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Abstract

Oblivious linear evaluation (OLE) is a fundamental building block in multi-party computation pro-
tocols. In OLE, a sender holds a description of an affine function fα,β(z) = αz+β, the receiver holds an
input x, and gets αx + β (where all computations are done over some field, or more generally, a ring).
Vector OLE (VOLE) is a generalization where the sender has many affine functions and the receiver
learns the evaluation of all of these functions on a single point x.
The state-of-the-art semi-honest VOLE protocols generally fall into two groups. The first group relies on
standard assumptions to achieve security but lacks in concrete efficiency. These constructions are mostly
based on additively homomorphic encryption (AHE) and are classified as “folklore”. The second group
relies on less standard assumptions, usually properties of sparse, random linear codes, but they manage
to achieve concrete practical efficiency.
In this work, we present a conceptually simple VOLE protocol that derives its security from a standard
assumption, namely Ring Learning with Errors (RLWE), while still achieving concrete efficiency compa-
rable to the fastest VOLE protocols from non-standard coding assumptions [4, 8, 28]. Furthermore, our
protocol admits a natural extension to batch OLE (BOLE), which is yet another variant of OLE that
computes many OLEs in parallel.

1 Introduction

Oblivious linear evaluation (OLE), a special case of oblivious polynomial evaluation [25], is a fundamental
building block in many secure computation protocols [12, 19]. In an OLE protocol over a ring Zp, there
are two parties, a sender S with values α, β ∈ Zp and a receiver R with a value x ∈ Zp. At the end of
the protocol, R will learn the value γ = α · x + β while S will learn nothing. In Vector OLE (VOLE), the
sender has α,β ∈ Zmp , the receiver has x ∈ Zp, and obtains γ := αx+ β ∈ Zmp . In other words, vector OLE
is running many OLE protocols in parallel where the receiver has the same x. Batch OLE (BOLE) can be
viewed as many OLE protocols running in parallel where the receiver has a vector x of values over Zmp . In
this work, we will primarily focus on VOLE with a simple extension to BOLE.

‘Our approach to implementing a VOLE protocol is to use the packed additively homomorphic encryption
(PAHE) of Brakerski [9] and Fan and Vercuteran [15], henceforth referred to as the BFV scheme. PAHE
is a natural choice of primitive to implement such a protocol, especially in the honest-but-curious model.
At a high level, our protocol has the receiver R encrypt the value x and send the encryption [[x]] to the
sender S. Using the PAHE operations, the sender can then compute the ciphertext [[γ]] = [[α · x + β]] and
return it to the receiver, who can decrypt and learn the VOLE output γ. As long as the PAHE scheme
achieves circuit privacy which, in this case, says that the homomorphically evaluated ciphertext [[γ]] does
not leak information about α and β even to the owner of the secret key, then security is achieved against
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honest-but-curious adversaries. In the case of VOLE, the circuit is specified by the sender’s values of α and
β.

We note that achieving security in the honest-but-curious setting is sufficient following the work of
Hazay, Ishai, Marcedone, and Venkitasubramaniam [19] which instantiates the semi-honest-to-active compiler
of Ishai, Prabhakaran, and Sahai [21] using black-box access to an honest-but-curious OLE protocol. In
particular, this instantiation enables a semi-honest OLE protocol to be upgraded to an actively secure OLE
protocol with roughly a factor of two overhead ([19], section 5.3).

While the high-level story is simple, instantiating a OLE scheme from a PAHE scheme in a concretely
efficient way is less so. In this work, we present a series of optimizations of the textbook BFV PAHE scheme
that results in a vector OLE scheme that outperforms all prior works in parameter regimes of practical
interest. At the heart of our optimizations is a new analysis of the modulus reduction operation similar to
the BV homomorphic encryption scheme [10], which argues that circuit privacy is achieved when modulus
reduction is performed under carefully selected parameters. In addition, we extend the analysis of Halevi,
Polyakov, and Shoup [18] to efficiently implement this operation in the double Chinese remainder theorem
(DCRT) representation.

1.1 Our Contributions

First, we present a fast, light-weight vector OLE (VOLE) protocol. In fact, our protocol most naturally
achieves the more expressive batch OLE (BOLE) functionality at little additional cost. This is in contrast
to the LPN-based VOLE protocols of [4] and [28] which, to the best of our knowledge, do not have such a
straightforward extension to BOLE.

The main technical idea in our result is a way to achieve circuit privacy in a PAHE scheme which
corresponds to sender security in a (V/B)OLE protocol. In slightly more detail, we’d like to ensure that
the receiver who has the private key of the PAHE scheme and x, and obtains an evaluated ciphertext
[[γ]] = [[α · x+ β]] learns γ, but no other information about α and β. The crucial difficulty is that the noise
contained in the PAHE evaluated ciphertext [[γ]] could reveal information about α and β.

The folklore idea to achieve circuit privacy is a simple technique called noise-flooding [16]. That is, sample
from a sufficiently wide distribution, either Gaussian or uniform, so as to flood the noise contained in [[γ]]. In
turn, to achieve sufficient statistical security, this forces us to work with inefficient multi-precision arithmetic.
For example, the procedure to sample uniformly random numbers from a sufficiently wide interval, using
the NTL library [30], will take more than 100% of our sender run-time. Additionally, despite concrete
(in)security concerns in practical scenarios [26], homomorphic encryption libraries either do not seem to
implement circuit privacy (such as in SEAL [29, 1]) or implement a single-precision version of noise flooding
which provides very limited statistical security (such as in PALISADE [27]).

Other approaches to circuit-private homomorphic encryption exist, but are much less efficient than what
we can afford for such a lightweight computation as in (V/B)OLE: garbled circuit-based techniques [17] re-
quires computing and communicating a garbled circuit for the PAHE decryption algorithm; FHE bootstrapping-
based techniques [13] are even less efficient; and techniques such as [7] only work for the GSW homomorphic
encryption scheme which is also too inefficient for our purposes.

We present a simple way to achieve circuit privacy of PAHE, and therefore construct a (V/B)OLE
protocol, using a rounding operation that allows greater efficiency than the folklore noise-flooding approach.
The rounding operation and its rather simple analysis is inspired by similar techniques in the context of
learning with rounding (LWR) [5].

In addition, we give an implementation of this protocol along with performance benchmarks. This imple-
mentation aims to be usable as a black-box in larger applications; an earlier version of this implementation
was already used in the work of Hazay, Ishai, Marcedone, and Venkitasubramaniam [19] in CCS 2019.

Furthermore, our protocol outperforms recent implementations ([28], CCS 2019) based on the learning
parity with noise assumption, as described in [8], for VOLE dimension up to m = 235. In other words, while
[8, 28] will outperform our implementation asymptotically for huge m, the crossover point is quite far out.
We describe the relation between the two approaches in more detail in Section 1.2, and provide a detailed
performance comparison in Section 5.
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1.2 Related Work

Recent related work improving VOLE efficiency have mainly focused on obtaining optimizations from the
Learning Parity with Noise (LPN) assumption [6] and other related coding assumptions. We separate prior
work into two main categories based on their communication complexity, although this implies other more
intuitive heuristic differences. The first category consists of protocols that have communication complexity
linear or super-linear in the length of the VOLE correlations they generate. More heuristically, these protocols
are optimized for smaller VOLE correlations and tend to be very fast for these shorter VOLE lengths. The
second category consists of protocols with sublinear communication complexity in the length of the VOLE
correlations they generate. Heuristically, these protocols are optimized for larger VOLE lengths and tend to
be slower than protocols in the first category for generating shorter VOLE correlations.

Our protocol falls in the first category, so we compare directly with other protocols in this category.
Our main point of comparison is the work of Applebaum, D̊amgard, Ishai, Nielsen, and Zichron [4], which
implements a fast vector OLE protocol using assumptions over sparse linear codes that are inspired by the
LPN assumption but notably are not known to have a reduction from the LPN assumption. Consequently,
while this work achieves impressive performance, the security of their protocol is harder to quantify. In
contrast, the security of our VOLE protocol is based on the security of the Ring-LWE assumption, which
has recently been extensively benchmarked in the context of the NIST post-quantum cryptography stan-
dardization process and the homomorphic encryption standardization process [3]. In particular, we base
our parameter choices off of the homomorphic encryption standard [3]. This widely endorsed standard sig-
nificantly strengthens the security claims about the parameter choices for this protocol. In section 5.4, we
show that even with these strong security claims, our protocol achieves efficiency that meets or exceeds the
efficiency of [4] in many settings.

