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Abstract. Proxy re-encryption (PRE), formalized by Blaze et al. in 1998, allows a proxy entity to delegate the
decryption right of a ciphertext from one party to another without obtaining the information of the plaintext.
In recent years, many studies have explored how to construct PRE schemes that support fine-grained access
control for complex application scenarios, such as identity-based PRE and attribute-based PRE. Besides, in
order to achieve more flexible access control, the predicate proxy re-encryption (PPRE) is further studied.
However, existing PPRE is restricted with the inner product predicate function. Therefore, how to realize the
PPRE of arbitrary predicate function is still a problem to be solved. In this manuscript, we propose a secure
generic construction of predicate proxy key re-encapsulation mechanism built from a “linear” predicate key
encapsulation mechanism. Since the secure key encapsulation mechanism can be used as a building block to
construct public key encryption, we can obtain a PPRE from our construction. As a result, the results open
up new avenues for building more flexible and fine-grained PPRE.

Keywords: Predicate encryption · Predicate proxy re-encryption · Generic construction · Single-hop · Unidi-
rectional

1 Introduction

Proxy re-encryption (PRE), first formalized by Blaze et al. in 1998 [4], allows a proxy entity to re-encrypt a
ciphertext that has been encrypted for Alice and to generate a new ciphertext that can be decrypted using Bob’s
private key. The proxy entity only needs a re-key provided by Alice without obtaining any other information of the
plaintext or needing to access Alice’s and Bob’s private keys. In a word, the proxy entity can delegate the decryption
right from one party to another. With this flexible property, PRE yields numerous real-world applications [6], such
as outsourcing cryptography, distributed file storage systems, and law enforcement, etc. To support more flexibility
on access control, some studies focus on supporting more complex access control mechanism, such as identity-based
PRE [10, 7, 18] and attribute-based PRE [13, 15, 12].

On the other hand, predicate encryption (PE), formalized by Katz et al. in 2008 [11], is a paradigm for public-key
encryption that conceptually generalizes the public-key encryption supporting fine-grained and role-based access
to an encrypted data. More preciously, in a PE for a predicate function Rκ, a private key is associated with a
key attribute y, while the ciphertext is associated with a ciphertext attribute x, where κ is the description of a
predicate. A ciphertext with ciphertext attribute x can be decrypted by a private key with key attribute y if and
only if Rκ(x, y) = 1. Thus, PE captures wide classes of encryption in cryptography. For example, identity-based
encryption can be viewed as PE supporting “equality” predicate function, and both ciphertext attribute and key
attribute are strings.

Although many identity-based PRE and attribute-based PRE have been studied, only a few researches on how
to construct predicate proxy re-encryption (PPRE) [17, 3, 16]. Unfortunately, these schemes consider only the case
where the predicate function is an inner product predicate. Therefore, at present, many more flexible and fine-
grained predicate proxy re-encryption schemes have not been implemented and discussed. Hence, how to realize a
PPRE of arbitrary predicate function remains an open problem.

1.1 Contributions

In this manuscript, we affirmatively solve this by proposing a generic construction that can transform any linear
predicate key encapsulation mechanism (PKEM) to a predicate proxy key re-encapsulation mechanism (PPKREM).
Then, since secure key encapsulation mechanism (KEM) can be used as a building block to construct public key
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encryption, i.e., combining with a secure symmetric encryption scheme, we can use our construction to obtain a
secure PPRE.

We also prove that our construction is payload hiding of second-/first-level ciphertext (i.e., original/re-encapsulation
ciphertext) secure in the standard model if the underlying PKEM satisfies indistinguishability under chosen cipher-
text attacks (IND-CCA). Besides, we adopt our proposed generic construction for Water’s identity-based encryption
[19]. More preciously, we first obtain an identity-based KEM from Water’s work and then obtain an identity-based
proxy key re-encapsulation mechanism using our proposed construction.

1.2 Organization

The rest of the work is organized as follows. In Section 2 and 3, we introduce the definition and the security require-
ment of PKEM and PPKREM, respectively. In Section 4 and 5, we propose our generic construction and provide
the security proofs, respectively. In Section 6, we give an instantiate of identity-based proxy key re-encapsulation
mechanism from Water’s identity-based encryption. Finally, we conclude the work in Section 7.

2 Preliminary

2.1 Notations

For simplicity and convenience, we use the following notations and abbreviations throughout the manuscript. We
use λ to denote the security parameter. We let N and Z denote the set of positive integer and the set of integer,
respectively. Besides, for a prime p, Zp denotes the set of integers module p. PRE, PPRE, KEM, PKEM, PPKREM
are the abbreviations of proxy re-encryption, predicate proxy re-encryption, key encapsulation mechanism, predicate
key encapsulation mechanism, and predicate proxy key re-encapsulation mechanism, respectively. We also use PPT
as the abbreviation of the probabilistic polynomial-time.

2.2 Predicate Key Encapsulation Mechanism

In this section, we recall the definition of the predicate family in [1, 2], and the definition of PKEM in [9] described
by a binary relation.

Definition 1 (Predicate Family [2]). We consider a predicate family R = {Rκ ∈ Nc} for some constant c ∈ N,
where a relation Rκ : Xκ×Yκ → {0, 1} is a predicate function that maps a pair of ciphertext attribute in a ciphertext
attribute space Xκ and key attribute in a key attribute space Yκ to {0, 1}. The family index κ = (n1, n2, . . . ) specifies
the description of a predicate from the family.

