Two-Round Oblivious Linear Evaluation from Learning with Errors

Pedro Branco¹, Nico Döttling², and Paulo Mateus¹

¹IT, IST - University of Lisbon ²Helmholtz Center for Information Security (CISPA)

Abstract

Oblivious Linear Evaluation (OLE) is the arithmetic analogue of the well-know oblivious transfer primitive. It allows a sender, holding an affine function f(x) = a + bx over a finite field or ring, to let a receiver learn f(w) for a w of the receiver's choice. In terms of security, the sender remains oblivious of the receiver's input w, whereas the receiver learns nothing beyond f(w) about f. In recent years, OLE has emerged as an essential building block to construct efficient, reusable and maliciously-secure two-party computation.

In this work, we present efficient two-round protocols for OLE over large fields based on the Learning with Errors (LWE) assumption, providing a full arithmetic generalization of the oblivious transfer protocol of Peikert, Vaikuntanathan and Waters (CRYPTO 2008). At the technical core of our work is a novel extraction technique which allows to determine if a non-trivial multiple of some vector is close to a q-ary lattice.

1 Introduction

Oblivious Linear Evaluation (OLE) is a cryptographic primitive between a sender and a receiver, where the sender inputs an affine function f(x) = a + bx over a finite field \mathbb{F} , the receiver inputs an element $w \in \mathbb{F}$, and in the end the receiver learns f(w). The sender remains oblivious of the receiver's input w and the receiver learns nothing beyond f(w) about f. OLE can be seen as a generalization of the well-known Oblivious Transfer (OT) primitive.¹ In fact, just as secure computation of *Boolean* circuits can be based on OT, secure computation of *arithmetic* circuits can be based on OLE [GMW87, IPS09, AIK11].

In recent years, OLE has emerged as one of the most promising avenues to realize efficient two-party secure computation in different settings [IPS09, AIK11, ADI⁺17, DGN⁺17, BCGI18, HIMV19, CDI⁺19]. Interestingly, OLE has

¹It is easy to see that, if we consider the affine function $f : \{0,1\} \to \{0,1\}$ such that $f(b) = m_0 + b(m_1 - m_0)$, OLE trivially implements OT.

found applications, not just in the secure computation of generic functions, but also in specific tasks such as Private Set Intersection [GN19, GS19] or Machine Learning related tasks [MZ17, JVC18].

Other aspects that set OLE apart from OT are reusability, meaning that the first message of a protocol is reusable across multiple executions,² and the fact that even a semi-honest secure OLE can be used to realize maliciously secure two-party computation [HIMV19].

Although OLE secure against semi-honest adversaries is complete for maliciouslysecure two-party computation [HIMV19], this comes at the cost of efficiency and, thus, is it always preferable to start with a maliciously-secure one. Moreover, some applications of OLE even ask specifically for a maliciously-secure one [GN19]. Given this state of affairs and the importance of OLE in constructing two-party secure computation protocols, we ask the following question:

Can we build efficient and maliciously-secure two-round OLE protocols from (presumed) post-quantum hardness assumptions?

1.1 Our Results

In this work, we give an affirmative answer to the question above. Specifically, we present two simple, efficient and round-optimal protocols for OLE based on the hardness of the Learning with Errors (LWE) assumption [Reg05], which is conjectured to be post-quantum secure.

Before we start, we clarify what type of OLE we obtain. OLE comes in many flavors, one of the most useful being *vector OLE* where the sender inputs two vectors $a = \mathbf{a}, b = \mathbf{b} \in \mathbb{F}^{\ell}$ and the receiver obtains a linear combination of them $\mathbf{z} = \mathbf{a} + w\mathbf{b} \in \mathbb{F}^{\ell}$ [BCGI18]. For simplicity, we just refer to this variant as OLE.

Both of our protocols implement the functionality in just two-rounds and have the following properties:

- Our first protocol (Section 5) for OLE achieves statistical security against a corrupted receiver and computational semi-honest security against a corrupted sender based on LWE. Additionally, we show how we can extend this protocol to implement *batch OLE*, a functionality similar to OLE where the receiver can input a batch of values $\{x_i\}_{i \in [k']}$, instead of just one value.
- Our main technical innovation is a new extraction technique which allows to determine if a vector $\mathbf{z} \in \mathbb{Z}_q^n$ is of the form $\mathbf{z} = \mathbf{s}\mathbf{A} + \alpha \vec{e}$, where the matrix $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ is given, and the unknown $\mathbf{s} \in \mathbb{Z}_q^k$, $\alpha \in \mathbb{Z}_q$ and

²While two-party *reusable* non-interactive secure computation (NISC) is impossible in the OT-hybrid model [CDI⁺19], reusable NISC for general Boolean circuits is known to be possible in the (reusable) OLE-hybrid model assuming one-way functions [CDI⁺19]. The result stated above is meaningful only if we have access to a reusable two-round OLE protocol. The only efficient realizations of this primitive are based on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity assumptions [CDI⁺19].

short vector \mathbf{e} are to be determined. We provide an algorithm which solves this problem efficiently given a trapdoor for the lattice $\Lambda_q^{\perp}(\mathbf{A})$. We believe that this contribution is of independent interest. In particular, our extractor immediately leads to an efficient simulation strategy for the PVW protocol [PVW08] even for super-polynomial moduli q.

• We then show how to extend our OLE protocol to provide malicious security for both parties (Section 6). The protocol makes λ invocations of a two-round Oblivious Transfer protocol (which exists under LWE [PVW08, Qua20]), where λ is the security parameter. By instantiating the OT with the LWE-based protocols of [PVW08, Qua20], we preserve statistical security against a malicious receiver.

1.2 Related Work and Comparison

In the following, we briefly review some proposals from prior work and compare them with our proposal. We only consider schemes that are provable UC-secure as our protocols. OLE can be trivially implemented using Fully/Somewhat Homomorphic Encryption (e.g., [JVC18]) but these solutions are usually just proven secure against semi-honest adversaries and it is unclear how to extend security against malicious adversaries without relying on generic approaches such as Non-Interactive Zero-Knowledge (NIZK) proofs.³ OLE can also be trivially implemented using generic solutions for two-party secure computation (via OT) such as [Yao82]. However, these solutions fall short in achieving an *acceptable* level of efficiency.

The work of Döttling et al. [DKM12, DKMQ12] proposed an OLE protocol with unconditional security, in the stateful tamper-proof hardware model. The protocol takes only two rounds, however further interaction with the token is needed by the parties.

In [IPS09], a semi-honest protocol for oblivious multiplication was proposed, which can be easily extended to a OLE protocol. The protocol is based on noisy encodings. Based on the same assumption, [GNN17] proposed a maliciouslysecure OLE protocol, which extends the techniques of [IPS09]. However, their protocol takes eight rounds of interaction.

Chase et al. [CDI⁺19] presented a round-optimal reusable OLE protocol based on the Decisional Composite Residuosity (DCR) and the Quadratic Residuosity (QR) assumptions. The protocol is maliciously-secure and, to the best of our knowledge, it is the most efficient protocol for OLE proposed so far. However, it is well-known that both the DCR and the QR problems are quantumly insecure.

Recently, two new protocols for OLE based on the Ring LWE assumption were presented in [BEPU⁺20, dCJV20]. Both protocols run in two rounds but the protocol of [BEPU⁺20] either requires a PKI or a setup phase, and the protocol of [dCJV20] is secure only against semi-honest adversaries.

 $^{^{3}}$ As an example consider the work of [CDI⁺19], where the Paillier cryptosystem is extended into an OLE protocol with malicious security and the construction is highly non-trivial.

We also remark that our protocols implement vector OLE where the sender's input are vectors over a field, as in [GNN17].

In Table 1, a brief comparison between several UC-secure OLE protocols is presented.

	Hardness Assumption	Setup Assumption	Rounds	Reusability	Security
[IPS09]	Noisy Encodings	ОТ	3	-	semi-honest
[DKM12]	-	Stateful tamper proof hardware	2	×	malicious
[GNN17]	Noisy Encodings	ОТ	8	-	malicious
$[CDI^+19]$	DCR & QR	CRS	2	1	malicious
$[BEPU^+20]$	RLWE	PKI/Setup	2	×	malicious
[dCJV20]	RLWE	-	2	-	semi-honest
This work	LWE	CRS	2	1	malicious receiver
	LWE	CRS & OT	2	X	malicious

Table 1: Comparison between different OLE schemes.

1.3 Open Problems

Our first protocol is secure against semi-honest senders and, thus, it is trivially reusable. However, our fully maliciously-secure protocol (in Section 6) does not have reusability of the first message. Hence, the main open problem left in our work is the following: Can we construct a reusable maliciously-secure two-round OLE protocol based on the LWE assumption?

2 Technical Outline

We will now give a brief overview of our protocol. In abuse of notation, we drop the transposition operator for transposed vectors and always assume that vectors multiplied from the right side are transposed.

2.1 The PVW Protocol

Our starting point is the LWE-based oblivious transfer protocol of Peikert, Vaikuntanathan and Waters [PVW08], which is based on Regev's encryption scheme [Reg05]. Since our goal is to construct an OLE protocol, we will describe the PVW scheme as a \mathbb{F}_2 OLE rather than the standard OT functionality. Assume for simplicity that the LWE modulus q is even. The PVW scheme uses a common reference string which consists of a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a vector $\mathbf{a} \in \mathbb{Z}_q^m$, which together syntactically form a Regev public key. Given the CRS (\mathbf{A}, \mathbf{a}) , the receiver, whose input is a choice bit $b \in \{0, 1\}$ chooses a uniformly random $\mathbf{s} \in \mathbb{Z}_q^n$ and a $\mathbf{e} \in \mathbb{Z}_q^m$ from a (short) LWE error distribution, e.g. a discrete gaussian. The receiver now sets $\mathbf{z} = \mathbf{s}\mathbf{A} + \mathbf{e} - b \cdot \mathbf{a}$. In other words, if b = 0 then (\mathbf{A}, \mathbf{z}) is a well-formed Regev public key, whereas if b = 1 then $(\mathbf{A}, \mathbf{z} + \mathbf{a})$ is a well-formed Regev public key.

The receiver now sends \mathbf{z} to the sender who proceeds as follows. Say the sender's input are $v_0, v_1 \in \{0, 1\}$. The sender now encrypts v_0 under the public key (\mathbf{A}, \mathbf{z}) and v_1 under (\mathbf{A}, \mathbf{a}) using the same randomness \mathbf{r} . Specifically, the sender chooses $\mathbf{r} \in \mathbb{Z}^m$ from a wide enough discrete gaussian, sets $\mathbf{c} = \mathbf{A}\mathbf{r}$, $c_0 = \mathbf{z}\mathbf{r} + \frac{q}{2}v_0$ and $c_1 = \mathbf{a}\mathbf{r} + \frac{q}{2}v_1$. Now the sender sends (\mathbf{c}, c_0, c_1) back to the receiver. The receiver then computes and outputs $y = \lceil b \cdot c_1 + c_0 - \mathbf{sc} \rceil_2$. Here $\lceil \cdot \rceil_2$ denotes the rounding operation with respect to q/2.

To see that this scheme is correct, note that

$$b \cdot c_1 + c_0 - \mathbf{sc} = b\mathbf{ar} + b \cdot \frac{q}{2}v_1 + \mathbf{zr} + \frac{q}{2}v_0 - \mathbf{sAr}$$
$$= b\mathbf{ar} + b \cdot \frac{q}{2}v_1 + (\mathbf{sA} + \mathbf{e} - b\mathbf{a})\mathbf{r} + \frac{q}{2}v_0 - \mathbf{sAr}$$
$$= \frac{q}{2}(bv_1 + v_0) + \mathbf{er}.$$

Since both **e** and **r** are short, **er** is also short and we can conclude that $y = [b \cdot c_1 + c_0 - \mathbf{sc}]_2 = bv_1 + v_0$.

Security. Security against semi-honest senders follows routinely from the hardness of LWE. We will omit the discussion on security against malicious senders for now and focus on security against malicious receivers.

The basic issue here is that a malicious receiver may choose \mathbf{z} not of the form $\mathbf{z} = \mathbf{sA} + \mathbf{e} - b\mathbf{a}$ but rather arbitrarily.

It can now be argued that except with negligible probability over the choice of **a**, one of the matrices $\mathbf{A}_0 = \begin{pmatrix} \mathbf{A} \\ \mathbf{z} \end{pmatrix}$ or $\mathbf{A}_1 = \begin{pmatrix} \mathbf{A} \\ \mathbf{z} + \mathbf{a} \end{pmatrix}$ does not have a short vector in its row-span. We can then invoke the Smoothing Lemma [MR07] to argue that given $\mathbf{c} = \mathbf{A}\mathbf{r}$ either $\mathbf{z}\mathbf{r}$ or $(\mathbf{z} + \mathbf{a})\mathbf{r}$ is statistically close to uniform. In the first case we get that (\mathbf{c}, c_0, c_1) statistically hides $v_0 = v_0 + 0 \cdot v_1$, in the second case $v_0 + v_1 = v_0 + 1 \cdot v_1$ is statistically hidden. In order to simulate, we must determine which one of the two cases holds.

In [PVW08] this is achieved as follows. First, the matrix \mathbf{A} is chosen together with a *lattice trapdoor* [GPV08, MP12] which allows to efficiently *decode* a point $\mathbf{x} \in \mathbb{Z}_q^m$ to the point in the row-span of \mathbf{A} closest to \mathbf{x} (given that \mathbf{x} is sufficiently close to the row-span of \mathbf{A}). The PVW extractor now tries to determine whether there is a short vector in the row-span of \mathbf{A}_0 by going through all multiples $\alpha \mathbf{z}$ of \mathbf{z} (for $\alpha \in \mathbb{Z}_q$) and testing whether $\alpha \mathbf{z}$ is close to the row-span of \mathbf{A} . If such an α is found, we know by the above argument that given \mathbf{Ar} and \mathbf{zr} it must hold that $(\mathbf{z} + \mathbf{a})\mathbf{r}$ is statistically close to uniform, and the simulator can set the extracted choice bit b to 0. On the other hand, if no such α is found, it sets the extracted choice bit to 1 since we know that in this case **zr** is statistically close to uniform given **Ar** and $(\mathbf{z} + \mathbf{a})\mathbf{r}$.

A severe drawback of this method is that the extractor must iterate over all $\alpha \in \mathbb{Z}_q$. Consequently, for the extractor to be efficient q must be of polynomial size. A recent work of Quach [Qua20] devised an extraction method for superpolynomial modulus q by using Hash Proof Systems (HPS)⁴. To make this approach work the underlying Regev encryption scheme must be modified in a way that unfortunately deteriorates correctness and prohibits linear homomorphism.

2.2 An Oblivious Linear Evaluation Protocol based on PVW

We will now discuss our OLE modification of the PVW scheme. The basic idea is very simple: We will modify the underlying Regev encryption scheme to support a larger plaintext space, namely \mathbb{Z}_{q_1} for a modulus q_1 and exploit linear homomorphism over \mathbb{Z}_{q_1} , which will lead to an OLE over \mathbb{Z}_{q_1} .

Concretely, let $q = q_1 \cdot q_2$ for a sufficiently large q_2 . We have the same CRS as in the PVW scheme, i.e. a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and a random vector $\mathbf{a} \in \mathbb{Z}_q^m$. Now the receiver's input is a $x \in \mathbb{Z}_{q_1}$, and he computes \mathbf{z} by $\mathbf{z} = \mathbf{s}\mathbf{A} + \mathbf{e} - x \cdot \mathbf{a}$ (where \mathbf{s} and \mathbf{e} are as above). The sender's input is now a pair $v_0, v_1 \in \mathbb{Z}_{q_1}$, and the sender computes $\mathbf{c} = \mathbf{A}\mathbf{r}, c_0 = \mathbf{z}\mathbf{r} + q_2v_0$ and $c_0 = \mathbf{a}\mathbf{r} + q_2v_1$ (again \mathbf{r} as above). Given (\mathbf{c}, c_0, c_1) the receiver can recover y by computing $y = [x \cdot c_1 + c_0 - \mathbf{sc}]_{q_1}$. Here $[\cdot]_{q_1}$ is as usual defined by $[u]_{q_1} = \cdot [u/q_2]$. We can establish correctness as above:

$$\begin{aligned} x \cdot c_1 + c_0 - \mathbf{sc} &= x\mathbf{ar} + x \cdot q_2 v_1 + \mathbf{zr} + q_2 v_0 - \mathbf{sAr} \\ &= x\mathbf{ar} + xq_2 v_1 + (\mathbf{sA} + \mathbf{e} - x\mathbf{a})\mathbf{r} + q_2 v_0 - \mathbf{sAr} \\ &= q_2(xv_1 + v_0) + \mathbf{er}. \end{aligned}$$

Now, given that **e** and **r** are sufficiently short, specifically such that **er** is shorter than $q_2/2$ it holds that $y = [x \cdot c_1 + c_0 - \mathbf{sc}]_{q_1} = xv_1 + v_0$ and correctness follows.

