
GIFT-COFB1

Subhadeep Banik1, Avik Chakraborti2, Akiko Inoue4, Tetsu Iwata3,2

Kazuhiko Minematsu4, Mridul Nandi5, Thomas Peyrin6,7, Yu Sasaki2,3

Siang Meng Sim6 and Yosuke Todo2
4

1 LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland5
2 NTT Secure Platform Laboratories, Japan6

3 Nagoya University, Japan7
4 NEC Corporation, Japan8

5 Indian Statistical Institute, Kolkata, India9
6 Nanyang Technological University, Singapore10

7 Temasek Laboratories@NTU, Singapore11

giftcofb@googlegroups.com12

https://www.isical.ac.in/~lightweight/COFB/13

Abstract. In this article, we propose GIFT-COFB, an Authenticated Encryption with14

Associated Data (AEAD) scheme, based on the GIFT lightweight block cipher and15

the COFB lightweight AEAD operating mode. We explain how these two primitives16

can fit together and the various design adjustments possible for performance and17

security improvements. We show that our design provides excellent performances in18

all constrained scenarios, hardware or software, while being based on a provably-secure19

mode and a well analysed block cipher.20

Keywords: GIFT · COFB · authenticated encryption · lightweight · lower bound21

1 Introduction22

Confidentiality and authentication are two critical security properties, historically offered23

with separated cryptographic components. However, due to the possible security issues24

that might arise when combining these two components and in a hope for performance25

gains, so-called authenticated encryption (AE) is now becoming more prominent. AE is a26

symmetric-key cryptographic scheme providing both confidentiality and authenticity in a27

single primitive. In 2002, Rogaway [38] proposed the concept of Authenticated Encryption28

with Associated Data (AEAD), well adopted nowadays, which allows in addition a user to29

authenticate some associated data, without encrypting it (typically some Internet packet30

header).31

Due to the recent rise in communication networks operated on small devices, the era32

of the so-called Internet of Things, AE is expected to play a key role in securing these33

networks. After a decade of many advances in the field of lightweight symmetric-key34

cryptography, an extremely lightweight block cipher – GIFT [3] and a very low state size35

AEAD scheme – COFB [11] were concurrently proposed at CHES 2017 conference. The36

former is an ad-hoc primitive while the latter is an operating mode, but both primarily37

focus on obtaining very good hardware implementation results. GIFT reduces the footprint38

of its algorithmic operations to the bare minimum without compromising its security39

(actually improving it when compared to PRESENT cipher [8], probably the most famous40

lightweight block cipher). On the other hand, COFB minimises the additional state required41

for a rate-1 block cipher based AEAD scheme. It was then very natural to match these42

mailto:giftcofb@googlegroups.com
mailto:https://www.isical.ac.in/~lightweight/COFB/

2 GIFT-COFB

two primitives to build a very efficient candidate for the NIST lightweight cryptography43

competition. Yet, several details need to be handled when matching, in order to maintain44

the full performance and ensure compliance with NIST requirements.45

In this work, we describe the GIFT-COFB authenticated encryption, which instantiates46

the COFB (COmbined FeedBack) block cipher based AEAD mode with the GIFT block47

cipher, but with several small tweaks on both COFB and GIFT to further improve their48

efficiency. Here, we consider the overhead in size, thus the state memory size beyond the49

underlying block cipher itself (including the key schedule) as one of the main criteria we50

want to minimize, which is particularly relevant for hardware implementations.51

This version supports all the desirable properties mentioned in the NIST lightweight52

cryptography portfolio [32], and it is efficient for lightweight implementations as well.53

There are many approaches for designing a secure and lightweight block cipher based54

AEAD. We focus on using the lightweight, very efficient and well analyzed block cipher55

GIFT-128 [3] and minimizing the total encryption/decryption state size by using combined56

feedback over the block cipher output and the data blocks along with a tweak dependent57

secret masking (as used in XEX [39]). This combination helps us to minimize the amount58

of masking by a factor of 2 from [39].59

The COFB mode achieves several interesting features. It provides a high rate of 1 (i.e,60

it needs only one block cipher call per input block). The mode is inverse-free, as it does61

not need a block cipher inverse during decryption or decryption. In addition to these62

features, this mode has a very small state size, namely 1.5n + k bits, where n and k denote63

the underlying block cipher block size and key size respectively.64

Our Contributions. In this article, we describe GIFT-COFB, an Authenticated65

Encryption with Associated Data (AEAD) scheme, based on the GIFT-128 lightweight66

block cipher and the COFB lightweight AEAD operating mode. We analyse how these67

two primitives can be adapted to fit together and how various design adjustments that68

we made to improve performance and security. We recall that COFB is a provably secure69

operating mode and that GIFT block cipher has been thoroughly analysed by its designers70

and retains a very comfortable security margin even after a lot of third party analysis. We71

show that our design provides excellent performances in all constrained scenarios, both72

hardware and software.73

Organisation of the paper. We first introduce some notations in Section 2 and describe74

our proposal GIFT-COFB in Section 3. Then, we explain the design rationale in Section 475

and recall security analysis conducted on the mode COFB and on the internal primitive76