To compare our protocol against works in the second category, we must first recognize that all protocols
in the second category will asymptotically outperform ours, since eventually the linear communication com-
plexity of our protocol will surpass the sublinear communication complexity of protocols in this category.
The natural question to ask, then, is at what VOLE length does the sublinear protocol become faster than
the linear protocol, and where do the practical applications of VOLE live vis a vis the crossover point? When
comparing against protocols in this category, we estimate this cross-over point and then show applications
where the VOLE lengths are less than this point. Our main point of comparison for protocols in this category
is the work of Schoppmann, Gascón, Reichert, and Raykova [28], which is a two-party implementation of the
function secret sharing (FSS) based work of Boyle, Couteau, Gilboa, and Ishai [8] which constructs a VOLE
protocol with sublinear complexity. In section 5.4, we show that our protocol outperforms [28] for smaller
VOLE lengths, which is to be expected. We also show that the expected cross-over point of the performances
of this protocol is large enough to allow many applications that do not require VOLE correlations of greater
length. In section 5.5, we discuss one such application: securely evaluating convolutional neural network
layers for medical images.

1.3 Road Map

In section 2, we give some brief preliminaries and definitions necessary in the explanations below. In section
3, we describe our circuit privacy transformation method and prove its security. In section 4, we give the full
VOLE protocol, including a proof of security, and in section 5 we present an implementation of this protocol
and analyze the performance.

2 Background

In this section, we will briefly review the definitions of the homomorphic encryption scheme used below as
well as the mathematics behind residue number system optimizations.
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2.1 Notation

The homomorphic encryption scheme used in our work is based off of the Ring Learning with Errors problem
[24], which is defined over polynomial rings. In our instantiation, we use the ring

R = Z[x]/(xn + 1) (1)

For the remainder of this work, n will always be a power of two. For a modulus q, let Rq be R with all
coefficients mod q.

Rq = Zq[x]/(xn + 1)

For an integer n, we will denote the set {0, 1, 2, . . . , n− 1} as [n]. For integers i ≤ j, we denote the range
{i, i+ 1, . . . , j − 1} as [i : j].

We denote the rounding function d·c : R→ Z that maps xr ∈ R to the closest integer x ∈ Z. We denote
the flooring function b·c : R→ Z that maps xr ∈ R to the closest integer x ∈ Z such that x ≤ xr.

For a positive integer b, we write the modular reduction operation c ≡ a mod b as c = [a]b.
The norm notation || · || refers to the `∞ norm, unless otherwise specified. For a polynomial a with n

coefficients each mod q, we have the bound ||a|| ≤ q.
We specify the base-2 logarithm by log.
We call a distribution whose samples have magnitude bounded by B a B-bounded distribution.
We say that a function negl is negligible if for every constant c > 1 we have negl(n) < 1/nc for all

sufficiently large n.
For two vectors v and w of length `, denote the component-wise product of v and w as v � w.

We will denote sampling from a distribution as
$←−. We will denote sending or receiving a message from

a public channel as
net←−−.

2.2 Secure Two-Party Computation

In this section, we formalize our security notions for a two-party secure computation scheme. The security
of the specific protocols instantiated in this work will be shown to be secure with respect to these definitions.

We follow the work of [11] by defining the ideal functionality of a secure computation protocol.

Definition 2.1 (Ideal Functionality). Let Π = 〈S,R〉 be a two party protocol between a sender S and
a receiver R. Let ΞS and ΩS denote the input and output space of S and ΞR and ΩR denote the input
and output space of R. The ideal functionality of Π is defined by two function fS : ΞS × ΞR → ΩS and
fR : ΞS ×ΞR → ΩR. For a sender’s input ξS ∈ ΞS and a receiver’s input ξR ∈ ΞR, the ideal functionality of
Π is for the sender to receive fS(ξS , ξR) and for the receiver to receive fR(ξS , ξR).

We now define the notion of a “view” of a party in a secure two-party protocol. If the public parameters
for Π are pp, the inputs to S are ξS and the inputs to R are ξR, let

Π(pp, ξS , ξR) = 〈S(pp, ξS), R(pp, ξR)〉

be an instance of the protocol Π run with ξS and the sender inputs and ξR as the receiver inputs. We define
the view of of party as follows.

Definition 2.2 (View). For a protocol Π = 〈S,R〉, public parameters pp, and inputs ξS and ξR, let
ViewS(Π(pp, ξS , ξR)) be the view of the party S during protocol Π(pp, ξS , ξR), which contains all messages
generated and received by S as well as all random bits sampled by S. Similarly, let ViewR(Π(pp, ξS , ξR)) be
the view of the party R during protocol Π(pp, ξS , ξR), which contains all messages generated and received by
R as well as all random bits sampled by R.
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For a given set of inputs pp, ξS , and ξR the view definition given in definition 2.2 defines two distributions
denoted by
ViewS(Π(pp, ξS , ξR)) and ViewR(Π(pp, ξS , ξR)) over the randomness of the parties R and S. From these
views, we can define our general security definitions for semi-honest parties. We begin by defining security
against the sender.

Definition 2.3 (Security Against Sender). Let Π = 〈S,R〉 be a protocol with ideal functionality (fS , fR) as
in definition 2.1. The protocol Π is secure against a semi-honest sender if for all sender inputs ξS ∈ ΞS and
all sender outputs ωS ∈ ΩS such that there exists a receiver input ξR ∈ ΞR such that fS(ξS , ξR) = ωS, we
can define a PPT simulator SimS that takes in input ωS and consider the protocol Π̃S = 〈S, SimS〉 where
Π̃S(pp, ξS , ωS) = 〈S(pp, ξS),SimS(pp, ωS)〉. The simulator must have the property such that the advantage
of any PPT distinguisher D in distinguishing the real view ViewS(Π(pp, ξS , ξR)) from the simulated view
ViewS(Π̃S(pp, ξS , ωS)) where fS(ξS , ξR) = ωS is negligible in the security parameter λ.∣∣∣Pr[D(ViewS(Π(pp, ξS , ξR))) = 1]

− Pr[D(ViewS(Π̃S(pp, ξS , ωS))) = 1]
∣∣∣ ≤ negl(λ)

Note that definition 2.3 only considers views where the sender algorithm honestly follows the protocol Π.
Security against the receiver is defined in a parallel way.

Definition 2.4 (Security Against Receiver). Let Π = 〈S,R〉 be a protocol with ideal functionality (fS , fR)
as in definition 2.1. The protocol Π is secure against a semi-honest receiver if for all receiver inputs ξR ∈ ΞR
and all receiver outputs ωR ∈ ΩR such that there exists a sender input ξS ∈ ΞS such that fR(ξS , ξR) = ωR,
we can define a PPT simulator SimR that takes in input ωR and consider the protocol Π̃R = 〈SimR, R〉 where
Π̃R(pp, ωR, ξR) = 〈SimR(pp, ωR), R(pp, ξR)〉. The simulator must have the property such that the advantage
of any PPT distinguisher D in distinguishing the real view ViewR(Π(pp, ξS , ξR)) from the simulated view
ViewR(Π̃R(pp, ωR, ξR)) where fS(ξS , ξR) = ωS is negligible in the security parameter λ.∣∣∣Pr[D(ViewR(Π(pp, ξS , ξR))) = 1]

− Pr[D(ViewR(Π̃R(pp, ωR, ξR))) = 1]
∣∣∣ ≤ negl(λ)

For brevity, we move the formal definitions of VOLE and BOLE to the appendix.

2.3 Circuit Privacy

For brevity, we move the defintion of a leveled homomorphic encryption scheme to appendix A.3

Definition 2.5. Circuit Privacy ([20] definition 7, [7] definition 5.1)
Let E be a leveled homomorphic encryption scheme as defined in definition A.4. Define the following:

(sk, pk, evk)
$←− E .KeyGen(1λ, 1L)

cti
$←− E .Encrypt(pk,mi) i ∈ [1 . . . k]

cti
$←− E .EncryptSK(sk,mi) i ∈ [k + 1 . . . n]

〈cti〉{cti}ni=1

mout = f(m1, . . . ,mn)

We say that E is ε-circuit private for functions f of depth ` ≤ L if there exists a PPT simulator algorithm
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Sim such that for all PPT distinguishing algorithms D the following holds:∣∣∣∣∣Pr
[
D
(
E .Eval

(
pk, evk, f, 〈cti〉

)
, 〈cti〉, sk, pk, evk

)
= 1
]

− Pr
[
D
(
Sim

(
1`, pk, sk, evk,mout

)
, 〈cti〉, sk, pk, evk

)
= 1
]∣∣∣∣∣

≤ ε

In words, definition 2.5 says that the output of the evaluation algorithm of a circuit private leveled
homomorphic encryption scheme should be indistinguishable from a simulated output, where the simulator
is given no information about the function f used to compute the result ciphertext other than the function
output. We can view the simulator in definition 2.5 as an alternate encryption procedure that produces a
fresh ciphertext that is indistinguishable from the output of the real E .Eval algorithm. We only consider
functions f that will result in E .Eval outputting a correct ciphertext. This can be implemented by having
both E .Eval and Sim output ⊥ for functions that are exceed the number of levels supported by E .

Satisfying definition 2.5 above will be necessary to satisfy defintion 2.4 for the VOLE and BOLE protocols
below.

We will use the homomorphic encryption scheme of Brakerski, Fan, and Vercuteran [9, 15], denoted the
BFV scheme. The functions that we use in the scheme are described in detail in appendix A.4 as well as
bounds on the noise growth of the homomorphic operations.

