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Abstract. Token-curated registries (TCRs) are a mechanism by which
a set of users are able to jointly curate a reputable list about real-world
information. Entries in the registry may have any form, so this primitive
has been proposed for use — and deployed — in a variety of decentralized
applications, ranging from the simple joint creation of lists to helping to
prevent the spread of misinformation online. Despite this interest, the
security of this primitive is not well understood, and indeed existing
constructions do not achieve strong or provable notions of security or
privacy. In this paper, we provide a formal cryptographic treatment of
TCRs as well as a construction that provably hides the votes cast by
individual curators. Along the way, we provide a model and proof of
security for an underlying voting scheme, which may be of independent
interest.

1 Introduction

In recent years, decentralization has been viewed as an increasingly attractive
alternative to the existing power structures in place in much of society, in which
one party or a small set of parties are trusted — in a largely opaque manner — to
make decisions that have far-reaching impact. This movement is exemplified by
the rise of cryptocurrency and decentralized computing platforms like Bitcoin
and Ethereum, in which everyone acts collectively to agree on the state of a
ledger of transactions. While decentralization does lower the trust that must be
placed in a small set of authorities, operating entirely without authorities is also
problematic. For example, one could broadly attribute the rise of misinformation
campaigns online to the lack of authoritative sources of information, or at least
a disagreement about who these authoritative sources should be [14].

For many of the envisaged applications of decentralized platforms, it is im-
portant to have access to information about real-world events. For example, a
flight insurance program, or smart contract, needs to know real departure times.
This can be achieved via oracles, which are themselves smart contracts respon-
sible for bringing external information into the system. Using an authenticated



data feed [25, 23, 26], websites that provide real-time information can feed it into
the platform in a way that ensures authenticity. Other solutions include those
employed in the Augur4 and Gnosis5 prediction markets, which maintain that if
enough users say the same thing, then what they say becomes the truth. Users
are incentivized to act by a reward that is provided if their information is later
accepted as truthful. These solutions have the disadvantage that they rely on the
wisdom of the crowd, which can be gamed if there is incentive to misrepresent
the truth and is subject to Sybil attacks if access to tokens is not controlled.
The advantage is that they do not rely on authoritative external websites being
willing to create custom data feeds.

One natural relative of an oracle is the idea of a token-curated registry [13], or
TCR. In a TCR, a set of curators, each in possession of some tokens, are tasked
with maintaining a list (or registry) of entries. Services apply to have entries
included in this list, and curators decide whether or not they belong there. If all
curators agree that an entry belongs, then they take no action and eventually it
is included. If, on the other hand, even a single curator thinks an entry doesn’t
belong, it can challenge its inclusion, in which case all other curators vote to
decide its fate. The curators thus act as a semi-authoritative set of entities for
this particular list and, as with oracles, can be incentivized to vote truthfully
via a built-in reward structure. A full description of how TCRs operate can be
found in Section 3.2.

The proposed applications of TCRs are broad and range from simple uses of
lists to more complex ones, such as having a consortium of news organizations
identify real images and articles in order to prevent the spread of misinformation
online. In fact, this example is a reality: the New York Times is leading the News
Provenance project,6 which worked with IBM’s Hyperledger Fabric to create a
decentralized prototype designed to provide verifiable and user-friendly signals
about the authenticity of news media online. The Civil project,7 which allows
curators to decide which content creators should be allowed in its newsroom,
is backed by a TCR that is currently running on Ethereum.8 One could also
imagine using TCRs to have browser vendors jointly curate lists of valid Certifi-
cate Transparency logs, rather than the current situation in which they maintain
these lists separately.910 In all of these deployment scenarios, the business in-
terests, social relationships, and potential conflicts of the participants make it
essential that curation decisions are kept secret, so that parties can vote honestly
without worrying about retaliation or bribery. This is especially crucial in con-
texts where smaller and less established companies, which are more vulnerable
to this type of pressure, are taking on this coordination role. On the other hand,

4 https://www.augur.net/
5 https://gnosis.io/
6 https://www.newsprovenanceproject.com/
7 https://civil.co/
8 https://registry.civil.co/
9 https://valid.apple.com/ct/log_list/current_log_list.json

10 https://www.gstatic.com/ct/log_list/v2/log_list.json
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the fact that the set of potential curators is known means we do not have to
worry about Sybil attacks.

Despite the growing interest in and deployment of TCRs, there are few ex-
isting solutions today. The solutions that do exist either reveal votes in the
clear [8], which again puts curators at risk of being pressured to vote in a given
direction, or rely on specialized hardware [11]. Prior to this paper, it was not
known which security properties are important for TCRs, or the extent to which
existing constructions satisfy these properties.

In this paper, we provide a formal cryptographic treatment of token-curated
registries, including a model capturing their requirements (Section 4) and a prov-
ably secure construction (Section 5). As the above description suggests, the core
of our TCR is a voting protocol. While it might seem like a matter of just choos-
ing an existing protocol from the voting literature, there are challenges to this
approach. First, the voting protocol must have the appropriate formal crypto-
graphic model and proof of security, or else we must provide them ourselves. Re-
cent progress has been made in formalizing voting primitives and, in particular,
modeling ballot privacy [5]. Nevertheless, almost all voting protocols operate in
the presence of semi-trusted voting authorities. These parties are relied upon to
take actions such as tallying the individual votes, and may need some additional
capability (e.g., randomization or private state) in order to compute the tally in
a privacy-preserving way. Even when authorities do not need to be trusted to
achieve integrity, they often still need to be trusted to achieve privacy, as in the
case of Helios [1]. In order to deploy a TCR as a smart contract operating on a
decentralized platform, the contract must function as an (untrusted) authority.
Given the constraints of the platform, this means it cannot maintain any private
state and must operate deterministically; for voting, this means we require a
protocol that allows anyone to compute the tally once everyone has voted. This
property is known as self-tallying [20]. Moreover, all computations performed
by the contract come at a high cost (in terms of the gas paid to execute them;
see Section 3.1 for background on how Ethereum operates). We must thus use
only lightweight cryptographic primitives, but still achieve provable security. (Of
course, we could also operate a TCR using a platform other than a blockchain,
or even on a private blockchain in which computation would not be priced as
high. If our solution works on a constrained platform like Ethereum, however,
it would also work here, so we design for the worst-case scenario.) We resolve
these issues by borrowing several ideas from the voting literature, most notably
a self-tallying protocol due to Hao et al. [17], but substantially adapt them to
fit this setting. Specifically, our contributions are as follows:

– We provide a formal cryptographic model for TCRs, in terms of the two se-
curity properties that they require: vote secrecy and dispute freeness. These
capture the notions that the scheme should not reveal the individual votes,
and that it should be verifiable whether or not users have followed the pro-
tocol. Our definitions include a formal game-based treatment of interactions
with smart contracts and of the voting mechanism inherent in TCRs, both
of which may be of independent interest.
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– We provide the first TCR construction that is provably secure. In particular,
the security and privacy of our TCR can be proved under Decisional Diffie-
Hellman (DDH) and the Square Decisional Diffie Hellman Assumption in the
restricted random oracle model [24], and we can run it using a transparent
(i.e., public-coin) setup.

– We demonstrate concurrent security of our TCR construction. This is non-
trivial for lightweight protocols that are proven in the random oracle model;
similar protocols such as that by Hao et al. [17] would be difficult to prove
concurrently secure because the forking lemma would result in an exponential
number of forks. As such we also achieve the first provably concurrently
secure self-tallying voting protocol.

1.1 Our techniques

We provide a formal cryptographic model for TCRs that doubles as a formal
model for self-tallying voting protocols. In particular, we provide game-based
definitions of vote secrecy and dispute freeness.

Dispute freeness says that an adversary cannot misbehave within the protocol
without public detection. In order to detect misbehavior, the game keeps track
of two tallies: one based on the votes indicated in a first round of voting, and one
based on the votes in a second round. The rounds are required in order to achieve
the self-tallying property. The first round fixes the set of registered voters, and
the second round allows voters to use the relevant information from the first
round to form a self-tallying vote (i.e., one that can be computed automatically,
in our case by the contract). Keeping track of the honest participants’ votes in
both the first and second round of the game is easy since the votes are known
and can just be added to the two tallies. For adversarial participants, we must
rely on the ability to extract the intended vote in each round. The adversary
wins the game if for a vote that completes successfully, either of these tallies is
different from the official tally kept by the contract, or if they are different from
each other.

Vote secrecy says that an adversary cannot learn the contents of a partici-
pant’s vote. However, an adversary may be able to infer information about how
individuals voted from the final tally (e.g., if the tally is 0, then everyone voted
“no”). Following Benaloh [4], the definition of vote secrecy must capture the
notion that the adversary learns nothing except what it can learn from the tally.
To specify this, we say that if there are two honest participants where one votes
“yes” and the other votes “no,” then the adversary cannot tell which is which.
In both of our games, security holds even if every participant is adversarial.

We make the following design choices in our TCR to achieve concurrency: (1)
we prove the statistical soundness rather than special 2 soundness of our zero-
knowledge proofs, allowing our proof of dispute freeness to only use straight-line
extractors; (2) we present our zero-knowledge proofs in the common reference
string model and restrict our simulator from programming the random oracle;
(3) we only allow the adversaries in our vote secrecy reduction to extract group
elements and not field elements, allowing our proof of vote secrecy to rely on
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straight-line extractors. We do explicitly rely on the programmability of the
random oracle in order to prove the simulation soundness of our zero-knowledge
proofs, which is necessary for our vote secrecy reduction. However, we stress that
this programmability does not result in a dependence on any forking lemma, for
the adversaries in the reduction immediately terminate when they detect that
simulation soundness has been broken. Thus we argue that our reduction runs
in polynomial time, even against a concurrent adversary.

1.2 Comparison to a prior version of this work

The proceedings version of this work differs in that the protocol it contains is not
proven concurrently secure [10]. The main difference in the protocols revolves
around our zero-knowledge proofs. In the proceedings version zero-knowledge
proofs are proven with respect to fully programmable random oracles. In this
version the zero-knowledge proofs are provided in the common reference string
model with respect to simulators that are not able to program the oracle.

The implementation in the proceedings version demonstrated the feasibility
of running that version of the protocol over the Ethereum blockchain. Even
over this restricted platform, we found that transaction costs were only 12 cents
per participating curator. If we compare the costs of the prior protocol with the
updated protocol in terms of proof size and verifier computation, we see that the
prior work has 18 exponentiations, 7 group elements, and 3 field elements. Our
updated concurrently secure protocol has 26 exponentiations, 13 group elements
and 8 field elements. We thus expect that at the time of writing, our updated
transaction costs over the Ethereum blockchain would not cost more than 24
cents per participating curator.

2 Related Work

We are aware of two proposed TCR constructions based in industry. Consensys’
PLCR (“Partial Lock Commit Reveal”) protocol [8] is very efficient, as it uses a
two-round commit-and-reveal approach (i.e., a first-round vote consists of a hash
of a vote and a random nonce, and a second-round vote reveals this vote and
nonce), but this particular solution cannot satisfy any notion of vote secrecy
given that votes are revealed in the clear. The secret voting protocol due to
Enigma [11] focuses on secrecy, but relies on trusted hardware (e.g., Intel SGX)
to securely tally the votes, rather than allowing this to be done in the clear in
an untrusted manner. It is also not clear what implications this has for a notion
like dispute freeness.

Beyond constructions, Falk and Tsoukalas [18] considered the incentive mech-
anisms inherent in TCRs from a game-theoretic perspective, to understand
whether or not the reward structure provides participants with an incentive
to act truthfully. Asgaonkar and Krishnamachari [2] also consider the payoffs
inherent in a TCR and the behavior of a rational potential challenger. Finally,
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Ito and Tanaka [19] propose incorporating curator reputation into the TCR to
determine the reward that individual curators receive.

We also look more broadly at the voting literature, as the core of our token-
curated registry is a voting protocol. Kiayias and Yung [20] were the first to
demonstrate that the three properties we need (vote secrecy, dispute freeness,
and self-tallying) could be achieved. Their protocol requires only three rounds
of communication, but the computational cost per voter depends on the total
number of voters. Groth [15] proposed a scheme with the same properties and
a constant and low computational cost per voter, but the number of rounds is
n+1, where n is the number of voters. Hao, Ryan, and Zielinski [17] introduced a
protocol that resolved this by requiring only two rounds and lower computational
costs than those in Groth’s scheme. One caveat of all of these protocols is that
they are not appropriate in large-scale elections, but only in a boardroom setting,
in which the number of voters is limited. This also fits the needs of a token-
curated registry, however, in which the set of possible voters is limited to users
who (1) possess a specific token and (2) have chosen to use that token to act
as curators. Of these protocols, the one by Hao et al. is the best candidate for
usage as a smart contract, as demonstrated by a follow-up work featuring an
Ethereum-based implementation [22]. Their protocol, however, lacks a formal
proof of security. Along with our enhancements that are needed to use this
protocol within a TCR, this is a gap that we fill in this paper.

3 Background

3.1 Smart contracts

The first deployed cryptocurrency, Bitcoin, was introduced in January 2009. In
Bitcoin, a blockchain structure maintains a ledger of all transactions that have
ever taken place. The Bitcoin scripting language is designed to enable the atomic
transfer of funds from one set of parties to another; as such, it is relatively simple
and restrictive. In contrast to Bitcoin, Ethereum uses a scripting language that
is (almost) Turing-complete; currently, the most common choice is Solidity. This
is designed to enable smart contracts, which are programs that are deployed and
executed on top of the Ethereum blockchain. Smart contracts accept inputs, per-
form computations, and maintain state in a globally visible way; they must also
operate deterministically so that every node can agree on a contract’s state. The
only limitation in terms of the programs Solidity produces is their complexity, as
every operation consumes a certain amount of gas. This is a subcurrency priced
in ether, the native currency of the Ethereum blockchain, and acts to limit the
computation or storage that an individual contract can use, as this computation
and storage must be replicated by every node in the network. As of this writing,
each block produced in Ethereum has a gas limit of 10 million.

In their most simplified form, Ethereum transactions contain a destination
address, a signature σ authorizing the transaction with respect to the public key
pk of the sender, a gas limit, a gas price, an amount amt in ether, and an optional
data field data. The destination address can be either externally owned, meaning
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Fig. 1: The participants in a token-curated registry (TCR) and the algorithms they run.
Users become curators by depositing coins in a smart contract, and can later withdraw
those coins when they no longer wish to act in this role. Services can apply to have
entries added to the registry, and curators can challenge these additions as desired.
This creates a poll, in which other curators can cast their votes to decide whether or
not the entry should be included. Once the poll is closed, the contract can tally the
results and reward the curators who voted with the majority decision.

it is controlled by another user, or it can be a contract address, which points to
the code of some smart contract and its associated storage. If the destination
address is externally owned, the effect of the transaction is to transfer amt in
ether to the user in control of this address. If the destination address is a contract,
the effect is that the contract code is executed on any inputs specified in the data
field data. This may result in updates to the contract state and/or the creation
of additional transactions, subject to the specified gas limit (meaning if the user
has not paid enough gas for these operations the transaction may fail and have
no effect). Miners may also choose to reject the transaction if it does not offer
a high enough gas price. In what follows, we assume the participant has always
paid enough gas, so omit the limit and price.

