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Abstract—Logic synthesis is a fundamental step in the real-
ization of modern integrated circuits. It has traditionally been
employed for the optimization of CMOS-based designs, as well
as for emerging technologies and quantum computing. Recently,
it found application in minimizing the number of AND gates in
cryptography benchmarks represented as xor-and graphs (XAGs).
The number of AND gates in an XAG, which is called the logic net-
work’s multiplicative complexity, plays a critical role in various
cryptography and security protocols such as fully homomorphic
encryption (FHE) and secure multi-party computation (MPC).
Further, the number of AND gates is also important to assess
the degree of vulnerability of a Boolean function, and influences
the cost of techniques to protect against side-channel attacks.
However, so far a complete logic synthesis flow for reducing the
multiplicative complexity in logic networks did not exist or relied
heavily on manual manipulations. In this paper, we present a
logic synthesis toolbox for cryptography and security applications.
The proposed tool consists of powerful transformations, namely
resubstitution, refactoring, and rewriting, specifically designed
to minimize the multiplicative complexity of an XAG. Our flow
is fully automatic and achieves significant results over both
EPFL benchmarks and cryptography circuits. We improve the
best-known results for cryptography up to 59%, resulting in a
normalized geometric mean of 0.82.

I. INTRODUCTION

Logic synthesis is an essential part of modern EDA flows
for the realization and optimization of integrated circuits
targeting area, delay, and power. For this purpose, logic
synthesis abstracts circuits using compact data structures, and
manipulates them making use of both exact and heuristic
algorithms [1], [2], [3]. In the past, logic synthesis mainly
focused on the optimization of CMOS circuits, while today it
considers different objectives and fields of application, such
as emerging technologies or quantum computers [3]. More
recently, the works in [4], [5], [6], [7] have started a new domain
of application for logic synthesis, addressing cryptography and
security applications. In this scenario, logic synthesis makes use
of xor-and graphs (XAGs, [5]) as data structure for optimization,
because they efficiently abstract cryptography circuits over the
basis {AND, XOR, NOT} [4]. Further, logic synthesis focuses
on the minimization of the number of AND gates as its main
target metric for optimization.

The minimization of the number of AND gates for crypto-
graphy is fundamental for two main reasons. First, the number
of AND gates correlates to the degree of vulnerability of a
circuit [8]. The minimum number of AND gates sufficient to
implement a Boolean function as an XAG is called multiplica-
tive complexity of the function [8], while the multiplicative
complexity of the logic network is defined as the actual number
of AND gates used in the network representation of the func-
tion [9], [5]. The multiplicative complexity of a function directly

correlates to the resistance of the function against algebraic
attacks [10], while the multiplicative complexity of a logic
network implementing that function only provides an upper
bound. Consequently, minimizing the multiplicative complexity
of a network is important to assess the real multiplicative
complexity of the function, and therefore its vulnerability.
Second, the number of AND gates plays an important role
in high-level cryptography protocols such as zero-knowledge
protocols, fully homomorphic encryption (FHE), and secure
multi-party computation (MPC) [11], [12], [6]. For example, the
size of the signature in post-quantum zero-knowledge signatures
based on “MPC-in-the-head” [13] depends on the multiplicative
complexity in the underlying block cipher [12]. Moreover, the
number of computations in MPC protocols based on Yao’s
garbled circuits [14] with the free XOR technique [15] is
proportional to the number of AND gates. Regarding FHE,
XOR gates are considered cheaper and less noisy compared to
AND gates. To further motivate our work, it is worth mentioning
that in techniques to protect against side-channel attacks, the
cost of general-purpose protections grows with the number
of AND gates [10]. Moreover, the work in [16] has recently
demonstrated the positive effect of the minimization of AND
gates on the number of qubits and expensive quantum operations
(T gates) in fault-tolerant quantum circuits.

While it is clear that the multiplicative complexity has a
key role in cryptography and that logic synthesis can have a
strong impact in its optimization, so far, there are no fully
automatic logic synthesis tools able to address the optimization
of the number of AND gates in a network as their main goal
for optimization. The work in [5] has recently presented a
logic synthesis algorithm for cryptography, but it is limited to a
rewriting algorithm. On the other hand, state-of-the-art tools [2],
[17] automatically address size optimization, without precisely
minimizing the number of ANDs, and methods from the crypto-
graphy community rely heavily on manual decomposition and
optimization strategies [4].

