
On Subversion-Resistant SNARKs?

Behzad Abdolmaleki1, Helger Lipmaa1,2, Janno Siim1, and Michał Zając3

1 University of Tartu, Tartu, Estonia
2 Simula UiB, Bergen, Norway helger.lipmaa@gmail.com

3 Clearmatics, London, UK

Abstract. While NIZK arguments in the CRS model are widely studied,
the question of what happens when the CRS was subverted has received
little attention. In ASIACRYPT 2016, Bellare, Fuchsbauer, and Scafuro
showed the first negative and positive results in the case of NIZK, proving
also that it is impossible to achieve subversion soundness and (even non-
subversion) zero-knowledge at the same time. On the positive side, they
constructed an involved sound and subversion-zero-knowledge (Sub-ZK)
non-succinct NIZK argument for NP. We consider the practically very
relevant case of zk-SNARKs. We make Groth’s zk-SNARK for Circuit-
SAT from EUROCRYPT 2016 computationally knowledge-sound and
perfectly composable Sub-ZK with minimal changes. We only require the
CRS trapdoor to be extractable and the CRS to be publicly verifiable. To
achieve the latter, we add some new elements to the CRS and construct
an efficient CRS verification algorithm. We also provide a definitional
framework for knowledge-sound and Sub-ZK SNARKs.

Keywords: Common reference string, generic group model, non-
interactive zero knowledge, subversion zero knowledge, SNARK

1 Introduction

Combined effort of a large number of recent research papers (to only mention
a few, [DL08,Gro10,Lip12,GGPR13,PHGR13,Lip13,DFGK14,Gro16]) has made
it possible to construct very efficient succinct non-interactive zero-knowledge ar-
guments of knowledge (zk-SNARKs) for both the Boolean and the Arithmetic
Circuit-SAT and thus for NP. The most efficient known approach for con-
structing zk-SNARKs for the Arithmetic Circuit-SAT is based on Quadratic
Arithmetic Programs (QAP, [GGPR13]).

In a QAP, the prover builds a set of polynomial equations that are then
checked by the verifier by using a small number of pairings. QAP-based zk-
SNARKs have excellent efficiency properties that make them applicable in verifi-
able computation [GGP10,GGPR13,PHGR13] where the client outsources some
computation to the server, who returns the computation result together with a

? An earlier version of this paper, [ABLZ17], was published at Asiacrypt 2017. The
current version has been significantly modified.

succinct efficiently-verifiable correctness argument. Possibly even more impor-
tantly, zk-SNARKs are used in cryptocurrencies [DFKP13,BCG+14,KMS+16].
See, e.g., [Gro16] for more references.

The currently most efficient zk-SNARK for Arithmetic Circuit-
SAT was proposed by Groth (EUROCRYPT 2016, [Gro16]) who
proved it to be knowledge-sound in the generic bilinear group model
(GBGM [Nec94,Sho97,Mau05,BBG05]) while slightly less efficient zk-SNARKs
are known under concrete knowledge assumptions [Dam92]. In Groth’s zk-
SNARK, the argument consists of only 3 bilinear group elements and the verifier
has to check a single pairing equation, dominated by the computation of three
bilinear (type-III [GPS08]) pairings and m0 exponentiations, where m0 is the
statement size.

Motivated by applications in cryptocurrencies (but not only), there has been
a surge of interest in constructing cryptographic primitives and protocols secure
against active subversion. In the context of zk-SNARKs, while the common ref-
erence string (CRS) model [BFM88] is widely used, one has to be very careful to
guarantee that the CRS was created correctly. In [BFS16], Bellare, Fuchsbauer,
and Scafuro tackled this problem by studying how much security one can still
achieve when the CRS generator cannot be trusted. They proved several negative
and positive results. In particular, they showed that it is impossible to achieve
subversion soundness (soundness even if the CRS is not trusted) and (even non-
subversion) zero-knowledge simultaneously, essentially since the zero-knowledge
simulator can be used to break subversion soundness.

In one of their positive solutions, Bellare et al. show that it is possible to
get (non-subversion) soundness and computational subversion zero-knowledge
(Sub-ZK, ZK even if the CRS is not trusted). Their main new idea is to use a
knowledge assumption in the Sub-ZK proof so that the simulator can extract a
“trapdoor” from the untrusted CRS and then use this trapdoor to simulate the
argument. While this idea is neat, their resulting argument system is not efficient.
Since it has linear communication, in the case of zk-SNARKs, one presumably
has to employ different techniques. One also needs to take care to define and
implement statistical Sub-ZK as compared to computational Sub-ZK in [BFS16].

Our Contributions. We will take Groth’s zk-SNARK from EUROCRYPT
2016 [Gro16] as a starting point since it is the most efficient known zk-SNARK.
Groth [Gro10] observed that if a trusted setup for generating the CRS is not
available, the verifier may generate the CRS herself, given that the prover can
verify its well-formedness. However, Groth’s proposed solution guarantees only
witness-indistinguishability, not zero-knowledge, and he did not describe how to
verify the CRS. We propose a minimal modification to Groth’s zk-SNARK that
makes it computationally knowledge-sound and statistical composable Sub-ZK.
We provide two different versions of this argument: the first has a more straight-
forward proof strategy, whereas the second is slightly more efficient. Intuitively,
the first version verifies the correctness of the whole CRS but the second version

2

verifies only the correctness of the part of CRS that is relevant for obtaining
Sub-ZK. However, on a conceptual level, both versions use similar ideas.

We change Groth’s zk-SNARK by adding extra elements to the CRS in the
CRS-generation phase so that the CRS becomes publicly verifiable; under ap-
propriate knowledge assumptions, this minimal step (clearly, some public verifi-
ability of the CRS is needed in the case the CRS generator cannot be trusted)
is sufficient to obtain Sub-ZK. However, choosing which elements to add to
the CRS is not straightforward since the zk-SNARK must remain knowledge-
sound even given enlarged CRS; adding too many or just “wrong” elements to
the CRS can break the knowledge-soundness. On the other hand, importantly,
the prover and the verifier of the new zk-SNARK are unchanged compared to
Groth’s SNARK [Gro16]. In the rest of the introduction, we only outline the
novel properties of the new SNARK as compared to [Gro16].

We start by defining perfectly complete, perfectly CRS-verifiable, compu-
tationally adaptively knowledge-sound, and statistically unbounded (or com-
posable) zero-knowledge Sub-ZK SNARKs. These definitions are similar to but
different from the non-subversion security definitions as given in, say, [Gro06].
First, since one cannot check whether the subverter uses perfectly uniform coins
(or, the CRS trapdoor) to generate the CRS, we divide the CRS generation into
three different algorithms:

– the generation of the CRS trapdoor tc (a probabilistic algorithm Ktc),
– the creation of the CRS from tc (a deterministic algorithm Kcrs), and
– the creation of the simulation trapdoor ts from tc (a deterministic algorithm

Kts).

While we cannot check that Ktc works correctly, we will guarantee that given
a fixed crs that is accepted by the CRS-verification algorithm CV (see be-
low) as well-formed, crs has been created by Kcrs given some tc as the input.
More precisely, we require that Sub-ZK SNARKs satisfy the following trapdoor-
extractability property: if CV accepts crs then there exists an extractor that
extracts tc such that Kcrs maps tc to crs. As we later discuss, extracting tc is
not strictly necessary, and slightly better efficiency can be achieved by just ex-
tracting a valid ts. The use of such an extractability requirement means that we
achieve Sub-ZK only under a knowledge assumption.

The use of non-falsifiable assumptions (e.g., a knowledge assumption or the
generic model) in the knowledge-soundness proof is necessary due to the impossi-
bility result of Gentry and Wichs [GW11]. In the proof of knowledge-soundness,
we use (a variant of) the GBGM. Following [Bro01,SPMS02,BFS16], we weaken
the usual definition of GBGM by allowing the generic adversary to create (un-
der realistic restrictions) random elements in the source groups without know-
ing their discrete logarithms. We call the resulting somewhat weaker model the
generic bilinear group model with hashing (GBGM-H4). Following Groth [Gro16]
(the main difference being that modeling a more powerful generic adversary and
4 In the conference version of the current paper [ABLZ17], this model was called
subversion GBGM (Sub-GBGM).

3

taking into account new CRS elements will complicate the proof somewhat), we
prove that the proposed SNARK is knowledge-sound in the GBGM-H even in
the case of type-I pairings. This provides a hedge against possible future crypt-
analysis that finds an efficient isomorphism between the two source groups.

We consider the case of an efficient PPT subverter. In the proof of statis-
tical composable Sub-ZK, we use a simple knowledge assumption (a variant of
which was used, e.g., in [DFGK14]) that we call BDH-KE. We prove that, in the
case of type-III parings, BDH-KE holds in the GBGM-H. The Sub-ZK proof of
the only previously known non-interactive Sub-ZK argument system by Bellare
et al. [BFS16] also relies on knowledge assumptions. (As shown in subsequent
work [ALSZ20], it is indeed necessary to use non-falsifiable assumptions.) We
follow the main idea of [BFS16] by first using BDH-KE to extract the CRS trap-
door tc from the CRS and then construct a non-subversion simulator that gets tc
as an input to simulate the argument. However, since we construct a zk-SNARK,
our concrete approach is different from [BFS16].

Here too, we rely on the existence of an efficient CRS verification algorithm
CV. We show that if CV accepts a CRS crs, then crs has been computed correctly
by Kcrs from some trapdoor tc bijectively fixed by crs. From this, it follows under
the BDH-KE assumption that for any subverter that produces a crs accepted by
CV, there is an extractor that outputs tc such that Kcrs given tc outputs crs.

Our security proofs of knowledge-soundness and Sub-ZK work in incompara-
ble models. The knowledge-soundness proof uses the full power of GBGM-H in
the case of type-{I,II,III} pairings. The Sub-ZK proof uses a concrete standard-
looking knowledge assumption BDH-KE that holds in the GBGM in the case of
type-{I,II,III} pairings and in the GBGM-H in the case of type-III pairings. This
enables us to construct an efficient Sub-ZK SNARK that uses type-III pairings
while guaranteeing its knowledge-soundness even in the case of type-I pairings.
In a subsequent work, Lipmaa [Lip19] showed that in the case of type-III pair-
ings, a variant of our Sub-ZK SNARK is knowledge-sound under a concrete
knowledge-assumption.

General Design Recommendations. Constructing Sub-ZK SNARKs cannot
be done automatically, in particular since our framework points to the necessity
of making at least a part of the CRS publicly verifiable, which potentially means
adding new elements to the CRS. Since knowledge-soundness proofs of many
SNARKs are very subtle, it seems to be challenging to give a general “theorem”
about which SNARKs can be modified to be Sub-ZK or even whether their CRS
can be made verifiable without a significant reconstruction. Whether a SNARK
remains sound after that must be proven separately in each case.

However, we can still give a few recommendations for designing a Sub-ZK
SNARK from a non-subversion-secure SNARK (or from scratch) when using the
same approach as the current paper:

1. Division of duties (in the setup phase): make sure that K can be divided into
randomized Ktc, deterministic Kts, and deterministic Kcrs algorithms.

4

2. trapdoor-extractability: each trapdoor element in tc or eat least in ts, must
be extractable from the CRS. For this, one can use a knowledge assumption
or the GBGM-H.

3. CRS verifiability: assure the CRS is publicly verifiable, i.e., crs = Kcrs(tc),
where tc is the trapdoor extracted in the previous step. For better efficiency,
one can only check the CRS elements used by the prover or the simulator
since other elements cannot affect ZK.

4. Sound approach: make sure that the previous steps do not hurt the knowledge
soundness. To achieve it, one should aim at designing a SNARK with a very
simple CRS or where CRS verifiability comes naturally. Depending on the
SNARK in question, this step may be the most difficult one.

We prove a general result showing that if the above approach is followed and
the argument has perfect (composable) ZK, then we automatically achieve sta-
tistical unbounded (composable) Sub-ZK. The same is not necessarily true for
arguments that have only statistical or computational ZK. Intuitively, the reason
is that in statistical (or computational) ZK, there might be a small set of well-
formed CRSs Cbad that make the argument leak information. This does not affect
zero-knowledge when the CRS is honestly chosen, assuming that CRSs from Cbad
occur only with a small probability. However, in the subversion setting, an ad-
versary may pick a CRS from the set Cbad with a much higher likelihood. In the
case of a perfect ZK argument, we show that Cbad = ∅, or equivalently, we show
that perfect ZK holds even respect to an arbitrary fixed CRS. This makes CRS
verifiability and trapdoor extractability sufficient for simulating proofs. We use
this result to prove Sub-ZK of our SNARK construction by noting that Groth’s
SNARK has perfect ZK.

Finally, we show that the above strategy does not always give the best effi-
ciency. Namely, following an idea from [ALSZ20], we give a slightly more efficient
version of the new Sub-ZK SNARK by including the following changes: (i) we do
not verify CRS elements used only by the verifier and not by the prover or the
simulator (clearly, those elements cannot affect the Sub-ZK property), (ii) we do
not extract the whole CRS trapdoor tc, but only a smaller simulation trapdoor
ts. These two changes result in a slightly a more efficient CV algorithm, but we
do not achieve trapdoor-extractability anymore. Thus, we cannot rely on the
general result in this case and have to prove Sub-ZK from scratch.

On Efficiency. Since the new zk-SNARK is closely based on the most efficient
known non-subversion zk-SNARK of Groth [Gro16], it has comparable efficiency.
Importantly, since we achieve Sub-ZK and non-subversion knowledge-soundness,
the CRS verification algorithm CV has to be executed only by the prover and
only once in all applications where the prover uses the same crs (e.g., throughout
the use of Zcash, [BCG+14]). This means that it suffices for CV to have the same
(or even larger) computational complexity as the prover’s algorithm. The initial
CV we describe in Fig. 2 is quite inefficient. However, we show in Section 10 that
by using batching techniques, the CV algorithm can be sped up to be faster than

5

the prover’s algorithm (at the information-theoretical security level 2−80) and
even faster at the information-theoretical security level 2−40.

Road-Map. In Section 2, we discuss subsequent work. In Section 3, we describe
the preliminaries. In Section 4, we give and motivate definitions of subversion-
resistant SNARKs. In Section 5, we define traproor-extractability and show how
to use it to obtain Sub-ZK. In Section 6, we describe GBGM and GBGM-H. In
Section 7, we give the construction of the new Sub-ZK SNARKs. In Section 8, we
prove that they are knowledge-sound, and in Section 9, that they are Sub-ZK.
In Section 10, we discuss the efficiency of the new SNARKs. In Appendix A,
we enlist the most important changes as compared to the conference version;
however, this list is not exhaustive.

2 Subsequent Work

Bellare et al. [BFS16] showed that any NIWI argument like [GOS06]
is subversion-soundness and subversion-WI. Subsequently, Fuchsbauer and
Orrù [FO18] constructed a subversion-knowledge-sound NIWI. Unfortunately,
the known NIWI argument systems are not succinct. Construction of more effi-
cient NIWI argument systems is a very interesting open question.