GIFT in Section 5. Finally, we report latest hardware and software implementation results77

in Sections 6 and 7.78

2 Preliminaries79

2.1 Notation80

For any X ∈ {0, 1}∗, where {0, 1}∗ is the set of all finite bit strings (including the empty
string ϵ), we denote the number of bits of X by |X|. Note that |ϵ| = 0. For a string X
and an integer t ≤ |X|, Trunct(X) is the first t bits of X. Throughout this document, n
represents the block size in bits of the underlying block cipher EK . Typically, we consider
n = 128 and GIFT-128 is the underlying block cipher, where K is the 128-bit GIFT-128
key. For two bit strings X and Y , X∥Y denotes the concatenation of X and Y . A bit
string X is called a complete (or incomplete) block if |X| = n (or |X| < n, respectively).
We write the set of all complete (or incomplete) blocks as B (or B<, respectively). Note
that ϵ is considered as an incomplete block and ϵ ∈ B<. Let B≤ = B< ∪ B denote the set

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 3

of all blocks. For B ∈ B≤, we define B as follows:

B =


10n−1 if B = ϵ

B∥10n−1−|B| if B ̸= ϵ and |B| < n

B if |B| = n

Given non-empty Z ∈ {0, 1}∗, we define the parsing of Z into n-bit blocks as81

(Z[1], Z[2], . . . , Z[z]) n← Z ,82

where z = ⌈|Z|/n⌉, |Z[i]| = n for all i < z and 1 ≤ |Z[z]| ≤ n such that Z =83

(Z[1] ∥Z[2] ∥ · · · ∥Z[z]). If Z = ϵ, we let z = 1 and Z[1] = ϵ. We write ||Z|| = z (number84

of blocks present in Z). Given any sequence Z = (Z[1], . . . , Z[s]) and 1 ≤ a ≤ b ≤ s, we85

represent the sub sequence (Z[a], . . . , Z[b]) by Z[a..b]. For integers a ≤ b, we write [a..b]86

for the set {a, a + 1, . . . , b}. For two bit strings X and Y with |X| ≥ |Y |, we define the87

extended xor-operation as88

X⊕Y = X[1..|Y |]⊕ Y and89

X ⊕ Y = X ⊕ (Y ∥0|X|−|Y |),90

where (X[1], X[2], . . . , X[x]) 1← X and thus X[1..|Y |] denotes the first |Y | bits of X. When91

|X| = |Y |, both operations reduce to the standard X ⊕ Y .92

Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define mcoll(γ) = r if93

there exist distinct i1, . . . , ir ∈ [1..s] such that γ[i1] = · · · = γ[ir] and r is the maximum of94

such integer. We say that {i1, . . . , ir} is an r-multi-collision set for γ.95

2.2 Underlying Finite Field F2n96

Let F2s denote the binary Galois field of size 2s, for a positive integer s. Field addition and97

multiplication between a, b ∈ F2s are represented by a⊕ b (or a + b whenever understood)98

and a · b respectively. Any field element a ∈ F2s can be represented by any of the following99

equivalent ways for a0, a1, . . . , as−1 ∈ {0, 1}.100

• An s-bit string as−1 · · · a0 ∈ {0, 1}s.101

• A polynomial a(x) = a0 + a1x + · · ·+ as−1xs−1 of degree at most (s− 1).102

2.3 Choice of Primitive Polynomials103

In our construction, the primitive polynomial [1] used to represent the field F264 is

p64(x) = x64 + x4 + x3 + x + 1.

We denote the primitive element 0s−210 ∈ F2s by αs (here s = 64). We use α to mean104

αs for notational simplicity. The field multiplication a(x) · b(x) is the polynomial r(x) of105

degree at most (s− 1) such that a(x)b(x) ≡ r(x) mod ps(x).106

Multiplication by Primitive Element α. We first see an example how we can multiply
by α = α64. Multiplying an element b := b63b62 · · · b0 ∈ F264 by the primitive element α of
F264 can be done very efficiently as follows:

b · α =
{

b≪ 1, if b63 = 0,

(b≪ 1)⊕ 05911011, else,

where (b ≪ r) denotes left shift of b by r bits. For b ∈ F264 , we use 2 · b (or 2m · b) and107

3 · b (or 3m · b) to denote α · b (or αm · b) and (1 + α) · b (or (1 + α)m · b), respectively.108

4 GIFT-COFB

2.4 Authenticated Encryption and Security Definitions109

An authenticated encryption or AE algorithm takes a nonce N (which is a value never110

repeats at encryption) together with associated date A and plaintext M , the encryption111

function of AE, EK , produces a tagged-ciphertext (C, T) where |C| = |M | and |T | = t.112

It provides both privacy of a plaintext M ∈ {0, 1}∗ and authenticity or integrity of M113

as well as associate data A ∈ {0, 1}∗. The corresponding decryption function, DK , takes114

(N, A, C, T) and returns a decrypted plaintext M when the verification on (N, A, C, T) is115

successful, otherwise returns the atomic error symbol denoted by ⊥.116

Privacy. Given an adversary A, we define the PRF-advantage of A against E as
Advprf

E (A) = |Pr[AEK = 1] − Pr[A$ = 1]|, where $ returns a random string of the
same length as the output length of EK , by assuming that the output length of EK is
uniquely determined by the query. The PRF-advantage of E is defined as

Advprf
E (q, σ, t) = max

A
Advprf

E (A) ,

where the maximum is taken over all adversaries running in time t and making q queries117

with the total number of blocks in all the queries being at most σ. If EK is an encryption118

function of AE, we call it the privacy advantage and write as Advpriv
E (q, σ, t), as the119

maximum of all nonce-respecting adversaries (that is, the adversary can arbitrarily choose120

nonces provided all nonce values in the encryption queries are distinct).121

Authenticity. We say that an adversary A forges an AE scheme (E ,D) if A is able to122

compute a tuple (N, A, C, T) satisfying DK(N, A, C, T) ̸= ⊥, without querying (N, A, M)123

for some M to EK and receiving (C, T), i.e. (N, A, C, T) is a non-trivial forgery.124

