
Ledger Combiners for Fast Settlement

Matthias Fitzi1, Peter Gaži1, Aggelos Kiayias1,2, and Alexander Russell1,3

1 IOHK Research
2 University of Edinburgh
3 University of Connecticut

firstname.lastname@iohk.io

Abstract. Blockchain protocols based on variations of the longest-chain rule—whether following the proof-
of-work paradigm or one of its alternatives—su�er from a fundamental latency barrier. This arises from the
need to collect a su�cient number of blocks on top of a transaction-bearing block to guarantee the transaction’s
stability while limiting the rate at which blocks can be created in order to prevent security-threatening forks.
Ourmain result is a black-box security-amplifying combiner based on parallel composition ofm blockchains that
achieves Θ(m)-fold security ampli�cation for con�ict-free transactions or, equivalently, Θ(m)-fold reduction
in latency. Our construction breaks the latency barrier to achieve, for the �rst time, a ledger based purely
on Nakamoto longest-chain consensus guaranteeing worst-case constant-time settlement for con�ict-free
transactions: settlement can be accelerated to a constant multiple of block propagation time with negligible
error.
Operationally, our construction shows how to view any family of blockchains as a uni�ed, virtual ledger without
requiring any coordination among the chains or any new protocol metadata. Users of the system have the
option to inject a transaction into a single constituent blockchain or—if they desire accelerated settlement—all
of the constituent blockchains. Our presentation and proofs introduce a new formalism for reasoning about
blockchains, the dynamic ledger, and articulate our constructions as transformations of dynamic ledgers that
amplify security. We also illustrate the versatility of this formalism by presenting robust-combiner constructions
for blockchains that can protect against complete adversarial control of a minority of a family of blockchains.

1 Introduction

Since the appearance of Bitcoin [37] in 2009, dozens of projects from both academia and industry have proposed
protocols for maintaining decentralized, robust transaction ledgers in a permissionless setting. The prominent
design paradigm in this space comes from the Bitcoin protocol itself, often referred to as “Nakamoto-style” ledger
consensus. This approach adopts the blockchain—a linearly ordered sequence of blocks, each of which commits
to the previous history and may contain new transactions—as the fundamental data structure for maintaining the
ledger. The core consensus algorithm then calls for eligible protocol participants to create transaction-bearing
blocks, append them to the longest chain they observe, and broadcast the result; this implicitly declares a “vote”
for a unique ordered sequence of past transactions—the ledger. As a result, the immutability of a particular portion
of the ledger is not immediate, but rather grows gradually with the number of blocks (representing votes) amassed
on top of it in the blockchain. This paradigm has been featured in both theoretical proposals as well as deployed
systems and can be instantiated with a wide variety of Sybil-resistant mechanisms such as proof of work (Bitcoin,
Ethereum [8] and a vast majority of deployed blockchains), proof of stake [29,13,14,2,28,3], proof of space [38,11],
and others.

In terms of performance, one of the key measures of interest for any distributed ledger protocol is latency, also
called settlement time. Roughly speaking, this is the time elapsed between the moment a signed transaction is
injected into the protocol and the time it becomes universally recognized as immutable.

Nakamoto-style consensus protocols have attracted attention both for their simplicity and for various desirable
security features they can provide [10,40,42], such as security in the Byzantine setting with simple honest majority
and resilience against �uctuating participation [41,2]. However, they face a fundamental barrier when it comes
to latency. Informally, in order for a transaction to become accepted as stable, a su�cient number of blocks
(representing an agreement over a representative fraction of the parties, weighted according to the Sybil-resistant
mechanism in place) must be collected on top of the block containing this transaction. However, these blocks can

only be created at a limited rate dictated by the delays induced by the underlying communication network: if blocks
are routinely created by participants that have not yet received recent previous blocks, forks in the blockchain
appear even without any adversarial interference. These forks then result in a division of the honest majority and
represent a threat to the protocol’s security. This relationship is now quite well understood; see [39].

One way to address this disadvantage without giving up on the Nakamoto paradigm (and its advantages)
is to carefully design overlay structures on top of the plain Nakamoto-style blockchain. Several such proposals
exist, and can be roughly split into two categories. The �rst group of proposals (e.g., [40,42,15]) still produces
a full ledger of all settled transactions, but relies on stronger assumptions for their latency improvement, such
as a higher threshold of honest participants. The second category are so-called layer-2 designs implementing
payment [45,18] or state [19,17] channels that only need limited interaction with the slow blockchain, however,
they divert from the original goal of maintaining a distributed ledger of all executed transactions. Hence, the
following fundamental question remains:

What is the fastest achievable settlement time for Nakamoto-style consensus?

This question has also been recently addressed by the elegant concurrent work on the Prism protocol [6], albeit
with somewhat di�erent goals; we give a detailed comparison between our work and [6] in Section 1.2, after �rst
introducing our contributions.

1.1 Our Contributions

We approach the challenge of designing low-latency ledgers by introducing a black-box technique for “combining”
a family of existing ledgers into a new, virtual ledger that provides ampli�ed security properties. Our technique
results in a system with striking simplicity: The construction gives a deterministic rule for interpreting an arbitrary
family ofm constituent ledgers as a single virtual ledger. Participants of the system maintain their current view of
each constituent ledger and, via this interpretation, a view of the master combined ledger. Users simply inject
their transactions into the constituent ledgers as usual. We show that when users inject transactions into a single
constituent ledger they are provided with settlement guarantees (in the virtual ledger) roughly consistent with
those o�ered by the constituent ledgers. On the other hand, when a con�ict-free transaction is injected into all of
the constituent ledgers, it enjoys a 1∕Θ(m)multiplicative improvement in settlement time. Of course, settlement
time cannot be reduced beyond the time required for a block to be transmitted across the network; however, our
results adapt smoothly to this limit; in particular, by takingm to scale with the security parameter of the system,
we obtain O(1) settlement time for con�ict-free transactions (except with negligible probability). We remark that
in cryptocurrency ledgers, such as Bitcoin, transaction issuers always have the option to submit con�ict-free
transactions so that the assumption is not a limitation. While the results do not require any speci�c coordination
among the ledgers, they naturally require a measure of stochastic independence; we discuss this in detail below.

We present our results by formulating an abstract notion which we call a dynamic ledger. Our constructions
transform a family of such dynamic ledgers into an associated dynamic ledger (as indicated above) in a way that
ampli�es the security properties. Typical blockchain algorithms are direct instantiations of this abstraction: our
techniques can thus be applied in wide generality to existing blockchains such as Bitcoin, Ethereum, Ouroboros,
etc.

Such a transformation is a “combiner” in the classical cryptographic sense of the word: an operator for
cryptographic primitives that acts in a black-box manner on a number of underlying implementations of a
primitive with the objective of realizing a strengthened implementation of the same primitive. This folklore idea in
cryptography �rst received an explicit treatment byHerzberg [26]. One of the objectives for developing combiners—
especially prominent in the context of hash functions—was the concept of robustness. In particular, a robust
combiner maintains the security of the combined implementation despite the security failure of any number (up to
a threshold) of the underlying input implementations. Another objective for developing combiners is ampli�cation:
In an ampli�cation combiner, the goal is to improve a certain security property of the combined implementation to
a level that goes signi�cantly beyond the security o�ered by the underlying input implementations. The combiner
discussed above is of the ampli�cation variety; later in the paper, we also show how to achieve robustness in our
setting.

2

With this summary behind us, we describe our contributions in more detail.

A Model for Abstract Ledgers. We provide a new mathematical abstraction of a distributed ledger that can
be used to re�ect an arbitrary ledger protocol, but is particularly well-suited for describing Nakamoto-style
blockchains with eventual-consensus behavior (regardless of their underlying Sybil-resistant election mechanism).
Its main design goals are generality and simplicity, so as to allow for a clean study of generic constructions with
such ledgers that is unencumbered by the execution details of the underlying protocols.

Roughly speaking, our abstraction—called a dynamic ledger—determines at every point in time (i) a set of
transactions that are contained in the ledger; and (ii) a mapping that assigns to each transaction a real value called
its rank. The rank plays several roles: it is used to order the transactions in the ledger, describe their stability, and
maintain a loose connection to actual time; the most natural example of a rank is the timestamp of the transaction’s
block in Bitcoin. (In fact, a simple monotonicity transform is necessary; see Section 4.2.)

A dynamic ledger satis�es three fundamental properties: liveness, absolute persistence, and relative persistence.
The former two properties are direct analogues of the well-established notions of persistence and liveness intro-
duced by previous formalizations of blockchain protocols; the notion of relative persistence is novel. In a nutshell,
it is a weakening of absolute persistence that guarantees that the rank of a transaction cannot signi�cantly change
in the future; in particular the relative order of the transaction with respect to su�ciently distant transactions is
determined. This is particularly useful for reasoning about transaction settlement in the typical setting of interest:
when transaction validity depends only on its ordering with respect to con�icting transactions. Looking ahead,
relative persistence is exactly the notion that allows us to achieve the full bene�ts of our ampli�cation combiner;
it appears to be of independent interest as well, as it also arises naturally in our robust combiner.

Acombiner for consistency ampli�cationand latency reduction; the combined rank function.Ourmain
technical contribution, discussed brie�y above, is an ampli�cation combiner for latency reduction of abstract
ledgers. This combiner builds a “combined ledger” (or virtual ledger) as a deterministic function ofm underlying
dynamic ledgers. As mentioned above, participants insert their transaction into any number of the underlying
ledgers, depending on the desired settlement-time guarantees.

The major challenge is the de�nition and analysis of the combiner rank function. Rank is an abstract notion
of position in the ledger that is tethered to absolute time by the security guarantees: for example, in a ledger at
time T the probability that a transaction appearing at rank r is later disrupted is a function of T − r; the standard
case, where the underlying ledgers provide “linear consistency,” guarantees consistency error exp(−Ω(T − r)).
Note that, in general, there is no guarantee that transactions will appear in all underlying ledgers so the combined
rank function must somehow assign rank in a fashion that appropriately re�ects both deep transactions appearing
in a single ledger and shallower transactions appearing in many ledgers. This state of a�airs introduces two
con�icting goals: in order to achieve linear ampli�cation we insist that when a transaction appears in allm ledgers,
our constructed ledger yields settlement error exp(−Ω(m(T − r)))—note the factor ofm in the exponent; on the
other hand, a transaction appearing in a single ledger will be assigned some �nite rank and thus for large values
of T we cannot hope to beat exp(−Ω(T − r)), the consistency guarantee of a single ledger. To realize this, our
construction (and combined rank function) is determined by a parameter L which, intuitively, determines the
transition between these two regimes. One should think of L proportional to the security parameter of the system,
so that 2−Θ(L) is an acceptable bound for undesirable events; thus, injecting a transaction into all the ledgers
achieves this 2−Θ(L) security bound Θ(m) times faster than transactions submitted to a single ledger.

It is a rather remarkable fact that the behavior we demand is provided by the exponential weighting functions
that arise naturally in the theory of regret minimization (e.g., the multiplicative weights algorithm [1]). The actual
form of our combined rank function is

exp(−combinedRank(tx)∕L) = 1
m

m∑

i=1
exp(−ranki(tx)∕L) .

The (log scale) consistency error achieved by this rank function, when coupled with underlying ledgers that
o�er linear consistency, is informally illustrated by the blue line in the �gure below. The solid black line is the
consistency error o�ered by the underlying ledgers; one can clearly see the region of rapid growth (prior to L)

3

followed by the region where the slope stabilizes to that of the single ledger bounds, as it must. The dotted line
has slope exactly m times that of the “single ledger” line, corresponding intuitively to “perfect ampli�cation.”

L 2L
“Depth” T − r

−
lo
g
Pr
[f
ai
lu
re
]

We analyze two extreme scenarios and show that while insertion of a transaction
into a single ledger leads to a settlement time comparable to the one provided by the
underlying ledgers, inserting the transaction into allm ledgers results in a speed-up
by a linear factor Θ(m). In the natural setting where there is a cost associated with
including a transaction in each ledger, we emphasize that the construction yields
a trade-o� between transaction fee and settlement time: transactions appearing
in more chains settle faster. The choice can be made on a per-transaction basis by
its sender. Moreover, by considering a su�cient number of parallel chainsm, this
allows us to achieve, for the �rst time, constant settlement time except with negligible
error probability. In practice, this provides settlement in time O(∆), where ∆ is the
time required for block delivery.

Clearly, ampli�cation-type results can only be obtained under some sort of independence assumption on the
underlying ledgers. We characterize a generic (black-box) assumption, called subindependence, which is weaker
than full independence of the ledgers and su�cient for our results. We also show how subindependence can
be naturally achieved by existing techniques in both proof-of-work and proof-of-stake settings; details appear in
Section 4.1.

Our construction does not require any coordination between the underlying ledgers, it can be deployed on top
of existing blockchains without direct cooperation from parties maintaining the ledgers, so long as these ledgers
maintain their persistence and liveness guarantees, are su�ciently independent, and allow for inclusion of a
su�ciently general class of transaction data.

Finally, we show how our construction can be applied to the most familiar setting of proof-of-work (PoW)
blockchains. Speci�cally, applying our combiner tom = � PoW blockchains yields a construction C providing
constant-time relative settlement except with probability negligible in �, articulated in Theorem 1 below. For
concreteness, we work in the synchronous (p, q)-�at PoWmodel that assumes the existence of n parties, each of
which is allowed to issue q PoW queries per round that independently succeed with probability p (see, e.g., [23]
for details).

Theorem 1 (Informal). Let � > 0 and let � denote the security parameter. There exists a construction C that, if
executed in the synchronous (p, q)-�at PoWmodel with n parties out of which at least a (1∕2 + ")-fraction is honest,
achieves relative settlement in time O(1) except with an error probability negligible in �.

Hidden in the asymptotic description above is the dependence of p, q, and n on the security parameter � which
must in fact satisfy some natural conditions. We give a formal statement corresponding to Theorem 1, together
with a precise description of the construction C, as Corollary 7 in Section 4.3.

A simpli�ed, didactical illustration of the settlement speed-up provided by our construction is given in Ap-
pendix G.

A Robust Ledger Combiner. As our �nal contribution, we describe a class of constructions of robust ledger
combiners: a black-box construction on top ofm ledgers that maintains relative persistence and liveness guarantees
even if the contents of a �-fraction of these ledgers (chosen adaptively) are arbitrarily corrupted, for � up to 1∕2.
The individual constructions in this class are parameterized by the choice of an estimator function that is a part of
the combiner’s rank function; we show that the concrete choice of this estimator represents a trade-o� between
� and the stability of the combiner, a metric of how much the ranks of individual transactions in the combiner
change as a result of a corruption respecting the �-threshold. This construction serves as an additional illustration
of the generality of our ledger abstraction. Full details appear in Section 5.

1.2 RelatedWork

The formal modeling of robust transaction ledgers and blockchain protocols goes back to the property-based
analysis of Bitcoin due to Garay et al. [23] and Pass et al. [39]. These works identi�ed the central properties

4

of common pre�x, chain growth, and chain quality and demonstrated how they imply the desired persistence
and liveness of the resulting ledger. A composable analysis of a blockchain protocol (namely Bitcoin) in the UC
framework [9] along with the realized ledger functionality �rst appeared in [4] and, later, essentially the same
functionality was shown to be realized by proof-of-stake protocols in [2,3].

The notion of combiners was formally proposed in [26]. Robust combiners for hash functions were further
studied in [7,44] and also applied to other primitives such as oblivious transfer [25]. Ampli�cation combiners
were introduced by [20] who also observed that classical results in security ampli�cation, e.g., [48], can be
seen as such combiners. Indistinguishability ampli�cation for random functions and permutations achieved
by certain combiners from a class of so-called neutralizing constructions was studied both in the information-
theoretic [47,33,32,34,24] and computational [31,36,43,16,35] settings.

Various approaches are known to reduce settlement times of Nakamoto-style blockchains. One approach is to
deviate from the single-chain structure, arranging blocks in a directed acyclic graph (DAG) as �rst suggested by
Lerner [30]. Sompolinsky et al. [46] gave a DAG-based construction that substantially reduces settlement times at
the expense of giving up on a total order on all transactions in the ledger. Another approach explores “hybrid”
protocols where committee-based consensus reduces latency in the optimistic case [40,42].

In context of proof-of-stake, Algorand [10] reduces settlement times over eventual-consensus proof-of-stake
protocols by �nalizing each block via a Byzantine Agreement subprotocol before moving to the next one. However,
Algorand cannot tolerate �uctuating participation or adversarial stake ratio up to 1/2. Moreover, its constant-time
settlement guarantees are only provided in expectation, in contrast to our worst-case guarantees.

The closest work to ours is the concurrent work on Prism [6]. Its goals are di�erent: it presents a concrete,
PoW-based ledger protocol optimizing both throughput and latency compared to Bitcoin. Their approach to
latency optimization is also based on the idea of parallel blockchains, though in a di�erent form. Our approach
has some notable advantages in comparison with Prism: (i) our construction is generic and can be deployed
on top of existing ledgers with arbitrary Sybil-resistant mechanisms; (ii) we provide worst-case constant-time
settlement except with a negligible error probability while Prism (similarly to Algorand) only provides expected
constant-time settlement; (iii) we base our results on the generic subindependence assumption that is weaker
than full independence, which is assumed in Prism (though it is not achieved by their PoWmechanism). On the
other hand, Prism has an important feature which clearly sets it apart from our work: it explicitly models and
optimizes throughput. In particular, Prism simultaneously achieves improved security and throughput, a tradeo�
that is not even considered in our modeling.

We devote Appendix A to a more detailed comparison.