A detailed description of the protocol is presented in Section 5.⁵ The protocol described there directly implements *vector OLE*, instead of just OLE as presented above.

Security. Security against semi-honest senders follows, just as above, routinely from the LWE assumption. But for superpolynomial moduli q_1 (which, in the OLE setting, is the case we are mostly interested in) we are seemingly at an impasse when it comes to proving security against malicious receivers: In this case, the PVW extractor is not efficient and Quach's technique [Qua20] is

 $^{^4\}mathrm{Despite}$ numerous efforts, HPS in the lattice setting fall short in efficiency when comparing to their group-based counterpart.

 $^{^5\}mathrm{The}$ protocol presented in Section 5 is presented in a slightly, but equivalent, form.

incompatible with our reliance on linear homomorphism of the Regev encryption scheme.

Consequently, we need to devise an alternative method of extracting the receiver's input x. The core idea of our extractor is surprisingly simple: While PVW choose the matrix \mathbf{A} together with a lattice trapdoor, we will instead choose the matrix $\mathbf{A}' = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \end{pmatrix}$ together with a lattice trapdoor $\mathbf{T} \in \mathbb{Z}^{m \times m}$ (i.e. a short square matrix \mathbf{T} such that $\mathbf{A}'\mathbf{T} = 0$). This is possible as the vector \mathbf{a} is also provided in the CRS.

How does this help us to extract a $\tilde{x} \in \mathbb{Z}_q$ from the malicious receiver's message \mathbf{z} ? Let $\mathbf{z} \in \mathbb{Z}_q^m$ be arbitrary, write \mathbf{z} as $\mathbf{z} = \mathbf{s}\mathbf{A} - x \cdot \mathbf{a} + \alpha \mathbf{d}$ for some $\mathbf{s} \in \mathbb{Z}_q^n$, $x \in \mathbb{Z}_q$, $\alpha \in \mathbb{Z}_q$ and a $\mathbf{d} \in \mathbb{Z}^m$ of minimal length. In other words, there exists no \mathbf{d}^* with $\|\mathbf{d}^*\| < \|\mathbf{d}\|$ such that \mathbf{z} can be written as $\mathbf{z} = \mathbf{s}^*\mathbf{A} + \alpha^*\mathbf{d}^* - x^*\mathbf{a}$ for some \mathbf{s}^* , x^* and α^* .

Then it holds that

$$(\mathbf{c}, c_0, c_1) = (\mathbf{Ar}, \mathbf{zr} + q_2 v_0, \mathbf{ar} + q_2 v_1)$$

$$(1)$$

$$= (\mathbf{Ar}, (\mathbf{sA} - x \cdot \mathbf{a} + \alpha \mathbf{d})\mathbf{r} + q_2 v_0, \mathbf{ar} + q_2 v_1)$$
(2)

$$= (\mathbf{Ar}, \mathbf{sAr} - x\mathbf{ar} + \alpha \mathbf{dr} + q_2 v_0, \mathbf{ar} + q_2 v_1)$$
(3)

$$\approx_s (\mathbf{u}, \mathbf{su} - xu + \alpha \mathbf{dr} + q_2 v_0, u + q_2 v_1) \tag{4}$$

$$\equiv (\mathbf{u}, \mathbf{su} - xu' + xq_2v_1 + \alpha \mathbf{dr} + q_2v_0, u') \tag{5}$$

$$= (\mathbf{u}, \mathbf{su} + \alpha \mathbf{dr} - xu' + q_2(xv_1 + v_0), u') \tag{6}$$

$$\approx_s (\mathbf{Ar}, \mathbf{sAr} + \alpha \mathbf{dr} - x\mathbf{ar} + q_2(xv_1 + v_0), \mathbf{ar})$$
(7)

$$= (\mathbf{Ar}, \mathbf{zr} + q_2(xv_1 + v_0), \mathbf{ar}).$$
(8)

In other words, we can simulate (\mathbf{c}, c_0, c_1) given only $xv_1 + v_0$. In the above derivation, (4) holds as by the partial smoothing lemma [BD18] as $(\mathbf{Ar}, \mathbf{ar}, \mathbf{dr}) = (\mathbf{A'r}, \mathbf{dr}) \approx_s (\mathbf{u'}, \mathbf{dr}) = (\mathbf{u}, u, \mathbf{dr})$ where $\mathbf{u} \in \mathbb{Z}_q^m$ and $u \in \mathbb{Z}_q$ are uniformly random. Equation (5) follows by a simple substitution $u \to u' - q_2v_1$, where $u' \in \mathbb{Z}_q$ is also uniformly random. Equation (7) follows analogously to (4) via the smoothing lemma.

Efficient Extraction It remains to be discussed how we can *efficiently* recover x from \mathbf{z} given the lattice trapdoor \mathbf{T} for $\Lambda_q^{\perp}(\mathbf{A}')$. We will recover the representation $\mathbf{z} = \mathbf{s}^* \mathbf{A} + \alpha^* \mathbf{d}^* - x^* \mathbf{a}$. Note that we can write $\mathbf{z} = \mathbf{s}' \mathbf{A}' + \alpha \mathbf{d}$, where $\mathbf{s}' = (\mathbf{s}, -x)$. Setting $\mathbf{f} = \mathbf{z}\mathbf{T}$ we get

$$\mathbf{f} = \mathbf{z}\mathbf{T} = (\mathbf{s}'\mathbf{A}' + \alpha\mathbf{d})\mathbf{T} = \alpha\mathbf{d}\mathbf{T}.$$

Assuming that **d** is sufficiently short, it holds that $\mathbf{d}' = \mathbf{dT}$ is also short. We will now solve the equation system $\alpha \mathbf{d}' = \mathbf{f}$, in which **f** is known, for α and \mathbf{d}' . Write $\mathbf{f} = (f_1, \ldots, f_m)$ and $\mathbf{d}' = (d'_1, \ldots, d'_m)$. Then we get the equation system

$$f_1 = \alpha d'_1, \dots, f_m = \alpha d'_m$$

We can eliminate α using the first equation and obtain the equations

$$-f_2d'_1 + f_1d'_2 = 0, \dots, -f_md'_1 + f_1d'_m = 0$$

Now assume for simplicity f_1 is invertible, i.e. $f_1 \in \mathbb{Z}_q^{\times}$. Then we can express the above equations as

$$-(f_2/f_1) \cdot d'_1 + d'_2 = 0, \dots, -(f_m/f_1) \cdot d'_1 + d'_m = 0.$$

Consequently, it is sufficient to find the first coordinate d'_1 to find all other $d'_j = (f_j/f_1) \cdot d'_1$.

To find the first coordinate d'_1 , we rely on the fact that solving the Shortest Vector Problem (SVP) in a two-dimensional lattice can actually be done in polynomial time (and essentially independently of the modulus q) [LP94]. Consider the lattice Λ_j defined by $\Lambda_j = \Lambda_q^{\perp}(\mathbf{b}_j)$, where $\mathbf{b}_j = (-f_j/f_1, 1)$. First note that $\mathbf{d}'_j = (d'_1, d'_j)$ is a short vector in Λ_i . Furthermore, notice that $\det(\Lambda_j) = q$ as the second component of \mathbf{b}_j is 1 (\mathbf{b}_j is primitive). Letting $B = ||\mathbf{d}'_j||$, we can then argue via Hadamard's inequality that any vector $\mathbf{v} \in \Lambda_i$ shorter than q/Bmust be linearly dependent with \mathbf{d}'_j .

By applying a SVP solver, we are able to find the shortest vector $\mathbf{g}_j = (g_j^{(1)}, g_j^{(2)})$ in Λ_i . Observe that d'_1 must be a multiple of $g_j^{(1)}$ for all $j = 2, \ldots, n$ (otherwise, \mathbf{g}_j would not be the shortest solution of the SVP instance). Hence, d'_1 can be computed by taking the least common multiple of $g_1^{(1)}, \ldots, g_n^{(1)}$.

Having recovered $\mathbf{d}' \in \mathbb{Z}^m$, we can recover \mathbf{d} by solving the linear equation system $\mathbf{dT} = \mathbf{d}'$ over \mathbb{Z} to recover \mathbf{d} . Finally, given \mathbf{d} we can efficiently find $\mathbf{s}' \in \mathbb{Z}_q^{n+1}$ and $\alpha \in \mathbb{Z}_q$ using basic linear algebra by solving the equation system $\mathbf{s}'\mathbf{A}' = \mathbf{z} - \alpha \mathbf{d}$. Given \mathbf{s}' we can set x to s'_{n+1} . If no solution is found in this process we set x = 0 by default. Now notice that we can write

$$\mathbf{z} = \mathbf{s}'\mathbf{A}' + \alpha\mathbf{d} = \mathbf{s}\mathbf{A} + x\mathbf{a} + \alpha\mathbf{d},$$

where $\mathbf{s} = (s'_1, \ldots, s'_n)$. We remark that for a prime modulus q the above analysis readily applies, whereas for composite moduli we need to take into account several fringe cases.

Using a variant of the Smoothing Lemma [BD18] we can finally argue that $(\mathbf{Ar}, \mathbf{zr} + q_2v_0, \mathbf{ar} + q_2v_1)$ only contains information about $xv_1 + v_0$, but leaks otherwise no information about v_0, v_1 .

2.3 Applications to PVW OT

Note that by setting $q_1 = 2$ our OLE protocol realizes exactly the PVW protocol [PVW08]. Thus, our new extraction mechanism immediately improves the PVW protocol by allowing the modulus q to be superpolynomial. Furthermore, we can combine our extractor with the smoothing technique of Quach [Qua20] to obtain a UC-secure variant of the PVW protocol with reusable CRS without the correctness and efficiency penalties incurred by Quach's protocol.

2.4 Extending to Malicious Adversaries

It might seem that Quach's smoothing technique [Qua20] immediately allows us to prove security against malicious senders as well. And indeed, by choosing **a** as a well-formed LWE sample $\mathbf{a} = \mathbf{s}^* \mathbf{A} + \mathbf{e}^*$ we can extract the sender's input v_0, v_1 from \mathbf{c}, c_0, c_1 . However, the issue presents itself slightly different: In the real protocol the receiver computes and outputs $y = [\mathbf{x} \cdot (c_1 - \mathbf{s}^* \mathbf{c}) + c_0 - \mathbf{s} \mathbf{c}]_{q_1}$. If \mathbf{c}, c_0, c_1 are well-formed this is indeed a linear function in \mathbf{x} . However, if $c_1 - \mathbf{s}^* \mathbf{c}$ or $c_0 - \mathbf{s} \mathbf{c}$ is not close to a multiple of q_2 , then this is a non-linear function! But by the functionality of OLE in the ideal model we have to compute a linear function. Observe that this is not an issue in the case of OT (i.e. $q_1 = 2$), as in this case any 1-bit input function is a linear function. To overcome this issue for OLE, we need to deploy a technique which ensures that \mathbf{c}, c_0, c_1 are well-formed.

In a nutshell, the idea to make the protocol secure against malicious senders is to use a *cut-and-choose*-style approach using a two-round OT protocol⁶, which exists under various assumptions [PVW08, DGH⁺20, Qua20]. Using the OT, the receiver is able to check if the vectors $\mathbf{c}_j = \mathbf{Ar}_j$ provided by the sender are well-formed. More precisely, our augmented protocol works as follows:⁷

- 1. The receiver computes $\mathbf{z} = \mathbf{s}\mathbf{A} + \mathbf{e} x\mathbf{a}$ for a uniform input x (in Section 6 we show how to remove the condition of x being uniform). Additionally, it runs λ instances of the OT in parallel (playing the role of the receiver), with input bits $(b_1, \ldots, b_{\lambda}) \leftarrow \{0, 1\}^{\lambda}$ chosen uniformly at random; and sends the first messages of each instance.
- 2. For $j \in [\lambda]$, the sender (with input (v_0, v_1)) computes $\mathbf{c}_j = \mathbf{Ar}_j$, $c_{0,j} = \mathbf{zr}_j + q_2 u_{0,j}$ and $c_{1,j} = \mathbf{ar}_j + q_2 u_{1,j}$ for a gaussian \mathbf{r}_j and uniform $(u_{0,j}, u_{1,j})$. It sets $M_{0,j} = (\mathbf{r}_j, u_{0,j}, u_{1,j})$ and $M_{1,j} = (\bar{v}_{0,j} = v_0 + u_{0,j}, \bar{v}_{1,j} = v_1 + u_{1,j})$ and inputs $(M_{0,j}, M_{1,j})$ into the OT. Moreover, $\mathbf{c}_j, c_{0,j}, c_{1,j}$ are sent to the receiver in the plain.
- 3. If $b_j = 0$, the receiver can check that the values $\mathbf{c}_j, c_{0,j}, c_{1,j}$ are indeed well-formed, i.e. it holds $\mathbf{c}_j = \mathbf{A}\mathbf{r}_j, c_{0,j} = \mathbf{z}\mathbf{r}_j + q_2u_{0,j}, c_{1,j} = \mathbf{a}\mathbf{r}_j + q_2u_{1,j}$ and \mathbf{r}_j is short. If $b_j = 1$, the receiver obtains a random OLE $u_{0,j} + xu_{1,j}$ (which can be obtained by computing $y = [x \cdot c_{1,j} + c_{0,j} - \mathbf{s}\mathbf{c}_j]_{q_1}$). This random OLE instance can be derandomized by computing $y_j = \bar{v}_{0,j} + x\bar{v}_{0,j} - (u_{0,j} + xu_{1,j})$. If y_j coincides at all the positions where $b_j = 1$, then it outputs this value. Else, it aborts.

Security against an unbounded receiver in the OT-hybrid model essentially follows the same reasoning as in the previous protocol.

We now argue how we can build the simulator Sim against a corrupted sender. Sim checks for which of the positions j, the message $M_{0,j}$ is well-formed. If all but a small number of them are well-formed, Sim proceeds; else, it aborts. Then, having recovered the randomness ($\mathbf{r}_i, u_{0,j}, u_{1,j}$), Sim can extract a pair

⁶The approach is similar in spirit as previous works, e.g. [LP07]

⁷The construction actually works for any OLE scheme that is secure against semi-honest senders and malicious receivers. In the technical sections we present the generic construction.

 $(v_{0,j}, v_{0,1})$ from $(\mathbf{c}_j, c_{0,j}, c_{1,j})$. If $(v_{0,j}, v_{0,1})$ coincides in at least half of the positions, then Sim outputs this pair; else, if no such pair exists, Sim aborts.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for "probabilistic polynomial-time".

Let $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ and $\mathbf{x} \in \mathbb{Z}_q^n$. Then $\|\mathbf{x}\|$ denotes the usual ℓ_2 norm of a vector \mathbf{x} . Moreover, $\|\mathbf{A}\| = \max_{i \in [m]} \{\|\mathbf{a}^{(i)}\|\}$ where $\mathbf{a}^{(i)}$ is the *i*-th column of \mathbf{A} . For a vector $\mathbf{b} \in \{0, 1\}^k$, we denote its weight, that is the number of non-null coordinates, by $wt(\mathbf{b})$.

If S is a (finite) set, we denote by $x \leftarrow S$ an element $x \in S$ sampled according to a uniform distribution. Moreover, we denote by U(S) the uniform distribution over S. If D is a distribution over $S, x \leftarrow D$ denotes an element $x \in S$ sampled according to D. If \mathcal{A} is an algorithm, $y \leftarrow \mathcal{A}(x)$ denotes the output y after running \mathcal{A} on input x.

A negligible function $\operatorname{negl}(n)$ in n is a function that vanishes faster than the inverse of any polynomial in n.

