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Abstract—With the development of AI systems, services using
them expand to various applications. The widespread adoption of
AI systems relies substantially on the ability to trust their output.
Therefore, it is becoming important for a client to be able to check
whether the AI inference services have been correctly calculated.
Since the weight value in a CNN model is an asset of service
providers, the client should be able to check the correctness of
the result without the weight value. Furthermore, when the result
is checked by a third party, it should be possible to verify the
correctness even without the user’s input data. Fortunately, zero-
knowledge Succinct Non-interactive ARguments of Knowledge
(zk-SNARKs) allow to verify the result without input and weight
values. However, the proving time in zk-SNARKs is too slow to
be applied to real AI applications.

This paper proposes a new efficient verifiable convolutional
neural network (vCNN) framework which accelerates the proving
performance tremendously. To increase the proving performance,
we propose a new efficient relation representation for convolution
equations. While the proving complexity of convolution is O(ln)
in the existing zk-SNARK approaches, it reduces to O(l + n)
in the proposed approach where l and n denote the size of
kernel and the data in CNNs. Experimental results show that
the proposed vCNN improves prove performance by 20 fold for
a simple MNIST and 18000 fold for VGG16. The security of the
proposed scheme is proven formally.

Index Terms—Convolutional Neural Networks, Verifiable Com-
putation, zk-SNARKs

I. INTRODUCTION

Machine learning and neural networks have greatly ex-
panded our understanding of data and the insights it carries.
Among these, convolutional neural networks (CNNs), based
on the convolution operation, are particularly useful tools
for classification and recognition, as compared with standard
neural networks. CNNs are easily trained with considerably
fewer connections and parameters while providing a better
recognition rate. Thus, CNNs generate various business op-
portunities such as those based on law, banking, insurance,
document digitization, healthcare predictive analytics, etc.
However, extra caution is required when applying CNNs to
safety critical applications since the incorrect result can cause
a severe damage. Hence, it is preferred to validate that the
result is correctly computed according to a given CNN model.

Consider a clinical decision support service application via
AI, such as IBM Watson as shown in Figure 1. In this
application, a hospital takes a patient’s CT scan or X-ray, and
sends the scanned image to the AI doctor. Then the AI doctor

diagnoses the disease based on the image and returns the
diagnosis result to the hospital and the patient. The integrity
check of the AI results is required since incorrect results may
endanger the life of the patient [1].

The most straightforward approach to verify the result is to
re-execute the same AI program. However, it is impossible in
most cases since the AI weight parameters are important IPs
and are not available publicly. In addition, the privacy of input
data is another issue to consider. In our scenario, we allow the
AI doctor to know the user’s input for diagnosis, but it may
be desirable to hide the user’s private information when the
diagnosis result is transferred to the third party such as an
insurance company. In this situation, it should be possible for
the insurance company to verify that the diagnosis result is
correct without the private information of input data as well
as AI weights.

Fortunately the recently advanced cryptographic tool called
zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARKs) [2]–[7] can solve the problem to verify the
correctness of results without revealing private information.
In zk-SNARKs, a prover generates a proof π using public
input/output data (or statement φ) and secret input data (or
witness w) for a given function. A verifier can check the
validity of the statement φ with the proof π without the secret
input data w. zk-SNARKs can also be used to protect the pri-
vacy of user’s input data from the verifier when used together
with a commitment scheme. The commitment scheme [8] is
a cryptographic primitive that allows one to commit to his
choice while keeping it hidden to others (hiding) so that he can
no longer change his choice (binding). Since the zk-SNARKs
proof can include the correct computation of the commitment
scheme, it can be verified with proof and commitment alone
that the result is computed correctly.

Figure 1 shows how zk-SNARKs is applied to an AI doctor.
The AI doctor first generates a commitment ca by committing
to AI weight values a and publishes the commitment ca in a
public repository so that the correctness computation of the
model can be transparently checked against the published ca.
The AI doctor computes a diagnosis result on received input
data x from the hospital and AI weights a. In addition, the
AI doctor makes a commitment cx from the input data x to
hide the input data, and generates a proof π for a statement
including the input commitment, the weight commitment and



Fig. 1: Verifiable AI doctor service scenario

the output result (φ = (cx, ca, y)) with a witness comprising
(w = (x, a)). The proof π and the statement φ is provided
to the hospital and the patient. Then they can check the
correctness of the statement φ with the proof π. Moreover,
the hospital and the patient can transfer the statement φ to any
third party like an insurance company. The insurance company
can also check the statement φ with the proof π without input
data x and weight values a.

The zk-SNARKs, however, require significant amount of
computations on the prover’s side. In zk-SNARKs, a function
is translated to an arithmetic circuit comprising addition and
multiplication gates to be represented as quadratic arithmetic
programs (QAPs). The proving time is proportional to the
number of multiplications in QAPs. In addition, the size
of public parameters called common reference string (CRS)
linearly increases according to the number of multiplications.
Thus, the main hurdle to apply zk-SNARKs to real applica-
tions is how to minimize the proving time.

In CNNs, the convolution operations become main perfor-
mance bottleneck to generate a proof. If the convolution is
expressed as an arithmetic circuit, the number of multiplica-
tions becomes O(|~x|×|~a|) where |~x| and |~a| represent the size
of the input and kernel data. For instance, the circuit size is
more than 6TB and the CRS size is approximately 1400TB,
and the proving time takes about 10 years in the state-of-the-
art zk-SNARKs [3] for VGG16 [9], a commonly used model
for image classification. Consequently, the main goal of this
paper is to improve the proving performance of CNNs.

A. Main Idea

It is crucial to optimize the convolution circuit to improve
the proving time in zk-SNARKs for CNNs since more than
90% operations are convolution operations in CNNs.

Fig. 2: Convolution in sum of products representation

Optimizing Convolutional Relation: We propose a new ef-
ficient QAP formula for convolution that significantly curtails
the number of multiplications. While existing approaches
check the correctness of the convolutions for every operation,
our approach builds an optimized checking relation for con-
volution operations by introducing an indeterminate variable.

Consider a convolution equation in the sum of products
as shown in Figure 2: yi =

∑l−1
j=0 aj · xi+l−1−j where

~xi = (xi, · · · , xi+l−1) denotes the i-th input vector, yi the
i-th output, and ~a = (a0, · · · , al−1) the kernel vector for
0 ≤ i ≤ n − l. Notably, the sum of product representation
contains O(|~x| · |~a|) number of multiplications.

Let us change the representation into a product of sums to
reduce the number of operations. A simple representation with
a product of sums is not sufficient to guarantee the convolution
relation. For example, in relation (

∑n−1
i=0 xi) · (

∑l−1
i=0 ai) =∑n+l−2

i=0 yi, many different y′i values can satisfy the relation
if
∑n+l−2
i=0 y′i =

∑n+l−2
i=0 yi.

To safeguard each yi equation, we combine indeterminate

2



Fig. 3: Convolution in product of sums

Z in the convolution representation as follows:

(

n−1∑
i=0

xiZ
i) · (

l−1∑
i=0

aiZ
i) =

n+l−2∑
i=0

yiZ
i. (1)

In Equation (1) an identity holds for all choices of Z. Figure 3
shows how the product of sums representation is mapped to
the sum of products representations shown in Figure 2. Note
that due to the compact representation in product of sums, it
requires additional equations called dummies including head
and tail parts.

Equation (1) requires a single multiplication of polynomials
or x(Z) · a(Z) = y(Z). Quadratic polynomial program
(QPP) [10] is a natural approach to allow polynomials in
QAP. As a result, the proving computation complexity be-
comes O(|~x| + |~a|) (|~x| + |~a| − 2 is the maximum degree of
polynomials), which is much smaller than O(|~x| · |~a|). Note
that the number of multiplications becomes amplified by the
maximum degree of polynomials in QPP.