2 The Ledger Abstraction

In this section we de�ne abstract ledgers which describe the functionality provided by distributed ledger protocols
such as Bitcoin. Our goal here is to capture this behavior in an abstract, high-level manner, which allows us to
express our composition results unencumbered by the details of the individual protocols.

2.1 Ledgers and Dynamic Ledgers

We start by de�ning an abstraction of an individual snapshot of the state of a ledger protocol, which we call a ledger.
A ledger re�ects a collection of transactions which are given a linear order by way of a general function called
rank. As a basis for intuition about the de�nitions and proofs below, we mention that, roughly speaking, Bitcoin
realizes such a ledger where the rank function is given by the timestamp corresponding to the block containing
the transaction; we give a more detailed discussion in Section 4.2.

Our ledger will operate over a transaction space which we de�ne �rst.

De�nition 1 (Transaction space). A transaction space is a pair (T, ≺T), whereT is a set of “transactions” and
≺T is a linear order on T. A con�ict relation C on a transaction space T is a symmetric binary relation on T; if
(tx1, tx2) ∈ C for two transactions tx1, tx2 ∈ T, we say that tx1 con�icts with tx2, we write conf lict(tx) ⊆ T for the
set of transactions con�icting with tx.

5

The linear order ≺T on the ambient transaction space T is largely incidental; it is only used in our setting
to break ties among transactions with a common rank. Thus, in practice this linear order can be instantiated
with a simple “syntactic” property—such as a lexicographic ordering—rather than an ordering that re�ects any
semantics about the transactions.

On the other hand, when a transaction space is equipped with a con�ict relation this is intended to carry
semantic value; in a conventional UTXO transaction model (such as that appearing in many deployed blockchains,
see Appendix B) two transactions con�ict if they share UTXO inputs. As we discuss below, a con�ict structure
permits a more �exible notion of settlement that is only required to provide strong guarantees for non-con�icting
transactions.

De�nition 2 (Ledger). A ledger L for a transaction space (T, ≺T) is a pair (T, rank) where: T ⊆ T is a subset of
transactions and rank∶ T → ℝ+ ∪ {∞} is a function taking �nite values precisely on the set T; that is, T = {tx ∈
T ∣ rank(tx) ≠∞}. The value rank(tx) is referred to as the rank of the transaction tx. Notationally, if L is a ledger we
routinely overload the symbol L to stand for its set of transactions (T in the de�nition above).

The linear order ≺T and the rank function rank(⋅) induce a linear order ≺L on the ledger by the rule

x ≺L y ∶⇔ (rank(x) < rank(y) ∨ (rank(x) = rank(y) ∧ x ≺T y)) .

(Thus the underlying total order ≺T is only used to “break ties.”)
For a ledger L = (T, rank) and a threshold r, we let L ⌈r⌉ ≝ (T′, rank′) denote the ledger consisting of transactions

T′ ≝ {tx ∈ T ∣ rank(tx) ≤ r} with the inherited rank function: rank′(tx) = rank(tx) for all tx ∈ T′ and equal to∞
otherwise. Similarly, for a transaction tx ∈ L, let L ⌈tx⌉ denote the ledger {tx′ ∣ tx′ ⪯L tx} with the inherited rank
function.

The above notion of a ledger captures a static state; we extend it to describe evolution in time as follows.

De�nition 3 (Dynamic ledger). Consider the sequence of time slots t ∈ ℕ and any sequence of sets of transactions
A(0), A(1),… (each a subset of a common transaction space T) denoting the transactions that arrive at each time
slot. A dynamic ledger is a sequence of random variables D ≝ L(0),L(1),…, that satisfy the following properties
parameterized by security functions p+R ∶ (ℝ

+)2 → [0, 1] and p−R , pA, l ∶ ℝ
+ → [0, 1]:

Liveness. For every r ≥ 0, t0 ≥ 0, and t ≥ t0 + r,

Pr
[
Lr,t0,t

]
≝ Pr

[
A(t0) ⊈ L(t) ⌈t0 + r⌉

]
≤ l(r) .

Absolute Persistence. For each rank r ≥ 0, time t0 ≥ 0, and t ≥ t0, we have

L(t0) ⌈t0 − r⌉ = L(t) ⌈t0 − r⌉

except with small failure probability. Speci�cally, for all r, t0 ≥ 0,

Pr
[
Pr,t0

]
≝ Pr

[
∃t ≥ t0,L(t0) ⌈t0 − r⌉ ≠ L(t) ⌈t0 − r⌉

]
≤ pA(r) .

Relative Persistence. For each r+, r− ≥ 0, time t0 ≥ 0, and t ≥ t0, we have

L(t0)
⌈
t0 − r− − r+

⌉
⊆ L(t) ⌈t0 − r−⌉ ⊆ L(t0)

except with small failure probability. Speci�cally, for each r−, r+, t0 ≥ 0:

Pr
[
∃t ≥ t0,L(t0)

⌈
t0 − r− − r+

⌉
⊈ L(t) ⌈t0 − r−⌉

]
≤ p+R (r

−, r+) ,

Pr
[
∃t ≥ t0,L(t) ⌈t0 − r−⌉ ⊈ L(t0)

]
≤ p−R (r

−) .

As indicated, we let Pr,t0 and Lr,t0,t denote the absolute-persistence failure event with parameters (r, t0) and the liveness
failure event with parameters (r, t0, t), respectively.

6

The above de�nition deserves a detailed discussion. A dynamic ledger is a sequence of ledgers—one for each
time slot t—which re�ects the current state of the ledger structure L(t) at that time. Throughout the paper, we will
use the superscript notation ⋅(t) to denote the time coordinate.

The absolute persistence and liveness properties capture the standard design features of distributed ledger
protocols: absolute persistence mandates that at time t0, the state of the ledger up to rank t0 − r is �xed for all
future times, except with error probability pA(r). Liveness, on the other hand, guarantees that any transaction
appearing in A(t0) will be a part of a (later) ledger at time t ≥ t0 + r with a rank at most t0 + r, except with error
at most l(r). Note that the liveness guarantee only pertains to transactions tx appearing in the sets A(t0), which
may not necessarily “explain” all of the transactions in the ledger; in particular, we do not always insist that
L(t) ⊆

⋃
s≤t A

(s). This extra �exibility permits us to simultaneously study di�ering liveness guarantees for various
subclasses of transactions processed by a particular ledger (see Section 3.2).

The remaining property, relative persistence, is more complex: It is a weakening of absolute persistence by
not requiring future stability for the pre�x of the currently seen ledger L(t0) up to rank t0 − r− − r+; it merely
asks that no transaction tx currently contained in it will rise to a rank exceeding t0 − r−; likewise, it insists that
no transaction tx′ currently absent in the ledger will ever achieve a rank below t0 − r−, potentially overtaking
tx. This property bears a direct connection to the notion of transaction settlement as we discuss in Section 2.3.
Looking ahead, we note that relative persistence provides su�cient guarantees for settling transactions that are
only invalidated by “con�icting” transactions, and our combiner will achieve stronger relative-persistence than
absolute-persistence guarantees, allowing for our latency-reduction results in Section 3.

Note that absolute persistence for some r clearly implies relative persistence with r+ = 0 and r− = r. A natural
parameterization that makes our notions meaningful is where each f ∈

{
pA, p

−
R , l

}
is monotonically decreasing

and satis�es f(0) ≥ 1 (similarly, p+R should be monotonically decreasing in each coordinate and p+R (r
−, r+) ≥ 1

whenever 0 ∈ {r−, r+}). Of course each of these functions represents a probability upper-bound, though we
entertain values above 1 purely to simplify notation. A persistence or liveness function is exponential if it has the
form f(x) = exp(−�x + �) for some � > 0 and � ≥ 0; ledgers with exponential security will be our main focus.

Finally, our intention is to use dynamic ledgers to model blockchain consensus protocols. In this case, the
chain held by each (honest) party P ∈ P is modeled as a dynamic ledgerDP = L(0)P ,L(1)P ,…, satisfying the properties
of persistence and liveness from De�nition 3. Of course, this by itself does not capture all the desired goals of
blockchain protocols, as it does not re�ect consensus properties across parties; we discuss how this can be re�ected
by our model in Appendix D.

2.2 Composition of Dynamic Ledgers

In the following sections, we will be interested in combining several dynamic ledgers to form a new “virtual”
ledger. This notion of combining makes no assumptions on the ledgers to be combined other than a common
transaction space. Moreover, it requires no explicit coordination among the ledgers or maintenance of special
metadata: in fact, the “subledgers” involved in the construction do not even need to “know” that they are being
viewed as a part of a combined ledger. Concretely, a virtual ledger construction is a deterministic, stateless rule
for interpreting a family of m individual ledgers as a single ledger. This is formally captured in the following
de�nition.

De�nition 4 (Virtual Ledger Constructions). A virtual ledger construction C[⋅] is a mapping that takes a tuple
of dynamic ledgers (D1,… ,Dm) over the same transaction spaceT and returns a dynamic ledger C[D1,… ,Dm] =
L(0),L(1),… over T determined by three functions (aC, tC, rC) as described below. We write Di = L(0)i ,L(1)i ,… with
arriving transaction sets denoted A(0)i , A(1)i ,… and the rank function of each L(t)i being rank(t)i . Then

(i) the arriving transaction sets are given by A(t) = aC(A
(t)
1 ,… , A

(t)
m);

(ii) the ledger contents are given by L(t) = tC(L
(t)
1 ,… ,L

(t)
m); and

(iii) the rank is given by rank(t)(tx) = rC(rank
(t)
1 (tx),… , rank

(t)
m (tx)).

Since the above requirements are formulated independently for each t, it is well-de�ned to treat C[⋅] as operating on
ledgers rather than dynamic ledgers; we sometimes overload the notation in this sense.

7

Looking ahead, our ampli�cation combiner will consider tC(L
(t)
1 ,… ,L

(t)
m) =

⋃
i L

(t)
i along with two related

de�nitions of aC:
aC(A

(t)
1 ,… , A

(t)
m) =

⋃

i
A(t)i and aC(A

(t)
1 ,… , A

(t)
m) =

⋂

i
A(t)i ;

see Section 3. The robust combiner will adopt a more sophisticated notion of tC; see Section 5. In each of these
cases, the important structural properties of the construction are captured by the rank function rC.

2.3 Transaction Validity and Settlement

In the discussion below, we assume a general notion of transaction validity that can be decided inductively: given
a ledger L, the validity of a transaction tx ∈ L is determined by the transactions in the state L ⌈tx⌉ of L up to tx
and their ordering. Intuitively, only valid transactions are then accounted for when interpreting the state of the
ledger on the application level. The canonical example of such a validity predicate in the case of so-called UTXO
transactions is formalized for completeness in Appendix B. Note that protocols such as Bitcoin allow only valid
transactions to enter the ledger; as the Bitcoin ledger is represented by a simple chain it is possible to evaluate the
validity predicate upon block creation for each included transaction. This may not be the case for more general
ledgers, such as the result of applying one of our combiners or various DAG-based constructions.

While we focus our analysis on persistence and liveness as given in De�nition 3, our broader goal is to study
settlement. Intuitively, settlement is the delay necessary to ensure that a transaction included in some A(t) enters
the dynamic ledger and, furthermore, that its validity stabilizes for all future times.

De�nition 5 (Absolute settlement). For a dynamic ledger D ≝ L(0),L(1),… we say that a transaction tx ∈
A(�) ∩ L(t) (for � ≤ t) is (absolutely) settled at time t if for all l ≥ t we have: (i) L(t) ⌈tx⌉ ⊆ L(l), (ii) the linear orders
≺L(t) and ≺L(l) agree on L(t) ⌈tx⌉, and (iii) for any tx

′ ∈ L(l) such that tx′ ≺L(l) tx we have tx
′ ∈ L(t) ⌈tx⌉.

Note that for any absolutely settled transaction, its validity is determined and it is guaranteed to remain
unchanged in the future.

It will be useful to also consider a weaker notion of relative settlement of a transaction: Intuitively, tx is relatively
settled at time t if we have the guarantee that no (con�icting) transaction tx′ that is not part of the ledger at time t
can possibly eventually precede tx in the ledger ordering.

De�nition 6 (Relative settlement). LetT be a transaction space with a con�ict relation. For a dynamic ledger
D ≝ L(0),L(1),…, over T we say that a transaction tx ∈ A(�) is relatively settled at time t ≥ � if for any l ≥ t we
have: (i) tx ∈ L(l); (ii) for any transaction tx′ such that tx′ ≺L(l) tx and tx

′ ∈ conf lict(tx) we have tx′ ∈ L(t).
We de�ne an analogous notion whenT is not equipped with a con�ict relation, by replacing (ii) with the stronger

condition that applies to all transactions: for any transaction tx′ such that tx′ ≺L(l) tx we have tx′ ∈ L(t).

We illustrate the usefulness of relative settlement on the example of the well-known UTXO transactions, and
defer a more formal and more general discussion to Appendix C. If a UTXO-transaction tx satis�es that: (i) all its
inputs appear as outputs of a preceding valid, absolutely settled transaction, (ii) tx itself is relatively settled, and
�nally, (iii) no con�icting transaction (using the same inputs) is currently part of the ledger; then the validity of tx
can be reliably decided and is guaranteed not to change in the future.

In a dynamic ledger with liveness, absolute and relative persistence described by l, pA and (p+R , p
−
R) respectively,

there is a clear direct relationship of both types of settlement to these properties. Namely, a transaction tx ∈ A(�)
is absolutely (resp. relatively) settled in time � + rl + rp (resp. � + rl + r+ + r−) except with error pA(rp) + l(rl)
(resp. l(rl) + p+R (r

−, r+) + p−R (r
−)). We state and prove these simple results in Appendix C.

While the time � when the transaction tx entered the system is not necessarily observable by inspecting the
ledger, settlement itself is an observable event: tx is absolutely (resp. relatively) settled at time T if it is seen as part
of the ledger L(T)⌈T − rp⌉ (resp. L(T)⌈T − r+ − r−⌉), except for error probability pA(rp) (resp. p

+
R (r

−, r+) + p−R (r
−)).

For ledgers that provide better guarantees for relative persistence than for absolute persistence, relative
settlement can occur faster than absolute settlement; this motivates the study of relative persistence in the
following sections.

8

3 The Security-Amplifying Combiner for Latency Reduction

We describe a general combiner which transformsm underlying ledgers to a virtual ledger in which transactions
settle more quickly. As discussed previously, by logging a transaction in all of the underlying ledgers, users can be
promised a Θ(m) (multiplicative) reduction in settlement time; on the other hand, by logging a transaction in
a single one of the underlying ledgers, the promised settlement time is roughly consistent with the underlying
ledger settlement time.

3.1 The Subindependence Assumption

Givenm dynamic ledgersD = (D1,… ,Dm), informally, we say that the dynamic ledgers satisfy "-subindependence
if, for any collection of events F1,… , Fm capturing either persistence or liveness failures—with the understanding
that Fi refers solely to properties of Li—we have Pr

[⋀
i Fi

]
≤

∏
i Pr[Fi] conditioned on some event occurring

with probability at least 1 − ".

De�nition 7 (Subindependence). LetD = (D1,… ,Dm) be a collection ofm dynamic ledgers. LedgersD satisfy
"-persistence subindependence if for any subset I ⊆ {1,… , m} and any collection of persistence failure events
{P(i)ri ,ti ∣ i ∈ I}, where the event P(i)⋆ refers toDi , there is an event E with Pr[E] ≥ 1 − " such that we have

Pr [
⋀

i
P(i)ri ,ti

||||||||||
E] ≤

∏

i
p(i)A (ri) .

We similarly de�ne "-liveness subindependence.
Throughout our proofs, we treat " as negligible quantity and, for purposes of a clean exposition, do not include the

additive error terms related to " in our concluding error bounds. (See Section 4.1 for further discussion, including
how to interpret the notion of “negligible” in this context.) Consistent with this treatment, we leave " implicit in our
notation, and simply say that the dynamic ledgersD possess subindependence if they possess both persistence and
liveness subindependence.

As we discuss in Section 4.1, in situations such as those that arise in blockchains one cannot hope for exact
independence among persistence failure events for the simple reason that an adaptive adversary may decide—as
a result of the success of her attacks on some subset of the ledgers—to cease attacking the others; this creates
a (harmless) negative correlation between failure events. Intuitively, the subindependence conditions express
the inability of an attacker to outperform the simple setting where she aggressively attacks each of the ledgers in
isolation of the others. We discuss how subindependence can be naturally achieved in both PoW and PoS settings
in Section 4.1.

3.2 The Parallel Ledger Construction

We considerm dynamic ledgersD ≝ (D1,… ,Dm) over the same transaction space T and sequence of time slots
t ∈ {0, 1,…}, where each dynamic ledger Di = L(0)i ,L(1)i ,… and its sequence of arriving transactions is denoted as
A(0)i , A(1)i ,….

De�nition 8 (Construction P[D]). Our main construction P[D1,… ,Dm] (which we also write P[D] when conve-
nient) is de�ned by

aC(A
(t)
1 ,… , A

(t)
m) =

⋃

i
A(t)i , tC(L

(t)
1 ,… ,L

(t)
m) =

⋃

i
L(t)i ,

and the rank function rank
(t)
L de�ned as follows: For a tuple r = (r1,… , rm) ∈ (ℝ ∪ {∞})m and a constant L, de�ne

rankL(r) ≝ −L ln
⎛
⎜
⎝

1
m

∑

ri ≤ �(r)
exp(−ri∕L)

⎞
⎟
⎠
, (1)

9

where �(r) = mini ri + L lnm, and exp(−∞∕L) is de�ned to be 0. We overload the notation to apply to transactions,
so that the resulting rank function can serve the purposes of a virtual ledger construction: Let tx be a transaction

appearing with rank ri in ledger L(t)i for some �xed t; then de�ne rank
(t)
L (tx) = rankL(r).

