ρ)-min-entropy (X ,Y)-source. An object that makes no queries matching this
pattern is not RO-programming (n.r.). �

To model a function H as a random oracle in an experiment, we revise the experiment by replacing each
call of the form “H(· · ·)” with a call of the form “Ri(· · ·)”, where i is the index of the RO in the shared

14

resources of the experiment, and R is the name of the resource oracle. When specifying a cryptographic
scheme whose security analysis is in the ROM, we will usually skip this rewriting step and simply write the
specification in terms of Ri-queries: to obtain the standard model experiment, one would instantiate the
i-th resource with H instead of an RO.

We are now ready to state and prove the lifting lemma. Our result accommodates indifferentiability
arguments in which the RO might be programmed by the simulator.

Lemma 1 (Lifting). Let ~I = (I1, . . . , Iu), ~J = (J1, . . . , Jv) be resources; let X ,Y be computable sets, where Y
is finite; let N = |Y|; let µ, ρ ≥ 0 be real numbers for which logN ≥ ρ; let q, p ≥ 0 be integers; let R and P be
random oracles for X ,Y with query limits (q+ p, 0) and (q, p) respectively; let W,V be n.r. worlds; and let ψ
be a transcript predicate. For every tA-time, (a1, a2, ar)-query, n.d. adversary A and tS-time, (s2, sr)-query,
(µ, ρ)-(X ,Y)-min-entropy simulator S, there exist n.d. adversaries D and B for which

Advmainψ

W/~J
(A) ≤ ∆+ Advmainψ

V/~I .R
(B) + Advsr-indiff

ψ

W/~J,V/~I . P
(D,S) ,

where ∆ = p
[
(p+ q)/2−µ +

√
N/2ρ · log(N/2ρ)

]
, D is O(tA)-time and (a1 + 1, a2, ar)-query, and B is

O(tAtS)-time and (a1, a2s2, (a2 + ar)sr)-query.

Apart from dealing with RO programmability, which accounts for the ∆-term in the bound, the proof
is essentially the same argument as the sufficient condition in [47, Theorem 1] (cf. [55, Theorem 1]). The
high min-entropy of domain points programmed by the simulator ensures that RO-programming queries are
unlikely to collide with standard RO queries. However, we will need that range points are statistically close
to uniform; otherwise the ∆-term becomes vacuous. Note that ∆ = 0 whenever programming is disallowed.

Proof of Lemma 1. Let D = D(A) as specified in Figure 6. This adversary works by executing A with access
to its oracles and outputting 1 if A wins (that is, the output of W(WIN) on line 6:5 is 1). Then

Advmainψ

W/~J
(A) = Pr

[
Realwin

ψ

W/~J
(A)

]
+
(

Pr
[
Ref win

ψ

V/~I . P
(A,S)

]
− Pr

[
Ref win

ψ

V/~I . P
(A,S)

])
(2)

=
(

Pr
[
Realout

ψ

W/~J
(D)

]
− Pr

[
Ref out

ψ

V/~I . P
(D,S)

])
+ Pr

[
Ref win

ψ

V/~I . P
(A,S)

]
(3)

= Advsr-indiff
ψ

W/~J,V/~I . P
(D,S) + Pr

[
Ref win

ψ

V/~I . P
(A,S)

]
. (4)

Our goal for the remainder is to construct a MAINψ-adversary B from A and S whose advantage upper-
bounds the last term on the right hand side of Eq. (4). The main difficulty is that S might try to program R,
which is not allowed because R has query limit (q + p, 0). Our solution is to use the min-entropy of S in
order transition into a world in which its RO-programming queries are answered by standard RO queries.

Let R∗∗ be the object defined just like P except that it answers queries matching (SET,M object) as
follows. If j ≥ p then immediately halt and return ⊥. Otherwise run ((x,), σ) ← M() and increment j.
If T [x] is undefined, then set T [x] ←← Y exactly as the standard, call-for-value operator does. Finally,
return ((x, T [x]), σ). Next we will show that

Pr
[
Ref win

ψ

V/~I . P
(A,S)

]
≤ ∆+ Pr

[
Ref win

ψ

V/~I .R∗∗
(A,S)

]
. (5)

For each a ∈ {0, 1} and t ∈ [0..p] let R∗a,t = Ro∗(X ,Y, a, t, q, p) as specified in Figure 6. Object R∗a,t
works like P except that the behavior of SET-queries depends on the parameters a, t. The first parameter, a,
determines if SET-queries overwrite key/value pairs already in the table. If a = 1, then when attempting to set
a point (x, y) in the table T , if T [x] is already defined then the value of T [x] will overwritten; otherwise T [x]

stays the same. Thus, a = 1 corresponds to the usual operation of programming queries, whereas a = 0

changes this behavior. The second parameter, t, changes the distribution of values entered into the table as
follows: each call matching (SET,M object) following the t-th runs ((x, y), σ)← M() and sets T [x]← y in

15

spec D:
1 // In real: W points to W1; W′ to W2; R to resources
2 // In ref: W points to V1; W′ to V2; R to resources
3 var A object
4 op (SETUP): A(SETUP)
5 opW,W

′,R (1,OUT): AW,W
′,R

1 (OUT); ret W(WIN)

6 opW,W
′,R (2, x any): AW,W

′,R
2 (x)

spec B: //V points to V1; V′ to V2; R to resources

7 var A,S object
8 op (SETUP): S(SETUP); A(SETUP)
9 opV,V

′,R (1,OUT): ret AV,S2,S3
1 (OUT)

10 opV,V
′,R (2, x any): ret AV,S2,S3

2 (x)

interface R:
11 op (u+1, (SET,M object)):
12 ((x,), σ)←M(); ret ((x,Ru+1(x)), σ)
13 op (i int, x any): ret Ri(x)

procedure S(i, x):

14 ret SV
′,R

i (x)

spec Ro∗:
15 var X ,Y set, a bool, t, q, p int
16 var T,U, V table
17 var i, j int, bad bool
18 op (SETUP):
19 i, j ← 1; bad ← 0
20 T,U, V ← []
21 op (x elemG):
22 if i ≥ q then ret ⊥
23 if T [x] = ⊥ then
24 i← i+ 1; T [x]←← Y
25 ret T [x]
26 op (SET,M object):
27 if j ≥ p then ret ⊥
28 j ← j + 1; ((x, y), σ)←M()
29 if T [x] 6= ⊥ then bad ← 1
30 if a = 0 then ret ((x, T [x]), σ)
31 Uj ←← Y; Vj ← y
32 if j ≤ t then T [x]← Uj
33 else T [x]← Vj
34 ret ((x, T [x]), σ)

Figure 6: Reductions and hybrid experiment RO used in the proof of Lemma 1.

the usual manner for programming queries; for every call preceding and including the t-th, the value of T [x]

is sampled uniformly from Y.
Define the random variable Succa,t to be the outcome ofRef win

ψ

V/~I .R∗a,t
(A,S) for each a and t. The behavior

of R∗1,0 is identical to P ; and the behavior of R∗0,p is identical to R∗∗. Hence,

Pr
[
Succ1,0

]
= Pr

[
Ref win

ψ

V/~I . P
(A,S)

]
(6)

and
Pr
[
Succ0,p

]
= Pr

[
Ref win

ψ

V,~I . R∗∗
(A,S)

]
. (7)

Our objective is to bound the probability of Succ1,0 as a function of the probability of Succ0,p. First, observe
that for a given t, the outputs of calls to R∗0,t and R∗1,t are identically distributed until the bad flag gets set.
By the fundamental lemma of game playing [17] we have that

Pr
[
Succ1,0

]
≤ Pr

[
Succ0,0

]
+ Pr

[
Ref win

ψ

V/~I .R∗1,0
(A,S) setsR∗1,0.bad

]
(8)

≤ Pr
[
Succ0,0

]
+
p(p+ q)

2µ
. (9)

Eq. (9) follows from the assumption that S is (µ, ρ)-(X ,Y)-min-entropy: the last term upper-bounds the
probability that a programmed point collides with an existing point in the table. Next, observe that

Pr
[
Succ0,0

]
= Pr

[
Succ0,0

]
+

p∑
t=1

(
Pr
[
Succ0,t

]
− Pr

[
Succ0,t

])
(10)

Pr
[
Succ0,0

]
− Pr

[
Succ0,p

]
=

p−1∑
t=0

(
Pr
[
Succ0,t

]
− Pr

[
Succ0,t+1

])
(11)

≤ δp , (12)

where δ := max0≤t≤p−1 δt and δt :=
∣∣Pr
[
Succ0,t

]
− Pr

[
Succ0,t+1

]∣∣ . Let Ut = y denote the event that
Ref win

ψ

V/~I .R∗0,t
(A,S) setsR∗0,t.Ut = y for each y ∈ Y, and define Vt = y in kind. We can use the statisti-

16

cal distance between Ut and Vt to upper-bound δt. In particular, we claim that

δt ≤
1

2

∑
y∈Y

∣∣Pr
[
Vt = y

]
− Pr

[
Ut = y

]∣∣ (13)

for all t ∈ [0..p− 1]. More generally, we have the following.

Claim 1. Let X be a computable set and let X and Y be random variables with support X . For every
halting object D it holds that Pr

[
D(X)

]
− Pr

[
D(Y)

]
≤ 1/2

∑
x∈X

∣∣Pr
[
X = x

]
− Pr

[
Y = y

]∣∣ .
Proof.3 Without loss of generality, we may rewrite D as a functional object F for which there is a set R
and R-source Ω such that Pr

[
D(X) = 1

]
= Pr

[
R ← Ω() : F (X,R) = 1

]
. Let R and S be independent

random variables distributed according to Ω, let B1 = (X,R), and let B0 = (Y, S). Let V = X ×R denote
the support of B1 and B0. Then

Pr
[
D(X)

]
− Pr

[
D(Y)

]
≤

∣∣Pr
[
F (B1)

]
− Pr

[
F (B0)

]∣∣ (14)

≤ max
f :V→{0,1}

∣∣Pr
[
f(B1) = 1

]
− Pr

[
f(B0) = 1

]∣∣ (15)

≤ max
W⊆V

∣∣Pr
[
B1 ∈ W

]
− Pr

[
B0 ∈ W

]∣∣ (16)

=
∣∣Pr
[
B1 ∈ W∗

]
− Pr

[
B0 ∈ W∗

]∣∣ , (17)

where W∗ denotes the subset of V that maximizes the quantity on the right hand side of Eq. (17), and
Eq. (16) is obtained by writing each f as a predicate f(v) 7→ v ∈ W for some W ⊆ V.

Let ξ :=
∣∣Pr
[
B1 ∈ W∗

]
− Pr

[
B0 ∈ W∗

]∣∣. Note that either W∗ = T or W∗ = V \ T , where T := {v ∈
V : Pr

[
B1 = v

]
− Pr

[
B0 = v

]
≥ 0}. But, since

Pr
[
B1 ∈ T

]
+ Pr

[
B1 ∈ V \ T

]
= Pr

[
B0 ∈ T

]
+ Pr

[
B0 ∈ V \ T

]
(18)

by the law of total probability, we have that

Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]
= Pr

[
B0 ∈ V \ T

]
− Pr

[
B1 ∈ V \ T

]
(19)∣∣Pr

[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ =
∣∣Pr
[
B1 ∈ V \ T

]
− Pr

[
B0 ∈ V \ T

]∣∣ (20)

ξ =
∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ . (21)

By Eq. (18) again,

ξ =
∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ (22)

=
1

2

(∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣+
∣∣Pr
[
B1 ∈ V \ T

]
− Pr

[
B0 ∈ V \ T

]∣∣) (23)

=
1

2

∑
v∈T

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣+
∑

v∈V\T

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣ (24)

=
1

2

∑
v∈V

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣ . (25)

3The following argument is adapted from Daniel Wichs’ lecture notes.

17

Since X,R (resp. Y, S) are independently distributed and R,S are i.i.d.,

ξ =
1

2

∑
(z,r)∈V

∣∣Pr
[
X = z

]
Pr
[
R = r

]
− Pr

[
Y = z

]
Pr
[
S = r

]∣∣ (26)

=
1

2

∑
(z,r)∈V

∣∣Pr
[
R = r

]
·
(
Pr
[
X = z

]
− Pr

[
Y = z

])∣∣ (27)

=
1

2

∑
z∈X

∑
r∈R

Pr
[
R = r

]
·
∣∣Pr
[
X = z

]
− Pr

[
Y = z

]∣∣ (28)

=
1

2

∑
z∈X

∣∣Pr
[
X = z

]
− Pr

[
Y = z

]∣∣ . (29)

This concludes the proof of Claim 1. �

We can obtain a closed form for δt using Kullback-Leibler divergence [31]. Since Pr
[
Ut = y

]
= 0 implies

Pr
[
Vt = y

]
= 0 for all y ∈ Y, and since S is (µ, ρ)-(X ,Y)-min-entropy, we have that

δt ≤
1

2

∑
y∈Y

∣∣Pr
[
Vt = y

]
− Pr

[
Ut = y

]∣∣ (30)

≤

√√√√1

2

∑
y∈Y

Pr
[
Vt = y

]
· log

(
Pr
[
Vt = y

]
Pr
[
Ut = y

]) (31)

≤

√√√√1

2

∑
y∈Y

2−ρ · log

(
2−ρ

N−1

)
(32)

=
√
N/2ρ+1 · log(N/2ρ) . (33)

Thus, δ ≤
√
N/2ρ · log(N/2ρ). Summarizing, we have

Pr
[
Ref win

ψ

V/~I . P
(A,S)

]
=

(
Pr
[
Succ1,0

]
− Pr

[
Succ0,0

])
+ Pr

[
Succ0,0

]
(34)

≤ p(p+ q)/2−µ + Pr
[
Succ0,0

]
(35)

= p(p+ q)/2−µ +
(

Pr
[
Succ0,0

]
− Pr

[
Succ0,p

])
+ Pr

[
Succ0,p

]
(36)

≤ p(p+ q)/2−µ + δp+ Pr
[
Succ0,p

]
(37)

≤ p
[
(p+ q)/2−µ +

√
N/2ρ · log(N/2ρ)

]
+ Pr

[
Ref win

ψ

V,~I . R∗∗
(A,S)

]
. (38)