Connection with ReLU and Pooling: Our newly proposed
formula using QPP minimizes a prover’s computation only
when convolution is verified; however, it is inefficient when
the prover proves computation of the whole CNNs with other
operations such as ReLU or pooling. Polynomial circuits are
represented using a single bivariate equation in QPP. Since
the division (required to generate a proof) is slow when QPP
is expressed as a bivariate polynomial, we convert it to a
univariate polynomial by increasing the polynomial degree to
utilize the fast division algorithm based on number theoretic
transform (NTT). To eliminate one variable, we change it into
the form of another variable with a higher degree. However,
the substitution of one variable by another incurs excessive
overheads in non-convolution operations, such as ReLU and
Pooling, thereby amplifying the degree of the equation to
O((|~x|+ |~a|)2).

Since the intermediates of convolutions and non-convolution
operations are independent, it is better to treat those oper-
ations separately to avoid mutual effects. In particular, to
alleviate the degree increments involving ReLU and Pooling,
we apply the polynomial circuit only to the convolution and
the arithmetic circuit to the rest part of CNNs, and build a
connecting proof between QPP and QAP using the commit and
prove SNARK (CP-SNARK) technique [11]. The CP-SNARK

technique guarantees that QPP and QAP are interconnected
with inputs for one component corresponding to outputs from
the other. To use this technique, we adopt commit and carry
SNARK (cc-SNARKs) [11] rather than traditional SNARK for
QPP and QAP, as commitments are required for interconnected
values with proofs. Figure 4 illustrates the overview of our
verifiable convolutional neural network scheme called vCNN.
As shown in Figure 1, CNNs are proved by generating
(cmqpp, πqpp) from QPP cc-SNARKs and (cmqap, πqap) from
QAP cc-SNARKs, respectively, and then interconnecting the
commitments through πcp. Hence, the final proof for our
proposed scheme is a tuple of two commitments and three
proofs (cmqap, cmqpp, πqap, πqpp, πcp). The proposed scheme
generates a single proof for QAP and QPP circuits even
for multiple layer CNNs, as all the convolution layers are
collected, QPP is applied to the collected convolution layer,
and QAP is applied to the other collected circuit in a similar
manner. See Section IV for details.

B. Contributions

We summarize our contributions as follows.

1) We propose a new QPP relation optimized for the con-
volutions and construct an efficient zk-SNARK scheme
of which CRS size and proving time are linear with the
input size and the kernel size, i.e., O(n+l). The proposed
scheme is a verifier-friendly zk-SNARK scheme with a
constant proof size, and its verification time complexity
linearly depends on the input and output only, regardless
of convolution intricacy.

2) We propose an efficient construction of vCNN to verify
the evaluation of the whole CNNs. Our construction
includes QPP-based zk-SNARKs optimized for convo-
lutions and QAP-based zk-SNARKs effectively working
for Pooling and ReLU, and interconnects them using CP-
SNARKs.

3) We prove that our construction provides computational
knowledge soundness and perfect zero-knowledge prop-
erties under the security properties of QAP- and QPP-
based zk-SNARKs and CP-SNARKs.

4) We implement vCNN and compare it with the existing zk-
SNARKs in terms of size and computation. The proposed
scheme improves the key generation/proving time 25 fold
and the CRS size 30 fold compared with the state-of-art
zk-SNARK scheme [3] for a small example of MNIST
(2-layer model) comprising a single convolution layer
with ReLU and a single pooling layer. For the realistic
application of VGG16, the proposed scheme improves the
performance at least 18000 fold, compared with [3]; the
proving time is reduced to 8 hours from 10 years, and the
CRS size is shortened to 80 GB from 1400 TB. Thus, we
provide the first efficient verifiable convolutional neural
network, which has been nearly impossible to realize so
far.
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Fig. 4: Proposed vCNN overview

C. Organization
The remainder of this paper is organized as follows: Sec-

tion II discusses related work. Section III describes prelim-
inaries for the proposed schemes. Section IV constructs a
verifiable CNN scheme using zk-SNARKs and Section V
represents experiment results. Finally, Section VI summarizes
and concludes the paper. Security proofs are presented in the
Appendix.

II. RELATED WORKS

Verifiable Computation. Various cryptographic proof sys-
tems [2]–[6], [10], [19]–[22] have been proposed to provide
the privacy and computational integrity. These systems have
been improved into many forms for the efficiency of their
provers and verifiers, and the expressiveness of the statement
being proven. Each scheme supports a general function, but
it tends to be efficient only for a specific function, so per-
formance issues may occur when applied to an application
composed of functions with multiple characteristic.

Goldwasser et al. [5] proposed the GKR protocol, an inter-
active proof protocol for a general function, where the func-
tion was represented as a layered arithmetic circuit, and the
circuit was proved using the sum-check protocol. GKR takes
O(S logS) computations for proof generation and O(d logS)
computations for verifying the proof, where S denotes the
circuit size and d the circuit depth. Cormode et al. [20] and
Thaler [23] subsequently optimized GKR, and Wahby et al. [6]
added zero-knowledge property, producing zk-SNARKs in the
ROM.

In contrast, Gennaro et al. [4] proposed a quadratic arith-
metic program (QAP) based zk-SNARK scheme, where QAP
is the representation of an arithmetic circuit as a polynomial
equation, and the circuit satisfiability is checked using poly-
nomial division. Parno et al. [2] proposed Pinocchio, the first
nearly practical QAP-based zk-SNARK scheme with eight
group elements for its proof, and implemented zk-SNARKs
tools. Groth [3] improved Pinocchio with a shorter proof
comprising only three group elements.

Other than theoretical developments, many studies have
investigated practical zk-SNARKs implementations. Lib-
snark [22], [24] implemented QAP-based zk-SNARK

schemes. Privacy preserving cryptocurrency Zcash [25] uti-
lizes libsnark as a real-world case, and other systems, such
as Zokrates and ZSL [26], [27], have also been proposed by
implementing zk-SNARKs using libsnark. The zk-SNARKs
system also requires a front-end compiler that converts a
function into a arithmetic circuit. Pinocchio [2] provides a C-
compiler that produces arithmetic circuits for its own scheme.
Kosba built Jsnark [28] which generates the arithmetic circuit
for zk-SNARKs using java language. It provides gadgets
that can easily convert conditional statements, loops, and
cryptographic schemes such as hashes and encryptions into
the arithmetic circuits that are difficult to perform in Pinocchio
compiler. He also proposed xjsnark [29] to convert their own
high-level language to an arithmetic circuit and optimized it.

Verifiable Neural Networks. To protect the privacy of the
input data and the model of deep neural networks, Dowlin
et al. proposed CryptoNets [12] based on using the fully
homomorphic encryption (FHE). Juvekar et al. accelerates the
overall performance through homomorphic matrix multiplica-
tion technique by proposing [13]–[15]. These schemes based
on homomorphic encryption focused on privacy and did not
consider execution integrity. Slalom [30] was proposed as a
verifiable neural network scheme using a trusted hardware,
Intel SGX. It uses Freivalds’ algorithm [31] on SGX which
verifies the correctness of matrix multiplication. Since the
inputs and outputs are exposed to use the algorithm, Slalom
adds random values to protect the privacy of the inputs and
outputs. However, Slalom aims to provide the privacy of the
inputs and outputs, and it does not focus on the privacy of the
model weight values.