Independently from our work, Fuchsbauer [Fuc18] constructed subversion-
resistant SNARKs. Fuchsbauer’s approach is similar to the approach
in [ABLZ17], but he modifies subtly the simulator of Groth’s SNARK so that it
does not require the knowledge of trapdoor elements α and β. Then he shows
that the original Groth’s SNARK, without adding extra element to the CRS, is
knowledge-sound and Sub-ZK under a somewhat weaker, yet clearly sufficient
definition of Sub-ZK. We have adapted a version of Fuchsbauer’s (very natural)
simulation technique and Sub-ZK definition in the current version of this paper;
however, for simplicity, we use the same knowledge assumption as in [ABLZ17].

Abdolmaleki et al. [ALSZ20] showed that the notion of Sub-ZK in the CRS
model is equivalent to the notion of no-auxiliary-string non-black-box zero-
knowledge [GO94] in the weaker BPK model [CGGM00,MR01], where the verifier
— or a party, trusted by her (but not by the prover) — itself can create the CRS
and the authority is just trusted to store (but not verify) it. Hence,t Sub-ZK
SNARKs in the CRS model should just be known as zk-SNARKs in the BPK
model. Due to the known impossibility results [GO94], it follows that Sub-ZK
for NP cannot be based on falsifiable assumptions.

Subsequent work has shown that the GBGM-H is unnecessarily strong. First,
the generic group model can be replaced with the algebraic group model (AGM)
proposed by Fuchsbauer et al. [FKL18], where one only assumes that all ad-
versaries are algebraic, that is, they know (a uniquely defined) linear relation
between their input and ouput group elements. Lipmaa [Lip19] weakened the
AGM even more, by showing that one can prove the knowledge-soundness of
a version of the SNARKs of the current paper under a concrete knowledge as-
sumption and a computational assumption. Moreover, as shown in [Lip19], one

6

does not have to assume that the new group elements created by the generic
adversary by using hashing are uniformly random; instead, it suffices for them
to have high min-entropy.

Groth et al. [GKM+18] introduced the important notion of updatable zk-
SNARKs where any party can update the SNARK’s CRS. The updated CRSs
form a sequence crs0, crs1, . . . , crsk. The promise is that if at least one of the par-
ties involved in the updating process was honest, then the system is sound. Fur-
thermore, by involving techniques similar to the CV algorithm explained in this
paper, each CRS can be verified for its well-formedness. Updatable zk-SNARKs
are crucially also Sub-ZK SNARKs; in particular, by the results of [ALSZ20], an
updatable zk-SNARK is no-auxiliary-string non-black-box SNARK in the BPK
model. In such an “updatable BPK” model, the prover does not have to trust
the CRS at all while the verifier only has to trust one of the updaters.

3 Preliminaries

For a matrix M ∈ Zn×mp , we denote by M i the i-th row of M and by M (j) the
j-th column of M . PPT stands for probabilistic polynomial-time, and NUPPT
stands for non-uniform PPT. Let λ be the security parameter. We denote by
negl(λ) an arbitrary negligible function. We write f(λ) ≈λ g(λ), if f(λ) − g(λ)
is negligible as a function of λ. For an algorithm A, let range(A) be the set of
all outputs of A that occur with non-zero probability. For an algorithm A, let
RND(A) denote the random tape of A, and let r←$ RND(A) denote the random
choice of the randomizer r from RND(A). By y ← A(x; r) we denote the fact that
A, given an input x and a randomizer r, outputs y. When we use this notation,
then r represents the full random tape of A. For algorithms A and ExtA, we write
(y ‖ y′) ← (A‖ExtA)(χ; r) as a shorthand for y ← A(χ; r), y′ ← ExtA(χ; r). In
both cases, ExtA and A use internally the same randomness r.

In the new argument systems, we will use a small number of indeterminates,
and we assume that each indeterminate has a canonical concrete value (a uni-
formly random element of Zp or Z∗p). The canonical value of X,Xα, Xβ , Xγ , Xδ

(resp., Yi) will be χ, α, β, γ, δ (resp., υi). The canonical value of the vector
X = (X,Xα, Xβ , Xγ , Xδ) (resp., Y = (Y1, . . .)) will be x = (χ, α, β, γ, δ) (resp.,
υ = (υ1, . . .)).

Lemma 1 (Schwartz-Zippel [Zip79,Sch80]). Let f ∈ F[X1, . . . , Xn] be a
non-zero polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset
of F, and let x1, . . . , xn be selected at random independently and uniformly from
S. Then Pr[f(x1, . . . , xn) = 0] ≤ d/|S|.

Interpolation. Assume n is a power of two, and let ω be the nth primitive root
of unity modulo p. Such ω exists, given that n | (p − 1). Let (ω0, ω1, . . . , ωn−1)
be the interpolation points. Then,

– `(X) :=
∏n
i=1(X−ωi−1) = Xn−1 is the unique degree n monic polynomial,

such that `(ωi−1) = 0 for all i ∈ [1 .. n].

7

compLag(χ, n)

ζ ← (χn − 1)/n;ω′ ← 1;

if χ = ω′ then `1(χ)← 1; else `1(χ)← ζ/(χ− ω′);fi
for i = 2 to n do

ζ ← ωζ;ω′ ← ωω′;

if χ = ω′ then `i(χ)← 1; else `i(χ)← ζ/(χ− ω′);fi endfor

Fig. 1. Computing (`i(χ))
n
i=1

– For i ∈ [1 .. n], let `i(X) be the ith Lagrange basis polynomial, i.e., the unique
degree n−1 polynomial, s.t. `i(ωi−1) = 1 and `i(ωj−1) = 0 for i 6= j. Clearly,

`i(X) :=
`(X)

`′(ωi−1)(X − ωi−1)
=

(Xn − 1)ωi−1

n(X − ωi−1)
. (1)

Thus, `i(ωi−1) = 1 while `i(χ) = (χn − 1)ωi−1/(n(χ− ωi−1)) for χ 6= ωi−1.

Given any χ ∈ Zp, compLag in Fig. 1 (see, e.g., [BCG+13]) computes `i(χ) for
i ∈ [1 .. n]. It can be implemented in 4n− 2 multiplications and divisions in Zp.

Clearly, La(X) :=
∑n
i=1 ai`i(X) is the interpolating polynomial of a at

points ωi−1, with La(ω
i−1) = ai, and its coefficients can thus be computed

by executing an inverse Fast Fourier Transform in time Θ(n log n).

Elliptic Curves and Bilinear Maps. On input 1λ, a bilinear map generator
Pgen returns pp = (p,G1,G2,GT , ê,P1,P2), where G1, G2 and GT are three ad-
ditive cyclic groups of prime order p (with log p = Ω(λ)) and Pν is a randomly
sampled generator of Gν for ν ∈ {1, 2, T}. As in [BFS16] (but not as in the con-
ference version [ABLZ17] of the current paper), we will explicitly assume that
the system parameters pp are generated deterministically from λ. This means
that in particular, the choice of pp cannot be subverted. Moreover, for relevant
security levels λ (say, λ = 128), there usually exists a standard recommenda-
tion of which elliptic curve to use. (The current recommendation for λ = 128
is the curve BLS12-381, [Bow17].) Additionally, ê is an efficient bilinear map
ê : G1 × G2 → GT that, in particular, satisfies the following two properties:
(i) ê(P1,P2) 6= 1, and (ii) ê(aP1, bP2) = (ab) · ê(P1,P2).

We give Pgen another input, n (intuitively, the input length), and allow p to
depend on n. This is needed for efficient interpolation, for which we will need
the existence of the nth, where n = 2s is a power of 2, primitive root of unity
modulo p. For this, it suffices that 2s | (p− 1) (recall that p is the elliptic curve
group order). The curve BLS12-381 satisfies 232 | (p − 1). All algorithms that
handle group elements verify by default that their inputs belong to corresponding
groups and reject if not. Usually, arithmetic in G1 is considerably cheaper than
in G2; thus, we count exponentiations separately in both groups.

We use the by-now standard bracket notation [EHK+13]. That is, for an
integer x, we denote [x]ν := xPν even when x is unknown. We denote [x]1•[y]2 :=
ê([x]1, [y]2), hence [xy]T = [x]1 • [y]2. We denote [a1, . . . , as]ν = ([a1]ν , . . . , [as]ν).

8

Quadratic Arithmetic Programs. Gennaro et al. [GGPR13] introduced
Quadratic Arithmetic Program (QAP) as a language where for an input x and
witness w predicate (x,w) ∈ R can be verified by using a parallel quadratic check
and has an efficient reduction from the language (either Boolean or Arithmetic)
Circuit-SAT. Hence, an efficient zk-SNARK for QAP results in an efficient
zk-SNARK for Circuit-SAT.

In the case of an arithmetic circuit, n is the number of multiplication gates
and m is the number of wires in the circuit. As in [GGPR13], we consider arith-
metic circuits that consist only of fan-in-2 multiplication gates, where either
input of each multiplication gate is a weighted sum of some wire values.

Let F = Zp, such that ω is the nth primitive root of unity modulo
p. (This requirement is needed for the sake of efficiency, and we will make
it implicitly throughout the current paper.) An QAP instance Q is spec-
ified by (Zp,m0, {uj , vj , wj}mj=1), where uj(X) =

∑n
i=1 Uij`i(X), vj(X) =∑n

i=1 Vij`i(X), and wj(X) =
∑n
i=1Wij`i(X) are degree-≤ (n − 1) polynomi-

als from Zp[X]. Here, U, V,W ∈ Zn×mp are public sparse matrices. The instance
Q defines the following relation:

RQ =

(x,w) : x = (A1, . . . , Am0

)> ∧ w = (Am0+1, . . . , Am)>∧ m∑
j=1

Ajuj(X)

 m∑
j=1

Ajvj(X)

 ≡ m∑
j=1

Ajwj(X) (mod `(X))

 .

Alternatively, (x,w) ∈ R if there exists a degree-≤ (n− 2) polynomial h(X), s.t. m∑
j=1

Ajuj(X)

 m∑
j=1

Ajvj(X)

− m∑
j=1

Ajwj(X) = h(X)`(X) .

4 Definitions: SNARKs and Subversion Zero Knowledge

Next, we define subversion zero-knowledge (Sub-ZK) SNARKs and all their prop-
erties. To achieve Sub-ZK, we augment a zk-SNARK by requiring the existence
of an efficient CRS verification (CV) algorithm. As outlined in Section 1, we also
subdivide the CRS generation algorithm into two efficient algorithms.

Our definition of (statistical unbounded) Sub-ZK for SNARKs is motivated
by the definition of [BFS16]. We also define statistical composable Sub-ZK. As
in [Gro06], the definition of unbounded zero-knowledge guarantees security for
any (polynomial) number of queries to the prover or simulator, while the def-
inition of composable zero-knowledge guarantees security only in the case of a
single query. Following [Gro06] we prove that a statistical composable Sub-ZK
argument system is also statistical unbounded Sub-ZK. This allows us to use the
simpler definition of statistical composable Sub-ZK in the rest of the paper.

9

4.1 Syntax

Let RelGen be a relation generator, such that RelGen(1λ) returns a polynomial-
time decidable binary relation R = {(x,w)}. Here, x is the statement, and w
is the witness. We assume that λ is explicitly deductible from the descrip-
tion of R. The relation generator also outputs auxiliary information zR. As
in [Gro16, Sect. 2.3], zR equals pp ← Pgen(1λ, n) for a well-defined n. Be-
cause of this, we give zR as an input to all (including honest or adversar-
ial) parties. According to the terminology of [BCPR14], z̃R := (R, zR) is the
common auxiliary input to an adversary and the corresponding extractor. Let
LR = {x : ∃w s.t. |w| = poly(|x|), (x,w) ∈ R} be an NP-language.

A subversion-resistant non-interactive zero-knowledge (NIZK) argument sys-
tem Ψ for RelGen consists of six PPT algorithms:

CRS trapdoor generator Ktc: a probabilistic algorithm that, given z̃R ∈
range(RelGen(1λ)), outputs a CRS trapdoor tc. Otherwise, it outputs a spe-
cial symbol ⊥.

Simulation trapdoor generator Kts: a deterministic algorithm that, given
(z̃R, tc) where z̃R ∈ range(RelGen(1λ)) and tc ∈ range(Ktc(z̃R)) \ {⊥}, out-
puts the simulation trapdoor ts. Otherwise, it outputs ⊥.

CRS generator Kcrs: a deterministic algorithm that, given (z̃R, tc), where
z̃R ∈ range(RelGen(1λ)) and tc ∈ range(Ktc(z̃R)) \ {⊥}, outputs crs. Oth-
erwise, it outputs ⊥. For the sake of efficiency and readability, we divide
crs into crsP (the part needed to execute the honest prover), crsV (the part
needed to execute the honest verifier), and crsCV (the part needed only to
executed CV but not needed by P or V). If an element is used by both P and
V then it will belong to both crsP and crsV.

CRS verifier CV: a probabilistic algorithm that, given (z̃R, crs), returns either
0 (the CRS is malformed) or 1 (the CRS is well-formed),

Prover P: a probabilistic algorithm that, given (z̃R, crsP, x,w), outputs an ar-
gument π if CV(z̃R, crs) = 1 and (x,w) ∈ R. Otherwise, it outputs ⊥.

Verifier V: a probabilistic algorithm that, given (z̃R, crsV, x, π), returns either
0 (reject) or 1 (accept).

Simulator Sim: a probabilistic algorithm that, given (z̃R, crs, ts, x) where
CV(z̃R, crs) = 1, outputs an argument π. Otherwise, it outputs ⊥.

Let K(z̃R) be the combined CRS generation algorithm that first sets tc ←
Ktc(z̃R), crs← Kcrs(z̃R, tc), ts← Kts(z̃R, tc), and then outputs (crs, ts).

SNARKs. A non-interactive argument system is succinct if the proof size is
polynomial in λ and the verifier runs in time polynomial in λ+|x|. A succinct non-
interactive argument of knowledge is usually called SNARK. A zero-knowledge
SNARK is abbreviated to zk-SNARK.

Discussions. A non-interactive zero-knowledge argument system is usually de-
fined as a tuple (K,P,V,Sim), see, e.g., [Gro16]. Next, we will briefly motivate the

10

differences compared to the established syntax of non-interactive zero-knowledge
argument systems. Section 4.2 will give formal security definitions where the
above syntactic definition is an important part.

The division of K into 3 algorithms Ktc, Kts, and Kcrs is usually not needed.
Still, K of many known non-interactive zero-knowledge argument systems (and
all zk-SNARKs that we know) satisfies such a division. Ktc just generates all
randomness (tc), needed to compute crs and ts, and then Kcrs and Kts compute crs
and ts deterministically from tc. (Often, ts = tc.) Such division can be formalized
by requiring the crs to be witness-sampleable [JR13] that also seems to be a
reasonable requirement in case one is interested in subversion-resistance. Really,
an important subgoal of Sub-ZK is to guarantee that the subverted CRS is
consistent with at least some choice of tc. That is, for each tc, there must exist
corresponding crs (accepted by CV) and ts (that can be used by the simulator
to simulate subverted crs corresponding to tc).