In general, a forger can make qf forging attempts without restriction on N in the
decryption queries, that is, N can be repeated in the decryption queries and an encryption
query and a decryption query can use the same N . The forging advantage for an adversary
A is written as Advauth

E (A) = Pr[AE forges], and we write

Advauth
E ((q, qf), (σ, σf), t) = max

A
Advauth

E (A)

to denote the maximum forging advantage for all adversaries running in time t, making q125

encryption and qf decryption queries with total number of queried blocks being at most σ126

and σf , respectively.127

Unified Security Notion for AE. The privacy and authenticity advantages can be
unified into a single security notion as introduced in [15, 40]. Let A be an adversary that
only makes non-repeating queries to DK . Then, we define the AE-advantage of A against
E as

AdvAE
E (A) = |Pr[AEK ,DK = 1]− Pr[A$,⊥ = 1]| ,

where ⊥-oracle always returns ⊥ and $-oracle is as the privacy advantage. We similarly128

define AdvAE
E ((q, qf), (σ, σf), t) = maxA AdvAE

E (A), where the maximum is taken over all129

adversaries running in time t, making q encryption and qf decryption queries with the130

total number of blocks being at most σ and σf , respectively.131

Block Cipher Security. We use a block cipher E as the underlying primitive, and we
assume the security of E as a PRP (pseudorandom permutation). The PRP-advantage of
a block cipher E is defined as Advprp

E (A) = |Pr[AEK = 1] − Pr[AP = 1]|, where P is a
random permutation uniformly distributed over all permutations over {0, 1}n. We write

Advprp
E (q, t) = max

A
Advprp

E (A) ,

where the maximum is taken over all adversaries running in time t and making q queries.132

Here, σ does not appear as each query has a fixed length.133

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 5

Coefficients-H Technique. Coefficients-H technique was developed by Patarin, that is134

a convenient tool for bounding the advantage (see [33, 12]). We will use this technique135

(without giving a proof) to prove our security claims. Consider two oracles O0 = ($,⊥) (the136

ideal oracle) and O1 (the real oracle, i.e., our construction). Let V denotes the set of all137

possible views an adversary can obtain. For any view τ ∈ V , we will denote the probability138

to realize the view as ipreal(τ) (or ipideal(τ)) when it is interacting with the real oracle139

(or ideal oracle, respectively). We call these interpolation probabilities. Without loss of140

generality, we assume that the adversary is deterministic and fixed. Then, the probability141

space for the interpolation probabilities is uniquely determined by the underlying oracle.142

As we deal with stateless oracles, these probabilities are independent of the order of queries143

and responses in the view. Suppose we have a set of views, Vgood ⊆ V , which we call good144

views, and the following conditions hold:145

1. In the game involving the ideal oracle O0 (and the fixed adversary), the probability146

of getting a view in Vgood is at least 1− ϵ1.147

2. For any view τ ∈ Vgood, we have ipreal(τ) ≥ (1− ϵ2) · ipideal(τ).148

Then we have |Pr[AO0 = 1]−Pr[AO1 = 1]| ≤ ϵ1 + ϵ2. The proof can be found, e.g., in [12].149

We will later use this result to prove the security of our construction in Theorem 1 by150

defining certain Vgood for our games, and evaluating the bounds, ϵ1 and ϵ2.151

3 Specification152

3.1 Syntax153

The encryption algorithm (with authentication), denoted as GIFT-COFB(K, N, A, M) 7→154

(C, T), takes as input an encryption key K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, associated155

data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. The nonce N can include a counter to make156

the nonce non-repeating. It generates a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}128.157

The decryption algorithm (with verification), denoted as GIFT-COFB−1(K, N, A, C, T) 7→158

M , takes (K, N, A, C, T) as input. It generates a message M ∈ {0, 1}|C| or a special symbol159

⊥ denoting rejection.160

3.2 Building Blocks of GIFT-COFB161

3.2.1 Building Blocks of COFB162

Block Cipher. The underlying encryption cipher, EK , is an 128-bit block cipher with163

128-bit key equivalent to GIFT-128 but with a small tweak in the input and output data164

format. See Section 3.2.2 for the specification and Section 4.2 for the rationale.165

Padding Function. For x ∈ {0, 1}∗, we define padding function Pad as166

Pad(x) =
{

x if x ̸= ϵ and |x| mod n = 0
x∥10(n−(|x| mod n)−1) otherwise.

167

Note that Pad(ϵ) = 10n−1.168

6 GIFT-COFB

Feedback Function. Let Y ∈ {0, 1}128 and (Y [1], Y [2]) 64← Y , where Y [i] ∈ {0, 1}64.
We define G : {0, 1}128 → {0, 1}128 as

G(Y) = (Y [2], Y [1] ≪ 1),

where for a string X, X ≪ r is the left rotation of X by r bits. We also view G as the169

128× 128 non-singular binary matrix, so we write G(Y) and G · Y interchangeably. For170

M ∈ {0, 1}128 and Y ∈ {0, 1}128, we define ρ1(Y, M) = G · Y ⊕M . The feedback function171

ρ and its corresponding ρ′ are defined as172

ρ(Y, M) = (ρ1(Y, M), Y ⊕M),173

ρ′(Y, C) = (ρ1(Y, Y ⊕C), Y ⊕C).174

Note that when (X, M) = ρ′(Y, C) then X = (G ⊕ I) · Y⊕C, where I is the 128 × 128175

identity matrix. Our choice of G ensures that G ⊕ I has rank n − 1 (precisely, 127, in176

our construction with n = 128). When Y is chosen randomly, both ρ1(Y, M) (during177

encryption) and ρ1(Y, Y ⊕ C) (during decryption) also has almost full entropy.178

We need this property when we bound probability of bad events later.179

Tweak Value for The Last Block. Given the last block of associated data, A ∈ {0, 1}∗,180

we define δA ∈ {1, 2} as follows:181

δA =
{

1 if A ̸= ϵ and n divides |A|
2 otherwise.