In this paper, we propose a fully automatic logic synthesis
toolbox for cryptography applications. The proposed tool
presents a complete synthesis flow that interchanges various
logic synthesis techniques able to find different optimization
opportunities on the same network. This overcomes the main
limitation of the work presented in [5], which focuses instead
on rewriting small 6-input subnetworks with their optimum rep-
resentations. The tool uses XAGs as underlying data structures
to represent functions and consists of three main optimizations,
namely rewriting, refactoring, and resubstitution, which are
specifically implemented to minimize the number of AND
gates. These three transformations are the most common and
powerful optimizations involved in modern synthesis flows [18],
and allow us to obtain significant improvements over previous
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Fig. 1: XAG of the full adder (a), and its implementation (b)
with optimum multiplicative complexity after rewriting

best results. We test our flow on best-known results coming
from [5] and [6] for both EPFL benchmarks and circuits for
MPC and FHE applications. The complete flow optimizes the
best results for EPFL benchmarks up to 47%, and achieves
a normalized geometric mean of 0.82 for the cryptography
benchmarks from [5]. For instance, it obtains a 59% reduction
in the number of AND gates for a 32×32-bit multiplier.

II. BACKGROUND

In this section, we provide some details on xor-and
graphs (XAGs, [5]), as they are used as data structure to
represent Boolean functions. Further, a rewriting algorithm for
reducing the multiplicative complexity in logic networks is
described. This algorithm was first presented in [5] and it has
been implemented as part of our logic synthesis tool.

A. XAGs and Multiplicative Complexity
In analogy to the work in [5], we select XAGs as data

structure for the optimization flow. An XAG is a logic network
in which each node is a 2-input AND or a 2-input XOR
operation, and edges to connect the gates can be both regular
and complemented, where a complemented edge indicates the
inversion of the signal. Fig. 1(a) presents an XAG for the full
adder: XOR gates are labeled with ‘⊕’, AND gates are labeled
with ‘∧’, and the complemented edges are denoted by dashed
lines. Note that complemented x is equivalent to 1⊕ x, thus,
an XAG without complemented edges can be easily obtained
by replacing each inverter by an XOR gate. The multiplicative
complexity of a Boolean function is given by the minimum
number of AND gates needed to represent the function over the
basis {AND, XOR, NOT} [8], [4]. On the other hand, we refer
to the multiplicative complexity of a logic network as the actual
number of AND gates used to implement the functionality over
an XAG [9]. The latter only provides an upper bound for the
multiplicative complexity, and may be far larger than the actual
multiplicative complexity of the function itself. For instance,
the multiplicative complexity of the logic network of the full
adder in Fig. 1(a) is equal to 2, while it is well-known [19]
that the multiplicative complexity of the function is equal to 1.

B. Rewriting Algorithm for Cryptography Applications
A previous work [5] has focused on logic synthesis for

minimizing the number of AND gates over an XAG, using
a rewriting algorithm. Rewriting is a technique largely used
in logic synthesis, and allows to replace parts of a logic
network with optimized (e.g., in the number of nodes or levels)
subnetworks. These subnetworks can be precomputed, as done
in [20], [5], or computed on-the-fly with exact synthesis as
presented in [21].

Algorithm 1 Resubstitution to reduce the number of ANDs
Input: Logic network N , cut-size, max div
Output: Resynthesized logic network
1: list ← topological-sort-network(N )
2: for each node n in list do
3: cut ← find-reconvergent-cut(n, cut-size)
4: mffc ← computeMFFC(n)
5: if |mffc| > 0 then
6: div ← collect-divisors(list, n, max div)
7: compute-truth-tables(cut)
8: compute-satisfiability-DC(cut)
9: if n′ ← 0-resub(list, n, div) then

10: continue
11: end if
12: and mffc← AND-in-MFFC(mffc)
13: if and mffc = 0 then
14: continue
15: end if
16: if and mffc > 0 then
17: if n′ ← xor-resub(list, n, div) then
18: continue
19: end if
20: if n′ ← xx-resub(list, n, div) then
21: continue
22: end if
23: if n′ ← and-resub(list, n, div, and mffc) then
24: continue
25: end if
26: if n′ ← aa-resub(list, n, div, and mffc) then
27: continue
28: end if
29: if n′ ← ao-resub(list, n, div, and mffc) then
30: continue
31: end if
32: end if
33: end if
34: end for
35: network-cleanup-and-sweeping(N )