Given two distributions D_1 and D_2 , we say that they are ε -statistically indistinguishable, denoted by $D_1 \approx_{\varepsilon} D_2$, if the statistical distance is at most ε .

The function $\mathsf{lcm}(i_1, \ldots, i_j)$ between j integers i_1, \ldots, i_j is the smallest integer $a \in \mathbb{Z}$ such that a is divisible by all i_1, \ldots, i_j .

Error-Correcting Codes. We define Error-Correcting Codes (ECC). An ECC over \mathbb{Z}_q is composed by the following algorithms $\mathsf{ECC}_{q',q,\ell,k,\delta} = (\mathsf{Encode}, \mathsf{Decode})$ such that: i) $\mathbf{c} \leftarrow \mathsf{Encode}(\mathbf{m})$ takes as input a message $\mathbf{m} \in \mathbb{Z}_{q'}^{\ell}$ and outputs a codeword $\mathbf{c} \in \mathbb{Z}_q^k$; ii) $\mathbf{m} \leftarrow \mathsf{Decode}(\tilde{\mathbf{c}})$ takes as input corrupted codeword $\tilde{\mathbf{c}} \in \mathbb{Z}_q^k$ and outputs a message $\mathbf{m} \in \mathbb{Z}_{q'}^{\ell}$ if $\|\tilde{\mathbf{c}} - \mathbf{c}\| \leq \delta$ where $\mathbf{c} \leftarrow \mathsf{Encode}(\mathbf{m})$. In this case, we say that ECC corrects up to δ errors. We say that ECC is linear if any linear combination of codewords of ECC is also a codeword of ECC.

An example of such code is the primitive lattice of [MP12] which allows for efficient decoding and fulfills all the properties that we need. In this code, q = q' and $\ell < k$.

Alternatively, if $\mathbf{m} \in \mathbb{Z}_{q'}^{\ell}$ for q't = q for some $t \in \mathbb{N}$, we can use the encoding $\mathbf{c} = t \cdot \mathbf{m}$ which is usually used in lattice-based cryptography (e.g., [BPR12]). Decoding a corrupted codeword $\tilde{\mathbf{c}}$ works by rounding $[\tilde{\mathbf{c}}]_{q'} = [(1/t) \cdot \tilde{\mathbf{c}}] \mod q'$.

3.1 Universal Composability

UC-framework [Can01] allows to prove security of protocols even under arbitrary composition with other protocols. Let \mathcal{F} be a functionality, π a protocol that implements \mathcal{F} and \mathcal{Z} be a environment, an entity that oversees the execution of the protocol in both the real and the ideal worlds. Let $\mathsf{IDEAL}_{\mathcal{F},\mathsf{Sim},\mathcal{Z}}$ be a random variable that represents the output of \mathcal{Z} after the execution of \mathcal{F} with

adversary Sim. Similarly, let $\mathsf{REAL}_{\pi,\mathcal{A},\mathcal{Z}}^{\mathcal{G}}$ be a random variable that represents the output of \mathcal{Z} after the execution of π with adversary \mathcal{A} and with access to the functionality \mathcal{G} .

A protocol π *UC-realizes* \mathcal{F} *in the* \mathcal{G} *-hybrid model* if for every PPT adversary \mathcal{A} there is a PPT simulator Sim such that for all PPT environments \mathcal{E} , the distributions $\mathsf{IDEAL}_{\mathcal{F},\mathsf{Sim},\mathcal{Z}}$ and $\mathsf{REAL}_{\pi,\mathcal{A},\mathcal{Z}}^{\mathcal{G}}$ are computationally indistinguishable.

In this work, we only consider *static* adversaries. That is, parties involved in the protocol are corrupted at the beginning of the execution.

We now present the ideal functionalities that we will use in this work.

CRS functionality. This functionality generates a **crs** and distributes it between all the parties involved in the protocol. Here, we present the ideal functionality as in [PVW08].

\mathcal{G}_{CRS} functionality

Parameters: An algorithm D.

- Upon receiving (sid, P_i, P_j) from P_i , \mathcal{G}_{CRS} runs $crs \leftarrow D(1^{\kappa})$ and returns (sid, crs) to P_i .
- Upon receiving (sid, P_i, P_j) from P_j , \mathcal{G}_{CRS} returns (sid, crs) to P_j .

OT functionality. Oblivious Transfer (OT) can be seen as a particular case of OLE. We show the ideal OT functionality below.

$\mathcal{F}_{\mathsf{OT}}$ functionality

Parameters: sid $\in \mathbb{N}$ known to both parties.

- Upon receiving $(sid, (M_0, M_1))$ from S, \mathcal{F}_{OT} stores (M_0, M_1) and ignores future messages from S with the same sid;
- Upon receiving $(sid, b \in \{0, 1\})$ from R, \mathcal{F}_{OT} checks if it has recorded $(sid, (M_0, M_1))$. If so, it returns (sid, M_b) to R and (sid, receipt) to S, and halts. Else, it sends nothing, but continues running.

OLE functionality. We now present the OLE functionality. This functionality involves two parties: the sender S and the receiver R.

\mathcal{F}_{OLE} functionality

Parameters: sid, $q, k \in \mathbb{N}$ and a finite field \mathbb{F} known to both parties.

- Upon receiving $(sid, (\mathbf{a}, \mathbf{b}) \in \mathbb{F}^k \times \mathbb{F}^k)$ from S, \mathcal{F}_{OLE} stores (\mathbf{a}, \mathbf{b}) and ignores future messages from S with the same sid;
- Upon receiving $(sid, x \in \mathbb{F})$ from R, \mathcal{F}_{OLE} checks if it has recorded $(sid, (\mathbf{a}, \mathbf{b}))$. If so, it returns $(sid, \mathbf{z} = \mathbf{a} + x\mathbf{b})$ to R and (sid, receipt) to S, and halts. Else, it sends nothing but continues running.

Batch OLE functionality. Here we define a batch version of the functionality defined above. In this functionality, the receiver inputs several OLE inputs at the same time. The sender can then input an affine function together with an index corresponding to which input the receiver should receive the linear combination.

\mathcal{F}_{bOLE} functionality

Parameters: sid, $q, k, k' \in \mathbb{N}$ and a finite field \mathbb{F} known to both parties.

- Upon receiving $(sid, \{(\mathbf{a}_i, \mathbf{b}_i)\}_{i \in [k']} \in \mathbb{F}^k \times \mathbb{F}^k)$ from S, \mathcal{F}_{bOLE} stores $\{(\mathbf{a}_i, \mathbf{b}_i)\}_{i \in [k']}$ and ignores future messages from S with the same sid;
- Upon receiving $(\operatorname{sid}, \{x_i\}_{i \in [k']})$ from R, where $x_i \in \mathbb{F}$, $\mathcal{F}_{\text{bOLE}}$ checks if it has recorded $(\operatorname{sid}, \{(\mathbf{a}_i, \mathbf{b}_i)\}_{i \in [k']})$. If so, it returns $(\operatorname{sid}, \{\mathbf{z}_i = \mathbf{a}_i + x_i \mathbf{b}_i\}_{i \in [k']})$ to R and $(\operatorname{sid}, \operatorname{receipt})$ to S, and halts. Else, it sends nothing but continues running.

3.2 Lattices and Hardness Assumptions

Notation. Let $\mathbf{B} \in \mathbb{R}^{k \times n}$ be a matrix. We denote the lattice generated by \mathbf{B} by $\Lambda = \Lambda(\mathbf{B}) = {\mathbf{xB} : \mathbf{x} \in \mathbb{Z}^k}^8$. The dual lattice Λ^* of a lattice Λ is defined by $\Lambda^* = {\mathbf{x} \in \mathbb{R}^n : \forall y \in \Lambda, \mathbf{x} \cdot \mathbf{y} \in \mathbb{Z}}$. It holds that $(\Lambda^*)^* = \Lambda$.

We denote by $\gamma \mathcal{B}$ the ball of radius γ centered on zero. That is

$$\gamma \mathcal{B} = \{ \mathbf{x} \in \mathbb{Z}^n : \|\mathbf{x}\| \le \gamma \}.$$

A lattice Λ is said to be q-ary if $(q\mathbb{Z})^n \subseteq \Lambda \subseteq \mathbb{Z}^n$. For every q-ary lattice Λ , there is a matrix $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ such that

$$\Lambda = \Lambda_q(\mathbf{A}) = \{ y \in \mathbb{Z}^n : \exists \mathbf{x} \in \mathbb{Z}_q^k, \mathbf{y} = \mathbf{x}\mathbf{A} \mod q \}.$$

The orthogonal lattice Λ_q^{\perp} is defined by $\{\mathbf{y} \in \mathbb{Z}^n : \mathbf{A}\mathbf{y}^T = 0 \mod q\}$. It holds that $\frac{1}{q}\Lambda_q^{\perp} = \Lambda_q^*$

⁸The matrix **B** is called a basis of $\Lambda(\mathbf{B})$.

Let $\rho_s(\mathbf{x})$ be probability distribution of the Gaussian distribution over \mathbb{R}^n with parameter *s* and centered in 0. We define the discrete Gaussian distribution $D_{S,s}$ over *S* and with parameter *s* by the probability distribution $\rho_s(\mathbf{x})/\rho(S)$ for all $\mathbf{x} \in S$ (where $\rho_s(S) = \sum_{\mathbf{x} \in S} \rho_s(\mathbf{x})$). For $\varepsilon > 0$, the smoothing parameter $\eta_{\varepsilon}(\Lambda)$ of a lattice Λ is the least real

For $\varepsilon > 0$, the smoothing parameter $\eta_{\varepsilon}(\Lambda)$ of a lattice Λ is the least real number $\sigma > 0$ such that $\rho_{1/\sigma}(\Lambda^* \setminus \{0\}) \leq \varepsilon$ [MR07].

Useful Lemmata. The following lemmas are well-known results on discrete Gaussians over lattices.

Lemma 1 ([Ban93]). Let $\sigma > 0$ and $\mathbf{x} \leftarrow D_{\mathbb{Z}^n,\sigma}$. Then we have that

$$\Pr\left[\|\mathbf{x}\| \ge \sigma \sqrt{n}\right] \le \operatorname{\mathsf{negl}}(n)$$
 .

The next lemma is a consequence of the smoothing lemma [MR07] and it tells us that $\mathbf{A}\mathbf{e}^{T}$ is uniform, when \mathbf{e} is sampled from a discrete Gaussian for a proper choice of parameters.

Lemma 2 ([GPV08]). Let $q \in \mathbb{N}$ and $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ be a matrix such that $n = \text{poly}(k \log q)$. Moreover, let $\varepsilon \in (0, 1/2)$ and $\sigma \geq \eta_{\varepsilon}(\Lambda_q^{\perp}(\mathbf{A}))$. Then, for $\mathbf{e} \leftarrow D_{\mathbb{Z}^m, \sigma}$,

$$\mathbf{A}\mathbf{e}^T \mod q pprox_{2\varepsilon} \mathbf{u}^T \mod q$$

where $\mathbf{u} \leftarrow \mathbb{Z}_q^k$.

The *partial smoothing lemma* tells us that the famous *smoothing lemma* [MR07] still holds even given a small leak.

Lemma 3 (Partial Smoothing [BD18]). Let $q \in \mathbb{N}$, $\gamma > 0$ be a real number, $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ and $\sigma, \varepsilon > 0$ be such that $\rho_{q/\sigma}(\Lambda_q(\mathbf{A}) \setminus \gamma \mathcal{B}) \leq \varepsilon$. Moreover, let $\mathbf{D} \in \mathbb{Z}_q^{m \times k}$ be a full-rank matrix with $\Lambda_q^{\perp}(\mathbf{D}) = \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{x} \cdot \mathbf{y}^T = 0, \forall \mathbf{y} \in \Lambda_q(\mathbf{A}) \cap \gamma \mathcal{B}\}$. Then we have that

$$\mathbf{A}\mathbf{x}^T \mod q \approx_{\varepsilon} \mathbf{A}(\mathbf{x} + \mathbf{u})^T \mod q$$

where $\mathbf{x} \leftarrow D_{\mathbb{Z}^n,\sigma}$ and $\mathbf{u} \leftarrow \Lambda_q^{\perp}(\mathbf{D}) \mod q$.

Recall Hadamard's inequality.

Theorem 1 (Hadamard's inequality). Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be a basis of Λ . Then it holds that

$$\det(\Lambda) \le \prod_{i=1}^n \|\mathbf{e}_i\|.$$

The following two lemmas give us an upper-bound on and the value of the determinant of a two-dimensional lattice $\Lambda_q^{\perp}(\mathbf{a})$ for $\mathbf{a} \in \mathbb{Z}_q^2$.

Lemma 4. Let $q \in \mathbb{N}$, $B \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{Z}_q^2$ such that $\mathbf{a} \neq 0$. Let $\mathbf{e}, \mathbf{e}' \in \mathbb{Z}^2$ such that $\mathbf{e}, \mathbf{e}' \in \Lambda_q^{\perp}(\mathbf{a})$, $\|\mathbf{e}\|, \|\mathbf{e}'\| < B$ and \mathbf{e}, \mathbf{e}' are linearly independent over \mathbb{Z} . Then det $(\Lambda_q^{\perp}(\mathbf{a})) \leq B^2$.

Proof. First note that $\Lambda_q^{\perp}(\mathbf{a}) \subseteq \mathbb{Z}^2$. Recall that the determinant of $\Lambda_q^{\perp}(\mathbf{a})$ is identical to the volume of the parallelepiped defined by $\sum_{i=1}^{k} \mathbf{b}_i \cdot [0, 1)$ for any basis $(\mathbf{b}_1, \ldots, \mathbf{b}_k)$ of $\Lambda_q^{\perp}(\mathbf{a})$ (see e.g. [Reg05]). Since \mathbf{e}, \mathbf{e}' are linearly independent and $\mathbf{e}, \mathbf{e}' \in \Lambda_q^{\perp}(\mathbf{a})$, then the pair $(\mathbf{e}, \mathbf{e}')$ is part of a basis of $\Lambda_q^{\perp}(\mathbf{a})$. Thus, by Hadamard's inequality it holds that det $(\Lambda_q^{\perp}(\mathbf{a})) \leq ||\mathbf{e}|| \cdot ||\mathbf{e}'|| \leq B^2$. \Box

We will need the following simple Definition and Lemma.

Definition 1. Let q be a modulus. We say that a vector $\mathbf{a} \in \mathbb{Z}_q^n$ is primitive, if the row-span of of \mathbf{a}^{\top} is \mathbb{Z}_q . In other words it holds that every $z \in \mathbb{Z}_q$ can be expressed as $z = \langle \mathbf{a}, \mathbf{x} \rangle$ for some $\mathbf{x} \in \mathbb{Z}_q^n$.

Lemma 5. Let q be a modulus an let $\mathbf{a} \in \mathbb{Z}_q^n$ be primitive. Then it holds that $\det(\Lambda^{\perp}(\mathbf{a})) = q$.

Proof. Since $\Lambda^{\perp}(\mathbf{a}) \subseteq \mathbb{Z}^n$, it holds that $\det(\Lambda^{\perp}(\mathbf{a})) = |\mathbb{Z}^n/\Lambda^{\perp}(\mathbf{a})|$. Let $\mathbf{c} + \Lambda^{\perp}(\mathbf{a}) \in \mathbb{Z}^n/\Lambda^{\perp}(\mathbf{a})$ be a coset of $\Lambda^{\perp}(\mathbf{a})$. By definition of $\Lambda^{\perp}(\mathbf{a})$, it holds for all $\mathbf{x} \in \mathbf{c} + \Lambda^{\perp}(\mathbf{a})$ that $\langle \mathbf{a}, \mathbf{x} \rangle = \langle \mathbf{a}, \mathbf{x} \rangle$, i.e. the value $z = \langle \mathbf{a}, \mathbf{x} \rangle$ only depends on the coset of \mathbf{x} and is unique for this coset. Since \mathbf{a} is primitive, every $z \in \mathbb{Z}_q$ can be expressed as $z = \langle \mathbf{a}, \mathbf{x} \rangle$, we conclude there are exactly $q = |\mathbb{Z}_q|$ cosets in $\mathbb{Z}^n/\Lambda^{\perp}(\mathbf{a})$. It follows by the above that $\det(\Lambda^{\perp}(\mathbf{a})) = q$.

