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Abstract

Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the
well-know oblivious transfer primitive. It allows a sender, holding an affine
function f(x) = a + bx over a finite field or ring, to let a receiver learn
f(w) for a w of the receiver’s choice. In terms of security, the sender
remains oblivious of the receiver’s input w, whereas the receiver learns
nothing beyond f(w) about f . In recent years, OLE has emerged as an
essential building block to construct efficient, reusable and maliciously-
secure two-party computation.

In this work, we present efficient two-round protocols for OLE over
large fields based on the Learning with Errors (LWE) assumption, pro-
viding a full arithmetic generalization of the oblivious transfer protocol of
Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical
core of our work is a novel extraction technique which allows to determine
if a non-trivial multiple of some vector is close to a q-ary lattice.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a
sender and a receiver, where the sender inputs an affine function f(x) = a+ bx
over a finite field F, the receiver inputs an element w ∈ F, and in the end the
receiver learns f(w). The sender remains oblivious of the receiver’s input w and
the receiver learns nothing beyond f(w) about f . OLE can be seen as a gener-
alization of the well-known Oblivious Transfer (OT) primitive.1 In fact, just as
secure computation of Boolean circuits can be based on OT, secure computation
of arithmetic circuits can be based on OLE [GMW87, IPS09, AIK11].

In recent years, OLE has emerged as one of the most promising avenues
to realize efficient two-party secure computation in different settings [IPS09,
AIK11, ADI+17, DGN+17, BCGI18, HIMV19, CDI+19]. Interestingly, OLE has

1It is easy to see that, if we consider the affine function f : {0, 1} → {0, 1} such that
f(b) = m0 + b(m1 −m0), OLE trivially implements OT.
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found applications, not just in the secure computation of generic functions, but
also in specific tasks such as Private Set Intersection [GN19, GS19] or Machine
Learning related tasks [MZ17, JVC18].

Other aspects that set OLE apart from OT are reusability, meaning that the
first message of a protocol is reusable across multiple executions,2 and the fact
that even a semi-honest secure OLE can be used to realize maliciously secure
two-party computation [HIMV19].

Although OLE secure against semi-honest adversaries is complete for maliciously-
secure two-party computation [HIMV19], this comes at the cost of efficiency
and, thus, is it always preferable to start with a maliciously-secure one. More-
over, some applications of OLE even ask specifically for a maliciously-secure one
[GN19]. Given this state of affairs and the importance of OLE in constructing
two-party secure computation protocols, we ask the following question:

Can we build efficient and maliciously-secure two-round OLE protocols from
(presumed) post-quantum hardness assumptions?

1.1 Our Results

In this work, we give an affirmative answer to the question above. Specifically,
we present two simple, efficient and round-optimal protocols for OLE based on
the hardness of the Learning with Errors (LWE) assumption [Reg05], which is
conjectured to be post-quantum secure.

Before we start, we clarify what type of OLE we obtain. OLE comes in
many flavors, one of the most useful being vector OLE where the sender inputs
two vectors a = a, b = b ∈ F` and the receiver obtains a linear combination of
them z = a +wb ∈ F` [BCGI18]. For simplicity, we just refer to this variant as
OLE.

Both of our protocols implement the functionality in just two-rounds and
have the following properties:

• Our first protocol (Section 5) for OLE achieves statistical security against
a corrupted receiver and computational semi-honest security against a
corrupted sender based on LWE. Additionally, we show how we can extend
this protocol to implement batch OLE, a functionality similar to OLE
where the receiver can input a batch of values {xi}i∈[k′], instead of just
one value.

• Our main technical innovation is a new extraction technique which allows
to determine if a vector z ∈ Znq is of the form z = sA + α~e, where

the matrix A ∈ Zk×nq is given, and the unknown s ∈ Zkq , α ∈ Zq and

2While two-party reusable non-interactive secure computation (NISC) is impossible in the
OT-hybrid model [CDI+19], reusable NISC for general Boolean circuits is known to be possible
in the (reusable) OLE-hybrid model assuming one-way functions [CDI+19]. The result stated
above is meaningful only if we have access to a reusable two-round OLE protocol. The
only efficient realizations of this primitive are based on the Decisional Composite Residuosity
(DCR) and the Quadratic Residuosity assumptions [CDI+19].
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short vector e are to be determined. We provide an algorithm which
solves this problem efficiently given a trapdoor for the lattice Λ⊥q (A). We
believe that this contribution is of independent interest. In particular,
our extractor immediately leads to an efficient simulation strategy for the
PVW protocol [PVW08] even for super-polynomial moduli q.

• We then show how to extend our OLE protocol to provide malicious se-
curity for both parties (Section 6). The protocol makes λ invocations of a
two-round Oblivious Transfer protocol (which exists under LWE [PVW08,
Qua20]), where λ is the security parameter. By instantiating the OT with
the LWE-based protocols of [PVW08, Qua20], we preserve statistical se-
curity against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and compare
them with our proposal. We only consider schemes that are provable UC-secure
as our protocols. OLE can be trivially implemented using Fully/Somewhat
Homomorphic Encryption (e.g., [JVC18]) but these solutions are usually just
proven secure against semi-honest adversaries and it is unclear how to extend
security against malicious adversaries without relying on generic approaches
such as Non-Interactive Zero-Knowledge (NIZK) proofs.3 OLE can also be
trivially implemented using generic solutions for two-party secure computation
(via OT) such as [Yao82]. However, these solutions fall short in achieving an
acceptable level of efficiency.

The work of Döttling et al. [DKM12, DKMQ12] proposed an OLE protocol
with unconditional security, in the stateful tamper-proof hardware model. The
protocol takes only two rounds, however further interaction with the token is
needed by the parties.

In [IPS09], a semi-honest protocol for oblivious multiplication was proposed,
which can be easily extended to a OLE protocol. The protocol is based on noisy
encodings. Based on the same assumption, [GNN17] proposed a maliciously-
secure OLE protocol, which extends the techniques of [IPS09]. However, their
protocol takes eight rounds of interaction.

Chase et al. [CDI+19] presented a round-optimal reusable OLE protocol
based on the Decisional Composite Residuosity (DCR) and the Quadratic Resid-
uosity (QR) assumptions. The protocol is maliciously-secure and, to the best of
our knowledge, it is the most efficient protocol for OLE proposed so far. How-
ever, it is well-known that both the DCR and the QR problems are quantumly
insecure.

Recently, two new protocols for OLE based on the Ring LWE assumption
were presented in [BEPU+20, dCJV20]. Both protocols run in two rounds but
the protocol of [BEPU+20] either requires a PKI or a setup phase, and the
protocol of [dCJV20] is secure only against semi-honest adversaries.

3As an example consider the work of [CDI+19], where the Paillier cryptosystem is extended
into an OLE protocol with malicious security and the construction is highly non-trivial.
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We also remark that our protocols implement vector OLE where the sender’s
input are vectors over a field, as in [GNN17].

In Table 1, a brief comparison between several UC-secure OLE protocols is
presented.

Hardness
Assumption

Setup
Assumption

Rounds Reusability Security

[IPS09]
Noisy

Encodings
OT 3 - semi-honest

[DKM12] -
Stateful tamper
proof hardware

2 7 malicious

[GNN17]
Noisy

Encodings
OT 8 - malicious

[CDI+19] DCR & QR CRS 2 3 malicious
[BEPU+20] RLWE PKI/Setup 2 7 malicious
[dCJV20] RLWE - 2 - semi-honest

This work
LWE CRS 2 3

malicious
receiver

LWE CRS & OT 2 7 malicious

Table 1: Comparison between different OLE schemes.

1.3 Open Problems

Our first protocol is secure against semi-honest senders and, thus, it is trivially
reusable. However, our fully maliciously-secure protocol (in Section 6) does not
have reusability of the first message. Hence, the main open problem left in our
work is the following: Can we construct a reusable maliciously-secure two-round
OLE protocol based on the LWE assumption?

2 Technical Outline

We will now give a brief overview of our protocol. In abuse of notation, we
drop the transposition operator for transposed vectors and always assume that
vectors multiplied from the right side are transposed.

2.1 The PVW Protocol

Our starting point is the LWE-based oblivious transfer protocol of Peikert,
Vaikuntanathan and Waters [PVW08], which is based on Regev’s encryption
scheme [Reg05]. Since our goal is to construct an OLE protocol, we will de-
scribe the PVW scheme as a F2 OLE rather than the standard OT functionality.
Assume for simplicity that the LWE modulus q is even.
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The PVW scheme uses a common reference string which consists of a random
matrix A ∈ Zn×mq and a vector a ∈ Zmq , which together syntactically form
a Regev public key. Given the CRS (A,a), the receiver, whose input is a
choice bit b ∈ {0, 1} chooses a uniformly random s ∈ Znq and a e ∈ Zmq from a
(short) LWE error distribution, e.g. a discrete gaussian. The receiver now sets
z = sA + e− b · a. In other words, if b = 0 then (A, z) is a well-formed Regev
public key, whereas if b = 1 then (A, z + a) is a well-formed Regev public key.

The receiver now sends z to the sender who proceeds as follows. Say the
sender’s input are v0, v1 ∈ {0, 1}. The sender now encrypts v0 under the public
key (A, z) and v1 under (A,a) using the same randomness r. Specifically, the
sender chooses r ∈ Zm from a wide enough discrete gaussian, sets c = Ar,
c0 = zr + q

2v0 and c1 = ar + q
2v1. Now the sender sends (c, c0, c1) back to the

receiver. The receiver then computes and outputs y = db · c1 + c0 − scc2. Here
d·c2 denotes the rounding operation with respect to q/2.

To see that this scheme is correct, note that

b · c1 + c0 − sc = bar + b · q
2
v1 + zr + ·q

2
v0 − sAr

= bar + b · q
2
v1 + (sA + e− ba)r + ·q

2
v0 − sAr

=
q

2
(bv1 + v0) + er.

Since both e and r are short, er is also short and we can conclude that y =
db · c1 + c0 − scc2 = bv1 + v0.

Security. Security against semi-honest senders follows routinely from the hard-
ness of LWE. We will omit the discussion on security against malicious senders
for now and focus on security against malicious receivers.