Definition 2 (Predicate Key Encapsulation Mechanism). Let Ψ be the encapsulation ciphertext space and
K be the encapsulation key space, a PKEM scheme PKEM for predicate family R consists of the following four
algorithms.

– Setup(1λ, κ) → (params,msk): Taking as input the security parameter λ ∈ N and a description κ ∈ N, the
algorithm outputs the system parameter params, where the description of κ is implicitly included, and the master
secret key msk. Note that params will be an implicitly input for the following algorithms.

– Encaps(x)→ (CTx, k): Taking as inputs a ciphertext attribute x ∈ Xκ, the algorithm outputs a ciphertext CTx ∈ Ψ
and an encapsulation key k ∈ K.

– KeyGen(msk, y) → SKy: Taking as inputs the master secret key msk and a key attribute y ∈ Yκ, the algorithm
outputs a private key SKy associated with y.

– Decaps(CTx,SKy) → M: Taking as inputs a ciphertext CTx ∈ Ψ for some ciphertext attribute x ∈ Xκ and a
private key SKy for some key attribute y ∈ Yκ, the algorithm outputs an encapsulation key k ∈ K if Rκ(x, y) = 1.
Otherwise, it outputs ⊥.

Correctness. A PKEM scheme PKEM is correct if for all λ, κ ∈ N, we have

k← Decaps(CTx,SKy), if Rκ(x, y) = 1;
⊥ ← Decaps(CTx,SKy), otherwise,
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where (CTx, k)← Encaps(x), SKy ← KeyGen(msk, y), and (params,msk)← Setup(1λ, κ).

Security. In order to describe the security of the PKEM, we define the following IND-CCA game between a chal-
lenger C and an adversary A.

Game - IND-CCA:

– Setup. The challenger C runs the algorithm Setup(1λ, κ) to generate system parameter params and the master
secret key msk. It then sends params to the adversary A.

– Phase 1. The adversary A makes polynomial times of queries to the following oracles.

• Key generation oracle Oke: On input a key attribute y ∈ Yκ, the oracle returns the corresponding private
key SKy.

• Decapsulation oracle Ode: On input a ciphertext CTx ∈ Ψ and a key attribute y ∈ Yκ, the oracle returns
an encapsulation key k or ⊥.

– Challenge. The adversary submits a target ciphertext attribute x∗ ∈ Xκ, where Rκ(x∗, y) = 0 for all y ∈ Yκ
queried in Phase 1. Then the challenger C randomly chooses a bit b ← {0, 1}, runs (CT∗x∗ , k

∗
0) ← Encaps(x∗),

and chooses k∗1 ← K. Finally, C returns (CT∗x∗ , k
∗
b) to A.

– Phase 2. It is the same as Phase 1 except that Decaps(CT∗x∗ , y) and KeyGen(y) are not allowed if Rκ(x∗, y) = 1.

– Guess. The adversary A outputs a bit b′, and wins the game if b′ = b.

The advantage of the adversary A in winning the above game is defined as

AdvIND-CCA
PKEM,A(λ) =

∣∣Pr[b′ = b]− 1
2

∣∣.
Definition 3 (IND-CCA security of PKEM). We say that a PEKM scheme PKEM for predicate family R is
IND-CCA secure if, for all PPT adversary A, AdvIND-CCA

PKEM,A(λ) is negligible.

The model can be easily changed for CPA security and selective security by removing the Decapsulation or-
acle and forcing the adversary to submit its target first, respectively.

Linearity. In this work, the whole correctness of the proposed construction is based on the linearity of the PKEM,
defined as follows.

Definition 4 (Linearity of PKEM). We say that a correct PKEM scheme PKEM = (Setup,Encaps,KeyGen,Decaps)
for predicate family R is linear if for all γ ∈ Z, λ, κ ∈ N, (CTx, k) ← Encaps(x), and SKy ← KeyGen(msk, y), where
(params,msk)← Setup(1λ, κ) and Rκ(x, y) = 1, the following equation is satisfied.

Decaps(CTx, (SKy)
γ) = kγ ,

where (SKy)
γ and kγ denote the component-wise exponentiation to SKy and k, respectively.

3 Predicate Proxy Key Re-encapsulation Mechanism

In this section, we introduce the definition and security models of a single-hop unidirectional PPKREM. More
preciously, we adopt the security game in [5], however, the game in [5] is defined for identity-based cryptography
scheme, thus we revise it and provide new security games for our scheme. Additionally, for consistency and ease of
interpretation, we use the terminologies defined in [8, 14], that is, an original ciphertext is called the second-level
ciphertext and a re-encapsulation ciphertext is called the first-level ciphertext.

Definition 5 (Single-hop Unidirectional Predicate Proxy Key Re-encapusulation Mechanism). Let
Ψ be the encapsulation ciphertext space and K be the encapsulation key space, a PPKREM scheme PPKREM
for predicate family R consists of seven PPT algorithms (Setup, KeyGen, Encaps, ReKey, ReEncaps, Decapsoct,
Decapsrct):
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– Setup(1λ, κ) → (params,msk): Taking as input the security parameter λ ∈ N, and a description κ ∈ N, the
algorithm outputs the system parameter params, where the description of κ is implicitly included, and the master
secret key msk. Note that params will be an implicitly input for the following algorithms.

– KeyGen(msk, y) → SKy: Taking as input the master secret key msk and a key attribute y ∈ Yκ, the algorithm
outputs a private key SKy.