2.4 Ring Expansion Factor

In order to effectively choose parameters for our leveled homomorphic encryption scheme, we must accurately
upper bound the noise growth due to homomorphic operations. When multiplying two elements of Rq, we
need an upper bound on the norm of the product by a function of the norms of the operands as well as
properties of Rq itself.

Definition 2.6 (Ring Expansion Factor [23, 16]). The expansion factor δR for a ring R is defined as follows:

δR = max
a,b∈R

||a · b||
||a|| · ||b||

Lemma 2.1 (Ring Expansion Upper Bound). For a ring R = Z[x]/(xn + 1), we can upper bound the ring
expansion factor δR for the norm || · || by

δR ≤ n

Proof. In the worst case for the expansion of the norm ||·|| is when both polynomials a, b ∈ R have coefficients
of all the same magnitude. In this case, the maximum coefficient of the product will be n times the product
of the maximum coefficient of the operands. Therefore, we have

||a|| · ||b|| = n · ||a · b|| = δR · ||a · b||

Remark 2.1. The upper bound in lemma 2.1 extends to Rq for any modulus q.

2.5 Residue Number System

In leveled homomorphic encryption, one fixes an arithmetic circuit depth ` and then chooses parameters
of the homomorphic scheme to support noise growth up to ` levels. This leads to a ciphertext modulus q
that is often much larger than a standard machine word (typically 64 bits). In order to avoid expensive
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extended-precision arithmetic on these large integers, the ciphertext modulus q is represented as a product
of primes each smaller than the machine word.

q =

k−1∏
i=0

qi

By the Chinese Remainder Theorem, we can use the isomorphism between the ring Zq and the tensor of
rings mod each of the factors of q.

Zq ' Zq0 ⊗ Zq1 ⊗ . . .⊗ Zqk−1

This allows us to represent a number mod q as a vector of length k of integers that each fit nicely into a
standard machine word. We refer to one of these elements of the vector as a limb of the integer. Since this
map is a ring isomorphism, we can perform arithmetic in this representation as we would over the original
ring Zq.

The structure of this isomorphism and it’s effective use when implementing RLWE schemes is described
in section 2.1 of [18]. For an integer x ∈ Zq, let xi = [x]qi for all i ∈ [k]. Let q∗i = q/qi and q̃i ≡ (q∗i )−1

mod qi. We make use of the following equation:

x =
( k−1∑
i=0

[xi · q̃i]qi · q∗i
)
− v · q =

[ k−1∑
i=0

[xi · q̃i]qi · q∗i
]
q

(2)

for some v ∈ Z.

3 Our Circuit Privacy Approach

In this section, we describe our approach to obtaining circuit privacy. We will begin by describing the main
operation of the circuit privacy transformation, which is fundamentally a divide-then-round step. Then, we
will describe how this operation is performed efficiently in our implementation. Finally, we describe the full
circuit privacy transformation, followed by a security proof.

3.1 The Divide-and-Round Step

We begin by presenting our procedure for transforming a ciphertext with integers comprising of multiple
limbs into a ciphertext that consists of only single-limb integers. The benefits of this technique are numerous:
it allows us to reduce the communication overhead, increase decryption efficiency, and make substantial
progress towards solving the VOLE leakage problem. In appendix A.5, we give an in-depth explanation of
the leakage that occurs when naively implementing VOLE with BFV operations.

Let Q be the original ciphertext modulus of our scheme, and let qi be the primes such that
∏
i qi = Q.

Given a ciphertext ctQ, where the elements are in RQ and the decryption operations are performed over
RQ, the goal of this operation is to obtain a ciphertext ctq0 that encrypts the same message. This new
ciphertext ctq0 will have elements in Rq0 and the decryption of this ciphertext will be performed over Rq0
as well. Recall that we choose primes qi to fit in a standard machine word, so decryption of ctq0 is far more
efficient than the decryption of ctQ. In addition, the communication cost of sending ctq0 over a network is
significantly less than sending ctQ. Note that this operation can only be correct if the plaintext modulus p
is sufficiently less than q0.

Let q∗0 = Q/q0. Below, we write the ciphertext ctQ and expand out the terms to anticipate the division
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by q∗0 .

ctQ =
(
a, a · s+ ∆m+ e

)
=
(
a′ · q∗0 + [a]q∗0 , (a′ · q∗0 + [a]q∗0 ) · s+ ∆m+ e

)
=

(
a′ · q∗0 + [a]q∗0 , (a′ · q∗0 + [a]q∗0 ) · s+ ∆m+ e

)
The ciphertext ctq0 is obtained by dividing the two components of ctQ by q∗0 .

ctq0 =

⌊
ctQ
q∗0

⌋
=
(⌊ a

q∗0

⌋
,

⌊
a · s+ ∆m+ e

q∗0

⌋)
=
(⌊a′ · q∗0 + [a]q∗0

q∗0

⌋
,

⌊
(a′ · q∗0 + [a]q∗0 ) · s+ ∆m+ e

q∗0

⌋)
=
(
a′, a′ · s+

⌊
[a]q∗0 · s+ ∆m+ e

q∗0

⌋)
=
(
a′, a′ · s+ v

)
(3)

where

v =

⌊
[a]q∗0 · s+ ∆m+ e

q∗0

⌋
(4)

is the new term in ctq0 that equals ∆′m+v′ for a scaling factor ∆′ and error term v′. Note that we will analyze
the whole term v for the remainder of this section to show the security of the circuit privacy procedure, and
then we will split v into ∆′m+ v′ to show that this procedure produces a correct, decryptable ciphertext.

We will now begin to analyze this term v in terms of the original error term e. Our goal will be to show
that the distribution of v is statistically close to a distribution that is independent of e. Once we have shown
this, we will be able to construct a simulator that samples an error term that is statistically close to v but
still independent of the original error term e.

We begin by defining the event that must occur in order for b(a + c)/bc 6= b(a + c + e)/bc for a small
error term e in terms of a and fixed scalar c. This event is intuitively very similar to the BAD event in the
analysis of learning with rounding (LWR) in [5].

Definition 3.1 (Boundary Event). Let a, b, B be positive integers. Define the event BAD(a, b;B) to be the
following:

BAD(a, b;B){[a]b ∈ [0, B) ∪ [b−B, b)} (5)

In words, equation 5 is the event that a is within distance B of a multiple of b.

Lemma 3.1. Let a, b be positive integers, and let e be an integer such that |e| ≤ B where B < b/2. Then
the following relation holds: ⌊a

b

⌋
6=
⌊a+ e

b

⌋
=⇒ BAD(a, b;B) (6)

Proof. This proof is quite straightforward. If we write a = kb+ r where k is an integer and r ∈ [b], we have
that ⌊a

b

⌋
=
⌊kb+ r

b

⌋
= k (7)

Since b(a + e)/bc 6= k, there are two possibilities. The first possibility is that a + e = (k + 1)b + r′ where
r′ ∈ [b]. This occurs when a ∈ [(k + 1) · b − e, (k + 1) · b) ⊆ [(k + 1) · b − B, (k + 1) · b). The second case is
when a+ e = (k − 1)b+ r′′. This occurs when a ∈ ((k − 1) · b, (k − 1) · b+ e] ⊆ ((k − 1) · b, (k − 1) · b+ B].
Both of these cases satisfy the condition of BAD(a, b;B) occurring.
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Corollary 3.1.1. Let a, b be positive integers, and let e be an integer such that |e| ≤ B and B < b/2. Then
the following relation holds:

¬BAD(a, b;B) =⇒
⌊a
b

⌋
=
⌊a+ e

b

⌋
(8)

We will now bound the probability that the BAD event occurs for values of a that are uniformly random.

Lemma 3.2 (Boundary Event for Random Values). Let b and B be positive integers. Let A be a distribution
over the integers such that the distribution of [a]b is uniformly random over [b], where a← A. We can bound
the probability of the BAD event occurring for an output of A as follows:

Pr
a←A

[BAD(a, b;B)] ≤ 2B

b
(9)

Proof. If we write the value a← A as a = k · b+ r, we are given that the distribution of r = [a]b is uniformly
random over [b]. From definition 3.1, the BAD event occurs when r falls into the range [0, B) ∪ [b − B, b).
This range is of size 2B, so this occurs with probability 2B/b.

We will now extend the definition of the boundary event to elements over Rq.

Definition 3.2 (Ring Boundary Event). Let a be an element of the polynomial ring Rq = Zq[x]/(xn + 1),
let b be a scalar in Zq, and let B be a positive integer. We will define the boundary case for an element of
Rq to occur if the boundary case for any of its coefficients occurs. Denote the ith coefficient of a as ai.