3.2 Token-curated registries

A token-curated registry, or TCR for short, is a mechanism designed to allow
people in possession of some relevant tokens, also known as curators, to col-
lectively make decisions about which types of entries belong on a given list or
registry. A TCR has two main types of participants: services, who apply to have
entries added to the registry, and curators, who decide on the content that can
be added. The interplay between these participants can be seen in Figure 1. We
provide a formal treatment of the algorithms they run in Section 4, but cover
them at a high level here.

When a service applies to have its entry added, it puts down some deposit,
and its application is registered in the system. Curators then have some amount
of time to decide if they are happy with the entry being added to the registry. If
they are, they do nothing, and after the elapsed time the entry is added and the
deposit is returned to the service. If, on the other hand, one curator is unhappy
with this entry, they can challenge its addition. This means they also place some
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deposit and open a poll, which is essentially a referendum on whether or not this
entry should be added. (Some TCR models consider broader voting options, but
for simplicity we stick with with a simple binary approach.) Other curators have
some time available to vote, and once this time has passed the results of the vote
are tallied and the winner is determined according to the rules of the poll (e.g.,
a simple majority). If the vote is on the side of the service, they get back their
deposit and some portion of the challenger’s deposit as well. The remainder of the
challenger’s deposit is split between the curators who voted with the majority;
i.e., voted in favor of the service. If instead the vote is against the service, the
situation is reversed: the challenger gets back their deposit and some portion of
the service’s deposit, and the remainder of the service’s deposit is split between
the curators who voted on the side of the challenger.

4 Definitions

4.1 Preliminaries

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ to
denote its unary representation.

Algorithms are randomized unless explicitly noted otherwise. “PT” stands
for “probabilistic polynomial time.” We use y ← A(x; r) to denote running
algorithm A on inputs x and randomness r and assigning its output to y. We

use y
$←− A(x) to denote y ← A(x; r) for uniformly random r. The set of values

that have non-zero probability of being output by A on input x is denoted
by [A(x)]. For two functions f, g : N → [0, 1], f(λ) ≈ g(λ) denotes |f(λ) −
g(λ)| = λ−ω(1). We use code-based games in security definitions and proofs [3].
A game SecA(λ), played with respect to a security notion Sec and adversary A,
has a main procedure whose output is the output of the game. The notation
Pr[SecA(λ)] denotes the probability that this output is 1. We denote relations
using the notation R = {(φ,w) : 〈properties that (φ,w) satisfy〉} where φ is the
public instance and w is the private witness.

The security of our TCR relies on the Decisional Diffie-Hellman (DDH) as-
sumption, which states that (g, gx, gy, gxy) is indistinguishable from (g, gx, gy, gz)

for x, y, z
$←− F, where F is a finite field. It also relies on the security of a sigma

protocol (Prove,Verify); i.e., a three-round interactive protocol. We then make
this non-interactive using the Fiat-Shamir heuristic [12], which introduces a re-
liance on the random oracle model. We require the sigma protocol to satisfy
two properties: special honest verifier zero-knowledge (SHVZK) and 2-special
soundness [16]. This means the corresponding non-interactive proof satisfies zero
knowledge and knowledge soundness. All of these properties are standard, but
we include their definitions for completeness in Appendix A.
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4.2 Smart contracts

To model interactions with smart contracts formally, we consider that every
algorithm Alg run by a participant in the network outputs a transaction tx. This

means that at some point the participant runs an algorithm tx
$←− FormTx(sk,

rcpt, amt, data) that outputs a transaction signed using sk and destined for the
recipient rcpt, and carrying amt in ether and some data data to be provided
to the contract. If the sender and recipient are implicit from the context, then

we use the shorthand tx
$←− FormTx(amt, data). There is then a corresponding

function Process Alg in the smart contract that takes this transaction as input,
verifies that it has the correct form and is properly signed, and (if so) uses it to
update the state of the contract, in terms of its functions and associated storage.
We must also consider how an adversary A can interact with smart contracts
inside of a security game, given that the adversary can interact with the contract
itself, see all of the interactions that honest participants have with it, and see
all of its internal state and function calls. We model this by providing A with
access to three classes of oracles, which abstractly behave as follows:

– AP.Alg allows the adversary to interact with the contract via its own partic-
ipants, according to some specified algorithm. This oracle uses Process Alg
to process the adversary’s input, which is meant to be the output of running
Alg, on behalf of the contract.

– HP.Alg allows the adversary to instruct some honest participant i to interact
with the contract, according to some specified algorithm. This means the
adversary provides any necessary inputs, and the oracle then runs Alg for
participant i according to these inputs and uses Process Alg to process the
corresponding output on behalf of the contract.

– CP allows the adversary to view the entire state of the contract. We do not
use this oracle explicitly in our games below, since the adversary can see all
information about the contract whenever it wants, but leave it there as a
reminder of this ability.

In our definitions below, we allow the adversary to interact with many ses-
sions of the contract concurrently; i.e., many different configurations. We denote
the number of honest participants by n, the contract session index by j, and the
participant index by i; when querying the oracles defined above, the adversary
must always specify the session j. We assume all participants, including the con-
tract, are stateful, and denote their state by state. For the sake of readability
and succinctness, we ignore the potential for the adversary to corrupt honest
participants; instead, we allow it to control arbitrarily many adversarial partic-
ipants but to only observe honest participants. We leave the ability to handle
corruptions, for both our model and our construction, as an interesting open
question.
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4.3 Token-curated registries

Formally, we consider a token-curated registry (TCR) to be defined by several
algorithms, which correspond to the ones in Figure 1. First, we define three
algorithms associated with voting.

– txvote1
$←− Vote1(contract, poll,wgt, vote) is run by a curator wishing to con-

tribute some weight wgt and vote vote to some poll poll contained in the
contract contract.

– txvote2
$←− Vote2(contract, poll) is run by a curator in the second round of

voting for poll in contract.
– Tally(poll, tally) is run by the contract in order to tally the results of the

vote in the poll poll. To be more efficient, it optionally takes in a proposed
tally tally (computed, for example, by one of the curators), which it can then
verify is the correct one.

The main reason that our voting protocol proceeds in rounds is that we need
a fixed set of voters in order to achieve the self-tallying property that says that
the tally can be computed by any third party (in our case, by the contract)
once everyone has voted. In our construction, voters commit to their vote and
“register” their interest in voting in the first round. In the second round, once
the set of registered voters is fixed, voters can vote again, this time using the
relevant information from the first round to form a self-tallying vote. The tally
can then be computed using these votes cast in the second round, while the votes
cast in the first round (which the voters prove are the same) can be used to pay
voters on the winning side. More general constructions could be modelled by
having an interactive Vote protocol (with possibly more than two rounds). We
also define algorithms associated with the TCR more broadly.

– txdep
$←− Deposit(contract, amt) is run by a user wishing to become a curator

in the TCR by creating some initial deposit of tokens amt.

– txapp
$←− Apply(contract, entry) is run by a service wishing to add an entry

entry to the registry.

– txchal
$←− Challenge(contract, entry) is run by a curator wishing to challenge

the addition of the entry entry to the registry.

– txwith
$←− Withdraw(contract, amt) is run by a curator wishing to withdraw

some amount amt of their deposited tokens.
– Payout(poll) is run by the contract to pay the curators who voted according

to the poll outcome.

Vote secrecy Vote secrecy says that an adversary cannot learn the contents
of a user’s vote, beyond what it can infer from their weighting. A formal vote
secrecy game is in Figure 2, assuming for notational simplicity that there is only
one poll poll so it does not need to be specified. Intuitively, it proceeds as follows.
The adversary is given a set of contract configurations contracts, which it is free
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to interact with concurrently, and a set of the public keys {pki}i belonging to
honest participants (line 4). All contracts start in an initial state, meaning their
storage fields are empty, with only the parameters initialized.

The adversary is then free to have both its own and honest participants
deposit tokens to become curators; it is also free to create arbitrary applications
and challenges, and have its own and honest participants vote. The real contract
has timers indicating when it should move from the first to the second round of
voting, but here we do this manually: the first time the adversary calls either
AP.Vote2 or HP.Vote2 the voting flag is set to be 1, to signal that the set of
voters is fixed and the second round has started (lines 6 and 13).

The main question is how honest voters should vote. If they all vote for the
secret bit b (line 2), then the adversary is clearly able to guess b and win the
game (line 5), since it can see in the final tally if everyone has voted for 0 or
1. To prevent this trivial type of victory, we thus ensure that the final tally is
the same regardless of the bit b, following Benaloh [4]. To do this, we have the
adversary provide its own bit bA as input to HP.Vote1, which signals whether
it wants the voter to vote “for” (bA = 1) or “against” (bA = 0) the secret bit
b. This is the same as voting for the bit bA EQ b, which is what the voters do
(line 10). We then keep track of how many times the adversary has used bA = 0
and bA = 1, using a variable vote count (lines 8 and 9). If it has used them an
equal number of times, meaning vote count = 0, then we have the same number
of votes for b and ¬b, so the outcome is the same regardless of b. If they are
not equal at the start of the voting round, then A automatically loses the game
(line 12).

Finally, to prevent another trivial way for the adversary to learn how people
voted, we prevent it from instructing honest participants to withdraw (line 16),
as this reveals their balance. This prevents the adversary from instructing a
participant to deposit a certain amount of coins, having them vote once, and then
instructing them to withdraw their coins and seeing if the amount is the same
(indicating they voted on the losing side) or is more than what they deposited
(indicating that they voted on the winning side). In practice, this means that
participants would perhaps need to vote some minimum number of times before
withdrawing, in order to prevent these types of inference attacks.

Definition 1. Define Advsecrecy
A (λ) = 2 Pr[Gsecrecy

A (λ)] − 1, where this game
is defined as in Figure 2 (with the descriptions of all calls in which the or-
acle honestly follows the protocol omitted). Then the TCR satisfies vote se-
crecy if for all PT adversaries A there exists a negligible function ν(·) such
that Advsecrecy

A (λ) < ν(λ).

Dispute freeness Dispute freeness says that an adversary cannot misbehave
within the protocol without public detection; i.e., it is publicly verifiable whether
or not everyone followed the protocol. Unlike in a traditional voting scenario,
it is already publicly verifiable whether or not the contract (which acts as the
election official) follows the protocol, since its code and state transitions are
globally visible. We thus need to consider only whether or not the individual
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main Gsecrecy
A (λ)

1 vote count← 0

2 b
$←− {0, 1}

3 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

4 b′
$←− AAP,HP,CP(1λ, contracts, {pki}i)

5 return (b′ = b)

AP.Vote2(j, txvote2)

6 if (contracts[j].vote flag = 0)
contracts[j].vote flag← 1

7 contracts[j].Process Vote2(txvote2)

HP.Vote1(j, i, bA)

8 if (bA = 0) vote count[j] −= 1
9 else vote count[j] += 1

10 txvote1
$←− Vote1(contracts[j], bA EQ b)

11 contracts[j].Process Vote1(txvote1)

HP.Vote2(j, i)

12 if (vote count[j] 6= 0) return 0
13 if (contracts[j].vote flag = 0)

contracts[j].vote flag← 1

14 txvote2
$←− Vote2(contracts[j])

15 contracts[j].Process Vote2(txvote2)

HP.Withdraw(·, ·)
16 return ⊥

Fig. 2: The TCR vote secrecy game.

curators behave. This means considering two types of misbehavior: one in which
the adversary tries to change its vote halfway through the voting protocol (so
between Vote1 and Vote2), and one in which it tries to bias the outcome of the
vote by voting for something other than 0 or 1. A formal dispute freeness game
is in Figure 3 (again, assuming for notational simplicity that poll does not need
to be given as input). Intuitively, it proceeds as follows. As in the vote secrecy
game, the adversary is given a set of initial contract configurations contracts and
the public keys {pki}i belonging to honest participants. It is then free to interact
with the contract via AP and HP, and the game keeps track of the voting round
in the same way as the vote secrecy game.

In order to detect misbehavior, the game keeps track of two tallies: tally1
based on the votes indicated in the first round of voting, and tally2 based on
the votes in the second round. The adversary then wins the game if for a vote
that completes successfully, meaning it has a defined outcome (line 5), either
of these tallies is different from the official tally (contracts[j].tally) kept by the
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main Gdispute
A (λ)

1 tally1, tally2 ← 0

2 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

3 done
$←− AAP,HP,CP(1λ, contracts, {pki}i)

4 btally[j]← (tally1[j] 6= tally2[j]
∨ tally1[j], tally2[j] 6= contracts[j].tally) ∀j

5 bdone[j]← (contracts[j].outcome 6= ⊥) ∀j
6 return (∃j : bdone[j] ∧ btally[j])

AP.Vote1(j, txvote1)

7 contracts[j].Process Vote1(txvote1)
8 V ← Ext(txvote1)
9 tally1[j]← tally1[j]⊕ V

AP.Vote2(j, txvote2)

10 if (contracts[j].vote flag = 0)
contracts[j].vote flag← 1

11 contracts[j].Process Vote2(txvote2)
12 V ← Ext(txvote2)
13 tally2[j]← tally2[j]⊕ V

HP.Vote1(j, i, bA)

14 vote← bA EQ b

15 txvote1
$←− Vote1(contracts[j], vote)

16 contracts[j].Process Vote1(txvote1)
17 tally1[j]← tally1[j]⊕ f(vote)
18 tally2[j]← tally2[j]⊕ f(vote)

Fig. 3: The TCR dispute freeness game.

contract, or if they are different from each other (line 4). Keeping track of the
votes in both the first and second round is easy for honest participants, since
these are known so can just be added to the tallies (lines 17 and 18), although
we allow the tally to incorporate a function of the vote f(vote) rather than just
the vote itself. (In our construction, for example, this function is f(x) = gx.) For
adversarial participants, we must rely on the ability to extract the intended vote
in each round. This means we assume the existence of an extractor Ext that,
given the transaction provided by the adversary, can output V = f(vote), where
vote is the vote intended by the adversary in that round (lines 8-9 and 12-13).