– Encaps(x) → (octx, kx): Taking as input a ciphertext attribute x ∈ Xκ, the algorithm outputs a second-level
ciphertext octx ∈ Ψ and an encapsulation key kx ∈ K.

– ReKey(SKy, x
′) → rky,x′ : Taking as input a private key SKy for some key attribute y ∈ Yκ and a ciphertext

attribute x′ ∈ Xκ, the algorithm outputs a re-key rky,x′ .

– ReEncaps(octx, rky,x′)→ rctx′ : Taking as input a ciphertext octx ∈ Ψ for some ciphertext attribute x ∈ Xκ and a
re-key rky,x′ , the algorithm outputs a first-level ciphertext rctx′ ∈ Ψ which can be decaps by the private key SKy′

for some key attribute y′ ∈ Yκ where Rκ(x′, y′) = 1.

– Decapsoct(octx,SKy) → k: Taking as input a second-level ciphertext octx ∈ Ψ for some ciphertext attribute Xκ
and a private key SKy for key attribute y ∈ Yκ, the algorithm outputs a key k ∈ K if Rκ(x, y) = 1. Otherwise, it
outputs ⊥.

– Decapsrct(rctx′ ,SKy′)→ k: Takeing as input a first-level ciphertext rctx′ ∈ Ψ for some ciphertext attribute x′ ∈ Xκ
and a private key SKy′ for some key attribute y′ ∈ Yκ, the algorithm outputs an encapsulation key k ∈ K if
Rκ(x′, y′) = 1. Otherwise, it outputs ⊥.

Correctness. A single-hop unidirectional PPKREM scheme PPKREM is correct if for all λ, κ ∈ N, x, x′ ∈ Xκ,
and y, y′ ∈ Yκ, we have

– k = Decapsoct(octx,SKy) if Rκ(x, y) = 1;

– ⊥ = Decapsoct(octx,SKy) if Rκ(x, y) = 0;

– k = Decapsrct(ReEncaps(octx,ReKey(SKy, x
′)),SKy′) if Rκ(x, y) = 1 ∧Rκ(x′, y′) = 1;

– ⊥ = Decapsrct(ReEncaps(octx,ReKey(SKy, x
′)),SKy′) if Rκ(x, y) = 0 ∨Rκ(x′, y′) = 0,

where (octx, k)← Encaps(x), SKy ← KeyGen(msk, y), SKy′ ← KeyGen(msk, y′), and (params,msk)← Setup(1λ, κ).
Security. Before introducing the security models, we follow [5] to define the derivatives for single-hop unidirectional
PPKREM.

Definition 6 (Derivatives). Let x, x′, x′′ ∈ Xκ be the ciphertext attributes, let y ∈ Yκ be the key attribute, and let
ct, ct′, ct′′ ∈ Ψ be the ciphertexts. The derivatives of (x, ct) is defined as follows:

– (x, ct) is a derivative of itself;

– If (x′, ct′) is a derivative of (x, ct) and (x′′, ct′′) is also a derivative of (x′, ct′), then (x′′, ct′′) is a derivative of
(x, ct);

– If an adversary A has issued a query (y, x′, ct) on re-encapsulation oracle and obtained ct′, where Rκ(x, y) = 1,
then (x′, ct′) is a derivative of (x, ct);

– If an adversary A has issued a query (y, x′) on re-encapsulation key generation oracle, obtained rky,x′ , then for
a ct′ = ReEncaps(ct, rky,x′), where Rκ(x, y) = 1, (x′, ct′) is a derivative of (x, ct).

The following we introduce two security games to describe the security of the PPKREM between a challenger
C and an adversary A.

Game - Payload-hiding for Second-level Ciphertext:

– Setup. The challenger C runs the algorithm Setup(1λ, κ) to generate parameter params and the master secret
key msk. It then sends params to the adversary A.
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– Phase 1. The A may adaptively make polynomial times of queries to the following oracles.

• Key generation oracle Oke: On input y ∈ Yκ by A, the challenger C computes SKy ← KeyGen(msk, y). It
then gives SKy to A.

• Re-encapsulation key generation oracle Ork: On input (y ∈ Yκ, x′ ∈ Xκ) by A, the challenger C
computes rky,x′ ← ReKey(SKy, x

′), where SKy ← KeyGen(msk, y). It then gives rky,x′ to A.

• Re-encapsulation oracle Ore: On input (y ∈ Yκ, x′ ∈ Xκ, octx ∈ Ψ) by A, the challenger C first computes
rky,x′ ← ReKey(SKy, x

′) where SKy ← KeyGen(msk, y). It then computes rctx′ ← ReEncaps(octx, rky,x′). Fi-
nally, it gives rctx′ to A.

• Second-level ciphertext decapsulation oracle Osde: On input (x ∈ Xκ, octx ∈ Ψ) by A, the challenger
C computes k ← Decapsoct(octx,SKy) where SKy ← KeyGen(msk, y) and Rκ(x, y) = 1. It then returns k to
A.

• First-level ciphertext decapsulation oracle Ofde: On input (x′ ∈ Xκ, rctx′ ∈ Ψ) by A, the challenger C
computes k ← Decapsrct(rctx′ ,SKy′) where SKy′ ← KeyGen(msk, y′) and Rκ(x′, y′) = 1. It then returns k to
A.