The following lemma states that, for two-dimensional lattices, we can efficiently find the shortest vector of the lattice.

Lemma 6 ([LP94]). Let $q \in \mathbb{N}$, and let $\Lambda \subseteq \mathbb{Z}^2$ be a q-ary lattice. There exists an algorithm SolveSVP that takes as input (a basis of) Λ and outputs the shortest vector $\mathbf{e} \in \Lambda$. This algorithm runs it time $\mathcal{O}(\log q)$.

We will also need the following lemma which states that any sufficiently short vector of the lattice $\Lambda_q^{\perp}(\mathbf{a})$ must be a multiple of the shortest vector $\mathbf{e}' \leftarrow \mathsf{SolveSVP}(\mathbf{a})$.

Lemma 7. Let $q \in \mathbb{N}$, $B < \sqrt{q}$, $\mathbf{a} \in \mathbb{Z}_q^2$ be a primitive 2-dimensional vector such that $\mathbf{a} \neq 0$, and $\mathbf{e} \in \mathbb{Z}^2$ be the shortest vector of the lattice $\Lambda_q^{\perp}(\mathbf{a})$. If $\|\mathbf{e}\| < B$ then for any $\mathbf{e}' \in \mathbb{Z}^2$ such that $\mathbf{e}' \in \Lambda_q^{\perp}(\mathbf{a})$ and $\|\mathbf{e}'\| < B$ we have that $\mathbf{e}' = t\mathbf{e}$ for some $t \in \mathbb{Z}$, i.e., \mathbf{e}' is a multiple of \mathbf{e} over \mathbb{Z} .

Proof. We have that $\mathbf{e}, \mathbf{e}' \in \Lambda_q^{\perp}(\mathbf{a})$ and $\|\mathbf{e}\|, \|\mathbf{e}'\| < B$. Assume towards contradiction that \mathbf{e}, \mathbf{e}' are linearly dependent over \mathbb{Z} . Then by Lemma 4 det $(\Lambda_q^{\perp}(\mathbf{a}_i)) \leq B^2$.

On the other hand, we have that det $(\Lambda_q^{\perp}(\mathbf{a})) = q$ by Lemma 5. Then $q \leq B^2$ and thus $\sqrt{q} \leq B$, which contradicts the assumption that $B < \sqrt{q}$. We conclude that \mathbf{e} must be a multiple of \mathbf{e}' over the integers.

The LWE Assumption. The Learning with Errors assumption was first presented in [Reg05]. The assumption roughly states that it should be hard to solve a set linear equations by just adding a little noise to it.

Definition 2 (Learning with Errors). Let $q, k \in \mathbb{N}$ where $k \in \text{poly}(\lambda)$, $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ and $\beta \in \mathbb{R}$. For any $n = \text{poly}(k \log q)$, the LWE_{k, β,q} assumption holds if for every PPT algorithm \mathcal{A} we have

$$\left|\Pr\left[1 \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{sA} + \mathbf{e})\right] - \Pr\left[1 \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{y})\right]\right| \le \mathsf{negl}(\lambda)$$

for $\mathbf{s} \leftarrow \{0,1\}^k$, $\mathbf{e} \leftarrow D_{\mathbb{Z}^n,\beta}$ and $\mathbf{y} \leftarrow \{0,1\}^n$.

Regev proved in [Reg05] that there is a (quantum) worst-case to average-case reduction from some problems on lattices which are believed to be hard even in the presence of a quantum computer.

Trapdoors for Lattices. Recent works [GPV08, MP12] have presented trapdoors functions based on the hardness of LWE.

Lemma 8 ([GPV08, MP12]). Let $\tau(k) \in \omega(\sqrt{\log k})$ be a function. There is a pair of algorithms (TdGen, Invert) such that if (A, td) \leftarrow TdGen $(1^{\lambda}, n, k, q)$ then:

- A ∈ Z^{k×n}_q where n ∈ O(k log q) is a matrix whose distribution is 2^{-k} close to the uniform distribution over Z^{k×n}_a.
- For any $\mathbf{s} \in Z_q^k$ and $\mathbf{e} \in \mathbb{Z}_q^n$ such that $\|\mathbf{e}\| < q/(\sqrt{n}\tau(k))$, we have that

$$\mathbf{s} \leftarrow \mathsf{Invert}(\mathsf{td}, \mathbf{sA} + \mathbf{e}).$$

In the lemma above, td corresponds to a *short* matrix $\mathbf{T} \in \mathbb{Z}^{n \times n}$ (that is, $\|\mathbf{T}\| < B$, for some $B \in \mathbb{R}$ and B determines the trapdoor *quality* [GPV08, MP12]) such that $\mathbf{AT} = 0$ and \mathbf{T}^{-1} can be easily computed. To invert a sample of the form $\mathbf{y} = \mathbf{sA} + \mathbf{e}$, we simply compute $\mathbf{yT} = \mathbf{sAT} + \mathbf{eT} = \mathbf{eT}$. The error vector \mathbf{e} can be easily recovered by multiplying by \mathbf{T}^{-1} .

Observe that, if $(\mathbf{A}, \mathsf{td}_{\mathbf{A}}) \leftarrow \mathsf{TdGen}(1^{\lambda}, n, k, q)$, then $\Lambda(\mathbf{A})$ has no short vectors. That is, for all $\mathbf{y} \in \Lambda(\mathbf{A})$, then $\|\mathbf{y}\| > B = q/(\sqrt{n\tau}(k))$ [MP12]. If this does not happen, then the algorithm Invert would not output the right s for a non-negligible number of cases.

4 Finding Short Vectors in a Lattice with a Trapdoor

In this section, we provide an algorithm that, given a matrix $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ together with the corresponding lattice trapdoor $\mathsf{td}_{\mathbf{A}}$ (in the sense of Lemma 8), we can decide if a vector $\mathbf{a} \in \mathbb{Z}_q^n$ is close to the row-span of \mathbf{A} , i.e. if \mathbf{a} is close to the lattice $\Lambda_q(\mathbf{A})$, and even find the closest vector in $\Lambda_q(\mathbf{A})$. To keep things simple, we will only consider the case where q is either a prime or the product of a "small" prime q_1 and a "large" prime q_2 .

Before providing the algorithm, we will first prove the following structural result about equation systems of the form $\mathbf{y} = r\mathbf{e} \pmod{q}$, where $\mathbf{y} \in \mathbb{Z}_q^n$ is given and $r \in \mathbb{Z}_q$ and a short $\mathbf{e} \in \mathbb{Z}^n$ are to be determined.

Lemma 9. Let q be a modulus and let $B^2 \leq q$. Let $\mathbf{y} \in \mathbb{Z}_q^n$ be a vector such that there is an index i for which $y_i \in \mathbb{Z}_q^*$. Assume wlog that $y_1 \in \mathbb{Z}_q^*$. Define the q-ary lattice Λ as the set of all $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ for which it holds that $-y_i/y_1 \cdot x_1 + x_i = 0 \pmod{q}$ for $i = 2, \ldots, n$. Now let $r \in \mathbb{Z}_q$ and $\mathbf{e} \in \mathbb{Z}^n$ be such that $\mathbf{y} = r \cdot \mathbf{e}$. Then $\mathbf{e} \in \Lambda$. Furthermore, all $\mathbf{x} \in \Lambda$ with $\|\mathbf{x}\| \leq B$ are linearly dependent. In other words, if there exists a $\mathbf{x} \in \Lambda \setminus \{0\}$ with $\|\mathbf{x}\| \leq B$, then there exists a $\mathbf{x}^* \in \Lambda$ such that every $\mathbf{x} \in \Lambda$ with $\|\mathbf{x}\| \leq B$ can be written as $\mathbf{x} = t \cdot \mathbf{x}^*$ for a $t \in \mathbb{Z}$.

Proof. First not that if $\mathbf{y} = r \cdot \mathbf{e}$ for an $r \in \mathbb{Z}_q$ and an $\mathbf{e} \in \mathbb{Z}^n$, then it holds routinely that $-y_i/y_1 \cdot e_1 + e_i = 0$ for all $i = 2, \ldots, n$. We will now show the second part of the lemma, namely that if there exists an $\mathbf{x} \in \Lambda \setminus \{0\}$ with $\|\mathbf{x}\| \leq B$, then any such \mathbf{x} can be written as $\mathbf{x} = t \cdot \mathbf{x}^*$ for a $\mathbf{x}' \in \Lambda$, which is the shortest non-zero vector in Λ . Let $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ and define the shortened vectors $\mathbf{x}_i = (x_1, x_i) \in \mathbb{Z}^2$. Note that since $\|\mathbf{x}\| \leq B$, it also holds that $\|\mathbf{x}_i\| \leq B$. Further define the lattices $\Lambda_i \subseteq \mathbb{Z}^2$ (for $i = 2, \ldots, n$) via the equation $-y_i/y_1x_1 + x_i = 0$, and observe that $\mathbf{x}_i \in \Lambda_i$. Further let $\mathbf{x}_i^* = (x_{1,i}^*, x_i^*)$ be the shortest non-zero vector in Λ_i . Set $x_1^{\dagger} = \operatorname{lcm}(x_{1,2}^*, \ldots, x_{1,n}^*)$ and $x_i^{\dagger} = x_i^* \cdot x_1^{\dagger}/x_{1,i}^*$, and set set $\mathbf{x}^{\dagger} = (x_1^{\dagger}, \ldots, x_n^{\dagger})$. Note that $\mathbf{x}^{\dagger} \in \Lambda$. We claim that \mathbf{x} can be written as $\mathbf{x} = t \cdot \mathbf{x}^{\dagger}$, hence \mathbf{x}^{\dagger} is the shortest vector in Λ .

Since $\|\mathbf{x}_i\| \leq B$ it follows by Lemma 7 that we can write \mathbf{x}_i as $\mathbf{x}_i = t_i \cdot \mathbf{x}_i^*$ for a $t_i \in \mathbb{Z}$. That is $x_1 = t_i \cdot x_{1,i}^*$ and $x_i = t_i \cdot x_i^*$. Now, since $x_{1,i}^*$ divides x_1 for $i = 2, \ldots, n$, it also holds that $x_1^{\dagger} = \text{lcm}(x_{1,2}^*, \ldots, x_{1,n}^*)$ divides x_1 . Thus write $x_1 = t^{\dagger} \cdot x_1^{\dagger}$ for some t^{\dagger} , and it follows that

$$\begin{aligned} t^{\dagger} \cdot x_i^{\dagger} &= t^{\dagger} \cdot x_i^* \cdot x_1^{\dagger} / x_{1,i}^* \\ &= x_i^* \cdot x_1 / x_{1,i}^* \\ &= x_i^* \cdot t_i \\ &= x_i, \end{aligned}$$

for $i = 2, \ldots, n$. We conclude that $\mathbf{x} = t^{\dagger} \cdot \mathbf{x}^{\dagger}$.

The proof of Lemma 9 suggest an approach to recover \mathbf{e} for \mathbf{y} : Compute the shortest vectors of the two-dimensional lattices Λ_i and use them to find the shortest vector \mathbf{e}^{\dagger} in Λ . Since \mathbf{e} is a multiple of \mathbf{e}^{\dagger} , \mathbf{e}^{\dagger} also must be a short solution to $\mathbf{y} = r^{\dagger} \mathbf{e}^{\dagger}$.

The following algorithm receives as input a vector \mathbf{y} and allows us to find (r, \mathbf{e}) such that $r\mathbf{e} = \mathbf{y} \mod q$ and \mathbf{e} is a short vector (if such a vector exists).

Construction 1. Let q be a modulus and let $n = \text{poly}(\lambda)$. Let $\mathbf{y} \in \mathbb{Z}_q^n$ be such that at least one component y_i is invertible, i.e. $y_i \in \mathbb{Z}_q^*$. Without loss of generality, we assume that this component is y_1 .

RecoverError_{q,n}(\mathbf{y}, B):

- Parse $\mathbf{y} \in \mathbb{Z}_q^n$ as (y_1, \ldots, y_n) and B > 0. If $\|\mathbf{y}\| \leq B$ output \mathbf{y} .
- Since $y_i \in \mathbb{Z}_q^*$, compute for all i = 2, ..., n $v_i = y_i \cdot (y_1)^{-1}$ over \mathbb{Z}_q , and set $\mathbf{a}_i = (v_i 1)$.
- For i = 2,..., n consider the lattice Λ_i = Λ[⊥]_q(**a**_i) ⊆ Z² and run SolveSVP(Λ_i) to obtain **e**^{*}_i ∈ Λ_i. Parse **e**_i = (e^{*}_{1,i}, e^{*}_i).
- Compute $e_1^{\dagger} = \operatorname{lcm}(e_{1,2}, \dots, e_{1,n}).$
- For all $i = 2, \ldots, n$, set $\alpha_i = e_1^{\dagger}/e_{1,i} \in \mathbb{Z}$
- Set $e_i^{\dagger} = \alpha_i \cdot e_i^*$.
- Set $\mathbf{e}^{\dagger} = (e_1^{\dagger}, \dots, e_n^{\dagger})$ and $r^{\dagger} = y_1 \cdot (e_1^{\dagger})^{-1} \in \mathbb{Z}_q$
- If $\|\mathbf{e}^{\dagger}\|_{\infty} < B$, output $(r^{\dagger}, \mathbf{e}^{\dagger})$. Else, output \bot .

Lemma 10. Given that $B^2 \leq q$ and the vector \mathbf{y} is of the form $\mathbf{y} = r\mathbf{e}$ for some $r \in \mathbb{Z}_q$ and $\mathbf{e} \in \mathbb{Z}^n$ with $\|\mathbf{e}\|_{\infty} \leq B$, and further there exists an $y_i \in \mathbb{Z}_q^*$, then $\mathsf{RecoverError}_{q,n}(\mathbf{y}, B)$ outputs a pair $(r^{\dagger}, \mathbf{e}^{\dagger})$ with $\mathbf{y} = r^{\dagger} \cdot \mathbf{e}^{\dagger}$ for an $r^{\dagger} \in \mathbb{Z}_q$ and $\mathbf{e}^{\dagger} \in \mathbb{Z}^n$ with $\|\mathbf{e}^{\dagger}\| \leq B$. Furthermore, \mathbf{e} is a short \mathbb{Z} -multiple of \mathbf{e}^{\dagger} , i.e. \mathbf{e} and \mathbf{e}^{\dagger} are linearly dependent. The algorithm runs in time $\mathsf{poly}(\log q, n)$.

Proof. We first analyze the runtime of the algorithm. Note that, since Λ_i has dimension 2, then SolveSVP runs in time $\mathcal{O}(\log q)$ by Lemma 6. All other procedures run in time poly $(\log q, n)$.

We will now show that algorithm RecoverError is correct. Let

$$\mathbf{y} = r \cdot \mathbf{e} \in \mathbb{Z}_q^n \tag{9}$$

for an $r \in \mathbb{Z}_q$ and a $\mathbf{e} \in \mathbb{Z}^n$ with $\|\mathbf{e}\|_{\infty} \leq B$. We claim that algorithm Recover Error, on input \mathbf{y} outputs an $r^* \in \mathbb{Z}_q$ and a $\mathbf{e}^* \in \mathbb{Z}^n$ with $\|\mathbf{e}^*\|_{\infty} \leq \|\mathbf{e}\|_{\infty}$.

We can expand (9) as the following *non-linear equation system*:

$$y_1 = r \cdot e_1$$
$$\vdots$$
$$y_n = r \cdot e_n$$

Eliminating r via the first equation, using that $y_1 \in \mathbb{Z}_q^*$ we obtain the equation system

$$-y_2 \cdot y_1^{-1} \cdot e_1 + e_2 = 0$$

$$\vdots$$

$$-y_n \cdot y_1^{-1} \cdot e_1 + e_n = 0,$$

i.e. we conclude that any solution to the above problem must also satisfy this *linear* equation system. Now write $v_i = y_i/y_1$ and set $\mathbf{a}_i = (-v_i, 1)$ and $\mathbf{e}_i = (e_1, e_i)$. The above equation system can be restated as for all $i = 2, \ldots, n$ that $\mathbf{e}_i \in \Lambda_i = \Lambda^{\perp}(\mathbf{a}_i)$.