The final step is to bound the last term on the right hand side of Eq. (38). Observe that SET-operator
queries to R∗∗ can be simulated using the standard RO operator. In particular, let B = B(A,S) as specified
in Figure 6. Adversary B runs A, answering its queries as follows. Queries to the main interface are forwarded
to B’s V oracle; and queries to the auxiliary and resource interfaces are forwarded to the simulator S, which
is run with B’s V ′ and R oracles except that queries to R matching (u+1, (SET,M object)) are transformed
into (u+1, x) queries, as shown on line 6:12. (We call interface R a pure interface: it behaves much like a
procedure, except that the input is matched to one of its operators. Its syntax is given by term interface in
Figure 2.) Since R has query limit q + p, 0, it follows that

Pr
[
Ref win

ψ

V/~I .R∗∗
(A,S)

]
= Pr

[
Realwin

ψ

V/~I .R
(B)

]
. (39)

To finish the proof, we need only to account for the resources of D and B. The runtime of D is O(tA + tW),
where tW is the runtime of W , since it involves running A and the WIN-operator of W1 once. But tW ≤ tA
because, by convention, the runtime of A includes the time required to evaluate its queries. Hence, the
runtime of D is simply O(tA). The runtime of B is O(tA + (q2 + qr) · tS) if A makes at most q2 queries to

18

spec Wo: //R points to resources; A to A2

1 var G,X object
2 op (SETUP): G(SETUP); X(SETUP)
3 op (1,WIN): ret G1(WIN)
4 opA,R (1, x any): ret G1(x)
5 opA,R (2, x any): ret X2(x)

procedure X(i, x):
6 ret XG2,R

i (x)

procedure G(i, x):
7 ret GX1,A

i (x)
A

GX

~R

1
2

1

2

2

1

ψ(tx)

w

Wo(G,X)

Figure 7: Left: Specification Wo for building a world from a security game G and system X. Right: Who may call
whom in experiment RealΦ

W/~R
(A), where W = Wo(G,X).

the auxiliary interface and at most qr to the resource. Since q2 + qr ≤ tA by convention (the adversary’s
runtime includes the time needed to evaluate its queries), it follows that the runtime of B is O(tA + tAtS) =

O(2tAtS) = O(tAtS). �

Remark 1. As mentioned in §1, the lifting lemma bears a strong resemblance to the composition theorem
of Patton and Shrimpton [51]. Indeed, one of our goals for this work was to revisit that result in our more
general setting. In the standard model, their GAP1/2 security notions are special cases of SR-INDIFFψ

security (cf. [51, Def. 5]); hence [51, Theorem 1] is merely a special case of Lemma 1. However, in the ROM
their notions are significantly stronger. The relative strength comes from the fact that, in the reference
experiment (Figure 4), access to the RO is mediated by the simulator; but in their setting, the adversary has
direct access to the RO. Indeed, some of their negative results (cf. [51, Theorem 4 and Theorem 7]) appear
to be an artifact of this relative strength. �

2.4 Games and the Preservation Lemma

Lemma 1 says that indifferentiability of world W from world V means that security of V implies security
of W . This starting point is more general than the usual one, which is to first argue indifferentiability of
some system X from another system Y , then use the composition theorem of MRH in order to argue that
security of Y for some application implies security of X for the same application. Here we formalize the
same kind of argument by specifying the construction of a world from a system X and a game G that defines
the system’s security.

A game is a halting object that exports a functional (1,WIN)-bool-operator. A system is a halting object.
Figure 7 specifies the composition of a game G and system X into a world W = Wo(G,X) in which the
adversary interacts with G’s main interface and X’s auxiliary interface, and G interacts with X’s main
interface. The system X makes queries to G’s auxiliary interface, and G in turn makes queries to the
adversary’s auxiliary interface. As shown in right hand side of Figure 7, it is the game that decides whether
the adversary has won: when the real experiment calls W1(WIN) on line 4:4, this call is answered by the
operator defined by Wo on line 7:3, which returns G1(WIN).

Definition 8 (Gψ security). Let ψ be a transcript predicate, G be a game, X be a system, ~R be resources,
and A be an adversary. We define the Gψ advantage of A in attacking X/~R as

AdvG
ψ

X/~R
(A) :=Advmainψ

Wo(G,X)/~R
(A) .

We write AdvG
X/~R

(A) whenever ψ(tx) = 1 for all tx . Informally, we say that X/~R is Gψ-secure if the Gψ

advantage of any efficient adversary is small. �

19

World Wo formalizes the class of systems for which we will define security in this paper. While the
execution semantics of games and systems seems quite natural, we remark that other ways of capturing
security notions are possible. We are restricted only by the execution semantics of the real experiment
(Def. 1). Indeed, there are natural classes of security definitions we cannot capture, including those described
by multi-stage games [55].

For our particular class of security notions we can prove the following useful lemma. Intuitively, the
“preservation” lemma below states that if a system X is ψ-indifferentiable from Y , then Wo(G,X) is ψ-
indifferentiable from Wo(G, Y) for any game G.

Lemma 2 (Preservation). Let ψ be a transcript predicate, X,Y be objects, and ~R, ~Q be resources. For
every (g1,)-query game G, tA-time, (a1, a2, ar)-query, n.d. adversary A, and simulator S there exists an
n.d. adversary B such that

Advsr-indiff
ψ

W/~R,V/~Q
(A,S) ≤ Advsr-indiff

ψ

X/~R,Y/~Q
(B,S) ,

where W = Wo(G,X), V = Wo(G, Y), and B is O(tA)-time and (a1g1, a2, ar)-query.

Proof. Adversary B simulates the execution of A in its experiment as follows. On input of (SETUP), run
G(SETUP) and A(SETUP). On input of (1,OUT) with oracles X ,X ′,R, return A1(OUT), where A(i, x) =

AG1,X ′,R
i (x) and G(i, x) = GX ,A2

i (x). On on input of (2, x any) with oracles X ,X ′,R, return G2(x). By
construction we have that

Pr
[
Realout

ψ

X/~R
(B)

]
= Pr

[
Realout

ψ

Wo(G,X)/~R
(A)

]
(40)

and
Pr
[
Ref out

ψ

Y/~Q
(B,S)

]
= Pr

[
Ref out

ψ

Wo(G,Y)/~Q
(A,S)

]
. (41)

The runtime of B is O(tA+tG) since B runs G(SETUP) on input of (SETUP). But because A’s runtime includes
the time needed to evaluate its oracle queries (i.e., evaluate calls to G), we have that B is O(tA)-time. �

The MRH Composition Theorem. In the remainder, we will use the preservation lemma in the following
way. Given that some reference system Y is Gψ-secure, we wish to know if the corresponding real system X

is also Gψ-secure. We first apply Lemma 1, reducing security to the ψ-indifferentiability of Wo(G,X)

from Wo(G, Y). We then apply Lemma 2, reducing security to the ψ-indifferentiability of X from Y . This
yields the composition theorem of MRH, but formulated for objects instead of interacting systems.

Proposition 2 (Analogue of [47, Theorem 1]). The following conditions hold for all systems X,Y .

(1) (Indifferentiability is sufficient.) For every tG-time game G, tA-time, n.d. adversary A, and tS-time
simulator S there exist n.d. adversaries D and B for which AdvGX(A) ≤ AdvGY (B) +AdvindiffX,Y (D,S) ,

where D is O(tA)-time, and B is O(tAtS)-time.

(2) (Indifferentiability is necessary.) For every tB-time adversary B, tD-time adversary D there exist an
adversary A, simulator S, and game Ĝ for which AdvindiffX,Y (D,S) + AdvĜY (B) ≤ AdvĜX(A) , where A
is O(tD)-time, S is O(tB)-time, and Ĝ is O(tD)-time.

Proof. Claim (1) is a corollary of Lemma 1 (letting q, p = 0 and ~I, ~J = ()) and Lemma 2. We address the
necessary condition (claim (2)) in the remainder. Let A = A() and Ĝ = Ĝ(D) as specified in Figure 8.
The world Ĝ works by running D, answering its oracle queries using its own oracles. As shown in Figure 7,
world Ĝ is given an oracle for X1 in the real experiment, Y1 in the reference experiment, and A2 in both
experiments.

Adversary A works by running D (via a query to Ĝ), relaying D’s A-queries to its own X -oracle. (See
Figure 8 for an illustration.) Observe that A wins in the MAIN experiment exactly when RealoutX (D) = 1.

20

spec Ĝ: //X points to X1 (resp. Y1); A to A2

1 var D object; d bool
2 op (SETUP): D(SETUP); d← 0
3 op (1,WIN): ret (d = 1)

4 opX ,A (1,OUT): d← DX ,A1 (OUT)

5 opX ,A (2, x any): ret DX ,A2 (x)

spec A: //D points to Ĝ1; X to X2

6 opD,X (1,OUT): D(OUT)
7 opD,X (2, x any): ret X (x)

A

DX 2
1

1

Ĝ

2 d

B

DY 2
1

2

12

1

Ĝ

S

d

Figure 8: Left: Specs for Proof of Proposition 2. Right: Illustration of the reduction.

Thus,
Advmain

Wo(Ĝ,X)
(A) = Pr

[
RealoutX (D)

]
. (42)

Now consider the MAIN advantage of B in attacking Wo(Ĝ, Y). Adversary B wins only if D out-
puts 1, which occurs only if B asks (OUT) of its world’s main interface. In this case, B wins precisely when
Ref outY (D,S) = 1, where S = B. Then

Advmain
Wo(Ĝ,Y)

(B) ≤ Pr
[
Ref outY (D,S)

]
(43)

and the claim follows. �

Exercise: Joint Security of Signing and Encryption. Let us consider a simple exercise that illustrates
how our framework is used. Suppose we are given a scheme Π with public/secret key pair (PK = gs, s) ∈
G ×Z|G|, where G = (G, ·) is a finite, cyclic group with generator g ∈ G. It might be a public-key encryption
(PKE) scheme, a digital signature (DS) algorithm, an authenticated key-exchange (AKE) protocol, etc.
Now suppose the same key pair is deployed for an additional application, say, Schnorr’s signature scheme
(cf. Figure 3). We are interested in how this additional usage of the secret key impacts the existing security
analysis for Π.4

System X̃ = Ẽx(Π) specified in Figure 9 captures the execution environment for Π in a security experi-
ment. Its main interface lets the caller (i.e., the game) generate a key pair (PK , s) via the INIT-operator on
lines 9:4-6 and make calls to Πs(·) via the operator on lines 9:7-8. Its aux. interface provides the caller (i.e.,
the adversary) with access to PK (9:10). System X = Ex(Π) captures the same usage, except the adversary
also gets a Schnorr-signing oracle (via the aux.-interface) for the secret key s (9:11-14). Presumably, the first
resource in the experiment is instantiated with (a random oracle for) a hash function H : G ×{0, 1}∗ → Z|G|.

Intuitively, the additional key usage captured by X should not significantly degrade the security of Π as
long the adversary’s interaction with the signing oracle cannot be used in an attack. We formalize this by
exhibiting an efficient simulation of signing queries. When modeling H as an RO, a well-known strategy is to
sample x, t←← Z|G| and “program” the RO so that H(gx · PK t,m) = t, thereby ensuring that the arithmetic
relationship between x and t is the same in the simulation as it is for the real signature. This strategy
will fail if the programmed point overwrites a previous query, but the chance of this is small for reasonable
parameters.

Theorem 1. Suppose that Π is n.r. (not RO-programming). Then for every game G and tA-time, (a1, a2, ar)-
query, n.d. adversary A there exists a O((tA)2)-time, (a1, a2, a2 + ar)-query, n.d. adversary B for which
AdvGX/H(A) ≤ AdvG

X̃/H̃
(B) + 2a2(a2 + q)/|G| , where H (resp. H̃) is an RO from G×{0, 1}∗ to Z|G| with

query limit (q, 0) (resp. (a2+q, 0)).
4This is a more general form of a question first posed by Haber and Pinkas [38], who formalized the security of PKE and

DS schemes that share the same key pair.

21

Proof. Let S = Sim() be as specified in Figure 9. This object simulates Schnorr signatures by calling
R1(SET,M), where source M = Src(PK ,msg) is specified in Figure 9. This source generates x, t and
computes the inputs to the RO just as described above and returns x as its hint. This causes the RO table T
to be programmed so that T [gs · PK t,msg] = (x, t), where (x, t) is the signature returned by the simulator.

Let N = |G|. First, observe that S is (logN, logN)-min-entropy, since each source it uses to program the
RO chooses x and t uniformly and independently from ZN . The simulator is (1, 1)-query, since each of its
operators makes at one X -query (this points to X̃2 in the reference experiment) and at most one R1-query
(this points to H). Finally, its runtime is linear in the length of its inputs and in the computational cost of
sampling elements of ZN and performing the group operation in G. Because the runtime of A includes the
time required to evaluate its SIGN-queries, the runtime of S is O(tA).

Let P be an RO from G×{0, 1}∗ to ZN with query limit (q, a2). LetW = W(G,X) and W̃ = Wo(G, X̃).
By Lemma 1 there exist n.d. adversaries B and D′ such that

AdvGX/H(A) ≤ a2(a2 + q)/N + AdvG
X̃/H̃

(B) + Advsr-indiff
ψ

W/H,W̃/P
(D′, S) , (44)

where D′ is O(tA)-time and (a1+1, a2, ar)-query, and B is O((tA)2)-time and (a1, a2, a2 +ar)-query. Suppose
that G is (g1, ga)-query. Then by Lemma 2 there exists a O(tA)-time, ((a1+1)g1, a2, ar)-query, n.d. adver-
sary D for which

Advsr-indiff
ψ

W/H,W̃/P
(D′, S) ≤ Advsr-indiff

ψ

X/H,X̃/P
(D,S) . (45)

To complete the proof, we argue that

Advsr-indiff
ψ

X/H,X̃/P
(D,S) ≤ a2(a2 + q)/N (46)

for every such D. Observe that the simulation of the SIGN-operator provided by S is indistinguishable from
the real operator as long as S never overwrites a point already set in the RO. Because each source specified
by S is (logN, logN)-min-entropy and there are at most a2 + q distinct points in the RO table at any one
time in the experiment, the probability that some point gets overwritten is at most a2(a2 + q)/N . �

Remark 2. We are not the first to observe that the notions of Haber and Pinkas can be generalized. Patton
and Shrimpton [51] recently made the same observation, but they take a slightly different approach. Their
main security notion, SEC/I [51, Def. 3], considers the G-security of a system X when its interface is
exposed for use in other applications. This realistically captures key-reuse attacks that exploit availability of
cryptographic APIs that expose secret keys for a variety of applications. As discussed in Remark 1, one could
formalize an analogue of their GAP1 notion that, via Lemma 1, lifts the G-security of X to the G-security
of X in the presence of exposed interface attacks. “Context separation” (cf. [51, Def. 3]) would be enforced
by the transcript predicate. �

3 Protocol Translation

In this section we consider the problem of quantifying the security cost of protocol translation, where the
real system is obtained from the reference system by modifying the protocol’s specification. As a case study,
we design and prove secure a TLS extension for SPAKE2 [4], which, at the time of writing, was one of the
PAKEs considered by the CFRG for standardization.