The basic issue here is that a malicious receiver may choose z not of the
form z = sA + e− ba but rather arbitrarily.

It can now be argued that except with negligible probability over the choice

of a, one of the matrices A0 =

(
A
z

)
or A1 =

(
A

z + a

)
does not have a short

vector in its row-span. We can then invoke the Smoothing Lemma [MR07] to
argue that given c = Ar either zr or (z + a)r is statistically close to uniform.
In the first case we get that (c, c0, c1) statistically hides v0 = v0 + 0 · v1, in the
second case v0 + v1 = v0 + 1 · v1 is statistically hidden. In order to simulate, we
must determine which one of the two cases holds.

In [PVW08] this is achieved as follows. First, the matrix A is chosen together
with a lattice trapdoor [GPV08, MP12] which allows to efficiently decode a point
x ∈ Zmq to the point in the row-span of A closest to x (given that x is sufficiently
close to the row-span of A). The PVW extractor now tries to determine whether
there is a short vector in the row-span of A0 by going through all multiples αz
of z (for α ∈ Zq) and testing whether αz is close to the row-span of A. If such
an α is found, we know by the above argument that given Ar and zr it must
hold that (z+a)r is statistically close to uniform, and the simulator can set the
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extracted choice bit b to 0. On the other hand, if no such α is found, it sets the
extracted choice bit to 1 since we know that in this case zr is statistically close
to uniform given Ar and (z + a)r.

A severe drawback of this method is that the extractor must iterate over all
α ∈ Zq. Consequently, for the extractor to be efficient q must be of polyno-
mial size. A recent work of Quach [Qua20] devised an extraction method for
superpolynomial modulus q by using Hash Proof Systems (HPS)4. To make this
approach work the underlying Regev encryption scheme must be modified in a
way that unfortunately deteriorates correctness and prohibits linear homomor-
phism.

2.2 An Oblivious Linear Evaluation Protocol based on
PVW

We will now discuss our OLE modification of the PVW scheme. The basic
idea is very simple: We will modify the underlying Regev encryption scheme to
support a larger plaintext space, namely Zq1 for a modulus q1 and exploit linear
homomorphism over Zq1 , which will lead to an OLE over Zq1 .

Concretely, let q = q1 · q2 for a sufficiently large q2. We have the same
CRS as in the PVW scheme, i.e. a random matrix A ∈ Zn×mq and a random
vector a ∈ Zmq . Now the receiver’s input is a x ∈ Zq1 , and he computes z by
z = sA+e−x ·a (where s and e are as above). The sender’s input is now a pair
v0, v1 ∈ Zq1 , and the sender computes c = Ar, c0 = zr+q2v0 and c0 = ar+q2v1
(again r as above). Given (c, c0, c1) the receiver can recover y by computing
y = dx · c1 + c0 − sccq1 . Here d·cq1 is as usual defined by ducq1 = ·du/q2c. We
can establish correctness as above:

x · c1 + c0 − sc = xar + x · q2v1 + zr + q2v0 − sAr

= xar + xq2v1 + (sA + e− xa)r + q2v0 − sAr

= q2(xv1 + v0) + er.

Now, given that e and r are sufficiently short, specifically such that er is shorter
than q2/2 it holds that y = dx ·c1+c0−sccq1 = xv1+v0 and correctness follows.

A detailed description of the protocol is presented in Section 5.5 The pro-
tocol described there directly implements vector OLE, instead of just OLE as
presented above.

Security. Security against semi-honest senders follows, just as above, rou-
tinely from the LWE assumption. But for superpolynomial moduli q1 (which,
in the OLE setting, is the case we are mostly interested in) we are seemingly
at an impasse when it comes to proving security against malicious receivers: In
this case, the PVW extractor is not efficient and Quach’s technique [Qua20] is

4Despite numerous efforts, HPS in the lattice setting fall short in efficiency when comparing
to their group-based counterpart.

5The protocol presented in Section 5 is presented in a slightly, but equivalent, form.
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incompatible with our reliance on linear homomorphism of the Regev encryption
scheme.

Consequently, we need to devise an alternative method of extracting the
receiver’s input x. The core idea of our extractor is surprisingly simple: While
PVW choose the matrix A together with a lattice trapdoor, we will instead

choose the matrix A′ =

(
A
a

)
together with a lattice trapdoor T ∈ Zm×m (i.e.

a short square matrix T such that A′T = 0). This is possible as the vector a is
also provided in the CRS.

How does this help us to extract a x̃ ∈ Zq from the malicious receiver’s
message z? Let z ∈ Zmq be arbitrary, write z as z = sA − x · a + αd for some
s ∈ Znq , x ∈ Zq, α ∈ Zq and a d ∈ Zm of minimal length. In other words, there
exists no d∗ with ‖d∗‖ < ‖d‖ such that z can be written as z = s∗A+α∗d∗−x∗a
for some s∗, x∗ and α∗.

Then it holds that

(c, c0, c1) = (Ar, zr + q2v0,ar + q2v1) (1)

= (Ar, (sA− x · a + αd)r + q2v0,ar + q2v1) (2)

= (Ar, sAr− xar + αdr + q2v0,ar + q2v1) (3)

≈s (u, su− xu+ αdr + q2v0, u+ q2v1) (4)

≡ (u, su− xu′ + xq2v1 + αdr + q2v0, u
′) (5)

= (u, su + αdr− xu′ + q2(xv1 + v0), u′) (6)

≈s (Ar, sAr + αdr− xar + q2(xv1 + v0),ar) (7)

= (Ar, zr + q2(xv1 + v0),ar). (8)

In other words, we can simulate (c, c0, c1) given only xv1 + v0. In the above
derivation, (4) holds as by the partial smoothing lemma [BD18] as (Ar,ar,dr) =
(A′r,dr) ≈s (u′,dr) = (u, u,dr) where u ∈ Zmq and u ∈ Zq are uniformly
random. Equation (5) follows by a simple substitution u → u′ − q2v1, where
u′ ∈ Zq is also uniformly random. Equation (7) follows analogously to (4) via
the smoothing lemma.

Efficient Extraction It remains to be discussed how we can efficiently re-
cover x from z given the lattice trapdoor T for Λ⊥q (A′). We will recover the
representation z = s∗A + α∗d∗ − x∗a. Note that we can write z = s′A′ + αd,
where s′ = (s,−x). Setting f = zT we get

f = zT = (s′A′ + αd)T = αdT.

Assuming that d is sufficiently short, it holds that d′ = dT is also short. We
will now solve the equation system αd′ = f , in which f is known, for α and d′.
Write f = (f1, . . . , fm) and d′ = (d′1, . . . , d

′
m). Then we get the equation system

f1 = αd′1, . . . , fm = αd′m.
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We can eliminate α using the first equation and obtain the equations

−f2d′1 + f1d
′
2 = 0, . . . ,−fmd′1 + f1d

′
m = 0.

Now assume for simplicity f1 is invertible, i.e. f1 ∈ Z×q . Then we can express
the above equations as

−(f2/f1) · d′1 + d′2 = 0, . . . ,−(fm/f1) · d′1 + d′m = 0.

Consequently, it is sufficient to find the first coordinate d′1 to find all other
d′j = (fj/f1) · d′1.

To find the first coordinate d′1, we rely on the fact that solving the Shortest
Vector Problem (SVP) in a two-dimensional lattice can actually be done in poly-
nomial time (and essentially independently of the modulus q) [LP94]. Consider
the lattice Λj defined by Λj = Λ⊥q (bj), where bj = (−fj/f1, 1). First note that
d′j = (d′1, d

′
j) is a short vector in Λi. Furthermore, notice that det(Λj) = q as

the second component of bj is 1 (bj is primitive). Letting B = ‖d′j‖, we can
then argue via Hadamard’s inequality that any vector v ∈ Λi shorter than q/B
must be linearly dependent with d′j .

By applying a SVP solver, we are able to find the shortest vector gj =

(g
(1)
j , g

(2)
j ) in Λi. Observe that d′1 must be a multiple of g

(1)
j for all j = 2, . . . , n

(otherwise, gj would not be the shortest solution of the SVP instance). Hence,

d′1 can be computed by taking the least common multiple of g
(1)
1 , . . . , g

(1)
n .

Having recovered d′ ∈ Zm, we can recover d by solving the linear equation
system dT = d′ over Z to recover d. Finally, given d we can efficiently find
s′ ∈ Zn+1

q and α ∈ Zq using basic linear algebra by solving the equation system
s′A′ = z − αd. Given s′ we can set x to s′n+1. If no solution is found in this
process we set x = 0 by default. Now notice that we can write

z = s′A′ + αd = sA + xa + αd,

where s = (s′1, . . . , s
′
n). We remark that for a prime modulus q the above

analysis readily applies, whereas for composite moduli we need to take into
account several fringe cases.

Using a variant of the Smoothing Lemma [BD18] we can finally argue that
(Ar, zr + q2v0,ar + q2v1) only contains information about xv1 + v0, but leaks
otherwise no information about v0, v1.

2.3 Applications to PVW OT

Note that by setting q1 = 2 our OLE protocol realizes exactly the PVW proto-
col [PVW08]. Thus, our new extraction mechanism immediately improves the
PVW protocol by allowing the modulus q to be superpolynomial. Furthermore,
we can combine our extractor with the smoothing technique of Quach [Qua20]
to obtain a UC-secure variant of the PVW protocol with reusable CRS without
the correctness and efficiency penalties incurred by Quach’s protocol.
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2.4 Extending to Malicious Adversaries

It might seem that Quach’s smoothing technique [Qua20] immediately allows
us to prove security against malicious senders as well. And indeed, by choosing
a as a well-formed LWE sample a = s∗A + e∗ we can extract the sender’s input
v0, v1 from c, c0, c1. However, the issue presents itself slightly different: In the
real protocol the receiver computes and outputs y = dx·(c1−s∗c)+c0−sccq1 . If
c, c0, c1 are well-formed this is indeed a linear function in x. However, if c1−s∗c
or c0− sc is not close to a multiple of q2, then this is a non-linear function! But
by the functionality of OLE in the ideal model we have to compute a linear
function. Observe that this is not an issue in the case of OT (i.e. q1 = 2), as in
this case any 1-bit input function is a linear function. To overcome this issue for
OLE, we need to deploy a technique which ensures that c, c0, c1 are well-formed.