The de�nition (1) can be rephrased into an alternate, and somewhat more intuitive, equation: if I� ≝ {i ∣ ri ≤
�(r)} then

1
m

∑

i∈I�

exp(−ri∕L) = exp(−rankL(r)∕L) . (2)

In particular the notion is a simple average if rank is interpreted under an exponential functional: exp(−rank(⋅)∕L).
Note, additionally, that for any r = (r1,… , rm), we have

min
i∈[m]

ri ≤ rankL(r) ≤ (min
i∈[m]

ri) + L lnm

and, furthermore, the inequality can be naturally interpreted if some or all of the ri are∞. The �rst inequality is
tight when all ri are equal.

A �nal remark about truncation by the threshold �(r): While the “large-scale” features of the parallel ledger—
including relative persistence and liveness—donot depend on truncation, absolute persistence depends on eventual
stability of the rank function. The truncation operation guarantees this, ensuring that only a bounded portion of
the ledger is relevant for determining the �nal rank of a transaction.

Preemptive rank function. When the dynamic ledgers D are de�ned over a transaction space with a con�ict
relation, we consistently work with a slightly di�erent notion of preemptive rank for the ampli�cation construction
above. Speci�cally, we say that a transaction tx is dominant in a ledger L if it appears in the ledger and no earlier
transaction con�icts with tx (that is tx ∈ L and tx′ ≺L tx ⇒ tx′ ∉ conf lict(tx)). Let �i be the rank of tx in ledger
Li and de�ne ri = �i if tx is dominant in Li, and ri = ∞ otherwise. Then the preemptive rank rank

∗
L(tx) of tx is

de�ned to be rankL(r1,… , rm).

Fast and slow submission. We consider two ways of submitting tx to P[D]:

The “fast” mechanism: A transaction tx is simultaneously submitted to all of the underlying dynamic ledgers
{Di}mi=1, appearing in

⋂
i∈[m]A

(t)
i .

The “slow” mechanism: A transaction tx is submitted to (at least) one of the dynamic ledgers Di , appearing in⋃
i∈[m]A

(t)
i .

An important feature of our protocol is that a single deployment supports both of these mechanisms and their
use can be decided by transaction producers on a per-transaction basis. As we will see, these two mechanisms
exhibit markedly di�erent liveness guarantees: Participants desiring fast liveness and settlement1 can adopt the
fast mechanism by submitting their transactions to allm of the ledgers; participants with less urgency can adopt
the slow mechanism, simply submitting their transactions to a single ledger.

To formally capture this in a clean way, we will introduce a slight variant, PF[D], which allows us to speci�cally
study the improved liveness properties of transactions when they happen to be submitted for insertion into all of
the constituent ledgers Di at the same time. Speci�cally, PF[D] has precisely the same de�nition as P[D] with
the exception that aC(A

(t)
1 ,… , A

(t)
m) =

⋂
i A

(t)
i . Thus, note that the two virtual ledgers P[D] and PF[D] contain

exactly the same elements with exactly the same ranks. They di�er only in the sets of transactions (determined
by aC) for which they provide liveness guarantees: “slow” liveness guarantees for

⋃
i A

(t)
i correspond to bounds

on P[D] while “fast” liveness guarantees for transactions in
⋂

i A
(t)
i correspond to liveness guarantees for PF[D].

This bookkeeping sleight of hand is merely a way to use a single abstraction to express both a general liveness
guarantee, and an accelerated guarantee for transactions submitted to all ledgers Di .
1 Recall the di�erence between liveness and settlement in our terminology, as described in Section 2.3 and Appendix C.

10

We remark that fast settlement guarantees are provided anytime a transaction has been submitted to all of the
underlying ledgers: the proof does not require that they be submitted at exactly the same time. In terms of the

de�nitions above, the proof would apply even if we de�ned A
(t)
i ≝

⋃
s≤t A

(s)
i , F(t) ≝

⋂
i A

(t)
i , and A(t) (the set for

which fast settlement is guaranteed) to be F(t) ⧵ F(t−1). Thus a transaction would be guaranteed fast settlement as
soon as it has been submitted to all relevant ledgers. We work with the simple formulation (

⋂
i A

(t)
i) merely as a

matter of convenience.

3.3 Main Result and Proof Outline

Our main result follows, formulated for exponentially secure ledgers as de�ned in Section 2.1.

Theorem 2. Let D = (D1,… ,Dm) be a family of m subindependent dynamic ledgers de�ned over a common
transaction spaceT with a con�ict relation, each possessing exponential liveness l(r) = exp(−�lr + �l) and absolute
persistence p(r) = exp(−�pr + �p). Consider the combined dynamic ledgers PF[D] and P[D] with the (preemptive)

rank function rank
∗
L for a parameter L ≥ m. Then for PF[D], there is a constant C > 1 so that if L ≥ Cm lnm, we

have

Pr
[
∃tx ∈ A(t0) not relatively settled at time t0 + 2r

]
≤ exp(−rΩ(m) + O(m)) + exp (−Ω(r) − Ω(L ln(m))) . (3)

At the same time, for P[D] we have

Pr
[
∃tx ∈ A(t0) not absolutely settled at t0 + 2r

]
≤ m exp(−Ω(r) + O(L lnm)) .

The constants hidden in theΩ() and O() notation depend on �p, �l, �p, �l, but they are independent ofm, L, and r.

Note that in (3), the �rst term vanishes with the desired m-fold speedup, and dominates the total error as
long as roughly rm < L. Beyond that, the second term is dominant and the error vanishes at the pace of a single
constituent ledger. This is essential for enabling both slow and fast settlement, as discussed in Section 1.1. Note
that as L can be chosen to scale with the security parameter so that exp(−Θ(L)) is an acceptable error probability,
the region rm < L is thus exactly where the settlement speedup is desired.

On a high level, the proof for PF[D] goes as follows. For a transaction tx ∈ A(t0), we can expect that: (1) At
time t0 + 2r, tx appears in at least 4m∕5 of them ledgers with rank at most t0 + r. (2) At mostm∕5 of these 4m∕5
ledgers will exhibit an absolute persistence failure allowing a change of their state up to rank t0 + r after time
t0 + 2r, a�ecting the rank of tx. Based on the above two events, at any time after t0 + 2r there can be at most 2m∕5
ledgers that do not contain tx with rank at most t0 + r. Then: (3) For any competing transaction tx′ ∈ conf lict(tx)
not present at time t0 + 2r, these 2m∕5 ledgers will never contribute enough to the rank of tx′ to overtake tx in
PF[D]. More precisely, each of the three above events is shown to fail with at most the error probability in the
theorem statement.

The result for P[D] is proven along the following lines. Assume a transaction tx inserted to (at least) one of the
ledgersLi at time t0. For any t ≥ t0+r−L lnm, we have tx ∈ L(t)i ⌈t0+r−L lnm⌉ except for probability l(r−L lnm),
and, by the properties of the rank function, also tx ∈ L(t)⌈t0 + r⌉. Let T ≥ t = t0 + 2r and assume tx ∈ L(t)⌈t0 + r⌉
as by the above liveness guarantee. As L(T)⌈t0 + r⌉ is fully determined by the ledgers L(T)j ⌈t0 + r + L lnm⌉, a

persistence failure L(T)⌈t0 + r⌉ ≠ L(t)⌈t0 + r⌉ implies a persistence failure of some L(t)j ⌈t0 + r + L lnm⌉, which has
a probability at mostm pA(−r + L lnm).

The bound for PF[D] in particular gives us the following corollary.

Corollary 1. In the setting of Theorem 2, if the number of chainsm scales with the security parameter then PF[D]
achieves constant-time settlement except with an error probability negligible in the security parameter.

In the rest of this section, we establish the above results in full detail. In Section 3.4 we study the central part of
our combiner—its rank function; and based on it, Section 3.5 obtains our persistence and liveness bounds in their
most general form. Section 3.6 specializes them to the setting of interest with exponentially-secure underlying
ledgers; and �nally Section 3.7 concludes the derivation of Theorem 2 and Corollary 1.

11

3.4 Properties of rank

Before discussing the persistence and liveness guarantees of our construction, we derive some general properties
of its rank function.

Lemma 1. Let r = (r1,… , rm) ∈ (ℝ ∪ {∞})m and T ≥ mini ri . Let IT = {i ∣ ri ≤ T} and, for each i ∈ IT , de�ne
di = T − ri . Writing D = T − rankL(r),

∑

i∈IT

di ≥ D + L ln (m − m − 1
exp(D∕L)

) .

We note the following weaker but convenient bound: when D ≥ 0,

∑

i∈IT

di ≥ D + L ln (mD + L
D + L) .

Proof. Let I� = {i ∣ ri ≤ �(r)}. Writing R = −rankL(r)∕L, from equation (2) we have

m exp(T∕L) exp(R) = exp(T∕L)
∑

i∈I�

exp(−ri∕L) =
∑

i∈I�

exp((T − ri)∕L) ≤
∑

i∈I�⧵IT

1 +
∑

i∈IT∩I�

exp(di∕L)

(∗)
≤ (|I�| − 1) + exp

⎛
⎜
⎝

∑

i∈IT

di∕L
⎞
⎟
⎠
≤ (m − 1) + exp

⎛
⎜
⎝

∑

i∈IT

di∕L
⎞
⎟
⎠

(4)

where the inequality
(∗)
≤ above follows from the fact that for any ai ≥ 0 we have

l∑

i=1
exp(ai) ≤ (l − 1) + exp

⎛
⎜
⎝

l∑

i=1
ai

⎞
⎟
⎠
,

and di ≥ 0 for all i ∈ IT . (This follows by expanding the power series of ex and noting that
∑
aki ≤ (

∑
ai)k for

positive ai .) Inequality (4) then yields

∑

i∈IT

di∕L ≥ ln(m exp(T∕L) exp(R) − (m − 1)) = (T∕L + R) + ln (m − m − 1
exp(T∕L + R)

)

and hence
∑

i∈IT

di ≥ (T − rankL(r)) + L ln (m − m − 1

exp([T − rankL(r)]∕L)
) ,

completing the proof. The second lower bound indicated in the theorem follows from the fact that exp(1+x) ≥ 1+x
for x ≥ 0. ⊓⊔

We note a corollary of this, which also re�ects the number of contributing terms in the sum de�ning rank.

Corollary 2. Let r = (r1,… , rm) ∈ (ℝ ∪ {∞})m and T ≥ mini ri . Let

IT = {i ∣ ri ≤ T} , I� = {i ∣ ri ≤ �(r)} , m′ = |I�| ,

and, for each i ∈ IT , de�ne di = T − ri . Then

∑

i∈IT

di ≥
[
T − rankL(r)

]
+ L ln (m − m′ − 1

exp([T − rankL(r)]∕L)
) .

12

Proof. This follows from the proof of Lemma 1 byworking with the version of Equation (4) that retains dependence
on |I�|. ⊓⊔

For two rank tuples r = (r1,… , rm) and s = (s1,… , sm) in (ℝ ∪ {∞})m, we de�ne r ∨ s to be the tuple
(min(r1, s1),… ,min(rm, sm)).

Lemma 2 (Rank addition). Consider two rank tuples r = (r1,… , rm) and s = (s1,… , sm) in (ℝ ∪ {∞})m. Then

exp(−rank(r ∨ s)∕L) ≤ exp(−rank(r)∕L) + exp(−rank(s)∕L) ; (5)

and moreover, for any � ∈ (0, 1),

rank(r) ≥ rank(r ∨ s) + ln(1∕�)L ⇐⇒ rank(s) ≤ rank(r ∨ s) + ln(1∕(1 − �))L . (6)

Proof. The validity of equation (5) can be observed by simply expanding the rank function according to its de�nition.
For the implication (6), note that if rank(r) ≥ rank(r ∨ s) + ln(1∕�)L then (5) gives us

exp
(
−rank(r ∨ s)∕L

)
≤ � ⋅ exp

(
−rank(r ∨ s)∕L

)
+ exp

(
−rank(s)∕L

)

and hence exp
(
−rank(s)∕L

)
≥ (1 − �) ⋅ exp

(
−rank(r ∨ s)∕L

)
, implying rank(s) ≤ rank(r ∨ s) + ln(1∕(1 − �))L as

desired. ⊓⊔

3.5 Persistence and Liveness of the Parallel Ledgers

We begin with a lemma that establishes relative persistence guarantees under general circumstances: it requires
only a super-additive persistence function and does not require that the transaction space have a con�ict relation.

De�nition 9 (Super-additive functions). Recall that a function f ∶ ℝ → ℝ is convex if, for any x1,… , xn and
�1,… , �n for which �i ≥ 0 and

∑
i �i = 1, we have f(

∑
i �ixi) ≤

∑
i �if(xi). A persistence function p is super-additive

if log p is convex. It follows that p satis�es the inequality

m∏

i=1
p(ri) ≤ p (

1
m

∑

i
ri)

m

. (7)

Note that any exponential persistence function (as de�ned in Section 2.1) is super-additive.

Lemma 3 (Relative persistence of P[D]). Consider P[D], the parallel composition ofm subindependent ledgers,
each with super-additive absolute persistence pA(⋅). For any � > 0 and time T, the probability that an adversary can
inject a transaction tx that does not appear in any of the ledgers so as to achieve rankL(tx) ≤ T − D is no more than

i(D; �, L) ≝ (D + L lnm
�

)
m
⋅ pA (1m (D + L ln (mD + L

D + L)) − �)
m
.

Moreover, the ledger P[D] satis�es the following relative persistence guarantees: for any t0, r ≥ 0,

Pr
[
∃t ≥ t0,L(t) ⌈t0 − r⌉ ⊈ L(t0)

]
≤ p−R (r;L) ≝ i(r; �, L)

and, for the constant r∗ = ln(2)L,

Pr
[
∃t ≥ t0,L(t0) ⌈t0 − (r + r∗)⌉ ⊈ L(t) ⌈t0 − r⌉

]
≤ p+R (r, r

∗;L) ≝ i(r; �, L) .

13

Proof. In light of Lemma 1, in order for a transaction tx to be injected into them ledgers so as to achieve rankL(tx) ≤
T − D, it must appear with a rank tuple (T − d1,… , T − dm) for which

∑

i
di ≥ D + L ln (mD + L

D + L) .

In preparation for applying a union bound, we identify a �nite family of tuples ℛ so that for any tuple of
positive reals x = (x1,… , xm) with

∑
xi ≥ Λ there is a “bounding” tuple r ∈ ℛ so that r ≤ x and

∑
i ri ≈ Λ.

(Here the ≤ indicates that ri ≤ xi for all i.) For two real numbers x and � > 0, de�ne ⌊x⌋� to be the largest
integer multiple of � that is less than or equal to x; that is, ⌊x⌋� ≝ max{k ∈ �ℤ ∣ k ≤ x}. Observe that for any
tuple x = (x1,… , xm) for which

∑
i xi ≥ Λ, the tuple ⌊x⌋� ≝ (⌊x1⌋�,… , ⌊xm⌋�) contains only integer multiples

of �, is coordinate-wise no larger than x, and satis�es Λ − �m ≤
∑

i⌊xi⌋� ≤ Λ. For Λ ≥ 0, let ℛ(Λ, �) ={
r = (r1,… , rm)

|||| ri ∈ �ℤ, ri ≥ 0,Λ − �m ≤
∑

i ri ≤ Λ
}
. With this in place, it follows that if tx appears with ranks

(T − d1,… , T − dm) and T − rankL(tx) ≥ D then there is a tuple

r ∈ ℛ ≝ ℛ (D + L ln [mD + L
D + L] , �)

for which r ≤ d and hence (T − d1,… , T − dm) ≤ (T − r1,… , T − rm).
For a tuple r = (r1,… , rm) consider the event, denoted Er , that the adversary can inject a transaction so that it

appears with rank no more than T − ri in ledger i. By subindependence and the convexity of log pA(⋅),

Pr[Er] ≤
m∏

i=1
pA(ri) ≤ pA (

1
m

m∑

i=1
ri)

m

,

from inequality (7) above. Then we have

Pr
[
tx injected so that rankL(tx) ≤ T − D

]
≤ |ℛ| ⋅max

r∈ℛ
Pr[Er] .

To conclude the argument, invoking the upper bound |ℛ| ≤ ((D + L lnm)∕�)m we see that the probability
Pr[tx injected so that rankL(tx) ≤ T − D] is bounded above by

(D + L lnm
�

)
m
⋅ pA (1m (D + L ln [mD + L

D + L]) − �)
m
.

The bound on p−R (r) follows immediately.
As for p+R (r, ln(2)L;L), consider a transaction tx with rank T − (r + ln(2)L). In order for such a transaction

to rise to rank T − r, some subset S of appearances of the transaction must be removed with su�cient rank to
permit the resulting rank to rise to T − r. In light of Lemma 2, this removal must involve rewriting the underlying
blockchains at ranks corresponding to rank at least T− (r+ ln(2)L) + ln(2)L = T− r, as desired. (This corresponds
to the setting � = 1∕2 in Lemma 2). ⊓⊔

We state a corollary of the previous result which pertains to the problem of injecting a transaction into
a particular subset of the ledgers. This relies directly on Corollary 2, and will be a critical component of the
Θ(m)-ampli�cation results below.