Even though zk-SNARKs are generally applicable for
CNNs, they are not very efficient for some functions, partic-
ularly convolutions. Ghodsi et al. [16] proposed SafetyNet,
the first SNARK-based scheme supporting neural networks
specifically. SafetyNet is based on the GKR protocol [5],
which is suitable for linear functions. To effectively use this
advantage, it adopts a quadratic activation function (x2) rather
than ReLU, which reduces the neural network accuracy. Thus,
it is difficult to apply SafetyNet to actual models, since most
modern neural networks use ReLU. Zhao et al. proposed
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TABLE I: Verifiable neural network scheme security coverage and performance , where ~x denotes the input, ~a the kernel, and
~y the output.

Approach Privacy Integrity Activation function Proving time Proof size Verifying time
FHE [12]–[15] O X ReLU - - -
SafetyNet [16] X O Quadratic |~a| · |~x|+ |~y| |~a| · |~x|+ |~y| |~a| · |~x|+ |~y|
VeriML [17] O O Quadratic |~a| · |~x|+ |~y| 1 |~x|+ |~y|
Embedded proof [18] O O ReLU |~a| · |~x|+ |~y| 1 |~x|+ |~y|
vCNN (ours) O O ReLU |~a|+ |~x|+ |~y| 1 |~x|+ |~y|

VeriML [17] to verify neural networks using QAP-based zk-
SNARKs for machine learning as a service (MLaaS). Although
VeriML ensures both privacy and integrity, it requires a long
proving time, (O(|~a| · |~x| + |~y|)), where ~x denotes the input,
~a the kernel, and ~y the output.

Keuffer et al. [18] proposed an embedded proofs protocol
that combines the GKR and QAP schemes, using GKR for
linear and QAP for non-linear functions. To combine them,
the verifying process of GKR is verified in the QAP circuit.
However, it still has large computation complexity of (O(|~a| ·
|~x|+ |~y|)), as the input(~x) and kernel(~a) sizes are significantly
large in real applications.

III. PRELIMINARIES

First, we define some notations to avoid duplicate words.
The term [n] denotes the set of indices {0, 1, . . . , n− 1}. The
input of convolution is represented as {xi}i∈[n] where the
input size is n and the kernel of convolution is represented
as {ai}i∈[l] where the kernel size is l.

A. Bilinear groups

We use a Type III bilinear group (p,G1,G2,GT , e,G1, G2)
with the following properties:
• G1,G2,GT are groups of prime order p with generator
G1 ∈ G1, G2 ∈ G2.

• The pairing e : G1 ×G2 → GT is a bilinear map.
• e(G1, G2) generates GT .

B. Quadratic Arithmetic Program

Gennaro et al. [4] defined QAP as an efficient encoding
method for circuit satisfiability. QAP represents an arithmetic
circuit that encodes the constraints into the multiplication
gates. The correctness of the computation can be tested using
QAP by performing a divisibility check between polynomials.
A cryptographic protocol enables to check divisibility for
a single polynomial and prevents a cheating prover from
building a proof for a false statement that might be accepted.

Definition 1. Quadratic Arithmetic Program (QAP) A
QAP comprises three sets of polynomials {ui(X), vi(X),
wi(X)}mi=0 and a target polynomial t(X). The QAP computes
an arithmetic circuit if (c1, . . . , cl−1) are valid assignments
of both the inputs and outputs for the circuit iff there exist
coefficients (cl, . . . , cm) such that t(X) divides p(X), as
follows:

p(X) = (Σmi=1ci · ui(X)) · (Σmi=1ci · vi(X))− (Σmi=1ci · wk(X))

A QAP that satisfies the aforementioned definition computes
an arithmetic circuit. The size of QAP is m and its degree is
the degree of t(X).

In the above-mentioned definition, t(X) =
∏
i∈mul(x−ri),

where mul is the set of multiplication gates of the arithmetic
circuit and each rj is a random labeling for corresponding
multiplication gate. The polynomial ui(X) encodes the left
inputs, vi(X) encodes the right inputs, and wi(X) encodes
the gate outputs. By definition, if rj is a root for polynomial
p(X), p(rj) represents the relation between inputs and outputs
for the corresponding multiplicative gate g.

C. Quadratic Polynomial Program

QAP verifies wires that are represented as an arithmetic
value in an arithmetic circuit. Kosba et al. [10] subsequently
defined the quadratic polynomial program (QPP), similar to
QAP, except circuit wires that can be represented as a univari-
ate polynomial.

Definition 2. Quadratic Polynomial Program(QPP) A QPP
for a polynomial circuit comprises three sets of polynomials
{ui(X), vi(X), wi(X)}mi=1 and a target polynomial t(X).
The QPP computes the circuit if (c1(Z), . . . , cl(Z)) are valid
assignments of both the inputs and outputs iff there exist
coefficients (cl+1, . . . , cm) such that t(X) divides p(X,Z):

p(X,Z) = (Σmi=1ci(Z) · ui(X)) · (Σmi=1ci(Z) · vi(X))

− (Σmi=1ci(Z) · wk(X))
(2)

A QPP that satisfies this definition computes the circuit. The
size of QPP is m and its degree is the degree of t(X).

Similarly to the QAP definition, ui(X), vi(X), and wi(X)
represent a gate, where ui(X) encodes a left input, vi(X) a
right input, and wi(X) an output. If the left input wire of a
multiplication gate rj is cl(Z), then the right wire is cr(Z) and
the output is co(Z); hence cl(Z) ·cr(Z) = co(Z) and it can be
represented as (

∑m
i=1 ci(Z) · ui(rj))(

∑m
i=1 ci(Z) · vi(rj)) =

(
∑m
i=1 ci(Z) · wi(rj)).

D. Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

In this section, we recall the zk-SNARKs definition [2], [3].

Definition 3. A zero-knowledge succinct non-interactive argu-
ments of knowledge (zk-SNARKs) scheme for a relation R is
the quadruple of PPT algorithms (KeyGen,Prove,Verify,Sim)
as follows.
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• (crs, τ)← Setup(R): The setup algorithm takes a rela-
tion R ∈ Rλ as input, and returns a common reference
string crs and a simulation trapdoor td.

• π ← Prove(crs, φ, w): The prover algorithm takes a crs
for a relation R and (φ,w) ∈ R as input, and returns a
proof π.

• 0/1 ← Verify(crs, φ, π): the verifier algorithm takes a
crs, a statement φ, and a proof π as input, and returns
0(reject) or 1(accept).

• π ← Sim(crs, td, φ): The simulator algorithm takes a
crs, a simulation trapdoor td, and a statement φ as input,
and returns a proof π.

Completeness: An argument is complete if given true state-
ment φ, a prover with a witness can convince the verifier. For
all (φ,w) ∈ R, the probability of completeness is:

Pr

[
Verify(crs, φ, π) = 1

∣∣∣∣(crs, td)← Setup(R),
π ← Prove(crs, φ, w)

]
= 1

Computational knowledge soundness: An argument is com-
putational knowledge sound if the prover must know a witness
and such knowledge can be efficiently extracted from the
prover by using a knowledge extractor. Proof of knowledge
requires that for a PPT adversary A generating an accepting
proof, there must be an extractor χA that, given the same input
of A, outputs a valid witness such that

Pr

[
Verify(crs, φ, π) = 1
∧(φ,w) 6∈ R

∣∣∣∣ (crs, td)← Setup(R),
(φ, π, w)← (A|χA)(R, crs, z)

]
≈ 0

where z is auxiliary input.