The algorithm in [5] presents a generalization of DAG-aware
AIG rewriting [20], modified to focus on the minimization of
the number of AND gates. It makes use of cut enumeration [22],
with adjusted cost computation, and affine functions classifi-
cation [23] to replace 6-input XAG cuts with their optimum
(i.e., having minimum multiplicative complexity) subnetworks.
The algorithm is based on two major considerations, being
(i) the multiplicative complexity of a Boolean function is
unchanged by affine operations, and (ii) the optimum XAG
is known [8], [24] for each affine class representative up to
6-input functions. We refer the reader to [5] for more details
on the implementation of the algorithm. Here, we conclude
with an example, showing how the rewriting algorithm applied
on small (up to 6-input functions) logic networks can obtain
the optimum multiplicative complexity. The full adder obtained
with the rewriting algorithm from [5] is shown in Fig. 1 (b),
and has a multiplicative complexity equal to 1.

III. LOGIC SYNTHESIS TOOLKIT FOR CRYPTOGRAPHY
AND SECURITY

In this section, we present resubstitution and refactoring
as two new algorithms to create a logic synthesis flow for
cryptography and security applications, which also includes
rewriting. The presented algorithms modify state-of-the-art
logic synthesis optimization techniques by considering the
minimization of the number of AND gates as their primary goal.

A. Resubstitution
Resubstitution is a method adopted in many logic synthesis

flows [25] to express the function of a node n using other nodes



(called divisors) which are already present in the logic network.
A resubstitution is accepted if the new implementation is more
compact (e.g., in the number of nodes) than the current one,
thus resulting in size optimization. Resubstitution is usually
classified according to the number of operators that it adds to
the logic network, i.e., 0-resubstitution, if it does not add any
new operator; 1-resubstitution if it expresses a logic function
by adding one logic operator, and so forth. When k nodes
are added by resubstitution, size improvement is obtained if
l > k, where l is the number of nodes in the maximum fanout
free cone (MFFC, [20]) of node n. We also refer to “AND-
resubstitution”, “OR-resubstitution”, etc., depending on the type
of operators added to the network.

Our tool minimizes the number of AND gates in the logic
network, independently from the number of XOR gates and
inverters. Thus, state-of-the-art resubstitution algorithms need
to be re-investigated to take this new cost into account. First,
XOR gates do not take part in the total cost and saving,
and only the number of AND gates in the MFFC, called
hereafter and mffc, are considered in the global saving for
resubstitution. It means that XOR-resubstitution is always
advantageous when the number of AND gates in the MFFC is
larger than 0. On the other hand, in the case and mffc = 0,
resubstitution is never leading to any AND optimization.
Regarding AND/OR resubstitutions, classical implementations
can be used, paying attention to evaluate the gain as and mffc.

The resubstitution procedure is depicted in Alg. 1. For
each node in the network (in topological order), the procedure
computes a reconvergent-driven cut and the MFFC of n
as implemented in [26]. k-resubstitution is intrinsically an
expensive task, and it is thus applied to small partitions
of the whole network. To accelerate the computation, the
divisors are collected by setting a maximum number of nodes
max div. As resubstitution may result in more optimization
opportunities when enriched with don’t cares, we allow the
use of satisfiability don’t cares in the algorithm. Truth tables
are used as underlying data structure for the computation of
both the Boolean functionality and the don’t cares (lines 7–8
in Alg. 1). First 0-resubstitution is attempted. Due to the use
of don’t cares, the algorithm looks for a divisor d1 such that
DC(n)∨ n = DC(n)∨ d1. If this is successful, resubstitution
is applied and the procedure moves to the next node; otherwise,
more complex types of resubstitution are tried, depending on the
number of AND gates in the MFFC. If and mffc = 0, the pro-
cedure jumps to the next node, as resubstitution is not leading
to any optimization. In the opposite case, i.e., and mffc > 0,
any XOR-resubstitution is successful independently on the
number of increased XORs. Two XOR resubstitutions are
implemented: XOR-resubstitution (xor-resub) and XOR-XOR-
resubstitution (xx-resub). In the case xor-resub and xx-resub
are not applicable, standard AND resubstitutions are attempted
in increasing complexity order. The tried resubstitutions are:
AND-resubstitution (and-resub), AND-AND resubstitution (aa-
resub), AND-OR resubstitution (ao-resub). In this scenario, the
resubstitution is successful if the number of k added AND nodes
is smaller than and mffc. To accelerate the computation,
Boolean filtering rules from [25] have been applied for the
AND-resubstitution.