Corollary 3 (Relative persistence of P[D]with targeted insertion). Consider P[D], the parallel composition
ofm subindependent ledgers, each with super-additive absolute persistence pA(⋅). Let ℐ denote a subset ofm

′ of the
ledgers and let D satisfy exp(D∕L) > (m′ − 1)∕(m − 1). Then for any � > 0 and time T, the probability that an
adversary can inject a transaction tx that does not appear in any of the ledgers so as to appear only in ledgers ℐ and
achieve rankL(tx) ≤ T − D is no more than

i(D,m′; �, L) ≝ (D + L lnm
�

)
m′

⋅ pA (
1
m′ (D + L ln (m − m′ − 1

exp(D∕L)
)) − �)

m′

.

14

Proof. This follows directly from the proof of Lemma 3 by suitably adjusting the bound on |ℛ| to the restricted set
of chains and applying the bound from Corollary 2. ⊓⊔

We return to the general setting to formulate a bound on absolute persistence.

Lemma 4 (Absolute persistence of P[D]). Consider P[D], the parallel composition ofm subindependent ledgers,
each with absolute persistence pA(⋅). Then the parallel ledger P[D] has absolute persistence pA(r) ≤ m pA(r−L lnm).

Proof. As above, we let P[D1,… ,Dm] = L(0),L(1),…. Consider a time t0 and r ≥ L lnm. We observe that for any
time t ≥ t0, L(t)⌈t0 − r⌉ is completely determined by the ledgers L(t)i ⌈t0 − r + L lnm⌉. To see this, consider a
transaction tx in the general ledger L(t) of rank s ≤ t0− r. Letting si denote the rank of tx in the constituent ledgers
L(t)i , recall thatmini si ≤ s ≤ t0 − r and, furthermore, that s = rank(tx) depends only on those si for which

si ≤ �(s) = min
i
si + L lnm ≤ s + L lnm ≤ t0 − r + L lnm ;

in particular rank(tx) is determined only by the ledgers L(t)i ⌈t0 − r + L lnm⌉.
To conclude, a persistence failure in L(t)⌈t0 − r⌉ implies a persistence failure in some L(t)i ⌈t0 − r + L lnm⌉ and

thus pA(r) ≤ m pA(r − L lnm), as desired. ⊓⊔

As the ledger PF[D] is identical to P[D] aside from the de�nition of aC, it possesses the persistence guarantees
described in Lemma 3, Corollary 3, and Lemma 4.

Liveness. We now direct our attention to liveness. We separately consider two distinct ways of submitting a
transaction to the parallel ledger, the “fast” and the “slow” mechanisms as de�ned in Section 3.2. Recall that
formally, the “fast” case corresponds to the liveness function of the virtual ledger PF[D], while the “slow” case
corresponds to the liveness of the virtual ledger P[D]. We study these liveness functions next.

De�nition 10 (Census). Consider P[D], and let tx ∈ T be a transaction. The (r, T)-census of tx, denoted by
C(T)r (tx), is the number of ledgers for which tx ∈ L(T)i ⌈r⌉. When T can be inferred from context, we shorten this to the
r-census Cr(tx).

Lemma 5 (Liveness of PF[D]). Consider PF[D], the parallel composition ofm subindependent ledgers, each with
liveness l(⋅). Then, for any t0 and t for which t ≥ t0 + r and any ∈ [0, 1],

Pr[∃tx ∈
⋂

A(t0)i with (t0 + r, t)-census ≤ (1 −)m] ≤
(m
m

)
l(r)m .

It follows that for any ∈ (0, 1) the ledger PF[D] has liveness

l
PF
(r) =

(m
m

)
l (r − L ln (1

1 −))
m

.

Proof. Consider times t ≥ t0 and a delay r ≥ 0. For a parameter ∈ (0, 1) we consider the (census) event that
the transactions in

⋂
i A

(t0)
i appear in at least (1 −)m of the ledgers L(t)i ⌈t0 + r⌉. Observe that in this case, any

transaction tx ∈ At0 has rank rank(tx) ≤ t0 + r + L ln (1∕(1 −)) in the ledger L(t). It follows that the probability
that there exists a transaction in A(t0) that does not appear in L(t)⌈t0 + r + L ln(1∕(1 −))⌉ is no more than(m
m

)
l(r)m. Reparameterizing this (by setting r′ = r + L ln(1∕)) yields the statement of the lemma. ⊓⊔

Lemma 6 (Liveness of P[D]). Consider P[D], the parallel composition ofm ledgers, each with liveness l(⋅). Then

the parallel ledger P[D] has liveness l
P
(r) = l(r − L lnm).

Proof. Consider times t ≥ t0 and a delay r ≥ 0. Observe that if a transaction tx appears in any L(t)i ⌈t0 + r⌉ then it
appears in L(t)⌈t0 + r + L lnm⌉. This yields the statement of the lemma. ⊓⊔

15

3.6 Ledgers with Exponential Security

To achieve guarantees with more immediate interpretability and prepare for our main ampli�cation results, we
consider the most interesting case for persistence and liveness functions: r ↦→ exp(−�r + �) for �, � ≥ 0. Note
that such a function is superadditive according to De�nition 9. The following statements follow directly from
Corollary 3 with � = 1, and from Lemmas 4–6.

Corollary 4 (Relative persistence with targeted insertion). Consider P[D] or PF[D], the parallel composition
of m ledgers, each with absolute persistence pA(r) = exp(−�pr + �p). Let ℐ denote a subset of m′ of the ledgers
and let D satisfy exp(D∕L) > (m′ − 1)∕(m − 1). Then for any � > 0 and time T, the probability that an adversary
can inject a transaction tx that does not appear in any of the ledgers so as to appear only in ledgers ℐ and achieve
rankL(tx) ≤ T − D is no more than

(D + L lnm)m
′
⋅ exp (−�p [D + L ln (m − m′ − 1

exp(D∕L)
)] + (�p + �p)m′) .

Corollary 5 (Absolute persistence). Consider P[D] or PF[D], the parallel composition ofm ledgers, each with
absolute persistence pA(r) = exp(−�pr + �p). Then the ledgers P[D] and PF[D] both have absolute persistence
pA(r) ≤ m�pL+1 exp(−�pr + �p).

Corollary 6 (Liveness). Consider P[D] and PF[D], constructed withm ledgersD that each possess liveness l(r) =
exp(−�lr + �l). Then, for any ∈ (0, 1) and times t0 and t for which t0 + r ≤ t,

Pr[∃tx ∈ A(t0) with (t0 + r, t)-census ≤ (1 −)m] ≤
(m
m

)
exp(−m(�lr − �l))

and the liveness function l
PF
(⋅) of PF[D] satis�es

l
PF
(r) =

(m
m

)
exp (−�lm (r − L ln (1

1 −)) + �lm) .

The liveness function l
P
(⋅) of P[D] satis�es l

P
(r) = m�L exp(−�lr + �l).

Theorem 3 (Restatement of Theorem 2 for P[D]). Consider P[D] for a family of m subindependent ledgers
D = (D1,… ,Dm), each possessing exponential liveness l(r) = exp(−�lr + �l) and (absolute) persistence p(r) =
exp(−�pr + �p). We assume all ledgers are de�ned over a common transaction spaceT with a con�ict relation and

the general ledger is de�ned over the (preemptive) rank function rank
∗
L for a parameter L ≥ m. Then

Pr
[
∃tx ∈ A(t0) not absolutely settled at time t0 + 2r

]
≤ m exp(−Ω(r) + O(L lnm)) .

The constants hidden in theΩ() and O() notation depend on �p, �l, �p, �l, but they are independent ofm, L, and r.

Proof. Assume a transaction tx inserted to (at least) one of the ledgers Li at time t0. By Corollary 6, at any point in
time t ≥ t0+r, we have that tx ∈ L(t)⌈t0+r⌉ except for probability l(r) ≤ exp(−Ω(r)+O(L lnm)). LetT ≥ t = t0+2r.
By Corollary 5, L(T)⌈t0 + r⌉ = L(t)⌈t0 + r⌉ remains persistent except for error pA(r) ≤ m exp(−Ω(r) + O(L lnm)).
The stated bound now follows by union bound over the errors l(r) and pA(r). ⊓⊔

3.7 Fast Settlement with Preemption: Achieving Linear Ampli�cation and Constant Settlement
Time

We show how to achieve Θ(m) ampli�cation for liveness and settlement time. This construction applies to
transaction spaces with a con�ict relation, and focuses on the setting of ledgers with exponential security, as
discussed in the section above.

16

The settlement function. To contrast the constructions against the underlying ledgers, it is convenient to introduce
a settlement function s(r), which provides an error bound for the event that a transaction submitted at a time t0
has not (relatively) settled by time t0 + r. As discussed in Lemma 9, assuming that the underlying ledgers provide
exponential liveness and persistence yields settlement

s(r) ≤ pA(r∕2) + l(r∕2) = exp(−Θ(r)) (settlement of underlying ledgers Di).

Our goal is to demonstrate that the fast ledger PF[D] provides linear ampli�cation, yielding settlement function s
of the form

sPF (r) ≤ exp(−Θ(mr)) + exp(−Θ̃(r + L)) (settlement of the fast ledger PF[D]).

(Here the Θ̃() notation neglects an additive term linear inm but logarithmic in L and r.) Note that this scales as
exp(−Θ(rm)) so long as rm ≤ L.

As discussed earlier, participants are free to use the “slow” logging mechanism (that is, simply logging their
transaction in a single of the underlying ledgers), in which case they will achieve

sP(r) ≤ exp(−Θ(r) + O(L lnm)) (settlement of the slow ledger P[D]).

Thus parameter L determines the transition between fast and slow settlement. For r ≈ L∕m, one achieves fast
settlement; for r ≈ L logm, the system provides settlement guarantees asymptotically consistent with those of the
underlying ledgers themselves.

Theorem 4 (Restatement of Theorem 2 for PF[D]). Let D = (D1,… ,Dm) be a family of m subindependent
dynamic ledgers de�ned over a common transaction spaceT with a con�ict relation, each possessing exponential
liveness l(r) = exp(−�lr + �l) and absolute persistence p(r) = exp(−�pr + �p). Consider the combined dynamic

ledger PF[D] with the (preemptive) rank function rank
∗
L for a parameter L ≥ m. We have

Pr [∃tx ∈ A(t0) not relatively
settled at time t0 + 2r

] ≤ exp(−rΩ(m) + O(m)) + exp (−Ω(r) − Ω(L ln(m)) + O(m ln(L + r)) ,

thus there is a constant C > 1 so that if L ≥ Cm lnm this probability is

exp(−rΩ(m) + O(m)) + exp (−Ω(r) − Ω(L ln(m))) .

The constants hidden in theΩ() and O() notation depend on �p, �l, �p, �l (and constants selected during the proof),
but they are independent ofm, L, and r.

Proof. Consider the set of transactions A(t0). In light of Corollary 6, at time T = t0 + 2r these transactions will
appear in at least (1 −)m of the ledgers with rank t0 + r except with probability

(m
m

)
exp(−�lr + �l)m ≤ exp(−m[�lr − �l − ln(e∕)]) .

Speci�cally the (t0 + r, r0 + 2r)-census of these transactions is at least (1 −)m. Observe that so long as r exceeds
a constant determined by �, �, and , this has the desired scaling.

We now consider the possibility that a transaction from A(t0+2r) (or later) that con�icts with some transaction
in A(t0) can achieve rank less than those in A(t0). We observe that almost all of the (1 −)m ledgers guaranteed
above (that contain the transactions of A(t0) at rank no more than t0 + r) are �xed for all future times up to this
rank. Speci�cally, the probability that more than m of these ledgers are not persistent through rank t0 + r (in the
view of future times T ≥ t0 + 2r) is no more than

(m
m

)
exp(−�pr + �p)m ≤ exp(−m[�pr − �p − ln(e∕)]) .

As above, for a constant r that depends only on �p, �p, and , we achieve the desired scaling.

17

Observe that—except with this small error probability exp(−Ω(mr))—all transactions in A(t0) have rank
∗
L no

more than t0 + r + ln(1∕(1 − 2))L at all future times.
In order for a transaction appearing after t0 + 2r to compete with a transaction in A(t0), then, it must achieve a

rank
∗
L of t0 + r + ln(1∕(1 − 2))L using only 2m of the ledgers. At time T = t0 + 2r, we apply Corollary 4 with the

setting of D = r − ln(1∕(1 − 2))L; further assuming that < 1∕4, this event can occur with probability no more
than

(r + L lnm)2m ⋅ exp (−�p [r − L ln (1
1 − 2) + L ln (m −

2m
1 − 2)] + (�p + �p)2m) .

As we assumem ≤ L, this is no more than

(r + L2)2m exp (−�pr − �pL [ln (m
1 − 4
1 − 2) − 1] + (�p + �p)2m)

= exp
(
−�pr − �pL [ln(m) + O(1)] + O(m ln(L + r)

)
.

By choosing L = Cm logm for large enough C, we obtain the form recorded in the statement of the theorem. ⊓⊔

Remark 1. By setting = 1∕5 in the proof above, we obtain a version that re�ects the leading constants in the
exponent. The three contributing terms are:

exp(−(m∕5)[�lr − (�l + 3)]) Failure ofA(t0) to achieve (t0 + r, t0 +2r)-census
≥ 4m∕5;

exp(−(m∕5)[�pr − (�p + 3)]) Persistence failure exceedingm∕5 of these trans-
actions at rank t0 + r;

exp(−�pr − �pL[ln(
m
3e
)] + m

5
(2�p + 4 ln(r + L)) Persistence failure of remaining rank by inser-

tion into 2m∕5 chains.

3.7.1 Worst-Case Constant-Time Settlement
In the setting where we have the luxury to select m so that it scales with the security parameter of the system,
the construction above provides constant time settlement. Speci�cally, examining the statement (and following
remarks with explicit bounds) of Theorem 2 above, by merely taking r large enough to ensure that �lr ≥ �l + 4
and �pr ≥ �p + 4 the �rst two failure terms above both decay exponentially inm. Likewise, by suitably adjusting
L so that

L ≥
m + (m∕5)(2�p + 4 ln(r + L))

�p ln(m∕3e)
the third term also falls o� exponentially inm. (This is always possible with L = O(m logm).) Thus this achieves
settlement in constant time except with probability negligible in the security parameter, and establishes the
following corollary stated earlier.

Corollary 1 (restated). In the setting of Theorem 2, if the number of chainsm scales with the security parameter
then PF[D] achieves constant-time settlement except with an error probability negligible in the security parameter.

3.7.2 The Coordinated Model
In Appendix E we explore the ampli�cation problem in a stronger setting called the coordinated model. In this
setting, mechanisms are in place to ensure that any transaction attempted to be included into any underlying ledger
is immediately picked up and attempted to be included into all the remaining ledgers as well. This re�ects a setting
where the system provides a fully synchronized transaction submission mechanism, we defer the discussion of the
feasibility of this model to Appendix E. Formally, this is re�ected by assuming that A(t)i = A(t)j for all i, j ∈ [m]

and L(t)i ⊆
⋃

t A
(t)
t .

In the coordinated model, one can adopt a simpler rank function—directly corresponding to the lowest ranks
that the transaction achieves in a linear fraction of the underlying ledgers—and achieve simpler results analogous
to those we provide in the setting without coordination.

18

4 Implementation Considerations

4.1 Achieving Subindependence

Proof of Stake. Subindependence is easier to achieve in the proof-of-stake setting. In PoS, block creation rights
are attributed to protocol participants via a stake-based lottery governed by randomness that is derived as a part of
the protocol. Hence, a straightforward solution for obtaining (sub)independence in a setup withm PoS blockchains
is to derive independent lottery randomness for selecting block creators for each of the chains (even in situations
where these are sampled from the same stake distribution). This approach has been proposed before, e.g., in [22],
and hence we omit the details.

Proof of Work. Blockchain subindependence in the proof-of-work setting can be achieved by generalizing the
2-for-1-PoW idea from [23] where two independent PoW-oracle queries are obtained from a single invocation
of the random oracle. Similarly to [6], we propose a construction for anm-for-1-PoW to achievem PoW-queries
(one for each chain) by invocation of one single random oracle query—however, introducing some dependence
between the m resulting queries. Still, the construction is su�cient to serve as a common PoW to maintain m
subindependent ledgers.

The Construction. Given a hash functionH ∶ {0, 1}∗ → {0, 1}� modeled as a random oracle, we partition a hash
outputY = H(X) into two bit-segmentsY = (Y1, Y2) of size �∕2 each. The �rst segment decides whether the query
is successful (by the test Y1 < T for some threshold T with p ≝ T∕2�∕2), the second segment assigns the invocation
to a particular PoW instance i ∈ [m] (by computing i = 1 + (Y2 mod m)). The single invocation H(X) is then
de�ned to be successful for instance i if it is both successful and is assigned to instance i (i.e.,Y1 < T and i = 1+(Y2
mod m)). Formally, we write PoWm

p (X) ≝ (S1,… , Sm) where Si ≝ (Y1 < T ∧ i = 1 + (Y2 mod m)) ∈ {0, 1} for the
bit vector of successes of the query X with respect to all instances. Note that the random variables Si are fully
determined by X and the internal randomness of the random oracle.

Analysis. We compare PoWm
p (X) to an “ideal” oracle IPoW

m
p′(X) that for each new queryX samples a fresh response

IPoWm
p′(X) ≝ (S̃1,… , S̃m) such that each binary random variable S̃i takes value 1 with probability p′ and all S̃i are

independent; repeated queries are answered consistently. Responses to new queries IPoWm
p′(X) hence also depend

only on the input and the internal randomness of IPoWm
p′ .