Since $\|\mathbf{e}\|_{\infty} \leq B$, it immediately follows that $\|\mathbf{e}_i\|_{\infty} \leq B$. Note further that all vectors $\mathbf{a}_i \in \mathbb{Z}_q^2$ are primitive (as their second component is 1). Now, let \mathbf{e}_i^* be the shortest (non-zero) vector in Λ_i . As by the above argument $\mathbf{e}_i \in \Lambda_i$ and $\|\mathbf{e}_i\|_{\infty} < B$, it follows by Lemma 7 that \mathbf{e}_i must be of the form $\mathbf{e}_i = r_i \cdot \mathbf{e}_i^*$ for an $r_i \in \mathbb{Z}$.

Parsing \mathbf{e}_i^* as $\mathbf{e}_i^* = (e_{i,1}^*, e_i^*)$, the above implies for all *i* that $e_1 = r_i \cdot e_{i,1}^*$, in other words $e_{i,1}^*$ divides e_1 . But this means that also the least common multiple e_1^{\dagger} of the $e_{i,1}^*$ divides e_1 , i.e. $e_1 = t_i e_1^{\dagger}$. Consequently, it holds that $|e_1^{\dagger}| \leq |e_1|$. Now set $\alpha_i = e_1^{\dagger}/e_{1,i}^*$ and $\mathbf{e}_i^{\dagger} = \alpha_i \cdot \mathbf{e}_i^*$. Since $|e_1^{\dagger}| \leq |e_1|$, it must hold that $\alpha_i \leq r_i$ (as the linear combination $\mathbf{e}_i = r_i \cdot \mathbf{e}_i^*$ is unique) and therefore $\|\mathbf{e}_i^{\dagger}\|_{\infty} \leq \|\mathbf{e}_i\|_{\infty}$. Now parse $\mathbf{e}_i^{\dagger} = (e_1^{\dagger}, e_i^{\dagger})$ and set $\mathbf{e}^{\dagger} = (\mathbf{e}_1^{\dagger}, \dots, \mathbf{e}_n^{\dagger})$. It follows that $\|\mathbf{e}^{\dagger}\|_{\infty} \leq B$. By the above it follows that \mathbf{e}^{\dagger} is a *B*-short solution to the linear equation system. It follows that $r^{\dagger} = y_1 \cdot (e_1^{\dagger})^{-1} \in \mathbb{Z}_q$ provides us a solution to the non-linear system.

Algorithm RecoverError requires that the vector \mathbf{y} has a component in \mathbb{Z}_q^* . If the modulus q is prime, then the existence of such a component follows from $\mathbf{y} \neq 0$. However, this is generally not the case for composite moduli q. We will now present an algorithm RecoverError⁺ which also covers composite moduli of the form q is of the form $q = q_1 \cdot q_2$, where q_2 is a "large" prime and q_1 is either 1 or a small prime.

Construction 2. Let q be a modulus of the form $q = q_1 \cdot q_2$ (where the factors q_1 and q_2 are explicitly known) and let $n = \text{poly}(\lambda)$. Let $\mathbf{y} \in \mathbb{Z}_q^n$.

Recover $\operatorname{Error}_{q,q_1,q_2,n}^+(\mathbf{y},B)$:

- If it holds for all i that $q_1|y_i$, proceed as follows:
 - Compute $\bar{\mathbf{y}} = \mathbf{y} \mod q_2$ (i.e. $\bar{\mathbf{y}} \in \mathbb{Z}_{q_2}^n$)
 - Compute $(r_0, \mathbf{e}) = \mathsf{RecoverError}_{q_2, n}(\bar{\mathbf{y}})$
 - Set $r_1 = (q_1)^{-1} r_0$

- Let r'_1 be the lifting of r_1 to \mathbb{Z}_q and set $r = q_1 \cdot r'_1 \in \mathbb{Z}_q$.
- Output (r, \mathbf{e})
- Otherwise, if it holds for all i that $q_2|y_i|$ proceed as follows:
 - Compute $\bar{\mathbf{y}} = \mathbf{y} \mod q_1$ (i.e. $\bar{\mathbf{y}} \in \mathbb{Z}_{q_1}^n$)
 - Set $\mathbf{\bar{e}} = (q_2)^{-1} \cdot \mathbf{\bar{y}} \in \mathbb{Z}_{q_2}^n$ (Note that q_2 has an inverse modulo q_1 as q_1 and q_2 are co-prime).
 - Lift $\bar{\mathbf{e}}$ to an $\mathbf{e} \in [-q_1/2, q_2/2]^n \subseteq \mathbb{Z}^n$ for which $\mathbf{e} \mod q_1 = \bar{\mathbf{e}}$.
 - $Set r = q_2.$
 - $Output(r, \mathbf{e})$.
- In the final case, there must exist components y_i and y_j such that $q_1 \nmid y_i$ and $q_2 \nmid y_j$. Proceed as follows:
 - If $q_2 \nmid y_i$ it holds that $y_i \in \mathbb{Z}_q^*$. Likewise, if $q_1 \nmid y_j$ it holds that $y_j \in \mathbb{Z}_q^*$. If one of these two trivial cases happen compute and output $(r, e) = \mathsf{RecoverError}_{q,n}(\mathbf{y})$.
 - Otherwise, set $y_{n+1} = y_i + y_j$ and $\mathbf{y}' = (\mathbf{y}, y_{n+1}) \in \mathbb{Z}_q^{n+1}$. Compute $(r, \mathbf{e}') = \operatorname{RecoverError}_{q, n+1}(\mathbf{y}')$. Set $\mathbf{e} = \mathbf{e}'_{1, \dots, n} \in \mathbb{Z}^n$. If $\|\mathbf{e}\| \leq B$ Output (r, \mathbf{e}) , otherwise try this step again for $y_{n+1} = y_i y_j$ and output (r, \mathbf{e}) .

Lemma 11. Let $q = q_1 \cdot q_2$, where $q_1 \leq 2B$ is either 1 or a prime and $q_2 > B^2$ is a prime. If \mathbf{y} is of the form $\mathbf{y} = r'\mathbf{e}'$ for some $r' \in \mathbb{Z}_q$ and $\mathbf{e}' \in \mathbb{Z}^n$ with $\|\mathbf{e}'\|_{\infty} \leq B$, then RecoverError⁺_{q,q_1,q_2,n} (\mathbf{y}, B) outputs a pair (r, \mathbf{e}) with $\|\mathbf{e}\|_{\infty} \leq B$ such that $\mathbf{y} = r \cdot \mathbf{e}$. The algorithm runs in time $\mathsf{poly}(\log q, n)$.

Proof. It follows routinely that $\operatorname{RecoverError}_{q,q_1,q_2,n}^+(\mathbf{y}, B)$ runs in polynomial time. We will proceed to the correctness analysis and distinguish the same cases as $\operatorname{RecoverError}^+$.

• In the first case, given that $\mathbf{y} = r' \cdot \mathbf{e}'$ (for a $\mathbf{e}' \in \mathbb{Z}^n$ with $\|\mathbf{e}'\|_{\infty} \leq B$) it holds that $\bar{\mathbf{y}} = \bar{r}' \cdot \mathbf{e}'$, where $\bar{r}' = r \mod q_2$. Consequently, as $q_2 > B^2$ it holds that $\operatorname{RecoverError}_{q_2,n}(\bar{\mathbf{y}})$ will output a pair (r_0, \mathbf{e}) with $\|\mathbf{e}\|_{\infty} \leq B$ such that $r_0 \cdot \mathbf{e} \mod q_2 = \bar{\mathbf{y}}$. Now it holds that

$$(r \cdot \mathbf{e}) \mod q_2 = q_1 \cdot (q_1)^{-1} \cdot r_0 \cdot \mathbf{e} = r_0 \cdot \mathbf{e} = \bar{\mathbf{y}} = \mathbf{y} \mod q_2.$$

Furthermore, it holds that $(r \cdot \mathbf{e}) \mod q_1 = q_1 \cdot r'_1 \cdot \mathbf{e} = 0 = \mathbf{y} \mod q_1$. Thus, by the Chinese remainder theorem it holds that $r \cdot \mathbf{e} = \mathbf{y}$.

• In the second case, if for all *i* that $q_2|y_i$, then it holds that $\|\mathbf{e}\|_{\infty} \leq q_1/2 \leq B$. Furthermore, it holds that $(r \cdot \mathbf{e}) \mod q_1 = (q_2 \cdot (q_2)^{-1} \bar{\mathbf{e}}) \mod q_1 = \bar{\mathbf{e}} = \mathbf{y} \mod q_1$ and $(r \cdot \mathbf{e}) \mod q_2 = (q_2 \cdot \mathbf{e}) \mod q_2 = 0 = \mathbf{y} \mod q_2$. Consequently, by the Chinese remainder theorem it holds that $r \cdot \mathbf{e} = \mathbf{y}$.

• In the third case, if $q_2 \nmid y_i$ or $q_1 \nmid y_j$ correctness follows immediately from the correctness of RecoverError, as in this case either y_i or y_j is the required invertible component. Thus, assume that $q_1|y_i$ but $q_2 \nmid y_i$ and $q_2|y_j$ but $q_1 \nmid y_j$. It holds that $(y_i \pm y_j) \mod q_2 = y_i \mod q_2 \neq 0$ and $(y_i \pm y_j) \mod q_1 = \pm y_j \mod q_1 \neq 0$. Consequently, $y_i \pm y_j \in \mathbb{Z}_q^*$. Finally given that $y_i = r \cdot e_i$ and $y_j = r \cdot e_j$ with $|e_i|, |e_j| \leq B$, it holds that $y_i \pm y_j = r \cdot (e_i \pm e_j)$ and either $|e_i + e_j| \leq B$ or $|e_i - e_j| \leq B$. Consequently, for one of these two cases correctness follows from the correctness of RecoverError, as in this case \mathbf{y}' is of the form $\mathbf{y}' = r \cdot \mathbf{e}'$ for an $\mathbf{e}' \in \mathbb{Z}^n$ with $\|\mathbf{e}'\|_{\infty} \leq B$.

We now present the main result of this section. The algorithm presented in Construction 3 allows us decide if a given vector \mathbf{a} is close to the row-span of \mathbf{A} , if \mathbf{A} is generated together with a lattice trapdoor.

Construction 3. Let $q = q_1 \cdot q_2$ be a product of primes, $(\mathbf{A}, \mathsf{td}_{\mathbf{A}}) \leftarrow \mathsf{TdGen}(1^{\lambda}, n, k, q)$ and let RecoverError⁺ be the algorithm from Construction 2.

 $InvertCloseVector(td_{A}, a, B)$:

- Parse $\mathsf{td}_{\mathbf{A}} = \mathbf{T} \in \mathbb{Z}^{n \times n}$, $\mathbf{a} \in \mathbb{Z}_q^n$ and B > 0. Let $C \in \mathbb{R}$ be such that $\|\mathbf{T}\| < C$.
- Compute $\mathbf{z} = \mathbf{aT}$.
- Run $\Gamma \leftarrow \mathsf{RecoverError}_{q,q_1,q_2,n}^+(\mathbf{z},B')$ where $B' = BC\sqrt{n}$. If $\Gamma = \bot$, abort the protocol. Else, parse $\Gamma = (r^{\dagger}, \mathbf{e}^{\dagger})$.
- Let $t \in \mathbb{Z}$ be the smallest integer for which $\tilde{\mathbf{e}} = t \cdot \mathbf{e}^{\dagger} \mathbf{T}^{-1} \in \mathbb{Z}^n$ (t is the least common multiple of the denominators of $\mathbf{e}^{\dagger} \mathbf{T}^{-1}$)
- Check if ||ẽ|| < B and recover x', r such that x'A+r · ẽ = a (using gaussian elimination).
- If $\|\mathbf{e}\| > B$ output \perp . Else, output $(\mathbf{x}', r, \tilde{\mathbf{e}})$.

Theorem 2. Let $C = C(\lambda) > 0$ be a parameter, let $q = q_1 \cdot q_2$, where $q_1 \leq 2BC\sqrt{n}$ is either 1 or a prime and $q_2 > B^2C^2n$ is a prime. Let **TdGen** be the algorithm from Lemma 8 and RecoverError_{q,n} be the algorithm of Construction 1. Let $(\mathbf{A}, \mathsf{td}_{\mathbf{A}}) \leftarrow \mathsf{TdGen}(q, k)$ where $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ and $\mathsf{td}_{\mathbf{A}} = \mathbf{T} \in \mathbb{Z}^{n \times n}$ with $\|\mathbf{T}\| < C$. If there are $\mathbf{x} \in \mathbb{Z}_q^k$ and $r \in \mathbb{Z}_q$ such that $\mathbf{a} = \mathbf{x}\mathbf{A} + r\mathbf{e}$ for some $\mathbf{e} \in \mathbb{Z}^n$ such that $\|\mathbf{e}\| \leq B$ (where \mathbf{e} is the shortest vector with this property), then the algorithm InvertCloseVector outputs $(\mathbf{x}, r, \mathbf{e})$.

Proof. Assume now that **e** is the shortest vector for which we can write $\mathbf{a} = \mathbf{x}\mathbf{A} + r\mathbf{e}$ for some **x** and *r*. Then it holds that

$$\mathbf{y} = \mathbf{aT} = \mathbf{xAT} + r\mathbf{eT} = r\mathbf{e}' \mod q$$

where $\mathbf{e}' = \mathbf{eT}$ and where the last equality holds because $\mathbf{AT} = 0 \mod q$. Note that $\|\mathbf{e}'\| < \|\mathbf{e}\| \|\mathbf{T}\| \sqrt{n} \le BC\sqrt{n} = B'$.

By Lemma 10, Recover Error(\mathbf{y}, B') will recover a pair $(r^{\dagger}, \mathbf{e}^{\dagger})$ satisfying $\mathbf{y} = r^{\dagger} \cdot \mathbf{e}^{\dagger}$, and \mathbf{e}^{\dagger} is the shortest vector with this property. By Lemma 9 it holds that \mathbf{e}' and \mathbf{e}^{\dagger} are linearly dependent, i.e. it holds that $\mathbf{e}' = t^{\dagger} \cdot \mathbf{e}^{\dagger}$. Thus, it holds that $\mathbf{e} = \mathbf{e}'\mathbf{T}^{-1} = t^{\dagger} \cdot \vec{e}^{\dagger}\mathbf{T}^{-1}$. Since the *t* computed by Recover Error(\mathbf{y}, B') is the shortest integer for which $t \cdot \vec{e}^{\dagger}\mathbf{T}^{-1} \in \mathbb{Z}^n$, it must hold that $t = t^{\dagger}$. Thus it holds that $\tilde{\vec{e}} = \vec{e}$. This concludes the proof.

5 Oblivious Linear Evaluation Secure Against a Corrupted Receiver

In this section, we present a semi-honest protocol for OLE based on the hardness of the LWE assumption. The protocol implements functionality \mathcal{F}_{OLE} defined in Section 3.

5.1 Protocol

We begin by presenting the protocol.

Construction 4. The protocol is composed by the algorithms (GenCRS, R₁, S, R₂). Let $k, n, \ell, \ell', q \in \mathbb{Z}$ such that q is as in Theorem 2, $n = \text{poly}(k \log q)$ and $\ell' \leq \ell$, and let $\beta, \delta, \xi \in \mathbb{R}$ such that $q/C > \beta\sqrt{n}$ (where $C \in \mathbb{R}$ is as in Theorem 2), $\delta > \beta > 1$ and $\beta > q/\delta$. Additionally, let $\text{ECC}_{\ell',\ell,\xi} = (\text{ECC.Encode}, \text{ECC.Decode})$ be an ECC over \mathbb{Z}_q . We present the protocol in full detail.