BAD(a, b;B) = {∃i ∈ [n] such that BAD(ai, b;B)} (10)

Lemma 3.3. Let a be an element of the polynomial ring Rq = Zq[x]/(xn + 1), let b be a scalar in Zq, and
let B be a positive integer. We can bound the ring boundary event from definition 3.2 by the following:

Pr[BAD(a, b;B)] ≤
∑
i∈[n]

Pr[BAD(ai, b;B)] (11)

Proof. This follows directly from taking the union bound over the events corresponding to the coefficients
of a.

Corollary 3.3.1. For a polynomial a that is sampled over Rq such that each coefficient ai is uniform modulo
b, we can bound the probability of the BAD event occurring by the following:

Pr[BAD(a, b;B)] ≤
∑
i∈[n]

Pr[BAD(ai, b;B)] = 2n
B

b
(12)

Corollary 3.3.2. For a polynomial a that is sampled uniformly over RQ for Q = q∗0 · q0 and a small
polynomial error term e such that ||e|| ≤ B for a positive integer B < q∗0/2, we can bound the following
probability:

Pr
a←RQ

[⌊a+ e

q∗0

⌋
6=
⌊ a
q∗0

⌋]
≤ Pr[BAD(a, q∗0 ;B)] ≤ 2n

B

q∗0

We now return to equation 4 for the compressed term v and give a lower bound the probability that this
term hides the original error term e.

We begin by examining the numerator of this function and observe that if the secret s is invertible modulo
q∗0 , then the term [a]q∗0 ·s would define a bijection with domain and range [q∗0 ]. From this, we have the simple
observation that a uniformly random input to this bijection gives a uniformly random output over the same
range.

However, we cannot guarantee that s is invertible, and we cannot restrict to the case where s is invertible
while still appealing to the security of RLWE. We handle this by observing that while the polynomial element
a·s may not be random, the marginal distribution of each of the individual coefficients of a·s are still random.
This is formalized in the following lemma.
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Lemma 3.4. Fix an integer Q = q∗0 · q0. Fix a non-zero s ∈ RQ = ZQ[x]/(xn + 1) and an index i ∈ [n].
Define the distribution Ai to produce samples by first sampling a truly random a← RQ, then computing the
product a · s modulo q∗0 , then outputing the ith coefficient of this product. The output of this distribution is
statistically close to uniform over [q∗0 ].

Proof. We can write the ith coefficient of a · s as the inner product the coefficients of s with a rotation of the
coefficients of a. Since the coefficients of a are uniformly random modulo q∗0 , and s is non-zero, this inner
product is statistically close to uniform over [q∗0 ].

Corollary 3.4.1. Fix an integer Q = q∗0 ·q0. Fix a non-zero s ∈ RQ = ZQ[x]/(xn+1) and a positive integer
B. For a distribution of polynomials sampled uniformly over RQ, we can upper bound the probability of the
BAD event for the product a · s by the following:

Pr
a←RQ

[
BAD(a · s, q∗0 ;B)

]
≤ 2n

B

q∗0
(13)

We now complete this analysis by applying corollary 3.4.1 to equation 4 for the final term v to show that
v hides e. We will define one distribution that outputs v as described in equation 4 and one distribution that
leaves out the error term e. The next lemma will give an upper bound that these two distributions output
different values.

Lemma 3.5. If ||e|| ≤ B, the final term v from equation 4 hides the original error term e with probability
2n Bq∗0

, where n is the degree of the polynomial modulus xn + 1.

Proof. Define two distributions in terms of s,∆m, and e. Distribution D1 produces samples by first sampling

a uniformly random a
$←− RQ for Q = q∗0 · q, then producing a sample of the form:

d1 =

⌊
[a]q∗0 · s+ ∆m+ e

q∗0

⌋

This is identical to the real distribution of v. The second distribution D2 produces samples by first sampling

a uniformly random a
$←− RQ and produces a sample of the following form:

d2 =

⌊
[a]q∗0 · s+ ∆m

q∗0

⌋

We can bound the probability that any distinguisher can distinguish between the outputs of D1 and D2

by upper bounding the probability that these outputs are different. By corollary 3.4.1, we can say that the
marginal distribution of each coefficient of the polynomial [a]q∗0 · s+ ∆m modulo q∗0 is uniformly random, so

this is upper bounded by 2n Bq∗0
.

3.2 Avoiding Multi-Precision Arithmetic

The näıve approach to the above operation is to take an integer x in DCRT representation {x0, . . . , xk−1},
recombine according to equation 2 above, then perform a multi-precision divide and floor by q∗0 , then take
the result mod q0. In total, this requires 2k integer multiplications, k integer additions, 1 multi-precision
divide-and-floor, and k + 1 modular reductions for each coefficient.

To avoid multi-precision arithmetic required when operating over elements modulo the full ciphertext
modulus, we make use of the linearity of the DCRT recombination described in equation 2. From this

10



equation, we have the following expression for division by q∗0 :

[ x
q∗0

]
q0

=

[
1

q∗0

(( k−1∑
i=0

[xi · q̃i]qi · q∗i
)
− v · q

)]
q0

(14)

=

[
1

q∗0

( k−1∑
i=0

[xi · q̃i]qi · q∗i
)]

q0

(15)

=

[
k−1∑
i=0

[xi · q̃i]qi ·
q0
qi

]
q0

(16)

From equation 16 above, we have that only the terms q̃i and q0/qi for all i ∈ [k] are needed to compute the
desired term

[
x/q∗0

]
q0

. Since these values only depend on the choice of factors of the ciphertext modulus, we

can easily precompute them, which allows us to perform ciphertext compression with k integer multiplica-
tions, k floating point multiplications, k floating point additions, and k+ 1 modular reductions. Comparing
with the näıve approach, this technique replaces the entire multi-precision divide-and-floor operation with
only the marginal cost increase of k floating point addition and multiplication operations versus k integer
addition and multiplication operations. We refer the reader to [18] for further analysis of the benefits of the
DCRT representations.

3.3 Circuit Privacy Operation

We now give the full circuit privacy procedure and prove that it’s secure given a sufficiently small error term
relative to the divisor q∗0 . The procedure, given in algorithm 1, is very simple: we add an encryption of zero
and then perform the divide-and-round operation described in section 3.1.

Algorithm 1 Circuit Privacy Procedure, denoted CP

Input: Ciphertext ct, Public Key pk
ctzero ← Encrypt(pk, 0)
ct+ = EvalAdd(ctzero, ct)

ctcp =
⌊
ct+
q∗0

⌋
Output: ctcp

Algorithm 2 defines the full circuit-private evaluation algorithm in terms of algorithm 1 and the original
BFV Eval procedure.

Algorithm 2 Circuit Private Eval Algorithm, denoted EvalCP
Input: Ciphertexts 〈cti〉 = {cti}ni=0, Public Key pk, Function f

ctin ← BFV.Eval(evk, f, 〈cti〉)
ctcp

$←− CP(ctin, pk)
Output: ctcp

Finally we define BFV-CP to be a leveled homomorphic encryption scheme specified by the tuple
(BFV.KeyGen, BFV.Encrypt,
BFV.EncryptSK, BFV.Decrypt, EvalCP).

We will now argue that if the noise level of the ciphertext generated by BFV.Eval subroutine within
the EvalCP does not exceed a pre-specified bound, BFV-CP is circuit private (Definition 2.5). The high-
level proof strategy is to define three hybrids (HybridReal, HybridNoiseFree, HybridIdeal) and show that they are
indistinguishable from the point of view of a computationally bounded distinguisher.
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Define D(ct′, 〈cti〉,BFV.pk,BFV.sk,BFV.evk) → {0, 1} to be a PPT distinguisher, where cti are valid
BFV encryptions of messages mi respectively. The domain of the first argument (ct′) is the set of BFV
ciphertexts.

• HybridReal
This hybrid corresponds to the real-world where the adversary tries to learn the function being
computed from the ciphertext that is generated by the evaluator. Concretely, we define ct′ ←
EvalCP(〈cti〉,BFV.pk, f).

By the correctness of BFV, the intermediate ciphertext (ctin) computed in EvalCP is a valid encryption
of f(m1, . . .mn). Represent this as ctin = (ain, ain · s + ∆m + ein). Additionally, represent pk =
(a′, a′s+ e′).1 The encryption of zero has the form,

ctzero = (a′u+ e′′, a′su+ e′u+ e′′′)

where u, e′′, e′′′ ← χ.

Hence, the ciphertext ct+ has the form,

ct+[0] = ain + a′u+ e′′ = a+

ct+[1] = ain · s+ ∆m+ ein + a′su+ e′u+ e′′′

= a+ · s+ ∆m+ e+

where e+ = ein + e′u+ e′′′ − s · e′′.
Performing the divide-and-floor operation during the CP procedure on ct+ results in a new ciphertext
ctquot = bct+/q∗0c, which simplifies to,

ctquot[0] =
⌊a+
q∗0

⌋
= a′+ (17)

ctquot[1] =
⌊a+ · s+ ∆m+ e+

q∗0

⌋
(18)

= a′+ · s+
⌊ [a+]q∗0 · s+ ∆m+ e+

q∗0

⌋
(19)

where a+ = a′+ · q∗0 + [a+]q∗0 .