182

Given the last block of either a message or a ciphertext, Z ∈ {0, 1}∗, we define183

δZ ∈ {1, 2} as follows:184

δZ =
{

1 if n divides |Z|
2 otherwise.

185

This will be used to differentiate the cases that the last block of A or Z is n bits or
shorter, for Z being a message or a ciphertext. We also define a formatting function Fmt
for a pair of bit strings (A, Z). Let (A[1], . . . , A[a]) n← A and (Z[1], . . . , Z[z]) n← Z. We
define t[i] as follows:

t[i] =


(i, 0) if i < a

(a− 1, δA) if i = a

(i− 1, δA) if a < i < a + z

(a + z − 2, δA + δZ) if i = a + z

Now, the formatting function Fmt(A, Z) returns the following sequence186

{(
(A[1], t[1]), . . . , (A[a], t[a])

)
if Z = ϵ(

(A[1], t[1]), . . . , (A[a], t[a]), (Z[1], t[a + 1]), . . . , (Z[z], t[a + z])
)

if Z ̸= ϵ

where the first coordinate of each pair specifies the input block to be processed, and187

the second coordinate specifies the exponents of α and 1 + α to determine the constant188

over GF(2n/2). Let Z≥0 be the set of non-negative integers and X be some non-empty189

set. We say that a function f : X → (B × Z≥0 × Z≥0)+ is prefix-free if for all X ̸= X ′,190

f(X) = (Y [1], . . . , Y [ℓ]) is not a prefix of f(X ′) = (Y ′[1], . . . , Y ′[ℓ′]) (in other words,191

(Y [1], . . . , Y [ℓ]) ̸= (Y ′[1], . . . , Y ′[ℓ])). Here, for a set S, S+ means S ∪ S2 ∪ · · · , and we192

have the following lemma.193

Lemma 1. The function Fmt(·) is prefix-free.194

The proof is more or less straightforward and hence we skip it.195

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 7

3.2.2 GIFT building blocks196

Initialization and Finalization. The 128-bit plaintext P is loaded into the cipher state197

S which will be expressed as 4 32-bit segments, S = {S0, S1, S2, S3}, where Si ∈ {0, 1}32.198

On the other hand, the 128-bit secret key K is loaded into the key state KS which will be199

expressed as 8 16-bit words, KS = {W0, W1, . . . , W7}, where Wi ∈ {0, 1}16.200

Initalize(P) =


S0
S1
S2
S3

←


B0 ∥ B1 ∥ B2 ∥ B3
B4 ∥ B5 ∥ B6 ∥ B7
B8 ∥ B9 ∥ B10 ∥ B11
B12 ∥ B13 ∥ B14 ∥ B15

 ,201

202

Initalize(K) =


W0 ∥ W1
W2 ∥ W3
W4 ∥ W5
W6 ∥ W7

←


B0∥B1 ∥ B2∥B3
B4∥B5 ∥ B6∥B7
B8∥B9 ∥ B10∥B11

B12∥B13 ∥ B14∥B15

 ,203

where Bi are the arriving bytes.204

The function Finalize will be the reverse process, outputting the state byte by byte.205

SubCells Function. We denote the SubCells function S ← SubCells(S) as the following206

set of instructions:207

S1 ← S1 ⊕ (S0 & S2)208

S0 ← S0 ⊕ (S1 & S3)209

S2 ← S2 ⊕ (S0 | S1)210

S3 ← S3 ⊕ S2211

S1 ← S1 ⊕ S3212

S3 ← ∼ S3213

S2 ← S2 ⊕ (S0 & S1)214

{S0, S1, S2, S3} ← {S3, S1, S2, S0},215

where &, | and ∼ are AND, OR and NOT operation respectively.216

PermBits Function. We define the parsing of Si into 32 individual bits as217

(Si[31], Si[30], . . . , Si[0]) 1← Si.218

We denote219

PermBits(S) = {Pb0(S0), P b1(S1), P b2(S2), P b3(S3)},220

where Pbi is described in Table 1, the row “Index” shows the indexing of the 32 bits in all221

Si’s and the row “Si” shows the ending position of the bits. For example, S1[1] (the 2nd222

rightmost bit) is shifted 1 position to the right, to the initial position of S1[0], while S1[0]223

is shifted 8 positions to the left where S1[8] was.224

AddRoundKey Function. We define the AddRoundKey function AddRoundKey as225

AddRoundKey(S, KS, i) = {S0, S1 ⊕ (W6 ∥W7), S2 ⊕ (W2 ∥W3), S3 ⊕ Consti},226

where Consti = 0x800000XY is the i-th round constant and the byte XY = 00c5c4c3c2c1c0
is the round constant generated using the a 6-bit affine LFSR, whose state is updated as
follows:

c5∥c4∥c3∥c2∥c1∥c0 ← c4∥c3∥c2∥c1∥c0∥c5 ⊕ c4 ⊕ 1.