In a nutshell, the idea to make the protocol secure against malicious senders
is to use a cut-and-choose-style approach using a two-round OT protocol6, which
exists under various assumptions [PVW08, DGH+20, Qua20]. Using the OT,
the receiver is able to check if the vectors cj = Arj provided by the sender are
well-formed. More precisely, our augmented protocol works as follows:7

1. The receiver computes z = sA + e− xa for a uniform input x (in Section
6 we show how to remove the condition of x being uniform). Additionally,
it runs λ instances of the OT in parallel (playing the role of the receiver),
with input bits (b1, . . . , bλ)←$ {0, 1}λ chosen uniformly at random; and
sends the first messages of each instance.

2. For j ∈ [λ], the sender (with input (v0, v1)) computes cj = Arj , c0,j =
zrj+q2u0,j and c1,j = arj+q2u1,j for a gaussian rj and uniform (u0,j , u1,j .
It sets M0,j = (rj , u0,j , u1,j) and M1,j = (v̄0,j = v0 +u0,j , v̄1,j = v1 +u1,j)
and inputs (M0,j ,M1,j) into the OT. Moreover, cj , c0,j , c1,j are sent to the
receiver in the plain.

3. If bj = 0, the receiver can check that the values cj , c0,j , c1,j are indeed
well-formed, i.e. it holds cj = Arj , c0,j = zrj + q2u0,j , c1,j = arj + q2u1,j
and rj is short. If bj = 1, the receiver obtains a random OLE u0,j + xu1,j
(which can be obtained by computing y = dx · c1,j + c0,j − scjcq1). This
random OLE instance can be derandomized by computing yj = v̄0,j +
xv̄0,j − (u0,j + xu1,j). If yj coincides at all the positions where bj = 1,
then it outputs this value. Else, it aborts.

Security against an unbounded receiver in the OT-hybrid model essentially
follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted
sender. Sim checks for which of the positions j, the message M0,j is well-formed.
If all but a small number of them are well-formed, Sim proceeds; else, it aborts.
Then, having recovered the randomness (rj , u0,j , u1,j), Sim can extract a pair

6The approach is similar in spirit as previous works, e.g. [LP07]
7The construction actually works for any OLE scheme that is secure against semi-honest

senders and malicious receivers. In the technical sections we present the generic construction.
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(v0,j , v0,1) from (cj , c0,j , c1,j). If (v0,j , v0,1) coincides in at least half of the
positions, then Sim outputs this pair; else, if no such pair exists, Sim aborts.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”.

Let A ∈ Zk×nq and x ∈ Znq . Then ‖x‖ denotes the usual `2 norm of a vector

x. Moreover, ‖A‖ = maxi∈[m]{
∥∥a(i)

∥∥} where a(i) is the i-th column of A.

For a vector b ∈ {0, 1}k, we denote its weight, that is the number of non-null
coordinates, by wt(b).

If S is a (finite) set, we denote by x←$S an element x ∈ S sampled according
to a uniform distribution. Moreover, we denote by U(S) the uniform distribution
over S. If D is a distribution over S, x←$D denotes an element x ∈ S sampled
according to D. If A is an algorithm, y ← A(x) denotes the output y after
running A on input x.

A negligible function negl(n) in n is a function that vanishes faster than the
inverse of any polynomial in n.

Given two distributions D1 and D2, we say that they are ε-statistically
indistinguishable, denoted by D1 ≈ε D2, if the statistical distance is at most ε.

The function lcm(i1, . . . , ij) between j integers i1, . . . , ij is the smallest in-
teger a ∈ Z such that a is divisible by all i1, . . . , ij .

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An
ECC over Zq is composed by the following algorithms ECCq′,q,`,k,δ = (Encode,Decode)
such that: i) c ← Encode(m) takes as input a message m ∈ Z`q′ and outputs a

codeword c ∈ Zkq ; ii) m← Decode(c̃) takes as input corrupted codeword c̃ ∈ Zkq
and outputs a message m ∈ Z`q′ if ‖c̃− c‖ ≤ δ where c ← Encode(m). In this
case, we say that ECC corrects up to δ errors. We say that ECC is linear if any
linear combination of codewords of ECC is also a codeword of ECC.

An example of such code is the primitive lattice of [MP12] which allows for
efficient decoding and fulfills all the properties that we need. In this code, q = q′

and ` < k.
Alternatively, if m ∈ Z`q′ for q′t = q for some t ∈ N, we can use the encoding

c = t ·m which is usually used in lattice-based cryptography (e.g., [BPR12]).
Decoding a corrupted codeword c̃ works by rounding dc̃cq′ = d(1/t) · c̃c mod q′.

3.1 Universal Composability

UC-framework [Can01] allows to prove security of protocols even under arbitrary
composition with other protocols. Let F be a functionality, π a protocol that
implements F and Z be a environment, an entity that oversees the execution
of the protocol in both the real and the ideal worlds. Let IDEALF,Sim,Z be a
random variable that represents the output of Z after the execution of F with
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adversary Sim. Similarly, let REALGπ,A,Z be a random variable that represents
the output of Z after the execution of π with adversary A and with access to
the functionality G.

A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments E , the dis-
tributions IDEALF,Sim,Z and REALGπ,A,Z are computationally indistinguishable.

In this work, we only consider static adversaries. That is, parties involved
in the protocol are corrupted at the beginning of the execution.

We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a crs and distributes it be-
tween all the parties involved in the protocol. Here, we present the ideal func-
tionality as in [PVW08].

GCRS functionality

Parameters: An algorithm D.

• Upon receiving (sid,Pi,Pj) from Pi, GCRS runs crs← D(1κ) and returns
(sid, crs) to Pi.

• Upon receiving (sid,Pi,Pj) from Pj , GCRS returns (sid, crs) to Pj .

OT functionality. Oblivious Transfer (OT) can be seen as a particular case
of OLE. We show the ideal OT functionality below.

FOT functionality

Parameters: sid ∈ N known to both parties.

• Upon receiving (sid, (M0,M1)) from S, FOT stores (M0,M1) and ig-
nores future messages from S with the same sid;

• Upon receiving (sid, b ∈ {0, 1}) from R, FOT checks if it has recorded
(sid, (M0,M1)). If so, it returns (sid,Mb) to R and (sid, receipt) to S,
and halts. Else, it sends nothing, but continues running.

OLE functionality. We now present the OLE functionality. This function-
ality involves two parties: the sender S and the receiver R.

11



FOLE functionality

Parameters: sid, q, k ∈ N and a finite field F known to both parties.

• Upon receiving
(
sid, (a,b) ∈ Fk × Fk

)
from S, FOLE stores (a,b) and

ignores future messages from S with the same sid;

• Upon receiving (sid, x ∈ F) from R, FOLE checks if it has recorded
(sid, (a,b)). If so, it returns (sid, z = a + xb) to R and (sid, receipt) to
S, and halts. Else, it sends nothing but continues running.

Batch OLE functionality. Here we define a batch version of the functional-
ity defined above. In this functionality, the receiver inputs several OLE inputs
at the same time. The sender can then input an affine function together with
an index corresponding to which input the receiver should receive the linear
combination.

FbOLE functionality

Parameters: sid, q, k, k′ ∈ N and a finite field F known to both parties.

• Upon receiving
(
sid, {(ai,bi)}i∈[k′] ∈ Fk × Fk

)
from S, FbOLE stores

{(ai,bi)}i∈[k′] and ignores future messages from S with the same sid;

• Upon receiving (sid, {xi}i∈[k′]) from R, where xi ∈ F, FbOLE

checks if it has recorded
(
sid, {(ai,bi)}i∈[k′]

)
. If so, it returns(

sid, {zi = ai + xibi}i∈[k′]
)

to R and (sid, receipt) to S, and halts. Else,
it sends nothing but continues running.

3.2 Lattices and Hardness Assumptions

Notation. Let B ∈ Rk×n be a matrix. We denote the lattice generated by B
by Λ = Λ(B) = {xB : x ∈ Zk}.8 The dual lattice Λ∗ of a lattice Λ is defined
by Λ∗ = {x ∈ Rn : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ.

We denote by γB the ball of radius γ centered on zero. That is

γB = {x ∈ Zn : ‖x‖ ≤ γ}.

A lattice Λ is said to be q-ary if (qZ)n ⊆ Λ ⊆ Zn. For every q-ary lattice Λ,
there is a matrix A ∈ Zk×nq such that

Λ = Λq(A) = {y ∈ Zn : ∃x ∈ Zkq ,y = xA mod q}.

The orthogonal lattice Λ⊥q is defined by {y ∈ Zn : AyT = 0 mod q}. It holds

that 1
qΛ⊥q = Λ∗q

8The matrix B is called a basis of Λ(B).
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Let ρs(x) be probability distribution of the Gaussian distribution over Rn
with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S)
for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
number σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε [MR07].

Useful Lemmata. The following lemmas are well-known results on discrete
Gaussians over lattices.

Lemma 1 ([Ban93]). Let σ > 0 and x←$DZn,σ. Then we have that

Pr
[
‖x‖ ≥ σ

√
n
]
≤ negl(n) .

The next lemma is a consequence of the smoothing lemma [MR07] and it
tells us that AeT is uniform, when e is sampled from a discrete Gaussian for a
proper choice of parameters.

Lemma 2 ([GPV08]). Let q ∈ N and A ∈ Zk×nq be a matrix such that n =

poly(k log q). Moreover, let ε ∈ (0, 1/2) and σ ≥ ηε(Λ⊥q (A)). Then, for e←$DZm,σ,

AeT mod q ≈2ε uT mod q

where u←$Zkq .

The partial smoothing lemma tells us that the famous smoothing lemma
[MR07] still holds even given a small leak.

Lemma 3 (Partial Smoothing [BD18]). Let q ∈ N, γ > 0 be a real number, A ∈
Zk×nq and σ, ε > 0 be such that ρq/σ(Λq(A) \ γB) ≤ ε. Moreover, let D ∈ Zm×kq

be a full-rank matrix with Λ⊥q (D) = {x ∈ Zn : x · yT = 0,∀y ∈ Λq(A) ∩ γB}.
Then we have that

AxT mod q ≈ε A(x + u)T mod q

where x←$DZn,σ and u←$ Λ⊥q (D) mod q.