The existence of efficient CV will be crucial to obtain Sub-ZK. To guarantee
Sub-ZK, it is intuitively clear that an honest prover should at least check the
correctness of the CRS. Efficiency-wise, since the prover in known zk-SNARK
constructions (including say [GGPR13,Gro16] and the current paper) takes su-
perlinear time, this is fine unless the CRS verification will be even slower. We do
not assume, however, that CV is a part of the P algorithm; instead, we assume
that an honest prover first runs CV and given that it accepts, runs P. Such a
separation is natural since, in practice, one can execute many zero-knowledge
arguments by using the same CRS; it makes sense that then the prover runs CV
only once. On the other hand, since an honest V trusts the CRS generator, she
does not have to execute CRS verification.

Finally, crsP (resp., crsV) is the part of the CRS given to an honest prover
(resp., an honest verifier), and crsCV is the part of CRS not needed by the prover
or the verifier except to run CV. The distinction between crsP, crsV, and crsCV
is not significant from the security point of view, but in many cases crsV is
significantly shorter than crsP. Keeping crsCV separate helps one to evaluate
better the additional efficiency penalty introduced by subversion security.

4.2 Security Definitions

A Sub-ZK SNARK has to satisfy various security definitions. The most im-
portant ones are completeness (an honest prover convinces an honest verifier),
CRS-verifiability (an honestly generated CRS passes the CRS verification test),
computational knowledge-soundness (if a prover convinces an honest verifier,
then he knows the corresponding witness), and statistical Sub-ZK (given a pos-
sibly subverted CRS, an argument created by the honest prover reveals no side
information). Next, we will define those properties in a way that guarantees both
composability and subversion resistance.

To keep the new security definitions as close to the accepted security defi-
nitions of zk-SNARKs as possible, we will start with non-subversion-resistant
security definitions from [Gro16] (that will be stated below for the sake of

11

completeness), albeit by using our notation, and modify them by adding ele-
ments of subversion as in Bellare et al. [BFS16]. To ease the reading, we will
emphasize the differences between non-subversion and subversion definitions.
We use the division of CRS generation into three different algorithms also in the
non-subversion-resistant case. As motivated in Section 4.1, we also give zR as an
input to all honest parties. Finally, the notions of unbounded (ZK is guaranteed
against an adversary who can arbitrarily query an oracle that outputs either
proofs or simulations) and composable (ZK is insured against an adversary who
has to distinguish a single argument from a simulation) zero-knowledge follow
the definitions given in [Gro06] and are in fact equal in our case.

Definition 1 (Perfect Completeness [Gro16]). A non-interactive argument
Ψ is perfectly complete for RelGen, if for all λ, all z̃R ∈ range(RelGen(1λ)),
tc ∈ range(Ktc(z̃R)) \ {⊥}, and (x,w) ∈ R,

Pr [crs← Kcrs(z̃R, tc) : V(z̃R, crsV, x,P(z̃R, crsP, x,w)) = 1] = 1 .

Definition 2 (Perfect CRS Verifiability). A non-interactive argument Ψ is
perfectly CRS-verifiable for RelGen, if for all λ, all z̃R ∈ range(RelGen(1λ)), and
tc ∈ range(Ktc(z̃R)) \ {⊥},

Pr [crs← Kcrs(z̃R, tc) : CV(z̃R, crs) = 1] = 1 .

Definition 3 (Computational Knowledge Soundness [Gro16]). Ψ is
computationally (adaptively) knowledge-sound for RelGen, if for every NUPPT
A, there exists a NUPPT extractor ExtA, s.t. for all λ,

Pr

z̃R ← RelGen(1λ), (crs, ts)← K(z̃R),

r←$ RND(A), ((x, π) ‖w)← (A‖ExtA)(z̃R, crs; r) :

(x,w) 6∈ R ∧ V(z̃R, crsV, x, π) = 1

 ≈λ 0 .

Here, zR can be seen as a common auxiliary input to A and ExtA that is gen-
erated by using a benign [BCPR14] relation generator (see [BCPR14] for an
analysis where RelGen is not benign). We recall that we just think of zR as
being the description of a secure bilinear group, and thus RelGen is benign. A
knowledge-sound argument system is called an argument of knowledge.

Next, we define statistically unbounded ZK. Unbounded (non-Sub) ZK was
not defined in [Gro16], presumably because it is a corollary of composable non-
Sub ZK as shown in [Gro06]. Hence, we will first give a modified version of the
definition of non-Sub ZK from [Gro06] where K will only output a crs and a CRS
simulator Simcrs will return (crs, ts). As in [Gro16], we find it more convenient
to let Simcrs (whom we call K) to generate also the honest crs.

Definition 4 (Statistically Unbounded ZK [Gro06]). Ψ is statistically
unbounded Sub-ZK for RelGen, if for all λ, all z̃R ∈ range(RelGen(1λ)), and all
computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, ts)← K(z̃R) : AOb(·,·)(z̃R, crs) = 1] .

12

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it re-
turns P(z̃R, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns Sim(z̃R, crs, ts, x). Ψ is perfectly unbounded ZK for RelGen
if εunb0 = εunb1 .

The following definition of unbounded Sub-ZK differs from this as follows.
Since we allow the CRS to be subverted, the CRS is generated by a subverter
S who also returns an auxiliary string zS . The adversary’s access to zS models
the possibility that the subverter and the adversary collaborate. The extractor
ExtS extracts ts from S and gives it to the oracle O1. In [Gro06], ts was not
given to the adversary because K was not required to return tc and thus was
not guaranteed to exist; adding this input to the adversary only increases the
power of the adversary. In our construction, this issue does not matter since a
computationally unbounded A could compute tc herself (see the description of
Sim in Fig. 2).

Definition 5 (Statistically Unbounded Sub-ZK). Ψ is statistically un-
bounded Sub-ZK for RelGen, if for any PPT subverter S there exists a PPT
ExtS , such that for all λ, all z̃R ∈ range(RelGen(1λ)), and all computationally
unbounded A, εunb0 ≈λ εunb1 , where

εunbb x = Pr

[
r←$ RND(S), (crs, zS ‖ ts)← (S ‖ExtS)(z̃R; r) :

CV(z̃R, crs) = 1∧AOb(·,·)(z̃R, crs, zS) = 1

]
.

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(z̃R, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and other-
wise it returns Sim(z̃R, crs, ts, x). Ψ is perfectly unbounded Sub-ZK for RelGen
if one requires that εunb0 = εunb1 .

Remark 1. Following [BFS16] (and differently from the conference ver-
sion [ABLZ17] of the current paper), we consider only uniform PPT S and
ExtS in the definition of Sub-ZK. On the other hand, we consider NUPPT A
and ExtA in the case of knowledge-soundness.

First, the extractor has to be at least as powerful as the corresponding adver-
sary (S or A); otherwise, it is difficult to argue how this extractor can perform
its duties. Second, a non-uniform adversary can output a part of her auxiliary
string [GO94], without knowing how it was generated; in this case, the extractor
does not work. If the input of the adversary is randomized, for such an adversar-
ial strategy to work, the auxiliary string should include an acceptable output for
a non-negligible fraction of the possible inputs. (We emphasize we are talking
about the input, not the random tape of the adversary.) In particular, if the
entropy of the adversary’s input is O(log λ), then the (poly-length) auxiliary
string can contain her outputs corresponding to a non-negligible fraction of all
possible random inputs and thus the extractor is not applicable.

In the case of knowledge-soundness, the input of the adversary includes cor-
rectly generated CRS; thus, assuming the random trapdoor length is at ω(log λ),

13

as it is in all CRS-based SNARKs, one can obtain security against NUPPT ad-
versaries. In the case of Sub-ZK, the only “random” input of the subverter is
z̃R. In most of the applications, R is not randomized, and zR only contains
the description of the bilinear group. If the bilinear group is randomly generated
(from a large enough set of bilinear groups), then one can obtain Sub-ZK against
NUPPT adversaries. However, in practice, the bilinear group is fixed in advance,
with the current recommendation being BLS12-381, [Bow17], and thus the sub-
verter might have no random input at all. Following Bellare et al. [BFS16], we
assume that the bilinear group is selected deterministically, and thus one can
only obtain Sub-ZK against PPT subverters. Such an assumption on Pgen was
not made in [ABLZ17], and thus they could claim security against NUPPT sub-
verters in the definition of Sub-ZK.

In the case of composable ZK, the adversary can only see one purported (i.e.,
real or simulated) argument π, instead of being able to make many queries to a
purported prover oracle as in the case of unbounded ZK. If composable ZK is
defined carefully, it will be at least as strong as unbounded ZK while potentially
allowing for simpler security proofs, [Gro06]. We will show that the same holds
in the case of Sub-ZK.

Definition 6 (Statistically Composable ZK [Gro06]). Ψ is statistically
composable zero-knowledge for RelGen, if for all λ, z̃R ∈ range(RelGen(1λ)), and
all computationally unbounded A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr

[
(crs, ts)← K(z̃R), (x,w)← A(z̃R, crs, ts);π0 ← P(z̃R, crsP, x,w);

π1 ← Sim(z̃R, crs, ts, x) : (x,w) ∈ R ∧ A(πb) = 1

]
.

Ψ is perfectly composable Sub-ZK for RelGen if one requires that εcomp0 = εcomp1 .

Since A is unbounded, she can usually compute both ts and tc from crs.
Next, we define statistical composable subversion zero knowledge (Sub-ZK).

This definition is related to but crucially different from the definition of (com-
putational) composable ZK from [Gro06]. Most importantly, [Gro06] defines two
properties, the first being reference string indistinguishability, meaning that the
CRS generated by honest K and the CRS simulated by a simulator Simcrs should
be indistinguishable. We will use the CRS generated by the subverter in both
the real and the simulated case. The second property in [Gro06] is simulation
indistinguishability. Our definition of composable Sub-ZK is similar to the defini-
tion of simulation indistinguishability in [Gro06]. However, instead of simulating
the CRS, we use crs generated by the subverter and assume that an extractor
extracts ts from crs.

Moreover, we differ from the definition of composable non-Sub ZK in [Gro16]
as follows. The CRS is generated by S who also returns zS . A’s access to zS
models the possibility that S and A collaborate; although of course A could
just recompute it. We also drop ts as a part of A’s input as we now consider it
implicitly to be a part of zS .

14

Definition 7 (Statistically Composable Sub-ZK). Ψ is statistically com-
posable Sub-ZK for RelGen, if for any PPT subverter S there exists a PPT
ExtS , such that for all λ, all z̃R ∈ range(RelGen(1λ)), and all computationally
unbounded A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr

r←$ RND(S), (crs, zS ‖ ts)← (S ‖ExtS)(z̃R; r) ,

(x,w)← A(z̃R, crs, , zS), π0 ← P(z̃R, crsP, x,w);

π1 ← Sim(z̃R, crs, ts, x); (x,w) ∈ R ∧ CV(z̃R, crs) = 1∧A(πb) = 1

 .
Ψ is perfectly composable Sub-ZK for RelGen if one requires that εcomp0 = εcomp1 .

Remark 2 (Comparison to Sub-ZK Definition of [BFS16]). Let Ob be defined
as before. In [BFS16], it is required that for any PPT subverter S there exists a
PPT simulator (ExtS ,Sim), such that for all λ, z̃R ∈ range(RelGen(1λ)), and all
PPT A, εbfs0 ≈λ εbfs1 , where

εbfsb = Pr

[
if b = 0 then r←$ RND(S), crs← S(z̃R; r);

else (crs, r)← ExtS(z̃R);fi : AOb(·,·)(z̃R, crs, r)

]
.

First, [BFS16] defines computational Sub-ZK while we define statistical Sub-
ZK. This by itself changes several aspects of the definition. E.g., we can just let
A to compute tc and zS from crs instead of giving them as extra inputs to A.

Second, compared to [BFS16], we give to A extra information zS (that also,
w.l.o.g., contains tc). Having access to tc means that one can implement SNARKs
for different relations using the same CRS [Gro06]. Really, given tc, A can both
form and simulate arguments for any of the considered relations. Having access to
zS models, as already mentioned, the possibility that S and A are collaborating.
(Bellare et al. only allow the subverter to communicate r, the secret coins.) In
this sense, our definition is stronger compared to [BFS16].

Third, Bellare et al. required that for each S there exists a simulator
(ExtS ,Sim). We consider it to be more natural to think of ExtS as an extrac-
tor and allow only ExtS to depend on S. In the SNARK literature, extractors
usually depend on the adversary (here, S) while there is a single simulator that
works for all adversaries. Also Bellare et al. used ExtS as an extractor in their
construction. In this sense, our definition is stronger compared to [BFS16].

Fourth, we give to ExtS the same coins r as to S, while Bellare et al. allow
ExtS to generate its own coins, only requiring that the distribution of (crs, r) is
computationally indistinguishable from the output of S. Also in this sense, our
definition seems to be stronger.

Finally, we use explicitly the syntax of subversion-resistant SNARKs from
Section 4.1, assuming the existence of algorithms Kts and CV. While it might
seem to be restrictive, as argued in Section 4.1, existence of both Kts and CV
seems to be necessary for subversion-resistance.

Now, we will prove the following result that makes it possible to operate
in the rest of the paper with the simpler composable Sub-ZK definition. It is

15

motivated by a similar result of Groth [Gro06] that considers computational
non-subversion-resistant zero knowledge. As seen from below, we can establish
the same result for statistical zero knowledge, but then we have to restrict the
number of oracle calls to a polynomial number.

Theorem 1. (i) Statistical composable Sub-ZK implies statistical unbounded
Sub-ZK, assuming that A is given access to polynomially many oracle calls.
(ii) Perfect composable Sub-ZK implies perfect unbounded Sub-ZK, even if given
access to an unbounded number of oracle calls.

Proof. (i) Statistical Sub-ZK. Assume that the adversary can make up to
q(λ) oracle queries for some fixed polynomial q. We define a sequence of q(λ)+1
oracles O′0(x,w), . . . , O′q(λ)(x,w). Given the jth adversarial query (xj ,wj), the
oracle O′k(·, ·) responds with O1(xj ,wj) for j ∈ [1 .. k] and O0(xj ,wj) for j ∈
[k + 1 .. q(λ)]. Hence, O′0 = O0 and O′q(λ) = O1.

Due to the statistical composable Sub-ZK property, we get that for i ∈
[0 .. q(λ)− 1], εi ≈λ εi+1, where εi is defined as

Pr

[
r←$ RND(S), (crs, zS ‖ ts)← (S ‖ExtS)(z̃R; r) :

CV(z̃R, crs) = 1 ∧ AO′i(·,·)(z̃R, crs, zS) = 1

]
.

The oracles can be efficiently implemented given crs and ts. Since ε0 = εunb0 , q
is a polynomial, and εunb0 = ε0 ≈λ · · · ≈λ εq(λ) = εunb1 , we get that εunb0 ≈λ εunb1

and hence the claim holds.
(ii) Perfect Sub-ZK. As above, but assume q is the actual (possibly un-

bounded) number of queries. We get εunb0 = ε0 = · · · = εq(λ) = εunb1 , and hence
εunb0 = εunb1 , and the claim holds. ut

In [Gro06], composable ZK was a stronger requirement than unbounded ZK
since in the case of composable ZK, (i) the simulated CRS was required to be
indistinguishable from the real CRS, and (ii) the adversary got access to tc. In
the case of our Sub-ZK definitions, there is no such difference and it is easy to
see that composable Sub-ZK and unbounded Sub-ZK are in fact equal notions.