8 GIFT-COFB

Table 1: Specifications of bit permutation Pbi.
Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Pb0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2
Pb1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3
Pb2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0
Pb3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

Index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Pb0 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0
Pb1 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1
Pb2 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2
Pb3 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

The six bits, ci, are initialized to zero, and updated before being used in a given round.227

The values of the constants for each round are given in the table below, encoded to228

byte values for each round, with c0 being the least significant bit.229

Rounds Constants
1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

230

Key State Update Function. The key state update function KeyUpdate is defined as231

follows:232

KeyUpdate(KS) = {W6 ≫ 2, W7 ≫ 12, W0, W1, W2, W3, W4, W5}233

3.3 GIFT-COFB Pseudocode234

We present the specifications of GIFT-COFB in Fig. 1, where α and (1 + α) are written235

as 2 and 3. See also Fig. 2. The encryption and decryption algorithms are denoted by236

COFB-EK and COFB-DK . We remark that the nonce length is 128 bits, which is enough237

for the security up to the birthday bound. The nonce is processed as EK(N) to yield the238

first internal chaining value. The encryption algorithm takes A and M , and outputs C239

and T such that |C| = |M | and |T | = 128. The decryption algorithm takes (N, A, C, T)240

and outputs M or ⊥. Both encryption and decryption algorithms use block cipher EK241

and the key K is implicitly given to them.242

4 Design Rationale243

As both GIFT and COFB are already well-established primitives, in this section we explain244

the rationale for this combination, followed by the tweaks we made to these original245

publications to enhance the performance and security.246

4.1 AEAD Scheme: GIFT-COFB247

COFB is a block cipher based authenticated encryption mode that uses GIFT-128 as the248

underlying block cipher and GIFT-COFB can be viewed as an efficient integration of the249

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 9

Algorithm COFB-EK(N, A, M)

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a]) n← Pad(A)
3. if M ̸= ϵ then
4. (M [1], . . . , M [m]) n← Pad(M)
5. for i = 1 to a− 1
6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L∥0n/2

8. Y [i]← EK(X[i])
9. if |A| mod n = 0 and A ̸= ϵ then L← 3 · L

10. else L← 32 · L
11. if M = ϵ then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L∥0n/2

13. Y [a]← EK(X[a])
14. for i = 1 to m− 1
15. L← 2 · L
16. C[i]←M [i]⊕ Y [i + a− 1]
17. X[i + a]←M [i]⊕G · Y [i + a− 1]⊕ L∥0n/2

18. Y [i + a]← EK(X[i + a])
19. if M ̸= ϵ then
20. if |M | mod n = 0 then L← 3 · L
21. else L← 32 · L
22. C[m]←M [m]⊕ Y [a + m− 1]
23. X[a + m]←M [m]⊕G · Y [a + m− 1]⊕ L∥0n/2

24. Y [a + m]← EK(X[a + m])
25. C ← Trunc|M |(C[1]|| . . . ||C[m])
26. T ← Truncτ (Y [a + m])
27. else C ← ϵ, T ← Truncτ (Y [a])
28. return (C, T)

Algorithm EK(X)

1. S ← Initialize(X)
2. KS ← Initialize(K)
3. for i = 1 to 40
4. S ← SubCells(S)
5. S ← PermBits(S)
6. S ← AddRoundKey(S, KS, i)
7. KS ← KeyUpdate(KS)
8. Y ← Finalize(S)
9. return Y

Algorithm COFB-DK(N, A, C, T)

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a]) n← Pad(A)
3. if C ̸= ϵ then
4. (C[1], . . . , C[c]) n← Pad(C)
5. for i = 1 to a− 1
6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L∥0n/2

8. Y [i]← EK(X[i])
9. if |A| mod n = 0 and A ̸= ϵ then L← 3 · L

10. else L← 32 · L
11. if C = ϵ then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L∥0n/2

13. Y [a]← EK(X[a])
14. for i = 1 to c− 1
15. L← 2 · L
16. M [i]← Y [i + a− 1]⊕ C[i]
17. X[i + a]←M [i]⊕G · Y [i + a− 1]⊕ L∥0n/2

18. Y [i + a]← EK(X[i + a])
19. if C ̸= ϵ then
20. if |C| mod n = 0 then
21. L← 3 · L
22. M [c]← Y [a + c− 1]⊕ C[c]
23. else
24. L← 32 · L, c′ ← |C| mod n

25. M [c]← Truncc′(Y [a + c− 1]⊕ C[c])∥10n−c′−1

26. X[a + c]←M [c]⊕G · Y [a + c− 1]⊕ L∥0n/2

27. Y [a + c]← EK(X[a + c])
28. M ← Trunc|C|(M [1]|| . . . ||M [c])
29. T ′ ← Truncτ (Y [a + c])
30. else M ← ϵ, T ′ ← Truncτ (Y [a])
31. if T ′ = T then return M , else return ⊥

Figure 1: The encryption and decryption algorithms of GIFT-COFB.

COFB and GIFT-128. GIFT-128 maintains an 128-bit state and 128-bit key. To be precise,250

GIFT is a family of block ciphers parametrized by the state size and the key size and all251

the members of this family are lightweight and can be efficiently deployed on lightweight252

applications. COFB mode on the other hand, computes of “COmbined FeedBack” (of253

block cipher output and data block) to uplift the security level. This actually helps us254

to design a mode with low state size and eventually to have a low state implementation.255

This technique actually resist the attacker to control the input block and next block cipher256

10 GIFT-COFB

Figure 2: Encryption of COFB. In the rightmost figure, the case of encryption for empty
M (hence a MAC for (N, A)) can be highlighted as T = Truncτ (Y [a])

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 11

04812162024283236404448525660646872768084889296100104108112116120124

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

RKi

RKi+1

Figure 3: 2 rounds of GIFT-128.

input simultaneously. Overall, a combination of GIFT and COFB can be considered to be257

one of the most efficient lightweight, low state block cipher based AEAD construction.258