As an example, consider the logic network from Fig. 2 (a),
which is the not-optimized XAG of the full adder. By applying
XOR-XOR-resubstitution, one AND gate can be written using
two XORs (highlighted in Fig. 2 (b)). This example intentionally
shows that the algorithm does not consider the increase in the
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Fig. 2: Resubstitution example

Algorithm 2 Refactoring to reduce the number of ANDs
Input: Logic network N , max fanin
Output: Resynthesized logic network
1: for each node n in N do
2: mffc ← computeMFFC(n,max fanin)
3: f ← compute-truth-tables(mffc)
4: dc ← compute-satisfiability-DC(mffc)
5: new mffc ← synthesize(f, dc)
6: if AND-in-MFFC(new mffc) < AND-in-MFFC(mffc) then
7: Substitute(new mffc, mffc)
8: end if
9: end for

10: network-cleanup-and-sweeping(N )

number of nodes as the main cost for optimization, while only
the AND gates are accounted for in the optimization process
(decreased from 7 to 6).

B. Refactoring
Refactoring is an effective technique often used to overcome

local minima that can be encountered during optimization. As
a matter of fact, refactoring resynthesizes large subnetworks in
a logic network from scratch and without using existing nodes
in the logic network. Depending on the optimization needs and
the data structure, different logic synthesis algorithms can be
used for this purpose, e.g., [27], [28].

In the presented flow, we aim at minimizing the number of
AND gates over an XAG, consequently, a refactoring technique
that works over 2-input XOR/AND operators is needed. For
this purpose, the algorithm for bi-decomposition proposed by
Mishchenko et al. in [27] is used. The algorithm synthesizes a
function using OR, AND and XOR gates, together with internal
don’t cares to allow a better quality of results. The primary
goal of optimization in [27] is to obtain a “balanced” network;
it means that, when more than one bi-decomposition exists,
the algorithm chooses the type of operator (i.e., AND, OR,
XOR) that leads to the most-balanced result in terms of the
size of the support. In our optimization, we consider a different
operator-selection and change the original algorithm to always
(when possible) choose the XOR operator over AND and ORs,
independently on the size of the supports. This is because the
XOR operator does not take part in the total cost and, in this
way, the algorithm always picks the XOR operator when more
than one bi-decomposition exists.

The refactoring procedure to minimize the number of AND
gates is depicted in Alg. 2. It has been implemented following



the general guidelines in [18]. For each node in the network,
the MFFC is evaluated by setting a limit on the maximum
number of primary inputs (max fanin), and truth tables are
used to compute Boolean functions and satisfiability don’t
cares. The function is synthesized (line 5 in Alg. 2) by using a
modified version of the bi-decomposition from [27], in which
the selection of the operators is changed to prefer the XOR
operator, when a XOR-bi-decomposition exists. If the new
implementation of the MFFC has less AND gates, the new
MFFC is substituted to the previous one, resulting in a network
with reduced multiplicative complexity.

As an example, consider the logic network from Fig. 2 (b),
which is the XAG implementation of the full adder, obtained
after resubstitution. By applying refactoring on each primary
output, the network can be factorized as presented in Fig. 2 (c).
The new implementation has a smaller number of AND gates,
which are decreased to only 2 gates.

IV. EXPERIMENTAL RESULTS

The two aforementioned techniques have been implemented
together with the rewriting algorithm from [5] to create a
complete and automatic logic synthesis toolbox that minimizes
the number of AND gates. In this section, first, we detail
the implementation of the proposed algorithms, then the
experimental results are presented. We test the efficacy of
the algorithms on state-of-the-art best-known results both on
the EPFL and cryptography and security benchmarks.