5 From Trapdoor-Extractability to Sub-ZK

Next, we propose a general strategy for constructing Sub-ZK NIZK arguments:
(i) we start with any secure NIZK argument in the CRS model, (ii) we construct
a CV algorithm that checks the well-formedness of the CRS and additionally
shows that the subverter knows a trapdoor. We formalize the property (ii) with
the notion called trapdoor extractability, which intuitively gives us a stronger
version of witness-sampleability [JR13]. We require that if S generates a CRS crs
accepted by CV then there exists a PPT extractor ExtS that (given the random
coins of S) extracts a CRS trapdoor tc that corresponds to crs; that is, Kcrs on
input tc outputs crs. Here, it is important that ExtS returns tc not ts.

16

Definition 8 (Trapdoor-Extractability). Ψ has trapdoor-extractability for
RelGen, if for any PPT subverter S there exists a PPT ExtS , s.t. for all λ and
z̃R ∈ range(RelGen(1λ)),

Pr

[
r←$ RND(S), (crs, zS ‖ tc)← (S ‖ExtS)(z̃R; r) :

CV(z̃R, crs) = 1 ∧ Kcrs(z̃R, tc) 6= crs

]
≈λ 0 .

Intuitively, since we can extract the simulation trapdoor from S and then use
the simulator (from non-subversion zero knowledge) to simulate proofs, the above
strategy seems enough for achieving Sub-ZK. We show in this section that this
strategy does not always work for arguments with statistical (or computational)
zero-knowledge, but does work for perfect zero-knowledge arguments. In partic-
ular, the latter result implies that any existing perfect NIZK argument can be
made Sub-ZK just by constructing a trapdoor-extractable CV algorithm. Later
we use this result to show that the new SNARK Π is Sub-ZK (see Corollary 1).

We first observe that the strategy does not always work if zero-knowledge is
statistical but not perfect. In this case, there might be a subset Cbad of CRSs
such that the distribution of the real proof is far from that of the simulated one.
According to the definition of statistical ZK, such a situation is fine as long as
the probability of picking a CRS from Cbad is small. Unfortunately, as we can
see in the following example, the subverter might be able to pick a CRS from
Cbad with a much higher probability and make the simulator fail.

Example 1. Suppose Ψ = (Ktc,Kts,Kcrs,CV,P,V,Sim) is a trapdoor-extractable
and statistical (or perfect) zero-knowledge argument system. We use it to con-
struct a new argument Ψ′ = (K′tc,K

′
ts,K

′
crs,CV′,P′,V,Sim′) such that,

– K′tc(z̃R) outputs with a negligible probability η(λ) a special symbol tc = ∇.
Otherwise, it outputs tc← Ktc(z̃R).

– If tc = ∇, then K′ts(z̃R, tc) = ∇, else K′ts(z̃R, tc) = Kts(z̃R, tc).
– If tc = ∇, then K′crs(z̃R, tc) = ∇, else K′crs(z̃R, tc) = Kcrs(z̃R, tc).
– If crs = ∇, then CV′(z̃R, crs) = 1, else CV′(z̃R, crs) = CV(z̃R, crs).
– If crs = ∇, then P′(z̃R, crsP, x,w) = w, else P′(z̃R, crsP, x,w) =

P(z̃R, crsP, x,w).
– If ts = crs = ∇, then Sim′(z̃R, crs, ts, x) = ∇, else Sim′(z̃R, crs, ts, x) =

Sim(z̃R, crs, ts, x).
Given extractor for Ψ we construct an extractor for Ψ′ that returns ∇ if crs = ∇.
Since the extractor on crs = ∇ outputs tc = ∇, Ψ′ is still trapdoor-extractable. It
also preserves statistical zero knowledge since adversary’s input on Ψ′ differs from
the input on Ψ only when crs = ∇, which happens with negligible probability
η(λ) only. Thus, the statistical distance between the real argument and the
simulation in Ψ′ is ≈ η(λ) + ε(λ) where ε(λ) is the simulation error in Ψ.

However, Sub-ZK does not hold for any non-trivial relation since the sub-
verter can always output ∇ as the CRS which makes P output the witness. We
note that in the example above, CV could easily reject the bad CRS ∇, but it
seems unclear whether this approach is always possible.

Next, we focus on the case of perfect ZK. First, we prove that if Ψ has per-
fect ZK, then it has perfect ZK even respect to a fixed CRS. Let Gamezkb,A and

17

Gamesub-zkb,S,A be the games respectively for statistically composable ZK (see Defi-
nition 6) and statistically composable Sub-ZK (see Definition 7) where A is the
adversary and S is the subverter. We denote

εzkb,A|crs := Pr[Gamezkb,A = 1 | K outputs crs] .

Lemma 2. Assume Ψ is perfect composable zero-knowledge. Then for all λ,
z̃R ∈ range(RelGen(1λ)), crs in range(K(z̃R)), and adversary A, εzk0,A|crs =

εzk1,A|crs.

Proof. Suppose there exist λ, R, zR, crs∗ ∈ range(K(z̃R)), and adversary A as
stated above, but εzk0,A|crs∗ 6= εzk1,A|crs∗ . We construct a new (possibly compu-
tationally unbounded) zero-knowledge adversary B as follows: given the input
(z̃R, crs, ts), adversary B runs A(z̃R, crs, ts) and returns its output. Given the
input πb, B proceeds as follows.

B(πb)

if crs = crs∗ then return A(πb); else return b′ ←$ {0, 1};fi

Observe that by the definition of B, εzkb,B|crs∗ = εzkb,A|crs∗ and for any crs 6=
crs∗ it holds that εzk,Bb|crs = 1/2 . We may express Pr[Gamezkb (B) = 1] =∑

crs Pr[K outputs crs] · εzkb,B|crs and thus,

|Pr[Gamezk0 (B) = 1]−Pr[Gamezk1 (B) = 1]|

=
∑
crs

Pr[K outputs crs] · |(εzk0,B|crs − ε
zk
1,B|crs)|

=Pr[K outputs crs∗] · |(εzk0,A|crs∗ − ε
zk
1,A|crs∗)| 6= 0 .

This contradicts the assumption that Ψ has perfect composable zero-knowledge.
ut

The next theorem establishes correctness of our strategy for perfect ZK.

Theorem 2. If Ψ is trapdoor-extractable and composable perfect ZK, then Ψ is
statistical composable Sub-ZK.

Proof. Let us fix a PPT subverter S, an unbounded adversary A, and z̃R ∈
range(RelGen(1λ)). According to the definition of trapdoor-extractability, there
exists a PPT extractor ExttcS , such that for (crs, zS ‖ tc)← (S ‖ExttcS)(z̃R; r), the
probability εExt(λ) that CV(z̃R, crs) = 1∧Kcrs(z̃R, tc) 6= crs is negligible over the
random coins r←$ RND(S). Let us denote εkb = Pr[Gamekb = 1] for the games
Gamekb below. We will not write adversary as a subindex since in each of those
games, adversaries are fixed.

Game0b : This is the original Sub-ZK game Gamesub-zkb , with S and A fixed as
above. However, since we need to provide ts and not tc to the simulator, then
we define the extractor as ExtS(z̃R; r) := Kts(z̃R,ExttcS (z̃R; r)).

18

Game1b : We substitute A with an adversary B that does not get an auxiliary
input zS from the subverter but simulates it instead. Essentially, we are moving
towards the adversary in the Gamezkb but actually even weaker since we also do
not give ts as input to B. First, when adversary B is supposed to output (x,w),
then it now only gets the input (z̃R, crs). Adversary B finds out all the possible
valid auxiliary inputs zS by running the S with different random coins. Finally,
it picks one of them randomly with the same distribution as S and returns the
same output as A. More formally, B works as follows.

B(z̃R, crs)

S ← ∅;
for r′ ∈ RND(S) do

(crs′, z′S)← S(z̃R; r′);

if crs = crs′ thenS ← S t {z′S}; // Disjoint union

endfor

z∗S ←$S;

return A(z̃R, crs, z∗S);

Secondly, on the input πb, the adversary B makes the same choice as A simply
by returning the output A(πb). Note that the distributions of (z̃R, crs, z∗S) and
(z̃R, crs, zS), with zS from the subverter, are equal, hence the inputs to A in
Game0b and Game1b have the same distribution; this implies ε0b = ε1b .

Game2b : In this game, we substitute ExtS in Game1b with an unbounded ex-
tractor Ext∗S that always extracts a valid trapdoor from a valid CRS. First it
runs ExtS and if it fails, then tries to find a valid ts by brute-force.

Ext∗S(z̃R; r)

(crs, zS ‖ tc)← (S ‖ExtS)(z̃R; r);

if Kcrs(z̃R, tc) = crs then return ts← Kts(z̃R, tc);fi

for tc′ ∈ range(Ktc(z̃R)) do// If ExtS failed

if Kcrs(z̃R, tc
′) = crs then return ts′ ← Kts(z̃R, tc

′);fi

endfor

return ⊥;

Since the output of Ext∗S can differ from the output of ExtS only if ExtS fails,
|ε1b − ε2b | ≤ εExt.

Next, we analyse the success probability of Game2b . We consider the following
two cases.

Case 1: Suppose S outputs crs∗ ∈ range(K(z̃R)). Then the following holds:
(i) Ext∗S always recovers a valid ts, i.e., there exists tc ∈ range(Ktc(z̃R)), such
that Kcrs(z̃R, tc) = crs and ts = Kts(z̃R, tc), (ii) even if there exists more than
one valid ts, the simulator’s output distribution is the same for all of them since
otherwise one would contradict composable zero-knowledge. Thus,

Pr[Game2b = 1 | S outputs crs∗] = Pr[Gamezkb (B) = 1 | K outputs crs∗] .

19

This allows us to conclude from Lemma 2 that for any crs∗ in range(K(z̃R)),

Pr[Game20 = 1 | S outputs crs∗] = Pr[Game21 = 1 | S outputs crs∗] .

Case 2. Suppose that crs∗ is not in the range of K(z̃R). Then for all tc,
Kcrs(z̃R, tc) 6= crs∗. Thus, the probability that the subverter S outputs a crs∗

outside of range(K(z̃R)), such that CV(z̃R, crs∗) accepts, is bounded by εExt.

Applying the law of total probability, we get

ε2b =
∑

crs∗∈range(S(z̃R))

Pr
[
Game2b = 1 | S outputs crs∗

]
· Pr[S outputs crs∗] =

=
∑

crs∗∈range(S(z̃R))
∩range(K(z̃R))

Pr
[
Game2b = 1 | S outputs crs∗

]
· Pr[S outputs crs∗] +

+ Pr
[
Game2b = 1 ∧ S outputs crs∗ 6∈ range(K(z̃R))

]
.

By using the knowledge from Case 1 and Case 2, we get

|ε20 − ε21| = |Pr
[
Game20 = 1 ∧ S outputs crs∗ 6∈ range(S(z̃R))

]
− Pr

[
Game21 = 1 ∧ S outputs crs∗ 6∈ range(S(z̃R))

]
| ≤ εExt .

Given that ε0b = ε1b , |ε1b − ε2b | ≤ εExt, and |ε20 − ε21| ≤ εExt, it follows from
triangle inequality that |ε00−ε01| ≤ 3 ·εExt and thus Ψ has statistical Sub-ZK. ut

6 GBGM And GBGM-H

Preliminaries: Generic Bilinear Group Model. In Section 8, we will
prove that the new zk-SNARK is knowledge-sound in the generic bilinear group
model with hashing (GBGM-H). In the current subsection, we will introduce the
GBGM [Nec94,Sho97,Mau05,BBG05], by following the exposition in [Mau05].
After that, we will introduce the GBGM-H.

We start by picking an asymmetric bilinear group pp := (p,G1,G2,GT , ê)←
Pgen(1λ, n). Consider a black box B that can store values from additive groups
G1,G2,GT in internal state variables cell1, cell2, . . . , where for simplicity we allow
the storage space to be infinite (this only increases the power of a generic ad-
versary). The initial state consists of some values (cell1, cell2, . . . , cell|inp|), which
are set according to some probability distribution. Each state variable celli has
an accompanying type typei ∈ {1, 2, T,⊥}. We assume initially typei = ⊥ for
i > |inp|. The black box allows computation operations on internal state variables
and queries about the internal state. No other interaction with B is possible.

Let Π be an allowed set of computation operations. A computation oper-
ation consists of selecting a (say, t-ary) operation f ∈ Π together with t + 1
indices i1, i2, . . . , it+1. Assuming inputs have the correct type, B computes
f(celli1 , . . . , cellit) and stores the result in cellit+1

. For a set Σ of relations, a
query consists of selecting a (say, t-ary) relation % ∈ Σ together with t indices
i1, i2, . . . , it. Assuming inputs have the correct type, B replies to the query with
%(celli1 , . . . , cellit). In the GBGM, we define Π = {+, ê} and Σ = {=}, where

20

1. On input (+, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1 + celli2
and typei3 ← typei1 .

2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ←
ê(celli1 , celli2) and typei3 ← T .

3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1.
Otherwise return 0.

Since we are proving lower bounds, we will give a generic adversary A additional
power. We assume that all relation queries are for free. We also assume that A
is successful if after τ operation queries, he makes an equality query (=, i1, i2),
i1 6= i2, that returns 1; at this point A quits. Thus, if typei 6= ⊥, then celli =
Fi(cell1, . . . , cell|inp|) for a polynomial Fi known to A.

GBGM-H. By following [Bro01,SPMS02,BFS16], we enhance the power of
generic bilinear group model [Nec94,Sho97,Mau05,BBG05]. Since the power of
the generic adversary will increase, security proofs in the resulting GBGM with
hashing will be somewhat more realistic than in the GBGM model.

Brown [Bro01] noted that since the generic group model assumes group en-
codings are random, it is easy in the generic model to generate a random group
element by just sampling a random encoding. Bellare et al. [BFS16] made it
more concrete by noting that it is known how to hash into elliptic curves [Ica09]
and thus create group elements without knowing their discrete logarithms. How-
ever, it is not known how to create four elements [1]ν , [a]ν , [b]ν , and [ab]ν with-
out knowing either a or b. The corresponding assumption, that may also be
true in the case of symmetric pairings, was named DH-KE(A) in [BFS16] (see
also [Dam92]).

Asymmetric pairings are much more efficient than symmetric pairings. If
we work in the setting of type-III pairings [GPS08] where there is no efficient
isomorphism either from G1 to G2 or from G2 to G1, then clearly an adversary
cannot, given [a]ν for ν ∈ {1, 2} and a random unknown a, compute [a]3−ν .
Thus, it seems reasonable to make a stronger assumption (that we call BDH-
KE, a simplification of the asymmetric PKE assumption of [DFGK14]) that if
an adversary outputs [a]1 and [a]2, then she knows a. Really, since there is no
polynomial-time isomorphism from G1 to G2 (or back), it seems to be natural
to assume that one does not have to worry about an adversary knowing some
trapdoor that would break the BDH-KE assumption. Since BDH-KE is not a
falsifiable assumption, it does not have to hold for each type-III pairing. Instead,
the BDH-KE assumption can be interpreted as a stronger definition of the type-
III pairing setting. We formalize the added adversarial power as follows.