Definition 2. Define Advdispute
A,Ext,f (λ) = Pr[Gdispute

A,Ext,f (λ)], where this game is de-
fined as in Figure 3 with respect to a function f(·) (with the descriptions of all
calls in which the oracle honestly follows the protocol omitted, and HP.Vote2
behaving as it does in the game in Definition 1). Then the TCR satisfies dispute
freeness if there exists an extractor Ext such that for all PT adversaries A there
exists a negligible function ν(·) such that Advdispute

A,Ext,f (λ) < ν(λ).
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While vote secrecy and dispute freeness are the only properties we define
and prove formally for our TCR, there are several other properties (e.g., coer-
cion resistance) that may be desirable or even necessary for such a system. We
discuss these properties in Section 5.3, along with how we can provide financial
disincentives for these additional types of misbehavior.

5 Construction

In this section we describe our TCR construction. This construction satisfies
both vote secrecy and dispute freeness in the concurrent setting. Our security
reductions for vote secrecy and dispute freeness depend on the DDH assumption
and the square DDH assumption in the restricted random oracle model. We
thus see our construction as being both of direct practical interest, and also as
providing strong evidence of the feasibility of building practical cryptosystems
that do not depend on less standard assumptions.

We first give an overview of our full design, before going into more detail
on the specific components. These components include: (1) how to become a
curator; (2) how to register to vote and how to vote; (3) how to compute the
final tally; and (4) how curators can increase their weighting in the system.

5.1 Design overview

At a high level, our token-curated registry operates as a single smart contract;
one can imagine the structure being identical to that of a PLCR (Partial Lock
Commit Reveal) contract [8], but with our Vote1 and Vote2 replacing their re-
spective commit and reveal phases. Users become curators by depositing some
number of tokens into the contract, which creates a commitment C and makes
them available for challenging and voting. As curators earn tokens, they can
update the balance in this commitment.

Registration The voting protocol is the core of our token-curated registry, and
proceeds in two rounds. In the first round, users “register” their interest in par-
ticipating in the vote by providing a registration key c0 = gx and placing a
deposit. They also commit to their intended vote by forming a commitment c1
that uses x as randomness. In addition to making sure that voters can’t change
their minds, this commitment c1 is also useful in allowing the contract to later
pay the curator for their vote. Voters also provide an extra pair (c2, c3), which
enables us to prove vote secrecy without rewinding, and a proof that all of these
values (c0, c2, c3) have been formed correctly.

Voting In the second round, the set of voters is now fixed as the set of registered
curators from the first round. We follow Hao et al. [17] in having each voter i
compute a base yi that is a combination of the registration keys of other voters.
They then commit to their vote again, this time using yi as a base, to form
a value c4. These values are formulated so that

∏
i y
xi
i = 1, which means the
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product all the voters c4 values equals g
∑
i votei (in the unweighted case). This

makes the voting protocol self-tallying, since with this value the contract can
compute the discrete logarithm by brute force to get the tally (which is efficient
for a relatively small number of voters). Voters provide a proof that (c0, c1, c4)
have been formed correctly; i.e., that they haven’t changed their committed vote
from the first round. If this proof is valid, the contract returns the deposit sent
in the first round. If the proof is invalid or a voter doesn’t send a second-round
vote, the contract keeps the deposit as a form of punishment, since it cannot
complete the vote.

Weightings In our TCR we want that users with a stronger reputation have a
higher weighting, which it’s important to note does not correspond to a financial
reward. Once the contract computes the tally, it determines the outcome of the
vote according to the built-in rules. It can easily send the service and challenger
deposits to the right places, as these are public, so the only question left is
how it recognizes the voters who were in the majority. In particular, say the
goal is to reward one reputational token if vote = outcome, and 0 otherwise.
To do this without knowing vote, we use the fact that outcome is known and
the curator provided a commitment c1 to the vote in the registration phase. We
compute an arithmetic expression on c1 and outcome that forms a commitment
to 1 if the committed vote and outcome are equal and 0 otherwise. We then
homomorphically fold this result into the committed weighting C.

5.2 System design

We describe the algorithms that comprise our TCR below, in terms of the dif-
ferent operations that are required. As they do not involve any significant cryp-
tographic operations, we omit the formal descriptions of Apply and Challenge.
We can think of Apply as placing a deposit and (if the deposit is high enough)
adding entry to a list of potential registry entries and starting a timer indicating
how long the curators have to challenge its inclusion. We can think of Challenge
as placing a deposit, opening a new poll to allow other curators to vote, and
starting a timer indicating how long they have to do so.

We use one extra algorithm in addition to the ones given in our model,

txup
$←− Update(), which is used to update a lower bound stored by the contract

on the number of tokens a curator has. The only effect this has on our model
is that we would want to replace Withdraw with Update in the vote secrecy
game (Figure 2) as the one algorithm that the adversary can’t query honest
participants on, as it might reveal a curator’s success in voting (whereas running
Withdraw now reveals no information). A formal specification of all of the user-
facing algorithms can be seen in Figure 4 and of the contract-only algorithms in
Figure 5.

TCR contract setup. A contract designed to support a TCR must maintain
several fields. In this section, we limit ourselves to the ones that are necessary for
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Deposit(amt)

r
$←− F; C ← gamthr

πwgt ← Prove(crswgt, (C, amt), r)
return FormTx(amt, (C, πwgt))

Process Deposit(txdep)

(C, πwgt)← txdep[data]; pk← txdep[pk]
bwgt ← Verify(crswgt, (C, txdep[amt]), πwgt)
if (bwgt)

add pk 7→ (C, txdep[amt]) to curators

Update()

πwgt ← Prove(crswgt, (C, amt), r)
return FormTx(0, (amt, πwgt))

Process Update(txup)

(amt, πwgt)← txup[data]; pk← txup[pk]
(C,wgt)← curators[pk]
bwgt ← Verify(crswgt, (C, amt), πwgt)
if (bwgt) wgt← amt

Withdraw(amt)

return FormTx(0, amt)

Process Withdraw(txwith)

amt← txwith[data]; pk← txwith[pk]
(C,wgt)← curators[pk]
if (amt ≤ wgt)
C ← C · g−amt

1 ; wgt← wgt− amt
update curators[pk]← (C,wgt)
send amt to pk

Vote1(vote,wgt)

x
$←− F; (c0, c1, c2, c3)← (gx, gvotehx, hx1 , h

x
2)

π1 ← Prove(crsVote1, (c0, c2, c3), x)
add (vote, x, c0, c1) to state
return FormTx(amtdep, (c0, c1, c2, c3, π1,wgt))

Process Vote1(txvote1)

(c0, c1, c2, c3, π1,wgt)← txvote1[data]; pk← txvote1[pk]
b1 ← Verify(crsVote1, (c0, c2, c3), π1)
b← (wgt ≤ curators[pk][wgt])
if (b ∧ b1)

add (c0, c1,wgti) to voters[pk][data]

Vote2(j)

(ci,0, ci,1,wgti)← voters[pki][data] ∀i
y ←

∏
0≤i<j,j<k≤m ci,0c

−1
k,0

(vote, x, c0, c1)← state
c4 ← gvoteyx

π2
$←− Prove(crsVote2, (c0, c1, c4, y), (x, vote))

return FormTx(0, (c4, π2))

Process Vote2(txj,vote2)

(c4, π2)← txvote2[data]; pk← txvote2[pk]
(ci,0, ci,1,wgti)← voters[pki][data] ∀i
y ←

∏
0≤i<j,j<k≤m ci,0c

−1
k,0

(c0, c1,wgt)← voters[pk][data]
b2 ← Verify(crsVote2, (c0, c1, c4, y), π2)
if (b2)
tallyG← tallyG · cwgt4

send amtdep to pk

Fig. 4: The core user-facing cryptographic algorithms that comprise the TCR, in terms
of the algorithm run by the user (on the left-hand side) and the processing of the
output of this algorithm run by the contract (on the right-hand side).

the cryptographic operations of the contract, meaning we ignore elements like
timers. The contract is initialized with randomly generated fixed generators g, h,
and randomly generated common reference strings (crswgt, crsVote1, crsVote2). This
means that our TCR operates with a transparent (i.e., public-coin) setup. It is
also initialized with empty maps curators and voters, which respectively keep
track of all curators and all voters within a given poll. For ease of exposition, we
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consider a contract with only a single poll; one with multiple polls would still
have only one curators map but one voters map per poll.

Joining the TCR. In order to become a curator, a user must first deposit
tokens into the TCR contract. This means running the Deposit algorithm seen
in Figure 4. The amount amt that they deposit determines their weight, which
they commit to (and prove that they’ve committed to, using πwgt) in C. They
prove this using the relation Rwgt:

Rwgt =
(

((C,wgt), r) : C = gwgthr
)

We describe a zero-knowledge argument of knowledge for Rwgt in Section 6.3.

To process this, the contract first uses πwgt to check that C really is a com-
mitment to the weight. If it is satisfied, it registers the user (using txdep[pk], the
public key used in the transaction) in curators, with associated commitment
C and weight wgt. The initial value of wgt is the initial amount sent, but later
the value stored by the contract serves as a lower bound on the actual number
of deposited tokens.

Updating weights. Initially, since the amount is sent on-chain and thus pub-
licly known, the weight of each participant is also known. Curators may lose
tokens only by unsuccessfully challenging an entry, but this is done in a public
way so this lower bound can be updated by the contract itself. The contract is
unaware, however, of how many tokens curators gain, since as we see below this
is determined based on whether or not their hidden votes are the same as the
majority. This means the contract may need to be told a new lower bound from
time to time, as specified in Figure 4. A curator does this in the same way as
when they run Deposit: they simply tell the contract their current number of
tokens amt, and prove that this is the value contained in C. The contract can
then check that the proof verifies. If so, it increases the stored wgt value to amt.
This approach may reveal information about the curator’s success in voting, but
it has the advantage that it uses a simple proof of knowledge, rather than general
range proofs (which are much more expensive to verify). We thus would want to
ensure that curators cannot update this lower bound too frequently (e.g., if they
update after every single vote then they reveal how they voted every time), by
making sure that they update only after they have voted some fixed number of
times.

Withdrawing tokens. At some point, a participant may wish to stop acting as
a curator, or to withdraw some portion of their tokens. To do this, they simply
send the amount they want to withdraw to the contract, as specified in Figure 4.
If the contract can see this is greater than or equal to the lower bound wgt, it
sends them this amount and decreases their token store (both in terms of their
committed tokens and their lower bound). If this token store goes to zero, the
contract could additionally remove this curator from the list.
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Voting. At some point, a service runs Apply for some entry. If every curator is
happy to see entry in the registry, nothing happens and after some amount of
time the entry is added. If instead a curator runs Challenge, this opens up the
chance for other curators to vote on whether or not they think entry belongs in
the registry.

To vote, curators first use Vote1, as specified in Figure 4. This means picking
a random x, and forming gx and a commitment to their vote vote using x as
randomness. (The pair (c0, c1) has the form of an ElGamal ciphertext, but no
one knows the discrete logarithm of h with respect to g so no one can decrypt it.)
The curator also provides hx1 , hx2 (which we require to prove vote secrecy) and
proves that (c0, c2, c3) are well-formed i.e., they provide a proof for the relation
RVote1:

RVote1 =
(

((c0, c2, c3), x) : c0 = gx, c2 = hx1 , c3 = hx2
)

A proof for the relation RVote1 is provided in Section 6.2. They send this to the
contract, along with a deposit amtdep that acts to promise they’ll come back
to vote in the second round, and the number of tokens wgt that they want to
put behind their vote. The contract then verifies the proof and checks that the
participant has enough tokens, and if so it stores the sent values in voters,
associated with the same public key.

At the end of the first round of voting, the contract fixes the set of participants
to be all keys in voters, after ensuring that all their first-round votes are distinct
(i.e., that they use different values for c0). To achieve the self-tallying property,
we follow Hao et al. [17] in fixing a specific group element for each participant
to use in the second round; in particular, if there are m voters then we define

yj ←
∏

0≤i<j,j<k≤m

c
wgti
i,0 c

−wgtk
k,0

for all j, 1 ≤ j ≤ m (where j represents the j-th public key, and the ordering on
keys can be either lexicographical or in the order they were received).

In the second round, the j-th voter can compute their value yj . They now
provide another value, c4, that is a commitment to their vote, still using x as the
randomness but this time using y as the base instead of h. They then prove a
relation RVote2 to demonstrate that (1) the same value x is used as randomness
in the first and second rounds; (2) the commitments c1 and c4 from the first and
second round contain the same vote and (3) that this vote is either a 0 or a 1.

RVote2 =
{

((c0, c1, c4, y), (x, vote)) :

vote ∈ {0, 1} ∧ c0 = gx ∧ c1 = gvotehx ∧ c4 = gvoteyx
}

A zero-knowledge argument of knowledge for RVote2 is specified in Section 6.3.
To process this, the contract checks the proof, using the data from both

rounds of voting, as shown in Figure 4. If the proof verifies, then the contract
folds the value c4 into its tally and returns the deposit from the first round to
the participant. If not, or if the user never sends the second-round transaction
in the first place, the deposit acts as a penalty fee and also could be used to
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Tally()

find total such that gtotal = tallyG

tally← total

Payout()

for all pk ∈ voters

Upk ←
(
g1−outcomec2·outcome−1

pk,1

)
curators[pk][C]← curators[pk][C] · Upk

Fig. 5: The internal smart contract functions.

reimburse gas costs for honest participants. If needed, the contract could also
deduct from the user’s deposited tokens to further penalize them, especially after
repeat offenses (at which point the user would eventually be stripped of their
tokens and removed as a curator).

Tallying. Finally, the smart contract tallies the result, as seen in Figure 5. The
running tally has already beeen computed by the contract during Process Vote2,
and we argue now that this process is self-tallying; i.e., the contract can compute
the tally without any help.

Lemma 1. After the second-round transactions of all m voters have been pro-
cessed, tallyG = g

∑m
i=1 wgtivotei .

Proof. For this proof we use the notatation (ci,0, ci,1, ci,2, ci,3, ci,4) to denote the
elements sent in the first and second round of voting by the ith participant. We
also denote yj to be the public value y computed for the jth participant in the
second round. According to how the yj values were computed,

yj =
∏

i<j,j<k

c
wgti
i,0 c

−wgtk
k,0

=
∏

i<j,j<k

gxiwgtig−xkwgtk

= g
∑
i<j xiwgti−

∑
j<i xiwgti .

It is thus the case that

m∏
j=1

y
xjwgtj
j = g

∑
j xjwgtj(

∑
i<j xiwgti−

∑
j<i xiwgti)

= g
∑
j

∑
i<j xixjwgtiwgtj−

∑
j

∑
j<i xixjwgtiwgtj

= g
∑
j

∑
i<j xixjwgtiwgtj−

∑
j

∑
i<j xjxiwgtjwgti

= 1.
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After all m voters have run Vote2 we then get

tallyG =

m∏
i=1

c
wgti
i,4

=

m∏
i=1

gwgtivoteiy
wgtixi
i

= g
∑m
i=1 wgtivotei

as desired. ut

Thus, finding the real tally means finding the discrete logarithm of tallyG,
which can be achieved by brute force. While this is a potentially expensive com-
putation (especially to do on-chain), it is made significiantly cheaper by restrict-
ing the allowable weights and the number of voters, which can be parameters
built into the contract. For example, if the only allowable weight is 1, then the
maximum value in the exponent is the number of voters. Additionally, a volun-
teer could compute the tally off-chain and submit it to the smart contract, which
could verify the correctness of this tally by confirming that gtally = tallyG.