Indifferentiable Execution of eCK-Protocols. We define security for PAKE in the extended
Canetti-Krawczyk (eCK) model of LaMacchia et al. [46], a simple, yet powerful model for the study of
authenticated key exchange. The eCK model specifies both the execution environment of the protocol (i.e.,
how the adversary interacts with it) and its intended goal (i.e., key indistinguishability [14]) in a single
security experiment. Our treatment breaks this abstraction boundary.

22

spec Ẽx: //R points to resources spec Ex

1 var Π object, PK elemG , s int, init bool
2 op (SETUP): Π(SETUP); init ← 0
3 //Main interface (intended usage)
4 op ,R (1, INIT):
5 if init = 1 then ret ⊥
6 init ← 1; s←← Z|G|; PK ← gs; ret PK

7 op ,R (1, x any):
8 if init = 1 then ret ΠRs (x)
9 //Auxiliary interface (additional usage)

10 op (2, PK): ret PK

11 op ,R (2, SIGN,msg str):
12 if init = 0 then ret ⊥
13 r ←← Z|G|; t←R1(g

r,msg)
14 ret (r − st, t)

spec Sim: //X points to X̃2; R to resources

15 var PK elemG
16 opX , (2, PK): ret X (PK)
17 opX ,R (2, SIGN,msg str):
18 PK ← X (PK)
19 if PK = ⊥ then ret ⊥
20 M ← Src(PK ,msg)
21 ((, t), x)←R1(SET,M); ret (x, t)
22 op ,R (3, (R elemG ,msg str)):
23 ret R1(R,msg)

spec Src:
24 var PK elemG , msg str
25 op ():
26 x, t←← Z|G|; R← gx · PK t

27 ret (((R,msg), t), x)

Figure 9: Left: Specifications Ex and Ẽx. Right: Specification of simulator S for the proof of Theorem 1.

Recall from the previous section that for any transcript predicate ψ, game G, and systems X and X̃,
we can argue that X is Gψ-secure (Def. 8) by proving that X is ψ-indifferentiable from X̃ (Def. 3) and
assuming X̃ itself is Gψ-secure. In this section, the system specifies the execution environment of a crypto-
graphic protocol for which the game defines security. In §3.1 we specify a system eCK(Π) that formalizes
the execution of protocol Π in the eCK model. Going up a level of abstraction, running an adversary A
in world W = Wo(G, eCK(Π)) in the MAINψ experiment (Def. 1) lets A execute Π via W ’s auxiliary
interface and “play” the game G via W ’s main interface. The environment eCK surfaces information about
the state of the execution environment, which G uses to determine if A wins. Finally, transcript predicate ψ
is used to determine if the attack is valid based on the sequence of W1- and W2-queries made by A.

We specify a game G = Key-Ind(f, k) that formalizes the security goal of the eCK model. This is the
standard notion of key indistinguishability [14] for a particular notion of session “freshness”, as formalized by
the parameter f . In fact, a wide variety of key-indistinguishability notions in the literature can be captured
this way [14, 11, 26, 33], as well as other security goals [35, 19, 3]. This is made possible by “splitting up”
the execution environment and security goal, as we have done.

Case Study. In §3.2 we propose and prove secure a PAKE extension for TLS, which integrates the SPAKE2
protocol [4] into the handshake. Its design is based on existing Internet-Drafts [6, 45] and discussions on the
CFRG mailing list [20, 65].

3.1 eCK-Protocols

The eCK model was introduced by LaMacchia et al. [46] in order to broaden the corruptive powers of the
adversary in the Canetti-Krawczyk setting [26]. The pertinent change is to restrict the class of protocols
to those whose state is deterministically computed from the player’s static key (i.e., its long-term secret),5

ephemeral key (i.e., the per-session randomness),6 and the sequence of messages received so far. This results
in a far simpler formulation of session-state compromise. We embellish the syntax by providing the party with
an initial input at the start of each session, allowing us to capture features like per-session configuration [19].

Definition 9 (Protocols). An (eCK-)protocol is a halting, stateless object Π, with an associated finite set
of identities I ⊆ {0, 1}∗, that exports the following operators:

5LaMacchia et al. use the term “long-term” key; Bellare et al. use the term “long-lived key” [14, 11]. We use the term “static
key”, following the Noise protocol framework [52], so that the “s” in “sk ” may stand for “static”.

6This is similar to the classical Bellare-Rogaway (BR) setting [14]. However, in BR the randomness consumed by a session
may be unbounded, whereas in eCK, the randomness is sampled from a finite set.

23

spec eCK: //A points to A2; R to resources

1 var Π object, r int
2 var pk , sk , ek , α, π table; atk any
3 op (SETUP):
4 Π(SETUP); r ← Π(MOVES)
5 pk , sk , ek , α, π ← []; atk ← ()
6

7 //Main interface
8 opA,R (1, INIT):
9 (pk , sk)← ΠA,R(SGEN); ret pk

10 opA,R (1,GAME ST, x, s, i str):
11 ret ΠA,R(GAME ST, x, i, πis)
12 op (1,ATTACK ST): ret atk
13

14 //Auxiliary interface
15 op (2, PK, i str): ret pk i
16 op (2, SK, i str):
17 atk←atk . (SK, i); ret sk i
18 op (2, EK, s, i str):
19 atk←atk . (EK, s, i); ret ek is

20 opA,R (2, INIT, s, i str, a any):
21 Init(active, s, i, a)
22 opA,R (2, SEND, s, i str, in any):
23 ret Send(s, i, in)
24 opA,R (2, EXEC, s1, i1, s0, i0 str, a1, a0 any):
25 Init(passive, s1, i1, a1)
26 Init(passive, s0, i0, a0)
27 out ← ⊥; tr ← ()
28 for j ← 1 to r + 1 do γ ← j (mod 2)
29 out ← Send(sγ , iγ , out)
30 tr ← tr . out
31 ret tr

procedure Init(t, s, i, a): // t ∈ {active, passive}

32 ek is ← ΠA,R(EGEN, i, a)
33 αis ← a; πis ← ⊥
34 atk←atk . (t, s, i)

procedure Send(s, i, in):
35 (πis, out)← ΠA,R(SEND, i, sk i, ek is, α

i
s, π

i
s,m)

36 ret out

Figure 10: Execution environment for two-party eCK-protocols.

– (SGEN)-(pk , sk table): generates the static key and corresponding public key of each party so that
(pk i, sk i) is the public/static key pair of party i ∈ I.

– (EGEN, i str, α any)-(ek any): generates an ephemeral key ek for party i with input α. The ephemeral
key constitutes the randomness used by the party in a given session.

– (SEND, i str, sk , ek , α, π, in any)-(π′, out any): computes the outbound message out and updated state π′

of party i with static key sk , ephemeral key ek , input α, session state π, and inbound message in. This
operator is deterministic.

– (MOVES)-(r int): indicates the maximum number of moves (i.e., messages sent) in an honest run of the
protocol. This operator is deterministic. �

The execution environment for eCK-protocols is specified by eCK in Figure 10. The environment stores
the public/static keys of each party (tables pk and sk) and the ephemeral key (ek), input (α), and current
state (π) of each session. As usual, the adversary is responsible for initializing and sending messages to
sessions, which it does by making queries to the auxiliary interface (10:14-31). Each session is identified by
a pair of strings (s, i), where s is the session index and i is the identity of the party incident to the session.
The auxiliary interface exports the following operators:

– (INIT, s, i str, a any): initializes session (s, i) on input a by setting αis ← a and πis ← ⊥. A session
initialized in this way is said to be under active attack because the adversary controls its execution.

– (SEND, s, i str, in any)-(out any): sends message in to a session (s, i) under active attack. Updates
the session state πis and returns the outbound message out .

– (EXEC, s1, i1, s0, i0 str, a1, a0 any)-(tr any): executes an honest run of the protocol for initiator session
(s1, i1) on input a1 and responder session (s0, i0) on input a0 and returns the sequence of exchanged
messages tr . A session initialized this way is said to be under passive attack because the adversary
does not control the protocol’s execution.

– (PK, i str)-(pk any), (SK, i str)-(sk any), and (EK, s, i str)-(ek any): returns, respectively, the public
key of party i, the static key of party i, and the ephemeral key of session (s, i).

24

Whenever the protocol is executed, it is given access to the adversary’s auxiliary interface (see interface
oracle A on lines 10:9, 11, 32, and 35). This allows us to formalize security goals for protocols that are
only partially specified [56]. In world Wo(G,X), system X = eCK(Π) relays Π’s A-queries to G: usually
game G will simply forward these queries to the adversary, but the game must explicitly define this. (See
the definition of KEY-IND security below below for an example.)

The attack state (atk) records the sequence of actions carried out by the adversary. Specifically, it records
whether each session is under active or passive attack (10:34), whether the adversary knows the ephemeral
key of a given session (10:19), and which static keys are known to the adversary (10:17). These are used
by the game to decide if the adversary’s attack was successful. In addition, the game is given access to the
game state, which surfaces any artifacts computed by a session that are specific to the intended security goal:
examples include the session key in a key-exchange protocol, the session identifier (SID) or partner identifier
(PID) [11], or the negotiated mode [19]. The game state is exposed by the protocol’s GAME␣ST-interface (e.g.,
lines 12:8-13). All told, the main interface (10:7-12) exports the following operators:

– (INIT)-(pk any): initializes each party by running the static key generator and returns the table of
public keys pk .

– (ATTACK ST)-(atk any): returns the attack state atk to the caller.

– (GAME ST, x, s, i str)-(val any): provides access to the game state.

Attack Validity. For simplicity, our execution environment allows some behaviors that are normally
excluded in security definitions. Namely, (1) the adversary might initialize a session before the static keys
have been generated, or try to generate the static keys more than once; or (2) the adversary might attempt
to re-initialize a session already in progress. The first of these is excluded by transcript predicate φinit and
the second by φsess, both defined below.

Definition 10 (Predicates φinit and φsess). Let φinit(tx) = 1 if |tx | ≥ 1, tx 1 = (1, INIT), and for all 1 < α ≤ |tx |
it holds that txα 6= (1, INIT). Let φsess(tx) = 0 iff there exist 1 ≤ α < β ≤ |atk | such that atkα = (tα, sα, iα),
atkβ = (tβ , sβ , iβ), (sα, iα) = (sβ , iβ), and tα, tβ ∈ {passive, active}, where atk is the attack state corresponding
to transcript tx . �

Comparison to LaMacchia et al. Apart from the possibility of the protocol being only partially
specified, there are a few minor differences between the execution environment described above and that
of LaMacchia et al. These are inherited from recent iterations of the eCK model, in particular eCKw/FPS
of Cremers-Feltz [30] and FPS-PSK of Dowling-Paterson [33]. First, our experiment involves an explicit
session index s used to distinguish between sessions (s, i) pertaining to the same party i. Our protocols
do not operate on s, but solely on the conversation associated with the session (i.e., the session’s state and
the inbound message). Second, we do not allow the adversary to specify the parties’ identities (that is, the
set I) or the public key of corrupted parties.Third, our environment includes an explicit session-initialization
operation, allowing us to model per-session configuration [19].

KEY-IND Security. In order to demonstrate how security properties for eCK-protocols are defined in our
framework, in this section we specify a game that captures the standard notion of key indistinguishability.
The game is defined so that freshness of the test session is a parameter, allowing us to capture in one
experiment a large variety of corruption models and partnering notions [14, 11, 26], including the notion of
LaMacchia et al.

A freshness predicate is a halting, functional object that exports a (set, (, str))-bool-operator. Let f
be a freshness predicate and let k ≥ 0 be an integer. Let Π be a protocol (Def. 9) and let X = eCK(Π) be
as specified in Figure 10. Let G = Key-Ind(f, k) be as specified in Figure 11. The objective of the adversary

25

in world Wo(G,X) (illustrated in Figure 11) is to distinguish some session key computed by system X from
a random, k-bit string.

During setup, the game chooses a uniform random bit b. After initializing X (11:5), the adversary
concurrently executes a number of sessions of Π by interacting with X’s auxiliary interface. During its
attack, the adversary may learn session keys by making REVEAL-queries to G (11:6), in addition to corrupting
static and ephemeral keys via direct access to X. Eventually the adversary makes a (TEST, s, i str)-query to G
(11:7-9): if the session key for session (s, i) is available, then it is set to K1; and K0 is set to random k-bit
string. Finally, the query returns Kb. Some time after its TEST-query, the adversary makes a (GUESS, d str)-
query to G, which sets the outcome of the game to be

w = (b = d) ∧ fX (S, (s∗, i∗)) = 1 , (47)

where X denotes G’s oracle for X1, session (s∗, i∗) is the TEST-session, and S is the set of sessions whose
session keys have been revealed. In English, the game G deems the adversary to have won if (1) it correctly
guesses the challenge bit b and (2) the TEST-session is fresh according to f . The freshness predicate is given
the set S and oracle access to X so that it may inspect the game and attack state to determine if the
adversary is able to trivially compute the TEST-session key. The adversary makes at most one TEST-query
and at most one GUESS-query. The outcome of the game is the value of w when the adversary halts (11:4).