Let �(⋅, ⋅) denote the standard notion of statistical distance (sometimes called the total variation distance) of
random variables. Then we have the following simple observation.

Lemma 7. For any x ∈ {0, 1}∗ and p ∈ (0, 1), we have

�
(
PoWm

p (x), IPoW
m
p∕m(x)

)
≤ p2 .

Proof. Fix x ∈ {0, 1}∗ and denote by hw(s) the Hamming weight of a vector s = (s1,… , sm) ∈ {0, 1}m. One can
easily observe that s satis�es Pr

[
PoWm

p (x) = s
]
> Pr

[
IPoWm

p∕m(x) = s
]
if and only if hw(s) = 1. Hence we have

�
(
PoWm

p (x), IPoW
m
p∕m(x)

)
= 1
2

∑

s∈{0,1}m

|||||Pr
[
PoWm

p (x) = s
]
− Pr

[
IPoWm

p∕m(x) = s
]|||||

=
∑

s∈{0,1}m
hw(s)=1

(
Pr

[
PoWm

p (x) = s
]
− Pr

[
IPoWm

p∕m(x) = s
])

≤ m ⋅ [
p
m −

p
m (1 −

p
m)

m−1
] ≤ p[1 − (1 − p)] = p2

as desired, where the last inequality follows by Bernoulli inequality. ⊓⊔

19

The above lemma already justi�es the use of PoWm
p for achieving subindependence in practical scenarios. To

observe this, note that the use of IPoWm
p∕m would lead to full independence of the individual PoW lotteries, and by

Lemma 7 the real execution with PoWm
p will only di�er from this ideal behavior with probability at most Q ⋅ p2,

where Q is the total number of PoW-queries. With current values of p ≈ 10−22 in e.g., Bitcoin2, and the block
creation time adjusting to 10minutes, this di�erence would manifest on expectation in about 1018 years. Note that
any future increase of the total mining di�culty while maintaining the block creation time would only increase
this period.

Nonetheless, in Appendix F we give a more detailed analysis of PoWm
p that shows that, loosely speaking,m

parallel executions of Bitcoin using PoWm
p as their shared PoW oracle achieve "-subindependence for " negligible

in the security parameter.

4.2 Realizing Rank via Timestamped Blockchains

An important consideration when deploying our virtual ledger construction over existing blockchains is how to
realize the notion of rank. We note that typical Nakamoto-style PoS blockchains (e.g., the Ouroboros family, Snow
White) assume a common notion of time among the participants and explicitly label blocks with slot numbers
with a direct correspondence to absolute time. These slot numbers (or, preferably, a notion of common time
associated with each slot number) directly a�ord a notion of rank that provides the desired persistence and liveness
guarantees. To formalize this property, we introduce the notion of a timestamped blockchain.

De�nition 11. A timestamped blockchain is one satisfying the following conventions:

– Block timestamps. Every block contains a declared timestamp.
– Monotonicity. In order for a block to be considered valid, its timestamp can be no less than the timestamps of all
prior blocks in the blockchain. (Thus valid blockchains consist of blocks in monotonically increasing order.)

Informally, we say that an algorithm is a timestamped blockchain algorithm if it calls for participants to broadcast
timestamped blockchains and to “respect timestamps.” More speci�cally, the algorithm satis�es the following:

– Faithful honest timestamping.Honest participants always post blocks with timestamps determined by their local
clocks.

– Ignore future blocks.Honest participants ignore blocks that contain a timestamp which is greater than their local
time by more than a �xed constant. (These blocks might be considered later when the local clock of the participant
“catches up” with the timestamp.)

Asmentioned above, typical Nakamoto-style PoS blockchains are timestamped by design. For PoW blockchains
the situation varies case by case. Some blockchains, such as the long-term second largest project by market cap,
Ethereum, are also timestamped: the monotonicity of timestamps in the blockchain is both mandated by the
whitepaper [8] and enforced by existing implementations. Ignoring future blocks is not prescribed by up-to-date
speci�cation, but is nonetheless implemented. The largest deployed PoW blockchain, Bitcoin, also provides block
timestamps, but these follow a more complex convention which guarantees that the timestamp associated with
each block exceeds themedian timestamp of the previous 11 blocks. Note, then, that one can assign a “logical
timestamp” to block Bt equal to the maximum timestamp on the blocks {Bi ∶ i ≤ t}; these logical timestamps are
then monotonically non-decreasing. Ignoring future blocks is also a part of the Bitcoin protocol.

The timestamping transformation. For blockchains that do not provide timestamps satisfying the above notion
natively, we brie�y describe a straightforward transformation that modi�es any longest-chain rule blockchain
algorithm into a timestamped blockchain.

When applying the transformation, one includes a timestamp with each block as additional metadata and
adapts appropriate alterations to the honest users’ behavior: (i.) honest players maintain a bu�er of “unprocessed”
blocks into which they insert all arriving blocks from the network, (ii.) blocks from the unprocessed bu�er are

2 https://btc.com/stats/diff

20

https://btc.com/stats/diff

processed by the algorithm once the local clock equals or exceeds the block’s timestamp, (iii.) the algorithm’s
native notion of block validity is strengthened so that it additionally demands the monotonicity assumption.

Of course, this transformation may a�ect the security or performance of the underlying blockchain, as it
couples the blockchain dynamics—in particular, the validity rules—to an external notion of time which may not
even be consistent from participant to participant. However, we note that with a modest �-synchrony assumption,
the transformation can be applied to any blockchain that provides security under bounded network delays with
no appreciable e�ect on the ledger properties (assuming that network delays exceed clock discrepancies). To be
more precise, consider the following assumption:

Assumption 1 (�-synchrony assumption) The local clocks of all honest participants are within � of each other.

We remark that the venerable NTP protocol achieves � ≤ 20ms for typical hosts. (Speci�cally, 90% of hosts surveyed
in 2005 by [12] achieve less than 10ms o�set from a global clock; 99.5% achieve less than 100ms o�set.)

To evaluate the e�ect of the transformation above on a typical PoW blockchain (e.g., Bitcoin), we directly
compare the original blockchain algorithm in a setting withmax(∆, �)message delays against the transformed
(timestamped) algorithm in the setting with∆message delays and �-synchrony. Speci�cally, we letB[∆] denote the
setting of the original blockchain algorithm in an environment that guarantees ∆message delays; we let TB[∆; �]
denote the setting of the transformed (timestamped) algorithm in an environment that guarantees ∆message
delays and �-synchrony. Then we observe that any execution ℰ of TB[∆; �] gives rise directly to an execution ℰ′ of
B[max(∆, �)]; thus any attack that can be launched against TB[∆; �] can be launched against B[max(∆, �)], and
TB[∆; �] is at least as secure.

Consider an execution ℰ of TB[∆, �]; we induce from ℰ an execution ℰ′ of B[max(∆, �)] by the following
transformation: (i.) all invalid blocks (according to the timestamped algorithm) are removed entirely from the
execution, (ii.) otherwise, all features of the execution are retained except that blocks in B[max(∆, �)] are delivered
to a participant at the (absolute) time that they are actually “processed” (i.e., moved out of the unprocessed queue)
by the corresponding participant in TB[∆, �]. Note that the exceptions (i.) and (ii.) never a�ect the pool of (valid)
blocks available to an honest party during chain selection; in particular, any block emitted by an honest party in
the execution ℰ can be legally emitted by the corresponding party in ℰ′. It remains to ensure that (honest) block
delivery is never delayed by more thanmax(∆, �). If an honest block is placed in a participant’s “unprocessed”
queue more than � time after it was sent, it is immediately processed (as the two local clocks cannot di�er by more
than �). Otherwise, the block is placed in the queue prior to the elapse of � time and will be processed as soon as
the recipient’s clock has “caught up;” in the worst case, this can result in processing � time after emission. The
bound follows. Thus TB[∆, �] inherits any security properties of B[max(∆, �)].

Timestamped blockchains as dynamic ledgers. Timestamped blockchains can be interpreted as dynamic
ledgers in the natural way: for a �xed party P and time t, the ledger L(t)—corresponding to the index t in the
dynamic ledger—consists of all the transactions present in the blocks constituting the blockchain BP,t held by P at
time t that have a timestamp not greater than t. The rank of each transaction tx ∈ L(t) is then de�ned to be the
timestamp of the earliest block in BP,t containing it. Observe that standard exponentially vanishing error bounds
on the persistence and liveness of such blockchains then translate to exponential failure bounds for the respective
properties of the dynamic ledger.

4.3 A Proof-of-Work Instantiation

In this section we summarize the implications of our results for the proof-of-work setting by proving Corollary 7,
which is a more detailed version of Theorem 1. Recall the de�nition of the (p, q)-�at PoW model from Theorem 1.

Corollary 7. Let � > 0 and let � denote the security parameter. LetD = (D1,… ,Dm) be a family ofm = � dynamic
ledgers induced fromm PoW-based blockchains using PoWm

p as their joint PoW oracle, having a common transaction
space with a con�ict relation, and run by a combined population of n = poly(�) parties in the synchronous (p, q)-�at
PoWmodel, out of which at least a (1∕2 + �)-fraction is honest. Let the assumptions of Lemma 16 be satis�ed, i.e.,
q ≥ �5, pq ≤ �.

21

Consider the combined dynamic ledger PF[D] with the (preemptive) rank function rank
∗
L. Then for PF[D], there

is a constant C > 1 so that if L = Cm lnm, PF[D] achieves constant-time relative settlement except with an error
probability negligible in the security parameter�. (Observe thatwith such choice ofL the system still providesmeaningful
single-chain settlement guarantees.)

Proof (sketch). The statement is an instantiation of Corollary 1 (which is itself based on Theorem 2) to the case of
m = � POW-based ledgers using a joint PoWm

p oracle. The required subindependence of this mining mechanism
follows from Lemma 16. ⊓⊔

5 Robust Combiners for Dynamic Ledgers

We now describe a class of constructions that act as robust combiners [26,25] for dynamic ledgers: they combine
m dynamic ledgers in parallel in such a way that even if all except ℎ of these dynamic ledgers cease to provide any
persistence or liveness guarantees, the combined dynamic ledger still maintains good persistence and liveness.

Our robust combiner works in the coordinated model of Section 3.7.2. Note that while this is a stronger model
than the model considered for our main result in Section 3, it re�ects well a setting where several blockchains with
di�erent Sybil-resistance mechanisms are deployed in a coordinated manner, with the purpose of hedging against
a security failure of some of these blockchains. This is exactly the setting in which a robust combiner would be
applied.

5.1 Robust Combiner De�nition

First, we need to de�ne the notion of a robust combiner for the case of dynamic ledgers.

De�nition 12 (Robust Combiner for Relative Settlement). A virtual ledger construction C[⋅] is a (black-box)
(ℎ,m, pR, l)-robust combiner for relative settlement if for anym dynamic ledgersD ≝ (D1,… ,Dm) such that each
Di provides absolute persistence pA(⋅), relative persistence pR(⋅) and liveness l(⋅), and for any m dynamic ledgers
D̂ ≝ (D̂1,… , D̂m) such that

Pr
[||||
{
i ∶ Di = D̂i

}|||| ≥ ℎ
]
= 1

(whereDi = D̂i means that the random variables take on the same value), the composition C[D̂1,… , D̂m] is a dynamic
ledger providing relative persistence pR = (p+R (⋅), p

−
R (⋅)) and liveness l(⋅) (which may depend on pA(⋅), pR(⋅), l(⋅)).

The above de�nition requires a detailed discussion. Informally, the situation that it captures is an execution of
m blockchain protocols in the presence of an adversary that has two ways of in�uencing this execution: he can
(i) arbitrarily participate in each of them blockchain protocols as usually, and try to disrupt their persistence and
liveness guarantees; and moreover (ii) during the execution, adaptively decide on “corrupting” at most m − ℎ
of the blockchains completely—these blockchains will provide an unreliable state completely controlled by the
adversary.

To see how this intuition is captured formally in De�nition 12, �rst recall that the dynamic ledgers D are
random variables (in fact, consisting of a sequence of ledger random variables), and so are the dynamic ledgers D̂.
The idea behind the de�nition is that the dynamic ledgersD represent the hypothetical evolution of them running
blockchain protocols with an adversary that only exercises its capability (i) above, without fully corrupting any
ledgers according to (ii). The e�ects of this adversary are then contained in the bounds pA(⋅), pR(⋅), l(⋅) per our
assumption on the ledgersD. Now the additional “corruption” power of the adversary is re�ected by switching
fromD to D̂, here D̂ represents the state of them blockchains after the corruptions: observe that them random
variables D̂may arbitrarily depend onD, with the only restriction that at least ℎ of them remain equal to their
counterparts inD. There is no formal object corresponding to an adversary in the above de�nition, we merely
informally call the blockchain with index i corrupted if the event D̂i ≠ Di occurs. We require that if the original
dynamic ledgersD without corruption provide some meaningful persistence and liveness guarantees, then so
must the robust combiner C[D̂] applied to the corrupted ledgers D̂.

22

Note that the de�nition is extremely strong, as it covers a fully adaptive behavior on the side of the ledger-
corrupting adversary. To see this, note that the dynamic ledgers D̂may depend onD as random variables, and
hence the actual content of these ledgers, including the subset of ledgers that are corrupted, may depend adaptively
on the values taken byD, with the only restriction that in any case at least ℎ ledgers must stay untouched.

In fact, the above de�nition is stronger than needed for practice, as it does not prevent the ledger L̂(t1)i in some
corrupted D̂i ≠ Di from depending on some L(t2)j in Dj for t1 < t2, i.e., on a di�erent ledger’s state in the future.
Nonetheless, we adopt this de�nition for its simplicity compared to a procedural description involving adversarial
corruption decisions. Clearly this only makes our combiner’s guarantees stronger.

Finally, note that under the strong corruption capability (ii) described above, it seems impossible to achieve a
dynamic ledger providing meaningful absolute persistence guarantees, hence the de�nition focuses on the relative
persistence and liveness of C[D̂]; this can be seen as an independent application of the relative persistence notion
we introduced.

5.2 The Construction

We considerm dynamic ledgersD ≝ (D1,… ,Dm) over the same transaction space T and sequence of time slots
t ∈ {0, 1,…}, where each time slot t de�nes a tuple of ledgers (L(t)1 ,… ,L

(t)
m) appearing at position t in eachDi . For a

�xed time slot t, we denote by rank(t)i (⋅) the respective rank function of L(t)i . We will be working in the coordinated
model, hence assuming that A(t)i = A(t)j for all i, j ∈ [m] and L(t)i ⊆

⋃
t A

(t)
t .

The combiner dynamic ledger C[D̂] = L
(0)
,L

(1)
,L

(2)
,… , is de�ned over the same sequence of slots t ∈

{0, 1,…}. The combiner construction is parameterized by some estimator function est∶
(
ℝ+ ∪ {∞}

)m
→ ℝ+ ∪ {∞}

instantiated below, we also write Cest[⋅] to highlight the choice of est explicitly. In each slot t, the combiner ledger

L
(t)

is determined by the individual ledgers L̂(t)1 ,… , L̂
(t)
m as

L
(t)
≝ {tx ∈ T ∶ est (̂rank

(t)
1 (tx),… , ̂rank

(t)
m (tx)) <∞} (8)

and the rank function rank
(t)
(⋅) of L

(t)
is de�ned as applying est to the underlying ranks:

rank
(t)
(tx) ≝ est (̂rank

(t)
1 (tx),… , ̂rank

(t)
m (tx)) .

Observe that while the de�nition of L
(t)

given in (8) formally depends on the underlying rank functions ̂rank
(t)
i (⋅),

this is only for convenience of presentation and is not necessary: for any �xed choice of est we make below, the

presence of any transaction tx in L
(t)

can be deduced solely from the presence of tx in the underlying ledgers D̂,
without referring to its actual ranks ̂rank

(t)
i (tx). Hence our mapping C[⋅] is indeed a ledger construction as per

De�nition 4.

5.3 Candidate Estimators

Let x = (x1,… , xm) ∈ (ℝ+ ∪ {∞})m. We will be considering two estimators est∶
(
ℝ+ ∪ {∞}

)m
→ ℝ+ ∪ {∞}:

– the (lower) median, denoted as med(x), and de�ned as med(x) ≝ x′⌈m∕2⌉, where (x
′
1,… , x

′
m) is the non-

decreasing permutation of x;
– the Hodges-Lehmann estimator [27], denoted as hl(x), and de�ned as

hl(x) ≝ med
(
mean

(
{xi , xj}

)
| 1 ≤ i ≤ j ≤ m

)
,

i.e., the median of them(m + 1)∕2means of all one- or two-element sets formed by the values in x. For ease
of notation, we de�ne mean

(
xi , xj

)
= ∞ whenever xi = ∞ or xj = ∞.

23

For the analysis of Cest, we will be interested in two properties of the employed estimator est: its breakdown
point and �-stability, as de�ned next.

De�nition 13 (Breakdown point, �-stability). For a �xedm, let cmax be the maximum c ∈ [m] such that for any
x,y ∈ (ℝ+∪{∞})m that di�er in at most c out of them positions, we havemin(x) ≤ est(y) ≤ max(x). Then we de�ne
the breakdown point of an estimator est∶

(
ℝ+ ∪ {∞}

)m
→ ℝ+ ∪ {∞} as B(est) ≝ cmax∕m. For any � ∈ [0,B(est)],

we also de�ne the �-stability of an estimator est∶
(
ℝ+ ∪ {∞}

)m
→ ℝ+ ∪ {∞}, denoted S�(est), as

S�(est) ≝ sup
x,y∈[0,1]m

|||est (x) − est (y)||| ,

where (x,y) are taken over all pairs ofm-tuples such that they di�er in at most �m out of theirm positions.