– Challenge. A outputs a ciphertext attribute x∗ ∈ Xκ with restriction that
1. Rκ(x∗, y) = 0 for all y ∈ Yκ submitted to Oke;

2. for all (y ∈ Yκ, x′ ∈ Xκ) submitted to Ork, Rκ(x∗, y) = 0.
If x∗ satisfies the above requirements, the challenger C then randomly chooses a bit b ∈ {0, 1}, and responds
with (oct∗x∗ , k

∗
b), where (oct∗x∗ , k

∗
0)← Encaps(x∗) and k∗1 is randomly chosen from K.

– Phase 2. A can continue to issue more queries to the oracles as follows:

• Key generation oracle Oke: The oracle is the same as Phase 1 with three additional restrictions:
∗ Rκ(x∗, y) = 0;

∗ for all y′ ∈ Yκ such that Rκ(x∗, y′) = 1 ∧ Rκ(x, y) = 1, the tuple (y′, x) must not have been queried to
Ork before;

∗ for all y′ ∈ Yκ, x, x′ ∈ Xκ, and oct′ ∈ Ψ such that Rκ(x, y) = 1 ∧ Rκ(x′, y′) = 1, and (x′, oct′) is a
derivative of (x∗, oct∗x∗), the tuple (y′, x, oct′) has not been queried to Ore before.

• Re-encapsulation key generation oracle Ork: The oracle is the same as Phase 1 with a restriction: if
x = x∗, then for all y′ ∈ Yκ such that Rκ(x, y) = 1 ∧ Rκ(x′, y′) = 1, y′ must not have been queried to Oke

before.

• Re-encapsulation oracle Ore: The oracle is the same as Phase 1 with a restriction: if (x, octx) is a
derivative of (x∗, oct∗x∗), then for all y′ ∈ Yκ such that Rκ(x, y) = 1 ∧ Rκ(x′, y′) = 1, y′ must not have been
queried to Oke before.

• Second-level ciphertext decapsulation oracle Osde: The oracle is the same as Phase 1 with a restric-
tion: (x, octx) is not a derivative of (x∗, oct∗x∗).

• First-level ciphertext decapsulation oracle Ofde: The oracle is the same as Phase 1 with a restriction:
(x′, rctx′) is not a derivative of (x∗, oct∗x∗).

– Guess. In the end, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of the adversary A in winning the above game is defined as

AdvPH-SC
PPKREM,A(λ) =

∣∣Pr[b = b′]− 1
2

∣∣.
Definition 7 (Payload-hiding Security for Second-level Ciphertext). We say that a single-hop unidirec-
tional PPKREM scheme PPKREM for predicate family R is payload-hiding secure for second-level ciphertext if
for any polynomial time adversary A the function AdvPH-SC

PPKREM,A(λ) is negligible.

Game - Payload-hiding for First-level Ciphertext:
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– Setup. The challenger C runs the algorithm Setup(1λ, κ) to generate parameter params and the master secret
key msk. It then sends params to the adversary A.

– Phase 1. The A may adaptively make a polynomial times of queries to the following oracles.

• Key generation oracle Oke: On input y ∈ Yκ by A, the challenger C computes SKy ← KeyGen(msk, y). It
then gives SKy to A.

• Re-encapsulation key generation oracle Ork: On input (y ∈ Yκ, x′ ∈ Xκ) by A, the challenger C
computes rky,x′ ← ReKey(SKy, x

′), where SKy ← KeyGen(msk, y). It then gives rky,x′ to A.

• Re-encapsulation oracle Ore: On input (y ∈ Yκ, x′ ∈ Xκ, octx ∈ Ψ) by A, the challenger C first computes
rky,x′ ← ReKey(SKy, x

′) where SKy ← KeyGen(msk, y). It then computes rctx′ ← ReEncaps(octx, rky,x′).
Finally, it gives rctx′ to A.

• Second-level ciphertext decapsulation oracle Osde: On input (x ∈ Xκ, octx ∈ Ψ) by A, the challenger
C computes k ← Decapsoct(octx,SKy) where SKy ← KeyGen(msk, y) and Rκ(x, y) = 1. It then returns k to
A.

• First-level ciphertext decapsulation oracle Ofde: On input (x′ ∈ Xκ, rctx′ ∈ Ψ) by A, the challenger C
computes k ← Decapsrct(rctx′ ,SKy′) where SKy′ ← KeyGen(msk, y′) and Rκ(x′, y′) = 1. It then returns k to
A.

– Challenge. A outputs a ciphertext attribute x∗ ∈ Xκ with restriction: for all y ∈ Yκ submitted to Oke,
Rκ(x∗, y) = 0. If x∗ satisfies the above requirements, the challenger C first computes SKy∗ ← KeyGen(msk, y∗)
where Rκ(x∗, y∗) = 1. Then, it chooses a ciphertext attribute x̂ ∈ Xκ, and randomly chooses a bit b ∈ {0, 1}.
Next, it computes
1. rky∗,x̂ ← ReKey(SKy∗ , x̂);

2. rct∗x̂ ← ReEncaps(oct∗x∗ , rky∗,x̂),
where (oct∗x∗ , k

∗
0)← Encaps(x∗) and k∗1 is randomly chosen from K. Finally, it responds (rct∗x̂ , k

∗
b) to A.

– Phase 2. A can continue to issue more queries to the oracles as in Phase 1 with two additional restrictions:

• Key generation oracle Oke: for all y ∈ Yκ, Rκ(x̂, y) = 0.

• First-level ciphertext decapsulation oracle Ofde: it cannot be queried with the challenge ciphertext
rct∗x̂ as input.