Succinctness: The length of a proof is

|π| ≤ poly(k)polylog(|x|+ |w|)

.
Perfect zero-knowledge: An argument is zero-knowledge if
it does not leak any information other than the truth of the
statement. Notably, zk-SNARKs are perfect zero-knowledge
if for all (R, z)← R, (φ,w)← R and all adversaries A, one
has the following:

Pr

[
A(R, z, crs, td, π) = 1

∣∣∣∣(crs, td)← Setup(R),
π ← Prove(crs, φ, w)

]
=Pr

[
A(R, z, crs, td, π) = 1

∣∣∣∣(crs, td)← Setup(R),
π ← Sim(crs, td, φ)

]
E. Commit and Prove SNARKs

Commit and prove SNARKs (CP-SNARKs) [11] prove the
knowledge of (φ,w) such that u is a message of commitment
cm and a relation R(φ,w) = 1 where the witness u ∈ w.

Definition 4. CP-SNARKs include the quadruple PPT algo-
rithms (KeyGen,Prove,Verify,Sim) defined as follows.

• (crs, td) ← Setup(ck,R): The setup algorithm takes a
relation R ∈ Rλ and commitment key ck as input, and

returns a common reference string crs and a trapdoor td.

• π ← Prove(crs, φ, {cj , uj , oj}lj=1, w): The prover algo-
rithm takes as input a crs for a relation R, (φ,w) ∈ R,
commitments cj , inputs uj and opening oj , and returns
a proof π.

• 0/1← Verify(crs, φ, {cj}lj=1, π): The verifier algorithm
takes as input a crs, a statement φ, commitments cj and
a proof π, and returns 0 (reject) or 1 (accept).

• π ← Sim(crs, td, φ, {cj}lj=1): The simulator algorithm
takes a crs, a trapdoor td, a statement φ, and commit-
ments cj as input, and returns a proof π.

F. Commit and Carry SNARKs

Similar to the case of CP-SNARKs, the commit and carry
SNARKs (cc-SNARKs) scheme [11] proves a relation with
commitment, but it generates a commitment while proving the
relation.

Definition 5. cc-SNARKs have the quintuple of PPT algo-
rithms (KeyGen, Prove, Verify, VerifyCom, Sim) defined as
follows.

• (ck, crs, td) ← Setup(R): The setup algorithm takes as
input a relation R ∈ Rλ, and returns a commitment key
ck, a crs, and a simulation trapdoor td.

• (cm, π, ν) ← Prove(crs, φ, w): The prover algorithm
takes as a crs for a relation R and (φ = (ψ,ψ), w) ∈ R,
and returns a commitment cm for ψ which is a private
part of φ, a proof π, and an opening ν.

• 0/1← Verify(crs, ψ, cm, π): The verifier algorithm takes
as input a crs, a public part of statement ψ, commitments
cm and a proof π, and returns 0(reject) or 1(accept).

• 0/1 ← VerifyCom(ck, ψ, ν, cm): The verifier algorithm
takes as input a commitment key ck, a commitments cm,
a private part of statement ψ, and an opening ν, and
returns 0(reject) or 1(accept).

• (cm, π) ← Sim(crs, td, φ): The simulator algorithm
takes as a crs, a simulation trapdoor td, and a statement
φ, and returns a commitment cm and a proof π.

IV. VERIFIABLE CONVOLUTIONAL NEURAL NETWORK

This section constructs Verifiable Convolutional Neural Net-
work (vCNN) scheme to prove CNNs efficiently. Convolution
computations deteriorate the proving performance severely,
since it requires more than 90% of total proof generation
time in CNNs. First, we optimize the convolution relation
utilizing QPP [10] and construct an efficient QPP-based zk-
SNARK scheme for convolutions. Although the QPP approach
improves convolution performance, QPP representation of a
whole CNN degrades the performance due to the other CNN
components, such as ReLU and Pooling. Hence, we propose
a new efficient zk-SNARK framework for CNNs by applying
QPP to convolutions and QAP to the other components, and
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we build a connecting proof between QPP and QAP by using
CP-SNARKs technique [11].

A. Optimizing Convolution Relation

The convolution filters inputs using kernels by computing
the inner product for inputs and kernels, as depicted in
Figure 2. Thus, convolution can be expressed as

yi =
∑
j∈[l]

aj · xi−j+l−1 (3)

for i ∈ [n] where {aj}j∈[l] are convolution kernels, {xi}i∈[n]
are convolution inputs, and {yi}i∈[n−l] are convolution out-
puts. When the convolution is represented as QAP, n × l
multiplication gates are required, since there are n outputs
and l multiplications per output. Figure 5 shows a small
convolution example, where input size is 5, kernel size is 3,
and output size is 3, hence the QAP requires 9 multiplication
gates. ∑

i∈[n+l−1]

yi = (
∑
i∈[n]

xi) · (
∑
i∈[l]

ai) (4)

Since Equation (3) is the sum of products, which requires
many multiplication gates, we transform it into the product
of sums as shown in Equation (4) which includes a single
multiplication gate to reduce the number of multiplications.
However, the naive transformation is not sound, as it is easy
to find the incorrect output ~y′ which is different from the
correct output ~y such that sums of two outputs are equivalent.
Therefore, to distinguish each output yi, we introduce an
indeterminate variable Z for each equation as shown in Equa-
tion (5) which has O(|~x|+ |~a|)(= O(n+ l)) multiplications.

∑
i∈[n+l−1]

yi · Zi = (
∑
i∈[n]

xi · Zi) · (
∑
i∈[l]

ai · Zi) (5)

Notably, the transformation slightly increases the number
of outputs by n+ l− 1 from that in the original Equation (3)
with n outputs.

Fig. 5: Example of convolution

To formulate Equation (5), we can devise two approaches:
a point evaluation approach and a polynomial circuit with an
indeterminate variable. In the point evaluation approach, for
a polynomial of degree d, d + 1 different points should be
evaluated, requiring O(d2) (multiplicative) operations since
there are d multiplications per point evaluation and there are
d+ 1 points. Point evaluation can be performed using number
theoretic transform (NTT) in O(d log d). However, due to the
NTT complexity, the computation overhead in NTT is severer
than the naive point evaluation, unless d is large enough.

In a polynomial circuit (called Quadratic Polynomial Pro-
gram (QPP) [10]) a wire can have a polynomial as value.
Thus, we can directly express the revised equation as a single
multiplication gate with two input polynomials and one output
polynomial. While the point evaluation approach requires
quadratic O(d2) or quasi-linear O(d log d) multiplication oper-
ations, the QPP approach requests O(d) operations. Therefore,
this paper adopts QPP representation for convolution.

Construction of QPP-based zk-SNARKs: We construct a
QPP-based zk-SNARK scheme to prove Equation (5), similar
to [10], except we utilize Gro16 [3] rather than the Pinocchio
scheme [2]. While each wire can have only a value in QAP,
QPP allows each wire to have a polynomial. The concrete
QPP-based zk-SNARK scheme is as follows.