We now establish the breakdown point and �-stability of median and the Hodges-Lehmann estimator.

Lemma 8 (Properties of med and hl). The estimatorsmed and hl de�ned overm-tuples satisfy:

(i) B(med) ≥ 1∕2 − 1∕m, and S�(med) ≤ 1.

(ii) B(hl) ≥ 1 − 1∕
√
2 − 1∕m, and S�(hl) ≤ 1 − 1

2

√
1
2
− 2� for � ≤ 1∕4 and S�(hl) ≤ 1 otherwise.

Proof (sketch). The properties of med are easy to observe: clearly as long as only a minority of them input values
in x are changed to lie outside of the interval [min(x),max(x)], the resulting med value will remain within this
interval, establishing both B(med) and the trivial bound on S(med) given in (i).

Moving to B(hl), note that changing c out of them input values a�ects exactly
∑c

i=1m+1− i of the
(m+1

2

)
pairs

entering the median computation. Therefore, exactly half of these pairs are a�ected for c such that

m−c∑

i=1
i = 1

2

m∑

i=1
i ,

which is the case for

c = m ⋅ [1 −
1
2 (

√
2 + 2

m + 1
m2 −

1
m)] ≤ m ⋅ (1 −

1
√
2
) .

By the above observations on B(med), it is necessary that a strict minority of the pairs are a�ected, explaining the
need for an additional subtractive term 1∕m.

Finally, consider S(hl). Fix a tuple x ∈ [0, 1]m and denote the set of corresponding mean pairs that enter the

computation of hl(x) as p = (p1,… , p(m+12)
). For a parameter D ∈ (0, 1) to be determined later, there must exist

and interval of size D such that it contains at least Dm of the values in x, denote the set of these x-values V. Call a
pair pi = mean(xj , xk) V-a�ected if xj ∈ V or xk ∈ V, clearly at least a 1 − (1 − D)2 fraction of values in p are
V-a�ected. On the other hand, observe that all V-a�ected values in p lie within an interval of size (1 + D)∕2.

Observe that if at most a �-fraction of the values in x are di�erent in y, this a�ects at most a 2�-fraction of the
values in r. Then, if a (1∕2 + 2�)-fraction of the values in r is within an interval of some size I, we can conclude
that | hl(x) − hl(y)| ≤ I by the properties of the median. Therefore, choosing D so that

1 − (1 − D)2 = 1
2 + 2� ,

we get D = 1 −
√

1
2
− 2� and hence

I = 1 + D
2 = 1 − 1

2

√
1
2 − 2� ,

concluding the proof. ⊓⊔

24

5.4 Security Analysis

The following theorem quanti�es the security of the robust combiner Cest[⋅] for both estimators med and hl.

Theorem 5. For each estimator est ∈ {med, hl} and any � ∈ [0,B(est)], the construction Cest[⋅] is a ((1 − �) ⋅
m,m, pR, l)-robust combiner for relative settlement in the coordinated model, with

p+R (r
−, r+) = m ⋅ [pA (r− + r+ (s − 1

s)) + l (r
+

s)]

p−R (r
−) = m ⋅

[
pA(r

−) + l(r−)
]

l(r) = m ⋅ l(r)

(9)

where s ≝ S�(est); or alternatively, relying only on relative persistence of the underlying ledgers, with

p+R (r
−, r+) = m ⋅

[
p+R (r

−, r+∕2) + l(r+∕2)
]

p−R (r
−) = m ⋅

[
p−R (r

−∕2) + l(r−∕2)
]

l(r) = m ⋅ l(r) .

(10)

Before proving the theorem, let us discuss the established bounds. Note that the choice of the estimator
(between med and hl) represents a trade-o�: Thanks to the higher breakdown point, med provides us with a lower
necessary threshold ℎ and hence our combiner can tolerate more corrupted ledgers (roughly up tom∕2). On the
other hand, hl exhibits better �-stability for small values of � ≤ 1∕4, and hence as long as the combiner is operated
in a setting where less thanm∕4 underlying dynamic ledgers are fully corrupted, these corruptions lead to smaller
changes in the transaction ranks of the combiner ledger, as evidenced by the bound on p+R in Equation (9). We
only use these two estimators for illustration, one could naturally use other estimators providing di�erent points
on this trade-o� curve, although the necessary threshold ℎ is clearly minimized by the use of med.

Proof (of Theorem 5). LetD = (D1,… ,Dm) and D̂ = (D̂1,… , D̂m) be as in De�nition 12, we also adopt the notation
fromSection 5.2. De�neA to be the randomvariable containing all “corrupted indices”, formallyA ≝

{
i ∶ D̂i ≠ Di

}
,

we know that we always have |A| ≤ m − ℎ.
First, observe that for any transaction tx ∉ A∞ ≝

⋃∞
t=0A

(t) and any time t we have rank(t)i = ∞ for every
i ∈ [m], and hence by the assumption that |A| ≤ m ⋅ B(est) and the de�nition of B(⋅) we have

rank
(t)
(tx) = est (̂rank

(t)
1 (tx), ̂rank

(t)
2 (tx),… , ̂rank

(t)
m (tx)) = ∞

and consequently tx ∉ L
(t)
. On the other hand, for any transaction appearing at time ta (i.e., tx ∈ A(ta)) and any

time t we have rank(t)i ≥ ta for each i ∈ [m] and this implies rank
(t)
(tx) ≥ ta again by the de�nition of B(⋅) and the

size of A.
We start by establishing the simpler bound on p+R given in (10). Fix some t0, r+, r− and consider any transaction

tx ∈ L
(t0) ⌈

t0 − r+ − r−
⌉
. By the above observations, we know that tx ∈ A(ta) for some ta ≤ t0 − r+ − r−. Therefore,

by the liveness guarantees provided by the dynamic ledgersD and a union bound, we get that for any i ∈ [m],
tx ∈ L(t0)i

⌈
t0 − r− − r+∕2

⌉
except with an error probability ofm ⋅ l(r+∕2). Hence, by invoking relative persistence,

we get that for any t ≥ t0 and i ∈ [m], tx ∈ L(t)i ⌈t0 − r−⌉ except with an error probability of m ⋅ p+R (r
−, r+∕2).

By de�nition of B(⋅) and by |A| ≤ m ⋅ B(est), this again implies rank
(t)
≤ t0 − r−, establishing the bound on p+R

from (10).

Now we prove the bound on p+R in (9). Again, �x some t0, r+, r− and tx ∈ L
(t0) ⌈

t0 − r+ − r−
⌉
, we have

tx ∈ A(ta) for some ta ≤ t0 − r+ − r−. Now, applying the liveness guarantees for r+∕s, we get that for all i ∈ [m],

25

tx ∈ L(t0)i
⌈
t0 − r− − r+((s − 1)∕s)

⌉
except with a total error probability ofm ⋅l(r+∕s). Invoking absolute persistence

with parameter r−+r+((s−1)∕s), we observe that for any t ≥ t0 and i ∈ [m] the value rank(t)i (tx)will remain equal

to rank(t0)i (tx) except with an additional error probability pA(r
− + r+((s − 1)∕s)). Therefore, the value rank

(t)
(tx)

will only di�er from rank
(t0)
(tx) due to “ledger corruptions”, and by the stability of est, this will be by at most L ⋅ s,

where L is the size of the smallest interval that contains all the values rank(t0)i (tx). Due to the liveness assumption

invoked above, we have L ≤ r+∕s and hence |rank
(t0)
(tx) − rank

(t)
(tx)| ≤ r+ as desired.

Moving to the p−R -bound in (9), �x again some t0, r+, r− and consider a transaction tx ∉ L
(t0)

. This implies
that, as long as r−-liveness is not violated in any of the underlying dynamic ledgersD (a bad event that occurs
with probability at mostm ⋅ l(r−)), we must have rank(t0)i (tx) > t0 − r− for all i ∈ [m], as if it was not the case, we
would necessarily have tx ∈ A(ta) for ta ≤ t0 − r− and hence rank(t0)i (tx) ≤ t0 for all i ∈ [m] and consequently
̂rank

(t0)(tx) <∞, a contradiction. We can therefore conclude that rank(t0)i (tx) > t0 − r− for all i ∈ [m] except with
a total error probabilitym ⋅ l(r−). Similarly, except with errorm ⋅ pA(r

−) we get by absolute persistence that for
any t ≥ t0 and any i ∈ [m] we have L(t0)i ⌈t0 − r−⌉ = L(t)i ⌈t0 − r−⌉ and hence also rank(t)i (tx) > t0 − r−, as required
for the second part of relative persistence of C[D]. For C[D̂], the bound again follows by |A| ≤ m ⋅ B(est) and the
de�nition of B(⋅).

The argument for the p−R -bound in (10) is similar, we �rst argue that for any transaction tx ∉ L
(t0)

we have
tx ∉ L(t0−r

−∕2)
i for all i ∈ [m] except with a total error probabilitym ⋅ l(r−∕2). If this was not the case for some

i ∈ [m], this would mean that tx ∈ A(ta) for some ta ≤ t0 − r−∕2, and hence the absence of tx in L
(t0)

would be a
violation of (r−∕2)-liveness in some of the dynamic ledgers inD. Given that tx ∉ L(t0−r

−∕2)
i for all i ∈ [m], we can

apply the relative persistence of Di with t′0 ≝ t0 − r−∕2 and (r−)′ ≝ r−∕2 to conclude that except with probability
m ⋅ p−R (r

−∕2), we also have tx ∉ L(t)i ⌈t0 − r−⌉ for any t ≥ t0 − r−∕2, as required for the second part of relative
persistence of C[D]. For C[D̂], the bound again follows by |A| ≤ m ⋅ B(est) and the de�nition of B(⋅).

Finally, both liveness bounds follow trivially from the liveness of the underlying dynamic ledgers, and the
assumption |A| ≤ m ⋅ B(est). ⊓⊔

References

1. S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and applications. Theory of
Computing, 8(6):121–164, 2012.

2. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 913–930. ACM
Press, Oct. 2018.

3. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros chronos: Permissionless clock synchronization via
proof-of-stake. Cryptology ePrint Archive, Report 2019/838, 2019. https://eprint.iacr.org/2019/838.

4. C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable treatment. In J. Katz
and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, Aug. 2017.

5. V. Bagaria, S. Kannan, D. Tse, G. C. Fanti, and P. Viswanath. Deconstructing the blockchain to approach physical limits,
2018. arXiv preprint 1810.08092.

6. V. K. Bagaria, S. Kannan, D. Tse, G. C. Fanti, and P. Viswanath. Prism: Deconstructing the blockchain to approach physical
limits. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages 585–602. ACM Press, Nov. 2019.

7. D. Boneh and X. Boyen. On the impossibility of e�ciently combining collision resistant hash functions. In C. Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 570–583. Springer, Heidelberg, Aug. 2006.

8. V. Buterin. A next-generation smart contract and decentralized application platform. 2009. Online manuscript.
9. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages 136–145.

IEEE Computer Society Press, Oct. 2001.
10. J. Chen and S. Micali. Algorand: A secure and e�cient distributed ledger. Theoretical Computer Science, 777:155–183,

2019.

26

https://eprint.iacr.org/2019/838
http://arxiv.org/abs/1810.08092
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf

11. B. Cohen and K. Pietrzak. The chia network blockchain, 2019. Online manuscript.
12. P. M. Cristina D. Murta, Pedro R. Torres Jr. Characterizing quality of time and topology in a time synchronization network.

In Proceedings of the Global Telecommunications Conference (GLOBECOM). IEEE, 2006.
13. P. Daian, R. Pass, and E. Shi. Snow white: Robustly recon�gurable consensus and applications to provably secure proof of

stake. In I. Goldberg and T. Moore, editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, Feb. 2019.
14. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake

blockchain. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, Apr. / May 2018.

15. T. Dinsdale-Young, B. Magri, C. Matt, J. Nielsen, and D. Tschudi. Afgjort: A partially synchronous �nality layer for
blockchains. In Security and Cryptography for Networks - 12th International Conference, SCN 2020, Amal�, Italy, September
14-16, 2020, volume 12238 of Lecture Notes in Computer Science. Springer, 2020.

16. Y. Dodis, R. Impagliazzo, R. Jaiswal, and V. Kabanets. Security ampli�cation for interactive cryptographic primitives. In
O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 128–145. Springer, Heidelberg, Mar. 2009.

17. S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková. Multi-party virtual state channels. In Y. Ishai and V. Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 625–656. Springer, Heidelberg, May 2019.

18. S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun: Virtual payment hubs over cryptocurrencies. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 327–344, 2019.

19. S. Dziembowski, S. Faust, and K. Hostáková. General state channel networks. In D. Lie, M. Mannan, M. Backes, and
X. Wang, editors, ACM CCS 2018, pages 949–966. ACM Press, Oct. 2018.

20. M. Fischlin and A. Lehmann. Security-amplifying combiners for collision-resistant hash functions. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 224–243. Springer, Heidelberg, Aug. 2007.

21. M. Fitzi, P. Gaži, A. Kiayias, and A. Russell. Parallel chains: Improving throughput and latency of blockchain protocols via
parallel composition, 2018. Cryptology ePrint Archive, Report 2018/1119.

22. M. Fitzi, P. Gaži, A. Kiayias, and A. Russell. Proof-of-stake blockchain protocols with near-optimal throughput, 2020.
Cryptology ePrint Archive, Report 2020/037.

23. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, Apr. 2015.

24. P. Gaži andU.Maurer. Free-start distinguishing: Combining two types of indistinguishability ampli�cation. In K. Kurosawa,
editor, ICITS 09, volume 5973 of LNCS, pages 28–44. Springer, Heidelberg, Dec. 2010.

25. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners for oblivious transfer and other primitives.
In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, May 2005.

26. A. Herzberg. On tolerant cryptographic constructions. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
172–190. Springer, Heidelberg, Feb. 2005.

27. J. L. Hodges and E. L. Lehmann. Estimates of location based on rank tests. Ann. Math. Statist., 34(2):598–611, Jun 1963.
28. T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas. Ouroboros crypsinous: Privacy-preserving proof-of-stake. In 2019 2019

IEEE Symposium on Security and Privacy (SP), pages 984–1001, Los Alamitos, CA, USA, may 2019. IEEE Computer Society.
29. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In

J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, Aug.
2017.

30. S. Lerner. Dagcoin draft, 2015. Online manuscript.
31. M. Luby and C. Racko�. Pseudo-random permutation generators and cryptographic composition. In 18th ACM STOC,

pages 356–363. ACM Press, May 1986.
32. U. M. Maurer, Y. A. Oswald, K. Pietrzak, and J. Sjödin. Luby-Racko� ciphers from weak round functions? In S. Vaudenay,

editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 391–408. Springer, Heidelberg, May / June 2006.
33. U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak make one strong. In M. Naor, editor,

TCC 2004, volume 2951 of LNCS, pages 410–427. Springer, Heidelberg, Feb. 2004.
34. U. M. Maurer, K. Pietrzak, and R. Renner. Indistinguishability ampli�cation. In A. Menezes, editor, CRYPTO 2007, volume

4622 of LNCS, pages 130–149. Springer, Heidelberg, Aug. 2007.
35. U. M. Maurer and S. Tessaro. Computational indistinguishability ampli�cation: Tight product theorems for system

composition. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 355–373. Springer, Heidelberg, Aug. 2009.
36. S. Myers. E�cient ampli�cation of the security of weak pseudo-random function generators. Journal of Cryptology,

16(1):1–24, Jan. 2003.
37. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Online manuscript.
38. S. Park, A. Kwon, G. Fuchbauer, P. Gazi, J. Alwen, and K. Pietrzak. Spacemint: A cryptocurrency based on proofs of space.

In Proceedings of the 22nd International Conference on Financial Cryptography and Data Security (FC). Springer, 2018.
39. R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asynchronous networks. In J. Coron and J. B.

Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, Apr. / May 2017.

27

https://www.chia.net/assets/ChiaGreenPaper.pdf
https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2020/037
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
http://bitcoin.org/bitcoin.pdf

40. R. Pass and E. Shi. Hybrid Consensus: E�cient Consensus in the Permissionless Model. In A. W. Richa, editor, 31st Inter-
national Symposium on Distributed Computing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 39:1–39:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

41. R. Pass and E. Shi. The sleepy model of consensus. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017, Part II, volume
10625 of LNCS, pages 380–409. Springer, Heidelberg, Dec. 2017.

42. R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant con�rmation. In J. B. Nielsen and V. Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 3–33. Springer, Heidelberg, Apr. / May 2018.

43. K. Pietrzak. Composition does not imply adaptive security. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 55–65. Springer, Heidelberg, Aug. 2005.

44. K. Pietrzak. Non-trivial black-box combiners for collision-resistant hash-functions don’t exist. In M. Naor, editor,
EUROCRYPT 2007, volume 4515 of LNCS, pages 23–33. Springer, Heidelberg, May 2007.

45. J. Poon and T. Dryja. The bitcoin lightning network: Scalable o�-chain instant payments, 2016. Online manuscript.
46. Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A fast and scalable cryptocurrency protocol, 2016. Cryptology

ePrint Archive, Report 2016/1159.
47. S. Vaudenay. Decorrelation: A theory for block cipher security. Journal of Cryptology, 16(4):249–286, Sept. 2003.
48. A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd FOCS, pages 80–91. IEEE

Computer Society Press, Nov. 1982.