4.2 Underlying Block Cipher: GIFT259

GIFT-128 is an 128-bit Substitution-Permutation network (SPN) based block cipher with a260

key length of 128-bit. It is a 40-round iterative block cipher with identical round function.261

For brevity, we simply call it GIFT.262

There are different ways to perceive GIFT-128, the more pictorial description is detailed263

in Section 2 of [4], which looks like a larger version of PRESENT cipher with 32 4-bit264

S-boxes and an 128-bit bit permutation (see Figure 3). In our work, we use an alternative265

description of GIFT, using bitslice description which is similar to Appendix A of [4]. Note266

that the security properties are equivalent up to bit arrangement of the plaintext and267

ciphertext.268

GIFT is considered to be one of the lightest design existing in the literature. It is269

denoted as “Small PRESENT” as the design rationale of GIFT follows that of PRESENT [8].270

However, GIFT has got rid of several well known weaknesses existing in PRESENT with271

regards to linear cryptanalysis. Overall GIFT promises much increased efficiency (both272

lighter and faster) over PRESENT. GIFT is a very simple design that outperforms even273

SIMON and SKINNY for round based implementations. It consists of very simple operations274

such that the total hardware footprint is almost consumed by the underlying and the cipher275

storage. The design is somewhat “optimal” as a weaker S-box (than GIFT S-box) would lead276

to a weaker design. The linear layer is completely free for a round-based implementation277

in hardware (consisting of simply bit-wiring) and the constants are generated thanks to278

a very lightweight LFSR. The key schedule is also very light, simply consisting of shifts.279

The presented security analysis details and hardware implementation results also support280

the claims made by the designers.281

Although there is almost no impact on hardware implementation, there are several282

motivations for using bitslice implementation (non-LUT based) instead of LUT based283

implementation of GIFT when we consider software implementation. Here, we will state284

the 3 most obvious benefits relating to its 3 steps in a round function.285

Constant time non-linear layer. For LUT based implementation, we can consider updat-286

ing 2 GIFT S-boxes (1 byte) in a single memory call with a reasonable 256 entries LUT.287

This would require 16 lookups and it takes approximately 16 to 64 cycles to do all S-boxes288

in a round, assuming a few cycles to access the RAM. Using bitslice implementation, it289

requires just 11 basic operations (or 10 with XNOR operation) to compute all the S-boxes290

12 GIFT-COFB

in parallel. And more importantly, using bitslice implementation has the nice feature that291

it doesn’t need any RAM and that it is constant time, mitigating potential timing attacks.292

Efficient linear layer. While it is basically free on hardware, for software implementation293

it is extremely slow and complex to implement. This effect can be reduced by doing several294

blocks in parallel using none other than bitslice implementation. Even for a single block295

encryption, bitslice implementation is still more efficient that LUT based implementation296

because of the way the bits are packed.297

Simpler key addition. For LUT based implementation, the subkeys need to be XORed298

to bit positions that are 3 bits apart, making the key addition tedious and non-trivial. An299

option is to precompute the subkeys, but even so the key addition would require several300

XOR operations to update the 128-bit state. Using bitslice, the bits that were once 3 bits301

apart are now packed together in 32-bit words, making the key addition as simple as just302

2 XOR operations.303

4.3 Authenticated Encryption Mode: COFB304

COFB is a lightweight AEAD mode. The mode presented in this write up differs slightly305

with the original proposal. They are as follows.306

• We change the nonce to be 128 bits.307

• We change the feedback (more precisely the G matrix) to make it more hardware308

efficient.309

• We now deal with empty data. We change the mask update function for the purpose.310

• We change the padding for the associated data. To be precise, if the associated data311

is empty, then padding the associated data will yield the constant block 10n−1 (n:312

block cipher state size).313

We observed that, the updates make the design more lightweight and more efficient to314

deal with short data inputs. However, these updates do not have impact on the security of315

the mode (only a nominal 1-bit security degradation).316

5 Security317

5.1 Security proof of COFB318

We present the security analysis of COFB in Theorem 1.319

Theorem 1 (Main Theorem).

AdvAE
COFB((q, qf), (σ, σf), t) ≤ Advprp

GIFT(q′, t′) +
(

q′

2
)

2n
+ σ + 1

2n/2 + qf (n + 4)
2n/2+1320

+ 3σ2 + qf + 2(q + σ + σf) · σf

2n
321

where q′ = q + qf + σ + σf , which corresponds to the total number of block cipher calls322

through the game, and t′ = t + O(q′). We claim the above bound when q′ ≤ 2 n
2 −1.323

Proof. We make a transition by using an n-bit (uniform) random permutation P instead of324

EK , which is GIFT, and next an n-bit (uniform) random function R instead of P. The first325

two terms in our bounds comes from these two transitions using the standard PRP-PRF326

switching lemma and the computation to the information security reduction (e.g., see [5]).327

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 13

Thus we only need a bound for COFB with R, denoted by COFB-R. Here, we prove328

AdvAE
COFB-R((q, qf), (σ, σf),∞) ≤ σ + 1

2n/2 + qf (n + 4)
2n/2+1 + 3σ2 + qf + 2(q + σ + σf) · σf

2n
.