GenCRS (1^{λ}) :

- Sample $\mathbf{A} \leftarrow \mathbb{Z}_{q}^{k \times n}$ and $\mathbf{a} \leftarrow \mathbb{Z}_{q}^{n}$.
- $Output \operatorname{crs} = (\mathbf{A}, \mathbf{a}).$

 $\mathsf{R}_1(\mathsf{crs}, x \in \mathbb{Z}_q)$:

- Parse crs as (\mathbf{A}, \mathbf{a}) .
- Sample $\mathbf{s} \leftarrow \mathbb{Z}_q^k$ and an error vector $\mathbf{e} \leftarrow \mathbb{Z}_{\mathbb{Z}^n,\beta}$.
- Compute $\mathbf{a}' = \mathbf{s}\mathbf{A} + \mathbf{e} x\mathbf{a}$.
- Output $ole_1 = \mathbf{a}'$ and st = (s, x).

$$\mathsf{S}\left(\mathsf{crs},(\mathbf{z}_{0},\mathbf{z}_{1})\in\left(\mathbb{Z}_{q}^{\ell'}
ight)^{2},\mathsf{ole}_{1}
ight)$$
:

- Parse crs as (\mathbf{A}, \mathbf{a}) and ole_1 as \mathbf{a}' .
- Sample $\mathbf{R} \leftarrow D_{\mathbb{Z}^{n \times \ell}, \delta}$.
- Compute $\mathbf{C} = \mathbf{A}\mathbf{R} \in \mathbb{Z}_q^{k \times \ell}$, $\mathbf{t}_0 = \mathbf{a}'\mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0)$ and $\mathbf{t}_1 = \mathbf{a}\mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)$.
- Output $ole_2 = (\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1).$

 $R_2(crs, st, ole_2)$:

- Parse ole_2 as $(\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1)$ and st as $(\mathbf{s}, x) \in \mathbb{Z}_q^k \times \mathbb{Z}_q$.
- Compute $\mathbf{y} \leftarrow \mathsf{ECC}.\mathsf{Decode}(x\mathbf{t}_1 + \mathbf{t}_0 \mathbf{sC})$. If $\mathbf{y} = \perp$, abort the protocol.
- Output $\mathbf{y} \in \mathbb{Z}_{q}^{\ell'}$.

5.2 Analysis

Theorem 3 (Correctness). Let $\text{ECC}_{\ell',\ell,\xi}$ be a linear ECC where $\xi \ge \sqrt{\ell}\beta\delta n$. Then the protocol presented in Construction 4 is correct.

Proof. To prove correctness, we have to prove that R_2 outputs $\mathbf{z}_0 + x\mathbf{z}_1$, where $(\mathbf{z}_0, \mathbf{z}_1)$ is the input of S.

We have that

$$\begin{split} \tilde{\mathbf{y}} &= x\mathbf{t}_1 + \mathbf{t}_0 - \mathbf{s}\mathbf{C} \\ &= x\mathbf{a}\mathbf{R} + x\hat{\mathbf{z}}_1 + \mathbf{a}'\mathbf{R} + \hat{\mathbf{z}}_0 - \mathbf{s}\mathbf{A}\mathbf{R} \\ &= x\mathbf{a}\mathbf{R} + x\hat{\mathbf{z}}_1 + (\mathbf{s}\mathbf{A} + \mathbf{e} - x\mathbf{a})\mathbf{R} + \hat{\mathbf{z}}_0 - \mathbf{s}\mathbf{A}\mathbf{R} \\ &= x\hat{\mathbf{z}}_1 + \hat{\mathbf{z}}_0 + \mathbf{e}' \end{split}$$

where $\mathbf{e}' = \mathbf{eR}$, $\hat{\mathbf{z}}_1 \leftarrow \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)$ and $\hat{\mathbf{z}}_0 \leftarrow \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0)$. Now since ECC is a linear code over $\mathbb{Z}_{q'}$, then

$$\begin{aligned} x \hat{\mathbf{z}}_1 + \hat{\mathbf{z}}_0 &= x \cdot \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1) + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0) \\ &= \mathsf{ECC}.\mathsf{Encode}(x \mathbf{z}_1 + \mathbf{z}_0) \end{aligned}$$

Finally, by Lemma 1, we have that $\|\mathbf{e}\| \leq \beta \sqrt{n}$. Moreover, if $\mathbf{r}^{(i)}$ is a column of \mathbf{R} , then $\|\mathbf{r}^{(i)}\| \leq \delta \sqrt{n}$. Therefore, each coordinate of \mathbf{e}' has norm at most $\|\mathbf{e}\| \cdot \|\mathbf{r}^{(i)}\| \leq \beta \delta n$. We conclude that $\|\mathbf{e}'\| \leq \sqrt{\ell}\beta \delta n$. Since ECC corrects errors with norm up to $\xi \geq \sqrt{\ell}\beta \delta n$, the output of ECC.Decode $(\tilde{\mathbf{y}})$ is exactly $\mathbf{z}_0 + x_1 \mathbf{z}_1$.

Theorem 4 (Security). Assume that the LWE_{k, β ,q} assumption holds, q is as in Theorem 2, $q/C > \beta\sqrt{n}$ (where $C \in \mathbb{R}$ is as in Theorem 2), $\delta > \beta > 1$, $\beta > q/\delta$ and $n = \text{poly}(k \log q)$. The protocol presented in Construction 4 securely realizes the functionality $\mathcal{F}_{\mathsf{OLE}}$ in the $\mathcal{G}_{\mathsf{CRS}}$ -hybrid model against:

- a semi-honest sender given that the LWE_{k, β ,q} assumption holds;
- a malicious receiver where security holds statistically.

Proof. We begin by proving security against a computationally unbounded corrupted receiver.

Simulator for corrupted receiver: We describe the simulator Sim. Let (TdGen, Invert) be the algorithms described in Lemma 8 and InvertCloseVector be the algorithm of Theorem 2.

- CRS generation: Sim generates $(\mathbf{A}', \mathsf{td}_{\mathbf{A}'}) \leftarrow \mathsf{TdGen}(1^{\lambda}, k+1, n, q)$ and parse $\mathbf{A}' = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \end{pmatrix}$ where $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ and $\mathbf{a} \in \mathbb{Z}_q^n$. Additionally, parse $\mathsf{td}_{\mathbf{A}'}$ as $\mathbf{T} \in \mathbb{Z}^{n \times n}$ and let $C \in \mathbb{R}$ be such that $\|\mathbf{T}\| < C$. It publishes $\mathsf{crs} = (\mathbf{A}, \mathbf{a})$ and keeps $\mathsf{td}_{\mathbf{A}'}$ to itself.
- Upon receiving a message a' from R, Sim runs (š, α, e) ← InvertCloseVector(td_{A'}, a', B) where B = β√n. There are two cases to consider:
 - If $\tilde{\mathbf{s}} = \perp$, then Sim samples $\mathbf{t}_0, \mathbf{t}_1 \leftarrow \mathbb{Z}_q^{\ell}$ and $\mathbf{C} \leftarrow \mathbb{Z}_q^{k \times \ell}$. It sends $\mathsf{ole}_2 = (\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1)$.
 - Else if $\tilde{\mathbf{s}} \neq \perp$, then Sim sets $x = \tilde{s}_{k+1}$ where \tilde{s}_{k+1} is the (k+1)-th coordinate of $\tilde{\mathbf{s}}$. It sends x to $\mathcal{F}_{\mathsf{OLE}}$. When it receives a $\mathbf{y} \in \mathbb{Z}_q^{\ell'}$ from $\mathcal{F}_{\mathsf{OLE}}$, Sim samples a uniform matrix $\mathbf{U}' \leftarrow_{\mathfrak{s}} \mathbb{Z}_q^{(k+1) \times \ell}$, which is parsed as $\mathbf{U}' = \begin{pmatrix} \mathbf{U} \\ \mathbf{u} \end{pmatrix}$, and a matrix $\mathbf{R} \leftarrow_{\mathfrak{s}} D_{\mathbb{Z}^{n \times \ell}, \delta}$. It sets $\mathbf{C} = \mathbf{U}$

$$\begin{aligned} \mathbf{t}_0 &= \tilde{\mathbf{s}} \mathbf{U}' + \alpha \mathbf{eR} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{y}) \\ \mathbf{t}_1 &= \mathbf{u}. \end{aligned}$$

It sends $\mathsf{ole}_2 = (\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1)$.

We now proceed to show that the real-world and the ideal-world executions are indistinguishable. The following lemma shows that the CRS generated in the simulation is indistinguishable from one generated in the real-world execution. Then, the next two lemmas deal with the two possible cases in the simulation.

Lemma 12. The CRS generated above is statistically indistinguishable from a CRS generated according to GenCRS.

Proof. The only thing that differs in both CRS's is that the matrix $\mathbf{A}' = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \end{pmatrix}$ is generated via TdCen in the simulation (instead of being channels)

is generated via TdGen in the simulation (instead of being chosen uniformly). By Lemma 8, it follows that the CRS is statistically indistinguishable from one generated using GenCRS. $\hfill \Box$

Lemma 13. Assume that $\tilde{\mathbf{s}} = \perp$. Then, the simulated execution is indistinguishable from the real-world execution.

Proof. We prove that no (computationally unbounded) adversary can distinguish both executions, except with negligible probability. First, note that, if $\tilde{\mathbf{s}} = \bot$ where $(\tilde{\mathbf{s}}, \alpha, \mathbf{e}) \leftarrow \mathsf{InvertCloseVector}(\mathsf{td}_{\mathbf{A}'}, \mathbf{a}', B)$, then for any $(\alpha, \mathbf{s}, x) \in \mathbb{Z}_q \times \mathbb{Z}_q^k \times \mathbb{Z}_q$ we have that $\mathbf{a}' = \mathbf{s}\mathbf{A} + x\mathbf{a} + \alpha\mathbf{e}$ for an \mathbf{e} with $\|\mathbf{e}\| > \beta\sqrt{n}$ since, by Theorem 2, only in this case algorithm InvertCloseVector fails to *invert* \mathbf{a}' . In other words, consider the matrix $\hat{\mathbf{A}} = \begin{pmatrix} \mathbf{A}' \\ \mathbf{a}' \end{pmatrix}$. If \mathbf{a}' is of the form described above, then the matrix $\hat{\mathbf{A}}$ has no *short* vectors in its row-span. That is, there is no vector $\mathbf{v} \neq 0$ in $\Lambda_q(\hat{\mathbf{A}})$ such that $\|\mathbf{v}\| \leq \beta\sqrt{n}$. This is a direct consequence

of the definition of algorithm InvertCloseVector of Theorem 2. Hence $\rho_{\beta}(\Lambda_q(\hat{\mathbf{A}}) \setminus \{0\}) \leq \operatorname{negl}(\lambda)$. Moreover, we have that

$$\begin{split} \rho_{\beta}(\Lambda_{q}(\hat{\mathbf{A}}) \setminus \{0\}) &\geq \rho_{1/\beta}(\Lambda_{q}(\hat{\mathbf{A}}) \setminus \{0\}) \\ &\geq \rho_{1/\delta}(\Lambda_{q}(\hat{\mathbf{A}}) \setminus \{0\}) \\ &\geq \rho_{1/(q\delta)}(\Lambda_{q}(\hat{\mathbf{A}}) \setminus \{0\}) \\ &= \rho_{1/\delta}(q\Lambda_{q}(\hat{\mathbf{A}}) \setminus \{0\}) \\ &= \rho_{1/\delta}((\Lambda_{q}^{\perp}(\hat{\mathbf{A}}))^{*} \setminus \{0\}) \end{split}$$

where the first and the second inequalities hold because $\delta > \beta > 1$ by hypothesis and the last equality holds because $\frac{1}{q}\Lambda_q^{\perp}(\hat{\mathbf{A}}) = \Lambda_q(\hat{\mathbf{A}})^*$. Since

$$\rho_{1/\delta}((\Lambda_q^{\perp}(\hat{\mathbf{A}}))^* \setminus \{0\}) \le \mathsf{negl}(\lambda)$$

then $\delta \geq \eta_{\varepsilon}(\Lambda^{\perp}(\hat{\mathbf{A}}))$, for $\varepsilon = \operatorname{negl}(\lambda)$. Moreover $n = \operatorname{poly}(k \log q)$ by assumption. Thus the conditions of Lemma 2 are met.

Therefore, we can switch to a hybrid experiment where $\hat{\mathbf{AR}} \mod q$ is replaced by $\hat{\mathbf{U}} \leftarrow_{\mathbb{S}} \mathbb{Z}^{(k+2) \times \ell}$ incurring only negligible statistical distance. That is,

$$\begin{pmatrix} \mathbf{C} \\ \mathbf{t}_1 \\ \mathbf{t}_0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \\ \mathbf{a}' \end{pmatrix} \mathbf{R} + \begin{pmatrix} 0 \\ \hat{\mathbf{z}}_1 \\ \hat{\mathbf{z}}_0 + \tilde{\mathbf{e}} \end{pmatrix} \approx_{\mathsf{negl}(\lambda)} \hat{\mathbf{U}} + \begin{pmatrix} 0 \\ \hat{\mathbf{z}}_1 \\ \hat{\mathbf{z}}_0 + \tilde{\mathbf{e}} \end{pmatrix} \approx_{\mathsf{negl}(\lambda)} \mathbf{U}$$

where $\hat{\mathbf{z}}_j$ is the encoding ECC.Encode (\mathbf{z}_j) for $j \in \{0, 1\}$.

We conclude that, in this case, the real-world and the ideal-world execution (where Sim just sends a uniformly chosen triple $(\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1)$) are statistically indistinguishable.

Lemma 14. Assume that $\tilde{s} \neq \perp$. Then, the simulated execution is indistinguishable from the real-world execution.

Proof. In this case, $\mathbf{a}' = \tilde{\mathbf{s}}\mathbf{A} + \alpha \mathbf{e}$ for some $\tilde{\mathbf{s}} \in \mathbb{Z}_1^k$ and $\mathbf{e} \in \mathbb{Z}^n$ such that $\|\mathbf{e}\| < \beta \sqrt{n}$. The proof follows the following sequence of hybrids:

Hybrid \mathcal{H}_0 . This is the real-world protocol. In particular, in this hybrid, the simulator behaves as the honest sender and computes

$$\begin{aligned} \mathbf{t}_0 &= \mathbf{a}' \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0) = \tilde{\mathbf{s}} \mathbf{A}' \mathbf{R} + \alpha \mathbf{e} \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0) \mod q \\ \mathbf{t}_1 &= \mathbf{a} \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1) \mod q \\ \mathbf{C} &= \mathbf{A} \mathbf{R} \mod q \end{aligned}$$

for some $\alpha \in \mathbb{Z}_q \setminus \{0\}$ and where $\mathbf{A}' = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \end{pmatrix}$.

Hybrid \mathcal{H}_1 . This hybrid is similar to the previous one, except that Sim computes $\mathbf{t}_0 = \tilde{\mathbf{s}}\mathbf{U}' + \alpha \mathbf{eR} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0), \mathbf{C} = \mathbf{U}$ and $\mathbf{t}_1 = \mathbf{u} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)$, where $\mathbf{U}' = \begin{pmatrix} \mathbf{U} \\ \mathbf{u} \end{pmatrix} \leftarrow_{\$} \mathbb{Z}_q^{(k+1) \times \ell}$.

Claim 1. $|\Pr[1 \leftarrow \mathcal{A} : \mathcal{A} \text{ plays } \mathcal{H}_0] - \Pr[1 \leftarrow \mathcal{A} : \mathcal{A} \text{ plays } \mathcal{H}_1]| \le \mathsf{negl}(\lambda).$

To prove this claim, we will resort to the partial smoothing lemma (Lemma 3). Using the same notation as in Lemma 3, consider $\gamma = \beta \sqrt{n}$. Then, we have that

$$\mathsf{negl}(\lambda) \ge \rho_\beta(\Lambda_q(\mathbf{A}') \setminus \gamma \mathcal{B}) \ge \rho_{q/\delta}(\Lambda_q(\mathbf{A}') \setminus \gamma \mathcal{B})$$

since, by assumption, $\beta > q/\delta$ and where $\mathbf{A}' = \begin{pmatrix} \mathbf{A} \\ \mathbf{a} \\ \mathbf{a}' \end{pmatrix}$.

Hence, by applying Lemma 3, we obtain

$$\mathbf{A'R} \mod q pprox_{\mathsf{negl}(\lambda)} \mathbf{A'}(\mathbf{R} + \mathbf{X}) \mod q$$

for $\mathbf{X} \leftarrow \Lambda^{\perp}(\mathbf{e})$ (here, in the notation of Lemma 3, we consider $\mathbf{D} = \mathbf{e}$).