A. Details of the Implementation
The proposed algorithms have been implemented as part of

the open-source logic synthesis framework mockturtle, which
is part of the EPFL logic synthesis libraries [29].1 All the
experiments have been carried out on an Intel Xeon E5-2680
CPU with 2.5 GHz and with 256 GB of main memory.

For resubstitution, we fixed the maximum number of
divisors to 100, and the maximum number of inputs for
computing a cut to 8. Don’t cares may be used to trade off
runtime and quality of results. In our case, we always use
don’t cares within resubstitution. The maximum number of
primary inputs for the refactoring MFFC was set to 15; as in
the previous case, don’t cares are also used for refactoring.
Regarding rewriting, we fixed the number of inputs for each
cut to 6, as optimum subnetworks are known up to 6-input
functions. Further, the rewriting algorithm allows us to limit the
maximum number of cuts computed for each node (set to 12).
The optimum (i.e., having optimum multiplicative complexity)
subnetworks for 6-input functions were retrieved from the
database used in [5]. The three presented algorithms can be
applied separately or in a global flow, which alternates between
the three proposed techniques. All optimized benchmarks are
verified to be formally equivalent to the original ones. It is
worth mentioning that we do not apply any XOR optimization;
nevertheless, in some protocols, XORs involve a communication
overhead [11]. An algorithm to minimize the number of XORs
for crypthography applications can be found in [4].

B. EPFL Benchmarks
To test the efficacy of the flow in decreasing the number

of AND gates, we apply the proposed algorithms on the EPFL
benchmarks [30]. The experiments are shown in Table I. As
baseline, we use the best-known results presented in [5]2, that

1Available at: github.com/lsils/mockturtle. Experiments are available at:
github.com/lsils/date2020 experiments

2Available at: github.com/eletesta/dac19-experiments

are obtained applying the rewriting algorithm until convergence
of the results is achieved. In the following, we thus present
separately the results of resubstitution and refactoring, as the
rewriting algorithm is not leading to any further optimization
if applied separately (i.e., not as part of the complete flow)
on the baseline. The column “Resubstitution” presents results
when Alg. 1 is applied once, while “Refactoring” shows the
improvements achieved by applying once Alg. 2 on the baseline.
The complete flow shows the results when the three techniques
(i.e., rewriting, refactoring, and resubstitution) are applied in the
given order until convergence is reached. It means, no further
optimization is achieved with any of the proposed algorithms.
The runtime of the complete flow is evaluated as an average
runtime obtained dividing the total runtime by the number of
iterations, where each iteration consists of the three presented
techniques. Even though, as a general trend, the results in
Table I show that resubstitution achieves better optimization
compared to refactoring, for few benchmarks (e.g., mult, sin,
log2) refactoring largely overcomes the results achieved with
resubstitution. As expected, for the adder benchmark no further
optimization is obtained as the baseline result is optimum [19].
More interestingly, none of the presented techniques manages
to optimize the bar benchmark. On average, the complete flow
optimizes the best-known results up to 47%, with a geometric
mean of 0.81 and 0.85 for the arithmetic and random-control
benchmarks, respectively. For the max, arbiter, decoder, and
router benchmarks, the results of the complete flow are entirely
obtained by resubstitution. On average, 4 iterations are needed
to reach the convergence of the results for the complete flow.

C. Cryptography Benchmarks
Our tool’s main goal is to optimize the number of AND

gates in cryptography applications that do not account for XORs
and inverters in their cost function. We exercised the proposed
flow on cryptography benchmarks in the context of multi-party
computation (MPC) and fully homomorphic encryption (FHE);
in particular, we use (i) the best-known results from [5], and
(ii) the circuits presented in [6].3 The first set includes block
ciphers, three hash functions, and seven arithmetic functions;
the second set consists of practical MPC problems.