(1)
329

For 1 ≤ i ≤ q, let (Ni, Ai, Mi) and (Ci, Ti) denote the i-th encryption query and response,330

respectively. We use the notation (Ai[1], . . . , Ai[ai])
n← Pad(Ai), (Mi[1], . . . , Mi[mi])

n←331

Pad(Mi) and (Ci[1], . . . , Ci[mi])
n← Pad(Ci). Let ℓi = ai + mi + 1, which denotes the total332

input block length (including nonce) for the i-th encryption query. The i-th decryption333

query is (N∗
i , A∗

i , C∗
i , T ∗

i) with a response Z∗
i (either ⊥ for an invalid decryption attempt or334

a message). We similarly define c∗
i and a∗

i , and write ℓ∗
i = a∗

i + c∗
i + 1. We have σ =

∑
i ℓi335

and σf =
∑

i ℓ∗
i . We also use the notation (Li[j], Ri[j]) n/2← Xi[j] for all i ∈ [1..q] and336

j ∈ [1..ℓi].337

Real Oracle. Real oracle follows COFB-R (where EK is replaced by R). We use Xi[j]338

(resp. Yi[j]) for i = 1, . . . , q and j = 0, . . . , ℓi for the j-th input (resp. output) of the339

internal R invoked during the i-th encryption query, with the order of invocation shown in340

Fig. 1. We set Xi[0] = Ni and Yi[ℓi] = Ti. We write Li = Truncn/2(Yi[0]).341

The following relaxations are introduced that only gain the advantage. After making342

all the encryption queries and forging attempts, release all the Y -values for the encryption343

queries only. The transcript due to encryption queries consists of (Ni, Ai, Mi, Yi)i where344

Yi denotes (Yi[0], . . . , Yi[ℓi]) = Yi[0..ℓi].345

Ideal Oracle. In case of the ideal oracle, for the i-th encryption query (Ni, Ai, Mi)346

such that i ∈ {1, . . . , qe}, Ai = (Ai[1], . . . , Ai[ai]), and Mi = (Mi[1], . . . , Mi[mi]), the347

oracle samples (Yi[0], . . . , Yi[ℓi]) independently and uniformly at random from {0, 1}n(ℓi+1).348

It sets the tag Ti = Yi[ℓi] and the ciphertext Ci = (Ci[1], . . . , Ci[mi]) where Ci[j] =349

Yi[j + ai − 1]⊕Mi[j] for 1 ≤ j ≤ mi and returns (Ci, Ti) to A. The AD processing phase350

it is a dummy phase and has no influence to the response (Ci, Ti).351

For the i′-th decryption query(N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′) such that i′ ∈ {1, . . . , qf}, A∗
i′ =352

(A∗
i′ [1], . . . , A∗

i′ [a∗
i′]), and C∗

i′ = (C∗
i′ [1], . . . , C∗

i′ [c∗
i′]), the ideal oracle always returns Z∗

i′ = ⊥353

(here we assume that the adversary makes only fresh queries).354

Views. In our case, a view τ is defined by the following tuple:

τ = ((Ni, Ai, Mi, Yi)i∈{1,...,q}, (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf }).

Note that, Xi-values of encryption queries are also uniquely determined following the355

construction based on Ni, Ai, Mi and Yi.356

Definition of pi and i′. For the i-th decryption query, we define pi = −1 if there is no j357

with Nj = N∗
i . In this case i′ is not defined. Otherwise, there is a unique index i′ with358

Ni′ = N∗
i . We define pi as the length of the longest common prefix of Fmt(A∗

i , C∗
i) and359

Fmt(Ai′ , Ci′). Since Fmt is prefix-free, it holds that pi < min{ℓ∗
i , ℓi′}.360

Bad Views. The complement of the set of bad views is defined to be the set of good361

views. A view is called bad if one of the following events occurs:362

B1: Xi1 [j1] = Xi2 [j2] for some (i1, j1) ̸= (i2, j2) where j1, j2 ≥ 0.363

B2: Yi1 [j1] = Yi2 [j2] for some (i1, j1) ̸= (i2, j2) where j1, j2 ≥ 0.364

B3: mcoll(R) > n/2 where R is the tuple of all Ri[j] values.365

B4: X∗
i [pi + 1] = Xi1 [j1] for some (i, i1, j1) with j1 ̸= 0.366

14 GIFT-COFB

B5: pi = ℓ∗
i − 1 and X∗

i [pi + 1] = Xi1 [j1] for some (i, i1, j1) with Yi1 [j1] = T ∗
i .367

B6: pi ̸= −1 and X∗
i [pi + 1] = Xi′ [0] for some i, where i′ is uniquely determined from i.368

B7: pi ̸= −1, ℓ∗
i − 1 and X∗

i [pi + 1] = Xi1 [0] and X∗
i [pi + 2] = Xi2 [j2] for some i1 ̸= i′ and369

(i2, j2).370

B8: For some i, Z∗
i ̸= ⊥. This clearly cannot happen for the ideal oracle case.371

We add some intuitions on these events. When B1 does not hold, then all the inputs372

for the random function are distinct for encryption queries, which makes the responses373

from encryption oracle completely random in the “real” game.374

B2 event is an auxiliary event which is required to bound B5.375

Similarly, B3 would be required to bound the probability of the other bad events.376

When B3 does not hold, then at the right half of Xi[j] we see at most n/2 multi-collisions.377

A successful forgery is to choose one of the n/2 multi-collision blocks and forge the left378

part so that the entire block collides. Forging the left part has 2−n/2 probability due to379

randomness of masking. So, when B3 does not hold, then the (pi + 1)-st input for the i-th380

forging attempt will be fresh with a high probability and so all the subsequent inputs will381

remain fresh with a high probability. The event B4 to B7 are different cases for which382

(pi + 1)-st input for the i-th forging attempt are not fresh.383

A view is called good if none of the above events hold. Let Vgood be the set of all384

such good views. The following lemma bounds the probability of not realizing a good385

view while interacting with the ideal oracle (this will complete the first condition of the386