Definition 11 (KEY-IND f,k security). Let ~R be resources, A be an adversary, and Π, G, X, f , and k be
as defined above. Define the KEY-IND f,k advantage of A in attacking Π/~R as

Advkey-ind
f,k

Π/~R
(A) := 2AdvG

ψ

X/~R
(A)− 1 ,

where ψ = φinit ∧ φsess and φinit and φsess are defined in Def. 10. �

The Role of the Freshness Predicate. The precise meaning of the term “freshness” varies in the
literature, but is usually determined by two factors. The first is the corruption model dictating which values
can be revealed to the adversary and when. This determines which security properties can be formalized
for the protocol, e.g. (weak) perfect forward secrecy (PFS), resistance to key-compromise impersonation
(KCI) attacks, and so on. (See Krawczyk [44] for discussion of these and other properties.) The second is
the notion of partnered sessions. Partnering takes many forms in the literature, from matching conversa-
tions [14, 46, 30], to protocol-dependent “partnering functions” [15], to partnering by SIDs computed from
the conversation [11, 19]. The most suitable notion of partnering depends on the number of parties in the
protocol, who communicates with whom, and what are the protocol’s goals.

Exercise: Downgrade-Secure Sub-Protocols. For a given game G and transcript predicate ψ, the
Gψ-security of an eCK-protocol Π is captured by running an adversary in world Wo(G, eCK(Π)) in the
MAINψ experiment. Our syntax and execution environment are general enough to capture a variety of
security properties for two-party protocols.7 For any game G, we are able to make precise statements of the
following form:

Given that eCK-protocol Π̃ is Gψ-secure, if the execution of eCK-protocol Π is ψ-indifferentiable
from the execution of eCK-protocol Π̃, then Π is also Gψ-secure.

This provides a way to argue that a protocol Π is secure by “lifting” the existing analysis of Π̃, rather
than proving Gψ-security of Π from scratch. This approach is not always available, however, since Π might
be so different from Π̃ that indifferentiability does not hold. It is most useful when Π is related to Π̃ in
some manner: perhaps Π was derived from Π̃ by modifying its specification, say, by adding or deleting

7One exception is ACCE-style games [39], as these require an operator that challenges the adversary to distinguish which of
two messages is being encrypted. One could define an execution environment suitable for these, but we will not do so here.

26

spec Key-Ind: //X points to X1; A points to A2.

1 var f object, k int
2 var b, w, init , guess, test bool, s∗, i∗ any, S set
3 op (SETUP): b←← {0, 1}; w, init , guess, test ← 0; S ← ()
4 op (1,WIN): ret w
5 opX , (1, INIT): if init 6= 1 then init ← 1; ret X (INIT)
6 opX , (1, REVEAL, s, i str): S←S ∪ {(s, i)}; ret X (GAME ST, key, s, i)
7 opX , (1,TEST, s, i str):
8 K1 ← X (GAME ST, key, s, i); K0 ←← {0, 1}k
9 if test 6= 1 ∧K1 6= ⊥ then test ← 1; (s∗, i∗)← (s, i); ret Kb

10 opX , (1,GUESS, d bool):
11 if guess 6= 1 then guess ← 1
12 w ← (b = d) ∧ fX (S, (s∗, i∗)) = 1
13 op ,A (2, x any): ret A(x)

A

Π

~R

2

1

2

1

eCK(Π)
Key-Ind(f, k)

1

Figure 11: Left: Specification of the key-indistinguishability game Key-Ind(f, k). Right: Illustration of the real
experiment for adversary A in world Wo(Key-Ind(f, k), eCK(Π)) with resources ~R.

some feature; in the next section, we consider a case where Π specifies the execution of Π̃ in a higher-level
protocol. In general we will think of Π as being some “real” protocol whose security we hope follows from
the “reference” protocol Π̃.

Another interpretation is that Π̃ is not a concrete protocol, but rather a “boiled down” version of the
full protocol Π. In their formal treatment of downgrade-resilient AKE, Bhargavan et al. [19] adopt this
view in their approach to taming the complexity of real-world standards. The first step is to extract from
a protocol’s specification (i.e., Π) a “sub-protocol” (i.e., Π̃) that captures the features that are essential to
the security property being considered. Downgrade resilience is then proven for the sub-protocol and lifted
to the full one by applying their “downgrade security lifting” theorem [19, Theorem 2], which transforms an
attack against the full protocol into an attack against the sub-protocol. Intuitively, this theorem defines a
set of full protocols whose downgrade security follows from the downgrade security of the sub-protocol; part
of the job of the analyst is to determine if the real protocol is in this set. (This step is akin to partitioning
the spec into the “protocol core” and the “specification details” in the PSP methodology [56, 50].)

Loosely speaking, Bhargavan et al. define a protocol Π̃ to be a “sub-protocol” of Π if there exists an
efficient simulator S such that Π and the “composition of S with Π̃” (cf. [19, Def. 11]) are information-
theoretically indistinguishable from one another when run in the downgrade resilience experiment. They
argue that if Π̃ is a sub-protocol for Π, then for every adversary A attacking Π there exists an adversary B
attacking Π̃ that gets at least as much advantage.

Intuitively, the statement “the execution of Π is indifferentiable from the execution of Π̃” amounts to
a computational analogue of “Π̃ is a sub-protocol of Π”. In turn, our Lemma 1 and Lemma 2 imply a
computational analogue of [19, Theorem 2] for eCK-protocols. Moreover, we can show that lifting applies to
a wide variety of security goals, and not just downgrade resilience.

Proposition 3 (Generalization of [19, Theorem 2]). Let ψ be a transcript predicate and let Π and Π̃ be
eCK-protocols. Let X = eCK(Π) and X̃ = eCK(Π̃). For every game G, tA-time, n.d. adversary A, and
tS-time simulator S there exist n.d. adversaries D and B for which

AdvG
ψ

X (A) ≤ AdvG
ψ

X̃
(B) + Advindiff

ψ

X,X̃
(D,S) ,

where D is O(tA)-time, and B is O(tAtS)-time.

Proof. The claim follows from a straight-forward application of Lemma 1 and Lemma 2. �

27

3.2 Case Study: PAKE Extension for TLS 1.3

In order to support the IETF’s PAKE-standardization effort, we choose one of the protocols considered by
the CFRG and show how to securely integrate it into the TLS handshake. By the time we began our study,
the selection process had narrowed to four candidates [62]: SPAKE2 [4], OPAQUE [40], CPace [37], and
AuCPace [37]. Of these four, only SPAKE2 has been analyzed in a game-based security model (the rest have
proofs in the UC-framework [22]) and as such is the only candidate whose existing analysis can be lifted in
our setting. Thus, we choose it for our study.

Existing proposals for PAKE extensions [64, 6] allow passwords to be used either in lieu of certificates
or alongside them in order to “hedge” against failures of the web PKI. Barnes and Friel [6] propose a
simple, generic extension for TLS 1.3 [54] (draft-barnes-tls-pake) that replaces the standard DH key-
exchange with a 2-move PAKE. This straight-forward approach is, arguably, the best option in terms of
computational overhead, modularity, and ease-of-implementation. Thus, our goal will be to instantiate
draft-barnes-tls-pake with SPAKE2. We begin with an overview of the extension and the pertinent details
of TLS. We then describe the SPAKE2 protocol and specify its usage in TLS. We end with our security
analysis.

Usage of PAKE with TLS 1.3 (draft-barnes-tls-pake). The TLS handshake begins when the client sends
its “ClientHello” message to the server. The server responds with its “ServerHello” followed by its parameters
“EncryptedExtensions” and “CertificateRequest” and authentication messages “Certificate”, “CertificateVer-
ify”, and “Finished”. The client replies with its own authentication messages “Certificate”, “CertificateVerify”,
and “Finished”. The Hellos carry ephemeral DH key shares signed by the parties’ Certificates, and the sig-
natures are carried by the CertificateVerify messages. Each party provides key confirmation by computing a
MAC over the handshake transcript; the MACs are carried by the Finished messages.

The DH shared secret is fed into the “key schedule” [54, §7.1] that defines the derivation of all symmetric
keys used in the protocol. Key derivation uses the HKDF function [42], which takes as input a “salt”
string, the “initial key material (IKM)” (i.e., the DH shared secret), and an “information” string used to
bind derived keys to the context in which they are used in the protocol. The output is used as a salt for
subsequent calls to HKDF .8 The first call is salt ← HKDF (0k, psk , derived), where k ≥ 0 is a parameter of
TLS called the hash length9 and psk is the pre-shared key. (If available, otherwise psk = 0k.) Next, the
parties derive the client handshake-traffic key10 K1 ← HKDF (salt , dhe, info1), the server handshake-traffic
key K0 ← HKDF (salt , dhe, info0), and the session key K ← HKDF (salt , dhe, derived). Variable dhe denotes
the shared secret. Each information string encodes both Hellos and a string that identifies the role of the
key: c hs traffic for the client and s hs traffic for the server. The traffic keys are used for encrypting the parameter
and authentication messages and computing the Finished MACs, and the session key is used for encrypting
application data and computing future pre-shared keys.

Extensions. Protocol extensions are typically comprised of two messages carried by the handshake: the
request, carried by the ClientHello; and the response, carried by the ServerHello or by one of the server’s
parameter or authentication messages. Usually the request indicates support for a specific feature and the
response indicates whether the feature will be used in the handshake. In draft-barnes-tls-pake, the client
sends the first PAKE message in an extension request carried by its ClientHello; if the server chooses to
negotiate usage of the PAKE, then it sends the second PAKE message as an extension response carried
by its ServerHello. When the extension is used, the PAKE specifies the values of psk and dhe in the key
schedule.

8In fact, the output of HKDF is variable length, and the desired output length is a parameter of the function. We will think
of this parameter as being fixed.

9The hash length is the number of bits output by the negotiated hash function. This is the same hash function used
for HKDF .

10The TLS spec uses the term “traffic secret” rather than “traffic key”.

28

spec SPake2-APC,SG :
1 var PW object, N1, N0 elemG
2 op (SETUP): N1, N0 ←← G
3 op (MOVES): ret 2
4 op ,R (SGEN): pk ← []
5 for i ∈ C ∪ S do pk i ← (N1, N0)
6 ret (pk ,PWR())
7 op (EGEN, . . .): ek ←← Z|G|; ret ek
8 op (GAME ST, x, i str,
9 (st , j,K str, X∗1 , X∗0 elemG)):

10 if st 6= done then ret ⊥
11 if x = sid then ret (X∗1 , X∗0)
12 if x = pid then ret j
13 if x = key then ret K

14 //Client sends KEX1
15 op (SEND, c elemC , sk , ek int,⊥,⊥,⊥):
16 X∗1 ← gek ·N sk

1

17 ret ((wait, X∗1), (c,X∗1))
18 //Client on KEX0
19 op ,R (SEND, c elemC , sk , ek int,⊥,
20 (wait, X∗1 elemG), (s elemS , X∗0 elemG)):
21 Z ← (X∗0 ·N−sk

0)ek

22 ikm ← (c, s,X∗1 , X
∗
0 , sk , Z)

23 K ←R1(ikm)
24 ret ((done, s,K,X∗1 , X∗0),⊥)
25 // Server on KEX1 sends KEX0
26 op ,R (SEND, s elemS , sk table, ek int,⊥,⊥
27 (c elemC , X∗1 elemG)):
28 X∗0 ← gek ·N skc

0 ; Z ← (X∗1 ·N−skc
1)ek

29 ikm ← (c, s,X∗1 , X
∗
0 , skc, Z)

30 K ←R1(ikm)
31 ret ((done, c,K,X∗1 , X∗0), (s,X∗0))
32 op (SEND, . . .): ret (fail,⊥) // Invalid message

Figure 12: Protocol SPake2-APC,SG , where G = (G, ·) is a prime-order, cyclic group with generator g and S, C ⊆
{0, 1}∗ are finite, disjoint, non-empty sets. Object PW is a symmetric password generator for S, C,P for some
dictionary P ⊆ Z|G|.

At first brush, it may seem “obvious” that the security of the extension follows immediately from the
security of the PAKE, since the PAKE is run without modification. There are two important points to note
here. The first is that the extension is underspecified: the output of a PAKE is generally a single session
key, so it is up to the implementer to decide how the session key is mapped to the inputs of the key schedule
(i.e., psk and dhe). The second point is that the PAKE is not only used to derive the session key (used to
protect application data), but also to encrypt handshake messages and compute MACs. As a result, whether
this usage is secure or not depends on the concrete protocol and how it is implemented in the extension.

The SPAKE2 Protocol. Designed by Abdalla and Pointcheval [4], SPAKE2 (pronounced “S-PAKE-
TWO”) is simpler than the other PAKE candidates [40, 37], which makes it a good target for use in a
higher-level protocol [65]. It uses just two primitives: a prime-order, cyclic group G = (G, ·) and a hash
function H : T → {0, 1}k, where T = {0, 1}∗ × {0, 1}∗ × G × G × Z|G| × G.The client and server share a
password sk ∈ Z|G|, which serves as the static key; and each of the parties has an ephemeral key drawn
uniformly from Z|G|. The protocol has public parameters N1, N0 ∈ G chosen during a trusted setup phase
that precedes the protocol’s execution.11

The 2-move protocol is based on EKE [18]. The first message is sent by the client and consists of
the client’s identity c and password-masked key-share X∗1 = gek1 ·N sk

1 , where g ∈ G denotes the group
generator, sk the password, and ek1 the client’s ephemeral key. The server’s reply consists of the server’s
identity s and key share X∗0 = gek0·N sk

0 , where ek0 denotes its ephemeral key. The shared secret is computed
as Z = (X∗p ·N−skp)ek1−p , where p = 1 for the server and p = 0 for the client. Finally, each party computes
the session key as K = H(ikm), where ikm = (c, s,X∗1 , X

∗
0 , sk , Z), and terminates. The SID is the pair of

key shares (X∗1 , X
∗
0). The PID is the identity of the peer: s for the client and c for the server.

This simple protocol is formalized by the eCK-protocol SPake2-APC,SG (PW) in Figure 12 (cf. [1, Fig-
ure 1]). Sets C and S are finite, disjoint, non-empty sets of strings denoting the clients and servers respectively.
The first key-exchange message, which we call KEX1, is produced by the operator on lines 12:15-17 that
specifies client c’s response to a SEND-query with (reading the last three inputs from left to right) the session

11The public parameters are usually referred to as M and N .

29

input ⊥, state ⊥, and inbound message ⊥. This moves c into the wait state (12:17) and outputs KEX1. This
message is consumed by the operator on lines 12:26-31, which specifies server s’s response to a SEND-query
with input ⊥, state ⊥, and inbound message c,X∗1 (KEX1). This moves s into the done state and outputs
KEX0. This message is consumed by the operator on line 12:19-24, which specifies client c’s response to a
SEND-query on input ⊥, in the wait state, and on inbound message s,X∗0 (KEX0).