The experimental results for the benchmarks coming
from [5] are shown in Table II. As in the previous case, results
are obtained with (i) resubstitution, (ii) refactoring, and (iii)
a complete flow that alternates between rewriting, refactoring,
and resubstitution until convergence of the results. The runtime
is evaluated as discussed in the previous section. Our algorithms
are applied on top of the best results presented in [5] (used
as “Baseline”). Both the 32- and 64-adder cannot be further
optimized because their number of AND gates is optimum [19].
For the AES benchmarks, which were not optimized by the
work in [5], our global flow does not find any optimization
opportunity. On the other hand, the tool can further optimize
most of the previous best results. In particular, for the multiplier,
it optimizes the number of AND gates up to 59%, reducing
it 2.4×. As for the EPFL benchmarks, this optimization
mostly comes from refactoring, while resubstitution does
not find many opportunities (1%) for the multiplier. As a
general trend, resubstitution obtains better results compared
to refactoring on most of the cryptography benchmarks (e.g.,
on the comparators). On average, the complete flow achieves
substantial optimizations, with a geometric mean of 0.82. For
the SHA-256 benchmark, 21 iterations are needed for the
saturation of the results.

3Available at: github.com/sadeghriazi/MPCircuits



TABLE I: Experimental results for EPFL benchmarks

Benchmark Inputs Outputs Baseline [5] Resubstitution Refactoring Complete flow

AND XOR AND XOR impr. AND XOR impr. AND XOR impr. time [s]

Adder * 256 129 128 549 // // 0% // // 0% // // 0% 1.76
Barrel shifter 135 128 832 1728 // // 0% // // 0% // // 0% 8.38
Divisor 128 128 6060 8994 5844 9053 4% 5691 8562 6% 5291 8678 13% 129.60
Log2 32 32 19436 9371 17240 10644 11% 12360 15633 36% 10913 15923 44% 732.69
Max 512 130 931 1479 890 1520 4% // // 0% 890 1520 4% 8.48
Multiplier 128 128 11940 8614 11623 8120 3% 7941 12272 33% 7653 11855 36% 233.45
Sine 24 25 4075 1770 3390 2157 17% 3236 2444 21% 2603 2709 36% 70.00
Square-root 128 64 6244 9640 5927 9562 5% 6023 9148 4% 5381 9260 14% 148.38
Square 64 128 5181 8084 4929 8140 5% 5011 8076 3% 4672 8198 10% 84.57
Normalized geometric mean 1 0.94 0.87 0.81
Round-robin arbiter 256 129 1181 0 1174 7 1% // // 0% 1174 7 1% 21.29
Alu control unit 7 26 85 8 53 36 38% 69 24 19% 45 49 47% 1.62
Coding-cavlc 10 11 494 197 414 246 16% 476 215 4% 394 267 20% 17.20
Decoder 8 256 341 0 328 13 4% // // 0% 328 13 4% 15.16
i2c controller 147 142 623 502 586 345 6% 588 535 6% 557 375 11% 11.99
int to float converter 11 7 100 101 91 85 9% 99 102 1% 85 88 15% 2.20
Memory controller 1204 1231 5113 4168 4923 3262 4% 4893 4328 4% 4695 3401 8% 135.07
Priority encoder 128 8 327 158 326 159 0.3% 324 161 1% 323 162 1% 7.36
Lookahead XY router 60 30 96 0 93 6 3% // // 0% 93 6 3% 2.81
Voter 1001 1 5651 6066 4802 5759 15% 5257 6160 7% 4257 5990 25% 92.61
Normalized geometric mean 1 0.90 0.96 0.85

* These results are known to be optimum [19], we thus do not expect any further optimization for the number of AND gates

TABLE II: Experimental results for MPC and FHE benchmarks [5]

Benchmark Inputs Outputs Baseline [5] Resubstitution Refactoring Complete flow

AND XOR AND XOR impr. AND XOR impr. AND XOR impr. time [s]

AES (No Key Expansion) 256 128 6800 25124 // // 0% // // 0% // // 0% 383.87
AES (Key Expansion ) 1536 128 5440 20325 // // 0% // // 0% // // 0% 274.50
DES (No Key Expansion) 128 64 15093 11105 9840 12347 35% 11413 14658 24% 9048 13092 40% 532.85
DES (Key Expansion) 832 64 15126 11263 10078 12291 33% 11595 14691 23% 9205 13136 39% 536.07
MD5 512 128 9381 30325 9374 29743 0.1% 9380 30326 0.01% 9367 29729 0.1% 520.94
SHA-1 512 160 11820 44311 11684 44355 1% 11776 44302 0.4% 11515 44358 3% 996.70
SHA-256 512 256 30201 91278 29145 91578 3% 29933 91254 1% 26927 91495 11% 4316.69
32-bit Adder * 64 33 32 150 // // 0% // // 0% // // 0% 0.41
64-bit Adder * 128 65 64 284 // // 0% // // 0% // // 0% 0.92
32x32-bit Multiplier 64 64 4107 2473 4060 2456 1% 2650 3866 35% 1689 3861 59% 27.78
Comp. 32-bit Signed LTEQ 64 1 114 89 98 98 14% 114 89 0% 92 97 19% 3.25
Comp. 32-bit Signed LT 64 1 108 116 96 100 11% 108 116 0% 92 95 15% 4.13
Comp. 32-bit Unsigned LTEQ 64 1 114 89 98 98 14% 114 89 0% 92 97 19% 3.26
Comp. 32-bit Unsigned LT 64 1 108 116 96 100 11% 108 116 0% 92 95 15% 4.11
Normalized geometric mean 1 0.90 0.93 0.82