We now argue that $\mathbf{A}'\mathbf{X} \mod q \approx_{\mathsf{negl}(\lambda)} \mathbf{U}'$ for $\mathbf{U}' \leftarrow \mathbb{Z}_q^{(k+1)\times \ell}$. Let $\mathbf{B} \in \mathbb{Z}_q^{n\times k'}$ be a basis of $\Lambda^{\perp}(\mathbf{e})$, that is, $\mathbf{eB} = 0$. Let us assume for the sake of contradiction that $\mathbf{A}'\mathbf{B}$ does not have full rank (hence, $\mathbf{A}'\mathbf{X} \mod q$ is not uniform over $\mathbb{Z}_q^{(k+1)\times \ell}$). Then, there is a vector $\mathbf{v} \in \mathbb{Z}_q^{k+1}$ such that $\mathbf{vA}'\mathbf{B} = 0$.

Since **B** is a basis of $\Lambda^{\perp}(\mathbf{e})$, this means that $\mathbf{vB} \in (\Lambda^{\perp}(\mathbf{e}))^{\perp} = \Lambda(\mathbf{e})$. In other words, $\mathbf{vA}' = t \cdot \mathbf{e}$ for some $t \in \mathbb{Z}_q$. Consequently, we have $\mathbf{e} = t^{-1}\mathbf{vA}'$ and thus **e** is in the row-span of **A**', that is, $\Lambda(\mathbf{A}')$ has a vector of norm shorter than $\beta\sqrt{n}$. However, this happens only with negligible probability over the uniform choice of **A** and, thus, we reach a contradiction. We conclude that $\mathbf{A'B}$ needs to have full rank. Now, since **X** is sampled uniformly from $\Lambda^{\perp}(\mathbf{e})$, we have that $\mathbf{A'X}$ is uniform over $\mathbb{Z}_q^{(k+1)\times\ell}$. Thus, $\mathbf{A'X} \mod q \approx_{\mathsf{negl}(\lambda)} \mathbf{U'}$ where $\mathbf{U'} \leftarrow_{\mathsf{s}} \mathbb{Z}_q^{(k+1)\times\ell}$. **Hybrid** \mathcal{H}_2 . This hybrid is similar to the previous one, except that Sim computes $\mathbf{t}_0 = \tilde{\mathbf{s}}\mathbf{U}' + \alpha \mathbf{eR} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{y}), \mathbf{C} = \mathbf{U}$ and $\mathbf{t}_1 = \mathbf{u}$, where $\mathbf{U}' = \begin{pmatrix} \mathbf{U} \\ \mathbf{u} \end{pmatrix} \leftarrow \mathbb{Z}_q^{k \times \ell}$.

This hybrid corresponds to the simulator for the corrupted receiver.

Claim 2. $|\Pr[1 \leftarrow \mathcal{A} : \mathcal{A} \text{ plays } \mathcal{H}_1] - \Pr[1 \leftarrow \mathcal{A} : \mathcal{A} \text{ plays } \mathcal{H}_2]| \leq \mathsf{negl}(\lambda).$

Since **u** is uniformly at random, then it is statistically indistinguishable from $\mathbf{u}' - \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)$ where $\mathbf{u}' \leftarrow \mathbb{Z}_q^{\ell}$ is a uniformly random vector. Thus, replacing the occurrences of **u** by $\mathbf{u}' - \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)$, we obtain

$$\begin{aligned} (\mathbf{C}, \mathbf{t}_0, \mathbf{t}_1) &= (\mathbf{U}, \tilde{\mathbf{s}} \mathbf{U}' + \alpha \mathbf{e} \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0), \mathbf{u} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1)) \\ &\approx_{\mathsf{negl}(\lambda)} \left(\mathbf{U}, \tilde{\mathbf{s}} \overline{\mathbf{U}}' + \alpha \mathbf{e} \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0), \mathbf{u}' \right) \\ &= \left(\mathbf{U}, \tilde{\mathbf{s}}_{-(k+1)} \mathbf{U} + \alpha \mathbf{e} \mathbf{R} + \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_0) + x \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1), \mathbf{u}' \right) \\ &= (\mathbf{U}, \mathbf{x} \mathbf{U} + \alpha \mathbf{e} \mathbf{R} + \mathbf{y}, \mathbf{u}') \end{aligned}$$

where $\overline{\mathbf{U}}'$ is the matrix whose rows are equal to \mathbf{U}' , except for the (k + 1)-th which is equal to $\mathbf{u}' - \mathsf{ECC}.\mathsf{Encode}(\mathbf{z}_1), x = \tilde{s}_{k+1}$ is the (k+1)-th coordinate of $\tilde{\mathbf{s}}$ and $\tilde{\mathbf{s}}_{-(k+1)} \in \mathbb{Z}_q^k$ is the vector $\tilde{\mathbf{s}}$ with the (k+1)-th coordinate removed. \Box

This concludes the description of the simulator for the corrupted receiver. We now resume the proof of Theorem 4 by presenting the simulator for the semi-honest sender.

Simulator for corrupted sender. We describe how the simulator Sim proceeds: It takes S's inputs $(\mathbf{z}_0, \mathbf{z}_1)$ and sends them to the ideal functionality \mathcal{F}_{OLE} , which returns nothing. It simulates the dummy R by sampling $\mathbf{a}' \leftarrow \mathbb{Z}_q^n$ and sending it to the corrupted sender.

It is trivial to see that both the ideal and the real-world executions are indistinguishable given that the $LWE_{k,q,\beta}$ assumption holds.

5.3 Batch OLE

We now show how we can extend the protocol described above in order to implement a batch reusable OLE protocol, that is, in order to implement the functionality \mathcal{F}_{bOLE} described in Section 3.

This variant improves the efficiency of the protocol since the receiver R can commit to a batch of inputs $\{x_i\}_{i \in [k']}$, and not just one input, using the same first message of the two-round OLE. Hence, the size of the first message can be amortized over the number of R's inputs, to achieve a better communication complexity.

Construction 5. The protocol is composed by the algorithms (GenCRS, R₁, S, R₂). Let $k, n, \ell, \ell', q, k' \in \mathbb{Z}$ such that q is as in Theorem 2 and $n = \text{poly}((k+k')\log q)$, and let $\beta, \delta, \xi \in \mathbb{R}$ such that $\frac{q}{\sqrt{n\tau(k)}} > \beta$ (where $\tau(k) = \omega(\sqrt{\log k})$ as in Lemma 8), $\delta > \beta > 1$, $\beta > q/\delta$ and $n = poly((k + k') \log q)$. Additionally, let $ECC_{\ell',\ell,\xi} = (ECC.Encode, ECC.Decode)$ be an ECC over \mathbb{Z}_q .

GenCRS(1^{λ}): This algorithm is similar to the one described in Construction 4 except that crs = (A, a₁,..., a_{k'}) where a_i \leftarrow \mathbb{Z}_{q}^{n} for $i \in [k']$

 $\begin{array}{l} \mathsf{R}_1\left(\mathsf{crs}, \{x_j\}_{j\in[k']} \in \mathbb{Z}_q\right) : \quad The \ algorithm \ is \ similar \ to \ the \ one \ described \ in \ Construction \ 4, \ except \ that \ it \ outputs \ \mathsf{ole}_1 \ = \ \mathbf{a}' \ and \ \mathsf{st} \ = \ (\mathbf{s}, \{x_i\}_{i\in[k']}), \ where \ \mathbf{a}' = \mathbf{sA} + \mathbf{e} - \left(\sum_{i=1}^{k'} x_i \mathbf{a}_i\right). \end{array}$

 $S\left(\operatorname{crs},(\mathbf{z}_{0},\mathbf{z}_{1})\in\left(\mathbb{Z}_{q}^{\ell'}\right)^{2},\operatorname{ole}_{1},j\in[k']\right): \text{ This algorithm is similar to the one described in Construction 4, except that; i) it computes <math>\mathbf{t}_{1}=-\mathbf{a}_{j}\mathbf{R}$; ii) It computes $\mathbf{w}_{i}=\mathbf{a}_{i}\mathbf{R}$ for all $i\in[k']$ such that $i\neq j$; and iii) it outputs $\operatorname{ole}_{2}=(\mathbf{C},\mathbf{t}_{0},\mathbf{t}_{1},\{\mathbf{w}_{i}\}_{i\neq j},j)$ (where j corresponds to which x_{j} the receiver R is supposed to use in that particular execution of the protocol) and $\{\}.$

 $R_2(crs, st, ole_2)$: This algorithm is similar to the one described in Construction 4, except that it outputs

$$\mathbf{z}_0 + x_j \mathbf{z}_1 = \mathbf{y} \leftarrow \mathsf{ECC.Decode}\left(\mathbf{t}_0 + x_j \mathbf{t}_1 - \left(\mathbf{sC} + \sum_{i \neq j} x_i \mathbf{w}_i\right)\right).$$

It is easy to see that correctness holds following a similar analysis as the one of Theorem 3. We now state the theorem that guarantees security of the scheme.

Theorem 5 (Security). Assume that the LWE_{k, β ,q} assumption holds, $q \in \mathbb{N}$ is as in Theorem 2, $q/C > \beta\sqrt{n}$ (where $C \in \mathbb{R}$ is as in Lemma 8), $\delta > \beta > 1$, $\beta > q/\delta$ and $n = \text{poly}((k + k') \log q)$. The protocol presented in Construction 5 securely realizes the functionality $\mathcal{F}_{\text{bOLE}}$ in the \mathcal{G}_{CRS} -hybrid model against:

- a semi-honest sender given that the LWE_{k,β,q} assumption holds;
- a malicious receiver where security holds statistically.

The proof of the theorem stated above essentially follows the same blueprint as the proof of Theorem 4, except that the simulator for the corrupted receiver extracts the first k' coordinates $\{x_j\}_{j \in [k']}$ of \mathbf{x} and sends these values to \mathcal{F}_{bOLE} . From now on, it behaves exactly as the simulator in the proof of Theorem 4. Indistinguishability of executions follows exactly the same reasoning.

Communication Efficiency Comparison. Comparing with the protocol presented in Construction 4, this scheme achieves the same communication complexity for the receiver (that is, the receiver message is of the same size in both constructions). On the other hand, the sender's message now depends on k'.

6 OLE from LWE secure against Malicious Adversaries

In this section, we extend the construction of the previous section to support malicious sender. The idea is to use a *cut-and-choose* approach via the use of an OT scheme in two rounds and extract the sender's input via the OT simulator.

6.1 Protocol

Construction 6. The protocol is composed by the algorithms (GenCRS, R_1 , S, R_2). Let $OLE = (GenCRS, R_1, S, R)$ be a two-round OLE protocol which is secure against malicious receivers and semi-honest senders and $OT = (GenCRS, R_1, S, R_2)$ be a two-round OT protocol. We now present the protocol in full detail.

 $GenCRS(1^{\lambda})$:

- $Run \operatorname{crs}_{OLE} \leftarrow OLE.GenCRS(1^{\lambda}) and \operatorname{crs}_{OT} \leftarrow OT.GenCRS(1^{\lambda}).$
- $Output \ crs = (crs_{OLE}, crs_{OT}).$

 $\mathsf{R}_1(\mathsf{crs}, x \in \mathbb{Z}_q)$:

- *Parse* crs as (crs_{OLE}, crs_{OT}).
- Sample $x_1, x_2 \leftarrow \mathbb{Z}_q$ such that $x_1 + x_2 = x$.
- Compute $(ole_{1,1}, st_{1,1}) \leftarrow OLE.R_1(crs_{OLE}, x_1)$ and $(ole_{1,2}, st_{1,2}) \leftarrow OLE.R_1(crs_{OLE}, x_2)$.
- Additionally, choose uniformly at random b = (b₁,...,b_λ) ← {0,1}^λ and compute (ot_{1,i}, st̃_i) ← OT.R₁(crs_{OT}, b_i) for all i ∈ [λ].
- *Output* $ole_1 = (ole_{1,1}, ole_{1,2}, \{ot_{1,i}\}_{i \in [\lambda]})$ and $st = (st_{1,1}, st_{1,2}, \{\tilde{st}_i\}_{j \in [\lambda]})$.

 $\mathsf{S}(\mathsf{crs},(\mathbf{z}_0,\mathbf{z}_1)\in\mathbb{Z}_q^\ell,\mathsf{ole}_1)$:

- Parse crs as (crs_{OLE}, crs_{OT}) and ole_1 as $(ole_{1,1}, ole_{1,2}, \{ot_{1,i}\}_{i \in [\lambda]})$.
- Sample $\mathbf{z}_{1,1}, \mathbf{z}_{1,2} \leftarrow \mathbb{Z}_q^{\ell}$ such that $\mathbf{z}_{1,1} + \mathbf{z}_{1,1} = \mathbf{z}_1$.
- For all $j \in [\lambda]$, do the following:
 - Sample random coins $r_{j,1}, r_2 \leftarrow \{0,1\}^{\lambda}$.
 - $\begin{array}{l} \ Compute \ \mathsf{ole}_{2,j,1} \leftarrow \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}},\mathsf{ole}_{1,1},(\mathbf{u}_{0,j,1},\mathbf{u}_{1,j,1});r_{j,1}) \ for \ uniformly \ chosen \ \mathbf{u}_{0,j,1},\mathbf{u}_{1,j,1} \leftarrow \mathbb{Z}_q^{\ell'}. \ Additionally, \ Compute \ \mathsf{ole}_{2,j,2} \leftarrow \\ \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}},\mathsf{ole}_{1,2},(\mathbf{u}_{0,j,2},\mathbf{u}_{1,j,2});r_{j,2}) \ for \ uniformly \ chosen \ \mathbf{u}_{0,j,2},\mathbf{u}_{1,j,2} \leftarrow \mathbb{Z}_q^{\ell'}. \end{array}$
 - $\begin{array}{l} \ Set \ M_{0,j} = (r_{j,1}, r_{j,2}, \mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}, \mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}) \ and \ M_{1,j} = (\mathbf{u}_{0,j,1} + \mathbf{z}_{0,\mathbf{u}_{1,j,1}} + \mathbf{z}_{1,1}, \mathbf{u}_{0,j,2} + \mathbf{z}_{0,\mathbf{u}_{1,j,2}} + \mathbf{z}_{1,2}). \ Compute \ \mathsf{ot}_{2,j} \leftarrow \mathsf{OT.S}(\mathsf{crs}_{\mathsf{OT}}, \mathsf{ot}_{1,j}, (M_{0,j}, M_{1,j})). \end{array}$
- $Output \text{ ole}_2 = \{ ole_{2,j,1}, ole_{2,j,2}, ole_{2,j,2}, ole_{2,j,2} \}_{j \in [\lambda]}.$

 $R_2(crs, st, ole_2)$:

- Parse ole₂ as $\{ole_{2,j,1}, ole_{2,j,2}, ole_{2,j}\}_{j \in [\lambda]}$ and st as $(st_{1,1}, st_{1,2}, \{\tilde{st}_i\}_{j \in [\lambda]})$.
- For all $j \in [\lambda]$, do the following:
 - Recover $M_{b_i,j} \leftarrow \mathsf{OT}.\mathsf{R}_2(\mathsf{crs}_{\mathsf{OT}}, \tilde{\mathsf{st}}_i)$.
 - $If b_j = 0, parse M_{0,j} = (r_{j,1}, r_{j,2}, \mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}, \mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}). Compute ole'_{2,j,1} \leftarrow OLE.S(crs_{OLE}, ole_{1,1}, (\mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}); r_{j,1}) and ole'_{2,j,2} \leftarrow OLE.S(crs_{OLE}, ole_{1,2}, (\mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}); r_{j,2}). If ole'_{2,j,1} \neq ole_{2,j,1} or if ole'_{2,j,1} \neq ole_{2,j,1}, abort the protocol.$
 - If $b_j = 1$, parse $M_{1,j}$ as $(\mathbf{v}_{0,j,1}, \mathbf{v}_{1,j,1}, \mathbf{v}_{0,j,2}, \mathbf{v}_{1,j,2})$. Compute $\mathbf{y}_{j,1} \leftarrow \mathsf{OLE.R}_2(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{2,j,1}, \mathsf{st}_{j,1})$ and $\mathbf{y}_{j,2} \leftarrow \mathsf{OLE.R}_2(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{2,j,2}, \mathsf{st}_{j,2})$. Compute $\mathbf{w}_{j,1} = \mathbf{v}_{0,j,1} + x_1 \tilde{\mathbf{v}}_{1,j,1} - \mathbf{y}_{j,1}$ and $\mathbf{w}_{j,2} = \mathbf{v}_{0,j,2} + x_2 \tilde{\mathbf{v}}_{1,j,2} - \mathbf{y}_{j,2}$.
- Let $I_1 \subseteq [\lambda]$ be the set of indices j such that $b_j = 1$ and let $\{\mathbf{w}_{j,1}, \mathbf{w}_{j,2}\}_{j \in I_1}$. If $\mathbf{w}_1 = \mathbf{w}_{j,1} = \mathbf{w}_{j',1}$, $\mathbf{w}_2 = \mathbf{w}_{j,2} = \mathbf{w}_{j',2}$ and $\mathbf{w} = \mathbf{w}_{j,1} + w_{j,2} = \mathbf{w}_{j',1} + \mathbf{w}_{j',2}$ for all pairs $(j, j') \in I_1^2$ then output \mathbf{w} . Else abort the protocol.