Receipt of an invalid message, i.e., any SEND-query other than a properly formatted KEX message, causes
the session to move to the fail state, as shown on line 12:32. Note that symbol “ . . .” in the operator’s pattern
is treated like a wildcard so that (SEND, . . .) matches any SEND-query that did not match any of the preceding
operators.

Key derivation is carried out by a call to R1. To obtain the concrete protocol, one would use the hash
function H to instantiate the first resource in the experiment. However, since all existing analyses model H
as an RO [4, 7, 1], we will also use an RO. (See Theorem 2 below.)

The protocol is parameterized by an object PW used to generate the static keys. Syntactically, we require
that PW halts and outputs a table sk for which sk [s][c] = sk [c] ∈ P for all (c, s) ∈ C × S and some set
P ⊆ Z|G|, called the dictionary. We refer to such an object as a symmetric password generator for C,S,P.
Following Bellare et al. [11], each client c is in possession of a single password sk [c] ∈ P, used to authenticate
to each server; and each server s is in possession of a table sk [s] that stores the password sk [s][c] shared
with each client c. Generally speaking—and for SPAKE2 in particular [4, 7, 1]—passwords are assumed to
be uniformly and independently distributed over the dictionary P. We call such a generator uniform.

Requirements for SPAKE2 Standardization. Although SPAKE2 is being considered for adoption
as a standalone protocol standard, it is clear from existing drafts [6, 45] and discussions on the CFRG
mailing list [20, 65] that the protocol would not be adopted without modification. In our treatment, we will
address what we view to be the two most important changes. The first is to remove the need for trusted
setup. Rather than rely on N1, N0 being generated in a trustworthy manner, the preferred approach [65]
is to pick distinct constants const1, const0 ∈ {0, 1}∗ and compute the parameters as N1 ← HG(const1) and
N0 ← HG(const0), where HG : {0, 1}∗ → G is a hash function suitable for the given group G (e.g., a suitable
“hash-to-curve” algorithm [34]). The second is that, when SPAKE2 is used with key confirmation—either
in the stand alone protocol or embedded in TLS—the protocol should provide an option for agreement on
authenticated associated data [45].

Securely Instantiating draft-barnes-tls-pake with SPAKE2. In Figure 13 we define a protocol
SPake2-TLSC,SG (PW , const1, const0) that partially specifies the usage of SPAKE2 in TLS. We say “partially”
because most of the details of TLS are provided by calls to interface oracle A, which are answered by the
adversary’s auxiliary interface in the real experiment. Calls to R1 and R2 are answered by, respectively, an
RO for HKDF and an RO for HG. Before being passed to HKDF , the input is first encoded using an object
en with the following properties.

Definition 12 (Encoders and represented sets). A represented set is a computable set X for which ⊥ 6∈ X
(cf. “represented groups” in [2, §2.1]). Let X be a represented set. An X -encoder is a functional, halting
object en that exports the following operators:

– (1, x elemX)-(M str): the encoding algorithm, returns the encoding M of x as a string.

– (0,M str)-(x elemX∪{⊥}): the decoding algorithm, returns the element x of X encoded by string M
(or ⊥ if M does not encode an element of X).

Correctness requires that en0(en1(x)) = x for every x ∈ X . �

The Hellos carry the SPAKE2 key-exchange messages. The first is encoded by the client on line 13:22
and decoded by the server on line 39, and the second is encoded by the server on line 42 and decoded by

30

spec SPake2-TLSC,SG : //A points to A2 (via a game); R to resources

1 var PW , en object, const1, const0 str
2 op (MOVES): ret 3
3 op ,R (SGEN): pk ← []
4 N1 ←R2(const1); N0 ←R2(const0)
5 for i ∈ C ∪ S do pk i ← (N1, N0)
6 ret (pk ,PWR())
7 opA (EGEN, i elemC∪S , a any):
8 var ρ elemN, r str
9 ρ← A(rnd, i, a); if ρ 6= ⊥ then r ←← {0, 1}ρ

10 ek ←← Z|G|; ret (ek , r)
11 op (GAME ST, x, i str,
12 (st , j,K str, X∗1 , X∗0 elemG , . . .)):
13 if st 6∈ {done, s wait} then ret ⊥
14 if x = sid then ret (X∗1 , X∗0)
15 if x = pid then ret j
16 if x = key then ret K
17

18 //Client sends HELLO1
19 opA,R (SEND, c elemC , sk , (ek int, r any), a any,⊥,⊥):
20 var hello1 str
21 N1 ←R2(const1); X∗1 ← gek ·N sk

1

22 hello1 ← A(c hello, r , a, c,X∗1); if A(c kex, hello1) 6= (c,X∗1) then ret (fail,A(proto err))
23 ret ((c wait, X∗1 , hello1), hello1)
24 //Client on (HELLO0, AUTH0) sends AUTH1
25 opA,R (SEND, c elemC , sk , (ek int, r any), a any,
26 (c wait, X∗1 elemG , hello1 str), (hello0, auth0 str)):
27 var s elemS , X∗0 elemG , auth1 str
28 (s,X∗0)← A(s kex, hello0); if ⊥ ∈ {s,X∗0} then ret (fail,A(proto err))

29 N0 ←R2(const0); Z ← (X∗0 ·N−sk
0)ek ; ikm ← (c, s,X∗1 , X

∗
0 , sk , Z)

30 tr ← hello1 ‖ hello0; (K1,K0,K)← KDF(ikm, c, s, hello1, hello0)
31 if K1 = ⊥ then ret (fail,A(proto err))
32 if A(s verify,K0, (a, tr), auth0) 6= 1 then ret (fail,A(verify err))
33 tr ← tr ‖ auth0; auth1 ← A(c auth,K1, (a, tr), r)
34 ret ((done, s,K,X∗1 , X∗0), auth1)
35

36 // Server on HELLO1 sends (HELLO0, AUTH0)
37 opA,R (SEND, s elemS , sk table, (ek int, r any), a any,⊥, hello1 str):
38 var c elemC , X∗1 elemG , hello0, auth0 str
39 (c,X∗1)← A(c kex, hello1); if ⊥ ∈ {c,X∗1} then ret (fail,A(proto err))

40 N1 ← R2(const1); Z ← (X∗1 ·N−skc
1)ek ; ikm ← (c, s,X∗1 , X

∗
0 , skc, Z)

41 N0 ← R2(const0); X∗0 ← gek ·N skc
0

42 hello0 ← A(s hello, r , a, s,X∗0); if A(s kex, hello0) 6= (s,X∗0) then ret (fail,A(proto err))
43 tr ← hello1 ‖ hello0; (K1,K0,K)← KDF(ikm, c, s, hello1, hello0)
44 if K1 = ⊥ then ret (fail,A(proto err))
45 auth0 ← A(s auth,K0, (a, tr), r); tr ← tr ‖ auth0

46 ret ((s wait, c,K,X∗1 , X∗0 ,K1, tr), (hello0, auth0))
47 // Server on AUTH1
48 opA,R (SEND, s elemS , sk table, (ek int, r any), a any,
49 (s wait, c,K str, X∗1 , X∗0 elemG ,K1, tr str), auth1 str):
50 if A(c verify,K1, (a, tr), auth1) 6= 1 then ret (fail,A(verify err))
51 ret ((done, c,K,X∗1 , X∗0),⊥)
52

53 opA (SEND, . . .): ret (fail,A(unexpected message))

procedure KDF(ikm, c, s, hello1, hello0):
54 var info1, info0, info, salt str
55 info1 ← A(c hs traffic, hello1, hello0)
56 info0 ← A(s hs traffic, hello1, hello0)
57 info ← A(derived, c, s)
58 salt ← A(salt, c, s)
59 if |{info1, info0, info}| 6= 3∨
60 ⊥ ∈ {info1, info0, info, salt}
61 then ret (⊥,⊥,⊥)
62 K1 ←R1(salt , en1(ikm), info1)
63 K0 ←R1(salt , en1(ikm), info0)
64 K ←R1(salt , en1(ikm), info)
65 ret (K1,K0,K)

Figure 13: Protocol SPake2-TLSC,SG , where PW , G = (G, ·), g, C, and S are as defined in Figure 12. Object en is a(
{0, 1}∗ × {0, 1}∗ × G × G × Z|G| × G

)
-encoder, where G is a represented set (Def. 12).

31

the client on line 28. Value ikm (the input to H in SPAKE2) is passed to procedure KDF (54-65), which is
used to derive the traffic and session keys. Oracle A (which points to the adversary’s aux. interface in the
security experiment) chooses the salt and information strings, subject to the constraint that the information
strings are distinct.

We refer to the ClientHello as HELLO1 and to the ServerHello as HELLO0. Our spec lumps all other
handshake messages into two: AUTH0 for the server’s parameter and authentication messages (Encrypt-
edExtensions...Finished); and AUTH1 for the client’s authentication messages (Certificate...Finished). This
consolidates all traffic-key dependent computations into four A-queries: AUTH0 is computed on line 13:45
and verified on line 32 and AUTH1 is computed on line 33 and verified on line 50.

Design Considerations. In the security analysis (cf. Theorem 2) we assume the adversary is non-
degenerate, meaning it is specified as NoDeg(M,SD) for some objectM and some functional object SD (see
Def. 4). Hence, each A-query is answered deterministically by SD and without carrying state between calls.
This restriction turns out to be crucial for keeping the security bound tight: in particular, we need it to be
the case that KEX1 and KEX0 can be correctly decoded. (Hence the check that decoding succeeds on lines
13:22 and 42; refer to the proof of Theorem 2 for details.) As a consequence, we need to be explicit about the
use of randomness in order to realistically capture the details of TLS. Specifically, we modify the ephemeral
key generator (EGEN) so that it produces the amount of randomness required by the TLS handshake (as
determined by SD ; see line 13:9).

Recall that draft-barnes-tls-pake requires the PAKE to specify the inputs psk and dhe to the key
schedule, and that psk is used to derive the salt via the first call to HKDF . The salt is computed by an
A-query (13:58), meaning we do not much care how it is chosen. Note that SD is given oracle access to
the resources in the experiment (Def. 4), so the auxiliary algorithm may compute salt according to the TLS
spec.

The value of dhe is the same as the input ikm to H in the original SPAKE2 protocol (12:22). A more
natural approach might have been to set dhe to H(ikm) rather than ikm, i.e., let dhe be the session key
derived in the original protocol. This design may work, but our approach simplifies the proof, as well as
being a bit more efficient.

The session key computed by the server is made available in the game state (via the SESSION␣ST-operator)
prior to key confirmation (13:13). As we discuss in the proof of Theorem 2, this is required for indifferentia-
bility in the eCK environment, and hence is an artifact of the formal model. (Intuitively, there is no reason
why waiting to release a session key until later should affect security.)

Fail Closed. Finally, a feature of our instantiation of draft-barnes-tls-pake is that the client and server
“fail closed”. This means that: (1) if the client does not indicate support, then the server must tear down the
session (13:39); and (2) if the client indicates support for the extension in its request, but the server does not
indicate usage in its response, then the client must tear down the session (13:28). In fact, Barnes-Friel [6]
allow the protocol to “fail open”, meaning the client and server may fallback to the standard authentication
mechanism if available. But this makes little sense when using PAKE to hedge against PKI failures, since
an adversary in possession of the server’s signing key (or one of the signing keys in the certificate chain) can
easily downgrade the connection [19] to certificate-only authentication and impersonate the server.

Security. We now derive the concrete security of this usage of SPAKE2. Our analysis is in the weak
corruption model of Bellare et al. [11], which assumes that only static keys (i.e., passwords) and not ephemeral
keys can be revealed to the attacker. This is without loss of generality, as all existing analyses of SPAKE2
assume the same corruption model [4, 7, 1]. Our proof also uses the GDH assumption [48], defined below.

Definition 13 (Predicate φwc). Let φwc(tx) = (@α) txα∼(2, EK, . . .). �

32

Definition 14 (The GDH problem). Let G = (G, ·) be a cyclic group with generator g ∈ G. A DDH oracle
for G is a halting object DDH for which DDH (X,Y, Z) = 1 holds if and only if loggX · logg Y = logg Z for
all X,Y, Z ∈ G. Define AdvgdhG (A) := Pr

[
x, y ←← Z|G| : ADDH (gx, gy) = gxy

]
to be the advantage of an

adversary A in solving the GDH problem for G. Informally, we say the GDH problem is hard for G if the
advantage of every efficient adversary is small. �

Let k ≥ 0 be an integer; let const1, const0 be distinct strings; let G = (G, ·) be a prime-order cyclic group;
let C,S ⊆ {0, 1}∗ be finite, disjoint, non-empty sets; let P ⊆ Z|G| be a dictionary; and let PW be a uniform,
symmetric password-generator for C,S,P. Define T to be the set {0, 1}∗ × {0, 1}∗ × G × G × Z|G| × G. Let
Π = SPake2-TLSC,SG (PW , const1, const0), Π̃ = SPake2-APC,SG (PW), X = eCK(Π), and X̃ = eCK(Π̃).
Let ψ = φinit ∧ φsess ∧ φwc. The following says that for any game G, the Gψ-security of X (in the ROM
for HKDF and HG) follows from the Gψ-security of X̃ (in the ROM for H) under the GDH assumption.

Theorem 2. Let F be an RO from ({0, 1}∗)3 to {0, 1}k, R be an RO from {0, 1}∗ to G, and H be an RO
from T to {0, 1}k. Let DDH be a DDH oracle for G. For every game G and tA-time, n.d. adversary A
making qr resource queries, qs SEND-queries, and qe EXEC-queries, there exist an n.d. adversary B and GDH-
adversary C such that

AdvG
ψ

X/(F,R)(A) ≤ AdvG
ψ

X̃/(H,DDH)
(B) +

2qeAdv
gdh
G (C) +

2qs
|P|

+
(qs + 2qe)

2

2|G|
,

where: DDH is tDDH -time; B runs in time O(T̂) and makes at most qs SEND-queries, qe EXEC-queries,
O(Q̂) DDH -queries, and qr H-queries; C runs in time O(T̂) and makes at most O(Q̂) DDH -queries; T̂ =

tA(tA + qr · tDDH); and Q̂ = qr(qs + qe).