– Guess. In the end, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of the adversary A in winning the above game if defined as

AdvPH-FC
PPKREM,A(λ) =

∣∣Pr[b = b′]− 1
2

∣∣.
Definition 8 (Payload-hiding Security for First-level Ciphertext). We say that a single-hop unidirectional
PPKREM scheme PPKREM for predicate family R is payload-hiding secure for first-level ciphertext if for PPT
adversary A the function AdvPH-FC

PPKREM,A(λ) is negligible.

4 Generic Construction of Predicate Proxy Key Re-encapsulation Mechanism

In this section, we give a generic construction that can obtain a PPKREM scheme from a secure linear PKEM
scheme. At a high level, to generate a re-encapsulation key rky,x′ , we first encaps the ciphertext attribute x′ to
obtain a pair (CTx′ , k

′), then compute h = H(k′), where H(·) is a cryptographic hash function. Next we let the
re-encapsulation key be rky,x′ = {(SKy)

h,CTx′}, where (SKy)
h denotes the h component-wise exponentiation to

SKy. Note that due to the hardness of the discrete-log problem, the proxy entity is impossible to obtain h from
(SKy)

h. In other word, the proxy entity is also impossible to recover SKy from rky,x′ . In order to generate a first-
level ciphertext rctx′ from the second-level ciphertext octx using the re-encapsulation key rky,x′ , we directly runs
δ ← PKEM.Decaps(octx, (SKy)

h). With the linear property of PKEM (Definition 4), if Rκ(x, y) = 1, δ actually
equals to (k)h, where (octx, k)← PKEM.Encaps(x). Then, the first-level ciphertext rky,x′ is set as {δ,CTx′}. Besides,
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only the proxy receiver can decaps CTx′ using her/his private key to obtain k′, and recovery the value hided in the

encapsulation key, i.e., h = H(k′). Finally, the proxy receiver can obtain (δ)h
−1

= (k)h·h
−1

= k.

Let PKEM = (Setup,KeyGen,Encaps,Decaps) be an IND-CCA secure PKEM with linear property for predicates
family R = {Rκ} and let H : K → Z be a cryptographic hash function, we define the construction of PPRKEM as
follows:

– Setup(1λ, κ): On input a security parameter λ ∈ N and a description κ ∈ N, this algorithm runs (params,msk)←
PKEM.Setup(1λ, κ). It then outputs the parameter params and the master secret key msk.

– KeyGen(msk, y): On input a master secret key msk and a key attribute y ∈ Yκ, this algorithm runs PKEM.KeyGen(msk, y)
to output a private key SKy for key attribute y and outputs it.

– Encaps(x): On input a ciphertext attribute x ∈ Xκ, this algorithm runs (octx, k) ← PKEM.Encaps(x). It then
outputs a second-level ciphertext octx and an encapsulation key k.

– ReKey(SKy, x
′): On input a private key SKy for some key attribute y ∈ Yκ and a ciphertext attribute x′ ∈ Xκ,

this algorithm runs the following steps to generate a re-encapsulation key:

• Computes (CTx′ , k
′)← PKEM.Encaps(x′);

• Computes h = H(k′);

• Outputs rky,x′ = {(SKy)
h,CTx′}.

– ReEncaps(octx, rky,x′): On input a second-level ciphertext octx encapsed by ciphertext attribute x ∈ Xκ and
a re-encapsulation key rky,x′ = {(SKy)

h,CTx′}, to generate a first-level ciphertext rctx′ which can be de-
capsed by the private key SKy′ for some key attribute y′ ∈ Yκ where R(x′, y′) = 1, this algorithm runs
δ ← PKEM.Decaps(octx, (SKy)

h), and outputs rctx′ = {δ,CTx′}.

– Decapsoct(octx,SKy): On input a second-level ciphertext octx and a private key SKy for some key attribute
y ∈ Yκ, this algorithm runs PKEM.Decaps(octx,SKy) to obtains an encapsulation key k or ⊥, and outputs it.

– Decapsrct(rctx′ ,SKy′): On input a first-level ciphertext rctx′ = {δ,CTx′} and a private key SKy′ for some key
attribute y′ ∈ Yκ, this algorithm runs the following steps:

• Runs PKEM.Decaps(CTx′ ,SKy′) to obtain k′ if Rκ(x′, y′) = 1. Otherwise, outputs ⊥;

• Computes h = H(k′);

• Computes k = (δ)h
−1

.

Lemma 1. The proposed PPKREM scheme PPKREM described above is correct if the underlying PKEM scheme
PKEM is correct and linear.

Proof. We separate this proof into two parts: one for the second-level ciphertext and the other for the first-level
ciphertext. For all security parameter λ ∈ N and description κ ∈ N, W.L.O.G., we assume that the second-
level ciphertext octx and the key k are generated from PPKREM.Encaps(x) for some x ∈ Xκ and the first-level
ciphertext rctx′ = {δ,CTx′} is generated from PPKREM.ReEncaps(octx, rky,x′) where rky,x′ ← ReKey(SKy, x

′).
Besides, SKy ← KeyGen(msk, y ∈ Yκ), SKy′ ← KeyGen(msk, y′ ∈ Yκ), and (params,msk)← Setup(1λ, κ).

– Second-level ciphertext: Since the pair of second-level ciphertext and encapsulation key (octx, k) is actually
generated from PKEM.Encaps(x ∈ Xκ), with the correctness of the underlying PKEM, it is trivial that the
same encapsulation key k can be obtained by running PKEM.Decaps(octx,SKy) if Rκ(x, y) = 1. Thus, the
encapsulation key k can be correctly obtained.