(crs, td) ← Setup(RQPP ) : Pick α, β, γ, δ, x, z $← Z∗p.
Define td=(α, β, γ, δ, x, z) and set

crs =



Gα1 , G
β
1 , G

δ
1, {Gx

i·zj
1 }dx−1,dzi=0,j=0 ,

Gβ2 , G
γ
2 , G

δ
2, {Gx

i·zj
2 }dx−1,dzi=0,j=0 ,

{G
βui(x)+αvi(x)+wi(x)

γ zj

1 }l,dzi=0,j=0,

{G
βui(x)+αvi(x)+wi(x)

δ zj

1 }m,dzi=l+1,j=0,

{G
xi·zj ·t(x)

δ
1 }dx−2,dzi=0,j=0


π ← Prove(crs, φ, w): Parse φ as (a0(Z), a1(Z), . . ., al(Z))
and w as (al+1(Z), . . ., am(Z)). Use the witness to compute
h(X,Z) from the QPP. Choose r, s $← Z∗p and output a proof
π = (Ga1 , Gb2, Gc1) such that

a = α+

m∑
i=0

ai(z)ui(x) + rδ b = β +

m∑
i=0

ai(z)vi(x) + sδ

c =
Σmi=l+1ai(z) · (βui(x) + αvi(x) + wi(x)) + h(x, z)t(x)

δ
+ as+ rb− rsδ

0/1 ← Verify(crs, φ, π) : Parse the statement φ as
(a0(Z), a1(Z), . . ., al(Z)) and the proof π as (A,B,C).
Accept the proof if and only if the following equation is
satisfied:

e(A,B) =e(Gα1 , G
β
2 ) · e(

l∏
i=0

G
ai(z)·

βui(x)+αvi(x)+wi(x)

γ

1 , Gγ2)

· e(C,Gδ2)

π ← Sim(crs, td, φ) : Pick a, b
$← Z∗p and compute a

simulated proof π = (Ga1 , G
b
2, G

c
1) with

c =
ab− αβ − Σli=0ai(z)(βui(x) + αvi(x) + wi(x))

δ

Theorem 1. The above protocol is a non-interactive zero-
knowledge arguments of knowledge with completeness and
perfect zero-knowledge. It has computational knowledge
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soundness against adversaries that only use a polynomial
number of generic bilinear group operations.

The QPP-based zk-SNARK scheme has the same as that of
the original QAP-based zk-SNARK scheme except that in the
former the terms in CRS include unknown value z to generate
a polynomial f(Z). We prove the knowledge soundness in
Appendix A.

Implementation challenge: To prove convolution in Equation
(5), a prover computes h(X,Z) by performing polynomial
division (p(X,Z)/t(X)) for Equation (2). Although the poly-
nomial division can be efficiently performed using NTT for
univariate polynomials, NTT is not directly applicable for
the bivariate polynomials in QPP. Therefore, we transform
bivariate polynomials to univariate polynomials. In QPP, the
degree of X in p(X,Z) is 2dx − 2, where dx is the number
of multiplication gates. Therefore, by setting Z = X2dx−1,
all terms can be distinct and the degree of p(X,X2dx−1) is
(2dx − 1)dz where dz is the maximum degree of Z. Since
there is one multiplication in Equation (5), and maximum
degree of Z is n + l − 1, the degree of p(X,Z) becomes
n + l − 1. Although converting bivariate polynomials to
univariate polynomials increases the equation degree, it is
significantly more efficient than QAP based approaches.

Although the total performance is expected to increase sig-
nificantly since QPP improves convolution proving time dra-
matically, the actual performance for CNNs is not improved.
Even if no Z variable is required in ReLU and Pooling, the
transformation of bivariate polynomials to univariate polyno-
mials increases the degree of X , which populates unnecessary
terms. The following subsection tackles this problem.

B. Connection with ReLU and Pooling
To solve the above problem, we apply QPP to convolution

and QAP to the remaining CNN modules, i.e., ReLU and Pool-
ing, respectively. To guarantee consistency between the QAP-
based ReLU and Pooling circuits and QPP-based convolution
circuits, we adopt CP-SNARKs [11].

Construction of commit and prove SNARKs: Commit and
prove SNARKs (CP-SNARKs) prove that multiple Pedersen-
like commitments are constructed on the same input. We refer
to the scheme in LegoSNARK’s Appendix. D [11]. Setup takes
two commitment keys, ck and ck′ as inputs and combines them
to generate a CRS. Prove creates a new proof π in which the
commitments are combined. If commitments c and c′ were
made using the same input, proof π passes verification.

(crs, td) ← Setup(Rcp, ck, ck′) : parse ck = {Ghi1 }li=0,
ck′ = {Gfi1 }li=0. Pick k1, k2, a

$← Zp and set crs = (Gk1·h0
1 ,

Gk2·f01 , {Gk1·hi+k2·fi1 }li=1, Gak12 , Gak22 , Ga2) and trapdoor
td = (k1, k2).

π ← Prove(crs, φ, w): parse r, r′, {ui}li=1 ∈ w and (A, B,
{Ci}li=1, vk1, vk2, vk3) ∈ crs. Compute π as

π = Ar ·Br
′
·
l∏
i=1

Cuii (6)

1/0← Verify(crs, φ, π): parse c, c′ ∈ φ and (A, B, {Ci}li=1,
vk1, vk2, vk3) ∈ crs. Accept the proof iff the following
equation is satisfied:

e(c, vk1) · e(c′, vk2) = e(π, vk3)

π ← Sim(crs, td, φ): parse k1, k2 ∈ td and c, c′ ∈ φ. Compute
a proof π as

π = ck1 · c′k2

Construction of cc-SNARKs from zk-SNARKs: To prove
that the same data are used in different zk-SNARKs using CP-
SNARKs, commitments should be generated in zk-SNARKs,
which is called cc-SNARKs. Fortunately, since the zk-SNARK
scheme in the previous subsection computes a Pedersen-like
commitment in verification, the cc-SNARK scheme can be nat-
urally constructed by utilizing the Pedersen-like commitment
without any additional overhead. Note that the Pedersen-like
commitment in the verification is as follows:

l∏
i=0

G
ai(z)·y(x)
1 =

∏
i∈[l],j∈[dz+1]

(
G
y(x)·zj
1

)ai,j
where y(x) = βui(x)+αvi(x)+wi(x)

γ .
We describe algorithms in cc-SNARKs based on zk-

SNARKs focusing on additional procedures. Setup adds a
commitment key G

η
γ

1 and a random G
η
δ
1 to the CRS. Prove

generates a commitment Gd1, and adds the −ν ηδ term to c
to cancel out the random part of the commitment during
verification. Verify takes cm as input and verifies proof π. A
new algorithm VerifyCom verifies the commitment cm. The
concrete algorithms are as follows.

(cm, π, ν) ← Prove(crs, φ, w): Parse φ as ψ =
(a0(Z), a1(Z), . . ., ac(Z)), and ψ = (ac+1(Z), ac+2(Z), . . .,
al(Z)) and w as (al+1(Z), . . ., am(Z)). Use the witness to
compute h(X,Z) from the QPP. Choose r, s, ν

$← Z∗p and
output a random ν, a commitment cm = Gd1, and a proof π
= (Ga1 , Gb2, Gc1) such that

a = α+

m∑
i=0

ai(z)ui(x) + rδ b = β +

m∑
i=0

ai(z)vi(x) + sδ

c =

∑m
i=l+1 ai(z) · (βui(x) + αvi(x) + wi(x)) + h(x, z)t(x)

δ

+As+ rB − rsδ − ν η
δ

d =

∑l
i=c+1 ai(z) · (βui(x) + αvi(x) + wi(x))

γ
+ ν

η

γ

0/1 ← Verify(crs, ψ, cm, π) : Parse the proof ψ as
(a0(Z), a1(Z), . . ., ac(Z)) and π as (A,B,C). Accept the
proof iff the following equation is satisfied:

e(A,B) =e(Gα1 , G
β
2 ) · e(cm,Gγ2)

· e(G
∑c
i=0 ai(z)·(βui(x)+αvi(x)+wi(x))

γ

1 , Gγ2) · e(C,Gδ2)
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0/1 ← VerifyCom(ck, ψ, ν, cm) : Parse ψ as
(ac+1(Z), ac+2(Z), . . ., al(Z)). Accept the proof iff
the following equation is satisfied:

cm = G

∑l
i=c+1 ai(z)·(βui(x)+αvi(x)+wi(x))

γ

1 ·Gν
η
γ

1

(ν, cm, π)← Sim(crs, td, φ) : Pick a, b, ν $← Z∗p and compute
a simulated commitment cm = Gd1 and simulated proof π =
(Ga1 , G

b
2, G

c
1) with

c =
ab− αβ −

∑l
i=0 ai(z)(βui(x) + αvi(x) + wi(x))− νη

δ

d =
Σli=0ai(z)(βui(x) + αvi(x) + wi(x)) + νη

γ

Theorem 2. The protocol given above is a non-interactive
zero-knowledge arguments of knowledge with completeness
and perfect zero-knowledge. It has computational knowledge
soundness against adversaries that only use a polynomial
number of generic bilinear group operations.