Note that the ciphertext ct′ := ctquot.

• HybridNoiseFree

In this hybrid, we define a new simulator that outputs a ciphertext for the distinguisher D, that is very
similar to the HybridReal. The main difference is that this simulator tweaks the computation of ctquot[1]
to set the e+ term to zero. Concretely, we define a simulator Sim(1l, pk, evk, sk, f, 〈cti〉) → ct′, which
recomputes all the quantities computed in the HybridReal. It then uses the secret key sk to compute
ein. Subsequently it computes e+ and which can be subtracted from the ct+[1].

Thus, the output of this simulator ct′ simplifies to,

ct′[0] =
⌊a+
q∗0

⌋
= a′+ (20)

ct′[1] = a′+ · s+
⌊ [a+]q∗0 · s+ ∆m

q∗0

⌋
(21)

1Since we are performing a simple homomorphic operation without homomorphic multiplications or rotations, it is sufficient
for evk to simply be the public key pk.
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• HybridIdeal
This hybrid corresponds to the ideal world where the adversary only has access to the function output
m = f(m1 . . .mn) but has no access to the function f . We define a new simulator Sim(1l, pk, evk, sk,m)→
ct′ whose output will be sent to the distinguisher D. Note that this is the same simulator required by
definition 2.5.

The simulator samples a uniformly polynomial r from Rq. It then outputs,

ct′[0] =
⌊ r
q∗0

⌋
= r′ (22)

ct′[1] = r′ · s+
⌊ [r]q∗0 · s+ ∆m

q∗0

⌋
(23)

Given a Hybrid, let P [Hybrid] denote a probability defined as follows,

Pr[Hybrid] = Pr [D (·, 〈cti〉, sk, pk, evk) = 1]

.

Lemma 3.6. If n ||e+||q∗0
≤ 2−λ for security parameter λ, then no PPT distinguisher can distinguish Hybrid0

and Hybrid1 with probability better than 2−λ.

|Pr[HybridReal]− Pr[HybridNoiseFree]| ≤ 2−λ

Proof. We can upper bound the success of any PPT distinguisher D from distinguishing the outputs of
HybridReal and
HybridNoiseFree by the probability that the outputs of these hybrids are different. The only place where these
hybrids differ is in the error term that is added to the numerator. In equation 19 in HybridReal, there is an
e+ term that is added in the flooring numerator, while in equation 21 in hybrid HybridNoiseFree, this term is
omitted.

To invoke lemma 3.5, we must show that each coefficient of a+ is uniformly random modulo q∗0 . This can
be seen through a straightforward application of the same argument used in the proof of lemma 3.5 on the
coefficients of the product a′ · u. Once we show that these coefficients are random, the fixed offsets defined
by the coefficients of the rest of the terms in a+ do not change this fact. Therefore, we can invoke lemma 3.5
on the v term in hybrid HybridReal to show that this term hides v and is statistically close to the distribution
of the v terms in HybridNoiseFree.

Lemma 3.7. Assuming the hardness of RLWEn,q,χ, no PPT distinguisher D can distinguish HybridNoiseFree

from HybridIdeal with non-negligible advantage.

|Pr[HybridNoiseFree]− Pr[HybridIdeal]| ≤ negl(λ)

Proof. Assume a distinguisher D exists that can distinguish HybridNoiseFree from HybridIdeal with probability
at least δ. We can use D to construct an adversary A that breaks the RLWE problem with advantage δ.
Given an RLWE sample (a, b), we can construct a key-pair and ciphertext such that the ciphertext will have
the form of a HybridNoiseFree sample if b = a · u + e and the form of a HybridIdeal sample if b is uniform over
Rq.

Given an RLWE sample (a, b), begin by sampling s′, e′
$←− χ and set sk = s′ and pk = (a, as′ + e′) =

(pk0, pk1). Next, set r′ = b and compute ctquot as in equation 23. If b = au+e then r′ is identically distributed
to a+ in HybridNoiseFree and if b is uniform then r′ is identically distributed to HybridIdeal. Therefore, any PPT
distinguisher D that can distinguish HybridNoiseFree from HybridIdeal can solve decisional RLWE with the same
probability.
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Theorem 3.8 (Circuit Privacy). Given that the input ciphertext and public key are well-formed, the input
ciphertext error has magnitude bounded by B′ and the error distribution χ is B-bounded, and for a security
parameter λ we have

2n
2nB2 +B +B′

q∗0
≤ 2−λ (24)

then algorithm 2 achieves 2−λ-circuit privacy as defined in definition 2.5.

Proof. This follows by combining lemmas 3.6 and 3.7, since HybridReal is equivalent to the distribution of
outputs of algorithm 2 and HybridIdeal is a distribution that is independent of the circuit used to compute
the final message. The magnitude of e+ in lemma 3.6 is B′ plus the magnitude of the error of a public key
encryption scheme using error distribution χ, which was computed in equation 28. The bound in equation 24
follows. Therefore, algorithm 2 achieves 2−λ-circuit privacy as defined in definition 2.5.

3.4 Correctness

In this subsection, we give the correctness of our circuit privacy procedure. Note that since we’ve already
shown the security of this operation, we don’t have to worry about equivalent expressions leaking information
about the original error term.

We begin with the expression for the ciphertext quotient.

ct =
(
a′, a′ · s+ v

)
=
(
a′, a′ · s+

⌊
[a]q∗0 · s+ ∆m+ e

q∗0

⌋)
=
(
a′, a′ · s+

⌊
[a]q∗0 · s+ e

q∗0
+

1

q∗0
(
Q

p
− [Q]p

p
)m

⌋)
=
(
a′, a′ · s+

⌊
[a]q∗0 · s+ e

q∗0
+ (

q0
p
− [Q]p
q∗0 · p

)m

⌋)
=
(
a′, a′ · s+

⌊q0
p

⌋
m+ ef +

⌊
[a]q∗0 · s−

[Q]p
p m+ e

q∗0

⌋)
=
(
a′, a′ · s+ ∆′m+ ef + v′

)

(25)

where ∆′ = bq0/pc and ef is the small error term (||ef || ≤ 1) introduced by removing bq0/pcm from the
flooring term. In section 4, we will give concrete parameters that result in sufficiently small errors to allow
for decryption correctness, but at a high level this ciphertext is decryptable if

∆′/2 > ||v′ + ef ||

4 Our VOLE Protocol

In this section, we give our VOLE protocol. Let m be the length of the VOLE vectors and let n be the
dimension of the ringR = Z[x]/(xn+1). Our VOLE protocol splits the vectors in Zmp over τ = dm/ne elements
of Rp, padding with zeros when necessary. The sender then uses homomorphic encryption operations to
compute the VOLE result, which is decrypted by the receiver.

In more detail, the receiver begins the protocol by encoding the input x ∈ Zp in a single BFV ciphertext
ctx, which it sends to the sender. The sender’s inputs α,β ∈ Zmp are split into τ elements (α(1),α(2), . . . ,α(τ))

and (β(1),β(2), . . . ,β(τ)). For each of the τ blocks, the sender computes a ciphertext

ct(i) = EvalAddPlain(EvalMultPlain(ctx,α
(i)),β(i))
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The sender then performs the circuit privacy procedure from section 3 and returns each of the resulting
ciphertexts to the receiver. The receiver then decrypts the τ blocks to obtain the VOLE result.

The pseudo-code for he sender and receiver roles are given in algorithms 3 and 4.

Algorithm 3 Receiver VOLE Protocol

Input: x ∈ Zp, Secret Key sk ∈ Rq
ctin

$←− Encrypt(sk, x)

Sender
net←−− ctin

{ct(i)res}τi=1
net←−− Sender

{γ(i)}τi=1 ← Decrypt(sk, ct
(i)
res)

Output: γ = (γ(1),γ(2), . . . ,γ(τ))

Algorithm 4 Sender VOLE Protocol

Input: VOLE inputs α,β ∈ Zmp , Public Key pk

ctin
net←−− Receiver

for i from 1 to τ do
ct

(i)
ole ← EvalAddPlain(EvalMultPlain(ctin,α

(i)),β(i))

ct
(i)
cp ← CP(ct

(i)
ole, pk)

end for
Receiver

net←−− ctcp = {ct(i)cp }τi=1

Output: ⊥

In sections 4.1 and 4.2, we show the security and correctness of the VOLE protocol defined by algorithms
3 and 4.

4.1 Security

We will now argue the security of the VOLE protocol with respect to definitions 2.3 and 2.4.

Lemma 4.1 (Security Against Sender). If the parameters of the homomorphic encryption scheme are chose
to satisfy semantic security, algorithm 3 achieves security against an honest-but-curious sender as defined
in defintion 2.3.