The contract then sets a variable outcome according to the value of tally and
the voting policy for the poll. For example, if the policy states that a simple ma-
jority wins, then if tally > 1

2

∑m
i=1 wgti the smart contract sets outcome ← 1,

and otherwise outcome← 0.

Paying out. Finally, the contract must update the tokens of each curator ac-
cording to how they voted. (In addition, it sends the public deposits created
in Apply and Challenge to the service or challenger, according to the outcome
of the vote.) As seen in Figure 5 and discussed in Section 5.1, we can use c1,
which acts as a commitment to the boolean vote vote, to form a commitment
Upk to the outcome of the boolean expression (vote = outcome); i.e., Upk is a
commitment to 1 if vote = outcome and a commitment to 0 otherwise. We can
then add this value into their committed balance C = gamthr by multiplying the
two commitments together, which means the curator earns one token for voting
“correctly” and nothing otherwise. If a different payout structure were desired,
this could be achieved by manipulating Upk appropriately (e.g., squaring it if
the reward should be two tokens). Importantly, the reward for a curator is not
proportional to the weight they used in the vote.

Since the curator knows both the original randomness used in C and the
randomness used in c1, as well as how much they were rewarded, they can update
their locally stored weight and randomness so that they still know the opening
of the commitment C, which is needed to run Update. This means updating the
value of (amt, r) as follows:

outcome = 0 outcome = 1

vote = 0 (amt + 1, r − x) (amt, r + x)
vote = 1 (amt, r − x) (amt + 1, r + x)
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5.3 Security

We now argue why our construction achieves the notions of security defined in
Section 4. For notational simplicity, our proofs assume all weights are equal to
1, but could be modified to allow for arbitrary weights.

Theorem 1. If (Setup,Prove,Verify) is a zero-knowledge argument and the DDH
and square DDH assumptions hold (theorem 3 and theorem 4), then the construc-
tion above satisfies vote secrecy, as specified in Definition 1.

Our full proof of vote secrecy is quite involved, and can be found in Ap-
pendix C. Intuitively, we must transition from the honest vote secrecy game to
a game in which all information about the votes of honest participants is hid-
den, at which point the adversary can have no advantage. In terms of honest
participants, there must be at least two in order to satisfy the requirement that
vote count = 0.

Our proof for vote secrecy is secure with respect to a restricted random
oracle [24], which has important consequences when it comes to concurrency.
In particular, the honest prover and the simulated honest prover are not able
to program the oracle, but the adversaries distinguishing between hybrid games
may program it. This means that we do not obtain collisions where both the
honest prover and the adversary attempt to program the same messages.

In order to prove concurrency, we must demonstrate that the adversaries
transitioning between hybrids run in polynomial time, even against an adversary
A that can run multiple concurrent sessions. In particular, we require that A
can only be rewound up to a polynomial number of times. We thus provide zero-
knowledge arguments that provide soundness and not knowledge extraction, in
order to avoid rewinding the adversary.

The key challenge in proving vote secrecy is that the reduction must be able
to compute the values c4 when queried by the adversary. When the adversary
registers (c0, c1, c2, c3) = (gx, gvotehx, hx1 , h

x
2), the reduction does not learn x.

Thus if the reduction receives a DDH challenge (ga, gb, C) and embeds ga into
its honest c0 values, it does not follow that the reduction can compute gax which
is needed for c4. Our key technique to address this issue is to have the reduction
embed DDH challenges not only in its votes but also in the CRS elements; i.e.,
it sets h1 = gη1a and h2 = gη2b for known values η1 and η2. Then, when in
the first round the adversary provides the reduction with the values (gx, hx1 , h

x
2),

the reduction can extract gax = (hx1)
1
η1 from each adversarial contribution. This

suffices for the reduction to simulate the honest c4 values.
We first transition from real to simulated proofs, which is indistinguishable by

zero-knowledge. This allows our reduction to provide proofs of false statements
(but not the adversary). Using square DDH, we then replace each honestly gen-
erated c2 value by a random value. Using square DDH again, we replace each
honestly generated c3 value by a random value. Using standard DDH, we replace
each honestly generated c1 value by a random value.

We then target the c4 values in a pairwise fashion. We use DDH to embed
randomness into the c4 values from the first two honest participants in such a
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way that the randomness cancels. We then use DDH again to embed cancelling
randomness into the c4 values from the second and third honest participants,
and then the third and fourth, and continue until all the honest votes have been
randomised. Because the randomness cancels out, the final tally is unaffected.
We can thus argue that all the distribution of the honestly generated elements
are unaffected by the distribution of the votes, and hence the final game is
statistically impossible.

Theorem 2. If (Setup,Prove,Verify) is an argument of knowledge, then the con-
struction above satisfies dispute freeness, as specified in Definition 2.

Our proof of this theorem can be found in Appendix D, and in contrast is
quite simple. This is due to the fact that the (c0, c1) is formed as an ElGamal
ciphertext, albeit one for which no real-world participant knows the decryption
key. Our reduction considers an extractor that can instead form the parameters
(in particular, h) so that it does know the decryption key, which allows it to
recover gvote from (c0, c1). This extractor can extract for all adversaries.

Aside from the obvious implications of these two security properties, they
also combine to prevent more subtle attacks. For example, we can consider a
front-running attack in which an adversary observes the transactions of other
participants before sending its own to potentially change its mind about its own
vote (e.g., to try to earn tokens by voting with the majority). These attacks are
impossible based on our two security properties: vote secrecy ensures that the
adversary doesn’t learn anything about the votes of others in the first round (so
can’t use any information to its advantage), and dispute freeness ensures that
the adversary must stick to its original vote in the second round.

There are also some properties, however, that are not covered in our model.
As discussed above, we do not prevent an adversary from thwarting the voting
process by not sending its second-round vote or otherwise provide robustness,
but we do provide financial disincentives for this behavior in the form of a de-
posit refunded only after a valid second-round vote is cast (and perhaps harsher
penalties if there is repeated misbehavior). More crucially, we currently do not
provide any notion of receipt-freeness, or coercion resistance, as voters can easily
prove they voted a certain way by revealing x. This is quite important for some
of the potential applications of TCRs, in which bribery is a real threat that could
undermine the quality of the registry.

One approach we could take would be to disincentivize coercion by again
applying financial penalties, in this case if someone can demonstrate that a
participant revealed their vote. For example, if a bribed curator reveals x and
someone submits this to the contract, it could check that this is the correct x
and take some penalty fee from their deposited tokens, or even remove them
as a curator altogether, which would in turn make them less attractive as a
target for bribery. This approach could also be extended to more sophisticated
methods for revealing x (e.g., the contract could check a proof of knowledge of x),
although it is unlikely to be able to handle all of them. Another option would be
to have the other curators manually inspect any evidence of bribery and submit
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votes indicating whether or not they think it is valid, and having the contract
apply a penalty if a sufficient fraction of them agree that it is. Thus, while we
currently do not provide any cryptographic guarantee about coercion resistance,
this can again be addressed with an incentive-driven approach, and we leave it
as interesting future work to see if it can be addressed more rigorously.

6 Arguments of Knowledge for our Construction

To construct our zero-knowledge arguments for Rwgt, RVote1, and RVote2 we use
two main building blocks: a proof of discrete logarithm and a proof that one
out of two values is a commitment to 0. These can both be achieved using
sigma protocols and then applying the Fiat-Shamir heuristic [12] to obtain a
non-interactive proof.

As discussed earlier, our TCR achieves full concurrency. Thus we must take
care in how we instantiate our random oracles. In particular, our random oracles
are used solely to prove the simulation soundness of our zero-knowledge proofs,
and our hybrid games in the vote secrecy proof neither rewind the adversary nor
program the oracles. Similar to the techniques used in Camenisch et al. [6], the
full power of the random oracle is used only by the adversaries differentiating
between hybrid games.

If we worked within the (fully) programmable random oracle model, then
it’s not clear how we could prove concurrency, as we we would end up with an
exponential number of forks. The most natural way to address this would be to
work within the non-programmable random oracle (NPRO) model, and indeed
our final proofs forRVote1 andRVote2 achieve soundness and zero-knowledge in the
non-programmable random oracle (NPRO) model. It’s not clear, however, how
we could prove simulation soundness here. We thus prove simulation soundness
in the programmable random oracle model, which does require rewinding but
is not attempting any type of knowledge extraction. In our reductions, we can
thus stop running the protocol as soon as simulation soundness has been broken,
which means we avoid a dependence on the forking lemma. These techniques are
inspired by results due to Lindell [21] and Ciampi et al. [7], who show how to
compile sigma protocols into NIZKs in the NPRO model.

Roughly our techniques work as follows. We first sample a CRS that is either
binding or hiding. When we require the protocol to be sound, the CRS contains
random values and is sampled using a transparent setup. When we require the
protocol to be zero-knowledge, our simulator will sample the CRS as a DDH
tuple. By the DDH assumption one cannot distinguish between the simulated
setup and the real setup. We will then run a witness indistinguishable OR proof
inspired by Cramer et al. [9] to show that either our instance is in the language,
or the CRS contains a DDH tuple. By the DDH assumption, this is a zero-
knowledge proof that our input is in the language.
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6.1 Proving Rwgt

To prove Rwgt, which is used in Deposit, a prover must demonstrate knowledge
of r such that C = gwgthr, for known wgt. This can be achieved using a standard
proof of knowledge of discrete logarithm, where the prover’s input is r and the
shared input is hr = g−wgtC. Thus the prover chooses random s and sends
S = gs. The prover and verifier compute a = Hash(C,wgt, S). The prover sends
u = s+ ra. The verifier checks that S(g−wgtC)a = hu.

6.2 Proving RVote1

To prove RVote1, we require a statistically sound zero-knowledge proof that three
group elements form a DDH triple. We provide a proof for the relation

RVote1 = {((c0, c2, c3); x) : (c0, c2, c3) = (gx, hx1 , h
x
2)}

We emphasize that we require only soundness, and not knowledge soundness,
for our zero-knowledge proofs.

The protocol is given in Figure 6. It can be seen as a combination of Schnorr
proofs and OR proofs. The OR proofs are inspired by Cramer et al. [9].

Setup: The setup chooses 6 group elements g, h, h1, h2, ĝ, ĥ randomly from G.
Note these elements are uncorrelated and thus can be sampled transparently.

Round 1: In the first round the prover chooses three random values s, t0, t1
from F. They generate S0, S1, S2 as a DDH triple gs, hs1, h

s
2 with secret s. They

further generate T0, T1 to equal ĝt0gt1 and ĥt0ht1 which depend non-trivially on
the CRS elements g, h, ĝ, ĥ. They send the instance φ = (c0, c2, c3) together with
the first message (S0, S1, S2, T0, T1) to the verifier.

Challenge: The verifier samples a randomly from F. They return a to the
prover. In the ROM this is alternatively achieved by both the prover and verifier
computing a = Hash(φ, S0, S1, S2, T0, T1).

Round 2: In the second round the prover requires some c such that they can
compute some d where T0ĝ

c = gd. They choose c = −t0 such that the ĝ term in
T0 and ĝc cancel out; they further choose d = t1. Having fixed c, they can thus
compute u = s+(a+c)x where x is the witness such that (c0, c2, c3) = (gx, hx1 , h

x
2)

and s is the randomness determined in the first round. They return c, d, u to the
verifier.

Verifier: The verifier checks 5 equalities. They first check that S0c
a+c
0 = gu,

S1c
a+c
2 = hu1 , and S2c

a+c
3 = hu2 , proving that either c0, c2, and c3 have the

same discrete logarithm, or c cancels the challenge a. They further check that
T0ĝ

c = gd and T1ĥ
c = hd proving that either ĝ and ĥ have the same discrete

logarithm relative to g and h, or c does not depend on a.
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Setup(G) :

g, h, h1, h2, ĝ, ĥ
$←− G

return crs = (g, h, h1, h2, ĝ, ĥ)

Prover’s input:
x such that (c0, c2, c3) = (gx, hx1 , h

x
2)

Shared input: crs, (c0, c2, c3)

Prove 7→ Verify

s, t0, t1
$←− F

S0, S1, S2 ← gs, hs1, h
s
2

T0, T1 ← ĝt0gt1 , ĥt0ht1

send (S0, S1, S2, T0, T1)

Verify 7→ Prove

send a
$←− F

Prove 7→ Verify
c← −t0
d← t1
u← s+ (a+ c)x
send (c, d, u)

Verify

check S0c
a+c
0 = gu

check S1c
a+c
2 = hu1

check S2c
a+c
3 = hu2

check T0ĝ
c = gd

check T1ĥ
c = hd

return 1 if all checks pass.

Fig. 6: A zero-knowledge statistically sound argument that (c0, c2, c3) ∈ RVote1.
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We formally prove correctness in lemma 2, honest verifier zero-knowledge in
lemma 4, and statistical soundness in lemma 6. Zero-knowledge is shown through
the existence of a simulator: the simulator subverts the CRS such that ĝ and ĥ
are a DDH tuple; the simulator can thus choose c to cancel a and convince an
honest verifier. Soundness holds because the real prover is equipped a CRS such
that ĝ and ĥ are not a DDH tuple, and thus if they convince the verifier, c cannot
depend on a. As a result, c cannot cancel the challenge a, and the instance must
be in the language.

6.3 Proving RVote2

To prove RVote2, we require a statistically sound zero-knowledge proof that an
encrypted value is equal either to zero or one. We provide a proof for the relation

RVote2 = {((c0, c1, c4, y); (x, b)) :
x ∈ F, b ∈ {0, 1}, c0 = gx, c1 = gbhx, c4 = gbyx}.

Again we emphasize that we require only soundness, and not knowledge sound-
ness, for our zero-knowledge proofs.

The protocol is given in Figure 7. Similar to the protocol for RVote1, it can
be seen as a combination of Schnorr proofs and OR proofs and the OR proofs
are inspired by Cramer et al. [9].

Setup: The setup chooses 4 group elements g, h, ĝ, ĥ randomly from G. Note
these elements are uncorrelated and thus can be sampled transparently. We
have that these elements will correspond to the elements output by the RVote1

setup.