The proof for Theorem 2 is available in Appendix A. We
omit the concrete construction and security proof for the QAP-
based cc-SNARKs here since it is a special case of the QPP-
based cc-SNARKs; the degree of Z is zero.

C. Main Construction of vCNN

The proposed vCNN proves CNNs using cc-SNARKs
and CP-SNARKs. The relation of CNNs, RCNN , comprises
Rconvol, RReLU+Pool, and Rcp, where Rconvol is encoded in
QPP and RReLU+Pool is in QAP. Let Πqap = (Setup, Prove,
Verify, VerifyCom, Sim) be a QAP-based cc-SNARK scheme,
Πqpp = (Setup, Prove, Verify, VerifyCom, Sim) be a QPP-
based cc-SNARK scheme, and Πcp = (Setup, Prove, Verify,
Sim) be a CP-SNARK scheme.

(crs, td) ← Setup(RCNN ) : Parse RCNN as relation of
convolution Rconvol, and ReLU and Pooling RReLU+Pool.
Compute common reference string crs and trapdoor td as
follows:

ckqap, crsqap, tdqap ← Πqap.Setup(RReLU+Pool)

ckqpp, crsqpp, tdqpp ← Πqpp.Setup(Rconv)
crscp, tdcp ← Πcp.Setup(Rcp, ckqap, ckqpp)

Set crs = (crsqap, crsqpp, crscp) and td =
(tdqap, tdqpp, tdcp).

π ← Prove(crs, φ, w): Parse (φ, w) as (φqap, wqap) and
(φqpp, wqpp). Parse crs as (crsqap, crsqpp, crscp). Compute a

proof as follows:

πqap, rqap, cmqap ← Πqap.Prove(crsqap, φqap, wqap)

πqpp, rqpp, cmqpp ← Πqpp.Prove(crsqpp, φqpp, wqpp)

φcp = (cmqap, cmqpp)

parse φqap as (ψqap, ψqap)

parse φqpp as (ψqpp, ψqpp)

wcp = (rqap, ψqap, rqpp, ψqpp)

πcp ← Πcp.Prove(crscp, φcp, wcp)

Set π = (πqap, πqpp, πcp, cmqap, cmqpp).

0/1 ← Verify(crs, ψ, π) : Parse ψ = (ψqap, ψqpp). Parse
crs as (crsqap, crsqpp, crscp) and π as (πqap, πqpp, πcp,
cmqap, cmqpp). And parse πqap = (Aqap, Bqap, Cqap) and
πqpp = (Aqpp, Bqpp, Cqpp). Accept the proof iff the following
equation is satisfied:

assert Πqap.Verify(crsqap, ψqap, cmqap, πqap) = 1

assert Πqpp.Verify(crsqpp, ψqpp, cmqpp, πqpp) = 1

assert Πcp.Verify(crscp, (cmqap, cmqpp), πcp) = 1

π ← Sim(crs, td, φ) :Parse φ=(φqap,φqpp) and td =
(tdqap, tdqpp, tdcp). Compute a proof π as follows:

cmqap, πqap ← Πqap.Sim(crsqap, tdqap, φqap)

cmqpp, πqpp ← Πqpp.Sim(crsqpp, tdqpp, φqpp)

φcp = (cmqap, cmqpp)

πcp ← Πcp.Sim(crscp, tdcp, φcp)

Set π = (πqap, πqpp, πcp, cmqap, cmqpp).

Theorem 3. If Πqap, Πqpp, and Πcp are computationally
knowledge sound and perfect zero-knowledge, then the proto-
col given above is a non-interactive zero-knowledge arguments
of knowledge with completeness and perfect zero-knowledge.
It has computational knowledge soundness against adversaries
that only use a polynomial number of generic bilinear group
operations.

The proposed vCNN scheme generates a constant size proof
regardless of the number of layers in the neural network
models. Note that since the constraint relations are checked
in proof systems, the computation order can be ignored.
Therefore, we can build proofs for QPP and QAP at once
using given values without iterating layers. Consequently, the
proposed vCNN generates 9 group elements as proof: three
for QAP, three for QPP, two for commitment, and one for
CP-SNARKs.

D. Extension for Privacy Protection

The privacy of the data is required when the generated
proof is verified by a third party. If a commitment is used as
input rather than values in proof verification then the privacy
can be supported. The naive method to support commitment
is to include a relation of ”cm=commit(x)” in the circuit
where values x are provided as witness. Instead of adopting
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the commitment circuit, if we use CP-SNARKs then we can
accelerate the proving performance.

We perform Pedersen vector commitment to CNNs’ input
(or weight) values to use CP-SNARKs.

(cm, r)← Commit(ck, ψ): Parse ck as (Gck01 , Gck11 ,. . .,Gckl1 )

and ψ as (a1, . . . , al). Choose r $← Z∗p. Compute a commit-
ment as follows:

cm = Gck0·r1

l∏
i=1

Gcki·ai1

CP-SNARKs proves that value ai in the commitment cm
is equivalent to values used for the commitments in QAP and
QPP. A commitment key Gcki1 is included in CRS. Note that
cki = 0 if value ai is not included in commitment cm. In
the following we describe the CP-SNARKs construction. For
better delivery, the differences are highlighted in blue.

(crs, td) ← Setup(Rcp, ckqap, ckqpp, ck) : parse ckqap =

{Ghi1 }li=0, ckqpp = {Gfi1 }li=0, and ck = {Gcki1 }li=0. Pick
k1, k2, k3, a $← Zp and set crs = (Gk1·h0

1 , Gk2·f01 , Gk3·ck01

{Gk1·hi+k2·fi+k3·cki1 }li=1, Gak12 , Gak22 , Gak32 , Ga2) and trap-
door td = (k1, k2, k3).

π ← Prove(crs, φ, w): parse rqap, rqpp, r, {ui}li=1 ∈ w and
(A, B, C, {Di}li=1, vk1, vk2, vk3, vk4) ∈ crs. Compute π
as

π = Arqap ·Brqpp ·Cr ·
l∏
i=1

Dui
i

1/0 ← Verify(crs, φ, π): parse cmqap, cmqpp, cm ∈ φ and
(A, B, C, {Di}li=1, vk1, vk2, vk3, vk4) ∈ crs. Accept the
proof iff the following equation is satisfied:

e(cmqap, vk1) · e(cmqpp, vk2)·e(cm, vk3) = e(π, vk4)

π ← Sim(crs, td, φ): parse k1, k2, k3 ∈ td and cmqap, cmqpp,
cm ∈ φ. Compute a proof π as

π = cmk1
qap · cmk2

qpp·cmk3

Finally, we construct a vCNN to provide input privacy with
the revised CP-SNARKs which receives commitment cm as
input.