Recall Hadamard’s inequality.

Theorem 1 (Hadamard’s inequality). Let Λ ⊆ Rn be a lattice and let e1, . . . , en
be a basis of Λ. Then it holds that

det(Λ) ≤
n∏
i=1

‖ei‖.

The following two lemmas give us an upper-bound on and the value of the
determinant of a two-dimensional lattice Λ⊥q (a) for a ∈ Z2

q.
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Lemma 4. Let q ∈ N, B ∈ R and a ∈ Z2
q such that a 6= 0. Let e, e′ ∈ Z2

such that e, e′ ∈ Λ⊥q (a), ‖e‖ , ‖e′‖ < B and e, e′ are linearly independent over

Z. Then det
(
Λ⊥q (a)

)
≤ B2.

Proof. First note that Λ⊥q (a) ⊆ Z2. Recall that the determinant of Λ⊥q (a)

is identical to the volume of the parallelepiped defined by
∑k
i=1 bi · [0, 1) for

any basis (b1, . . . ,bk) of Λ⊥q (a) (see e.g. [Reg05]). Since e, e′ are linearly

independent and e, e′ ∈ Λ⊥q (a), then the pair (e, e′) is part of a basis of Λ⊥q (a).

Thus, by Hadamard’s inequality it holds that det
(
Λ⊥q (a)

)
≤ ‖e‖·‖e′‖ ≤ B2.

We will need the following simple Definition and Lemma.

Definition 1. Let q be a modulus. We say that a vector a ∈ Znq is primitive,

if the row-span of of a> is Zq. In other words it holds that every z ∈ Zq can be
expressed as z = 〈a,x〉 for some x ∈ Znq .

Lemma 5. Let q be a modulus an let a ∈ Znq be primitive. Then it holds that

det(Λ⊥(a)) = q.

Proof. Since Λ⊥(a) ⊆ Zn, it holds that det(Λ⊥(a)) = |Zn/Λ⊥(a)|. Let c +
Λ⊥(a) ∈ Zn/Λ⊥(a) be a coset of Λ⊥(a). By definition of Λ⊥(a), it holds for all
x ∈ c + Λ⊥(a) that 〈a,x〉 = 〈a,x〉, i.e. the value z = 〈a,x〉 only depends on
the coset of x and is unique for this coset. Since a is primitive, every z ∈ Zq
can be expressed as z = 〈a,x〉, we conclude there are exactly q = |Zq| cosets in
Zn/Λ⊥(a). It follows by the above that det(Λ⊥(a)) = q.

The following lemma states that, for two-dimensional lattices, we can effi-
ciently find the shortest vector of the lattice.

Lemma 6 ([LP94]). Let q ∈ N, and let Λ ⊆ Z2 be a q-ary lattice. There
exists an algorithm SolveSVP that takes as input (a basis of) Λ and outputs the
shortest vector e ∈ Λ. This algorithm runs it time O(log q).

We will also need the following lemma which states that any sufficiently
short vector of the lattice Λ⊥q (a) must be a multiple of the shortest vector
e′ ← SolveSVP(a).

Lemma 7. Let q ∈ N, B <
√
q, a ∈ Z2

q be a primitive 2-dimensional vector

such that a 6= 0, and e ∈ Z2 be the shortest vector of the lattice Λ⊥q (a). If

‖e‖ < B then for any e′ ∈ Z2 such that e′ ∈ Λ⊥q (a) and ‖e′‖ < B we have that
e′ = te for some t ∈ Z, i.e., e′ is a multiple of e over Z.

Proof. We have that e, e′ ∈ Λ⊥q (a) and ‖e‖ , ‖e′‖ < B. Assume towards
contradiction that e, e′ are linearly dependent over Z. Then by Lemma 4
det
(
Λ⊥q (ai)

)
≤ B2.

On the other hand, we have that det
(
Λ⊥q (a)

)
= q by Lemma 5. Then q ≤ B2

and thus
√
q ≤ B, which contradicts the assumption that B <

√
q. We conclude

that e must be a multiple of e′ over the integers.
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The LWE Assumption. The Learning with Errors assumption was first pre-
sented in [Reg05]. The assumption roughly states that it should be hard to solve
a set linear equations by just adding a little noise to it.

Definition 2 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ), A ∈ Zk×nq

and β ∈ R. For any n = poly(k log q), the LWEk,β,q assumption holds if for every
PPT algorithm A we have

|Pr [1← A(A, sA + e)]− Pr [1← A(A,y)]| ≤ negl(λ)

for s←$ {0, 1}k, e←$DZn,β and y←$ {0, 1}n.

Regev proved in [Reg05] that there is a (quantum) worst-case to average-case
reduction from some problems on lattices which are believed to be hard even in
the presence of a quantum computer.

Trapdoors for Lattices. Recent works [GPV08, MP12] have presented trap-
doors functions based on the hardness of LWE.

Lemma 8 ([GPV08, MP12]). Let τ(k) ∈ ω
(√

log k
)

be a function. There is a
pair of algorithms (TdGen, Invert) such that if (A, td)← TdGen(1λ, n, k, q) then:

• A ∈ Zk×nq where n ∈ O(k log q) is a matrix whose distribution is 2−k close

to the uniform distribution over Zk×nq .

• For any s ∈ Zkq and e ∈ Znq such that ‖e‖ < q/(
√
nτ(k)), we have that

s← Invert(td, sA + e).

In the lemma above, td corresponds to a short matrix T ∈ Zn×n (that is,
‖T‖ < B, for some B ∈ R and B determines the trapdoor quality [GPV08,
MP12]) such that AT = 0 and T−1 can be easily computed. To invert a sample
of the form y = sA + e, we simply compute yT = sAT + eT = eT. The error
vector e can be easily recovered by multiplying by T−1.

Observe that, if (A, tdA)← TdGen(1λ, n, k, q), then Λ(A) has no short vec-
tors. That is, for all y ∈ Λ(A), then ‖y‖ > B = q/(

√
nτ(k)) [MP12]. If this

does not happen, then the algorithm Invert would not output the right s for a
non-negligible number of cases.

4 Finding Short Vectors in a Lattice with a Trap-
door

In this section, we provide an algorithm that, given a matrix A ∈ Zk×nq together
with the corresponding lattice trapdoor tdA (in the sense of Lemma 8), we can
decide if a vector a ∈ Znq is close to the row-span of A, i.e. if a is close to the
lattice Λq(A), and even find the closest vector in Λq(A).
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To keep things simple, we will only consider the case where q is either a
prime or the product of a ”small” prime q1 and a ”large” prime q2.

Before providing the algorithm, we will first prove the following structural
result about equation systems of the form y = re( mod q), where y ∈ Znq is
given and r ∈ Zq and a short e ∈ Zn are to be determined.

Lemma 9. Let q be a modulus and let B2 ≤ q. Let y ∈ Znq be a vector such
that there is an index i for which yi ∈ Z∗q . Assume wlog that y1 ∈ Z∗q . Define
the q-ary lattice Λ as the set of all x = (x1, . . . , xn) ∈ Zn for which it holds that
−yi/y1 · x1 + xi = 0( mod q) for i = 2, . . . , n. Now let r ∈ Zq and e ∈ Zn be
such that y = r · e. Then e ∈ Λ. Furthermore, all x ∈ Λ with ‖x‖ ≤ B are
linearly dependent. In other words, if there exists a x ∈ Λ\{0} with ‖x‖ ≤ B,
then there exists a x∗ ∈ Λ such that every x ∈ Λ with ‖x‖ ≤ B can be written
as x = t · x∗ for a t ∈ Z.

Proof. First not that if y = r · e for an r ∈ Zq and an e ∈ Zn, then it holds
routinely that −yi/y1 · e1 + ei = 0 for all i = 2, . . . , n. We will now show
the second part of the lemma, namely that if there exists an x ∈ Λ\{0} with
‖x‖ ≤ B, then any such x can be written as x = t · x∗ for a x′ ∈ Λ, which is
the shortest non-zero vector in Λ. Let x = (x1, . . . , xn) ∈ Zn and define the
shortened vectors xi = (x1, xi) ∈ Z2. Note that since ‖x‖ ≤ B, it also holds that
‖xi‖ ≤ B. Further define the lattices Λi ⊆ Z2 (for i = 2, . . . , n) via the equation
−yi/y1x1 + xi = 0, and observe that xi ∈ Λi. Further let x∗i = (x∗1,i, x

∗
i ) be the

shortest non-zero vector in Λi. Set x†1 = lcm(x∗1,2, . . . , x
∗
1,n) and x†i = x∗i ·x

†
1/x
∗
1,i,

and set set x† = (x†1, . . . , x
†
n). Note that x† ∈ Λ. We claim that x can be written

as x = t · x†, hence x† is the shortest vector in Λ.
Since ‖xi‖ ≤ B it follows by Lemma 7 that we can write xi as xi = ti · x∗i

for a ti ∈ Z. That is x1 = ti · x∗1,i and xi = ti · x∗i . Now, since x∗1,i divides x1 for

i = 2, . . . , n, it also holds that x†1 = lcm(x∗1,2, . . . , x
∗
1,n) divides x1. Thus write

x1 = t† · x†1 for some t†, and it follows that

t† · x†i = t† · x∗i · x
†
1/x
∗
1,i

= x∗i · x1/x∗1,i
= x∗i · ti
= xi,

for i = 2, . . . , n. We conclude that x = t† · x†.

The proof of Lemma 9 suggest an approach to recover e for y: Compute
the shortest vectors of the two-dimensional lattices Λi and use them to find the
shortest vector e† in Λ. Since e is a multiple of e†, e† also must be a short
solution to y = r†e†.

The following algorithm receives as input a vector y and allows us to find
(r, e) such that re = y mod q and e is a short vector (if such a vector exists).
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Construction 1. Let q be a modulus and let n = poly(λ). Let y ∈ Znq be
such that at least one component yi is invertible, i.e. yi ∈ Z∗q . Without loss of
generality, we assume that this component is y1.