Round 1: In the first round the prover chooses five random values q0, q1, r, t0, t1
from F. If b = 0 then they generate Q0, R0, S0 as the DDH triple gq0 , hq0 , yq0

and set Q1, R1, S1 as gq1 , grhq1 , gryq1 . Else if b = 1 they set Q0, R0, R1 as
gq0 , g−rhq0 , g−ryq0 and generate Q1, R1, S1 as the DDH triple gq1 , hq1 , yq1 . They
further generate T0, T1 to equal ĝt0gt1 and ĥt0ht1 , such that they depend non-
trivially on the CRS elements g, h, ĝ, ĥ. They send the instance φ = (c0, c1, c4)
together with the first message (Q0, Q1, R0, R1, S0, S1, T0, T1) to the verifier.

Challenge: The verifier samples a randomly from F. They return a to the
prover. In the ROM this is alternatively achieved by both the prover and verifier
computing a = Hash(φ,Q0, Q1, R0, R1, S0, S1, T0, T1).

Round 2: In the second round the prover sets c = −t0 such that the ĝ term in
T0 and ĝc cancel out; they also set d = t1. Having fixed c, they now require some
u such that that can compute some v where R0c

a+u
1 = hv and some w such that

R1[c1g
−1]c+u = hw. If b = 0 then they set u = r − c and w = q1 + rx. Then v

must equal q0 + (a+u)x. If b = 1 then they set u = r− a and v = q0 + rx. Then
w must equal q1 + (c+ u)x. They return (c, d, u, v, w) to the verifier.
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Setup(G) :

g, h, ĝ, ĥ
$←− G

return crs = (g, h, ĝ, ĥ)

Prover’s input:

(x, b) such that (c0, c1, c4) = (gx, gbhx, gbyx)
Shared input: crs, (c0, c1, c4, y)

Prove 7→ Verify

q0, q1, r, t0, t1
$←− F

Q0, Q1 ← gq0 , gq1

R0, R1 ← g−brhq0 , g(1−b)rhq1

S0, S1 ← g−bryq0 , g(1−b)ryq1

T0, T1 ← ĝt0gt1 , ĥt0ht1

send (Q0, Q1, R0, R1, S0, S1, T0, T1)

Verify 7→ Prove

send a
$←− F

Prove 7→ Verify
c← −t0
d← t1
u← r − ba− (1− b)c
v ← q0 + (a+ u)x
w ← q1 + (c+ u)x
send (c, d, u, v, w)

Verify

check Q0c
a+u
0 = gv

check R0c
a+u
1 = hv

check S0c
a+u
4 = yv

check Q1c
c+u
0 = gw

check R1[c1g
−1]c+u = hw

check S1[c4g
−1]c+u = yw

check T0ĝ
c = gd

check T1ĥ
c = hd

return 1 if all checks pass.

Fig. 7: A zero-knowledge statistically sound argument that (c0, c1, c4, y) ∈ RVote2.
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Verifier: The verifier checks 8 equalities. They first check that Q0c
a+u
0 = gv and

R0c
a+u
1 = hv and S0c

a+u
4 = yv implying that either (c0, c1, c4) form (gx, hx, yx)

or u depends non-trivially on a. They then check thatQ1c
c+u
0 andR1[c1g

−1]c+u =
hw and S1[c4g

−1]c+u = yw implying that either (c0, c1, c4) form (gx, ghx, gyx) or

c depends non-trivially on u. Finally they check that T0ĝ
c = gd and T1ĥ

c = hd

implying that either (ĝ, ĥ) form a DDH tuple (gx, hx) or c does not depend on
a.

We formally prove correctness in lemma 3, honest verifier zero-knowledge in
lemma 5, and statistical soundness in lemma 7. Zero-knowledge is shown through
the existence of a simulator: the simulator subverts the CRS such that ĝ and ĥ
are a DDH tuple; the simulator can thus choose c to cancel u (which depends
non-trivially on a) and convince an honest verifier. Soundness holds because the

real prover is equipped with an CRS such that ĝ and ĥ do not form a DDH tuple,
and thus if they can convince the verifier, c cannot depend on a. Hence either u
does not depend on a and (c0, c1, c4) = (gx, hx, yx) or c+ u does not depend on
a and (c0, c1, c4) = (gx, ghx, gyx). Both cases correspond to the instance being
in the language.

6.4 Security Analysis

The proving systems for RVote1 and RVote2 are both correct, honest verifier zero-
knowledge, and statistically sound. The proofs can be found in Appendix B.

6.5 Efficiency

In RVote1 proofs consist of 5 group elements from the first round and 3 field
elements from the second round. The prover computes 7 group exponentiations
and the verifier computes 10 group exponentiations.

In RVote2 proofs consist of 8 group elements from the first round and 5 field
elements from the second round. The prover computes 12 group exponentiations
and the verifier computes 16 group exponentiations.
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A Standard definitions and building blocks for
zero-knowledge proofs

A.1 Definitions

We consider zero-knowledge protocols for relations of the form

R = {(φ,w) : properties φ and w satisfy}

where φ is a public instance and w is a private witness. The relation R is sampled
from a family of relations parameterized by the security parameter R(1λ). There
are three algorithms:

– Setup(R, aux) 7→ crs: The setup algorithm takes as input a relation and po-
tentially some auxiliary information and outputs a common reference string
that includes a description of the relation.

– < Prove(crs, φ, w),Verify(crs, φ) > 7→ (b; tr): The prover and verifier are in-
teractive algorithms. The prover takes as input a common reference string,
an instance, and a witness. The verifier takes as input a common reference
string and an instance. We use the notation <,> to denote that Prove in-
teracts with Verify. The verifier outputs 1 if it is convinced that φ is in the
language and 0 otherwise. When we wish to refer to the transcript produced
by the prover and verifier, we additionally include the output tr.

The prover and verifier are compiled into non-interactive algorithms in the non-
programmable random oracle model.
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We require our zero-knowledge protocols to be correct, honest verifier zero-
knowledge, statistically sound, and simulation sound. Correctness simply refers
to the idea that an honest prover should convince an honest verifier. Honest
verifier zero-knowledge refers to the idea that an adversary that can see the
transcript between an honest prover and an honest verifier should learn nothing
about the witness except its existence. Statistical soundness is the notion that
the probability of a (potentially unbounded) adversary convincing an honest
verifier of a false statement is negligible. Simulation soundness is the notion that
an adversary that can see simulated proofs for false statements cannot create a
proof for a new false statement.

We provide formal definitions for honest verifier zero-knowledge, statistical
soundness, and simulation soundness below. We define and prove simulation
soundness in the non-interactive scenario with respect to a random oracle H.

Definition 3 (Honest Verifier Zero-Knowledge). We say that (Setup,Prove,
Verify) is honest verifier zero-knowledge if there exists a PPT simulator (SimSetup,
SimProve) such that for all PPT adversaries A we have that

∣∣∣∣∣Pr

R
$←− R(1λ); crs

$←− Setup(R); (φ,w)
$←− A(crs); (φ,w) ∈ R

(b′, tr)
$←−< Prove(crs, φ, w),Verify(crs, φ) >; ∧

b
$←− A(tr) b = 1


−Pr

R
$←− R(1λ); (crs, τ)

$←− SimSetup(R); (φ,w)
$←− A(crs); (φ,w) ∈ R

(b′, tr)
$←−< SimProve(crs, τ, φ),Verify(crs, φ) >; ∧

b
$←− A(tr) b = 1

 ∣∣∣∣∣
is negligible in 1λ, where we have used tr to denote the transcript produced by the
interaction between the prover and the verifier or the simulator and the verifier.

Definition 4 (Statistical Soundness). We say that (Setup,Prove,Verify) is
statistically sound if all PPT adversaries A we have that

Pr

[
R

$←− R(1λ); crs
$←− Setup(R); φ

$←− A(crs); φ 6∈ L ∧
b

$←−< A,Verify(crs, φ) > b = 1

]

is negligible in 1λ.

Definition 5 (Simulation Soundness). We say that (Setup,Prove,Verify) is
simulation sound if for all PPT adversaries A we have that

Pr

[
R

$←− R(1λ); aux
$←− AH(R); crs

$←− SimSetup(R, aux); φ 6∈ L ∧ (φ, π) 6∈ Q ∧
(φ, π)

$←− AH,Sim(crs); b
$←− VerifyH(crs, φ, π) b = 1

]

is negligible in 1λ, where H is a random oracle and where Sim is an oracle that
on input φ returns a simulated proof π and appends (φ, π) to a list of queries
and responses Q.
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A.2 Assumptions

Our constructions rely on the decisional Diffie-Hellman (DDH) assumption as
well as on the square DDH assumption. For completeness we here describe both
assumptions.

Assumption 3 (Decisional Diffie-Hellman) The Decisional Diffie-Hellman
(DDH) assumption holds with respect to a group generator GroupGen if for all
PPT adversaries A we have that∣∣∣∣∣∣∣Pr

G
$←− GroupGen(1λ); b = 1

α, β
$←− F;

b
$←− A(gα, gβ , gαβ)

− Pr

G
$←− GroupGen(1λ); b = 1

α, β, r
$←− F;

b
$←− A(gα, gβ , gr)


∣∣∣∣∣∣∣

is negligible in 1λ.

Assumption 4 (Square Decisional Diffie-Hellman) The square Decisional
Diffie-Hellman (sq-DDH) assumption holds with respect to a group generator
GroupGen if for all PPT adversaries A we have that∣∣∣∣∣∣∣Pr

G
$←− GroupGen(1λ); b = 1

α
$←− F;

b
$←− A(G, gα, gα2

)

− Pr

G
$←− GroupGen(1λ); b = 1

α, r
$←− F;

b
$←− A(G, gα, gr)


∣∣∣∣∣∣∣

is negligible in 1λ.

B Security Analysis for RVote1 and RVote2

In this section we shall show that the proving systems for RVote1 and RVote2 are
both correct, honest verifier zero-knowledge, and statistically sound.

Correctness We first show correctness; i.e., that an honest prover convinces
an honest verifier. We do this through direct inspection of each verifier equation
separately. For RVote1 there are 5 verifier equations. First we specify the left-hand
side of the verifier’s equation, then we plug in the proof elements, and then we
demonstrate that these equal the right-hand side of the verifier’s equation.

Lemma 2. The protocol in fig. 6 for RVote1 is perfectly correct.

Proof. We have that

1. S0c
a+c
0 = gsg(a+c)x = gu

2. S1c
a+c
2 = hs1h

(a+c)x
1 = hu1

3. S2c
a+c
3 = hs2h

(a+c)x
2 = hu2

4. T0ĝ
c = ĝt0gt1 ĝ−t0 = gd
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5. T1ĥ
c = ĥt0ht1 ĥ−t0 = ht1

To prove RVote2 correct we must inspect 8 verifier equations. We do this twice:
once for the case that b = 0 and once for the case that b = 1.

Lemma 3. The protocol in fig. 7 for RVote2 is perfectly correct.

Proof. Suppose that b = 0. Then

1. Q0c
a+u
0 = gq0+x(a+u) = gv.

2. R0c
a+u
1 = hq0+x(a+u) = hv.

3. S0c
a+u
4 = yq0+x(a+u) = yv.

4. Q1c
c+u
0 = gq1+(c+u)x = gw.

5. R1[c1g
−1]c+u = grhq1 [c1g

−1]c+r−c = hq1+rx = hq1+(c+u)x = hw

6. S1[c4g
−1]c+u = gryq1 [c4g

−1]c+r−c = yq1+rx = yq1+(c+u)x = yw

7. T0ĝ
c = ĝt0gt1 ĝ−t0 = gt1

8. T1ĥ
c = ĥt0ht1 ĥ−t0 = ht1

and the verifier’s equations are satisfied.
Suppose that b = 1. Then

1. Q0c
a+u
0 = gq0+x(a+u) = gv.

2. R0c
a+u
1 = g−rhq0ga+uhx(a+u) = g−rga+r−ahq0+x(a+u) = hv.

3. S0c
a+u
4 = g−ryq0ga+uyx(a+u) = g−rga+r−ayq0+x(a+u) = yv.

4. Q1c
c+u
0 = gq1+(c+u)x = gw.

5. R1[c1g
−1]c+u = hq1+(c+u)x = hw

6. S1[c4g
−1]c+u = yq1+(c+u)x = yw

7. T0ĝ
c = ĝt0gt1 ĝ−t0 = gt1

8. T1ĥ
c = ĥt0ht1 ĥ−t0 = ht1

and the verifier’s equations are satisfied.

Honest Verifier Zero-Knowledge We next show honest verifier zero-knowledge.
Our simulator does not use rewinding, but instead inserts a trapdoor into the
setup algorithm. In the real world the setup is generated transparently and thus
with overwhelming probability there is no trapdoor. However, in the simulated
world, the simulator embeds a DDH tuple into the common reference string. The
simulated setup is indistinguishable from a real setup under DDH.

We design a simulated prover that, using the output of the simulated setup,
is able to forge proofs without knowledge of the witness. Recall that our proofs
demonstrate that either the instance is in the language or the CRS contains a
DDH pair. Typically soundness holds because an honestly generated CRS does
not contain a DDH pair. However, when the simulator has subverted the CRS,
they have the power to both insert a DDH pair into the CRS and to hold onto a
witnesses attesting to the truth of the DDH pair. Thus the simulator can prove
that the CRS contains a DDH pair for any valid instance (including instances
that are not in the language). Finally we argue that the transcript output by
the simulated prover and the real prover are distributed identically (under the
simulated common reference string).

We first prove RVote1.
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Lemma 4. The protocol in fig. 6 for RVote1 is honest verifier zero-knowledge
under the DDH assumption.

Proof. First we describe a simulated setup algorithm and demonstrate that it is
indistinguishable from a real setup algorithm. After we shall provide a simulator
that convinces an honest verifier using the simulated setup.

SimSetup(G)

g, h, h1, h2
$←− G

x
$←− F

ĝ, ĥ← gx, hx

return (crs = (g, h, h1, h2, ĝ, ĥ), τ = x)

Suppose A is an adversary that distinguishes between this setup and the real
setup. They return 1 if they think the setup is real and 0 if they think it is
simulated. Consider the adversary B against DDH that is given a challenge
(g, ga, gb, c). Then B randomly samples h1, h2 ∈ G and queries A on the crs =
(g, ga, h1, h2, g

b, c) who returns a bit b. Then B returns (1 − b). If c is random
then crs is distributed according to the real setup and B succeeds if and only if
A succeeds. If c is gab then crs is distributed according to the simulated setup
and B succeeds if and only if A succeeds. Thus Pr[BDDH ] = Pr[Azk-Setup].

We second describe a simulated proving algorithm the uses the simulated
setup. The simulator retains information x such that (ĝ, ĥ) = (gx, hx). In the
first round the simulator samples three random elements s0, s1, t from F and set
(S0, S1, S2) to equal (cs00 g

s1 , cs02 h
s1
1 , c

s0
3 h

s1
2 ). They further set (T0, T1) = (gt, ht)

and send (S0, S1, S2, T0, S1) to the verifier. When the verifier returns a they set
c = −s0 − a such that the (c0, c2, c3) components of (S0, S1, S2) are cancelled
out in the verifier’s equations. They then set d to equal t+ cx and u to equal s1.
They send (c, d, u) to the verifier.