We give the generic model adversary an additional power to effectively create
new indeterminates Yi in groups G1 and G2 (e.g., by hashing into elliptic curves),
without knowing their values. We note since [Y]1 • [1]2 = [Y]T and [1]1 • [Y]2 =
[Y]T , the adversary that has generated an indeterminate Y inGz can also operate
with Y in GT . Formally, this means that Π will contain one more operation
create, with the following semantics:

21

4. On input (create, i, t): if typei = ⊥ and t ∈ {1, 2, T } then set celli←$Zp and
typei ← t.

The semantics of create dictates that the actual value of the indeterminate Yi is
uniformly random in Zp, that is, the adversary cannot create indeterminates for
which she does not know the discrete logarithm and that yet are not random.
This assumption is needed for the lower bound on the generic adversary’s time
to be provable in Theorem 4. However, as pointed out subsequently in [Lip19],
it is not necessary for Yi to be uniformly random; high min-entropy suffices.

In the type-III setting, this semantics does not allow the adversary to create
the same indeterminate Yi in both groups G1 and G2; she can only create a
representation of a known to her integer in both groups. We formalize this by
making the following Bilinear Diffie-Hellman Knowledge of Exponents (BDH-
KE) assumption: if the adversary, given random generators [1]1 ∈ G1 and [1]2 ∈
G2, can generate elements [α1]1 ∈ G1 and [α2]2 ∈ G2, such that [1]1 • [α2]2 =
[α1]1 • [1]2, then the adversary knows the value α1 = α2. To simplify the further
use of the BDH-KE assumption in security reductions, we give the adversary
access to z̃R = (R, zR) ∈ range(RelGen(1λ)). As before, zR = pp, that is, it is
the description of the bilinear group together with [1]1 and [1]2.

Definition 9 (BDH-KE). We say that Pgen is BDH-KE secure for RelGen
if for any λ, z̃R ∈ range(RelGen(1λ)), and PPT adversary A there exists a PPT
extractor ExtA, such that

Pr

[
r←$ RND(A), ([α1]1, [α2]2 ‖ a)← (A‖ExtA)(z̃R; r) :

[α1]1 • [1]2 = [1]1 • [α2]2 ∧ a 6= α1

]
≈λ 0 .

The BDH-KE assumption is a simple, specific case of the PKE assumption as
used in the case of asymmetric pairings say in [DFGK14]. In the PKE assumption
of [DFGK14], adversary is given as an input the tuple {([χi]1, [χi]2)}ni=0 for some
n ≥ 0, and it is assumed that if an adversary outputs ([α]1, [α]2) then she knows
(a0, a1, . . . , an), such that α =

∑n
i=0 aiχ

i. In our case, n = 0. BDH-KE can also
be seen as an asymmetric-pairing version of the original KE assumption [Dam92].
Since GBGM-H is a relatively unknown model, we will next provide a direct proof
that BDH-KE holds in the GBGM-H.

Lemma 3. In the case of type-III pairings, BDH-KE is secure in the GBGM-H.

Proof (Sketch). Let A work be a BDH-KE adversary that, given z̃R (that con-
tains [1]1 and [2]2) and r, outputs with high probability ([α1]1, [α2]2), such that
[α1]1 • [1]2 = [1]1 • [α2]2. Since we work in the GBGM-H, we know coefficients aν
and bνj , such that αν = aν+

∑
bνjYνj , where Yνj are various indeterminates gen-

erated by A in group Gν by using elliptic curve hashing. Let Y ν = (Yν1, Yν2, . . .).
If A is successful then α1 = α2 and thus the verification equation stipulates that
V (Y 1,Y 2) = (a1+

∑
b1jY1j)−(a2+

∑
b2jY2j) = 0 as a polynomial. From this, it

follows that all coefficients of the polynomial V are equal to 0, thus a1 = a2 =: a
and bνj = 0. Hence, α1 = a = α2; the required extractor ExtA just outputs a. ut

22

In the case of type-I pairings, BDH-KE is similarly secure in the GBGM but
it is not secure in the GBGM-H. Really, in the case of type-I pairings, we get
that αν = aν +

∑
bνjYj (since G1 = G2, any indeterminate Yj can be used

in both G1 and G2). But then from α1 = α2 it only follows that V (Y) =
(a1 +

∑
b1jYj)− (a2 +

∑
b2jYj) = 0 as a polynomial. By setting each coefficient

V (Y) to be 0 we get that a := a1 = a2 and b1j = b2j . This does not force bνj
to be 0, and thus we are unable to extract an integer a such that α1 = a = α2;
instead, we can only extract a and b, such that [αν]ν = a[1]ν + b[υ]ν for a group
element [υ]ν generated by using elliptic curve hashing.

We think that for the following reasons, the BDH-KE assumption is more
natural than the DH-KE assumption by Bellare et al. [BFS16] which states that
if the adversary can create elements [α1]ν , [α2]ν and [α1α2]ν of the group Gν
then she knows either α1 or α2.

First, the BDH-KE assumption is well suited to type-III pairings that are
by far the most efficient pairings. The DH-KE assumption is tailored to type-I
pairings. In the case of type-III pairings, the DH-KE assumption can still be
used, but it results in inefficient protocols. For example in [BFS16], in security
proofs the authors employ an adversary that extracts either α1 or α2. Since
it is not known a priori which value will be extracted, several elements in the
argument system have to be duplicated, for the case α1 is extracted and for the
case α2 is extracted.

Second, most of the efficient SNARKs are constructed to be sound and
zero-knowledge in the (most efficient) type-III setting. While the SNARK of
Groth [Gro16] is known to be sound in the case of both symmetric and asym-
metric pairings, in the case of symmetric pairings, it will be much less efficient.
It is only natural to keep the type-III setting to take advantage of already known
efficient SNARKs. In the current paper, we have the best of both worlds. As in
the case of [Gro16], we construct a SNARK that uses type-III pairings. On the
one hand, we prove it to be Sub-ZK solely under the BDH-KE assumption. On
the other hand, we prove that it is (adaptively) knowledge-sound in the GBGM-
H, independently of whether one uses type-I, type-II, or type-III pairings. This
provides a partial hedge against cryptanalysis: even if one were to later find an
efficient isomorphism between G1 and G2, this would only break the Sub-ZK
property of the new SNARK but leave the soundness property intact.

7 New Sub-ZK Secure SNARK

Consider a QAP instance Q = (Zp,m0, {uj , vj , wj}mj=1). The goal of the prover
of a QAP argument of knowledge [GGPR13,Gro16] is to show that for public
(A1, . . . , Am0

), the prover knows (Am0+1, . . . , Am) and a degree ≤ n− 2 polyno-
mial h(X), such that

h(X) =
a(X)b(X)− c(X)

`(X)
, (2)

where a(X) =
∑m
j=1Ajuj(X), b(X) =

∑m
j=1Ajvj(X), c(X) =

∑m
j=1Ajwj(X).

23

7.1 Construction

In Fig. 2, we describe two Sub-ZK SNARKs for RelGen that are closely
based on the (non-subversion-resistant) SNARK by Groth from EUROCRYPT
2016 [Gro16]. Note that P and V are unchanged from [Gro16]. As always, we
implicitly assume that each algorithm checks that their inputs belong to correct
groups and that z̃R ∈ range(RelGen(1λ)). The first new SNARK Π, which in-
cludes the grey-background elements in Fig. 2, satisfies trapdoor-extractability.
Given that Groth’s SNARK satisfies perfect composable ZK, Π has Sub-ZK by
Theorem 2. The second new SNARK Π∗, which excludes the grey-background
elements, has a slightly shorter CRS and significantly more efficient CV algo-
rithm. However, it does not satisfy the trapdoor-extractability, and its Sub-ZK
property is, therefore, more cumbersome to prove. Thus, even though the result
of Theorem 2 is convenient to use, it does not necessarily give the most efficient
approach to achieve Sub-ZK.

Like [Gro16], the new SNARKs use five trapdoors, χ, α, β, γ, and δ. Here, α
and β (and the inclusion of αβ in the verification equation) will guarantee that
[a]1, [b]2, and [c]1 are computed by using the same coefficients Ai. The role of γ
and δ is to make the three products in the verification equation “independent”
of each other. Due to the lack of space, we omit a more precise intuition behind
Groth’s SNARK and refer an interested reader to [Gro16].5

As we already mentioned, the new Sub-ZK SNARKs are closely based on
Groth’s zk-SNARK. Really, differences between Groth’s SNARK and the new
subversion-resistant SNARKs can be summarized very briefly:

(i) We add to the CRS some new elements that are needed for CV to work
efficiently (see the variable crsCV in Fig. 2): n + 3 elements in the case of
Π∗ and n+ 5 in the case of Π.

(ii) We divide the CRS generation algorithm into three algorithms, Ktc, Kts,
and Kcrs. Groth’s CRS generation algorithm returns Kcrs(z̃R,Ktc(z̃R)) (mi-
nus the mentioned crsCV part) as the CRS and Kts(z̃R,Ktc(z̃R)) as the
simulation trapdoor.

(iii) We describe an efficient CRS verification algorithms CV (see Fig. 2) for
both versions of the argument. In the argument Π, CV verifies the whole
CRS, and we show that tc is extractable. In the optimized argument Π∗,
we will not verify elements of crsV since the Sub-ZK proof does not depend
on it, and we will only show that the simulation trapdoor ts = (χ, δ) can
be extracted.

We prove the completeness and CRS-verifiability of our new SNARKs in the
rest of this section. We postpone the proof of knowledge-soundness to Section 8
and proof of zero knowledge to Section 9. We analyze the efficiency in Section 10.

Note that Groth’s SNARK can be simulated in many different ways. As no-
ticed by Fuchsbauer [Fuc18], it suffices to know (χ, δ) to be able to simulate;

5 Lipmaa [Lip19] has showed recently how to minimally modify Groth’s SNARK so
that it only has two trapdoors.

24

Ktc(z̃R): Sample tc = (χ, α, β, γ, δ)←$ (Z∗p \ {ωi−1}ni=1)× (Z∗p)4;
Kts(z̃R, tc = (χ, α, β, γ, δ)): return ts← (χ, α, β, γ,δ);
Kcrs(z̃R, tc = (χ, α, β, γ, δ)): Set (`i(χ))

n
i=1 ← compLag(χ, n); For j ∈ [1 ..m], set

uj(χ)←
∑n
i=1 Uij`i(χ) , vj(χ)←

∑n
i=1 Vij`i(χ), wj(χ)←

∑n
i=1Wij`i(χ); Let

crsP ←

(
[α, β, δ, ((uj(χ)β + vj(χ)α+ wj(χ))/δ)

m
j=m0+1 , (χ

i`(χ)/δ)n−2
i=0]1,

[(uj(χ), vj(χ))
m
j=1]1, [β, δ, (vj(χ))

m
j=1]2

)
,

crsV ←
(
[((uj(χ)β + vj(χ)α+ wj(χ))/γ)

m0
j=1]1, [γ, δ]2, [αβ]T

)
,

crsCV ←
(
[γ , χ, (`i(χ))

n
i=1]1, [α, χ, χ

n−1]2
)

;

return crs← (crsCV, crsP, crsV);
K(z̃R): Let tc← Ktc(z̃R); ts← Kts(z̃R, tc); crs← Kcrs(z̃R, tc); return (crs, ts);
CV(z̃R, crs):

1. Check [γ]2 6=? [0]2; For ξ ∈ {χ, α, β, δ, `(χ)/δ}: check [ξ]1 6=? [0]1;
2. For ξ ∈ {χ, α,β, γ , δ}: check [ξ]1 • [1]2 =? [1]1 • [ξ]2;
3. For i = 1 to n− 2: check [χi`(χ)/δ]1 • [1]2 =?

[
χi−1`(χ)/δ

]
1
• [χ]2;

4. Check [`(χ)/δ]1 •
[
χn−1

]
2
=?
[
χn−2`(χ)/δ

]
1
• [χ]2;

5. Check [`(χ)/δ]1 • [δ]2 =? [χ]1 •
[
χn−1

]
2
− [1]T ;

6. Check ([`i(χ)]1)
n
i=1 is correctly computed by using checkLag in Fig. 3;

7. For j = 1 to m:
(a) Check [uj(χ)]1 =? ∑n

i=1 Uij [`i(χ)]1 and [vj(χ)]1 =? ∑n
i=1 Vij [`i(χ)]1;

(b) Set [wj(χ)]1 ←
∑n
i=1Wij [`i(χ)]1;

(c) Check [vj(χ)]1 • [1]2 =? [1]1 • [vj(χ)]2;
8. For j = 1 to m0: check [(uj(χ)β + vj(χ)α+ wj(χ))/γ]1 • [γ]2 =?

[uj(χ)]1 • [β]2 + [α]1 • [vj(χ)]2 + [wj(χ)]1 • [1]2;
9. For j = m0 +1 to m: check [(uj(χ)β+ vj(χ)α+wj(χ))/δ]1 • [δ]2 =? [uj(χ)]1 •

[β]2 + [α]1 • [vj(χ)]2 + [wj(χ)]1 • [1]2;
10. Check [α]1 • [β]2 =? [αβ]T ;

P(z̃R, crsP, x = (Aj)
m0
j=1,w = (Aj)

m
j=m0+1): a†(X) ←

∑m
j=1Ajuj(X); b†(X) ←∑m

j=1Ajvj(X); c†(X)←
∑m
j=1Ajwj(X);

h(X) =
∑n−2
i=0 hiX

i ← (a†(X)b†(X)− c†(X))/`(X); ra ←$Zp; rb ←$Zp;
[h(χ)`(χ)/δ]1 ←

∑n−2
i=0 hi[χ

i`(χ)/δ]1; [a]1 ←
∑m
j=1Aj [uj(χ)]1 + [α]1 + ra[δ]1;

[b]2 ←
∑m
j=1Aj [vj(χ)]2+[β]2+rb[δ]2; [c]1 ← rb[a]1+ra

(∑m
j=1Aj [vj(χ)]1 + [β]1

)
+∑m

j=m0+1Aj [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 + [h(χ)`(χ)/δ]1;
return π ← ([a]1, [b]2, [c]1);

V(z̃R, crsV, x = (Aj)
m0
j=1, π = ([a]1, [b]2, [c]1)):

Check [a]1•[b]2
?
= [c]1•[δ]2+(

∑m0
j=1Aj [(uj(χ)β+vj(χ)α+wj(χ))/γ]1)•[γ]2+[αβ]T ;

Sim(z̃R, crs, ts = (χ, δ), x): a∗ ←$Zp; b∗ ←$Zp; [a]1 ← [a∗]1 + [α]1; [b]2 ← [b∗]2 + [β]2;
[c]1 ← (a∗b∗[1]1 + a∗[β]1 +b∗[α]1−

∑m0
j=1Aj(uj(χ)[β]1 + vj(χ)[α]1 +wj(χ)[1]1))/δ;

return π ← ([a]1, [b]2, [c]1);

Fig. 2. The Sub-ZK SNARKs Π (including grey-background items) and Π∗ (without
grey-background items) for relation RelGen

25

checkLag([χ, (ai)
n
i=1]1, [1, χ, χ

n−1]2, [1]T)

// i = 1

[ζ]T ← ([χ]1 • [χ
n−1]2 − [1]T)/n; [ω

′]2 ← [1]2;

if [χ]2 =
[
ω′
]
2

then check [a1]1 = [1]1;

else check [a1]1 • ([χ]2 − [ω′]2) =
? [ζ]T ;

for i = 2 to n do

[ζ]T ← ω[ζ]T ; [ω
′]2 ← ω[ω′]2;

if [χ]2 =
[
ω′
]
2

then check [ai]1 =? [1]1;

else check [ai]1 • ([χ]2 − [ω′]2) =
? [ζ]T ; endfor

Fig. 3. Checking that [ai]1 = [`i(χ)]1 for i ∈ [1 .. n]

this is also the approach we take in the current paper. (In the conference ver-
sion [ABLZ17], we used Groth’s original simulation algorithm.) Alternatively,
simulation can be done based on (γ, δ); in the case, the simulation will be more
efficient but CV will be slightly slower. More precisely, one would not be able to
use most of the optimizations we use in Π∗. Finally, Lipmaa [Lip19] proposed a
version of Groth’s SNARK that only uses two trapdoors x (corresponds to χ in
the current paper) and y (conflates other trapdoors in the current paper); then,
one can simulate by only knowing y.