A Comparison to Prism

In this appendix we give a detailed comparison of our results to the Prism protocol [6]. Note that an earlier version
of our work [21] appeared on the IACR eprint archive concurrently to the �rst version of Prism [5] on arXiv (within
about a month of each other). Prism was also published in the IACR eprint archive at roughly the same time but,
in contrast to the arXiv version, this entry is not updated anymore.

As described in Section 1.2, the Prism paper and our work aim at somewhat di�erent goals. Prism gives a
concrete PoW-based ledger protocol and an analysis that accounts for both throughput and latency. One advantage
of such a concrete construction is that it can permit protocol-speci�c optimizations (e.g., participant chains with
speci�c protocol functions). In contrast, our work optimizes latency only, with the aim of giving a general result
applicable in a wide variety of scenarios.

Our focus on generality motivates the language of abstract ledgers, which we view as an independent contribu-
tion. Owing to this modeling approach, our parallel ledger construction is fully blackbox: it applies to any tuple of
ledgers (based on PoW, PoS, DAG, . . .) satisfying the generic subindependence assumption of Def. 7. The �nal rank
of a transaction is then solely determined by a function of the transaction’s ranks in the individual ledgers. This
allows for generic use and for a simpler security analysis. In contrast, [6] uses a speci�c ancillary construction that
extends a Nakamoto-style PoW blockchain (their proposer chain). On top of the proposer chain, parallel voter
blockchains collect votes on the e�ective order of the proposer blocks—thus reordering the proposer chain. This
two-level approach has two drawbacks: it gives weaker worst-case guarantees (see below); and security seems
inherently di�cult to analyze (cf. the proofs in the Appendix of [5] that only consider the synchronous setting).

Next, our composition technique guarantees constant-time (in the network delay) settlement with negligible
error given that the ledgers satisfy standard exponential security (Section 3.7.1). The construction in [6] is restricted
to (exponentially secure) Nakamoto-style PoW blockchains (as formed by their proposer blocks), and constant-
time settlement is only guaranteed in expectation while worst-case settlement time still grows with the security
parameter. We remark that our construction bears the same advantage also when compared to the Algorand PoS
protocol [10].

Finally, our analysis highlights general conditions (subindependence) under which such parallel composi-
tion may be proven secure. As remarked earlier, some form of an independence assumption is necessary for
ampli�cation-type results. We demonstrate in Section 4.1 how to achieve subindependence in both the PoW
and PoS settings. The analysis of [5] is based on the stronger assumption that the underlying ledgers are fully
independent (cf. [5], the assumption is implicit in, e.g., Appendix D, 2nd paragraph, and in the proof of Lemma
E.1). However, one issue in the analysis there is that their PoW construction does not in fact o�er independence:
the parallel voter chains share the same PoW instance which can only be successful for one chain (cf. Appendix A,
pseudocode, procedure PoWMining()). As a side note, it seems possible to us that this gap in their proof can be
�xed by transitioning their analysis to focus on subindependence using our proof methodology.

28

https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://eprint.iacr.org/2016/1159
http://eprint.iacr.org/2016/1159

B The Space of UTXO Transactions

In Section 2.1 we gave a very general de�nition of a transaction space. While our results can be applied in
signi�cantly more generality, we are primarily interested in capturing so-called UTXO-based ledgers, where each
transaction consumes some of the currently available unspent transaction outputs (UTXOs) as its inputs, and
produces new UTXOs as its outputs. We now formalize this special case. These “UTXO-transaction spaces” have a
con�ict relation of a particularly well-structured form, described next.

De�nition 14 (Directed hypergraphs). For a set V, we say that a pair (H,T), whereH and T are disjoint subsets
of V, is a directed hyperedge over V. Note that a hyperedge (H,T) is an ordered object; the subsetH is called the head
of the edge; the subset T is called the tail. We say that an edge is degenerate if either H = ∅ or T = ∅. A directed
hypergraph is a pair (V, E), where V is a �nite set of vertices and E is a set of directed hyperedges over V.

De�nition 15 (UTXO-Transaction Space). A UTXO-transaction space is a tuple (V,T, �) such that (V,T) is a
directed hypergraph, � ∈ V is a �xed “genesis vertex” of V, and the only degenerate hyperedge in V is (∅, {�}).3 We
refer to the edgesT as transactions.

The setT of a UTXO transaction space (V,T, �), gives rise to a transaction space in the sense of De�nition 1 by
adopting an arbitrary order relation ≺lex; it has the natural con�ict relation C given by the rule

(
(H1, T1), (H2, T2)

)
∈ C ⇔ H1 ∩H2 ≠ 0

(which is to say that two transactions are con�icting if their heads are not disjoint).

We consider a canonical predicate deciding the validity of a UTXO-transaction included in a ledger, evaluated
as follows.

De�nition 16 (UTXO-transaction validity). A transaction tx = (H,T) ∈ L is valid in L if: (1) all vertices from
H appear in the tail of some preceding transaction that is valid; and (2) no valid tx′ ∈ conf lict(tx) precedes tx in L.

Note that the validity of all transactions in a given ledger L can always be decided inductively.

C Details on Transaction Settlement

Recall the de�nitions of absolute and relative settlement from Section 2.3. Here we establish the simple direct
relationship between each notion of settlement and the respective persistence property.

Lemma 9. Consider a dynamic ledger D ≝ L(0),L(1),… with pA(⋅)-absolute persistence and l(⋅)-liveness, and a
transaction tx ∈ A(�). For any rl, rp ≥ 0,

Pr
[
tx is not settled at time T ≥ � + (rl + rp)

]
≤ pA(rp) + l(rl) .

Proof. Consider De�nition 3 with respect to a transaction tx ∈ A(�). Applying liveness for r = rl, t0 = � and t = T,
and (absolute) persistence for r = rp and t0 = T yields the result. ⊓⊔

Lemma 10. Consider a dynamic ledgerD ≝ L(0),L(1),… with relative persistence parameterized by p+R (⋅) and p
−
R (⋅),

and l(⋅)-liveness. For any transaction tx ∈ A(�) and for any rl, r+, r− ≥ 0,

Pr [tx not relatively settled at time
T ≥ � + rl + r+ + r−] ≤ l(rl) + p+R (r

−, r+) + p−R (r
−) .

Note that the lemma applies to the general setting of transaction spaces without a con�ict relation.
3 More generally, one could allow other degenerate hyperedges to model unusual transactions, such as the so-called coinbase
transactions in Bitcoin. We forego this option for the sake of simplicity.

29

Proof. Consider De�nition 3 with respect to a transaction tx ∈ A(�). Applying liveness for r = rl, t0 = �, and
t = T, and relative persistence for r+, r− and t0 = T yields the result. ⊓⊔

Finally, let us discuss the usefulness of relative settlement. As sketched in Section 2.3, this is particularly clear
in the concrete case of UTXO transactions. If a UTXO-transaction tx = (H,T) satis�es that:

(i) all vertices inH appear in the tail of a valid, absolutely settled transaction,
(ii) tx itself is relatively settled, and �nally,
(iii) no transactions from conf lict(tx) are currently part of the ledger;

then the validity of tx can be reliably decided and is guaranteed not to change in the future. For a di�erent
transaction space, conditions (i) and (iii) need to be replaced by their semantic analogues. For example, in an
account-based cryptocurrency ledger, condition (i) could be replaced by requiring that the spending account of tx
is su�ciently funded by absolutely settled transactions, and condition (iii) would require that no “competing”
transaction spending from the same account is currently present in the ledger. Finally, in the most general case of
a smart contracts-supporting ledger, condition (iii) would have to require that no reordering of the transactions
that are currently present in the ledger (but not absolutely settled) could invalidate tx.

D Modeling Consensus Protocols: From Local to Global Persistence

Our major setting of interest arises when dynamic ledgers are used to model blockchain consensus protocols. In
this case, the chain held by each (honest) party P ∈ P is modeled as a dynamic ledgerDP = L(0)P ,L(1)P ,…, satisfying
the properties of persistence and liveness from De�nition 3. However, this by itself cannot su�ce to capture
the desired goals of blockchain protocols, as it does not imply any consensus across parties, hence an additional
assumption is needed.

If one is interested in a formal treatment of such global statements, there is a simple modi�cation of our
ledger de�nition that would allow to formulate such an assumption, at a cost of a slightly more cumbersome
notation. Namely, De�nition 3 could be adjusted to also require (along with the functions pA, p

+
R , p

−
R in item 2.)

the existence of a single ideal ledger I that would capture the ledger to which the dynamic ledger D is converging.
More concretely, the property of absolute persistence would change to asking that L(t) ⌈t0 − r⌉ = I ⌈t0 − r⌉, with
the same quanti�cation as in Def. 3. Relative persistence and liveness would stay unchanged. For completeness,
we fully spell out this alternative de�nition of a dynamic ledger below.

De�nition 17 (Dynamic ledger converging to I). Consider a sequence of time slots t ∈ {0, 1,…} and any se-
quence of sets of transactionsA(0), A(1),… (each a subset of a common transaction spaceT) denoting the transactions
that arrive at each time slot. A dynamic ledger is a sequence of random variablesD ≝ L(0),L(1),…, that satisfy the
following properties parameterized by functions p+R ∶ (ℝ

+)2 → [0, 1] and p−R , pA, l ∶ ℝ
+ → [0, 1]:

Liveness. For every r ≥ 0, t0 ≥ 0, and t ≥ t0 + r,

Pr
[
A(t0) ⊈ L(t) ⌈t0 + r⌉

]
≤ l(r) .

Absolute Persistence. There exists a ledger I such that for all r, t0 ≥ 0,

Pr
[
∃t ≥ t0,L(t) ⌈t0 − r⌉ ≠ I ⌈t0 − r⌉

]
≤ pA(r) .

Relative Persistence. For each r−, r+, t0 ≥ 0:

Pr
[
∃t ≥ t0,L(t0)

⌈
t0 − r− − r+

⌉
⊈ L(t) ⌈t0 − r−⌉

]
≤ p+R (r

−, r+) ,

Pr
[
∃t ≥ t0,L(t) ⌈t0 − r−⌉ ⊈ L(t0)

]
≤ p−R (r

−) .

Given the above modi�ed de�nition, we now formulate an analogue of the absolute persistence property that
is “global”, as it spans the views of all participating honest parties and, informally speaking, requires that they
converge to the same ideal ledger I.

30

De�nition 18 (Global Absolute Persistence). Consider a set of dynamic ledgers {DP}P∈P (representing the views
of a blockchain protocol by a set of honest parties P) such that eachDP = L(0)P ,L(1)P ,…. We say that {DP}P∈P satisfy
pGAP(⋅)-global absolute persistence if there is a ledger I and a function pGAP ∶ ℝ

+ → [0, 1] such that for all r, t0 ≥ 0,

Pr
[
∃P ∈ P, ∃t ≥ t0 ∶ L(t)P ⌈t0 − r⌉ ≠ I ⌈t0 − r⌉

]
≤ pGAP(r) .

Note that this is exactly the property that secure blockchain protocols provide to us, and under this additional
assumption, the “local” statements proven about the views of a single party (as we provide in this paper) can be
lifted to their “global” counterparts as discussed next.

We call a constructionC[⋅] pr(⋅)-pre�x-respecting if at any time t ≥ t0, the resulting dynamic ledgerC[D1,… ,Dm]
up to rank t0−r only depends on the current state of the underlying dynamic ledgersD1,… ,Dm up to rank t0−pr(r).
A formal de�nition follows.

De�nition 19 (Pre�x-respecting constructions). A construction C[⋅] is called pr(⋅)-pre�x-respecting if for any
twom-tuples of ledgersD = (D1,… ,Dm) and D̂ = (D̂1,… , D̂m) and for each t ≥ t0 ≥ r ≥ 0,

(
∀i ∈ [m]∶ L(t)i ⌈t0 − pr(r)⌉ = L̂(t)i ⌈t0 − pr(r)⌉

)
⇒

(
L(t) ⌈t0 − r⌉ = L̂(t) ⌈t0 − r⌉

)
,

where the ledgers L(t) and L̂(t) are the t-th elements of the dynamic ledgers C[D] and C[D̂], respectively.

Lemma 11 (Global absolute persistence for pre�x-respecting constructions). Consider any parallel execu-
tion ofm blockchain protocols by a set of partiesP and letDi,P denote the dynamic ledger representing the local view of
the i-th ledger by some party P ∈ P. Let C[⋅] be a pr(⋅)-pre�x-respecting construction. If for each i ∈ [m] the set of local
views {Di,P}P∈P satis�es pGAP(⋅)-global absolute persistence then the set of local views {DP ≝ C[D1,P,… ,Dm,P]}P∈P
satis�esm ⋅ pGAP(pr(⋅))-global absolute persistence.

Proof. De�ne I ≝ C[I1,… , Im], where Ii for i ∈ [m] is the ideal ledger guaranteed by the global absolute persistence
of {Di,P}P∈P. Let L

(t)
P and L(t)i,P denote the t-th ledger in the dynamic ledgers DP and Di,P, respectively. Fix some

t0, r ≥ 0, we have

Pr
[
∃P ∈ P, ∃t ≥ t0 ∶ L(t)P ⌈t0 − r⌉ ≠ I ⌈t0 − r⌉

]
≤ Pr

[
∃P ∈ P, ∃t ≥ t0, ∃i ∈ [m]∶ L(t)i,P ⌈t0 − pr(r)⌉ ≠ Ii ⌈t0 − pr(r)⌉

]

≤ m ⋅ pGAP(pr(r)) ,

where the �rst inequality follows from the pre�x-respecting property of C[⋅], the second one follows by union
bound. ⊓⊔

We observe that the constructions we propose in Sections 3 and 5 are pre�x-respecting.

Lemma 12. The construction P[⋅] of De�nition 8 is pr(⋅)-pre�x-respecting for pr(r) ≝ r − L lnm. The construction
Cmed[⋅] of Section 5.2 is pr(⋅)-pre�x-respecting for pr(r) ≝ r.

Proof. The proof for P[⋅] is analogous to the proof of Lemma 4. For Cmed[⋅], observe that, by the properties of
med(⋅), a transaction tx appears in a Cmed-combination ofm ledgers with a rank at most t̃ if and only if it appears
with a rank at most t̃ in at least half of the underlying ledgers, and in that case its rank is fully determined by its
rank in these ledgers. ⊓⊔

These results allow us to better understand the settlement guarantees provided by the security-amplifying
combiner we give in Section 3. In an execution ofm parallel blockchain protocols, any party interacting with them
as required by the construction P[⋅] can bene�t from the fast relative settlement guarantees, as proven in Section 3,
with respect to its local view. Moreover, based on Lemmas 11 and 12, it is also guaranteed that all other parties’
local views will eventually arrive at the same ledger as per the global absolute persistence property.

Note that in the case of Cmed[⋅], we would be actually interested in “global” guarantees in a stronger setting
with full-ledger corruptions. In that setting, no global absolute persistence (or even absolute persistence) can be
possibly achieved; Section 5 shows how to obtain relative persistence. To lift these statements to the global setting,
one could de�ne global relative persistence along the lines of Def. 18, in the setting with full ledger corruptions,
and revisit the above argument; we omit this treatment. Similarly, one could de�ne and study a global version of
liveness.

31

E Linear Latency Ampli�cation in the Coordinated Model

We consider the variant of composing m parallel ledgers with coordination (cf. Section 3.7.2), assuming the
existence of a mechanism to ensure that any transaction attempted to be included in one of the underlying ledgers
is immediately picked up and attempted to be including in all other underlying ledgers. This is re�ected by
assuming that A(t)i = A(t)j for all i, j ∈ [m] and L(t)i ⊆

⋃
s≤t A

(s)
i .

Note that, now, in contrast to the general case in Section 3, all ledgers’ mempools must be reconciled to enforce
the complete logging of adversarial transactions as, otherwise, an adversary could include transactions to particular
ledgers by bypassing some of the mempools. In practice, mempool reconciliation can be achieved by the rule that
any transaction observed in an individual ledger is implicitly considered and communicated as part of the other
ledgers’ mempools. In the sequel, we make the assumption that the mempools are respectively reconciled, and
that the liveness function additionally captures any delays caused by the underlying reconciliation process (which,
in the above example, is possible with an additional liveness delay linear in the network delay).

The guarantee that every transaction will always be logged in all ledgers gives way for simpler rank functions
than the one proposed in De�nition 8, e.g., linear instead of exponential.

As an examplewe present a constructionwith a rank function that is based onCensus as de�ned inDe�nition 10:
the r-census of a transaction tx, Cr(tx), is the number of ledgers for which tx ∈ Li⌈r⌉.

De�nition 20 (Construction PC[D]).We de�ne PC[D1,… ,Dm] (or PC[D]) by

aC(A
(t)
1 ,… , A

(t)
m) = A(t)1 =⋯ = A(t)m , tC(L

(t)
1 ,… ,L

(t)
m) ⊆

⋃

i
L(t)i ,

and the rank function rank as follows: For a tuple r = (r1,… , rm) ∈ (ℝ+ ∪ {∞})m and a constant ∈ (0, 1), de�ne

rank(r) ≝ min
i∈[m]

{
ri ∶

||||
{
j ∈ [m] ∶ rj ≤ ri

}|||| ≥ (1 −)m
}
,

if this minimum exists, and rank(r) ≝ ∞, otherwise. We overload the notation to apply to transactions: Let tx be
a transaction appearing with rank ri in ledger L(t)i for some �xed t. Then we can express the rank function as the
transaction’s minimal rank ri such that its r-census is at least (1 −)m:

rank(tx) = {
∞ if ∄r ∈ ℝ+ ∶ Cr(tx) ≥ (1 −)m ,
mini

{
ri ∶ Cri (tx) ≥ (1 −)m

}
otherwise . (11)

We now demonstrate liveness, absolute persistence, and relative persistence for the combined ledger with rank
function rank.