– First-level ciphertext: Since the pair of (CTx′ , k
′) is generated from PKEM.Encaps(x′), with the correctness

of the underlying PKEM, k′ can be obtain using private key SKy′ where Rκ(x′, y′) = 1 is satisfied. On the
other hand, since δ ← PKEM.Decrypt(octx, (SKy)

h) and the underlying PKEM is linear, δ actually equals to

PKEM.Decrypt(octx,SKy))
h, that is δ = kh if Rκ(x, y) = 1. Therefore, we can compute (δ)h

−1

= kh·h
−1

= k.
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5 Security Proofs

In this section, we provide the security proofs for the payload-hiding security of the proposed construction.

Theorem 1. The proposed construction is payload-hiding secure for second-level ciphertext under predicate family
R if the underlying PKEM scheme PKEM is IND-CCA secure under the same predicate family, and the underlying
hash function H is collision-resistant.

Proof. Suppose there exists an adversary A against the payload-hiding security for second-level ciphertext of the
proposed construction that has non-negligible advantage. Then, there exists another adversary B can use A to break
the IND-CCA game of the underlying PKEM scheme PKEM with non-negligible advantage. B constructs a hybrid
game interacting with A as follows.

– Setup. B first invokes the IND-CCA game of PKEM to obtain the system parameters params. B then passes
params to A.

– Phase 1. In this phase, A can adaptively make polynomial times of queries to the following oracles.

• Key generation oracle Oke: When A queries this oracle for a key attribute y ∈ Yκ, B invokes the key
generation oracle of PKEM on the same y, and is given a private key SKy. B then passes SKy to A.

• Re-encapsulation key generation oracle Ork: When A queries this oracle for a key attribute y ∈ Yκ,
and a ciphertext attribute x′ ∈ Xκ, B first invokes the key generation oracle of PKEM on the same y, and
is given a private key SKy. Then, B runs (CTx′ , k

′)← PKEM.Encaps(x′) and h = H(k′). Finally, B returns
rky,x′ = {(SKy)

h,CTx′} to A.

• Re-encapsulation oracle Ore: When A queries this oracle for a key attribute y ∈ Yκ, a ciphertext attribute
x′ ∈ Xκ, and a second-level ciphertext octx ∈ Ψ , B first invokes the key generation oracle of PKEM on the
same y, and is given a private key SKy. Then, B runs (CTx′ , k

′)← PKEM.Encaps(x′), computes h = H(k′),
and sets rky,x′ = {(SKy)

h,CTx′}. Finally, B runs ReEncaps(octx, rky,x′) as the proposed construction to obtain
a first-level ciphertext rctx′ = {δ,CTx′}, and returns rctx′ to A.

• Second-level ciphertext decapsulation oracle Osde: When A queries to this oracle for a ciphertext
attribute x ∈ Xκ, and a second-level ciphertext octx ∈ Ψ , B first randomly chooses a key attribute y ∈ Yκ
such that Rκ(x, y) = 1. B then invokes the decapsulation oracle of PKEM on (octx, y), and is given an
encapsulation key k ∈ K. In the end, B returns k to A.

• First-level ciphertext decapsulation oracle Ofde: When A queries this oracle for a ciphertext attribute
x′ ∈ Xκ and a first-level ciphertext rctx′ = {δ,CTx′}, B first randomly chooses a key attribute y′ ∈ Yκ such
that Rκ(x′, y′) = 1. B then invokes the decapsulation oracle of PKEM on (CTx′ , y

′), and is given a key

k′ ∈M. B computes h = H(k′) and computes k = (δ)h
−1

. Finally, B returns k to A.

– Challenge. In this phase, A submits a target ciphertext attribute x∗ ∈ Xκ to B with following restrictions

• Rκ(x∗, y) = 0 for all y ∈ Yκ submitted to Oke;

• for all (y ∈ Yκ, x′ ∈ Xκ) submitted to Ork, Rκ(x∗, y) = 0.

After receiving x∗ from A, B invokes the challenge phase of PKEM on x∗, and is given (CT∗, k∗). B then returns
(CT∗, k∗) to A.

– Phase 2. This phase is the same as Phase 1 with the additionally restrictions described in the payload-hiding
security for second-level ciphertext game in Section 3.

– Guess. Finally, After A outputs a guess b′, B takes b′ as its own guess.

If k∗ is indeed an encapsulation key of CT∗, then (CT∗, k∗) is a valid second-level ciphertext. On the other hand,
if k∗ is sampled from the key space K, to the view of A, (CT∗, k∗) is still a valid second-level ciphertext. Therefore,
if A can distinguish whether k∗ is an encapsulation key of the ciphertext CT∗ or not, and wins the payload-hiding
game for second-level ciphertext with non-negligible advantage, then B can follow A’s answer to win the IND-CCA
security game of the underlying PKEM scheme with the non-negligible advantage. Thus, the proof is completed.
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Theorem 2. The proposed construction is payload-hiding secure for the first-level ciphertext under predicate family
R if the underlying PKEM scheme PKEM is IND-CCA secure under the same predicate family, and the underlying
hash function H is collision-resistant.

Proof. Suppose there exists an adversary A against the payload-hiding security for the first-level ciphertext of the
proposed construction that has non-negligible advantage. Then, there exists another adversary B can use A to break
the IND-CCA game of the underlying PKEM scheme PKEM with non-negligible advantage. B constructs a hybrid
game interacting with A as follows.

– Setup. B first invokes the IND-CCA game of PKEM to obtain the system parameter params. B then passes
params to A.