7.2 Completeness and CRS-Verifiability

In the proof of CRS-verifiability, we need the following result that might be of
independent interest.

Lemma 4. Given ([χ, (ai)
n
i=1]1 , [1, χ, χ

n−1]2, [1]T) as an input, checkLag in
Fig. 3 checks that [ai]1 = [`i(χ)]1 for all i ∈ [1 .. n]. It can be implemented
using n+ 1 pairings, n− 1 exponentiations in G2, and n− 1 exponentiations in
GT .

Proof. Recalling from Eq. (1) that `i(X) = (Xn − 1)ωi−1/(n(X − ωi−1)), the
proof is straightforward. Really, by induction on i, at any concrete value of i,
ζ = (χn − 1)ωi−1/n and ω′ = ωi−1. Thus, assuming that χ 6= ωi−1, [ai]1 •
([χ]2 − [ω′]2) = [ζ]T implies [ai]T =

[
(χn − 1)ωi−1/(n(χ− ωi−1))

]
T
= [`i(χ)]T .

If χ = ωi−1, then `i(χ) should be 1 which follows from [ai]1 =? [1]1. ut

In the new SNARKs, one has χn 6= 0 (due to the checks `(χ)/δ 6= 0 and [`(χ)]1 •
[δ]2 = [χ]1 • [χn− 1]2− [1]T) and thus, strictly speaking, the two checks [ai]1 =?

[1]1 are not necessary. We left them in since they are computationally efficient
(and simplify the statement of Lemma 4).

Theorem 3. The arguments Π and Π∗ are perfectly complete and perfectly
CRS-verifiable.

26

Proof. It suffices to give a proof for argument Π since the prover and the verifier
algorithms are the same for both arguments and all verification equations of
algorithm CV of Π∗ are included in the CV of Π. Recall x = (χ, α, β, γ, δ).

CRS-verifiability: This can be established by a simple but tedious cal-
culation. Basically, CV accepts due to the properties of the bilinear map, and
due to the definitions of `(X) and `i(X). Let us do this for one of the more
challenging equations.

Step 9 of CV holds since [(uj(χ)β + vj(χ)α + wj(χ))/δ]1 • [δ]2 = [uj(χ)]1 •
[β]2 + [α]1 • [vj(χ)]2 + [wj(χ)]1 • [1]2 iff [(uj(χ)β + vj(χ)α + wj(χ))/δ · δ]T =
[uj(χ)β + vj(χ)α+wj(χ)]T which is a tautology. Other equalities can be shown
to be satisfied as easily.

Note that the check `(χ)/δ 6=? 0 guarantees that χ 6= ωi−1 for any i.
Completeness: Let a†(χ) =

∑m
j=1Ajuj(χ), b

†(χ) =
∑m
j=1Ajvj(χ), and

c†(χ) =
∑m
j=1Ajwj(χ). In the honest case, see Fig. 2, [a]1 = [A(x)]1, [b]2 =

[B(x)]2, and [c]1 = [C(x)]1, where A(x) = a†(χ)+α+raδ, B(x) = b†(χ)+β+rbδ,
and C(x) = R(x) +

∑m
j=m0+1(uj(χ)β + vj(χ)α + wj(χ))/δ + h(χ)`(χ)/δ for

R(x) = rbA(x) + ra(B(x)− rbδ). Clearly,

A(x)B(x) =R(x) +
a†(χ)β + b†(χ)α

δ
+
a†(χ)b†(χ)

δ
+
αβ

δ

=R(x) +
a†(χ)β + b†(χ)α+ c†(χ)

δ
+
a†(χ)b†(χ)− c†(χ)

δ
+
αβ

δ

=R(x) +
a†(χ)β + b†(χ)α+ c†(χ)

δ
+
h(χ)`(χ)

δ
+
αβ

δ

=R(x) +

∑m
j=1Aj(uj(χ)β + vj(χ)α+ wj(χ))

δ
+
h(χ)`(χ)

δ
+
αβ

δ

=C(x) +

∑m0

j=1Aj(uj(χ)β + vj(χ)α+ wj(χ))

δ
+
αβ

δ
,

where the third equation holds since the prover is honest and thus a†(χ)b†(χ)−
c†(χ)− h(χ)`(χ). Thus, the verifier accepts. ut

8 Proof of Knowledge-Soundness

Since we are proving non-subversion knowledge-soundness (that is, we assume
here that the CRS was correctly generated), the following security proof is sim-
ilar to the corresponding proof in [Gro16]. The main differences are the need to
take into account new elements crsCV in the CRS and to incorporate new inde-
terminates Yi created by the adversary with the elliptic curve hashing. Thus, the
proof will be slightly (but not much) more complicated than the proof in [Gro16].
We give a proof only for the unoptimized argument Π. Knowledge-soundness of
Π∗ follows from the same proof since the adversary has access only to some
subset of the CRS elements available to the adversary in Π.

Like [Gro16], we will prove adaptive knowledge-soundness even in the case
when one uses symmetric pairings. The use of symmetric pairings means that

27

the generic adversary gets additional power compared to asymmetric case: in
the asymmetric variant of the following theorem, the generic adversary will be
allowed to create, without knowing their discrete logarithms, new indeterminates
Yi both in G1 and G2. Since this increases the power of the generic adversary,
it provides some hedge against future cryptanalytic attacks that say make it
possible to compute an efficient isomorphism between G1 and G2.

Theorem 4 (Knowledge-soundness). The argument Π from Section 7.1 is
adaptively knowledge-sound in the GBGM-H even in the case of symmetric pair-
ings. More precisely, any generic adversary attacking the knowledge-soundness
of Π in the symmetric setting has complexity Ω(

√
p/n).

Proof. Assume the symmetric setting, G1 = G2. Let X = (X,Xα, Xβ , Xγ , Xδ)
be the vector of indeterminates created by Ktc. Let Y = (Y1, . . . , Yq)

>, for q ∈
N≥0, be the vector of indeterminates created by the generic adversary by using
elliptic curve hashing.

The three elements output by a generic adversary are equal to [a]1 =
[A(x,υ)]1, [b]2 = [B(x,υ)]2, and [c]1 = [C(x,υ)]1 (where υ is a concrete value
of Y), where, for T ∈ {A,B,C},

T (X,Y) =TαXα + TβXβ + TγXγ + TδXδ + Tc(X)+
m0∑
j=1

Tj ·
uj(X)Xβ + vj(X)Xα + wj(X)

Xγ
+

m∑
j=m0+1

Tj ·
uj(X)Xβ + vj(X)Xα + wj(X)

Xδ
+
Th(X)`(X)

Xδ
+

q∑
i=1

TyiYi ,

where coefficients like Tα and polynomials like Tc(X) are chosen by the adversary
but known in the proof since we work in the generic model. Here, Tc(X) is a
degree ≤ n−1 and Th(X) is a degree ≤ n−2 polynomial. Thus, T (X,Y) ·XγXδ

is a degree (n− 2) + n− 1 + 2 = 2n− 1 polynomial.
Since the only difference compared to the knowledge-soundness proof

in [Gro16] is the addition of the terms
∑q
i=1 TyiYi to polynomials A,B,C, it suf-

fices to show that Tyi = 0 for T ∈ {A,B,C} and i ∈ [1 .. q]. Then, the knowledge-
soundness of Π follows from the knowledge-soundness of Groth’s SNARK.

Motivated by the verification equation in Fig. 2, define

V (X,Y) :=A(X,Y)B(X,Y)− C(X,Y)Xδ−
m0∑
j=1

A∗j (uj(X)Xβ + vj(X)Xα + wj(X))−XαXβ
,

where the Laurent polynomials A(X,Y), B(X,Y), and C(X,Y) are as given
before. Here, for clarity (i.e., not to mix them up with adversarially chosen
coefficients Aj), we denote the public input by A∗j .

The verification equation states that [V (x,υ)]T = [0]T and hence in the
case of a generic adversary, V ′(X,Y) := V (X,Y) · X2

γX
2
δ = 0 as a poly-

nomial and thus V ′(X,Y) = 0 as a Laurent polynomial. Write V (X,Y) =

28

∑
Vi(X)Xiα

α X
iβ
β X

iγ
γ X

iδ
δ

∏q
j=1 Y

i∗j
j , where i = (iα, . . . , i

∗
q). Note that each coeffi-

cient Vi(X) of V (X,Y) is a Laurent polynomial in X. Then, V (X,Y) = 0 (as
a Laurent polynomial) is equivalent to Vi(X) = 0 (as a Laurent polynomial) as
a polynomial for each i.

First, the coefficient of X2
α of V (X,Y) is V2,0,...,0(X) = AαBα. Thus, from

V ′(X,Y) = 0 it follows that AαBα = 0. Since A(X,Y) and B(X,Y) play dual
roles in the symmetric case, we can assume, w.l.o.g., that Bα = 0 (the same
assumption was made in [Gro16] to simplify the proof).

Because Bα = 0, the following claims hold:

1. from the coefficient of XαXβ , AαBβ +AβBα− 1 = 0. Thus, AαBβ = 1 (and
in particularly, neither of Aα, Bβ is equal to 0).

2. from the coefficient of XαYj , j ∈ [1 .. q], AαByj+AyjBα = 0. Thus, Byj = 0.
3. from the coefficient of XβYj , j ∈ [1 .. q], AβByj+AyjBβ = 0. Thus, Ayj = 0.
4. from the coefficient of XδYj , j ∈ [1 .. q], Cyj = Byjra+Ayjrb. Thus, Cyj = 0.

Since the coefficients Ayj , Byj , and Cyj are the only coefficients that are new
compared to the knowledge-soundness proof of [Gro16], the rest of the cur-
rent proof follows from the knowledge-soundness proof of [Gro16]. However,
we will give the full proof for the sake of completeness.

5. from the coefficient of X2
β , AβBβ = 0 and thus Aβ = 0.

6. from the coefficient of XβXγ , AγBβ +AβBγ = 0 and thus Aγ = 0.
7. from the coefficient of XαXγ , AγBα +AαBγ = 0 and thus Bγ = 0.
8. from the coefficients of 1/X2

δ , Xα/X
2
δ , Xβ/X

2
δ , XαXβ/X

2
δ , X

2
α/X

2
δ and

X2
β/X

2
δ ,Ah(χ)`(χ) + m∑

j=m0+1

Aj(uj(χ)Xβ + vj(χ)Xα + wj(χ))

 ·
Bh(χ)`(χ) + m∑

j=m0+1

Bj(uj(χ)Xβ + vj(χ)Xα + wj(χ))

 = 0 .

Because of symmetry, we can assume that

Ah(χ)`(χ) +

m∑
j=m0+1

Aj(uj(χ)Xβ + vj(χ)Xα + wj(χ)) = 0 .

But then the remaining terms in AαXα · (Bh(χ)`(χ) +
Bj (uj(χ)Xβ + vj(χ)Xα + wj(χ)))/Xδ = 0 show that also

Bh(χ)`(χ) +

m∑
j=m0+1

Bj(uj(χ)Xβ + vj(χ)Xα + wj(χ)) = 0 .

9. from the coefficients of 1/X2
γ , Xα/X

2
γ , Xβ/X

2
γ , XαXβ/X

2
γ , X2

α/X
2
γ and

X2
β/X

2
γ , we getm0∑

j=1

Aj(uj(χ)Xβ + vj(χ)Xα + wj(χ))

 ·
29

m0∑
j=1

Bj(uj(χ)Xβ + vj(χ)Xα + wj(χ))

 = 0 .

Due to symmetry, we may assume that

m0∑
j=1

Aj(uj(χ)Xβ + vj(χ)Xα + wj(χ)) = 0 .

But the remaining terms in AαXα · (
∑m0

j=1Bj(uj(X)Xβ + vj(X)Xα +
wj(X)))/Xγ = 0 show that also

m0∑
j=1

Bj(uj(X)Xβ + vj(X)Xα + wj(X)) = 0 .

After this step, we know that

A(X,Y) = Ac(X) +AαXα + raXδ , B(X,Y) = Bc(X) +BβXβ + rbXδ .

Define A∗j := Cj for j > m0. From the coefficient of Xα, we get

AαBc(X) =

m∑
j=1

A∗jvj(X) .

From the coefficient of Xβ , we get

BβAc(X) =

m∑
j=1

A∗juj(X) .

But then the coefficient of 1 is

Ac(X)Bc(X)− `(X)Ch(X)−
m∑
j=1

A∗jwj(X) ,

and thus

Ch(X) = (Ac(X)Bc(X)−
m∑
j=1

A∗jwj(X))/`(X) .

Thus,

Ch(X) =

(∑m
j=1A

∗
juj(X)

)(∑m
j=1A

∗
jvj(X)

)
−
∑m
j=1A

∗
jwj(X)

`(X)

and thus ((
∑m
j=1A

∗
juj(X))(

∑m
j=1A

∗
juj(X)) −

∑m
j=1A

∗
jwj(X) divides by `(X),

as required.
Next, we compute a lower bound to the efficiency of a generic adversary

(this was not done in [Gro16], our bound clearly also holds in the case of

30

Groth’s SNARK). Assume that after some τ steps, the adversary has made
a successful equality query (=, i1, i2), i.e., celli1 = celli2 for i1 6= i2. Thus, she
has found a collision D1(x,υ) = D2(x,υ), such that D1(X,Y) 6= D2(X,Y).
Redefine Dj(X,Y) := Dj(X,Y) · XγXδ (if typei1 ∈ {1, 2}) and Dj(X,Y) :=
Dj(X,Y) ·X2

γX
2
δ (if typei1 = T) for j ∈ {1, 2}, this guarantees that Dj(X,Y)

is a polynomial. Thus,

D1(x,υ)−D2(x,υ) ≡ 0 (mod p) . (3)

Note that

– If typei1 = 1, then degDj(X,Y) ≤ 2n− 1 =: d1,
– If typei1 = 2, then degDj(X,Y) ≤ 2n− 1 =: d2, and thus
– If typei1 = T , then degDj(X,Y) ≤ 2 · (2n− 1) = 4n− 2 =: dT .