RecoverErrorq,n(y, B):

• Parse y ∈ Znq as (y1, . . . , yn) and B > 0. If ‖y‖ ≤ B output y.

• Since yi ∈ Z∗q , compute for all i = 2, . . . , n vi = yi · (y1)−1 over Zq, and
set ai = (vi − 1).

• For i = 2, . . . , n consider the lattice Λi = Λ⊥q (ai) ⊆ Z2 and run SolveSVP(Λi)
to obtain e∗i ∈ Λi. Parse ei = (e∗1,i, e

∗
i ).

• Compute e†1 = lcm (e1,2, . . . , e1,n).

• For all i = 2, . . . , n, set αi = e†1/e1,i ∈ Z

• Set e†i = αi · e∗i .

• Set e† = (e†1, . . . , e
†
n) and r† = y1 · (e†1)−1 ∈ Zq

• If
∥∥e†∥∥∞ < B, output (r†, e†). Else, output ⊥.

Lemma 10. Given that B2 ≤ q and the vector y is of the form y = re for
some r ∈ Zq and e ∈ Zn with ‖e‖∞ ≤ B, and further there exists an yi ∈ Z∗q ,

then RecoverErrorq,n(y, B) outputs a pair (r†, e†) with y = r† ·e† for an r† ∈ Zq
and e† ∈ Zn with

∥∥e†∥∥ ≤ B. Furthermore, e is a short Z-multiple of e†, i.e. e
and e† are linearly dependent. The algorithm runs in time poly(log q, n).

Proof. We first analyze the runtime of the algorithm. Note that, since Λi has
dimension 2, then SolveSVP runs in time O(log q) by Lemma 6. All other
procedures run in time poly(log q, n).

We will now show that algorithm RecoverError is correct. Let

y = r · e ∈ Znq (9)

for an r ∈ Zq and a e ∈ Zn with ‖e‖∞ ≤ B. We claim that algorithm
RecoverError, on input y outputs an r∗ ∈ Zq and a e∗ ∈ Zn with ‖e∗‖∞ ≤ ‖e‖∞.

We can expand (9) as the following non-linear equation system:

y1 = r · e1
...

yn = r · en.
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Eliminating r via the first equation, using that y1 ∈ Z∗q we obtain the equation
system

−y2 · y−11 · e1 + e2 = 0

...

−yn · y−11 · e1 + en = 0,

i.e. we conclude that any solution to the above problem must also satisfy this
linear equation system. Now write vi = yi/y1 and set ai = (−vi, 1) and ei =
(e1, ei). The above equation system can be restated as for all i = 2, . . . , n that
ei ∈ Λi = Λ⊥(ai).

Since ‖e‖∞ ≤ B, it immediately follows that ‖ei‖∞ ≤ B. Note further that
all vectors ai ∈ Z2

q are primitive (as their second component is 1). Now, let e∗i
be the shortest (non-zero) vector in Λi. As by the above argument ei ∈ Λi and
‖ei‖∞ < B, it follows by Lemma 7 that ei must be of the form ei = ri · e∗i for
an ri ∈ Z.

Parsing e∗i as e∗i = (e∗i,1, e
∗
i ), the above implies for all i that e1 = ri · e∗i,1, in

other words e∗i,1 divides e1. But this means that also the least common multiple

e†1 of the e∗i,1 divides e1, i.e. e1 = tie
†
1. Consequently, it holds that |e†1| ≤ |e1|.

Now set αi = e†1/e
∗
1,i and e†i = αi ·e∗i . Since |e†1| ≤ |e1|, it must hold that αi ≤ ri

(as the linear combination ei = ri · e∗i is unique) and therefore
∥∥∥e†i∥∥∥∞ ≤ ‖ei‖∞.

Now parse e†i = (e†1, e
†
i ) and set e† = (e†1, . . . , e

†
n). It follows that

∥∥e†∥∥∞ ≤ B.

By the above it follows that e† is a B-short solution to the linear equation
system. It follows that r† = y1 · (e†1)−1 ∈ Zq provides us a solution to the
non-linear system.

Algorithm RecoverError requires that the vector y has a component in Z∗q .
If the modulus q is prime, then the existence of such a component follows from
y 6= 0. However, this is generally not the case for composite moduli q. We will
now present an algorithm RecoverError+ which also covers composite moduli of
the form q is of the form q = q1 · q2, where q2 is a ”large” prime and q1 is either
1 or a small prime.

Construction 2. Let q be a modulus of the form q = q1 · q2 (where the factors
q1 and q2 are explicitly known) and let n = poly(λ). Let y ∈ Znq .

RecoverError+q,q1,q2,n(y, B):

• If it holds for all i that q1|yi, proceed as follows:

– Compute ȳ = y mod q2 (i.e. ȳ ∈ Znq2)

– Compute (r0, e) = RecoverErrorq2,n(ȳ)

– Set r1 = (q1)−1r0
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– Let r′1 be the lifting of r1 to Zq and set r = q1 · r′1 ∈ Zq.
– Output (r, e)

• Otherwise, if it holds for all i that q2|yi proceed as follows:

– Compute ȳ = y mod q1 (i.e. ȳ ∈ Znq1)

– Set ē = (q2)−1 · ȳ ∈ Znq2 (Note that q2 has an inverse modulo q1 as
q1 and q2 are co-prime).

– Lift ē to an e ∈ [−q1/2, q2/2]n ⊆ Zn for which e mod q1 = ē.

– Set r = q2.

– Output (r, e).

• In the final case, there must exist components yi and yj such that q1 - yi
and q2 - yj. Proceed as follows:

– If q2 - yi it holds that yi ∈ Z∗q . Likewise, if q1 - yj it holds that
yj ∈ Z∗q . If one of these two trivial cases happen compute and output
(r, e) = RecoverErrorq,n(y).

– Otherwise, set yn+1 = yi + yj and y′ = (y, yn+1) ∈ Zn+1
q . Compute

(r, e′) = RecoverErrorq,n+1(y′). Set e = e′1,...,n ∈ Zn. If ‖e‖ ≤ B
Output (r, e), otherwise try this step again for yn+1 = yi − yj and
output (r, e).

Lemma 11. Let q = q1 · q2, where q1 ≤ 2B is either 1 or a prime and q2 > B2

is a prime. If y is of the form y = r′e′ for some r′ ∈ Zq and e′ ∈ Zn with
‖e′‖∞ ≤ B, then RecoverError+q,q1,q2,n(y, B) outputs a pair (r, e) with ‖e‖∞ ≤ B
such that y = r · e. The algorithm runs in time poly(log q, n).

Proof. It follows routinely that RecoverError+q,q1,q2,n(y, B) runs in polynomial
time. We will proceed to the correctness analysis and distinguish the same
cases as RecoverError+.

• In the first case, given that y = r′ · e′ (for a e′ ∈ Zn with ‖e′‖∞ ≤ B) it
holds that ȳ = r̄′ · e′, where r̄′ = r mod q2. Consequently, as q2 > B2 it
holds that RecoverErrorq2,n(ȳ) will output a pair (r0, e) with ‖e‖∞ ≤ B
such that r0 · e mod q2 = ȳ. Now it holds that

(r · e) mod q2 = q1 · (q1)−1 · r0 · e = r0 · e = ȳ = y mod q2.

Furthermore, it holds that (r · e) mod q1 = q1 · r′1 · e = 0 = y mod q1.
Thus, by the Chinese remainder theorem it holds that r · e = y.

• In the second case, if for all i that q2|yi, then it holds that ‖e‖∞ ≤
q1/2 ≤ B. Furthermore, it holds that (r · e) mod q1 = (q2 · (q2)−1ē)
mod q1 = ē = y mod q1 and (r · e) mod q2 = (q2 · e) mod q2 = 0 = y
mod q2. Consequently, by the Chinese remainder theorem it holds that
r · e = y.
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• In the third case, if q2 - yi or q1 - yj correctness follows immediately from
the correctness of RecoverError, as in this case either yi or yj is the required
invertible component. Thus, assume that q1|yi but q2 - yi and q2|yj but
q1 - yj . It holds that (yi ± yj) mod q2 = yi mod q2 6= 0 and (yi ± yj)
mod q1 = ±yj mod q1 6= 0. Consequently, yi±yj ∈ Z∗q . Finally given that
yi = r·ei and yj = r·ej with |ei|, |ej | ≤ B, it holds that yi±yj = r·(ei±ej)
and either |ei + ej | ≤ B or |ei − ej | ≤ B. Consequently, for one of these
two cases correctness follows from the correctness of RecoverError, as in
this case y′ is of the form y′ = r · e′ for an e′ ∈ Zn with ‖e′‖∞ ≤ B.

We now present the main result of this section. The algorithm presented in
Construction 3 allows us decide if a given vector a is close to the row-span of
A, if A is generated together with a lattice trapdoor.

Construction 3. Let q = q1·q2 be a product of primes, (A, tdA)← TdGen(1λ, n, k, q)
and let RecoverError+ be the algorithm from Construction 2.

InvertCloseVector(tdA,a, B) :

• Parse tdA = T ∈ Zn×n, a ∈ Znq and B > 0. Let C ∈ R be such that
‖T‖ < C.

• Compute z = aT.

• Run Γ ← RecoverError+q,q1,q2,n(z, B′) where B′ = BC
√
n. If Γ =⊥, abort

the protocol. Else, parse Γ = (r†, e†).

• Let t ∈ Z be the smallest integer for which ẽ = t · e†T−1 ∈ Zn (t is the
least common multiple of the denominators of e†T−1)

• Check if ‖ẽ‖ < B and recover x′, r such that x′A+r·ẽ = a (using gaussian
elimination).

• If ‖e‖ > B output ⊥. Else, output (x′, r, ẽ).

Theorem 2. Let C = C(λ) > 0 be a parameter, let q = q1 · q2, where q1 ≤
2BC

√
n is either 1 or a prime and q2 > B2C2n is a prime. Let TdGen be the

algorithm from Lemma 8 and RecoverErrorq,n be the algorithm of Construction
1. Let (A, tdA) ← TdGen(q, k) where A ∈ Zk×nq and tdA = T ∈ Zn×n with

‖T‖ < C. If there are x ∈ Zkq and r ∈ Zq such that a = xA + re for some
e ∈ Zn such that ‖e‖ ≤ B (where e is the shortest vector with this property),
then the algorithm InvertCloseVector outputs (x, r, e).