– Phase 1. In this phase, A can adaptively make polynomial times of queries to the following oracles.
• Key generation oracle Oke: When A queries this oracle for a key attribute y ∈ Yκ, B invokes the key

generation oracle of PKEM on the same y, and is given a private key SKy. B then passes SKy to A.

• Re-encapsulation key generation oracle Ork: When A queries this oracle for a key attribute y ∈ Yκ,
and a ciphertext attribute x′ ∈ Xκ, B first invokes the key generation oracle of PKEM on the same y, and
is given a private key SKy. Then, B runs (CTx′ , k

′)← PKEM.Encaps(x′) and computes h = H(k′). Finally,
B returns rky,x′ = {(SKy)

h,CTx′} to A.

• Re-encapsulation oracle Ore: When A queries this oracle for a key attribute y ∈ Yκ, a ciphertext attribute
x′ ∈ Xκ, and a second-level ciphertext octx ∈ Ψ , B invokes the key generation oracle of PKEM on the same
y, and is given a private key SKy. Then, B runs (CTx′ , k

′) ← PKEM.Encaps(x′), computes h = H(k′), and
sets rky,x′ = {(SKy)

h,CTx′}. Finally, B runs ReEncaps(octx, rky,x′) as the proposed construction to obtain a
first-level ciphertext rctx′ = {δ,CTx′}, and returns rctx′ to A.

• Second-level ciphertext decapsulation oracle Osde: When A queries to this oracle for a ciphertext
attribute x ∈ Xκ, and a second-level ciphertext octx ∈ Ψ , B first randomly chooses a key attribute y ∈ Yκ
such that Rκ(x, y) = 1. B then invokes the decapsulation oracle of PKEM on (octx, y), and is given an
encapsulation key k ∈ K. In the end, B returns k to A.

• First-level ciphertext decapsulation oracle Ofde: When A queries this oracle for a ciphertext attribute
x′ and a first-level ciphertext rctx′ = {δ,CTx′}, B first randomly chooses a key attribute y′ ∈ Yκ such that
Rκ(x′, y′) = 1. B then invokes the decapsulation oracle of PKEM on (CTx′ , y

′), and is given a key k′ ∈ M.

B computes h = H(k′) and computes k = (δ)h
−1

. Finally, B returns k to A.

– Challenge. In this phase, A submits a target ciphertext attribute x∗ ∈ Xκ to B with the restriction: Rκ(x∗, y) =
0 for all y ∈ Yκ submitted to Oke. After receiving x∗ from A, B invokes the challenge phase of PKEM on x∗,
and is given (CT∗, k∗). B then randomly chooses x̃← Xκ and computes (CTx̃, k̃)← PKEM.Encaps(x̃). Next, B
returns rctx∗ = {(k∗)H(k̃),CTx̃} to A.

– Phase 2. This phase is the same as Phase 1 with the additionally restrictions described in the payload-hiding
security for the first-level ciphertext game in Section 3.

– Guess. Finally, After A outputs a guess b′, B takes b′ as its own guess.

We first analyze the distribution of the first-level ciphertext rctx∗ = {(k∗)H(k̃),CTx̃}. First, the distribution of
CTx̃ is trivially the same as CTx′ returned from Ore. Second, actually, δ in Ore is equals to kh if the linear property is

hold, where k is the encapsulation key of the second-level ciphertext and h ∈ Z. That is, the distribution of (k∗)H(k̃)

is the same as δ returned from Ore. Therefore, the distribution of rctx∗ and the first-level ciphertext queried from
Ore are the same to A.

The following we discuss the advantage of B that wins the game. If A wins the payload-hiding security game
for first-level ciphertext of PPKREM scheme with non-negligible advantage it implies that A has the ability to
distinguish whether k∗ is an encapsulation key of the CT∗. B can follow A’s answer to win the IND-CCA security
game of the underlying PKEM scheme with non-negligible advantage. Therefore, the proof is completed.

Remark 1. In order to provide a more general construction, we start our proposed scheme from a PKEM rather
than a PE. Since a secure KEM combines a secure symmetric encryption implies a secure public-key encryption,
we can combine our PPRKEM with a secure symmetric encryption to obtain a PPRE. On the other hand, a secure
PE implies a secure PKEM, our construction can also be obtained from a secure PE.
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6 Instantiate

In this section, we propose a (single-hop unidirectional) identity-based proxy key re-encapsulation scheme from
Water’s identity-based encryption [19]. More preciously, we first obtain an identity-based KEM from [19]. Then,
since the scheme satisfies the linear property, we can adopt our proposed generic construction to obtain an identity-
based proxy key re-encapsulation mechanism scheme. Here, we note that identity-based KEM actually is a kind of
PKEM over the predicate function Rκ such that Rκ(x, y) = 1 if x = y; Rκ(x, y) = 0, otherwise.

6.1 Identity-based Key Encapsulation Mechanism

Let G,G1 be two groups with the same order p. Besides, let g ∈ G be the generator of G and e : G×G→ G1 be a
bilinear mapping that maps two elements of G to group G1. The identity-based key encapsulation mechanism from
[19] is presented as follows.

– Setup(1λ): On input the security parameter λ ∈ N, this algorithm runs the following steps to generate system
parameter params and master secret key msk:
• Randomly chooses α ∈ Zp;

• Randomly chooses a generator g ∈ G;

• Sets g1 = gα, and randomly chooses g2 ∈ G;

• Chooses an encode function F : {0, 1}∗ → G that maps an arbitrary length string to a group element of G;

• Finally outputs system parameter params = {g, g1, g2,F} and master secret key msk = gα2 .
Here, we note that the system parameter params will be an implicitly input for the following algorithms.