Clearly, x = (χ, α, β, γ, δ) is chosen uniformly random from (Z∗p \ {ωi−1}ni=1) ×
(Z∗p)4. Due to the assumption that the canonical values of Yi are uniformly
random in Zp, υ = (υ1, υ2, υ3) is a uniformly random value in Z3

p. Hence, due to
the Schwartz-Zippel lemma and since D1(X,Y) 6= D2(X,Y) as a polynomial,
Eq. (3) holds with probability at most degDj(X,Y)/(p − 1) ≤ dtypei1 /(p − 1).
Clearly, an adversary working in time τ can generate up to τ new group elements.
Then the probability that there exists a collision between any two of those group
elements is upper bounded by

(
τ
2

)
·degDj(X,Y)/(p−1) ≤

(
τ
2

)
·dtypei1 /(p−1) ≤

τ2/2 · dtypei1/(p − 1). Thus, a successful adversary on average requires time at
least τ , where τ2 ≥ 2(p−1)/dtypei1 ≥ 2(p−1)/dT = 2(p−1)/(4n−2), to produce
a collision. Simplifying, we get τ = Ω(

√
p/n). ut

9 Proof of Statistical Subversion ZK

Next, we prove Sub-ZK of both arguments from Section 7.1. In the case of Π, we
need to prove trapdoor-extractability, and then Sub-ZK follows from Theorem 2.
However, Π∗ is not trapdoor-extractable (we do not even verify crsV), and thus
the same strategy will not work. Instead, we prove that it is Sub-ZK by showing
that just enough trapdoors are extractable and that just enough of the CRS is
verified by CV to simulate the proof.

9.1 Sub-ZK of Π

Before proving trapdoor-extractability, we first prove the following helpful lemma
that has a simple but somewhat tedious proof.

Lemma 5. Consider the argument Π. Let z̃R ∈ range(RelGen(1λ)), and let crs
be any CRS such that CV(z̃R, crs) = 1. Then, crs = Kcrs(z̃R, tc) for a tc bijectively
corresponding to [χ, α, β, γ, δ]1 ⊂ crs.

31

Proof. We will consider each line in the construction of CV in Fig. 2 separately,
and write down the corollary from that line. We note that the CRS verification
equations in Fig. 2 are written as if the CRS was already correctly formed; e.g.,
there we have a check that [β]1 • [1]2 = [1]1 • [β]2 which may fail (and then
obviously there exists no such β). However, before these equations are checked,
it is, of course, not known that β on the left-hand side (LHS) and on the right-
hand side (RHS) are equal. Thus, in the steps below, we use D1 as the temporary
name of the yet-unestablished LHS variable andD2 as the temporary name of the
yet-unestablished RHS variable. Only exception to this is the element [`(χ)/δ]1
for which we denote the yet-unestablished value by

[
D`/δ

]
1
.

We assume that ξ in [ξ]1 is already established for ξ ∈ {χ, α, β, γ, δ}. We can
do this since [ξ]1 information-theoretically fixes ξ.

1. For ξ ∈ {χ, α, β, γ, δ,D`/δ}: after checking [ξ]ν 6= [0]ν (where ν = 2 in the
case of ξ = γ an ν = 1 otherwise) we know that ξ 6= 0, and in particular this
implies a bijection between a valid tc ∈ (Z∗p \ {ωi−1})× (Z∗p)4 and the value
hidden in [χ, α, β, γ, δ]1.

2. For ξ ∈ {χ, α, β, γ, δ}: from [ξ]1 • [1]2 = [1]1 • [D2]2 we get [ξ]T = [D2]T . This
implies [ξ −D2]T = [0]T . Since [1]T is not the zero element, [D2]2 = [ξ]2.

3. As mentioned, we denote the supposed element [`(χ)/δ]1 by
[
D`/δ

]
1
; we will

verify it later in step 5.
For i = 1 to n − 2: we can assume by induction that we have already es-
tablished

[
χi−1D`/δ

]
1
. Since [D1]T =

[
χi−1D`/δ

]
1
• [χ]2, we get [D1]1 =[

χiD`/δ

]
1
.

4. Since
[
D`/δ

]
1
•[D1]2 =

[
χn−2D`/δ

]
1
•[χ]2, we get

[
D`/δD1

]
T
=
[
χn−1D`/δ

]
T
.

Since D`/δ 6= 0, it is also invertible and we conclude that [D1]T =
[
χn−1

]
T
,

which implies [D1]2 =
[
χn−1

]
2
.

5.
[
D`/δ

]
1
• [δ]2 = [χ]1 •

[
χn−1

]
2
− [1]T implies that

[
D`/δ

]
1
= [(χn − 1)/δ]1 =

[`(χ)/δ]1.
6. For i = 1 to n: ω′ = ωi−1 and ζ = (χn−1)ωi−1/n in checkLag are computed

by the CRS verifier. For χ 6= ωi−1, the equation [D1]1 • ([χ]2 − [ω′]2) = [ζ]T
implies [D1]1 = [ζ/(χ − ω′)]1 =

[
(χn − 1)ωi−1/(n(χ− ωi−1))

]
1
= [`i(χ)]1.

Although this is not relevant for our proof, we can also show that this holds
for χ = ωi−1: then, get D1 · (χ−ωi−1) = ζ, since ωi−1 is a root of unity and
ζ = (χn − 1)ωi−1/n, thus both sides of the equation are 0.

7. For j = 1 to m:
(a) [D1]1 =

∑n
i=1 Uij [`i(χ)]1 implies [D1]1 = [

∑n
i=1 Uij`i(χ)]1 = [uj(χ)]1,

[D1]1 =
∑n
i=1 Vij [`i(χ)]1 implies [D1]1 = [

∑n
i=1 Vij`i(χ)]1 = [vj(χ)]1.

(b) This just sets [wj(χ)]1 ←
∑n
i=1Wij [`i(χ)]1.

(c) [vj(χ)]1 • [1]2 = [1]1 • [D2]2 implies [D2]2 = [vj(χ)]2.
8. For j = 1 to m0: [D1]1 • [γ]2 = [uj(χ)]1 • [β]2+[α]1 • [vj(χ)]2+[wj(χ)]1 • [1]2

implies [D1]1 = [(uj(χ)β + vj(χ)α+ wj(χ))/γ]1.
9. For j = m0+1 tom: [D1]1•[δ]2 = [uj(χ)]1•[β]2+[vj(χ)]1•[α]2+[wj(χ)]1•[1]2

implies [D1]1 = [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1.
10. [α]1 • [β]2 = [D2]T implies [D2]T = [αβ]T .

32

By direct observation, it is clear that we have now established all elements of
the crs in Fig. 2 and thus Kcrs(z̃R, tc) = crs. ut

Now we can prove trapdoor-extractability.

Theorem 5. Π is trapdoor-extractable under the BDH-KE assumption.

Proof. Let S be a subverter, and let r←$ RND(S). Let ξ ∈ {χ, α, β, γ, δ}. Let
Sξ(z̃R; r) be as in Fig. 4. Since CV(z̃R, crs) accepts, crs must contain ([ξ]1, [ξ]2).
Hence, by the BDH-KE assumption, there exists a PPT extractor ExtSξ , such
that if CV(z̃R, crs) = 1 then ξ ← ExtSξ(z̃R; r) with an overwhelming probability.

Sξ(z̃R; r):

(crs, zS)← S(z̃R; r);

return ([ξ]1, [ξ]2);

ExtS(z̃R; r):

for ξ ∈ {χ, α, β, γ, δ} do ξ ← ExtSλ(z̃R; r); endfor

return tc← (χ, α, β, γ, δ);

Fig. 4. Algorithms used in extraction, where ξ ∈ {χ, α, β, γ, δ}

Finally, we construct the PPT extractor ExtS(z̃R; r) in Fig. 4. By the
BDH-KE assumption, if CV(z̃R, crs) = 1 then tc ← ExtS(z̃R; r) satisfies
tc ∈ range(Ktc(z̃R)) with an overwhelming probability. To prove trapdoor-
extractability, assume that crs is returned by S and tc is returned by ExtS .
In addition, assume that CV(z̃R, crs) = 1. Claim follows from Lemma 5. ut

Theorem 6. [Gro16] The argument Π has composable perfect ZK.

The corollary below follows immediately from Theorem 2.

Corollary 1. Π is statistically composable Sub-ZK under the BDH-KE assump-
tion.

Moreover, from Theorem 1 and Corollary 1 we get the following.

Corollary 2. Π is statistically unbounded Sub-ZK under the BDH-KE assump-
tion given that the adversary can only make polynomially many oracle calls.

9.2 Sub-ZK of Π∗

We start by proving that trapdoors χ and δ are extractable in Π∗.

Lemma 6. Consider Π∗. Let us assume that BDH-KE assumption holds. Then
for any PPT subverter S, there exists a PPT extractor ExtS , s.t. for all z̃R ∈
range(RelGen(1λ)),

Pr

[
r←$ RND(S), (crs, zS ‖ (χ′, δ′))← (S ‖ExtS)(z̃R; r) :

CV(z̃R, crs) = 1 ∧ (χ′[1]1 6= [χ]1 ∨ δ′[1]1 6= [δ]1)

]
≈λ 0 ,

where [χ]1 and [δ]1 are elements from crs.

33

Proof. Proof follows the same ideas as proof of Theorem 5. Since CV(z̃R, crs)
accepts, then crs must contain ([χ]1, [χ]2) and ([δ]1, [δ]2). Therefore under the
BDH-KE assumption, there exist extractors ExtSχ and ExtSδ that can output,
with an overwhelming probability, χ and δ when given the same input and
random coins as the subverter S. Extractor ExtS can simply run ExtSχ and
ExtSδ and return their outputs (χ′, δ′). ut

Theorem 7. The argument Π∗ is statistically composable Sub-ZK under the
BDH-KE assumption.

Proof. Let us fix an arbitrary PPT subverter S and let ExtS be defined as
in Lemma 6. Fix λ, z̃R ∈ range(RelGen(1λ)), and an adversary A. We use
the simulator Sim(z̃R, crs, ts, x) as defined in Fig. 2. As in Def. 7, assume
r←$ RND(S), (crs, zS) ← S(z̃R; r) such that CV(z̃R, crs) = 1. Assume that
π0 ← P(z̃R, crsP, x,w) (case b = 0) and π1 ← Sim(z̃R, crs, ts, x) (case b = 1).
It is sufficient to show that π0 and π1 have the same distribution.

Case b = 0. The honest prover creates [a]1 ← . . . + ra [δ]1 and [b]2 ←
. . .+ rb [δ]2 for ra, rb←$Zp. Since δ 6= 0 (this is guaranteed by CV accepting crs)
and the pairing is non-degenerate, [a]1 and [b]2 are uniformly random.

Since CRS elements used to construct [a]1, [b]2, and [c]1 are well-formed (they
belong to crsP and are thus checked by CV), then

[a]1 • [b]2 − [c]1 • [δ]2 =

m0∑
j=1

Aj(uj(χ)β + vj(χ)α+ wj(χ)) + αβ

T

.

In particular, we can then express [c]1 as

[c]1• [1]2 = ([a]1• [b]2)/δ−

[∑m0

j=1Aj(uj(χ)β + vj(χ)α+ wj(χ)) + αβ

δ

]
T

. (4)

Case b = 1. Let us assume that ExtS(z̃R; r) outputs the correct trapdoor
ts = (χ, δ). This happens with an overwhelming probability, as we showed
in Lemma 6. Here, the simulator picks [a]1 and [b]2 as uniformly random el-
ements. Finally, the simulator picks [c]1 exactly according to Eq. (4) (although,
the simulator computes it directly from [a]1, [b]2, χ, and δ) and thus [c]1 has
precisely the same distribution as the honest proof. ut

The following result can again be obtained from Theorem 1.

Corollary 3. Π∗ is statistically unbounded Sub-ZK under the BDH-KE as-
sumption given that the adversary can make only polynomially many calls to
the proving oracle.

10 Efficiency

We analyze the efficiency of Π∗ in this section. Π differs only by having a slightly
larger CRS and slower CV. Hence, we will not consider its efficiency separately.

34

CRS Length. Not counting pp, which contains ([1]1, [1]2), the number of CRS
elements in different groups is given by the following table. Hence, the total size
of the CRS is 4m+ 2n+ 9 group elements.

G1 G2 GT Total

crsP 3m+ n−m0 + 2 m+ 2 0 4m+ n−m0 + 4
crsV m0 2 1 m0 + 3
crsCV n+ 1 2 0 n+ 3

Total 3m+ 2n+ 3 m+ 5 1 4m+ 2n+ 9

One element (namely, [δ]2) belongs both to crsP and crsV, and thus the numbers
in the “total” row are not equal to the sum of the numbers in previous rows.

In Groth’s zk-SNARK [Gro16] the CRS consists of m + 2n elements of G1

and n elements of G2. On top of it, we added n + 3 group elements to make
the CRS verification possible and also some elements to speed up the prover’s
computation and the verifier’s computation; the latter elements can alternatively
be computed from the rest of the CRS. Note that this comparison to [Gro16] is
however not precise: also in [Gro16], depending on implementation, one might
want to store [(`i(χ))

n
i=1]1 as a part of the CRS.

CRS Generation: Computational Complexity. Assume that pp has al-
ready been computed. We compute crs by first computing the discrete logarithms
of all CRS elements, and then their versions inGν . One can evaluate uj(χ), vj(χ),
and wj(χ) for each j ∈ [1 ..m] in time Θ(n) by using precomputed values `i(χ)
for i ∈ [1 .. n] and the fact that the matrices U, V,W contain Θ(n) non-zero ele-
ments. (The latter is a standard assumption, already made in [GGPR13].) The
rest of the CRS can be computed efficiently by using straightforward algorithms.

By using the algorithm compLag in Fig. 1, the whole CRS generation algo-
rithm is dominated by 3m+2n+3 exponentiations in G1, m+5 exponentiations
in G2, 1 exponentiation in GT (thus, one exponentiation per each CRS element),
and Θ(n) multiplications/divisions in Zp.

CV’s Computational Complexity. We assume that it is difficult to subvert
pp; this makes sense assuming that the SNARK uses a fixed bilinear group
(say, the BLS12-381 curve). Consider the CRS verification algorithm in Fig. 2.
It is clear that all other steps but Step 6 are efficient (computable in Θ(n)
cryptographic operations); this follows from the fact that U , V , and W are
sparse. Computation in those steps is dominated by 6m+2n−4m0+6 pairings.
On top of it, one has to execute s(U) + s(V) + s(W) exponentiations in G1,
where s(M) is the number of “large” (i.e., large enough so that exponentiating
with them is expensive) entries in the matrix M . Often, s(M) is very small.

By using checkLag, one can check that [`i(χ)]1 has been correctly computed
for all i ∈ [1 .. n] in n + 1 pairings, n − 1 exponentiations in G2, and n expo-
nentiations in GT . Hence, the whole CRS verification algorithm is dominated by

35

6m+ 3n− 4m0 + 7 pairings, s(U) + s(V) + s(W) exponentiations in G1, n− 1
exponentiations in G2, and n exponentiations in GT .