Before giving the proof, let us say a few words about the bound. The claim is proved by first applying
Lemma 1, then applying Lemma 2 so that we can argue security using the ψ-indifferentiability of X/(F,R)

from X̃/(H,DDH). The bound reflects the loss in security that results from using the PAKE to derive the
traffic keys. The GDH-advantage term is used to bound the probability that derivation of one of these keys
during an honest run of the protocol (via EXEC) coincides with a previous RO query; the 2qs/|P|-term is used
to bound the probability of the same event occurring during an active attack (via SEND). The simulator kills
a session if the SID ever collides with another session other than the partner, which accounts for the final
term.

Proof of Theorem 2. By Lemma 1, for every tS-time simulator S there exists a O(tA)-time adversary D′ and
a O(tAtS)-time adversary B such that

AdvG
ψ

X/(F,R)(A) ≤ AdvG
ψ

X̃/(H,DDH)
(B) + Advsr-indiff

ψ

W/(F,R),W̃ /(H,DDH)
(D′, S) . (48)

By Lemma 2 there exists a O(tA)-time adversary D such that

Advsr-indiff
ψ

W/(F,R),W̃ /(H,DDH)
(D′, S) ≤ Advsr-indiff

ψ

X/(F,R),X̃/(H,DDH)
(D,S) . (49)

In the remainder we exhibit an efficient simulator S and adversary C for which

Advsr-indiff
ψ

X/(F,R),X̃/(H,DDH)
(D,S) ≤ 2qeAdv

gdh
G (C) +

2qs
|P|

+
(qs + 2qe)

2

2|G|
. (50)

Let g ∈ G denote the generator of G and let 1G ∈ G denote the group identity. Let M denote the
adversary’s main algorithm and let SD denote the adversary’s auxiliary algorithm (Def. 4). Let i∗ denote
the lexicographically first element of C ∪ S. We shall assume that the adversary is ψ-respecting, meaning
that when M halts, the transcript is deemed valid by ψ with probability 1. This is without loss of generality

33

spec Sim: //X points to X̃2; R to resources (H,DDH)

1 var SD object, const1, const0, i
∗ str

2 var p̂w , r̂ , α̂, π̂, derived , traffic, T, U table
3 var Q set, N1, N0 elemG
4 op (SETUP): SD(SETUP)
5 p̂w , r̂ , α̂, π̂, derived , traffic, T, U ← []; Q ← ∅
6

7 //Adversarial interface
8 opX (2, PK, i str): ret X (PK, i)
9 opX (2, SK, i str):

10 if i ∈ C then pw i ← X (SK, i); ret pw i

11 else sk ← X (SK, i); for j ∈ C do { p̂w j ← sk j }; ret sk

12 opX ,R (2, INIT, s, i str, a any): Setup(s, i); ret Init(s, i, a)
13 opX ,R (2, SEND, s, i str,m any): Setup(s, i)
14 (π̂is, out)← Send(0, 1G, s, i, r̂ is, α̂is, π̂is,m); ret out
15 opX ,R (2, EXEC, s1, i1, s0, i0 str, a1, a0 any):
16 Setup(s1, i1); Setup(s0, i0)
17 tr ← X (EXEC, s1, i1, s0, i0, a1, a0)
18 if i1 6∈ C ∨ i0 6∈ S then
19 err ← SD(unexpected message)
20 ret (err , err , err , err)
21 else
22 ((, X∗1), (, X∗0),)← tr ; tr ← ()
23 (π1, out)← Send(1, X∗1 , s1, i1, a1,⊥,⊥); tr ← tr . out
24 (π0, out)← Send(1, X∗0 , s0, i0, a0,⊥, out); tr ← tr . out
25 (π1, out)← Send(1, X∗1 , s1, i1, a1, π1, out); tr ← tr . out
26 (π0, out)← Send(1, X∗0 , s0, i0, a0, π0, out); tr ← tr . out
27 ret tr
28

29 //Resource interface
30 opX ,R (3, (1, (salt , encoded , info str))):
31 Setup(⊥, i∗); ret R(salt , encoded , info)
32 opX ,R (3, (2, const str)): Setup(⊥, i∗); ret R(const)

interface R:
33 op (salt , encoded , info str):
34 if en0(encoded) 6= ⊥ then
35 (i, j,X∗1 , X

∗
0 , sk , Z)← en0(encoded)

36 A← X∗1 ·N−sk
1 ; B ← X∗0 ·N−sk

0

37 if R2(A,B,Z) = 1 then
38 // If derived key, then use reference RO.
39 if derived [X∗1 , X

∗
0 , i, j] = 1 then

40 ret R1(en0(encoded))
41 // If traffic key, then simulate response.
42 K ← traffic[X∗1 , X

∗
0 , i, j, salt , info]

43 if K 6= ⊥ then ret K
44 if T [salt , encoded , info] = ⊥ then
45 T [salt , encoded , info]←← {0, 1}k
46 ret T [salt , encoded , info]
47 op (const str):
48 if Uconst = ⊥ then Uconst ←← G
49 ret Uconst

procedure SD(in):
50 ret SDR(in)

procedure Setup(s, i):
51 var ρ elemN
52 (N1, N0)← X (PK, i)
53 Uconst1 ← N1; Uconst0 ← N0

54 if s 6= ⊥ then ρ← A(rnd, i, a)
55 if ρ 6= ⊥ ∧ r̂ is = ⊥ then r̂ is ←← {0, 1}ρ

procedure Init(s, i, a):
56 αis ← a; ret X (INIT, s, i,⊥)
procedure Fail(s, i, err):
57 X (SEND, s, i, kill session)
58 ret (fail,SD(err))

Figure 14: Specification of simulator S for proof of Theorem 2. Send is defined in Figure 15.

because ψ is efficiently computable. As a result, we may assume that the adversary initializes the parties
first, the adversary initializes each session once and before sending a message to it, and the adversary does
not reveal ephemeral keys.

The simulator is S = Sim(SD , const1, const0, i
∗) as specified in Figures 14, 15, and 16. It is is not

especially complicated, but there are a number of details to attend to. So, before we derive Eq. (50), let
us first take a moment to clarify its operation. Recall that the simulator gets access to two oracles in the
reference experiment: one for the auxiliary interface of X̃, which is used to execute the reference protocol Π̃;
and another for resources (H,DDH). Its job is to simulate aux./resource queries for X/(F,R). The central
problem it must solve is that the adversary has direct access to the main interface of X̃, which provides it
with the game and attack state. Hence, the adversary needs to use its own oracles in a way that ensures the
game and attack state are consistent with the adversary’s view of the execution. In essence, our strategy is
to “embed” a session of the reference protocol into each simulation of the real one.

Answering Aux.-Interface Queries. The simulator answers auxiliary queries as follows. When the
adversary (i.e., M) wants to initiate a session (s, i) with input a, the simulator queries X (INIT, s, i,⊥) and
stores α̂is ← a, thereby initiating the same session in the reference environment and storing the initial input
for subsequent queries to SD (see line 14:12 and the definition of Init on line 56.) For each session (s, i) the
simulator maintains a variable π̂is, which will be used to keep state for the simulated session. WhenM wishes
to send a message m to session (s, i), the simulator forwards (s, i,m) to interface Send defined in Figure 15:
this induces at most one SEND-query to reference session (s, i), updates the simulation state π̂is, and produces

34

simulated output (14:14). To simulate a passive attack, the simulator first makes an EXEC-query (14:17),
then extracts the password-masked key-shares from the execution trace (22) and uses them in a sequence of
calls to Send to simulate an honest run of the real protocol (23-26).

Next we describe Send; refer to Figure 15. The caller passes in a bit p and an element Y of G. The
bit indicates whether the session is under passive attack (p = 1; see lines 14:23-26) or active attack (p = 0;
see line 14). In case of a passive attack, the key shares are provided by the caller (i.e., the key share is
equal to input Y ∈ G); in case of an active attack, the key shares are obtained by making queries to the
corresponding session (15:4 and 22). Except for simulation of the traffic keys, all computations are just as
they are in the real protocol. The adversary’s auxiliary interface is used to encode the TLS messages, and
because the adversary is non-degenerate, the simulator may use the auxiliary algorithm SD as a sub-routine.
Thus, each call to the A oracle in Figure 13 is substituted in Figure 14 by a call to procedure SD, which
forwards the call to SD (see line 14:50).

In the real experiment (Figure 14), the A oracle is also called upon at various points in order to decide
whether execution has encountered an error and will move to the fail state (see lines 13:22, 28, 31, 32, 39, 42,
44, 50, and 53). Whenever a session is in this state, the game state should not be obtainable via the main
interface: it should only be available in the done state or by the server when it is waiting for key confirmation
(13:13). To emulate this behavior, the simulator queries X (SEND, s, i, kill session), which forces the reference
session into the fail state, since “kill session” is not a valid protocol message (12:32). The call is carried out by
Fail (14:57-58), which is called whenever the simulated session is meant to move into the fail state.

Procedure SimKDF (Figure 16) is called upon to simulate computation of the handshake traffic keys K1

and K0. Its job is to pick these in a way that provides the adversary with a consistent view of the simulation
of RO F . Given only the key shares, the simulator must determine whether the adversary already “knows”
what the traffic keys should be. The difficulty is that there are conditions under which the shared secret
might be known to the adversary, but is hard to compute for the simulator. Our solution is to distinguish
between queries for which the adversary definitely knows what the keys ought to be and queries for which
the adversary is “unlikely” to know the keys. In the former case, we can arrange the simulation so that the
correct keys are always output. In the latter, we will guess that the adversary does not know the correct
output, generate fresh keys, and provide a consistent simulation of F going forward. This back-patching
strategy might fail to provide a consistent simulation, so we will need to argue that the probability of failure
is small.

Answering Resource Queries and Simulating Traffic Keys. Procedure SimKDF has the following
inputs: a bit r indicating the role of the session (r = 1 for client; r = 0 for server); the bit p indicating whether
session is under passive attack (p = 1) or active attack (p = 0); the client i and server j; the Hellos hello1

and hello0; and the key shares X∗1 and X∗0 of the client and server respectively. The simulator maintains a
set Q used to check for and exclude SID collisions (declared at 14:3, used at 16:3-4): if (r,X∗1 , X

∗
0) ∈ Q, then

the procedure immediately halts and returns (⊥,⊥); otherwise, it adds (r,X∗1 , X
∗
0) to Q and proceeds. This

step ensures independence of traffic keys computed by partnered sessions, which will simplify the analysis.
Next, the procedure computes the salt salt and information strings info1, info0, info as usual (16:6-13). It
then sets derived [X∗1 , X

∗
0 , i, j]← 1 in a table derived , which will be used by the RO simulation.

The simulator maintains a table p̂w of passwords that are known to the adversary at any given time (14:9-
11). To simulate computation of traffic key Kb, we first check if the adversary has definitely observed Kb

being output from the RO. In case the client’s password is known (p̂w i 6= ⊥) and the session is under active
attack, we unmask the key shares (16:20) to get ephemeral public keys A and B for the client and server
respectively. We then consult a table T (used by the RO simulation) to determine if the query corresponds
to a previous RO query. We proceed as follows: if there exists Z ∈ G such that (A,B,Z) is a DDH triple (i.e.,
R2(A,B,Z) = 1) and K = T [salt , en1(i, j,X∗1 , X

∗
0 , p̂w i, Z), infob] 6= ⊥, then we let Kb = K (16:21-24). Note

that this check can be carried out in O(tDDH · qr)-time, since there are at most qr entries in T , and for each

35

interface Send:
1 //Client sends HELLO1
2 op (p bool, Y elemG , s str, i elemC , a any,⊥,⊥):
3 var hello1 str; X∗1elemG
4 if p = 1 then X∗1 ← Y else (, X∗1)← X (SEND, s, i,⊥) //wait

5 hello1 ← SD(c hello, r̂ is, a, i,X
∗
1); if SD(c kex, hello1) 6= (i,X∗1) then ret Fail(s, i, proto err)

6 ret ((c wait, X∗1 , hello1), hello1)
7 //Client on HELLO0, AUTH0 sends AUTH1
8 op (p bool, Y elemG , s str, i elemC , a any, (c wait, X∗1 elemG , hello1 str), (hello0, auth0 str)):
9 var j elemS , X∗0 elemG , auth1 str

10 (j,X∗0)← SD(s kex, hello0); if ⊥ ∈ {j,X∗0} then ret Fail(s, i, proto err)
11 if p = 0 then X (SEND, s, i, (j,X∗0)) // done
12 tr ← hello1 ‖ hello0; (K1,K0)← SimKDF(1, p, i, j, hello1, hello0, X

∗
1 , X

∗
0)

13 if K1 = ⊥ then ret Fail(s, i, proto err)
14 if SD(s verify,K0, (a, tr), auth0) 6= 1 then ret Fail(s, i, verify err)
15 tr ← tr ‖ auth0; auth1 ← SD(c auth,K1, (a, tr), r̂

i
s)

16 ret (done, auth1)
17

18 // Server on HELLO1 sends HELLO0, AUTH0
19 op (p bool, Y elemG , s str, j elemS , a any,⊥, hello1 str):
20 var i elemC , X∗1 , X∗0 elemG , hello0, auth0 str
21 (i,X∗1)← SD(c kex, hello1); if ⊥ ∈ {i,X∗1} then ret Fail(s, j, proto err)
22 if p = 1 then X∗0 ← Y else (, X∗0)← X (SEND, s, j, (i,X∗1)) // done

23 hello0 ← SD(s hello, r̂ js , a, j,X
∗
0); if SD(s kex, hello0) 6= (j,X∗0) then ret Fail(s, j, proto err)

24 tr ← hello1 ‖ hello0; (K1,K0)← SimKDF(0, p, i, j, hello1, hello0, X
∗
1 , X

∗
0)

25 if K1 = ⊥ then ret Fail(s, j, proto err)
26 auth0 ← SD(s auth,K0, (a, tx), r̂

j
s); tr ← tr ‖ auth0

27 ret ((s wait,K1, tr), (hello0, auth0))
28 // Server on AUTH1
29 op (p bool, Y elemG , s str, j elemS , a any, (s wait,K1, tr str), auth1 str):
30 if SD(c verify,K1, (a, tr), auth1) 6= 1 then ret Fail(s, j, verify err)
31 ret (done,⊥)
32

33 op (p bool, Y elemG , s, i str, . . .): ret Fail(s, i, unexpected message)

Figure 15: Specification of simulator S for proof of Theorem 2 (continued from Figure 14). Procedure SimKDF is
defined in Figure 16; SD and Fail are defined in Figure 14.

entry we make one query to DDH (via R). If Kb is not defined, then we set traffic[X∗1 , X
∗
0 , i, j, salt , info1] to

a uniform random element of {0, 1}k (16:25-29) and return it.
The RO simulation works as follows. For queries matching pattern (1, (salt , encoded , info str)), where

en0(encoded) matches (i, j str, X∗1 , X∗0 elemG , sk int, Z elemG), we first check if (X∗1 , X
∗
0 , i, j, salt , info)

corresponds to a previous call to SimKDF. To do so, we unmask the key shares by running A← X∗1 ·N−sk1 ,
and B ← X∗0 ·N−sk0 and check if (A,B,Z) is a DDH triple. If so, then we check if derived [X∗1 , X

∗
0 , i, j] = 1

(14:39). If so, then because SD is functional, the query must coincide with the session key for (X∗1 , X
∗
0).