Proof. This is the easier of the two proofs, as it follows directly from the semantic security of the encryption

scheme. More formally, by the semantic security of the BFV scheme, we can replace the encryption ctin
$←−

Encrypt(sk, x) with an encryption of 0, which is independent of the receiver’s input. The simulator can safely
give the sender an encryption of an independent message and rely on the semantic security of the encryption
scheme to claim that no distinguisher can tell the difference between the simulator message and the real
receiver message. Parameters for the BFV scheme that give semantic security are given in [3].

The security against a semi-honest receiver is dependent on the choosing parameters that satisfy the
constraints given in theorem 3.8.

Lemma 4.2 (VOLE Circuit Privacy Parameter). Let χ be a B-bounded error distribution. For error distribu-
tion χ, polynomial degree n, plaintext modulus p, ciphertext modulus q = q0 ·q∗0 , and security parameter λ, the
following parameter bound will result in the homomorphic evaluation in algorithm 4 to maintain 2−λ-circuit
privacy.

2n
2nB2 +B + npB

q∗0
≤ 2−λ (26)
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Proof. This follows from theorem 3.8 if we show that the input to the circuit privacy procedure has an error
term with magnitude bounded by npB. This follows directly from the analysis of the error growth of the
EvalMultPlain operation from appendix A.4. The encrypted input to the EvalMultPlain function in algorithm
4 is a fresh encryption of the receiver’s input which has an error term with magnitude upper bounded by B,
so the magnitude of the resulting error term is no more than npB. The bound in equation 26 follows from
theorem 3.8 where B′ = npB.

Lemma 4.3 (Security Against Receiver). Given that the parameters of the homomorphic encryption scheme
are chosen to satisfy the circuit privacy constraint in lemma 4.2, algorithm 4 achieves security against an
honest-but-curious receiver as defined in definition 2.4.

Proof. The proof of this lemma relies on the circuit privacy result of theorem 3.8. Note that we crucially
rely on the receiver’s initial ciphertext being well-formed. However, if this is the case, then the simulator
for definition 2.4 can use the simulator from theorem 3.8 to return a ciphertext to the receiver that is
independent of the circuit used to compute the final message γ by sampling a ciphertext as in Hybrid2 from
section 3. Since the simulator for definition 2.4 knows the correct output message γ, this ciphertext is
indistinguishable from the output of the circuit privacy procedure in the real algorithm 4. Therefore, by
theorem 3.8, the message produced by algorithm 4 is indistinguishable from the output produced by the
simulator that samples a ciphertext from Hybrid2.

Theorem 4.4 (Secure VOLE Protocol). Algorithms 3 and 4 achieve the definitions of a secure VOLE protocol
given in definitions 2.4 and 2.3.

Proof. This follows from combining lemmas 4.1 and 4.3.

4.2 Correctness

We will now give parameters for which the VOLE protocol is correct.

Lemma 4.5 (Correctness). Let χ be a B-bounded error distribution. For error distribution χ, polynomial
degree n, plaintext modulus p, and ciphertext modulus q = q0 · q∗0 . Algorithms 3 and 4 achieve the correct
VOLE functionality as defined in definition A.1 if q∗0 is chosen to satisfy the circuit privacy constraint from
lemma 4.2 and q0 > 2pnB + 2p+ [q0]p, where v is the compressed error term from equation 4.

Proof. See appendix B.1.

4.3 Simple Extension to Batched OLE

The extension of this VOLE protocol to a BOLE protocol is straight-forward and preserves the security proofs
of section 4.1. In addition, this BOLE extension maintains the exact communication complexity of the VOLE
protocol. Only the receiver’s role is modified in this extension. We show the receiver’s BOLE procedure in
algorithm 5. The receiver begins with a vector x of values, which she encodes as a polynomial as described
in appendix A.4. The operations performed by the sender are identical. To obtain the BOLE output, the
receiver must decode the decryption result by evaluating the resulting polynomial at the roots of unity
determined by the encoding NTT parameters.

5 Implementation & Performance

In this section, we give an implementation of the VOLE and BOLE protocols presented in section 4.
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Algorithm 5 Receiver BOLE Protocol

Input: x ∈ Zmp , Secret Key sk ∈ Rq
Let (x(1),x(2), . . . ,x(τ))← x, where τ = dm/ne
for i from 1 to τ do
ct

(i)
in

$←− Encrypt(sk,x(i))
end for
Sender

net←−− {ct(i)in }τi=1

{ct(i)res}τi=1
net←−− Sender

{γ(i)}τi=1 ← Decrypt(sk, ct
(i)
res)

Output: γ = (γ(1),γ(2), . . . ,γ(τ))

5.1 Parameter Selection

In both of these protocols, there are four parameters that must selected: the magnitude bound B of the B-
bounded error distribution χ, the plaintext modulus p, the ciphertext modulus q, and the ring dimension n.
These parameter sets must satisfy both the computational security requirements of the RLWE problem as well
as the security requirements of the circuit-privacy procedure. In the VOLE protocol, there are no restrictions
on the plaintext modulus p other than its size, so we opt for powers of two for ease of comparison. In the
BOLE protocol, the plaintext modulus must support the NTT operation to encode the vectors as polynomials
for component-wise operations. This requires that Zp contain a 2nth root of unity.

From the previous section, we have several constraints on the parameters for the protocol to satisfy both
security and correctness.

1. For circuit privacy parameter λcp, lemma 4.2 gives the following lower bound on q∗0 .

1− n2nB2 +B + npB

q∗0
≥ 1− 2−λcp

q∗0 ≥ 2λcp · n(2nB2 +B + npB)

2. For correctness, lemma 4.5 gives the following lower bound on q0.

q0 > 2pnB

3. Finally, for semantic security, we must choose n and q to satisfy the desired security level. These
parameters are given in table 1 in the Homomorphic Encryption Standard [3]. In particular, this table
gives a maximum size of q for a given value of n. We must select an n that is large enough for our
choice of q.

Since we have competing constraints on q, it is not immediately clear that we can pick parameters that will
be able to satisfy all these constraints. Luckily, there are many parameter sets that satisfy these conditions.

Our implementation of the discrete Gaussian sampling algorithm follows [14], which takes advantage of
the small standard deviation to simply compute the probability of sampling all of the most common integers.
This truncated distribution is statistically close to the real discrete Gaussian distribution while still allowing
us to bound the maximum size of a sampled term. Following the homomorphic encryption standard, we use
a standard deviation of σ = 3.2. Including the sign bit, no term sampled from χ is greater than five bits, so
B = 32 for all our parameter sets.

In most of the parameter sets in this section, each limb of the ciphertext modulus will be 55 bits. For a
circuit privacy parameter of λcp = 80, we will use a ciphertext modulus consisting of four limbs for a total
of 220 bits. This is the maximum size of the modulus for n = 213 in table 1 of the HE standard [3]. For a
plaintext modulus p = 232, these parameters satisfy the three constraints given above.
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5.2 Extending to Larger Moduli

There are some applications which require moduli that are larger than can be supported by a final q0 that
fits in a standard machine word. We handle these moduli by using the same DCRT representation as the
ciphertext modulus. In words, for a plaintext modulus p that is too large for a standard machine word, we
represent p as a product of primes p =

∏`
i=0 pi where each pi is small enough to be supported by a q0 that

fits in a standard machine word for the given circuit privacy parameter. This allows us to extend the support
of the protocol in section 4 to larger moduli with a factor of ` overhead.

5.3 Optimizing for Low-Bandwidth Networks

In section 5.4, we will benchmark our implementation in an environment with low network bandwidth. We
define this as a setting where the network bandwidth is the bottleneck of the protocol. To reduce the overall
communication of our protocol, we include in our implementation a common optimization to reduce the size
of a fresh Ring LWE encryption by a factor of two. The idea is simple: instead of sampling a random a
polynomial for a ciphertext (a, b), sample a random PRG seed σ and generate a← PRG(σ) to be the output
of the PRG. The remainder of the ciphertext is generated as if a were sampled normally, but when it comes
time to send the ciphertext we only need to send the pair (σ, b), replacing the element of Rq with a 16 byte
PRG seed.

5.4 Experimental Setup & Results

We implement2 the VOLE and BOLE protocols from section 4 on top of an implementation of the BFV
[9, 15] homomorphic encryption scheme based on the BFV-RNS implementation of Halevi, Polyakov, and
Shoup [18] in addition to code from the work of Juvekar, Vaikuntanathan, and Chandrakasan [22]. We use an
NTT implementation based off of the NFLlib library of Aguilar-Melchor, Barrier, Guelton, Guinet, Killijian,
and Lepoint [2].

As mentioned in section 1.2, we separate prior work into two categories and compare to each category
separately. The first category consists of protocols with (asymptotically) linear communication complexity,
and, more heuristically, protocols that are optimized for small VOLE lengths. The fastest protocol in this
category that we are aware of is the work of Applebaum, D̊amgard, Ishai, Nielsen, and Zichron [4]. To
compare against [4], we ran our protocol on two AWS m5.2xlarge instances, each having 8 vCPUs at 3.1
GHz and 32 GB of RAM. These instances were in the same geographic region (US-East) and were connected
by a network with a bandwidth of 500 MB/sec. This setup was intended to replicate the conditions of the
experiments of [4] (see section 6.5). Our network bandwidth is much lower than in their setup which favors
[4] as their communication complexity does not exceed the bandwidth of the network we used. We employ
the communication optimization described in section 5.3. We also note that the clock speed of the CPU of
our machine is slightly slower than the machine used for the benchmarks in [4], but this is not considered in
our comparisons (all numbers are reported without scaling from [4]).