Simulator’s input: x such that (ĝ, ĥ) = (gx, hx)
Shared input: crs, (c0, c2, c3)

SimProve 7→ Verify

s0, s1, t
$←− F

S0, S1, S2 ← cs00 g
s1 , cs02 h

s1
1 , c

s0
3 h

s1
2

T0, T1 ← gt, ht

send (S0, S1, S2, T0, T1)

Verify 7→ SimProve

send a
$←− F

SimProve 7→ Verify
c← −s0 − a
d← t+ cx
u← s1
send (c, d, u)
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We finally argue that the transcript output by the simulator is identically
distributed to the transcript output by the prover under a simulated reference
string. To do this we will show that each of the proof elements (S0, S1, S2, T0, T2,
u, c, d) are either distributed uniformly at random, or uniquely determined by
other proof elements and the verifier’s equations.

– In both the real and the simulated proofs, u is distributed uniformly at
random (in the real world it’s blinded by s and in the simulated world it’s
blinded by s1).

– In both the real and the simulated proofs, c is distributed uniformly at
random (in the real world it’s blinded by t0 and in the simulated world it’s
blinded by s0).

– In both the real and the simulated proofs, d is distributed uniformly at
random (in the real world it’s blinded by t1 and in the simulated world it’s
blinded by t).

– Given u, c and d, there exist unique values S0, S1, S2, T0 and T1 that satisfy
the verifier’s equations.

Thus no adversary can distinguish between a real and a simulated proof.

We now prove RVote2.

Lemma 5. The protocol in fig. 7 for RVote2 is honest verifier zero-knowledge
under the DDH assumption.

Proof. First we describe a simulated setup algorithm and demonstrate that it is
indistinguishable from a real setup algorithm. After we shall provide a simulator
that convinces an honest verifier using the simulated setup.

SimSetup(G)

g, h
$←− G

x
$←− F

ĝ, ĥ← gx, hx

return (crs = (g, h, ĝ, ĥ), τ = x)

Suppose A is an adversary that distinguishes between this setup and the real
setup. They return 1 if they think the setup is real and 0 if they think it is
simulated. Consider the adversary B against DDH that is given a challenge
(g, ga, gb, c). Then B queries A on the crs = (g, ga, gb, c) who returns a bit b.
Then B returns (1−b). If c is random then crs is distributed according to the real
setup and B succeeds if and only if A succeeds. If c is gab then crs is distributed
according to the simulated setup and B succeeds if and only if A succeeds. Thus
Pr[BDDH ] = Pr[Azk-Setup].

We next describe a simulated proving algorithm. The simulator retains in-
formation x such that (ĝ, ĥ) = (gx, hx) The simulator first chooses 5 ran-
dom elements q0, q1, r0, r1, t from F. They set the proof elements (Q0, S0, R0)
to equal (gq0cr00 , h

q0cr01 , y
q0cr04 ) and the proof elements (Q1, S1, R1) to equal

(gq1cr10 , h
q1 [c1g

−1]r1 , yq1 [c4g
−1]r1). They additionally set the proof elements (T0, T1)
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to equal (gt, ht) and they send (Q0, Q1, S0, S1, R0, R1, T0, T1) to the verifier.
Upon receiving the response a from the verifier they set c = a+r0−r1, d = t+cx,
u = −r0 − a, v = q0 and w = q1. They send (c, d, u, v, w) to the verifier.

Simulator’s input: x such that (ĝ, ĥ) = (gx, hx)
Shared input: crs, (c0, c1, c4, y)

SimProve 7→ Verify

q0, q1, r0, r1, t
$←− F

Q0, Q1 ← gq0cr00 , g
q1cr10

R0, R1 ← hq0cr01 , h
q1 [c1g

−1]r1

S0, S1 ← yq0cr04 , y
q1 [c4g

−1]r1

T0, T1 ← gt, ht

send (Q0, Q1, R0, R1, S0, S1, T0, T1)

Verify 7→ SimProve

send a
$←− F

SimProve 7→ Verify
c← a+ r0 − r1
d← t+ cx
u← −r0 − a
v ← q0
w ← q1
send (c, d, u, v, w)

The transcript output by the simulator is identically distributed to the transcript
output by the prover under a simulated reference string. To see we argue that the
proof elements (Q0, Q1, R0, R1, S0, S1, T0, T1, c, d, u, v, w) are either distributed
uniformly at random or uniquely determined by the other proof elements and
the verifier equations for both prover and simulator.

– In both the real and the simulated proofs, u is distributed uniformly at
random (in the real world it’s blinded by r and in the simulated world it’s
blinded by r0).

– In both the real and the simulated proofs, v is distributed uniformly at
random (it’s blinded in both worlds by q0).

– Given u and v, there exist unique values Q0, R0, S0 that satisfy the verifier’s
equations.

– In both the real and the simulated proofs, c is distributed uniformly at
random (in the real world it’s blinded by t0 and in the simulated world it’s
blinded by r1).

– In both the real and the simulated proofs, d is distributed uniformly at
random (in the real world it’s blinded by t1 and in the simulated world it’s
blinded by t).

– Given c and d, there exist unique values T0 and T1 that satisfy the verifier’s
equations.
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– In both the real and the simulated proofs, w is distributed uniformly at
random (it’s blinded in both worlds by q1).

– Given c, u and w, there exist unique values Q1, R1 and S1 that satisfy the
verifier’s equations.

Thus no adversary can distinguish between a real and a simulated proof.

Statistical Soundness We now demonstrate that our protocols are statistically
sound. That is for any adversary, including adversaries that are not computa-
tionally bounded (i.e., they can break the discrete logarithm assumption), the
probability that the adversary convinces an honest verifier of a false statement is
2
|F| . When compiled into a non-interactive proof in the random oracle model this

gives relatively reassuring guarantees and in particular the security reduction
does not need to program the oracle.

Our techniques look at the restrictions imposed on a verifying transcript. We
demonstrate that the verifier’s equations are only satisfiable for false statements
when the verifier’s response equals a deterministic function of the output of
the adversary in the first round. The probability of this happening for random
verifier responses is then exactly 1

|F| . Combined with the probability that the

reference string contains a DDH pair, we get that the probability of succeeding
is bounded by 2

|F| .

We first prove that RVote1 is sound.

Lemma 6. The protocol in fig. 6 for RVote1 is statistically sound.

Proof. Suppose that a CRS of the form crs = (g, h1, h2, ĝ, ĥ) is sampled from
the setup. We intend to analyse the distribution of the elements in the CRS and
the proof elements in order to demonstrate that the verifier’s equations are only
satisfiable for true statements with overwhelming probability. We will thus look
at the discrete logarithms of the crs elements and the adversary’s message in
the first round. We will consider a false statement and look at the restrictions
imposed on these discrete logarithms by the verifier’s equations. We first show
that if the adversary convinces the verifier, then the adversary’s response c in the
second round is deterministically computable from the adversary’s message in
the first round. We then further show that, using the equation for c, the verifier’s
response a can be computed deterministically from the adversary’s message in
the first round. This happens with negligible probability.

Denote the crs discrete logarithms by h = gη, h1 = gα, h2 = gβ , ĝ = gµ, ĥ =
gν for some α, β, η, µ, ν ∈ F. The probability that ηµ = ν is 1

|F| . Let A(crs) be an

adversary against soundness. In the first round they output some (c0, c2, c3, S0, S1,
S2, T0, T1) ∈ G. We denote the discrete logarithms by

c0 = gγ0 , c2 = gγ2 , c3 = gγ3

S0 = gs0 , S1 = gs1 , S2 = gs2 , T0 = gt0 , T1 = gt1 .

Denote
x = (γ0, γ2, γ3, s0, s1, s2, t0, t1).
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The verifier samples random a
$←− F. The adversary returns

c, d, u, v, w

which satisfy the verifier’s equations.
We first show that c = c(x); i.e., that c does not depend on the verifier’s

response a. From the fourth and fifth verification equations we see that t0+cµ = d
and t1 + cν = ηd and hence

η(t0 + cµ) = t1 + cν

implying that c = c(x) = (t1−ηt0)
ηµ−ν (assuming ηµ 6= ν).

We now show that a = a(x); i.e., that if the statement is false then a is
deterministically computable from the adversary’s first message. From the first,
second and third verification equations we see that s0+γ0(a+c) = v, s1+γ2(a+
c) = αv, and s2 + γ3(a+ c) = βv and hence

α(s0 + γ0(a+ c)) = s1 + γ2(a+ c)

and
a(αγ0 − γ2) = −α(s0 + γ0c) + s1 + γ2c.

Similarly
a(βγ0 − γ3) = −β(s0 + γ0c) + s2 + γ3c.

If (αγ0 − γ1) = (βγ0 − γ2) = 0 then c2 = hγ01 and c3 = hγ02 and (c0, c2, c2) ∈ L.
If not then

a =
−α(s0 + γ0c(x)) + s1 + γ2c(x)

(αγ0 − γ2)

or

a =
−β(s0 + γ0c(x)) + s2 + γ3c(x)

(βγ0 − γ3)

and a = a(x). The probability that the verifier returns random a such that
a = a(x) is equal to 1

|F| .

Thus the probability that an adversary convinces a verifier of a false state-
ment is bounded by 2

|F|

We now prove that RVote2 is sound.

Lemma 7. The protocol in fig. 7 for RVote2 is statistically sound.

Proof. Suppose that a CRS of the form crs = (g, h1, h2, ĝ, ĥ) is sampled from
the setup. We intend to analyse the distribution of the elements in the CRS
and the proof elements in order to demonstrate that the verifier’s equations
are only satisfiable for true statements with overwhelming probability. We will
thus look at the discrete logarithms of the crs elements and the adversary’s
message in the first round. We will consider a false statement and look at the
restrictions imposed on these discrete logarithms by the verifier’s equations.
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We first show that if the adversary convinces the verifier, then the adversary’s
response c in the second round is deterministically computable (not necessarily
in PT) from the adversary’s message in the first round. We second show that,
using the equation for c, the adversary’s response u in the second round is
deterministically computable from the adversary’s message in the first round.
We then further show that, using the equation for c and u, the verifier’s response
a can be computed deterministically from the adversary’s message in the first
round. This happens with negligible probability.

Suppose that a CRS of the form crs = (g, h, ĝ, ĥ) is sampled from the setup

where the discrete logarithms are given by h = gη, ĝ = gµ, ĥ = gν for some η, µ,
ν. The probability that ηµ = ν is 1

|F| . Let A(crs) be an adversary against sound-

ness. In the first round they output some (c0, c1, c4, y,Q0, Q1, R0, R1S0, S1, T0, T1)
∈ G. We denote the discrete logarithms by

c0 = gγ0 , c1 = gγ1 , c4 = gγ4 , y = gρ,
Q0 = gq0 , Q1 = gq1 , R0 = gr0 , R1 = gr1 ,
S0 = gs0 , S1 = gs1 , T0 = gt0 , T1 = gt1 .

Denote
x = (γ0, γ1, γ4, ρ, q0, q1, r0, r1, s0, s1, t0, t1).

The verifier samples random a
$←− F. The adversary returns

c, d, u, v, w

which satisfy the verifier’s equations.
We first show that c = c(x) is depends directly on the verifier’s first message

(and the CRS) and in particular does not depend on a. From the seventh and
eigth verification equations we see that t0 + cµ = d and t1 + cν = ηd and hence

η(t0 + cµ) = t1 + cν

implying that c = (t1−ηt0)
ηµ−ν (assuming ηµ 6= ν).

We now show that u = u(x) depends directly on the verifier’s first message.
From the fourth, fifth and sixth verification equations we see that (q1 + γ0(c +
u)) = w, (r1 + (γ1 − 1)(c+ u)) = ηw and (s1 + (γ4 − 1)(c+ u)) = ρw and hence

η(q1 + γ0(c+ u)) = r1 + (γ1 − 1)(c+ u)

and
u(ηγ0 − γ1 + 1) = r1 + (γ1 − 1)c− ηq1 − ηγ0c.

Similarly
u(ργ0 − γ4 + 1) = s1 + (γ4 − 1)c− ρq1 − ργ0c.

If (ηγ0 − γ1 + 1) = (ργ0 − γ4 + 1) = 0 then c1 = ghγ0 and c4 = gyγ0 and
(c0, c1, c4) ∈ LVote2. Else

u =
r1 − ηq1 + (γ1 − ηγ0 − 1)c(x)

ηγ0 − γ1 + 1
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or

u =
s1 − ρq1 + (γ4 − ργ0 − 1)c(x)

ργ0 − γ4 + 1
.

and u = u(x) does not depend on a. Observe that if neither (ηγ0 − γ1 + 1) or
(ργ0 − γ4 + 1) equal 0 then these two equations for u are equal.

Finally we show that a = a(x) is determined solely by the adversary’s first
verifier message. From the first, second and third verification equations we see
that q0 + γ0(a+ u) = v, r0 + γ1(a+ u) = ηv, and s0 + γ4(a+ u) = ρv and hence

η(q0 + γ0(a+ u)) = r0 + γ1(a+ u)

and
a(ηγ0 − γ1) = −η(q0 + γ0u) + r0 + γ1u.

Similarly
a(ργ0 − γ4) = −ρ(q0 + γ0u) + s0 + γ4u.

If (ηγ0 − γ1) = (ργ0 − γ4) = 0 then c1 = hγ0 and c4 = yγ0 and (c0, c1, c4, y) ∈ L.
If not then

a =
−η(q0 + γ0u(x)) + r0 + γ1u(x)

(ηγ0 − γ1)

or

a =
−ρ(q0 + γ0u(x)) + s0 + γ4u(x)

(ργ0 − γ4)
.

Note that if neither (ηγ0 − γ1) nor (ργ0 − γ4) equal 0 then these equations for
a are the same. The probability that the verifier returns random a such that
a = a(x) is equal to 1

|F| .

Thus the probability that an adversary convinces a verifier of a false state-
ment is bounded by 2

|F| .

Simulation Soundness In order to argue that our zero-knowledge proofs re-
main secure as part of our wider system, where the adversary might potentially
see forged proofs, we need some notion of “non-malleability”; i.e., we must argue
that our proofs remain secure even if an adversary has oracle access to a simu-
lation oracle. Note that under a simulated reference string, statistical soundness
cannot hold, for otherwise the simulator could not succeed. In our definition of
simulation soundness we allow the adversary to sample auxiliary information for
the relation; however, the choosing of the common reference string is entirely
outside of their control. The adversary may query a simulation oracle (S1, S2)
on both true and false statements; however, the simulator in the second round
S2 will only respond to the same query once.