Proof. Assume now that e is the shortest vector for which we can write a =
xA + re for some x and r. Then it holds that

y = aT = xAT + reT = re′ mod q
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where e′ = eT and where the last equality holds because AT = 0 mod q. Note
that ‖e′‖ < ‖e‖ ‖T‖

√
n ≤ BC

√
n = B′.

By Lemma 10, RecoverError(y, B′) will recover a pair (r†, e†) satisfying y =
r† · e†, and e† is the shortest vector with this property. By Lemma 9 it holds
that e′ and e† are linearly dependent, i.e. it holds that e′ = t† · e†. Thus, it
holds that e = e′T−1 = t† ·~e†T−1. Since the t computed by RecoverError(y, B′)
is the shortest integer for which t · ~e†T−1 ∈ Zn, it must hold that t = t†. Thus
it holds that ~̃e = ~e. This concludes the proof.

5 Oblivious Linear Evaluation Secure Against a
Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness
of the LWE assumption. The protocol implements functionality FOLE defined
in Section 3.

5.1 Protocol

We begin by presenting the protocol.

Construction 4. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, `, `′, q ∈ Z such that q is as in Theorem 2, n = poly(k log q) and `′ ≤ `,
and let β, δ, ξ ∈ R such that q/C > β

√
n (where C ∈ R is as in Theorem 2),

δ > β > 1 and β > q/δ. Additionally, let ECC`′,`,ξ = (ECC.Encode,ECC.Decode)
be an ECC over Zq. We present the protocol in full detail.

GenCRS(1λ):

• Sample A←$Zk×nq and a←$Znq .

• Output crs = (A,a).

R1 (crs, x ∈ Zq):

• Parse crs as (A,a).

• Sample s←$Zkq and an error vector e←$DZn,β.

• Compute a′ = sA + e− xa.

• Output ole1 = a′ and st = (s, x).
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S

(
crs, (z0, z1) ∈

(
Z`′q
)2
, ole1

)
:

• Parse crs as (A,a) and ole1 as a′.

• Sample R←$DZn×`,δ.

• Compute C = AR ∈ Zk×`q , t0 = a′R + ECC.Encode(z0) and t1 = aR +
ECC.Encode(z1).

• Output ole2 = (C, t0, t1).

R2 (crs, st, ole2):

• Parse ole2 as (C, t0, t1) and st as (s, x) ∈ Zkq × Zq.

• Compute y← ECC.Decode(xt1 + t0 − sC). If y =⊥, abort the protocol.

• Output y ∈ Z`′q .

5.2 Analysis

Theorem 3 (Correctness). Let ECC`′,`,ξ be a linear ECC where ξ ≥
√
`βδn.

Then the protocol presented in Construction 4 is correct.

Proof. To prove correctness, we have to prove that R2 outputs z0 + xz1, where
(z0, z1) is the input of S.

We have that

ỹ = xt1 + t0 − sC

= xaR + xẑ1 + a′R + ẑ0 − sAR

= xaR + xẑ1 + (sA + e− xa)R + ẑ0 − sAR

= xẑ1 + ẑ0 + e′

where e′ = eR, ẑ1 ← ECC.Encode(z1) and ẑ0 ← ECC.Encode(z0). Now since
ECC is a linear code over Zq′ , then

xẑ1 + ẑ0 = x · ECC.Encode(z1) + ECC.Encode(z0)

= ECC.Encode(xz1 + z0)

Finally, by Lemma 1, we have that ‖e‖ ≤ β
√
n. Moreover, if r(i) is a column

of R, then
∥∥r(i)∥∥ ≤ δ

√
n. Therefore, each coordinate of e′ has norm at most

‖e‖ ·
∥∥r(i)∥∥ ≤ βδn. We conclude that ‖e′‖ ≤

√
`βδn. Since ECC corrects

errors with norm up to ξ ≥
√
`βδn, the output of ECC.Decode(ỹ) is exactly

z0 + x1z1.

Theorem 4 (Security). Assume that the LWEk,β,q assumption holds, q is as in
Theorem 2, q/C > β

√
n (where C ∈ R is as in Theorem 2), δ > β > 1, β > q/δ

and n = poly(k log q). The protocol presented in Construction 4 securely realizes
the functionality FOLE in the GCRS-hybrid model against:
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• a semi-honest sender given that the LWEk,β,q assumption holds;

• a malicious receiver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded cor-
rupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let
(TdGen, Invert) be the algorithms described in Lemma 8 and InvertCloseVector
be the algorithm of Theorem 2.

• CRS generation: Sim generates (A′, tdA′)← TdGen(1λ, k+ 1, n, q) and

parse A′ =

(
A
a

)
where A ∈ Zk×nq and a ∈ Znq . Additionally, parse tdA′ as

T ∈ Zn×n and let C ∈ R be such that ‖T‖ < C. It publishes crs = (A,a)
and keeps tdA′ to itself.

• Upon receiving a message a′ from R, Sim runs (s̃, α, e)← InvertCloseVector(tdA′ ,a
′, B)

where B = β
√
n. There are two cases to consider:

– If s̃ =⊥, then Sim samples t0, t1←$Z`q and C←$Zk×`q . It sends
ole2 = (C, t0, t1).

– Else if s̃ 6=⊥, then Sim sets x = s̃k+1 where s̃k+1 is the (k + 1)-th
coordinate of s̃. It sends x to FOLE. When it receives a y ∈ Z`′q from

FOLE, Sim samples a uniform matrix U′←$Z(k+1)×`
q , which is parsed

as U′ =

(
U
u

)
, and a matrix R←$DZn×`,δ. It sets

C = U

t0 = s̃U′ + αeR + ECC.Encode(y)

t1 = u.

It sends ole2 = (C, t0, t1).

We now proceed to show that the real-world and the ideal-world executions
are indistinguishable. The following lemma shows that the CRS generated in the
simulation is indistinguishable from one generated in the real-world execution.
Then, the next two lemmas deal with the two possible cases in the simulation.

Lemma 12. The CRS generated above is statistically indistinguishable from a
CRS generated according to GenCRS.

Proof. The only thing that differs in both CRS’s is that the matrix A′ =

(
A
a

)
is generated via TdGen in the simulation (instead of being chosen uniformly).
By Lemma 8, it follows that the CRS is statistically indistinguishable from one
generated using GenCRS.
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Lemma 13. Assume that s̃ =⊥. Then, the simulated execution is indistin-
guishable from the real-world execution.

Proof. We prove that no (computationally unbounded) adversary can distin-
guish both executions, except with negligible probability. First, note that, if
s̃ =⊥ where (s̃, α, e) ← InvertCloseVector(tdA′ ,a

′, B), then for any (α, s, x) ∈
Zq × Zkq × Zq we have that a′ = sA + xa + αe for an e with ‖e‖ > β

√
n since,

by Theorem 2, only in this case algorithm InvertCloseVector fails to invert a′.

In other words, consider the matrix Â =

(
A′

a′

)
. If a′ is of the form described

above, then the matrix Â has no short vectors in its row-span. That is, there
is no vector v 6= 0 in Λq(Â) such that ‖v‖ ≤ β

√
n. This is a direct consequence

of the definition of algorithm InvertCloseVector of Theorem 2.
Hence ρβ(Λq(Â) \ {0}) ≤ negl(λ). Moreover, we have that

ρβ(Λq(Â) \ {0}) ≥ ρ1/β(Λq(Â) \ {0})

≥ ρ1/δ(Λq(Â) \ {0})

≥ ρ1/(qδ)(Λq(Â) \ {0})

= ρ1/δ(qΛq(Â) \ {0})

= ρ1/δ((Λ
⊥
q (Â))∗ \ {0})

where the first and the second inequalities hold because δ > β > 1 by hypothesis
and the last equality holds because 1

qΛ⊥q (Â) = Λq(Â)∗. Since

ρ1/δ((Λ
⊥
q (Â))∗ \ {0}) ≤ negl(λ)

then δ ≥ ηε(Λ
⊥(Â)), for ε = negl(λ). Moreover n = poly(k log q) by assump-

tion. Thus the conditions of Lemma 2 are met.
Therefore, we can switch to a hybrid experiment where ÂR mod q is re-

placed by Û←$Z(k+2)×` incurring only negligible statistical distance. That
is, C

t1
t0

 =

A
a
a′

R +

 0
ẑ1

ẑ0 + ẽ

 ≈negl(λ) Û +

 0
ẑ1

ẑ0 + ẽ

 ≈negl(λ) U

where ẑj is the encoding ECC.Encode(zj) for j ∈ {0, 1}.
We conclude that, in this case, the real-world and the ideal-world execution

(where Sim just sends a uniformly chosen triple (C, t0, t1)) are statistically
indistinguishable.

Lemma 14. Assume that s̃ 6=⊥. Then, the simulated execution is indistin-
guishable from the real-world execution.

Proof. In this case, a′ = s̃A + αe for some s̃ ∈ Zk1 and e ∈ Zn such that
‖e‖ < β

√
n. The proof follows the following sequence of hybrids:
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Hybrid H0. This is the real-world protocol. In particular, in this hybrid, the
simulator behaves as the honest sender and computes

t0 = a′R + ECC.Encode(z0) = s̃A′R + αeR + ECC.Encode(z0) mod q

t1 = aR + ECC.Encode(z1) mod q

C = AR mod q

for some α ∈ Zq \ {0} and where A′ =

(
A
a

)
.

Hybrid H1. This hybrid is similar to the previous one, except that Sim com-
putes t0 = s̃U′+αeR+ECC.Encode(z0), C = U and t1 = u+ECC.Encode(z1),

where U′ =

(
U
u

)
←$Z(k+1)×`

q .

Claim 1. |Pr [1← A : A plays H0]− Pr [1← A : A plays H1]| ≤ negl(λ).