Lemma 13 (Liveness of PC[D]). Consider the parallel composition ofm subindependent ledgers in the coordinated
model, each with liveness l(⋅). Then the combined ledger PC[D] has liveness

l(r) ≤
(m
m

)
l(r)m .

Proof. Consider times t ≥ t0 and a delay r ≥ 0. For a transaction not to appear in the combined ledger L(t)⌈t0 + r⌉,
it must appear in strictly less than (1 −)m of the ledgers L(t)i ⌈t0 + r⌉. The probability that this happens is no more
than stated. ⊓⊔

Lemma 14 (Absolute Persistence of PC[D]). Consider the parallel composition ofm subindependent ledgers in
the coordinated model, each with absolute persistence pA(⋅). Then the combined ledger PC[D] has absolute persistence

pA(r) ≤ m pA(r) .

32

Proof. Consider a time t0 and any r > 0. For any time t ≥ t0, L(t)⌈t0 − r⌉ is completely determined by the ledgers
L(t)i ⌈t0 − r⌉. A persistence failure in L(t)⌈t0 − r⌉ thus implies a persistence failure in at least one of the ledgers
L(t)i ⌈t0 − r⌉, and the lemma follows by the union bound. ⊓⊔

Lemma 15 (Relative Persistence of PC[D]). Consider the parallel composition ofm subindependent ledgers in
the coordinated model, each with absolute persistence pA(⋅) and liveness l(⋅). Then, for any choice of r

− and r+, the
combined ledger of PC[D] has relative persistence with respect to

p+R (r
−, r+) ≤

(m
m

)
max(pA(r

+ + r−), l(r+))m∕2 . (12)

and
p−R (r

−) ≤
(m
(1 −)m

)
pA(r

−)(1−)m . (13)

Proof. Consider times t ≥ t0 and any delay r = r+ + r− ≥ 0, and, �rst consider the event (corresponding to
p+R (r

−, r+)) that
L(t0)⌈t0 − r− − r+⌉ ⊈ L(t)⌈t0 − r−⌉ . (14)

Every transaction inL(t)⌈t0−r−−r+⌉ implies that the same transaction exists in (1−)m ledgersL(t)i ⌈t0−r−−r+⌉.
Considering liveness with respect to parameter r+, we can conclude that the transaction exists in any other
particular ledger L(t)j ⌈t0 − r−⌉, except for error l(r+).

Now, in order to cause Event (14), the adversary must achieve that a transaction tx ∈ L(t0)⌈t0 − r− − r+⌉ is
missing in more than m of the underlying ledgers L(t)j ⌈t0 − r−⌉ – by removing tx from some of the (at least)

(1 −)m ledgers where tx ∈ L(t0)i ⌈t0 − r− − r+⌉ (by violating absolute persistence for r+ + r−) or by preventing
tx ∈ L(t)i ⌈t0 − r−⌉ for some of the (at most) m remaining ledgers (by violating liveness for r+).

To be able to apply subindependence, we coarsly restrict our estimation to one of the cases: violation of
persistence for r++ r− or violation of liveness for r+ where one of themmust apply for at least m∕2 of the ledgers,
thus yielding Bound (12).

Now, consider the event (corresponding to p−R (r
−)) that

L(t)⌈t0 − r−⌉ ⊈ L(t0) . (15)

To achieve this, the adversarymust inject a transaction such that it appears in (1−)m of the ledgersL(t)i ⌈t0−r−⌉
— establishing Bound (13). ⊓⊔

E.1 Applied to Ledgers with Exponential Security

We consider the case from Section 3.6 of exponential persistence and liveness functions:

r ↦→ exp(−�r + �)

for �, � ≥ 0. We obtain the following corollaries to the above lemmas.

Corollary 8 (Liveness). In the coordinated model, consider the parallel composition PC[D] ofm subindependent
ledgers, each with exponential liveness l(r) = exp(−�lr + �l). Then the combined ledger has liveness

l(r) ≤ exp(−�lrm + (�l + ln(2))m) .

Corollary 9 (Absolute Persistence). In the coordinated model, consider the parallel composition PC[D] of m
subindependent ledgers, each with exponential absolute persistence pA(r) = exp(−�pr + �p). Then the combined
ledger has absolute persistence

pA(r) ≤ m exp(−�pr + �p) .

33

Corollary 10 (Relative Persistence). In the coordinated model, consider the parallel composition PC[D] of m
subindependent ledgers, l(r) = exp(−�lr + �l) and pA(r) = exp(−�pr + �p) For r ≝ r− ≝ r+, the combined ledger
has relative persistence with respect to

p+R (r, r) ≤ exp(−min(�l, �p)rm∕2 + (max(�l, �p)∕2 + ln(2))m) .

and
p−R (r) ≤ exp(−�pr(1 −)m + (�p(1 −) + ln(2))m) .

We can now adapt Theorem 2 to our setting.

Theorem 6. In the coordinated model, consider the combined ledger PC[D] for a family of subindependent ledgers
D = (D1,… ,Dm), each possessing exponential liveness l(r) = exp(−�lr + �l) and (absolute) persistence p(r) =
exp(−�pr + �p). We assume all ledgers are de�ned over a common transaction spaceT, and the combined ledger is
de�ned over the (non-preemptive) rank function rank of Eq. (11), for some ∈ (0, 1). Then, for every t0 and r

Pr [∃tx ∈ A(t0) that is not relatively
settled at time t0 + 3r

] ≤ exp(−rΩ(m) + O(m)) .

The constants hidden in theΩ() andO() notation may depend on �p, �l, �p, �l, but they are independent ofm and r.

Proof. Consider the set of transactionsA(t0). In light of Corollary 8 (liveness), at time T = t0+3r these transactions
will have rank at most t0 + r except with probability l(r).

By Corollary 10 (relative persistence), the event that a transaction appears after time t0 + 3r to compete with a
transaction with rank at most t0 + r is at most p+R (r, r) + p−R (r). Thus, by the union bound, the overall probability
that a transaction appears after time t0 + 3r to compete with a transaction in A(t0) is at most

l(r) + p+R (r, r) + p−R (r) ≤ 3max(l(r), p+R (r, r), p
−
R (r)) = exp(−rΩ(m) + O(m)) ,

as desired. ⊓⊔

F Analysis of them-for-1 Proof of Work

We now consider a parallel execution of m instances of Bitcoin using PoWm
p as their joint PoW oracle: a query

to PoWm
p entitles a party to create a block in chain i ∈ [m] if this query is successful with respect to instance i

according to the de�nition in Section 4.1. We prove that this execution maintains "-subindependence of the
resultingm ledgers with " being negligible in the security parameter.

Lemma 16. Consider the collection ofm dynamic ledgersD = (D1,… ,Dm) produced by a parallelm-fold execution
of Bitcoin using PoWm

p as the joint PoW oracle as described above, with n parties, each making q queries to PoWm
p per

round. Let � denote a security parameter and assume throughout that q ≥ �5,m ≤ �, pq ≤ �, and the honest parties
dominate the adversarial parties su�ciently to invoke existing analysis yielding exponential persistence and liveness
bounds for an individual chain. Then the ledgersD satisfy "-subindependence with " = poly(�) ⋅ exp(−Ω(�)).

Proof. Consider the model of Garay et al. [23] with n participants, each with a quota of q hashes per round; we
let S(i)P,r,t denote the indicator random variable for the event that the t-th hash attempt of party P in round r was

successful for instance i. For convenience, we decompose the random variables S(i)P,r,t to re�ect the two independent
hash success events given by our de�nition of PoWm

p : let AP,r,t indicate the event that the �rst region of the hash
value yields a POW (i.e., Y1 < T); and let D(i)

P,r,t indicate the event that the second region of the hash value selects

the i-th instance (i.e., i = 1 + (Y2 mod m)). Note that S(i)P,r,t = AP,r,t ⋅ D
(i)
P,r,t and furthermore that the two variables

34

are independent by the random oracle assumption. For convenience, let D denote the joint random variable
covering all D(i)

P,r,t for all (P, r, t, i).
On a high level, the proof will proceed as follows: We focus on so-called “good” executions where for all

parties P, all rounds r, and all chains i ∈ [m], the number of queries of P in r that end up “attributed” to chain
i (irrespectively of whether the query is actually successful) is close to the expectation. First, we show that we
get a good execution with overwhelming probability. Moreover, if the execution is good, then all the random
variables determining the numbers of successes in any �xed chain are only slightly perturbed compared to a
standalone execution of Bitcoin with PoW success probability p∕m; this small perturbation implies that any
failure event is still bounded by the exponential bound resulting from the standalone proof. Then we observe
that conditioned on D taking a �xed value d, the random variables S(i)P,r,t are independent. Given the direct e�ect
of these values on the persistence and liveness failure events, we can conclude that for each �xed value d taken
by D such that the resulting execution is good, and for any failure event F such that Fi represents this failure in
instance i, the probability Pr

[⋀
i Fi | D = d

]
is upper-bounded by the product of the above-mentioned exponential

bounds coming from the standalone case, and hence this is also true when conditioning only on a good execution.
In greater detail, let us call an execution good if for all participants P, all chains i, and all rounds r the quantity

∑
t D

(i)
P,r,t is within

√
q� of its expected value q∕m; otherwise it is called bad. Let G denote the event that the

execution is good; note that the event G is fully determined by D, hence let G be the set of values d such that D = d
implies a good execution. As the D(i)

P,r,t are independent for �xed i, the probability of a large variation violating a
good execution (for a �xed P, r, i) is no more than exp(−2�) by the Hoe�ding bound. It follows via union bound
that the probability of a bad execution is upper-bounded by Pr[¬G] ≤ nmL exp(−2�) where n is the number of
participants and L is the length of execution in rounds.

Recall that the analysis of Garay et al. essentially relies on the random variables X, Y, and Z, indicating a
successful round, a uniquely successful round, and the number of adversarial successes, respectively. We now
establish that, loosely speaking, the expectation of the random variables X, Y, and Z in each of the instances in
a good execution are close to a standalone execution of the Bitcoin protocol with PoW success probability p∕m.
Concretely, let (A) denote such a standalone execution; and let (B) represent a good execution in our setting. We
then claim that the expectation of the random variables X, Y, and Z are only perturbed by a multiplicative factor
of (1 + o(1)) when moving from (A) to (B).

Starting with ZP,r, the total number of successes in round r for a �xed party P and chain i, it has expectation
qp∕m in case (A) and expectation no more than (1 +m

√
�∕q)qp∕m ≤ (1 + 1∕�)qp∕m in case (B) (note that only

an upper bound is necessary for these variables). Likewise, XP,r, the indicator for the event that a success appears
in round r for party P and chain i, has expectation 1 − (1 − p∕m)q in case (A) and 1 − (1 − p)q∕m+c

√
q� in case (B),

for a constant −1 ≤ c ≤ 1. Observe that

(1 − p∕m)q

(1 − p)q∕m+c
√
q�

= (
(1 − p∕m)m

1 − p)
q∕m

⋅ 1

(1 − p)c
√
q�

=
(1 − O(p2))q∕m

1 − O(p
√
q�)

=
1 − O(p2q∕m)

1 − O(p
√
q�)

=
1 − O(1∕�)
1 − O(1∕�)

= 1 + o(1)

as p
√
q� ≤ (pq)

√
�∕q ≤

√
�3∕q ≤ 1∕� (and hence p2q∕m ≤ 1∕�). The expectation of the random variables Yr,

indicating whether there was a unique PoW success in round r, is controlled similarly: These random variables have
expectation qn(p∕m)(1 − p∕m)nq−1 in case (A) and expectation pn(q∕m + c

√
q�)(1 − p)q∕m+c

√
q�−1 in case (B).

Let us now �x some d ∈ G. Note that conditioned on D = d, the random variables S(i)P,r,t are independent, as
they are now fully determined by the outcomes of AP,r,t that are independent for di�erent (P, r, t), and each AP,r,t
now a�ects only a single S(i)P,r,t chosen depending on d. The crucial observation is that all the variables X, Y and

Z discussed above are determined by {S(i)P,r,t}P,r,t,i and hence are also independent for di�erent i, conditioned on
D = d. Therefore, based on our honestmajority assumption, the remainder of the proof from [23] can be carried out
independently for each of the instances, only with the minor adjustment to the used ratio of honest and adversarial
hashing power, as captured by the above computations. For every d ∈ G, we therefore obtain for persistence

35

single ledger

genesis

…
tx

…

⏟
⎴⎴⎴

⏟
⎴⎴⎴

⏟

m

combiningm = 8 ledgers

⏟
⎴⎴⏟

⎴⎴⏟

c

gen

…
tx

…

gen

…
tx

…

gen

…
tx

…

gen

…
tx

…

gen

…
tx

…

gen

…
tx

…

gen

…

…

gen

…

…

tx′ tx′ tx′ tx′

Fig. 1. Simpli�ed illustration of latency ampli�cation.

Pr
[
P(i)ri ,ti | D = d

]
≤ pA(ri) for each i ∈ [m] and for an exponential bound pA(ri). Hence by independence we

also have Pr
[⋀

i P
(i)
ri ,ti

| D = d
]
≤

∏
i pA(ri), and this allows us to conclude that Pr

[⋀
i P

(i)
ri ,ti

| G
]
≤

∏
i pA(ri). The

reasoning for liveness is identical. ⊓⊔

Note that even though the above analysis exploits the inner workings of the Bitcoin security proof from [23],
this is for convenience only and is in fact not necessary. One could reformulate the above proof as a black-box
argument for any Bitcoin security proof satisfying a number of requirements corresponding to the properties we
use in the proof. Namely, we would require that the proof takes the numbers of hash attempts for each slot from
the honest and adversarial parties, and the PoW success rate; and given this, yields exponential bounds on liveness
and persistence. We forego such general treatment for the sake of readability.

Also, we believe that the above argument can be extended to a setting with an adaptively changing number of
parties and queries per party and round, with just an upper bound on these quantities. This can be achieved by
sampling su�ciently many of the random variables S, D, A in advance, and then using only a subset of them to
actually play a role in the protocol execution; some care needs to be taken when doing such an attribution. We
omit the details of this treatment.

G Latency Reduction Cartoon

In this section we present a simpli�ed “toy” explanation of how and why our construction provides latency
reduction. For this, we make the following simply�ng assumptions: the ledgers are fully independent, providing
exponential security; and for the combined ledger, we assume that each transaction is always submitted to all
m underlying ledgers. We furthermore pretend that a transaction is valid if it appears prior to any con�icting
transaction in at least half of the ledgers. (We discuss this simple rule below in more detail.)

We compare the following two scenarios:

1. One single ledger. Consider a block of depthm that includes a transaction tx that does not con�ict with any
other transaction observed so far. See left box of Figure 1.

2. m independent ledgers. Assume that 3∕4 of all chains contain a block of some constant depth at least c that
contains the transaction tx; assume that no con�icting transaction has been observed so far in the system
overall. See right box of Figure 1.

Given the linear relation between block depth and time, we observe that in case 1, tx remains stable except for
an exponential error probability of roughly exp(−�m), for some constant �.

For case 2, consider any transaction tx′ that now enters the system, and consider the probability that tx′ will
have a larger depth than tx in at least half of the ledgers. For this to happen, blocks containing tx of depth at least c

36

have to be removed fromm∕4 chains, which, by exponential security and independence of the underlying ledgers,
happens with a probability of roughly

(3m∕4
m∕4

)
exp(−�cm∕4) ≤ exp(m − �cm∕4)

which, for a su�ciently large constant c, is smaller than in case 1.
Thus, given a simpli�ed combined rank function that guarantees precedence of tx over tx′ whenever tx precedes

tx′ in a majority of the underlying ledgers, and choosing the number ofm linear in the security parameter, allows
us to optimistically settle transactions in time linear in the network delay with overwhelming probability in the
security parameter.

This toy example does not account for the fact that participants are free submit their transaction to any subset
of the underlying ledgers; in fact, the system must operate properly even if a participant injects a transaction into a
single ledger (in which case it must provide settlement behavior akin to a single blockchain). Such considerations
actually rule out the “simple majority” convention used in this toy example and demand a more sophisticated
combined rank function that trades o� the number of chains in which a transaction appears against its depth.

37

	Ledger Combiners for Fast Settlement
	Introduction
	Our Contributions
	Related Work

	The Ledger Abstraction
	Ledgers and Dynamic Ledgers
	Composition of Dynamic Ledgers
	Transaction Validity and Settlement

	The Security-Amplifying Combiner for Latency Reduction
	The Subindependence Assumption
	The Parallel Ledger Construction
	Main Result and Proof Outline
	Properties of rank
	Persistence and Liveness of the Parallel Ledgers
	Ledgers with Exponential Security
	Fast Settlement with Preemption: Achieving Linear Amplification and Constant Settlement Time
	Worst-Case Constant-Time Settlement
	The Coordinated Model

	Implementation Considerations
	Achieving Subindependence
	Realizing Rank via Timestamped Blockchains
	A Proof-of-Work Instantiation

	Robust Combiners for Dynamic Ledgers
	Robust Combiner Definition
	The Construction
	Candidate Estimators
	Security Analysis

	Comparison to Prism
	The Space of UTXO Transactions
	Details on Transaction Settlement
	Modeling Consensus Protocols: From Local to Global Persistence
	Linear Latency Amplification in the Coordinated Model
	Applied to Ledgers with Exponential Security

	Analysis of the m-for-1 Proof of Work
	Latency Reduction Cartoon