Here we prove that our zero-knowledge proof for RVote1 satisfies simulation
soundness in the random oracle model.

Lemma 8. The protocol in fig. 6 for RVote1 with respect to the random oracle
H satisfies simulation soundness under the discrete logarithm assumption.
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Proof. Suppose there exist an adversary A that with non-negligible probability
forges ((c0, c2, c3), π) under a simulated reference string such that (c0, c2, c3) 6∈
LVote1 and Verify(crsVote1, (c0, c2, c3), π) = 1. We design an adversary B that
breaks the discrete logarithm assumption. The adversary B chooses the random
coins of A and may program the random oracle.

B(g,A)

η
$←− F, h← gη

h1, h2
$←− A(g, h)

(crsVote1)← (g, h, h1, h2, A,A
η)

((c0, c2, c3), ((S0, S1, S2, T0, T2), a, (c, d, u)))
$←− ASimProve(crsVote1; r)

reset H((c0, c2, c3), (S0, S1, S2, T0, T2)) = a′

((c0, c2, c3), ((S0, S1, S2, T0, T2), a′, (c′, d′, u′)))
$←− ASimProve(crsVote1; r)

return (d− d′)/(c− c′)

SimProve(c0, c2, c3)

(a, c, d, u)
$←− F

m1 = (S0, S1, S2, T0, T2)
$←− (guc−a−c0 , hu1c

−a−c
2 , hu2c

−a−c
3 , gdĝ−c, hdĥ−c)

m2 = (c, d, u)
set H((c0, c2, c3),m1) = a
return (m1,m2)

We first note that the adversary B perfectly emulatesA’s view from GSimSound
A (1λ).

Indeed crsVote1 is distributed identically to the real simulator’s CRS, since (ĝ, ĥ) =
(A,Aη0) = (gx, hx) for some x. The simulator’s values u, c, d are distributed uni-
formly at random, as are B’s responses to oracle requests. Further, given a, u, c, d
there exist unique values S0, S1, S2, T0, T1 that satisfy the verifier’s equations.

Now we argue that ifA succeeds at GSimSound
A (1λ) then B successfully extracts

x such that A = gx. Since A succeeds we have that (c0, c2, c3) 6∈ LVote1 and
(m1,m2) do not exactly correspond to the simulation oracle’s output. When
(c0, c2, c3) 6∈ LVote1 we have that given m1, there exist unique values p = a + c
and u such that the verifier’s equations are satisfied. Hence when A returns both
(m2,m

′
2) such that (m1, a,m2) and (m2, a

′,m′2) verify we have that p = a + c
and p = a′ + c′. This means that c 6= c′. Further T0ĝ

c = gd and T0ĝ
c′ = gd

′
.

Hence ĝ = g
d−d′
c−c′ and B successfully extracts x.

Now we prove that our zero-knowledge proof for RVote2 satisfies simulation
soundness.

Lemma 9. The protocol in fig. 7 for RVote2 satisfies simulation soundness under
the discrete logarithm assumption.

Proof. Suppose there exists an adversary A that with non-negligible probability
forges ((c0, c1, c4, y), π) under a simulated reference string such that (c0, c1, c4, y) 6∈
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LVote2 and Verify(crsVote2, (c0, c1, c4, y), π) = 1. We design an adversary B that
breaks the discrete logarithm assumption. The adversary B chooses the random
coins of A and may program the random oracle.

B(g,A)

η0, a
′ $←− F

(crsVote1)← (g, gη0 , A,Aη0)

((c0, c1, c4, y), ((Q0, Q1, R0, R1, S0, S1, T0, T1), a, (c, d, u, v, w)))
$←− ASimProve(crsVote2; r)

reset H((c0, c1, c4, y), (Q0, Q1, R0, R1, S0, S1, T0, T1)) = a′

((c0, c1, c4, y), ((Q0, Q1, R0, R1, S0, S1, T0, T1), a′, (c′, d′, u′, v′, w′)))
$←− ASimProve(crsVote2; r)

return (d− d′)/(c− c′)

SimProve(c0, c1, c4, y)

(a, c, d, u, v, w)
$←− F

m1 =

(
Q0, Q1, R0, R1,
S0, S1, T0, T1

)
$←−
(
gvc−a−u0 , hvc−a−u1 , yvc−a−u4 , gwc−c−u0 ,

gwc−c−u0 , hwc−c−u1 , ywc−c−u4 , gdĝ−c, hdĥ−c

)
m2 = (c, d, u)
set H((c0, c2, c3),m1) = a
return (m1,m2)

We first note that the adversary B perfectly emulatesA’s view from GSimSound
A (1λ).

Indeed crsVote2 is distributed identically to the real simulator’s CRS, since (ĝ, ĥ) =
(A,Aη0) = (gx, hx) for some x. The simulator’s values u, v, w, c, d are distributed
uniformly at random, as are B’s responses to oracle requests. Further, given
a, u, v, w, c, d there exist unique values Q0, Q1, R0, R1, S0, S1, S2, T0, T1 that sat-
isfy the verifier’s equations.

Now we argue that ifA succeeds at GSimSound
A (1λ) then B successfully extracts

x such that A = gx. Since A succeeds we have that (c0, c1, c4, y) 6∈ LVote2 and
(m1,m2) do not exactly correspond to the simulation oracle’s output. When
(c0, c1, c4, y) 6∈ LVote2 we have that given m1, there exist unique values p1 = a+u,
p2 = c+u and u, v, w such that the verifier’s equations are satisfied. Hence when
A returns both (m2,m

′
2) such that (m1, a,m2) and (m2, a

′,m′2) verify we have
that p1 = a + u and p1 = a′ + u′ and hence u 6= u′. Additionally p2 = c + u
and p2 = c′ + u′ meaning that c 6= c′. Further T0ĝ

c = gd and T0ĝ
c′ = gd

′
. Hence

ĝ = g
d−d′
c−c′ and B successfully extracts x.

C Proof of Vote Secrecy (Theorem 5.2)

LetA be a PT adversary playing game Gsecrecy
A (λ), and let n denote the number of

honest voters. We provide PT adversaries B0, B1, and families of PT adversaries
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Bi,2,Bi,3,Bi,4,Bi,5 and Ci,2, Ci,3, Ci,4, Ci,5 for 0 ≤ i ≤ n such that

Advsecrecy
A (λ) = 2

(
Advzk

B0
(λ) + Advzk

B1
(λ)

+

n∑
i=1

(Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ) + Advsqddh
Bi,3 (λ)

+ Advsimsnd
Ci,3 (λ) + Advddh

Bi,4(λ) + Advsimsnd
Ci,4 (λ)

+ Advddh
Bi,5(λ) + Advsimsnd

Ci,5 (λ))
)
− 1

for all λ ∈ N, from which the theorem follows. We build B0,B1, and families
Bi,2,Bi,3,Bi,4,Bi,5 and Ci,2, Ci,3, Ci,4, Ci,5 for 0 ≤ i ≤ n such that

|Pr[Gsecrecy
A (λ)]− Pr[GA1 (λ)]| ≤ Advzk

B0
(λ) (1)

|Pr[GA1 (λ)]− Pr[GA2 (λ)]| ≤ Advzk
B1

(λ) (2)

|Pr[GAi,2(λ)]− Pr[GAi+1,2(λ)]| ≤ Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ) (3)

|Pr[GAi,3(λ)]− Pr[GAi+1,3(λ)]| ≤ Advsqddh
Bi,3 (λ) + Advsimsnd

Ci,3 (λ) (4)

|Pr[GAi,4(λ)]− Pr[GAi+1,4(λ)]| ≤ Advddh
Bi,4(λ) + Advsimsnd

Ci,4 (λ) (5)

|Pr[GAi,5(λ)]− Pr[GAi+1,5(λ)]| ≤ Advddh
Bi,5(λ) + Advsimsnd

Ci,5 (λ) (6)

Pr[GA6 (λ)] = 0 (7)

The adversaries B0,B1,Bi,2,Bi,3,Bi,4,Bi,5 for 0 ≤ i ≤ n are straight line
and only run A once. Further, the adversaries Ci,2, Ci,3, Ci,4, Ci,5 are straight line
and only run A once in order to break simulation soundness. (In order to break
the DL assumption, under which simulation soundness is proven, one in fact
needs to run Ci,j twice; the oracle is programmed the second time and, in doing
so, A is run twice.) Thus, our reduction is polynomial time even with respect
to concurrent adversaries because each of our adversaries is only run up to a
constant number of times.
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main Gsecrecy
A (λ)

1 vote count← 0

2 b
$←− {0, 1}, crsRVote1 , crsRVote2

$←− Setup(RVote1), Setup(RVote2)

3 (pki, ski)
$←− KeyGen(1λ) ∀i ∈ [n]

4 b′
$←− AAP,HP,CP(1λ, contracts, {pki}i)

5 return (b′ = b)

AP.Vote1(sess, txvote1)

6 contracts[sess].Process Vote1(txvote1)

AP.Vote2(sess, txvote2)

7 if (contracts[sess].vote flag = 0) contracts[j].vote flag← 1
8 contracts[sess].Process Vote2(txvote2)

HP.Vote1(sess, i, bA)

9 if (bA = 0) vote count[sess] −= 1
10 else vote count[sess] += 1
11 vote← (bA EQ b)

12 x
$←− F, G3 : x, r1

$←− F , G4 : x, r1, r2
$←− F ,

G5 : x, r0, r1, r2
$←− F

13 c0 ← gx

14 c1 ← gvotehx, G5 : c1 ← gvotehr0

15 c2 ← hx1 , G3 : c1 ← hr11

16 c3 ← hx2 , G4 : c1 ← hr22

17 π1 ← Prove(RVote1, (c0, c2, c3), x),

G1 : π1 ← Sim(crsVote1, c0, c2, c3)

18 txvote1
$←− FormTx(amtdep, (c0, c1, c2, c3, π1,wgt))

19 contracts[sess].Process Vote1(txvote1)

HP.Vote2(sess, i)

20 if (vote count[sess] 6= 0) return 0
21 if (contracts[sess].vote flag = 0) contracts[sess].vote flag← 1
22 y ← voters[pk][y]

23 c4 ← gvoteyx, G6 : c4 ← gvoteT

24 π2 ← Prove(RVote2, (c0, c1, c4, y), (x, vote)),

G2 : π2 ← Sim(crsVote2, (c0, c1, c4, y))

25 txvote2
$←− FormTx(0, (c4, π2))

26 contracts[sess].Process Vote2(txvote2)

Fig. 8: The “unrolled” vote secrecy game and, in boxes, the changes introduced by our
various game transitions. The value T used in line 23 depends on the index of the
participant, so we leave a definition of it until the relevant game transition.
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Summaries of all of these games are provided in Figure 8, where GA0,2(λ) = GA2 (λ)

and GAn,2(λ) = GA3 (λ) and similarly for GAi,3(λ),GAi,4(λ),GAi,5(λ). We then have
that

Advsecrecy
A (λ)

= 2Pr[Gsecrecy
A (λ)]− 1

= 2(Pr[Gsecrecy
A (λ)]− Pr[GA1 (λ)] + Pr[GA1 (λ)])− 1

= 2(Advzk
B0(λ) + Pr[GA1 (λ)]− Pr[GA2 (λ)] + Pr[GA2 (λ)])− 1

= 2(Advzk
B0(λ) + Advzk

B1(λ) + Pr[GA2 (λ)]− Pr[GA3 (λ)] + Pr[GA3 (λ)])− 1

= 2(Advzk
B0(λ) + Advzk

B1(λ) + n(Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ)) + Pr[GA3 (λ)]

− Pr[GA4 (λ)] + Pr[GA4 (λ)])− 1

= 2(Advzk
B0(λ) + Advzk

B1(λ) + n(Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ) + Advsqddh
Bi,3 (λ)

+ Advsimsnd
Ci,3 (λ)) + Pr[GA4 (λ)]− Pr[GA5 (λ)] + Pr[GA5 (λ)])− 1

= 2(Advzk
B0(λ) + Advzk

B1(λ) + n(Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ) + Advsqddh
Bi,3 (λ)

+ Advsimsnd
Ci,3 (λ) + Advddh

Bi,4(λ) + Advsimsnd
Ci,4 (λ)) + Pr[GA5 (λ)]− Pr[GA6 (λ)]

+ Pr[GA6 (λ)])− 1

= 2(Advzk
B0(λ) + Advzk

B1(λ) + n(Advsqddh
Bi,2 (λ) + Advsimsnd

Ci,2 (λ) + Advsqddh
Bi,3 (λ)

+ Advsimsnd
Ci,3 (λ) + Advddh

Bi,4(λ) + Advsimsnd
Ci,4 (λ) + Advddh

Bi,5(λ) + Advsimsnd
Ci,5 (λ)))− 1

Equation (1): Gsecrecy
A (λ) to GA1 (λ)

Intuitively, this follows in a completely straightforward way from the zero-knowledge
property of the underlying proofs for crsVote1 (Section 6). Formally, B0 behaves
as follows (omitting all lines that it follows honestly):

BO0 (crsRVote1
)

2 (g, h, h1, h2, ĝ, ĥ)← crsRVote1

17 π1 ← O((c0, c2, c3), x)

If B0 gets crsRVote1
from the real setup and real proofs from O then this is identical

to Gsecrecy
A (λ). If instead B0 gets a simulated setup and simulated proofs from O

then this is identical to GA1 (λ).

Equation (2): GA1 (λ) to GA2 (λ)

This follows from the zero-knowledge property of the proof for crsVote2. Formally,
B1 behaves as follows (again, omitting all lines that it follows honestly):

BO1 (crsRVote2
)

2 (g, h, ĝ, ĥ)← crsRVote2

24 π2 ← O((c0, c1, c4, y), (x, vote))
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If B1 gets real proofs from O then this is identical to GA1 (λ). If instead B1 gets
simulated proofs from O then this is identical to GA2 (λ).