Using this setup, we took two types of benchmarks. The first benchmark is of the protocol running
between the two machines using all of the threads. Based on this runtime, we divided by the length of the
VOLE protocol to get the time per OLE multiplication. We then ran the protocol once using a single thread
per machine to measure the latency, the time that a higher level application must wait for the protocol to
complete. We compare these results against the numbers given in [4] (see tables 2 and 3 in [4]) for their
optimized 32 bit protocol. These comparisons are given in figures 1 and 2. We note that the trend lines
for the [4] protocol do not consider the increase in communication of the protocol, which could result in
further slowdown in settings where the bandwidth is constrained. We also note that this graph includes
an estimated benchmark for the time per OLE for our protocol if the circuit privacy analysis from section
3 is not considered and noise flooding is used to achieve circuit privacy. This runtime is estimated by
implementing the sampling function for the noise flooding term in NTL [30], then adding the time for this
sampling algorithm to our runtime.

2Due to anonymization concerns, the link to the implementation will be included in the camera-ready version.
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Figure 1: Time per OLE multiplication vs. VOLE length compared to [4] (denoted ADI+17). Times are
measured in microseconds, and the VOLE protocol is over a 32-bit field. The runtime for the noise-flooding
variant of our protocol was estimated by implementing the noise sampling function using NTL [30] and
adding this sampling time to our protocol time.

Figure 2: Time for a single run of the VOLE protocol vs. VOLE length compared to [4] (denoted ADI+17).
Times are measured in seconds, and the VOLE protocol is over a 32-bit field.
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Figure 3: Total communication in kilobytes for a single run of the VOLE protocol vs. VOLE length compared
to [4] (denoted ADI+17). The VOLE is over a 32-bit field. Note that the slope of the ADI+17 trend line is
greater than the slope of our protocol’s trend line. We estimate the cross-over point in the communication
complexity to be a VOLE length of around 216.

Finally, we measured the communication complexity of a single run of our VOLE protocol and compared
it to estimates of the communication complexity of [4] based on the reported consumed bandwidth for their
protocol. This comparison is displayed in figure 3. For small VOLE, the protocol of [4] achieves better
communication complexity than our protocol for VOLE lengths less than 216, although beyond this length
our protocol achieves better communication complexity.

The second category of prior art consists of protocols with sub-linear communication complexity. These
protocols are designed to be optimized for large VOLE lengths, and due the sub-linear communication they
will always be asymptotically faster than our protocol. Despite this, our protocol is faster for smaller VOLE
lengths, and our comparison aims to determine VOLE length at which one protocol becomes faster than the
other. By determining this point, we are able to discuss applications for which our protocol is more efficient
and when it makes sense to switch to a protocol optimized for larger VOLE sizes. To our knowledge, the
fastest protocol in this category is the work of Schoppmann, Gascón, Reichert, and Raykova [28], which is
an optimized two-party implementation of the FSS-based sub-linear vector VOLE [8].

Since the authors of [28] included their code, we were able to run side-by-side comparisons between our
protocol and theirs. Following the setup from their work, we ran each protocol on a single thread on two
machines connected by a network with 500 MB/sec bandwidth. The results of these comparisons are given
in figures 4 and 5. By extrapolating the data in figure 4, we estimate the the cross-over point is near a
VOLE length of 235. Extrapolating the communication complexity trends in figure 5 gives an approximate
cross-over point near a VOLE length of 232. In section 5.5, we give some applications that require VOLE
protocols of width less than this cross-over point.

We note briefly that the protocol in [28] requires running a smaller VOLE protocol that it then expands
using an LPN code. When generating an exceptionally long VOLE correlation, one could run a protocol that
recursively calls [28] until it reaches a point where our protocol is faster, then runs our protocol as the base
case. It is an interesting future direction to combine our protocol with [28] to improve the performance of
VOLE with sub-linear communication.

We also note that both protocols in this section focus on optimizing the generation of random VOLE
correlations while our protocol is able to generate arbitrary VOLE correlations directly. While there is a
simple and secure reduction from random VOLE to arbitrary VOLE, it is an interesting future direction to
try to further optimize our protocol for generating random VOLE correlations.
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Figure 4: Time for a single run of the VOLE protocol vs VOLE length compared to [28] (denoted SGRR19).
The runtime is measured in seconds, and the VOLE is over a 32-bit field. Both axes are shown in log scale
to better display the trends. Based on extrapolation, we estimate the intersection point in the runtimes to
be near a VOLE length of 235.

Figure 5: Total communication for a single run of the VOLE protocol vs VOLE length compared to [28]
(denoted SGRR19). The communication is measured in megabytes, and the VOLE is over a 32-bit field.
Both axes are shown in log scale to better display the trends. Based on extrapolation, we estimate the
intersection point in the communication to be near a VOLE length of 232.
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5.5 Application: Secure Image Convolution

There are many applications for a VOLE protocol, including many that do not require VOLE correlations of
length greater than the cross-over points discussed in section 5.4. One concrete example is image convolution
for secure neural network evaluation. The canonical image convolution operations takes in a two-dimensional
image and a small two-dimensional kernel and produces an output image where each output pixel is the sum
of the component-wise product of the kernel and a region of input image. While one can describe this
operation using two-dimensional Fourier transforms, one of the most efficient implementations of secure
convolution is to use VOLE. In particular, one can define a VOLE correlation for each element in the kernel
and then perform a scalar-vector product with the elements of the image multiplied by the specific kernel
element. Even for large neural networks such as networks that process mammograms for cancer diagnosis
[32], the size of a convolution does not exceed the size of the input image, which is 2028× 2028 < 222 pixels.
Based on the benchmarks in section 5.4, we would outperform all prior works for the generation of these
VOLE correlations.
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A Further Background

In this appendix, we give further background omitted from section 2 due to space constraints.

A.1 Oblivious Linear Evaluation

We now give formal definitions of vector OLE and batch OLE, along with security definitions. We define
these protocols by their ideal functionalities as in definition 2.1, and the security definitions 2.3 and 2.4 will
be the target definitions for our proofs later in this work.

Definition A.1 (Vector Oblivious Linear Evaluation). For an integer p and n, define the protocol VOLE(p,n)

to have the following ideal functionality. Let ΞS = Znp ×Znp , let ΩS = ∅, let ΞR = Zp, and let ΩR = Znp . The
function fS(ξS , ξR) = ⊥ for all (ξS , ξR) ∈ ΞS×ΞR. For ξS = (α,β) and ξR = x, define fR(ξS , ξR) = α·x+β
mod p.

Definition A.2 (Batch Oblivious Linear Evaluation). For an integer p and n, define the protocol BOLE(p,n)

to have the following ideal functionality. Let ΞS = Znp ×Znp , let ΩS = ∅, let ΞR = Znp , and let ΩR = Znp . The
function fS(ξS , ξR) = ⊥ for all (ξS , ξR) ∈ ΞS×ΞR. For ξS = (α,β) and ξR = x, define fR(ξS , ξR) = α�x+β
mod p.

A.2 Ring Learning with Errors

In this section, we define the decisional Ring Learning with Errors (RLWE) [24] problem.

Definition A.3 (Decisional Ring Learning with Errors [24]). For integers n and q, a ring Rq = Zq[x]/(xn+
1), and an error distribution χ over Rq, the decisional Ring Learning with Errors problem RLWEn,q,χ is to

distinguish between samples of the form (a, as+ e) and (a, u) where a, u
$←− Rq and s, e

$←− χ.

In this work, we consider χ to be the discrete, zero-centered Gaussian distribution over Rq. This follows
the homomorphic encryption security standard [3] from which we get the concrete parameters used in the
implementation in section 5.
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A.3 Homomorphic Encryption

In this section, we give high level definitions for the algorithms comprising a leveled homomorphic encryption
scheme as well as necessary security definitions.

Definition A.4 (Leveled Homomorphic Encryption). A leveled homomorphic encryption scheme

E = (KeyGen,Encrypt,Eval,Decrypt)

is a set of PPT algorithms defined as follows:

• KeyGen(1λ, 1L)→ (sk, pk, evk)
Given the security parameter λ and a maximum circuit depth L, outputs a key pair consisting of a
public encryption key pk, a secret decryption key sk, and an evaluation key evk.

• Encrypt(pk,m)→ ct
Given a message m ∈M and an encryption key pk, outputs a ciphertext ct.

• Eval(evk, f, ct1, ct2, . . . , ctn)→ ct′

Given the evaluation key, a description of a function f : Mn → M with multiplicative depth at most
L, and n ciphertexts encrypting messages m1, . . . ,mn, outputs the result ciphertext ct′ encrypting
m′ = f(m1, . . . ,mn).