Because RO H was used to compute this in the reference experiment, we return R1(en0(encoded)) to the
caller. Next, we check if K = traffic[X∗1 , X

∗
0 , i, j, salt , info] is defined. If so, then return it.

Finally, if nothing has yet been returned, then we proceed with the RO simulation in the usual way:
check if T [salt , encoded , info] is defined; if not, then do T [salt , encoded , info] ←← {0, 1}k; finally, output
T [salt , encoded , info]. Likewise, resource queries matching (2, (const str)) are answered by lazy-evaluating a
table U (14:47-49). Note that, prior to any other interaction with the reference environment, the simulator
programs U so that Uconst1 = N1 and Uconst0 = N0, where N1 and N0 are the global parameters in the
reference experiment. See procedure Setup defined on lines 14:51-55.

We now proceed with the proof. Eq. (50) is derived by a game playing argument in which we exhibit a
sequence of experiments, beginning with the real experiment Realout

ψ

X/(F,R)(D) and ending with the reference

36

procedure SimKDF(r, p, i, j, hello1, hello0, X
∗
1 , X

∗
0):

1 var K1,K0, info1, info0, info, salt str
2 // Exclude SID collision.
3 if (r,X∗1 , X∗0) ∈ Q then ret (⊥,⊥)
4 Q ← Q∪ {(r,X∗1 , X∗0)}
5 //Compute salt and info string.
6 info1 ← SD(c hs traffic, hello1, hello0)
7 info0 ← SD(s hs traffic, hello1, hello0)
8 info ← SD(derived, i, j)
9 salt ← SD(salt, i, j)

10 // For key sep., each info string must be distinct.
11 if |{info1, info0, info}| 6= 3∨
12 ⊥ ∈ {info1, info0, info, salt} then
13 ret (⊥,⊥)
14 //Mark session key as derived.
15 derived [X∗1 , X

∗
0 , i, j]← 1

16 // Simulate computation of traffic keys.
17 for b ∈ {0, 1} do
18 //Check if the output is definitely known.
19 if p = 0 ∧ p̂w i 6= ⊥ then
20 A← X∗1 ·N

−p̂wi
1 ; B ← X∗0 ·N

−p̂wi
0

21 //The following can be checked in O(tDDH · qr)-time.
22 if (∃Z ∈ G)R2(A,B,Z) = 1∧
23 T [salt , en1(i, j,X

∗
1 , X

∗
0 , p̂w i, Z), infob] 6= ⊥ then

24 Kb ← T [salt , en1(i, j,X
∗
1 , X

∗
0 , p̂w i, Z), infob]

25 // If check fails, guess that the output is unknown.
26 if Kb = ⊥ then
27 if traffic[X∗1 , X

∗
0 , i, j, salt , infob] = ⊥ then

28 traffic[X∗1 , X
∗
0 , i, j, salt , infob]←← {0, 1}k

29 Kb ← traffic[X∗1 , X
∗
0 , i, j, salt , infob]

30 ret (K1,K0)

Figure 16: Specification of simulator S for proof of Theorem 2 (continued from Figure 15). SD is defined in Figure 14.

experiment Ref out
ψ

X̃/(H,DDH)
(D,S), where each experiment is obtained by modifying the code of the previous

one. Eq. (50) is obtained by upper-bounding the probability that the distribution of the output changes
between each experiment and the previous one.

Experiment 0. Define procedure G0
F,R so that G0

F,R(D) = Realout
ψ

X/(F,R)(D), but modify the protocol
specification so that procedure KDF sets a flag bad1 ← 1 if, at any point in the experiment, any two
sessions pertaining to the same role (either client or server) compute the same SID (X∗1 , X

∗
0). (Note that is

the same condition that leads SimKDF to output (⊥,⊥) on line 16:3.) This change has no affect on the
outcome of the experiment, so

Pr
[
G0
F,R(D)

]
= Pr

[
Realout

ψ

X/(F,R)(D)
]
. (51)

Revision 0-1. Define procedure G1
F,R from G0

F,R by having KDF immediately halt and output (⊥,⊥,⊥)

after bad1 gets set. This occurs only if the SIDs of any two sessions collide. One can show that the probability
of an SID collision is at most the probability of two sessions having the same ephemeral key. Because these
keys are independently and uniformly distributed in Z|G|, a birthday bound yields

Pr
[
G0
F,R(D)

]
− Pr

[
G1
F,R(D)

]
≤ Pr

[
G1
F,R(D) sets bad1

]
≤ (qs + 2qe)

2

2|G|
. (52)

The factor of 2 in the numerator accounts for the fact that each EXEC-query initiates (and so generates
ephemeral keys for) two sessions.

Revision 1-2. In experiment 2 we replace the real resources (F,R) with the reference resources (H,DDH).
Define procedure G2

H,DDH from G1
F,R by making the following changes. First, modify the protocol so that

it declares T,U, derived , traffic table. And instead of computing “K ← R1(salt , en1(ikm), info)” (13:64),
procedure KDF runs “K ← R1(ikm); (i, j,X∗1 , X

∗
0 , ,)← ikm; derived [X∗1 , X

∗
0 , i, j]← 1”. Second, modify

the protocol by replacing each remaining call to R with a call to interface R as defined by the simulator on
lines 14:33-49. Third, modify the experiment so that the adversary’s resource queries are answered by R,
rather than providing it direct access to the resources. Fourth, replace (F,R) with (H,DDH).

Observe that session keys are now being computed by calls to the reference RO H, whereas the traffic
keys are computed by making queries to a simulation of the real ROs F,R. The reference RO takes as
input an element of T , but the real RO (now being simulated) takes as input an element of ({0, 1}∗)3. That
is, the reference RO only takes in ikm, whereas the real RO takes in the salt salt , encoded = en1(ikm),

37

and an information string (one of info1, info0, or info). If two sessions compute the same ikm but distinct
salts and/or information strings, then the session keys would have a high probability (close to 1) of being
distinct in experiment 1, but would be the same in experiment 2. However, this situation is impossible: by
revision 0-1, there exists no (X∗1 , X

∗
0) and distinct (i, j), (i′, j′) ∈ C × S for which derived [X∗1 , X

∗
0 , i, j] = 1

and derived [X∗1 , X
∗
0 , i
′, j′] = 1. It follows that

Pr
[
G1
F,R(D)

]
= Pr

[
G2
H,DDH (D)

]
. (53)

Revision 2-3. Define procedure G3
H,DDH from G2

H,DDH by modifying the protocol specification and envi-
ronment as follows. Modify the environment so that it declares p̂w table and modify the SK-operator so
that it populates p̂w as the simulator does (14:9-11). Replace procedure KDF with a procedure SimKDF∗

that works just like SimKDF, except that it takes ikm as input, and we insert the following code between
lines 16:24 and 25:

1 if Kb = ⊥ then
2 if T [salt , en1(ikm), infob] 6= ⊥ then
3 if p = 1 then bad4 ← 1; Kb ← T [salt , en1(ikm), infob]

4 if p = 0 then bad5 ← 1; Kb ← T [salt , en1(ikm), infob]

That is, before simulating the traffic keys via the traffic table, procedure SimKDF∗ first consults the RO
table T to ensure the simulation does not override a previous RO query. If the query is incident to a passive
attack (p = 1), then the code sets a flag bad4; if the query is incident to an active attack (p = 0), then
the code sets a flag bad5. Whenever one of these conditions is met, SimKDF∗ sets the traffic key to be
consistent with the RO simulation. The substantive change in experiment 3 is that we simulate computation
of the traffic keys just as the simulator does, as long as doing so does not result in an inconsistent view of
the RO. This change does not affect the adversary’s view, so

Pr
[
G2
H,DDH (D)

]
= Pr

[
G3
H,DDH (D)

]
. (54)

Revision 3-4. Define G4
H,DDH from G3

H,DDH by removing the code “Kb ← T [salt , en1(ikm), infob]” imme-
diately after bad4 gets set. This occurs if the adversary queried RO query (salt , (i, j,X∗1 , X

∗
0 , sk , Z), infob)

prior to a passive attack for which the SID is (X∗1 , X
∗
0). Because SD is functional (by Def. 4), and because

the parties ensure that the Hellos correctly encode the key shares (13:22 and 42), the adversary cannot cause
the parties to compute the shared secret incorrectly. In particular, both X = X∗1 ·N−sk1 and Y = X∗0 ·N−sk0

are independently and uniformly distributed elements of G, and Z = gxy for x = loggX and y = logg Y .
Hence, an efficient adversary D who sets bad4 with non-negligible probability implies a way to solve the
GDH problem for G.

Define GDH-adversary C as follows. On input of (Θ,Φ elemG) and with DDH oracle named DDH, choose
n ←← [qe] and run G4

H,DDH(D). On the n-th EXEC-query to the auxiliary interface, compute the key shares
as X∗1 = Θ · N sk

1 and X∗0 = Φ · N sk
0 , where sk is the password generated by C as part of its simulation of

experiment 4. For the sessions corresponding to SID (X∗1 , X
∗
0), we do not know the shared secret, but this

is only used in experiment 4 to check if bad4 or bad5 should be set. We can disregard bad5, since it is only
set during an active attack; and in experiment 4, nothing happens after bad4 gets set. Instead of checking
if bad4 should be set, the adversary does as follows. During the n-th EXEC-query, replace SimKDF∗ with
SimKDF as defined in Figure 16, except that we insert some code between lines 16:24 and 25. The code
checks if there exists Z ∈ G such that DDH(Θ,Φ,Z) = 1 and T [salt , en1(i, j,X∗1 , X

∗
0 , sk i, Z), infob] 6= ⊥. If

such a Z exists, then C immediately halts and outputs Z. The probability that adversary C wins is at least
the probability that bad4 gets set during the n-th EXEC-query. Because n is uniform in [qe], and SimKDF

38

is called twice during an honest run, we conclude that

Pr
[
G3
H,DDH (D)

]
− Pr

[
G4
H,DDH (D)

]
≤ Pr

[
G4
H,DDH (D) sets bad4

]
≤ 2qeAdv

gdh
G (C) . (55)

Revision 4-5. Finally, define G5
H,DDH from G4

H,DDH by removing the code immediately after bad5 gets set.
This occurs if, prior to some SEND-query, the RO table was set at point (salt , en1(i, j,X∗1 , X

∗
0 , sk , Z), infob)

for some b ∈ {0, 1}, where (X∗1 , X
∗
0) is the SID computed by the session, i and j are the client and server, salt

and infob are computed as in SimKDF∗, and Z is the shared secret. Having reached this point in the code,
we know that the check on line 16:22-23 failed. This implies that sk was never previously revealed to the
adversary (p̂w i = ⊥). Because the SID (X∗1 , X

∗
0) is unique to the session (and its partner, if it exists), the

password sk determines a unique point in the RO table that would be set for a given session (or its partner).
Because the password generator is uniform, the probability of bad5 getting set by any one SEND-query is at
most 2/|P|. Summing over all such queries yields

Pr
[
G4
H,DDH (D)

]
− Pr

[
G5
H,DDH (D)

]
≤ Pr

[
G5
H,DDH (D) sets bad5

]
≤ 2qs
|P|

. (56)

Experiment 5. Noting that SimKDF∗ as defined in experiment 5 is the same as SimKDF as defined in
Figure 16, experiment 5 is functionally equivalent to the reference experiment. We conclude that

Pr
[
G5
H,DDH (D)

]
= Pr

[
Ref out

ψ

X̃/(H,DDH)
(D,S)

]
. (57)

Resources. To finish the proof, we need only to account for B and C’s resources. The runtime of S
includes the runtime of SD , since it uses this algorithm as a sub-routine. On any given call, it invokes SD

at most a constant number of times. Each call to SD results in at most qr queries to the RO, each of
which can be evaluated in time O(tDDH). Procedure SimKDF is called at most once, each call requiring
O(qr · tDDH)-time to evaluate. Finally, each call to X or R can be evaluated in constant time. The runtime
of S is therefore O(tA + qr · tDDH). Each call to its 2-interface results in at most 1 SEND-query, 1 EXEC-query,
and 2qr DDH -queries. Each call to its 3-interface results in at most 1 H-query and 1 DDH -query. The
runtime of B is therefore O(tA(tA + qr · tDDH)), and B makes at most qs SEND-queries, qe EXEC-queries,
2qr(qs + qe) + qr = O(qr(qs + qe)) DDH -queries, and qr H-queries.

Adversary C runs M in experiment 4 until a certain condition is meant. For each of M ’s aux./resource
queries, it does the same work as S: in particular, SEND- and EXEC-queries are O(tA + qr · tDDH)-time and
resource queries are O(tDDH)-time. Its runtime is therefore O((qs+qe)(tA+qr ·tDDH)) = O(tA(tA+qr ·tDDH)),
since qs + qe ≤ tA. Finally, it too makes at most O(qr(qs + qe)) DDH -queries. �

Remark 3. Let us briefly comment on the implications of using a DDH oracle in the resources for the
reference experiment. Any reduction to the reference experiment (i.e., any assumption used to bound B’s
advantage) must provide the attacker with this capability. In particular, suppose we find a reduction from
the CDH assumption to the Gψ-security of X̃ for some game G. Then the stronger GDH assumption would
be required in order to use the reduction to prove Gψ-security of X via Theorem 2. (Likewise for DLP and
Gap DLP [32].)