Equation (3): GA2 (λ) to GA3 (λ)

Intuitively, this game hop proceeds in a hybrid fashion, in which for each par-

ticipant we switch from c2 = hx1 to c2 = hr11 for r1
$←− F. We do this one at a

time, leading to a looseness of n. We embed square DDH challenge terms D and
C into c0 and the h1 term of the CRS, and must now be able to form the corre-
sponding c2 and c4 values. While this makes it slightly more difficult to form yx,
we can extract the necessary information from the adversary’s c2 values in the
first round in order to form y. If (D,C) = (gx, gx

2

) then c2 and c4 are the honest
values hx1 and gvoteyx, and if it is random then this embeds some extra random-
ness into c2. Formally, we define GAk,2(λ) as the game in which the first k honest

participants are using the values of c2 as in GA2 (λ), and the remaining n− k are
using the values of c2 as in GA3 (λ); it’s then the case that GA0,2(λ) = GA2 (λ) and

GAn,2(λ) = GA3 (λ). Each adversary Bk,2 behaves as follows:

Bk,2(g,D,C)

η0, η1, η2
$←− F; h, h1, h2 ← gη0 , Dη1 , gη2

HP.Vote1(sess, i, bA)

for i ≤ k
13 c0 ← gx

14 c1 ← gvotehx

15 c2 ← (Dη1)x

16 c3 ← hx2
for i = k + 1

13 c0 ← D
14 c1 ← gvoteDη0

15 c2 ← Cη1

16 c3 ← Dη2

for i > k + 1
13 c0 ← gx

14 c1 ← gvotehx

15 c2 ← (Dη1)r1

16 c3 ← hx2

HP.Vote2(sess, i)

23 if i = k + 1, c4 ← gvoteT
23 else c4 ← gvoteyx

The honest participants are indexed by i, where 1 ≤ i ≤ n, and Bk,2 plants
its challenge C at honest participant i = k + 1. Let ` denote the index for all
participants, honest and adversarial, so that 1 ≤ ` ≤ m. Then the value T is
calculated as follows:

46



– T is initialized to be the identity element 1G
– For every adversarial registration transaction containing values (c`,0, . . . , c`,3),
T is updated according to whether the k + 1st honest participant has taken
part yet or not:

• if ` is less than the index of the k+1st honest participant then T = T ·c
1
η1

`,2

• if ` is greater than the index of the k + 1st honest participant then

T = T · c
− 1
η1

`,2
– Consider every honest registration transaction containing values (ci,0, . . . , ci,3),

where ci,0 = gxi except for the k+1st honest participant. Then T is updated
according to whether the k + 1st honest participant has taken part yet or
not:
• if i is less than k + 1 then T = T · gxi
• if i is greater than k + 1 then T = T · g−xi

Case 1: A forms its c`,2 values incorrectly.

Suppose A forms its c`,2 values incorrectly. We introduce adversaries Ck,2 and

Ck+1,2 simulating Gk,2A (1λ) and Gk+1,2
A (1λ) for A (omitting all lines where they

behave honestly):

Ck,2(g, h)

η1, η2
$←− F; h1, h2 ← gη1 , gη2

crsVote1 ← OSimSetup(h1, h2)

AP.Vote1(sess, txvote1)

if c2 6= cη10 or c3 6= cη20 return ((c0, c2, c3), π)

HP.Vote1(sess, i, bA)

return ((c0, c1, c2, c3),O(c0, c2, c3))

If A forms its c`,2 values incorrectly in Gk,2A (1λ) then Ck,2 breaks simulation

soundness. If A forms its c`,2 values incorrectly in Gk+1,2
A (1λ) then Ck+1,2 breaks

simulation soundness.

Case 2: A forms its c`,2 values correctly.

Suppose A forms its c`,2 values correctly. Then we have that c`,2 = Dη1x` ,
meaning that the contribution to T from this participant is D±x` . The challenge
D is implicitly gx̃ for some x̃ ∈ F, so for i = k + 1 we have

ci,4 = gvoteiT = gvotei

 ∏
1≤s<i,i<t≤m

DxsD−xt

 = gvotei

 ∏
s<i,i<t

gx̃xsg−x̃xt


= gvotei

 ∏
s<i,i<t

cs,0c
−1
t,0

x̃

= gvoteiyx̃i
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so Bk,2 forms ci,4 exactly as in Gsecrecy
A (λ).

If (g,D,C) = (g, gx̃, gx̃
2

) then

crs = (g, h, h1, h2, ĝ, ĥ) = (g, gη0 , gx̃η1 , gη2 , ĝ, ĥ)

and the Vote1 values for honest participant i = k + 1 have the form

(ci,0, ci,1, ci,2, ci,3) = (gx̃, gvoteigη0x̃, gx̃
2η1 , gη2x̃) = (gx̃, gvoteihx̃, hx̃1 , h

x̃
2).

Else, the Vote1 values for honest participant i = k + 1 have the form

(ci,0, ci,1, ci,2, ci,3) = (gx̃, gvoteihx̃, h
ri,1
1 , hx̃2)

where ri,1
$←− F. In the first case Bk,2 perfectly simulates GAk+1,2(λ) and in the

second case Bk,2 perfectly simulates GAk,2(λ).

Equation (4): GA3 (λ) to GA4 (λ)

This game hop also proceeds in a hybrid fashion, in which for each participant

we switch from c3 = hx2 to c3 = hr22 for r2
$←− F (again, with looseness n). The

argument is the same as above, where we embed square DDH challenge terms
D and C into c0 and the h2 term of the CRS, and must be able to form the
corresponding c3 and c4 values. This time, we extract the necessary information
from the adversary’s c3 values in the first round in order to form y.

Equation (5): GA4 (λ) to GA5 (λ)

For each participant we switch from the committed vote c1 = gvotehx to c1 =

gvotehr0 for r0
$←− F (again, with looseness n). We embed DDH challenge terms

D1 and D2 into the h term of the CRS and c0, and must now be able to form the
corresponding c4 values. To do this, we additionally embed the D2 challenge into
the h1 term of the CRS. We can then extract the necessary information from the
adversary’s c2 values in the first round to form y. If (D1, D2, C) = (gd1 , gd2 , gd1d2)
then c1 and c4 are the honest values gvotehx and gvoteyx, and if it is random then
this embeds some extra randomness into c1. Formally, we define GAk,4(λ) as the
game in which the first k honest participants are using the values of c1 as in
GA4 (λ), and the remaining n − k are using the values of c1 as in GA5 (λ); it’s
then the case that GA0,4(λ) = GA4 (λ) and GAn,4(λ) = GA5 (λ). Each adversary Bk,4
behaves as follows:
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Bk,4(g,D1, D2, C)

η1, η2
$←− F; h, h1 ← D1, D

η1
2

HP.Vote1(sess, i, bA)

for i ≤ k
13 c0 ← gx

14 c1 ← gvoteDx
1

15 c2 ← (Dη1
2 )r1

16 c3 ← hr22
for i = k + 1

13 c0 ← D2

14 c1 ← gvoteC
15 c2 ← (Dη1

2 )r1

16 c3 ← hr22
for i > k + 1

13 c0 ← gx

14 c1 ← gvoteDr0
1

15 c2 ← (Dη1
2 )r1

16 c3 ← hr22

HP.Vote2(sess, i)

23 if i = k + 1, c4 ← gvoteT
23 else c4 ← gvoteyx

where the value T is computed as in Bk,2.

Case 1: A forms its c`,2 values incorrectly.

We introduce adversaries Ck,4 that behave identically to Ck,2 except that in

the honest omitted lines they simulate games Gk,4A (1λ). If A forms its c`,2 values

incorrectly in Gk,4A (1λ) then Ck,4 breaks simulation soundness and if A forms its

c`,2 values incorrectly in Gk+1,4
A (1λ) then Ck+1,4 breaks simulation soundness.

Case 2: A forms its c`,2 values correctly.

Suppose A forms its c`,2 values correctly. The challenge D2 is implicitly gd2

for some d2 ∈ F, so for i = k + 1 we have

ci,4 = gvoteiT = gvotei

 ∏
1≤s<i,i<t≤m

Dη1xs
2 D−η1xt2

 1
η1

= gvotei

 ∏
s<i,i<t

gd2xsg−d2xt


= gvotei

 ∏
s<i,i<t

cs,0c
−1
t,0

d2

= gvoteiyd2i

so Bk,4 forms ci,4 exactly as in Gsecrecy
A (λ).
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If (g,D1, D2, C) = (g, gd1 , gd2 , gd1d2) then

crs = (g, h, h1, h2, ĝ, ĥ) = (g, gd1 , gd2η1 , h2, ĝ, ĥ)

and the Vote1 values for honest participant i = k + 1 have the form

(ci,0, ci,1, ci,2, ci,3) = (gd2 , gvoteigd1d2 , gd2η1ri,1 , h
ri,2
2 ) = (gd2 , gvoteihd2 , h

ri,1
1 , h

ri,2
2 )

for ri,1, ri,2
$←− F. Else the Vote1 values for honest participant i = k+ 1 have the

form
(ci,0, ci,1, ci,2, ci,3) = (gd2 , gvoteihri,0 , h

ri,1
1 , h

ri,2
2 )

for ri,0, ri,1, ri,2
$←− F. In the first case Bk,4 perfectly simulates GAk+1,4(λ) and in

the second case Bk,4 perfectly simulates GAk,4(λ).

Equation (6): GA5 (λ) to GA6 (λ)

We now assume that there are at least two honest participants. In the first
hybrid game we query the first two honest participants i1 and i2 and replace

their c4 values with gvotei1−ri2 y
xi1
i1

and gvotei2+ri2 y
xi2
i2

for ri2
$←− F. In the second

hybrid game we query the second and third honest participants i2 and i3 and

replace their c4 values with gvotei2+ri2−ri3 y
xi2
i2

and gvotei3+ri3 y
xi3
i3

for ri,3
$←− F.

We continue in this fashion until every honest participant has been covered. In
each game, we embed DDH challenge terms D1 and D2 into their respective c0
values, and must now be able to form the corresponding c4 values. To do this
we additionally embed D1 and D2 into the h1 and h2 terms of the CRS. We
can then extract the necessary information from the adversary’s c2, c3 terms in
the first round to form y. If (D1, D2, C) = (gd1 , gd2 , gd1d2) then c4 is the honest
term gvoteyx, and if it is random then this embeds some extra randomness into c4.
Crucially, because we are embedding the same randomness for both participants,
it can still cancel and satisfy the self-tallying requirement. Formally, Bk,5 behaves
as follows:

Bk,5(g,Dij , Dij+1 , C)

η1, η2
$←− F; h1, h2 ← Dη1

i1
, Dη2

i2

HP.Vote1(sess, i ∈ {ij , ij+1}, bA)

13 ci,0 ← Di

14 ci,1 ← gvotehr0

15 ci,1 ← (Dη1
i1

)r1

16 ci,1 ← (Dη2
i2

)r2

HP.Vote2(sess, i ∈ {ij , ij+1})

23 cij ,4 ← gvoteij+rijC−1
(∏

s<ij ,ij<t,t6=ij+1
cs,2c

−1
t,2

) 1
η1

23 cij+1,4 ← gvoteij+1C
(∏

s<ij+1,ij+1<t,s6=ij cs,3c
−1
t,3

) 1
η2
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Case 1: A forms its c`,2, c`,3 values incorrectly.

We introduce adversaries Ck,5 that behave identically to Ck,2 except that in

the honest omitted lines they simulate games Gk,5A (1λ). If A forms its c`,2 values

incorrectly in Gk,5A (1λ) then Ck,5 breaks simulation soundness and if A forms its

c`,5 values incorrectly in Gk+1,5
A (1λ) then Ck+1,4 breaks simulation soundness.

Case 2: A forms its c`,2, c`,3 values correctly.

If (g,D1, D2, C) = (g, gd1 , gd2 , gd1d2) then

crs = (g, h, h1, h2, ĝ, ĥ) = (g, h, gd1η1 , gd2η2 , ĝ, ĥ)

and the Vote2 values for honest participants have the form

cij ,4 = gvoteij grij−d1d2
(∏

s<ij ,ij<t,t6=ij+1
gd1η1xsg−d1η1xt

) 1
η1

= grij+voteij

(∏
s<ij ,ij<t

gd1xsg−d1xt
)

= grij+voteij

(∏
s<ij ,ij<t

cs,0c
−1
t,0

)d1
and

cij+1,4 = gvoteij+1 gd1d2
(∏

s<ij+1,ij+1<t,s6=ij g
d2η2xsg−d2η2xt

) 1
η2

= gvoteij+1

(∏
s<ij+1,ij+1<t

gd2xsg−d2xt
)

= gvoteij+1

(∏
s<ij+1,ij+1<t

cs,0c
−1
t,0

)d2
.

Else the Vote2 values for honest participants have the form

(gvoteij+rij−rij+1 yd1ij , g
voteij+1

+rij+1 yd2ij+1
)

for rij+1

$←− F.

Equation (7): GA6 (λ)

We argue that GA6 (λ) is a statistically impossible game. Intuitively, each honest
participant now uses random values in their computation of c1, c2, c3 that do
not appear anywhere else, which completely hides all information there. We can
thus focus our attention on c0 and c4 and argue that, despite the correlated ran-
domness across pairs of honest participants, the values are distributed identically
whether b = 0 or b = 1.

Assuming again a single honest pair of participants (and operating across
honest pairs to generalize), we have for honest voters 1 through voter n− 1:

(cij ,0, cij ,4) = (gxij , gvoteij+rij−rij+1 y
xij
ij

)
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Thus we see that cij ,0 is randomly distributed according to xij and cij ,4 is ran-
domly distributed according to rij+1

for 1 ≤ j ≤ (n − 1). We also have that
cin,0 is randomly distributed according to xin . Then cin,4 is the unique value
such that

∏
i ci,4 = g

∑n
i=1 votei . Thus this distribution is equivalent for any set of

honest votes that sum to the same value.

D Proof of Dispute Freeness (Theorem 5.3)

Consider the extractor Ext that works as follows:

1. In the setup, the extractor chooses G $←− GroupGen(1λ) and chooses k
$←− F,

h = gk and ĝ, ĥ
$←− G. They return crs = (g, h, ĝ, ĥ).

2. In the first round, given a transaction of the form (c0, c1, c2, c3, π1,wgt) they
compute V = c1c

−k
0 . If V = 1 they return 0 and if V = g they return 1. Else

they return ⊥.
3. In the second round, given a transaction they look up b, the result they

returned in the first round for the corresponding transaction, and return b.

We claim that the probability that an adversary A succeeds in Gdispute
A (λ) is

bounded by nε(1λ) for n the total number of votes computed by A and ε negli-
gible in 1λ. Our claim holds in the non-programmable random oracle model.

Let A be an adversary playing game Gdispute
A (λ). We know that A wins if for

some j, (1) tally1 6= tally2, which we call E1, (2) tally1 6= contracts.tally, which we
call E2, or (3) tally2 6= contracts.tally, which we call E3.

If for some vote (c0, c1) is not an encryption of 0 or 1 then φ = (c0, c1, c4, Y ) 6∈
LVote2. Similarly, if (c0, c1) is an encryption of b; i.e., (c0, c1) = (gx, gbhx) and
c4 6= gbY x then φ 6∈ LVote2. If (c0, c1, c4) = (gx, gbhx, gbY x) for all voters then
the first tally equals the second tally equals the final tally and A fails.

If A succeeds then for some ((c0, c1, c4, Y ), π) we have that Verify(crs, φ, π) =
1 but φ 6∈ LVote2. This happens with probability 2

|F| by lemma 7.
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