V. EXPERIMENT

This section compares the proving performance and the
CRS size in vCNN with existing zk-SNARKs scheme
(Gro16) [3]. Note that embedded proof [18] doubles the
proving performance compared with Gro16 while its com-
putational complexity remains. It is reasonable to speculate
that the performance result is double in the embedded proof
compared with Gro16 for applications in this section even if
the experimental result of the embedded proof is not included.

As real applications, we utilize LeNet-5 [32], AlexNet [33],
and VGG16 [9] models. We execute them on a Quad-core Intel
CPU i5 3.4 GHz and Ubuntu 16.04.

A. Convolutions

We first compare the performance and the size for convo-
lutions in the proposed scheme with the existing scheme [3].
Figures 6 and 7 illustrate the setup and the proof generation
time, and the CRS size, respectively by varying the input size
and the kernel depth (or channel). Since the proposed con-
volution optimization reduces the complexity of the proving
time and the CRS size to the addition of the input size and
the kernel depth from the multiplication, the performance gain
increases as the kernel depth increases.

B. Convolutional Neural Networks

We compare the proposed vCNN scheme with Gro16
scheme on various deep neural models from small CNNs to
real large models.

Small size CNNs: Figures 8 and 9 illustrate the experimental
results for a small CNN with one convolution layer and one
pooling layer. Figures 8 (a), (b), and (c) show the setup time,
the proving time, and the CRS size, respectively, by varying
the convolution input size where the kernel size is 10, the
kernel depth is 3, and the quantization bit depth is 10. Figure 9
increases the kernel depth to 15 while the other parameters
remain. In vCNN, the setup time is 2.6x faster , the proving
time is 3.3x faster, and the CRS size is 3.3x smaller than
Gro16 when the kernel size is 10. The setup time is up to
9x faster, the proving time is 7.5x faster, and the CRS size is
12.3x smaller as the kernel size becomes 50.

Figure 10 shows the result for a MNIST CNN model which
consists of a single convolution and pooling layer with the
9 (= 3 × 3) sized kernel and the 64 sized kernel depth by
varying the quantization bit depth from 16 to 32. Since non-
linear functions, such as ReLU, are required to be encoded
into bitwise operations, both the proving time and the CRS
size increase proportionally to the quantization bit depth. The
setup and the proof generation performance is up to 20x higher
and the CRS size is up to 30x smaller in vCNN than Gro16
when the quantization bit depth is 32.

Figure 11 illustrates multi-layer CNNs on the MNIST
dataset when the kernel size is 9 (=3×3) and the quantization
bit depth is 10. In this model, convolution and pooling
(including ReLU) layers alternate. The x axis represents the
number of layers, e.g., the model with 2 layers consists of a
convolution and a pooling layer, whereas in the model with
6 layers there are three convolution layers and three pooling
layers, respectively. Each convolution layer has a different
kernel depth. Kernel depths are given as 32, 64, and 128 for the
first, the second, and the third convolution layer, respectively.
Figures 11 (a)-(c) show that for the two layer model, the setup
time is 10.6x faster, the proving time is 12x faster, and the
CRS size is 14.5x smaller in vCNN than Gro16. The proposed
vCNN generates a proof in less than 11 seconds with 55MB
size CRS while the Gro16 scheme fails to generate proofs
when the number of layers is more than two due to the large
run-time memory requirement.
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Fig. 6: Proving time in Gro16 and vCNN for convolutions where the kernel size is 10

100 2500 5000 7500 10000

0

5

10

size of inputs

C
R

S
si

ze
[M

B
]

Gro16

vCNN

(a) kernel depth=1

100 2500 5000 7500 10000

0

10

20

30

size of inputs

(b) kernel depth=3

100 2500 5000 7500 10000

0

20

40

size of inputs

(c) kernel depth=5

Fig. 7: CRS size in Gro16 and vCNN for convolutions where the kernel size is 10
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Fig. 8: Comparison between vCNN and Gro16 [3] when the kernel size = 10, the kernel depth size = 3, and the quantization
bit depth = 10 bits

Real CNNs: We evaluate vCNN on several canonical
CNNs models: LeNet-5 [32], AlexNet [33], VGG16 and
VGG16wFC [9]. We utilize the average pool rather than the
max pool since the average pool requires a smaller circuit
than the max pool. In LeNet-5, AlexNet, and VGG16, the
fully connected layers are not considered while VGG16wFC
includes the fully connected layers.

Figures 12, 13, and 14 show the proving time and the CRS
size for AlexNet, VGG16, VGG16wFC in vCNN, respectively.
To evaluate various size models, we introduce a scale fac-
tor which reduces the kernel depth and the input size. For

example, ( 1
32 ,

1
7 ) denotes that the kernel depth decreases by

1
32 and the input size by 1

7 in every layer. Note that (1, 1)
represents the real model. As shown in the figures, the proving
performance and the CRS size are proportional to the number
of arithmetic gates in CNN circuits. Note that the results with
a scale factor (1,1) in AlexNet, and scale factors larger than
(1/2,1/7) in VGG16 are estimated values based on the number
of gates.

Table II summarizes the performance and the size in vCNN
and Gro16 [3]. In the table, we estimate the results in
Gro16 due to insufficient memory. In vCNN, the setup time,
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Fig. 9: Comparison between vCNN and Gro16 [3] when kernel size = 10, depth size = 15, and quantization bit depth = 10
bits

TABLE II: Comparison between vCNN and Gro16 for real CNN models

vCNN Gro16
setup prove verify |CRS| |proof| setup prove verify |CRS| |proof|

LeNet-5 19.47 s 9.34 s 75ms 40.07MB 1.5 hours 0.75 hours 75ms 11 GB
AlexNet 20 min 18 min 130ms 2.1 GB 2803 bits 16 days 14 days 130 ms 2.5 TB 1019 bits
VGG16 10 hours 8 hours 19.4s 83 GB 13 years 10 years 19.4s 1400 TB

VGG16wFC 2 days 2 days 19.4s 420 GB 13 years 10 years 19.4s 1400 TB

the proving time, and the CRS size are 291x faster and
smaller in vCNN than Gro16 for LeNet-5. Similarly, they are
1200x faster and smaller than Gro16 for AlexNet; 18000x
for VGG16; 3400x for VGG16 with FC. Note that Gro16
would require more than 10 years to generate a proof for
VGG16. The verification time is equivalent for all applications
in both vCNN and Gro16. Note that if the time to check the
commitment to the input data is excluded then the verification
time is less than 50ms for every application.

VI. CONCLUSION

In this paper, we propose a new efficient zk-SNARKs
scheme called vCNN which can generate a proof rapidly for
convolutional neural network models. We devise a new relation
representation for convolutions, which reduces the compu-
tational complexity.The experimental results show that the
proposed vCNN scheme reduces the proving time and the CRS
size approximately 18,000x for the canonical CNN models on
VGG16. The proposed scheme is proven to be perfectly zero-
knowledge and computationally knowledge sound. Designing
an efficient verifiable CNN training scheme will be our future
work.
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Fig. 10: Results when kernel size = 3 × 3 and kernel depth size = 64
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Fig. 11: MNIST CNN when kernel size is 3 × 3 and kernel depths are 32, 64, and 128 for each convolution layer
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Fig. 12: AlexNet in vCNN by varying the scale factor to the kernel depth and the input size
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Fig. 13: VGG16 in vCNN by varying the scale factorvCNN to the kernel depth and the input size
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Fig. 14: VGG16 with FC in vCNN by varying the scale factor to the kernel depth and the input size
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APPENDIX

A. Proof of Theorem 1 and 2

Proof. We demonstrate the NILP scheme soundness for the
proposed protocol as demonstrated in [3]. If the NILP
scheme is proved, then soundness for proposed scheme is
guaranteed in the Generic Group Model [3]. zk-SNARK and
cc-SNARK are similar aside from the random parameter for
the commitment. In the proof, zk-SNARK soundness(1) is
the special case of cc-SNARK soundness(2) when ν = 0.
Therefore we only prove Theorem 2 here.