3.3 Discussion

In this section we considered the problem of protocol translation, where the real system is obtained from
the reference system by changing the protocol’s specification. The systems in question are eCK(Π) and
eCK(Π̃) respectively, where Π is some “real” AKE protocol, Π̃ is some “reference” AKE protocol, and eCK
specifies the execution environment for the eCK security model [46]. The translation framework allows us
to argue that Π is at least as secure as Π̃ by proving that the execution of Π is indifferentiable from the

39

execution of Π̃ (in the environment specified by eCK). In particular, our analysis of SPAKE2 shows that its
usage in TLS is at least as secure as SPAKE2 itself, with only a modest loss in concrete security. Moreover,
our result (Theorem 2) “lifts” all existing game-based treatments of SPAKE2 [4, 7, 1], in the sense that the
security models in these works can be captured as games in our framework.

However, there is a another security consideration for our extension that Theorem 2 does not explicitly
address. Although we have established that the TLS extension meets its intended security goal (i.e., that of
SPAKE2), it remains to be seen whether the extension’s availability leads to a cross protocol attack against
TLS. This seems unlikely, given that the client and server fail closed if the extension is not negotiated; but
our analysis does not offer any formal evidence either way.

Finally, related to protocol translation is the problem of environment translation, where instead of revising
the specification of the scheme, the real system is obtained by modifying the scheme’s execution environment.
A simple instance of this problem was discussed in §2.4 (cf. Theorem 1), where in the real system, the
scheme shared a key for use with Schnorr’s signature; the recent formal treatment of key reuse by Patton-
Shrimpton [51] can be thought of as a more general formulation of this problem. Key reuse is an especially
important instance of environment translation, but we expect there are other ways to usefully apply the
same reasoning.

Acknowledgements

Funding for this work was provided by NSF grant CNS-1816375. We thank the anonymous reviewers of
CRYPTO 2020 for their useful comments.

References

[1] Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint Archive, Report
2019/1194 (2019), https://eprint.iacr.org/2019/1194

[2] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES.
In: Topics in Cryptology — CT-RSA 2001. pp. 143–158. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

[3] Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-
party setting. In: Vaudenay, S. (ed.) Public Key Cryptography — PKC 2005. pp. 65–84. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

[4] Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange protocols. In: Menezes, A.
(ed.) Topics in Cryptology — CT-RSA 2005. pp. 191–208. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

[5] Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham, H., Boldyreva, A.
(eds.) Advances in Cryptology — CRYPTO 2018. pp. 187–220. Springer International Publishing, Cham
(2018)

[6] Barnes, R., Friel, O.: Usage of PAKE with TLS 1.3. Internet-Draft draft-barnes-tls-pake-
04, Internet Engineering Task Force (Jul 2018), https://datatracker.ietf.org/doc/html/
draft-barnes-tls-pake-04

[7] Becerra, J., Ostrev, D., Skrobot, M.: Forward secrecy of SPAKE2. In: Baek, J., Susilo, W., Kim, J.
(eds.) Provable Security. pp. 366–384. Springer International Publishing, Cham (2018)

40

https://eprint.iacr.org/2019/1194
https://datatracker.ietf.org/doc/html/draft-barnes-tls-pake-04
https://datatracker.ietf.org/doc/html/draft-barnes-tls-pake-04

[8] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption.
In: Proceedings 38th Annual Symposium on Foundations of Computer Science. pp. 394–403 (Oct 1997),
https://doi.org/10.1109/SFCS.1997.646128

[9] Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs, oracle cloning and
read-only indifferentiability. Cryptology ePrint Archive, Report 2020/241 (2020), https://eprint.
iacr.org/2020/241

[10] Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology — EUROCRYPT 2013. pp. 296–312. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

[11] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks.
In: Preneel, B. (ed.) Advances in Cryptology — EUROCRYPT 2000. pp. 139–155. Springer Berlin
Heidelberg, Berlin, Heidelberg (2000)

[12] Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application to password-based
cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology — CRYPTO 2012. pp.
312–329. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[13] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Proceedings of the 1st ACM Conference on Computer and Communications Security. pp. 62–73.
CCS ’93, ACM, New York, NY, USA (1993)

[14] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Advances in Cryptology —
CRYPTO ’93. pp. 232–249. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

[15] Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party case. In: Proceedings
of the Twenty-seventh Annual ACM Symposium on Theory of Computing. pp. 57–66. STOC ’95, ACM,
New York, NY, USA (1995), http://doi.acm.org/10.1145/225058.225084

[16] Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In:
Maurer, U. (ed.) Advances in Cryptology — EUROCRYPT ’96. pp. 399–416. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

[17] Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryp-
tology ePrint Archive, Report 2004/331 (2004), https://eprint.iacr.org/2004/331

[18] Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols secure against dictio-
nary attacks. In: Proceedings 1992 IEEE Computer Society Symposium on Research in Security and
Privacy. pp. 72–84 (May 1992), https://doi.org/10.1109/RISP.1992.213269

[19] Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-Béguelin, S.: Downgrade
resilience in key-exchange protocols. In: 2016 IEEE Symposium on Security and Privacyg. pp. 506–525
(May 2016), https://doi.org/10.1109/SP.2016.37

[20] Bhargavan, K.: Review of the balanced PAKE proposals. Mail to IRTF CFRG, September 2019 (2019),
https://mailarchive.ietf.org/arch/msg/cfrg/5VhZLYGpzU8MWPlbMr2cf4Uc-nI

[21] Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric encryption in the
presence of ciphertext fragmentation. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology
— EUROCRYPT 2012. pp. 682–699. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

41

https://doi.org/10.1109/SFCS.1997.646128
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2020/241
http://doi.acm.org/10.1145/225058.225084
https://eprint.iacr.org/2004/331
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/SP.2016.37
https://mailarchive.ietf.org/arch/msg/cfrg/5VhZLYGpzU8MWPlbMr2cf4Uc-nI

[22] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067 (2000), https://eprint.iacr.org/2000/067

[23] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In:
Vadhan, S.P. (ed.) Theory of Cryptography. pp. 61–85. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007)

[24] Canetti, R., Fischlin, M.: Universally composable commitments. Cryptology ePrint Archive, Report
2001/055 (2001), https://eprint.iacr.org/2001/055

[25] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key
exchange. In: Cramer, R. (ed.) Advances in Cryptology — EUROCRYPT 2005. pp. 404–421. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

[26] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels.
In: Advances in Cryptology — EUROCRYPT 2001. pp. 453–474. Springer Berlin Heidelberg (2001)

[27] Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications. In: Smart, N.
(ed.) Advances in Cryptology — EUROCRYPT 2008. pp. 127–145. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

[28] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash
function. In: Advances in Cryptology — CRYPTO 2005. pp. 430–448. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

[29] Coron, J.S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to build an ideal
cipher: The indifferentiability of the Feistel construction. Journal of Cryptology 29(1), 61–114 (Jan
2016), https://doi.org/10.1007/s00145-014-9189-6

[30] Cremers, C., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-
key reveal. Cryptology ePrint Archive, Report 2012/416 (2012), https://eprint.iacr.org/2012/416

[31] Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cam-
bridge University Press (2011)

[32] Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the joint security of
encryption and signature in EMV. In: Topics in Cryptology — CT-RSA 2012. pp. 116–135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

[33] Dowling, B., Paterson, K.G.: A cryptographic analysis of the WireGuard protocol. In: Preneel, B.,
Vercauteren, F. (eds.) Applied Cryptography and Network Security. pp. 3–21. Springer International
Publishing, Cham (2018)

[34] Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hashing to elliptic curves.
Internet-Draft draft-irtf-cfrg-hash-to-curve-07, Internet Engineering Task Force (Apr 2020), https:
//datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-07

[35] Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: A formal
treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacyg. pp.
452–469 (May 2016), https://doi.org/10.1109/SP.2016.34

[36] Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles
with(out) programmability. In: Abe, M. (ed.) Advances in Cryptology - ASIACRYPT 2010. pp. 303–
320. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

42

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2001/055
https://doi.org/10.1007/s00145-014-9189-6
https://eprint.iacr.org/2012/416
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-07
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-07
https://doi.org/10.1109/SP.2016.34

[37] Haase, B., Labrique, B.: AuCPace: Efficient verifier-based PAKE protocol tailored for the IIoT. Cryp-
tology ePrint Archive, Report 2018/286 (2018), https://eprint.iacr.org/2018/286

[38] Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security. pp. 215–224. CCS ’01, ACM, New York, NY,
USA (2001)

[39] Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In:
Advances in Cryptology — CRYPTO 2012. pp. 273–293. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[40] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure against pre-
computation attacks. Cryptology ePrint Archive, Report 2018/163 (2018), https://eprint.iacr.org/
2018/163

[41] Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N., Caballero, J.: Coming
of age: A longitudinal study of TLS deployment. In: Proceedings of the Internet Measurement Confer-
ence 2018. pp. 415–428. IMC ’18, Association for Computing Machinery, New York, NY, USA (2018),
https://doi.org/10.1145/3278532.3278568

[42] Krawczyk, D.H., Eronen, P.: HMAC-based extract-and-expand key derivation function (HKDF). RFC
5869 (May 2010), https://rfc-editor.org/rfc/rfc5869.txt

[43] Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE European Symposium on
Security and Privacy. pp. 81–96 (March 2016), https://doi.org/10.1109/EuroSP.2016.18

[44] Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology ePrint Archive,
Report 2005/176 (2005), https://eprint.iacr.org/2005/176

[45] Ladd, W., Kaduk, B.: SPAKE2, a PAKE. Internet-Draft draft-irtf-cfrg-spake2-10, Internet Engineering
Task Force (Feb 2020), https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-10

[46] LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo,
W., Liu, J.K., Mu, Y. (eds.) Provable Security. pp. 1–16. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007)

[47] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In: Theory of Cryptography. pp. 21–39. Springer Berlin
Heidelberg, Berlin, Heidelberg (2004)

[48] Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security of cryp-
tographic schemes. In: Public Key Cryptography. pp. 104–118. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001)

[49] Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS. In: Security Stan-
dardisation Research. pp. 160–186. Springer International Publishing, Cham (2016)

[50] Patton, C., Shrimpton, T.: Partially specified channels: The TLS 1.3 record layer without elision.
Cryptology ePrint Archive, Report 2018/634 (2018), https://eprint.iacr.org/2018/634

[51] Patton, C., Shrimpton, T.: Security in the presence of key reuse: Context-separable interfaces and their
applications. Cryptology ePrint Archive, Report 2019/519 (2019), https://eprint.iacr.org/2019/
519

43

https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2018/163
https://eprint.iacr.org/2018/163
https://doi.org/10.1145/3278532.3278568
https://rfc-editor.org/rfc/rfc5869.txt
https://doi.org/10.1109/EuroSP.2016.18
https://eprint.iacr.org/2005/176
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-10
https://eprint.iacr.org/2018/634
https://eprint.iacr.org/2019/519
https://eprint.iacr.org/2019/519

[52] Perrin, T.: The Noise protocol framework. Online white paper (July 2018), https://noiseprotocol.
org/noise.html

[53] Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437–447 (2000)

[54] Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.3. RFC 8446 (Aug 2018), https:
//rfc-editor.org/rfc/rfc8446.txt

[55] Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferen-
tiability framework. In: Advances in Cryptology — EUROCRYPT 2011. pp. 487–506. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

[56] Rogaway, P., Stegers, T.: Authentication without elision: Partially specified protocols, associated data,
and cryptographic models described by code. In: 2009 22nd IEEE Computer Security Foundations
Symposium. pp. 26–39 (July 2009)

[57] Rogaway, P., Zhang, Y.: Simplifying game-based definitions. In: Advances in Cryptology — CRYPTO
2018. pp. 3–32. Springer International Publishing, Cham (2018)

[58] Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (Jan
1991)

[59] Shoup, V.: Security analysis of SPAKE2+. Cryptology ePrint Archive, Report 2020/313 (2020), https:
//eprint.iacr.org/2020/313

[60] Skrobot, M., Lancrenon, J.: On composability of game-based password authenticated key exchange. In:
2018 IEEE European Symposium on Security and Privacy. pp. 443–457 (April 2018), https://doi.
org/10.1109/EuroSP.2018.00038

[61] Smyshlyaev, S.: Overview of existing PAKEs and PAKE selection criteria. IETF 104 (2019), https:
//datatracker.ietf.org/meeting/104/materials/slides-104-cfrg-pake-selection

[62] Smyshlyaev, S.: Round 2 of the PAKE selection process. Mail to IRTF CFRG, September 2019 (2019),
https://mailarchive.ietf.org/arch/msg/cfrg/-a1sW3jK_5avmb98zmFbCNLmpAs

[63] Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1.
In: Katz, J., Shacham, H. (eds.) Advances in Cryptology — CRYPTO 2017. pp. 570–596. Springer
International Publishing, Cham (2017)

[64] Sullivan, N., Krawczyk, D.H., Friel, O., Barnes, R.: Usage of OPAQUE with TLS 1.3. Internet-Draft
draft-sullivan-tls-opaque-00, Internet Engineering Task Force (Mar 2019), https://datatracker.ietf.
org/doc/html/draft-sullivan-tls-opaque-00, Work in progress

[65] Tackmann, B.: PAKE review. Mail to IRTF CFRG, October 2019 (2019), https://mailarchive.ietf.
org/arch/msg/cfrg/1sNu9USxo1lnFdzCL5msUFKBjzM

44

https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://eprint.iacr.org/2020/313
https://eprint.iacr.org/2020/313
https://doi.org/10.1109/EuroSP.2018.00038
https://doi.org/10.1109/EuroSP.2018.00038
https://datatracker.ietf.org/meeting/104/materials/slides-104-cfrg-pake-selection
https://datatracker.ietf.org/meeting/104/materials/slides-104-cfrg-pake-selection
https://mailarchive.ietf.org/arch/msg/cfrg/-a1sW3jK_5avmb98zmFbCNLmpAs
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque-00
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque-00
https://mailarchive.ietf.org/arch/msg/cfrg/1sNu9USxo1lnFdzCL5msUFKBjzM
https://mailarchive.ietf.org/arch/msg/cfrg/1sNu9USxo1lnFdzCL5msUFKBjzM

	Introduction
	The Translation Framework
	Objects
	Experiments and Indifferentiability
	The Lifting Lemma
	Games and the Preservation Lemma

	Protocol Translation
	eCK-Protocols
	Case Study: PAKE Extension for TLS 1.3
	Discussion