To prove this claim, we will resort to the partial smoothing lemma (Lemma
3). Using the same notation as in Lemma 3, consider γ = β

√
n. Then, we have

that
negl(λ) ≥ ρβ(Λq(A

′) \ γB) ≥ ρq/δ(Λq(A′) \ γB)

since, by assumption, β > q/δ and where A′ =

A
a
a′

.

Hence, by applying Lemma 3, we obtain

A′R mod q ≈negl(λ) A′(R + X) mod q

for X←$ Λ⊥(e) (here, in the notation of Lemma 3, we consider D = e).

We now argue that A′X mod q ≈negl(λ) U′ for U′←$Z(k+1)×`
q . Let B ∈

Zn×k′q be a basis of Λ⊥(e), that is, eB = 0. Let us assume for the sake of con-
tradiction that A′B does not have full rank (hence, A′X mod q is not uniform

over Z(k+1)×`
q ). Then, there is a vector v ∈ Zk+1

q such that vA′B = 0.

Since B is a basis of Λ⊥(e), this means that vB ∈ (Λ⊥(e))⊥ = Λ(e). In
other words, vA′ = t · e for some t ∈ Zq. Consequently, we have e = t−1vA′

and thus e is in the row-span of A′, that is, Λ(A′) has a vector of norm shorter
than β

√
n. However, this happens only with negligible probability over the

uniform choice of A and, thus, we reach a contradiction. We conclude that A′B
needs to have full rank. Now, since X is sampled uniformly from Λ⊥(e), we

have that A′X is uniform over Z(k+1)×`
q . Thus, A′X mod q ≈negl(λ) U′ where

U′←$Z(k+1)×`
q .
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Hybrid H2. This hybrid is similar to the previous one, except that Sim
computes t0 = s̃U′ + αeR + ECC.Encode(y), C = U and t1 = u, where

U′ =

(
U
u

)
←$Zk×`q .

This hybrid corresponds to the simulator for the corrupted receiver.

Claim 2. |Pr [1← A : A plays H1]− Pr [1← A : A plays H2]| ≤ negl(λ).

Since u is uniformly at random, then it is statistically indistinguishable
from u′ − ECC.Encode(z1) where u′←$Z`q is a uniformly random vector. Thus,
replacing the occurrences of u by u′ − ECC.Encode(z1), we obtain

(C, t0, t1) = (U, s̃U′ + αeR + ECC.Encode(z0),u + ECC.Encode(z1))

≈negl(λ)

(
U, s̃U

′
+ αeR + ECC.Encode(z0),u′

)
=
(
U, s̃−(k+1)U + αeR + ECC.Encode(z0) + xECC.Encode(z1),u′

)
= (U,xU + αeR + y,u′)

where U
′

is the matrix whose rows are equal to U′, except for the (k + 1)-th
which is equal to u′ − ECC.Encode(z1), x = s̃k+1 is the (k+ 1)-th coordinate of
s̃ and s̃−(k+1) ∈ Zkq is the vector s̃ with the (k + 1)-th coordinate removed.

This concludes the description of the simulator for the corrupted receiver.
We now resume the proof of Theorem 4 by presenting the simulator for the
semi-honest sender.

Simulator for corrupted sender. We describe how the simulator Sim pro-
ceeds: It takes S’s inputs (z0, z1) and sends them to the ideal functionality FOLE,
which returns nothing. It simulates the dummy R by sampling a′←$Znq and
sending it to the corrupted sender.

It is trivial to see that both the ideal and the real-world executions are
indistinguishable given that the LWEk,q,β assumption holds.

5.3 Batch OLE

We now show how we can extend the protocol described above in order to
implement a batch reusable OLE protocol, that is, in order to implement the
functionality FbOLE described in Section 3.

This variant improves the efficiency of the protocol since the receiver R can
commit to a batch of inputs {xi}i∈[k′], and not just one input, using the same
first message of the two-round OLE. Hence, the size of the first message can
be amortized over the number of R’s inputs, to achieve a better communication
complexity.

Construction 5. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let k, n, `, `′, q, k′ ∈ Z such that q is as in Theorem 2 and n = poly((k+k′) log q),
and let β, δ, ξ ∈ R such that q√

nτ(k)
> β (where τ(k) = ω(

√
log k) as in
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Lemma 8), δ > β > 1, β > q/δ and n = poly((k + k′) log q). Additionally,
let ECC`′,`,ξ = (ECC.Encode,ECC.Decode) be an ECC over Zq.

GenCRS(1λ): This algorithm is similar to the one described in Construction 4
except that crs = (A,a1, . . . ,ak′) where ai←$Znq for i ∈ [k′]

R1

(
crs, {xj}j∈[k′] ∈ Zq

)
: The algorithm is similar to the one described in Con-

struction 4, except that it outputs ole1 = a′ and st = (s, {xi}i∈[k′]), where

a′ = sA + e−
(∑k′

i=1 xiai

)
.

S

(
crs, (z0, z1) ∈

(
Z`′q
)2
, ole1, j ∈ [k′]

)
: This algorithm is similar to the one

described in Construction 4, except that; i) it computes t1 = −ajR; ii) It
computes wi = aiR for all i ∈ [k′] such that i 6= j; and iii) it outputs
ole2 = (C, t0, t1, {wi}i 6=j , j) (where j corresponds to which xj the receiver R
is supposed to use in that particular execution of the protocol) and {}.

R2(crs, st, ole2): This algorithm is similar to the one described in Construction
4, except that it outputs

z0 + xjz1 = y← ECC.Decode

t0 + xjt1 −

sC +
∑
i6=j

xiwi

 .

It is easy to see that correctness holds following a similar analysis as the
one of Theorem 3. We now state the theorem that guarantees security of the
scheme.

Theorem 5 (Security). Assume that the LWEk,β,q assumption holds, q ∈ N is
as in Theorem 2, q/C > β

√
n (where C ∈ R is as in Lemma 8), δ > β > 1,

β > q/δ and n = poly((k + k′) log q). The protocol presented in Construction 5
securely realizes the functionality FbOLE in the GCRS-hybrid model against:

• a semi-honest sender given that the LWEk,β,q assumption holds;

• a malicious receiver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint
as the proof of Theorem 4, except that the simulator for the corrupted receiver
extracts the first k′ coordinates {xj}j∈[k′] of x and sends these values to FbOLE .
From now on, it behaves exactly as the simulator in the proof of Theorem 4.
Indistinguishability of executions follows exactly the same reasoning.

Communication Efficiency Comparison. Comparing with the protocol
presented in Construction 4, this scheme achieves the same communication com-
plexity for the receiver (that is, the receiver message is of the same size in both
constructions). On the other hand, the sender’s message now depends on k′.
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6 OLE from LWE secure against Malicious Ad-
versaries

In this section, we extend the construction of the previous section to support
malicious sender. The idea is to use a cut-and-choose approach via the use of an
OT scheme in two rounds and extract the sender’s input via the OT simulator.

6.1 Protocol

Construction 6. The protocol is composed by the algorithms (GenCRS,R1,S,R2).
Let OLE = (GenCRS,R1,S,R) be a two-round OLE protocol which is secure
against malicious receivers and semi-honest senders and OT = (GenCRS,R1,S,R2)
be a two-round OT protocol. We now present the protocol in full detail.

GenCRS(1λ):

• Run crsOLE ← OLE.GenCRS(1λ) and crsOT ← OT.GenCRS(1λ).

• Output crs = (crsOLE, crsOT).

R1 (crs, x ∈ Zq):

• Parse crs as (crsOLE, crsOT).

• Sample x1, x2←$Zq such that x1 + x2 = x.

• Compute (ole1,1, st1,1)← OLE.R1(crsOLE, x1) and (ole1,2, st1,2)← OLE.R1(crsOLE, x2).

• Additionally, choose uniformly at random b = (b1, . . . , bλ)←$ {0, 1}λ and
compute (ot1,i, s̃ti)← OT.R1(crsOT, bi) for all i ∈ [λ].

• Output ole1 = (ole1,1, ole1,2, {ot1,i}i∈[λ]) and st =
(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

S
(
crs, (z0, z1) ∈ Z`q, ole1

)
:

• Parse crs as (crsOLE, crsOT) and ole1 as (ole1,1, ole1,2, {ot1,i}i∈[λ]).

• Sample z1,1, z1,2←$Z`q such that z1,1 + z1,1 = z1.

• For all j ∈ [λ], do the following:

– Sample random coins rj,1, r2←$ {0, 1}λ.

– Compute ole2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1) for uni-

formly chosen u0,j,1,u1,j,1←$Z`′q . Additionally, Compute ole2,j,2 ←
OLE.S(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2) for uniformly chosen u0,j,2,u1,j,2←$Z`′q .

– Set M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2) and M1,j = (u0,j,1 +
z0,u1,j,1+z1,1,u0,j,2+z0,u1,j,2+z1,2). Compute ot2,j ← OT.S(crsOT, ot1,j , (M0,j ,M1,j)).

• Output ole2 = {ole2,j,1, ole2,j,2, ot2,j}j∈[λ].
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R2(crs, st, ole2):

• Parse ole2 as {ole2,j,1, ole2,j,2, ot2,j}j∈[λ] and st as
(
st1,1, st1,2, {s̃ti}j∈[λ]

)
.

• For all j ∈ [λ], do the following:

– Recover Mbj ,j ← OT.R2(crsOT, s̃ti).

– If bj = 0, parse M0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2). Com-
pute ole′2,j,1 ← OLE.S(crsOLE, ole1,1, (u0,j,1,u1,j,1); rj,1) and ole′2,j,2 ←
OLE.S(crsOLE, ole1,2, (u0,j,2,u1,j,2); rj,2). If ole′2,j,1 6= ole2,j,1 or if

ole′2,j,1 6= ole2,j,1, abort the protocol.

– If bj = 1, parse M1,j as (v0,j,1,v1,j,1,v0,j,2,v1,j,2). Compute yj,1 ←
OLE.R2(crsOLE, ole2,j,1, stj,1) and yj,2 ← OLE.R2(crsOLE, ole2,j,2, stj,2).
Compute wj,1 = v0,j,1 +x1ṽ1,j,1−yj,1 and wj,2 = v0,j,2 +x2ṽ1,j,2−
yj,2.