6.2 Analysis

We now proceed to the analysis of the protocol described above.

Theorem 6 (Correctness). Assume OLE and OT implement the functionalities \mathcal{F}_{OLE} and \mathcal{F}_{OT} . Then the protocol presented in Construction 6 is correct.

Theorem 7 (Security). Assume that OLE implements \mathcal{F}_{OLE} against malicious receivers and semi-honest sender and that OT implements the functionality \mathcal{F}_{OT} . The protocol presented in Construction 6 securely realizes the functionality \mathcal{F}_{OLE} in the \mathcal{G}_{CRS} -hybrid model against static malicious adversaries.

Proof. Security against a malicious receiver follows easily from the security against malicious receivers of the underlying schemes OT and OLE. We show how to prove security against a malicious sender.

Simulator for corrupted sender: We describe the simulator Sim against a corrupted sender.

- Sim simulates the crs and the first message of the receiver.
- Upon receiving a message ole₂ = {ole_{2,j,1}, ole_{2,j,2}, ot_{2,j}}_{j∈[λ]} from the sender, it extracts (M_{0,j}, M_{1,j}) from ot_{2,j} and does the following:
 - For all $j \in [\lambda]$, it parses $M_{0,j}$ as $(r_{j,1}, r_{j,2}, \mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}, \mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2})$ and $M_{1,j}$ as $(\mathbf{v}_{0,j,1}, \mathbf{v}_{1,j,1}, \mathbf{v}_{0,j,2}, \mathbf{v}_{1,j,2})$.

- For all $j \in [\lambda]$, it checks if $\mathsf{ole}_{2,j,1} = \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{1,j,1}, (\mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}); r_{j,1})$, and if $\mathsf{ole}_{2,j,2} = \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{1,j,2}, (\mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}); r_{j,2})$. Let D be the set of indices for which this test fails. If |D| > d where d is such that $d = \omega(\log \lambda)$ and $d = o(\log^2 \lambda)$, it aborts the protocol.
- For all $j \in T = [\lambda] \setminus D$, Sim extracts $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}, \mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ by computing $\mathbf{z}_{0,j,b} = \mathbf{v}_{0,j,b} \mathbf{u}_{0,j,b}$ and $\mathbf{z}_{1,j,b} = \mathbf{v}_{1,j,b} \mathbf{u}_{1,j,b}$ for $b \in \{1,2\}$.
- If there are pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ such that $(\mathbf{z}_0, \mathbf{z}_{1,1}) = (\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2}) = (\mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ for more than |T|/2 of the indices $j \in T$, it sends $(\mathbf{z}_0, \mathbf{z}_{1,1} + \mathbf{z}_{1,2})$ to $\mathcal{F}_{\mathsf{OLE}}$. Else, it aborts the protocol.

The proof of indistinguishability follows the following sequence of hybrids.

Hybrid \mathcal{H}_0 . This is the real game execution.

Hybrid \mathcal{H}_1 . This hybrid is identical to the previous one except that Sim simulates \mathcal{F}_{OT} and \mathcal{F}_{OLE} (secure against semi-honest senders).

Hybrid \mathcal{H}_2 . This hybrid is identical to the previous one except that Sim extracts $(M_{0,j}, M_{1,j})$ from $\mathcal{F}_{\mathsf{OT}}$ and parses $M_{0,j} = (r_{j,1}, r_{j,2}, \mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}, \mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2})$ and $M_{1,j} = (\mathbf{v}_{0,j,1}, \mathbf{v}_{1,j,1}, \mathbf{v}_{0,j,2}, \mathbf{v}_{1,j,2})$ for all $j \in [\lambda]$. Additionally, for all $j \in [\lambda]$ it checks if $\mathsf{ole}_{2,j,1} \neq \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{1,j,1}, (\mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}); r_{j,1})$ or $\mathsf{ole}_{2,j,2} \neq \mathsf{OLE.S}(\mathsf{crs}_{\mathsf{OLE}}, \mathsf{ole}_{1,j,2}, (\mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}); r_{j,2})$. for at least d positions, where $d = \omega(\log \lambda)$ and $d = o(\log^2 \lambda)$ If this happens, it aborts the protocol.

Claim 3. Hybrids \mathcal{H}_1 and \mathcal{H}_2 are statistically indistinguishable.

Proof. Let abort₁ be the abort event introduced in hybrid \mathcal{H}_2 . That is, for $d' \geq d$ indices in $[\lambda]$, the malicious sender inputs $M_{0,j} = (r_{j,1}, r_{j,2}, \mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}, \mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2})$ such that

 $ole_{2,j,1} \neq OLE.S(crs_{OLE}, ole_{1,j,1}, (\mathbf{u}_{0,j,1}, \mathbf{u}_{1,j,1}); r_{j,1})$

or

$$ole_{2,j,2} \neq OLE.S(crs_{OLE}, ole_{1,j,2}, (\mathbf{u}_{0,j,2}, \mathbf{u}_{1,j,2}); r_{j,2}).$$

Let D' denote this set of indices.

To prove that the hybrids are indistinguishable, we show that conditioned on $abort_1$ happening, then the honest receiver R also aborts in the real-world execution on the protocol.

To show this, note that the string $\mathbf{b} \in \{0,1\}^{\lambda}$ is sampled uniformly at random. Hence, the probability that $b_j = 1$ for all $j \in D'$ can be upper-bounded by $1/2^d = 1/2^{\omega(\log \lambda)}$ which is negligible in λ .

Hybrid \mathcal{H}_3 . This hybrid is identical to the previous one except that Sim extracts $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}, \mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ for $i \in T = [\lambda] \setminus D$. If there are pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ that appears more than |T|/2 times, output (z_0, z_1) . Else, it aborts the protocol.

Claim 4. Hybrids \mathcal{H}_2 and \mathcal{H}_3 are statistically indistinguishable.

Proof. We first show the following lemma which states that the adversarial sender cannot use a different input pair $(\mathbf{z}_0, \mathbf{z}_1)$ in each execution of the OLEs.

Lemma 15. Let $I_1 \subseteq [\lambda]$ be the set of indices such that $b_j = 1$. Assume that the simulator extracts $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}, \mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ and $(\mathbf{z}_{0,j',1}, \mathbf{z}_{1,j',1}, \mathbf{z}_{0,j',2}, \mathbf{z}_{1,j',2})$ such that $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}, \mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2}) \neq (\mathbf{z}_{0,j',1}, \mathbf{z}_{1,j',1}, \mathbf{z}_{0,j',2}, \mathbf{z}_{1,j',2})$. Then, the real-world receiver aborts with probability $1/|\mathbb{Z}_q| = 1/\mathsf{negl}(\lambda)$.

Proof. Assume w.l.o.g. that $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}) \neq (\mathbf{z}_{0,j',1}, \mathbf{z}_{1,j',1})$. The receiver does not abort if $\mathbf{z}_{0,j,1}x_1 + \mathbf{z}_{1,j,1} = \mathbf{z}_{0,j',1}x_1 + \mathbf{z}_{1,j',1}$. However, since $x_1 \leftarrow \mathbb{Z}_q$ then we can apply the the Schwartz–Zippel Lemma to conclude that $\mathbf{z}_{0,j,1}x_1 + \mathbf{z}_{1,j,1} \neq \mathbf{z}_{0,j',1}x_1 + \mathbf{z}_{1,j',1}$ except with probability $1/|\mathbb{Z}_q| = 1/\mathsf{negl}(\lambda)$.

We now return to the proof of Claim 4.

Let abort₂ be the abort event introduced in hybrid \mathcal{H}_3 . That is, for the indices $j \in T$, let $\mathbf{z}_{0,j,b} = \mathbf{v}_{0,j,b} - \mathbf{u}_{0,j,b}$ and $\mathbf{z}_{1,j,b} = \mathbf{v}_{1,j,b} - \mathbf{u}_{1,j,b}$ for $b \in \{1, 2\}$, and there are not pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ that appear in more than |T|/2 indices $j \in T$.

To prove that the hybrids are indistinguishable, we show that conditioned on $abort_2$ happening, then the honest receiver R also aborts in the real-world execution of the protocol, except with negligible probability.

If there are not pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ that appear in more than |T|/2indices $j \in T$, then there are pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ that appear at most |T|/2 indices $j \in T$. Let $L \subset T$ be this set of indices. Thus, the pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$ appears at most in |T|/2 + d indices $j \in [\lambda]$, for some $d = \omega(\log \lambda)$ and $d = o(\log^2 \lambda)$. This is because Sim cannot extract $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1}, \mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ for positions $j \in D$ and thus it does not have any information about these pairs which, in the worst case, can all be equal to $(\mathbf{z}_0, \mathbf{z}_1)$. Let $H = L \cup D$.

Recall that, by Lemma 15, if the real-world R does not abort the protocol, this means that S input the same pairs $(\mathbf{z}_0, \mathbf{z}_{1,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2})$, except with negligible probability.

The probability that the real-world R aborts the protocol can be lower bound by the probability that R aborts when $(\mathbf{z}_0, \mathbf{z}_{1,1}) = (\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2}) =$ $(\mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ for all indices in H. Let us denote by \mathbf{abort}_H the event that R aborts and by \mathbf{accept}_H the event that R does not abort when $(\mathbf{z}_0, \mathbf{z}_{1,1}) =$ $(\mathbf{z}_{0,j,1}, \mathbf{z}_{1,j,1})$ and $(\mathbf{z}_0, \mathbf{z}_{1,2}) = (\mathbf{z}_{0,j,2}, \mathbf{z}_{1,j,2})$ for all indices $j \in H$. Clearly

$$\Pr\left[\mathsf{abort}_H\right] = 1 - \Pr\left[\mathsf{accept}_H\right].$$

Thus, it is enough to prove that $\Pr[\operatorname{accept}_H] = \operatorname{negl}(\lambda)$. Note that R does not abort the protocol if $b_j = 1$ and $j \in H$ for at least $\lambda/2$ positions. First, note that using the Chernoff bound we have that $b_j = 1$ for at least $3\lambda/8$ positions $j \in [\lambda]$, except with negligible probability in λ . Let W denote the random variable which is the sum of |H| independent Bernoulli distributions with probability 1/2. Then, we want to compute $\Pr[W \ge 3\lambda/8]$. Since the expected value of W is $\mathsf{E}[W] = |H|/2 = (|T|/2 + d)/2 = (\lambda + d)/4$, then

$$\Pr[W \ge 3\lambda/8] = \Pr\left[W \ge \mathsf{E}[W] + \frac{\lambda - 2d}{8}\right]$$

A straightforward application of the Chernoff bound yields that

$$\Pr\left[W \ge \mathsf{E}[W] + \frac{\lambda - d}{4}\right] \le e^{-(\lambda - 2d)/2} \le e^{-(\lambda - o(\log^2 \lambda))/2}$$

which is negligible in λ

We conclude that the real R aborts with probability at least

$$\Pr[\mathsf{abort}_H] = 1 - \Pr[\mathsf{accept}_H] = 1 - \mathsf{negl}(\lambda).$$

This conclude the proof of the claim.

Hybrid \mathcal{H}_4 . This hybrid is identical to the previous one except that $\mathbf{a}' \leftarrow \mathbb{Z}_q^n$.

Claim 5. Hybrids \mathcal{H}_3 and \mathcal{H}_4 are indistinguishable given that the $\mathsf{LWE}_{k,\beta,q}$ assumption holds.

Note that the last hybrid \mathcal{H}_4 corresponds to the description of the simulator. Thus, we conclude the proof of security for a malicious sender.

On the choice of the modulus q. The scheme presented above is only secure if q is chosen to be superpolynomial in λ (otherwise, Lemma 15 does not hold). The scheme can be adapted to support fields of polynomial size by running λ instances of the underlying OLE, instead of running only two instances.

6.3 Instantiating the Functionalities

We now discuss how we can instantiate the underlying functionalities \mathcal{F}_{OT} and \mathcal{F}_{OLE} (secure against semi-honest receivers) used in the protocol described above.

When we instantiate \mathcal{F}_{OT} with the OT schemes from [PVW08, Qua20] and \mathcal{F}_{OLE} (secure against semi-honest receivers) with the scheme from Section 5, we obtain a maliciously secure OLE protocol with the following properties:

- 1. It has two rounds;
- 2. It is statistically secure against a malicious receiver since the OT of [PVW08, Qua20] and the scheme from Section 5 are statistically secure against a malicious receiver.
- 3. Security against a malicious sender holds under the LWE assumption since both the schemes of [PVW08, Qua20] are secure against malicious senders and the scheme from Section 5 is secure against semi honest senders under the LWE assumption.

Acknowledgment

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the grant PD/BD/135181/2017. This work is supported by Security and Quantum Information Group of Instituto de Telecomunicações, by the Fundação para a Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE 2020, and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

References

- [ADI⁺17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic computation with constant computational overhead. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 223–254, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.
- [AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer Science, pages 120–129, Palm Springs, CA, USA, October 22–25, 2011. IEEE Computer Society Press.
- [Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(4):625–636, 1993.
- [BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications Security, pages 896–912, Toronto, ON, Canada, October 15–19, 2018. ACM Press.
- [BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240 of Lecture Notes in Computer Science, pages 370–390, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.
- [BEPU⁺20] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and Juan Ramón Troncoso-Pastoriza. Efficient protocols for oblivious linear function evaluation from ring-lwe. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography for Networks, pages 130–149, Cham, 2020. Springer International Publishing.

- [BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 719–737, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.
- [Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press.
- [CDI⁺19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 462–488, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
- [dCJV20] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685, 2020. https:// eprint.iacr.org/2020/685.
- [DGH⁺20] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, pages 768–797, Cham, 2020. Springer International Publishing.
- [DGN⁺17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti. TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 2263–2276, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.
- [DKM12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Statistically secure linear-rate dimension extension for oblivious affine function evaluation. In Adam Smith, editor, *ICITS 12: 6th International Conference on Information Theoretic Security*, volume 7412 of *Lecture Notes in Computer Science*, pages 111–128, Montreal, QC, Canada, August 15–17, 2012. Springer, Heidelberg, Germany.
- [DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & Goliath oblivious affine function evaluation - asymptotically op-

timal building blocks for universally composable two-party computation from a single untrusted stateful tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135, 2012. https: //eprint.iacr.org/2012/135.

- [GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.
- [GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private set intersection. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Science, pages 154–185, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.
- [GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 629–659, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria, BC, Canada, May 17–20, 2008. ACM Press.
- [GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 3–29, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
- [HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasubramaniam. LevioSA: Lightweight secure arithmetic computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 327–344. ACM Press, November 11–15, 2019.
- [IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority. In Omer Reingold, editor, *Theory of Cryptography*, pages 294–314, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

- [JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency framework for secure neural network inference. In William Enck and Adrienne Porter Felt, editors, USENIX Security 2018: 27th USENIX Security Symposium, pages 1651–1669, Baltimore, MD, USA, August 15–17, 2018. USENIX Association.
- [LP94] Mody Lempel and Azaria Paz. An algorithm for finding a shortest vector in a two-dimensional modular lattice. *Theoretical Computer Science*, 125(2):229 241, 1994.
- [LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 52–78, Barcelona, Spain, May 20–24, 2007. Springer, Heidelberg, Germany.
- [MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.
- [MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. *SIAM Journal on Computing*, 37(1):267–302, 2007.
- [MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy, pages 19–38, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.
- [PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.
- [Qua20] Willy Quach. UC-secure OT from LWE, revisited. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography for Networks, pages 192–211, Cham, 2020. Springer International Publishing.
- [Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages 84– 93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Yao82] Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pages 160–164, 1982.