We first consider an affine adversary A strategy with non-
negligible success probability of extracting a witness. First,
we set Z = X2dx−1 to reducing the variables. Then A can
generate a proof

A = Aαα+Aββ +Aγγ +Aδδ +A(x, x2dx−1)

+

l∑
i=0

dz∑
j=0

Ai,j
βui(x) + αvi(x) + wi(x)

γ
x(2dx−1)·j

+

m∑
i=l+1

dz∑
j=0

Ai,j
βui(x) + αvi(x) + wi(x)

δ
x(2dx−1)·j

+Ah(x, x2dx−1)
t(x)

δ
+Aηγ

η

γ
+Aηδ

η

δ

for known filed elements Aα, Aβ , Aγ , Aδ , Ai and poly-
nomials A(x, z), Ah(x, z). we construct B and C similarly
for the proof. In verification, the equation shows polynomials
equality. From the Schwartz-Zippel lemma, verification holds
the proof(A, B, and C) for indeterminates α, β, γ, δ, and x
if verification succeed.

Terms with indeterminates α2 are AαBαα2 = 0, i.e., Aα =
0 or Bα = 0. Since field operation is commutative, we can
assume Bα = 0. Terms with indeterminate αβ imply AαBβ+
AβBα = AαBβ = 1. Thus, AB = (ABβ)(AαB), and we
can assume Aα = Bβ = 1. Hence with indeterminate β2 now

imply AβBβ = Aβ = 0. This simplifies A and B constructed
by the adversary to have the form

A = α+Aγγ +Aδδ +A(x, x2dx−1) + · · ·
B = β +Bγγ +Bδδ +B(x, x2dx−1) + · · ·

Let us consider terms involving 1
δ2 .

 m∑
i=l+1

Ai,j(βui(x) + αvi(x) + wi(x)) · x
(2dx−1)·j

+ Ah(x, x
2dx−1

)t(x)


·

 m∑
i=l+1

Bi,j(βui(x) + αvi(x) + wi(x)) · x
(2dx−1)·j

+ Bh(x, x
2dx−1

)t(x)


= 0

Hence either left factor is 0. From symmetry, let us assume

(Σmi=l+1Ai(βui(x)+αvi(x)+wi(x))+Ah(x, x2dx−1)t(x)) = 0

. Therefore, terms in

α
Σm

i=l+1Bi(βui(x) + αvi(x) + wi(x)) +Bh(x, x2dx−1)t(x)

δ
= 0

imply that Σmi=l+1Bi(βui(x) + αvi(x) + wi(x)) +
Bh(x, x2dx−1)t(x) = 0.

Therefore, considering terms involving 1
γ ,

 l∑
i=0

Ai(βui(x) + αvi(x) + wi(x))

 ·
 l∑
i=0

Bi(βui(x) + αvi(x) + wi(x))


hence either left or right factor is 0. From symmetry, let us
assume (Σli=0Ai(βui(x)+αvi(x)+wi(x))) = 0. Thus, terms
in

β
Σli=0Bi(βui(x) + αvi(x) + wi(x))

γ
= 0

also imply Σli=0Bi(βui(x) + αvi(x) + wi(x)) = 0.
Thus, Aγβγ = 0, Bγαγ = 0, and added terms involving η

also (Aηγ
η
γ +Aηδ

η
δ )·β = 0, hence Aγ = 0, Bγ = 0, Aηγ = 0,

and Aηδ = 0.
Collecting these results,

A = α+A(x, x2dx−1) +Aδδ B = β +B(x, x2dx−1) +Bδδ

Remaining terms in the verification equation that in-
volve α imply αB(x, x2dx−1) = α

∑l
i=0 ai(x

2dx−1vi(x) +

α
∑m
i=l+1

∑dz
j=0 Ci,jvi(x)·x(2dx−1)·j . Defining ai(x2dx−1) =

Ci(x
2dx−1) =

∑dz
j=0 Ci,j · x(2dx−1)·j for i = l + 1, . . . ,m,

A(x, x
2dx−1

) =
m∑
i=0

ai(x
2dx−1

)ui(x) B(x, x
2dx−1

) =
m∑
i=0

ai(x
2dx−1

)vi(x)

Finally, collecting terms involving powers of x,
m∑
i=0

ai(x
2dx−1)ui(x) ·

m∑
i=0

ai(x
2dx−1)vi(x)

=

m∑
i=0

ai(x
2dx−1)wi(x) + Ch(x, x2dx−1)t(x)

Since Z = X2dx−1, Z degree ≥ X degree, and all
terms are independent. Thus, ai(X2dx−1) is irrelevant to
ui(X), vi(X), wi(X) and t(X), and hence

al+1(x2dx−1), . . . , am(x2dx−1) = Cl+1(x2dx−1), . . . , Cm(x2dx−1)

is a witness for the statement (a1(x2dx−1), . . . , al(x
2dx−1)).
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B. Proof of Theorem 3

Proof. We first prove the perfect zero-knowledge. There are
simulators for each scheme, and the commitment is the Ped-
ersen [34] vector commitment which provides perfect hiding.
Thus, proof has no information regarding witnesses, and hence
the scheme supports perfect zero-knowledge.

Next, we prove that the computational knowledge soundness
error is negligible. We define the computational knowledge
soundness errors for each scheme Πqap, Πqpp, and Πcp as
εqap, εqpp, and εcp, respectively, which are negligible; and
the extractors for each scheme are χqap, χqpp, and χcp,
respectively, which must exist due to the knowledge soundness
for each scheme. The extractor χ for the proposed scheme can
be composed of three extractors because each extractor can
generate a witness and the collection of all the witnesses is
the witness for the proposed scheme.

Now, we compute the computation knowledge soundness
error for the proposed scheme as follows:

Pr

[
Verify(crs, φ, π) = 1
∧(φ,w) 6∈ R

∣∣∣∣ (crs, td)← Setup(R),
(φ, π, w)← (A|χA)(R, crs, z)

]

= Pr


Πqap.Verify(crsqap, φqap, πqap) = 1
∧Πqpp.Verify(crsqpp, φqpp, πqpp) = 1
∧Πcp.Verify(crscp, φcp, πcp) = 1
∧((φqap, wqap) 6∈ RReLU+Pooling

∨(φqpp, wqpp) 6∈ Rconvol ∨ (φcp, wcp) 6∈ Rcp)


≤ Pr

 Π.Verify(crsqap, φqap, πqap) = 1
∧Πqpp.Verify(crsqpp, φqpp, πqpp) = 1
∧Πcp.Verify(crscp, φcp, πcp) = 1
∧(φqap, wqap) 6∈ RReLU+Pool



+ Pr

 Πqap.Verify(crsqap, φqap, πqap) = 1
∧Πqpp.Verify(crsqpp, φqpp, πqpp) = 1
∧Πcp.Verify(crscp, φcp, πcp) = 1
∧(φqpp, wqpp) 6∈ Rconvol



+ Pr

 Πqap.Verify(crsqap, φqap, πqap) = 1
∧Πqpp.Verify(crsqpp, φqpp, πqpp) = 1
∧Πcp.Verify(crscp, φcp, πcp) = 1

∧(φcp, wcp) 6∈ Rcp


≤ εqap + εqpp + εcp

where we used that εqap, εqpp, εcp are negligible in the last
two inequalities. Therefore the computational soundness error
is negligible.
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