– Encaps(id): On input an identity id ∈ {0, 1}∗, this algorithm first randomly selects t ∈ Zp and then computes
• c1 = gt;

• c2 = eidt.
Finally, it outputs a ciphertext CT = {c1, c2} and an encapsulation key k = e(g1, g2)t.

– KeyGen(msk, id): On input a master secret key msk = gα2 and an identity id ∈ {0, 1}∗, this algorithm first encodes
user’s identity to a group element, that is eid = F(id). Then, it randomly selects r ∈ Zp and computes
• d1 = gα2 · eidr;

• d2 = gr.
Finally, it sets the private key SKid = {d1, d2} for the identity id, and output SKid.

– Decaps(CT,SKid): On input a ciphertext CT = {c1, c2} and a private key SKid = {d1, d2}, this algorithm decrypts
the ciphertext by computing

k = e(d1,c1)
e(d2,c2)

= e(g1, g2)t.

Finally, it outputs an encapsulation key k ∈ G1.

6.2 Identity-based Proxy Key Re-encapsulation Mechanism

The following we obtain an identity-based proxy key re-encapsulation mechanism scheme from the above scheme.
Here we use the same notation setting as Section 6.1.

– Setup(1λ): On input the security parameter λ ∈ N, this algorithm runs the following steps to generate system
parameter params and master secret key msk:
• Randomly chooses α ∈ Zp;

• Randomly chooses a generator g ∈ G;

• Sets g1 = gα, and randomly chooses g2 ∈ G;
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• Randomly chooses u ∈ G;

• Chooses an encode function F : {0, 1}∗ → G that maps an arbitrary length string to a group element of G;

• Chooses a cryptographic hash function H : G1 → Zp;

• Finally outputs system parameter params = {g, g1, g2,F ,H} and master secret key msk = gα2 .
Here, we note that the system parameter params will be an implicitly input for the following algorithms.

– KeyGen(msk, id): On input a master secret key msk = gα2 and an identity id ∈ {0, 1}∗, this algorithm first
encodes user’s identity to a group element, that is eid = F(id). Then, it randomly selects r ∈ Zp and computes
d1 = gα2 · (u · eid)r, d2 = gr. Finally, it sets the private key SKid = {d1, d2} for the identity id, and output SKid.

– Encaps(id): On input an identity id ∈ {0, 1}∗, this algorithm first randomly selects t ∈ Zp and then computes
c1 = gt, c2 = eidt. Finally, it outputs a second-level ciphertext oct = {c1, c2} and an encapsulation key
k = e(g1, g2)t.

– ReKey(SKid, id
′): On input an identity’s private key SKid = {d1, d2} and a target identity id′, this algorithm

first randomly chooses t′ ∈ Zp. Then, it encodes the identity, that is eid′ = F(id′). Next, it computes r1 = gt
′
,

r2 = eid′t
′
, and sets CTid′ = {r1, r2}. It also computes h = H(e(g1, g2)t

′
). Finally, it outputs a re-encryption key

rkid,id′ = {SKhid = {dh1 , dh2},CTid′ = {r1, r2}}.

– ReEncaps(octid, rkid,id′): On input a first-level ciphertext octid = {c1, c2} and a re-encryption key rkid,id′ = {SKhid =
{dh1 , dh2},CTid′ = {r1, r2}}, this algorithm computes

δ =
e(dh1 ,c1)

e(dh2 ,c2)
= (e(g1, g2)t)h.

Finally, it outputs a first-level ciphertext rctid′ = {δ,CTid′}.

– Decapsoct(octid,SKid): On input a second-level ciphertext octid = {c1, c2} and a private key SKid = {d1, d2}, this
algorithm decrypts the ciphertex by computing

k = e(d1,c1)
e(d2,c2)

= e(g1, g2)t.

Finally, it outputs an encapsulation key k ∈ G1.

– Decapsrct(rctid′ ,SKid′): On input a first-level ciphertext rctid′ = {δ = (e(g1, g2)t)h,CTid′ = {r1, r2}} and a private
key SKid′ = {d′1, d′2}, this algorithm first computes:

H
(
e(d′1,r1)
e(d′2,r2)

)
= H

(
e(gα2 ·eid

′r′ ,gt
′
)

e(gr′ ,eid′t
′
)

)
= H

(
e(g1,g2)

t′ ·e(eid′r
′
,gt
′
)

e(gr′ ,eid′t
′
)

)
= H

(
e(g1, g2)t

′
)

= h.

Finally, it outputs an encapsulation key k = (δ)h
−1

= (e(g1, g2)th)h
−1

= e(g1, g2)t. Note that we use r′ ∈ Zp to
represent the random number that use in the key generation algorithm for identity id′.

7 Conclusions and Future Work

In this manuscript, we present a novel generic construction that can obtain a (single-hop unidirectional) predicate
proxy key re-encapsulation mechanism from a linear predicate key encapsulation mechanism. Besides, by combining
with a secure symmetric encryption, a (single-hop unidirectional) predicate proxy re-encryption mechanism is also
obtained. Hence, the result provides a new solution for constructing a predicate proxy re-encryption that supports
any predicate function, and solves the problem that the current predicate proxy re-encryption only supports the
inner product predicate function. In further work, we will expand the single-hop setting to multi-hop setting to
support more complex scenarios, while considering bidirectional setting.
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