* These results are known to be optimum [19], we thus do not expect any further optimization for the number of AND gates

We compared the proposed flow to the flow in [6] on the
MPC circuits. Table III lists the results. Beside the name of the
benchmark, the table shows the number of AND gates obtained
using the original approach as reported in [6]. Unlike in the
results reported above, we did not apply the proposed approach
on top of their optimized benchmarks, but compared the flows
directly. The benchmarks in [6] are specified in register-transfer-
level Verilog code, which we transformed using Yosys [17] and
ABC [2] into a format that can be read by our tool. The proposed
complete flow applies rewriting, refactoring, and resubstitution
until convergence. The resulting number of AND gates are
reported in the third column of the table, with the percentage
improvement compared to the original flow given by the last
column. We do not report the number of XORs because the
results reported in [6] includes both XOR and inverters, while
in our case it only includes XORs. The results in Table III
show that the proposed flow achieves significant improvements.

For one benchmark, our result is far beyond the flow in [6],
meaning that some optimization opportunities are not found by
the proposed method. On the auction benchmarks, results are
close to the ones obtained running the flow in [6]; on the other
hand, for the voting and secure k-nearest neighbor search (knn)
benchmarks, results are improved by 25% and 17% on average,
respectively. Results for the private set intersection (bitwise-
AND) are not reported as neither the flow in [6] nor the complete
flow managed to optimize them.

V. CONCLUSION

Logic synthesis has recently been employed to target
cryptography and security applications and thus to deal with
the minimization of the number of AND gates over xor-and
graphs (XAGs). The number of AND gates in an XAG is
called the multiplicative complexity of the logic network, and,
nevertheless recent work in this field, there is still a lack of logic



TABLE III: Experimental results for MPC benchmarks [6]

Benchmark Flow in [6] Proposed complete flow impr.

AND AND impr.

knn comb K 2 N 16 2370 1919 19.0%
knn comb K 1 N 16 1160 1162 -0.2%
knn comb K 1 N 8 556 554 0.4%
knn comb K 2 N 8 1080 881 18.4%
knn comb K 3 N 8 1520 1060 30.3%
knn comb K 3 N 16 3500 2394 31.6%
voting N 1 M 3 8 7 12.5%
voting N 3 M 4 388 275 29.1%
voting N 2 M 4 147 104 29.3%
voting N 2 M 3 79 55 30.4%
voting N 1 M 4 16 15 6.3%
voting N 2 M 2 37 21 43.2%
auction N 3 W 16 228 232 -1.8%
auction N 2 W 16 97 97 0.0%
auction N 3 W 32 454 456 -0.4%
auction N 4 W 16 492 495 -0.6%
auction N 4 W 32 975 975 0.0%
auction N 2 W 32 194 193 0.5%
secure s m M 4 N 16 16700 16001 4.2%
secure s m M 8 N 16 46660 58723 -26.0%
Normalized geom. mean 0.87

synthesis tools to automatically and efficiently optimize the
multiplicative complexity of cryptography circuits. In this work,
we have presented a complete and automatic logic synthesis
toolbox to address these alternative applications. The tool
alternates between rewriting, refactoring, and resubstitution
techniques, precisely modified to focus on the minimization
of the number of AND gates in an XAG. Our tool achieves
significant results over both EPFL and cryptography best-known
results. We demonstrate an average improvement of 15% for the
EPFL benchmarks, and a reduction up to 2.4× in the number
of AND gates for cryptography applications.
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