Prover’s and Verifier’s Complexity. As in [Gro16], the prover’s computa-
tional complexity is dominated by the need to compute h(X) (3 interpolations,
1 polynomial multiplication, and 1 polynomial division; in total Θ(n log n) non-
cryptographic operations in Zp), followed by (n − 1) + s(A) + 1 + s(A) + 1 +
s(A1, . . . , Am0) ≤ n + 2s(A) + s(A1, . . . , Am0) + 1 exponentiations in G1 and
s(A) + 1 exponentiations in G2, where s(A) is again the number of large ele-
ments in A (i.e., large enough so that exponentiating with them would be ex-
pensive). This means that the prover’s computation is dominated by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations.

The verifier executes a single pairing equation that consists of 3 pairings and
m0 exponentiations in G1. The exponentiations can be done offline since they
do not depend on the argument π but only on the common input (A1, . . . , Am0).
Hence, the verifier’s computation is dominated by Θ(m0) cryptographic opera-
tions but her online computation is only dominated by 3 pairings.

The argument consists of 2 elements from G1 and 1 element from G2.

10.1 Batched CV

One can speed up CV further by using batching [BGR98]. Namely, it can be
shown that if

∑s
i=1(ti[ai]1) • [bi]2 =

∑s
i=1 ti[ci]T for uniformly randomly and

independently chosen ti, then w.h.p., [ai]1 • [bi]2 = [c]T for each individual i ∈
[1 .. s]. The speed-up follows from the use of bilinear properties and from the fact
that exponentiation is faster than pairing. Moreover, one can further slightly
optimize this by assuming ts = 1 [Lip16,FLZ16] and sampling ti from (say)
[1 .. 280] ⊂ Zp. The full batched version of CV is described in Fig. 5.

We use the following lemma which originally comes from [Lip16,FLZ16], but
is closely based on the small exponents test from [BGR98].

Lemma 7. Assume 1 < t < q. Assume t is a vector chosen uniformly random
from {1}×[1 .. t]k−1, χ is a vector of integers in Zq, and fi are some polynomials
of degree poly(λ). If fi(χ)([1]1• [1]2) 6= [0]T for some i, then

∑k
i=1 fi(χ)ti ·([1]1•

[1]2) = [0]T with probability ≤ poly(λ) / t.

By direct observation it is easy to confirm that each of the “batched” equa-
tions in Fig. 5 can be written in the form

∑k
i=1 fi(χ)ti · ([1]1 • [1]2) = [0]T such

that fi(χ)([1]1 • [1]2) 6= [0]T is equivalent to some equation in Fig. 2. Moreover,
in such a way, all the equations in the original CV algorithm are covered by
some equation in the batched CV algorithm. Therefore by Lemma 7, we may
conclude that if crs would not pass the original CV algorithm, then it would pass
the batched CV algorithm at most with probability poly(λ) /t.

In the batched CV algorithm, we execute Alg. 6 instead of checkLag.
This algorithm is dominated by 3 pairings, 2n exponentiations in G1, and

36

CV(z̃R, crs): // batched CV

1. Check [γ]2 6=? [0]2; For ξ ∈ {χ, α, β, δ, `(χ)/δ}: check [ξ]1 6=? [0]1;
2. // For ξ ∈ {χ, β, δ}:

(a) Generate t1, t2 ←$

{
1, . . . , 2λ

}
;

(b) Check (t1[χ]1 + t2[β]1 + [δ]1) • [1]2 =? [1]1 • (t1[χ]2 + t2[β]2 + [δ]2);
3. // For i = 1 to n− 2:

(a) Generate ti ←$

{
1, . . . , 2λ

}
for i = 0 to n− 3, then set tn−2 ← 1.

(b) Check (
∑n−2
i=1 ti[χ

i`(χ)/δ]1) • [1]2 =? (
∑n−2
i=1 ti

[
χi−1`(χ)/δ

]
1
) • [χ]2;

4. (a) Generate t←$

{
1, . . . , 2λ

}
;

(b) Check [`(χ)/δ]1 • (t[δ]2 + [χn−1]2) =? t([χ]1 •
[
χn−1

]
2
− [1]T) +[

χn−2`(χ)/δ
]
1
• [χ]2.

5. Check that [(`i(χ))ni=1]1 is correctly computed by using Alg. 6,
6. For j = 1 to m:

(a) Generate t←$

{
1, . . . , 2λ

}
;

(b) Check t[uj(χ)]1 + [vj(χ)]1 =? ∑n
i=1(tUij + Vij)[`i(χ)]1.

(c) Set [wj(χ)]1 ←
∑n
i=1Wij [`i(χ)]1;

7. // For j = 1 to m:
(a) Generate tj ←$

{
1, . . . , 2λ

}
for j = 1 to m− 1, then set tm ← 1.

(b) Check that (
∑m
j=1 tj [vj(χ)]1) • [1]2 = [1]1 • (

∑m
j=1 tj [vj(χ)]2).

8. // For j = m0 + 1 to m:
(a) Generate tj ←$

{
1, . . . , 2λ

}
for j = m0 + 1 to m− 1, then set tm ← 1;

(b) Check (
∑m
j=m0+1 tj [(uj(χ)β + vj(χ)α + wj(χ))/δ]1) • [δ]2 =?

(
∑m
j=m0+1 tj [uj(χ)]1) • [β]2 + [α]1 • (

∑m
j=m0+1 tj [vj(χ)]2) +

(
∑m
j=m0+1 tj [wj(χ)]1) • [1]2;

Fig. 5. Batched CV for Π∗

checklagrange-batched([χ, (ai)ni=1]1, [1, χ, χ
n−1]2, [1]T)

ω0 ← 1/ω;

[a]1 ← [0]1; [b]1 ← [0]1; c← 0;

for i = 1 to n do

ti ←$ {1, . . . , 2λ};ωi ← ωωi−1;

if [χ]1 = [ωi]1 then check [ai]1 = [1]1;

[a]1 ← [a]1 + ti[ai]1; [b]1 ← [b]1 + tiωi[ai]1; c← c+ tiωi;

endfor Check that [a]1 • [χ]2 − [b]1 • [1]2 = c/n · ([χ]1 • [χ
n−1]2 − [1]T);

Fig. 6. Batched version of checking [ai]1 = [`i(χ)]1 for i ∈ [1 .. n]

1 exponentiation in GT . The rest of the CV can be computed in 13 pair-
ings, 5m − 4m0 + 2n + s(U + V) + s(W) − 6 (mostly, small-exponent) ex-
ponentiations in G1, and 2m + m0 + 1 (mostly, small-exponent) exponentia-
tions in G2, and 1 exponentiation in GT . This makes, in total, 16 pairings,
5m− 4m0+4n+ s(U +V)+ s(W)− 6 (mostly, small-exponent) exponentiations
in G1, 2m+m0+1 (mostly, small-exponent) exponentiations in G2, and 2 expo-

37

nentiation in GT . Since exponentiation with a short exponent is significantly less
costly than a pairing, this will decrease the execution time of CV significantly.

We note that after taking batching into account, CV will become a prob-
abilistic algorithm, and will accept incorrect CRSs with negligible probability.
However, this will not affect our main results.

Theorem 8. After batching CV, the SNARK Π∗ from Section 7.1 is statistically
composable Sub-ZK under the BDH-KE assumption.

Acknowledgment. We thank Karim Baghery for his contribution to the con-
ference version of the current paper. This work was partially supported by the
Estonian Research Council grant (PRG49).

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_
1.

ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając. On
QA-NIZK in the BPK Model. In Aggelos Kiayias, editor, PKC 2020, vol-
ume 12110 of LNCS, pages 1–31, Edinburgh, UK, May 4–7, 2020. Springer,
Cham. doi:https://doi.org/10.1007/978-3-030-45374-9_20.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-
cryption with constant size ciphertext. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 440–456. Springer, Heidelberg,
May 2005. doi:10.1007/11426639_26.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013. doi:10.1007/978-3-642-40084-1_6.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Secu-
rity and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.
doi:10.1109/SP.2014.36.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the
existence of extractable one-way functions. In David B. Shmoys, edi-
tor, 46th ACM STOC, pages 505–514. ACM Press, May / June 2014.
doi:10.1145/2591796.2591859.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. doi:10.1145/62212.62222.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume

38

http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/https://doi.org/10.1007/978-3-030-45374-9_20
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1145/2591796.2591859
http://dx.doi.org/10.1145/62212.62222

10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch verification with ap-
plications to cryptography and checking. In Claudio L. Lucchesi and Ar-
naldo V. Moura, editors, LATIN 1998, volume 1380 of LNCS, pages 170–
191. Springer, Heidelberg, April 1998.

Bow17. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction.
Blog post, https://blog.z.cash/new-snark-curve/, last accessed in July,
2018, March 11, 2017.

Bro01. Daniel R. L. Brown. The exact security of ECDSA. Contributions to IEEE
P1363a, January 2001. http://grouper.ieee.org/groups/1363/.

CGGM00. Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge (extended abstract). In 32nd ACM STOC, pages
235–244. ACM Press, May 2000. doi:10.1145/335305.335334.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992. doi:10.1007/
3-540-46766-1_36.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, vol-
ume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.
doi:10.1007/978-3-662-45611-8_28.

DFKP13. George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Pinocchio coin: building zerocoin from a succinct pairing-based proof sys-
tem. pages 27–30, Berlin, Germany, November 4, 2013. ACM.

DL08. Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from an
Extractability Assumption. In Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe, editors, Computability in Europe, CIE 2008, volume
5028 of LNCS, pages 175–185, Athens, Greece, June 15–20, 2008. Springer,
Heidelberg.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge L. Villar.
An Algebraic Framework for Diffie-Hellman Assumptions. In Ran Canetti
and Juan Garay, editors, CRYPTO (2) 2013, volume 8043 of LNCS, pages
129–147, Santa Barbara, California, USA, August 18–22, 2013. Springer,
Heidelberg.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FLZ16. Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A shuffle argument
secure in the generic model. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 841–872.
Springer, Heidelberg, December 2016. doi:10.1007/978-3-662-53890-6_
28.

FO18. Georg Fuchsbauer and Michele Orrù. Non-interactive Zaps of Knowledge.
In Bart Preneel and Frederik Vercauteren, editors, ACNS 2018, volume
10892 of LNCS, pages 44–62, Leuven, Belgium, July 2–4, 2018. Springer,
Heidelberg.

39

http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1007/978-3-662-53890-6_26
https://blog.z.cash/new-snark-curve/
http://grouper.ieee.org/groups/1363/
http://dx.doi.org/10.1145/335305.335334
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/978-3-662-45611-8_28
http://dx.doi.org/10.1007/978-3-319-96881-0_2
http://dx.doi.org/10.1007/978-3-662-53890-6_28
http://dx.doi.org/10.1007/978-3-662-53890-6_28

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018. doi:10.1007/
978-3-319-76578-5_11.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers. In Tal Ra-
bin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer,
Heidelberg, August 2010. doi:10.1007/978-3-642-14623-7_25.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, December 1994.
doi:10.1007/BF00195207.

GOS06. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pages 97–111. Springer, Heidelberg, August 2006.
doi:10.1007/11818175_6.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
Cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
December 2006. doi:10.1007/11935230_29.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321–340. Springer, Heidelberg, December 2010. doi:10.1007/
978-3-642-17373-8_19.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.
doi:10.1007/978-3-662-49896-5_11.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

Ica09. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 303–316. Springer, Heidelberg,
August 2009. doi:10.1007/978-3-642-03356-8_18.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

40

http://dx.doi.org/10.1007/978-3-319-76578-5_11
http://dx.doi.org/10.1007/978-3-319-76578-5_11
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-319-96878-0_24
http://dx.doi.org/10.1007/BF00195207
http://dx.doi.org/10.1007/11818175_6
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1145/1993636.1993651
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1007/978-3-642-42033-7_1

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016. doi:
10.1109/SP.2016.55.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments
from span programs and linear error-correcting codes. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 41–60. Springer, Heidelberg, December 2013. doi:10.1007/
978-3-642-42033-7_3.

Lip16. Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge
SNARKs. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages 185–
206. Springer, Heidelberg, April 2016. doi:10.1007/978-3-319-31517-1_
10.

Lip19. Helger Lipmaa. Simulation-Extractable ZK-SNARKs Revisited. Technical
Report 2019/612, IACR, May 31, 2019. https://eprint.iacr.org/2019/
612, updated on 8 Feb 2020.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

MR01. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 542–565.
Springer, Heidelberg, August 2001. doi:10.1007/3-540-44647-8_32.

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Secu-
rity and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.
doi:10.1109/SP.2013.47.

Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. Journal of the ACM, 27(4):701–717, 1980.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_
18.

SPMS02. Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart.
Flaws in applying proof methodologies to signature schemes. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 93–110. Springer, Hei-
delberg, August 2002. doi:10.1007/3-540-45708-9_7.

Zip79. Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Ed-
ward W. Ng, editor, EUROSM 1979, volume 72 of LNCS, pages 216–226,
Marseille, France, June 1979. Springer, Heidelberg.

41

http://dx.doi.org/10.1109/SP.2016.55
http://dx.doi.org/10.1109/SP.2016.55
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1007/978-3-319-31517-1_10
http://dx.doi.org/10.1007/978-3-319-31517-1_10
https://eprint.iacr.org/2019/612
https://eprint.iacr.org/2019/612
http://dx.doi.org/10.1007/3-540-44647-8_32
http://dx.doi.org/10.1109/SP.2013.47
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/3-540-45708-9_7

A Changes Compared to the Conference Version

This version of the paper contains several new results compared to the conference
and fixes couple of small errors that occured in the conference version. We briefly
list them below.

1. Improvements in the definitional framework:
– Divided subversion-completeness into completeness and CRS-

verifiability.
– In the composable Sub-ZK definition, we now allow the adversary to pick

(x,w) adaptively based on the CRS.
– Changed non-uniform adversary to uniform in the composable Sub-ZK

definition (we provide a long discussion after the definition explaining
this change).

– The conference version contained an additional definition of Sub-ZK,
which had a computationally unbounded extractor. We have omitted this
definition in the current version since it is unclear whether it provides the
correct privacy level. In general, the simulator should not be unbounded,
and the extractor can be thought of as a part of the simulator.

– Renamed Sub-GBGM to GBGM-H and statistical CRS trapdoor-
extractability to trapdoor extractability.

2. Section 5 contains new generic results for achieving composable Sub-ZK.
Namely, we prove that if an argument is perfectly zero-knowledge in the
(trusted) CRS model and satisfies the notion of trapdoor extractability, then
it has composable Sub-ZK.

3. We construct two versions of the Sub-ZK SNARK. The first version is trap-
door extractable and uses the general result from Section 5. The second
version is more efficient but requires a different proof strategy. Compared
to the construction in the conference version, CRS of the second argument
is shorter by approximately n group elements, and the CV algorithm is also
more efficient.

4. Fixed several small errors and updated the related/subsequent work section
(see Section 2) with some of the intermediate results.

42

	On Subversion-Resistant SNARKs