• Decrypt(sk, ct) = m Given the secret decryption key and a ciphertext ct encrypting m, outputs m.

Optionally the scheme E may be extended with a PPT algorithm EncryptSK(sk,m)→ ct which uses the
secret key sk rather than the public key pk, to compute the ciphertext ct from the message m.

When returning a ciphertext output by the Eval function, it is often desirable for this ciphertext to hide
the function f that was used to produce it. This property of the scheme is called circuit privacy, which we
formally define below.

A.4 BFV Homomorphic Encryption Scheme

In this section , we describe the algorithms that define the Brakerski / Fan-Vercauteren ([9], [15]) homomor-
phic encryption scheme based on the RLWE problem. While this scheme is fully homomorphic, we will only
be using encryption and decryption, ciphertext addition, plaintext addition, and plaintext multiplication
functions for our VOLE protocol. In other words, we will not use ciphertext-ciphertext multiplication.

For an integer q and n a power of two, we define the polynomial ring Rq = Zq[x]/(xn + 1). Let χ be the
error distribution of the RLWE problem (typically a discrete, zero-centered Gaussian mod q), and let p be
a integer much smaller than q. Let ∆ = bq/pc.

First, let’s define the algorithms for public key and secret key encryption of the BFV scheme.

• KeyGen(1λ)→ (sk, pk).
Outputs the secret key sk and public key pk. The secret key sk = s is generated by sampling from the
error distribution s ← χ. The public key is generated by first sampling a uniformly random element
a← Rq and an error term e← χ. We then set pk = (a, a · s+ e) and evk = pk.

• EncryptSKq,χ(sk,m)→ ct.
For an error distribution χ, outputs a ciphertext encrypting the message m ∈ Rp. Samples a uniformly
random element a← Rq and an error term e← χ and outputs the tuple ct = (a, a · s+ ∆m+ e).

• Encryptq,χ(pk,m)→ ct.
For an error distribution χ, outputs a ciphertext encrypting the message m ∈ Rp. For a public
key pk = (pk[0], pk[1]), this algorithm samples three error terms u, e1, e2 ← χ. It then outputs the
ciphertext

ct = (pk[0] · u+ e1, pk[1] · u+ ∆ ·m+ e2) (27)
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To bound the magnitude of the error term of a fresh ciphertext, we expand equation 27 to get the
following.

ct = (pk[0] · u+ e1, pk[1] · u+ ∆m+ e2)

= (au+ e1, asu+ eu+ ∆m+ e2)

= (a′, a′s+ eu+ e2 − se1) = (a′, a′s+ e′)

where a′ = au+ e1 and e′ = eu+ e2− se1. If the error distribution χ is B-bounded, then we can upper
bound the magnitude of the error term e′ by the following.

||e′|| ≤ 2δRq
B2 +B ≤ 2nB2 +B (28)

• Decrypt(sk, ct) = m. Outputs the message m that the ciphertext ct = (ct[0], ct[1]) encrypts. Computes
and outputs the following:

m =
⌈ct[1]− s · ct[0]

∆

⌋
From the structure of the ciphertext, the algorithms for addition and plaintext multiplication follow

naturally. For each of these operations, we denote the magnitude of the noise term of the result ciphertext.

• EvalAdd(ct1, ct2) = ct3.
For ct1 = (ct1[0], ct1[1]) and ct2 = (ct2[0], ct2[1]) that encrypt m1 and m2, the ciphertext ct3 encrypts
m1 + m2, where addition is over Rp. The result ciphertext is ct3 = (ct1[0] + ct2[0], ct1[1] + ct2[1]),
where all operations are over Rq. The noise term of ct3 is the sum of the noise terms of ct1 and ct2

• EvalAddPlain(ct1,m2) = ct3.
For ct1 = (ct1[0], ct1[1]) encrypting the message m1 ∈ Rp and m2 ∈ Rp, the ciphertext ct3 encrypts
the message m1 +m2, where addition is over Rp. The result ciphertext is ct3 = (ct1[0], ct1[1] + ∆m2),
where all operations are over Rq. Note that there is no noise growth in this operation, so the noise
term in ct3 is exactly the same as the noise term in ct1.

• EvalMultPlain(ct1,m2) = ct3.
For ct1 = (ct1[0], ct1[1]) encrypting the message m1 ∈ Rp and m2 ∈ Rp, the ciphertext ct3 encrypts the
message m1 ·m2, where multiplication is over Rp. The result ciphertext is ct3 = (ct1[0] ·m2, ct1[1] ·m2),
where all operations are over Rq. The noise term in ct3 grows due to multiplication by m2. Let e1 be
the noise term in ct1 and e3 = e1 ·m2 be the noise term in ct3. By lemma 2.1, we have

||e3|| ≤ δRq
· ||m2|| · ||e1|| ≤ np · ||e1||

Note that the EvalMultPlain function described above does not, on its own, achieve circuit privacy as
defined in definition 2.5.

A.4.1 Encoding Inputs as Polynomials

The homomorphic encryption scheme described above encrypts messages over the polynomial ring Rp. In
order to operate on encrypted vectors and perform component-wise operations, we use the technique of [31]
to encode the vectors as polynomials. A vector x of length n is encoded as a polynomial in Rp by finding
a polynomial m such that evaluation of m at the n roots of unity mod p is x. This results in polynomial
multiplication on m1 and m2 mapping to component-wise multiplication over the evaluations x1 and x2.

To encode scalar values, we note that it suffices to treat a scalar value x ∈ Zp as an element of Rp,
since the evaluation of this element in Rp at any input will be x. This naturally distributes the scalar to all
elements of the other encoded operand in the homomorphic operations defined above. Because of this, our
VOLE and BOLE protocols differ only in these encoding and decoding steps.
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A.5 OLE Leakage

Let’s consider a näıve application of the homomorphic operations described in appendix A.4 to implement
a VOLE protocol. We will show in this section that this results in leakage of the sender’s private values.

In the ideal world [11], all that is revealed to the receiver is γ = α · x + β, which effectively hides the
sender’s inputs α and β. However, we see that if the sender receives a ciphertext of the form (a, as+∆x+e)
and then performs a single EvalMultPlain and EvalAddPlain as defined in appendix A.4, the receiver will
receive a ciphertext that has the following form:(

a ·α, a · s ·α + ∆ · (x ·α + β) + e ·α
)

(29)

It is clear from equation 29 above that the vector α is easily recoverable from either the first term by
factoring out the a polynomial or the error term by factoring out the original error term e.

If the receiver knows α, the OLE output also leaks β, so the sender’s privacy is completely lost. In
section 3 below, we discuss our approach to achieving leakage resilience by removing the dependence of α
from both terms of the ciphertext, achieving the condition in definition 2.5.

B Proofs

B.1 Proof of lemma 4.5

Lemma B.1 (Correctness). Let χ be a B-bounded error distribution. For error distribution χ, polynomial
degree n, plaintext modulus p, and ciphertext modulus q = q0 · q∗0 . Algorithms 3 and 4 achieve the correct
VOLE functionality as defined in definition A.1 if q∗0 is chosen to satisfy the circuit privacy constraint from
lemma 4.2 and q0 > 2pnB + 2p+ [q0]p, where v is the compressed error term from equation 4.

Proof. Recall from equation 4 that the error term after the divide-and-floor step is the following:

ef + v′ = ef +

⌊
[a]q∗0 · s−

[Q]p
p m+ e

q∗0

⌋
where ||ef || ≤ 1

To upper bound the magnitude of v′, we consider the terms in the numerator of v′ separately. Beginning
with the first term [a]q∗0 · s, we can upper bound ||[a]q∗0 · s|| ≤ nq∗0B, since s is a fresh sample from χ. We
can then pull this term out of the flooring function to get the following:

||v′|| ≤ nB +

∣∣∣∣∣
∣∣∣∣∣
⌊
e− [Q]p

p m

q∗0

⌋∣∣∣∣∣
∣∣∣∣∣

≤ nB +

∣∣∣∣∣
∣∣∣∣∣
⌊

2nB2 +B + npB − p
q∗0

⌋∣∣∣∣∣
∣∣∣∣∣ ≤ nB

where we invoked the bound on the error term e from lemma 4.2. The last inequality follows from the
fact that q∗0 satisfies the circuit privacy constraint, which for any reasonable setting requires that q∗0 >
n(2nB2 +B+npB). Therefore, the additional terms in the numerator floor to zero, leaving the upper bound
of nB.

By a standard analysis of the BFV scheme (see, for example, lemma 1 in [15]), if ∆/2 > ||e||, where ∆
is the scaling factor, decryption will be correct. Solving for q0 gives the following lower bound:

1

2
∆′ =

1

2
bq0
p
c > nB + 1 =⇒ 1

2
(
q0
p
− [q0]p

p
) > nB + 1

=⇒ q0 > 2pnB + 2p+ [q0]p

which is the given bound.
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