• Let I1 ⊆ [λ] be the set of indices j such that bj = 1 and let {wj,1,wj,2}j∈I1 .
If w1 = wj,1 = wj′,1, w2 = wj,2 = wj′,2 and w = wj,1 + wj,2 = wj′,1 +
wj′,2 for all pairs (j, j′) ∈ I21 then output w. Else abort the protocol.

6.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 6 (Correctness). Assume OLE and OT implement the functionalities
FOLE and FOT. Then the protocol presented in Construction 6 is correct.

Theorem 7 (Security). Assume that OLE implements FOLE against malicious
receivers and semi-honest sender and that OT implements the functionality FOT.
The protocol presented in Construction 6 securely realizes the functionality FOLE

in the GCRS-hybrid model against static malicious adversaries.

Proof. Security against a malicious receiver follows easily from the security
against malicious receivers of the underlying schemes OT and OLE. We show
how to prove security against a malicious sender.

Simulator for corrupted sender: We describe the simulator Sim against a
corrupted sender.

• Sim simulates the crs and the first message of the receiver.

• Upon receiving a message ole2 = {ole2,j,1, ole2,j,2, ot2,j}j∈[λ] from the sender,
it extracts (M0,j ,M1,j) from ot2,j and does the following:

– For all j ∈ [λ], it parses M0,j as (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2)
and M1,j as (v0,j,1,v1,j,1,v0,j,2,v1,j,2).
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– For all j ∈ [λ], it checks if ole2,j,1 = OLE.S(crsOLE, ole1,j,1, (u0,j,1,u1,j,1); rj,1),
and if ole2,j,2 = OLE.S(crsOLE, ole1,j,2, (u0,j,2,u1,j,2); rj,2). Let D be
the set of indices for which this test fails. If |D| > d where d is such
that d = ω(log λ) and d = o(log2 λ), it aborts the protocol.

– For all j ∈ T = [λ] \ D, Sim extracts (z0,j,1, z1,j,1, z0,j,2, z1,j,2) by
computing z0,j,b = v0,j,b − u0,j,b and z1,j,b = v1,j,b − u1,j,b for b ∈
{1, 2}.

– If there are pairs (z0, z1,1) and (z0, z1,2) such that (z0, z1,1) = (z0,j,1, z1,j,1)
and (z0, z1,2) = (z0,j,2, z1,j,2) for more than |T |/2 of the indices j ∈ T ,
it sends (z0, z1,1 + z1,2) to FOLE. Else, it aborts the protocol.

The proof of indistinguishability follows the following sequence of hybrids.

Hybrid H0. This is the real game execution.

Hybrid H1. This hybrid is identical to the previous one except that Sim
simulates FOT and FOLE (secure against semi-honest senders).

Hybrid H2. This hybrid is identical to the previous one except that Sim ex-
tracts (M0,j ,M1,j) from FOT and parsesM0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2)
and M1,j = (v0,j,1,v1,j,1,v0,j,2,v1,j,2) for all j ∈ [λ]. Additionally, for all j ∈
[λ] it checks if ole2,j,1 6= OLE.S(crsOLE, ole1,j,1, (u0,j,1,u1,j,1); rj,1) or ole2,j,2 6=
OLE.S(crsOLE, ole1,j,2, (u0,j,2,u1,j,2); rj,2). for at least d positions, where d =
ω(log λ) and d = o(log2 λ) If this happens, it aborts the protocol.

Claim 3. Hybrids H1 and H2 are statistically indistinguishable.

Proof. Let abort1 be the abort event introduced in hybridH2. That is, for d′ ≥ d
indices in [λ], the malicious sender inputsM0,j = (rj,1, rj,2,u0,j,1,u1,j,1,u0,j,2,u1,j,2)
such that

ole2,j,1 6= OLE.S(crsOLE, ole1,j,1, (u0,j,1,u1,j,1); rj,1)

or
ole2,j,2 6= OLE.S(crsOLE, ole1,j,2, (u0,j,2,u1,j,2); rj,2).

Let D′ denote this set of indices.
To prove that the hybrids are indistinguishable, we show that conditioned

on abort1 happening, then the honest receiver R also aborts in the real-world
execution on the protocol.

To show this, note that the string b ∈ {0, 1}λ is sampled uniformly at
random. Hence, the probability that bj = 1 for all j ∈ D′ can be upper-bounded
by 1/2d = 1/2ω(log λ) which is negligible in λ.
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Hybrid H3. This hybrid is identical to the previous one except that Sim
extracts (z0,j,1, z1,j,1, z0,j,2, z1,j,2) for i ∈ T = [λ]\D. If there are pairs (z0, z1,1)
and (z0, z1,2) that appears more than |T |/2 times, output (z0, z1). Else, it aborts
the protocol.

Claim 4. Hybrids H2 and H3 are statistically indistinguishable.

Proof. We first show the following lemma which states that the adversarial
sender cannot use a different input pair (z0, z1) in each execution of the OLEs.

Lemma 15. Let I1 ⊆ [λ] be the set of indices such that bj = 1. Assume that
the simulator extracts (z0,j,1, z1,j,1, z0,j,2, z1,j,2) and (z0,j′,1, z1,j′,1, z0,j′,2, z1,j′,2)
such that (z0,j,1, z1,j,1, z0,j,2, z1,j,2) 6= (z0,j′,1, z1,j′,1, z0,j′,2, z1,j′,2). Then, the
real-world receiver aborts with probability 1/|Zq| = 1/negl(λ).

Proof. Assume w.l.o.g. that (z0,j,1, z1,j,1) 6= (z0,j′,1, z1,j′,1). The receiver does
not abort if z0,j,1x1+z1,j,1 = z0,j′,1x1+z1,j′,1. However, since x1←$Zq then we
can apply the the Schwartz–Zippel Lemma to conclude that z0,j,1x1 + z1,j,1 6=
z0,j′,1x1 + z1,j′,1 except with probability 1/|Zq| = 1/negl(λ).

We now return to the proof of Claim 4.
Let abort2 be the abort event introduced in hybrid H3. That is, for the

indices j ∈ T , let z0,j,b = v0,j,b − u0,j,b and z1,j,b = v1,j,b − u1,j,b for b ∈ {1, 2},
and there are not pairs (z0, z1,1) and (z0, z1,2) that appear in more than |T |/2
indices j ∈ T .

To prove that the hybrids are indistinguishable, we show that conditioned
on abort2 happening, then the honest receiver R also aborts in the real-world
execution of the protocol, except with negligible probability.

If there are not pairs (z0, z1,1) and (z0, z1,2) that appear in more than |T |/2
indices j ∈ T , then there are pairs (z0, z1,1) and (z0, z1,2) that appear at most
|T |/2 indices j ∈ T . Let L ⊂ T be this set of indices. Thus, the pairs (z0, z1,1)
and (z0, z1,2) appears at most in |T |/2 +d indices j ∈ [λ], for some d = ω(log λ)
and d = o(log2 λ). This is because Sim cannot extract (z0,j,1, z1,j,1, z0,j,2, z1,j,2)
for positions j ∈ D and thus it does not have any information about these pairs
which, in the worst case, can all be equal to (z0, z1). Let H = L ∪D.

Recall that, by Lemma 15, if the real-world R does not abort the protocol,
this means that S input the same pairs (z0, z1,1) and (z0, z1,2), except with
negligible probability.

The probability that the real-world R aborts the protocol can be lower bound
by the probability that R aborts when (z0, z1,1) = (z0,j,1, z1,j,1) and (z0, z1,2) =
(z0,j,2, z1,j,2) for all indices in H. Let us denote by abortH the event that
R aborts and by acceptH the even that R does not abort when (z0, z1,1) =
(z0,j,1, z1,j,1) and (z0, z1,2) = (z0,j,2, z1,j,2) for all indices j ∈ H. Clearly

Pr [abortH ] = 1− Pr [acceptH ] .

Thus, it is enough to prove that Pr [acceptH ] = negl(λ). Note that R does
not abort the protocol if bj = 1 and j ∈ H for at least λ/2 positions. First,
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note that using the Chernoff bound we have that bj = 1 for at least 3λ/8
positions j ∈ [λ], except with negligible probability in λ. Let W denote the
random variable which is the sum of |H| independent Bernoulli distributions
with probability 1/2. Then, we want to compute Pr[W ≥ 3λ/8]. Since the
expected value of W is E[W ] = |H|/2 = (|T |/2 + d) /2 = (λ+ d)/4, then

Pr[W ≥ 3λ/8] = Pr

[
W ≥ E[W ] +

λ− 2d

8

]
.

A straightforward application of the Chernoff bound yields that

Pr

[
W ≥ E[W ] +

λ− d
4

]
≤ e−(λ−2d)/2 ≤ e−(λ−o(log

2 λ))/2

which is negligible in λ
We conclude that the real R aborts with probability at least

Pr [abortH ] = 1− Pr [acceptH ] = 1− negl(λ) .

This conclude the proof of the claim.

Hybrid H4. This hybrid is identical to the previous one except that a′←$Znq .

Claim 5. Hybrids H3 and H4 are indistinguishable given that the LWEk,β,q
assumption holds.

Note that the last hybrid H4 corresponds to the description of the simulator.
Thus, we conclude the proof of security for a malicious sender.

On the choice of the modulus q. The scheme presented above is only secure
if q is chosen to be superpolynomial in λ (otherwise, Lemma 15 does not hold).
The scheme can be adapted to support fields of polynomial size by running λ
instances of the underlying OLE, instead of running only two instances.

6.3 Instantiating the Functionalities

We now discuss how we can instantiate the underlying functionalities FOT and
FOLE (secure against semi-honest receivers) used in the protocol described above.

When we instantiate FOT with the OT schemes from [PVW08, Qua20] and
FOLE (secure against semi-honest receivers) with the scheme from Section 5, we
obtain a maliciously secure OLE protocol with the following properties:

1. It has two rounds;

2. It is statistically secure against a malicious receiver since the the OT of
[PVW08, Qua20] and the scheme from Section 5 are statistically secure
against a malicious receiver.

3. Security against a malicious sender holds under the LWE assumption since
both the schemes of [PVW08, Qua20] are secure against malicious senders
and the scheme from Section 5 is secure against semi honest senders under
the LWE assumption.
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