Coefficients-H technique).387

Lemma 2.
Pr
ideal

[τ ̸∈ Vgood] ≤ σ

2n/2 + 1
2n/2 + qf (n + 4)

2n/2+1 + 3σ2

2n

Proof of Lemma 2. Throughout the proof, we assume all probability notations are defined388

over the ideal game. We bound all the bad events individually and then by using the union389

bound, we will obtain the final bound.390

(1) Pr[B1] ≤ σ/2n/2 + σ2/2n+1: For any (i1, j1) ̸= (i2, j2) with j1, j2 ≥ 1, the equality391

event Xi1 [j1] = Xi2 [j2] has a probability at most 2−n since this event is a non-trivial392

linear equation on Yi1 [j1 − 1] and Yi2 [j2 − 1] and they are independent to each other.393

W.l.o.g, let i1 < i2. If j1 = j2 = 0, then Xi1 [0] = Ni1 and Xi2 [0] = Ni2 cannot be394

equal. When j1 = 0 and j2 > 0, then Ni1 = Xi2 [j2] (where Ni1 = Xi1 [0]) has a395

probability at most 2−n since this event is a non-trivial linear equation on Yi2 [j2− 1].396

Thus, this case has probability at most σ2/2n+1. When j1 > 0 and j2 = 0, the397

probability of Xi1 [j1] = Xi2 [j2], where Xi2 [j2] = Nj2 , is at most 1/2n/2. We observed398

that the last n/2-bit parts of nonce Nj2 can be chosen to match the corresponding399

bits of Xi1 [j1], and only the remaining n/2-bit part is unpredictable, as observed400

in [20]. Consequently, this case has probability at most σ/2n/2. Summing up the401

two cases yields σ/2n/2 + σ2/2n+1.402

(2) Pr[B2] ≤ σ2/2n+1: This case is similar to the first case of B1 since Y values in the403

ideal world are completely random.404

(3) Pr[B3] ≤ 1/2n/2: The event B3 is a multi-collision event for randomly chosen σ405

many n/2-bit strings as Y values are mapped in a regular manner (see the feedback406

function) to R values. From the union bound, we have407

Pr[B3] ≤
(

σ
n
2 + 1

)
1

2 n2
4

<
σ

n
2 +1

2 n2
4

≤
(σ

2(n/2)−1

) n
2 +1
≤ 1

2n/2 ,408

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 15

where the last inequality follows from the assumption σ ≤ 2(n/2)−2 since otherwise409

the theorem is trivially true.410

(4) Pr[B4 ∧B3c] ≤ nqf /2n/2+1: We can assume that B3 does not hold so the maximum411

number of multi-collision on R-values is at most n. Now fix (i1, j1) with ii ̸= i′
412

and hence due to randomness of Li1 the probability of this case is at most 1/2n/2.413

Let us assume that i1 = i′ and so j1 ̸= pi + 1. Once again it is easy to see414

that X∗
i [pi + 1] = Xi′ [j1] reduces to a non-trivial equation in Li′ . Thus, the415

probability of this case is also at most 1/2n/2. By union bound the probability of416

this event is at most 0.5n/2n/2 for all i. Summing over all decryption queries, we417

get Pr[B4 ∧B3c] ≤ nqf /2n/2+1.418

(5) Pr[B5 ∧B2c] ≤ qf /2n/2: As B2 does not hold, there can be at most one (i1, j1) for419

which Yi1 [j1] = T ∗
i (for a given i). If there is any such (i1, j1), X∗

i [pi + 1] = Xi1 [j1]420

can hold with probability at most 1/2n/2. Summing over all decryption queries, we421

get Pr[B5 ∧B2c] ≤ qf /2n/2.422

(6) Pr[B6] ≤ qf /2n/2: This is a non-trivial equation in Li′ and hence it holds with423

probability at most 1/2n/2 for every i. Thus, Pr[B6] ≤ qf /2n/2.424

(7) Pr[B7 ∧B3c] ≤ 2qσqf

23n/2 :425

For a fixed i, we have

Pr[X∗
i [pi + 1] = Xi1 [0]] = Pr[(G + I) · Yi′ [pi]⊕ Lpi

i′ ⊕ C∗
i [pi + 1] = Ni1],

where Lpi

i′ is the L value for the pi-th index of the i′-th encryption query. This is
bounded by 1/2n/2. Now given Li′ , (the randomness of the first collision), X∗

i [pi+2] =
(G + I) · Yi1 [0]⊕ Lpi+1

i′ ⊕ C∗
i [pi + 2] has (n− 1)-bit entropy of (G + I) · Yi1 [0] (since

G + I has rank n− 1). So,

Pr[B7 ∧B3c] ≤ qf ·
q

2n/2 ·
2σ

2n
= 2qσqf

23n/2 .

Summarizing, we have426

Pr
ideal

[τ ̸∈ Vgood] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4 ∧B3c] + Pr[B5 ∧B2c]427

+ Pr[B6] + Pr[B7 ∧B3c] + Pr[B8]428

≤ σ

2n/2 +
1 + nqf

2 + 2qf

2n/2 + σ2

2n
+ 2qσqf

23n/2429

≤ σ

2n/2 + 1
2n/2 + qf (n + 4)

2n/2+1 + 3σ2

2n
.430

For the last inequality we assume qf ≤ 2n/2 and q ≤ σ since otherwise the bound is431

trivially true. This concludes the proof.432

433

Lower Bound of ipreal(τ). We consider the ratio of ipreal(τ) and ipideal(τ). In this
paragraph we assume that all the probability space, except for ipideal(∗), is defined over
the real game. We fix a good view

τ = ((Ni, Ai, Mi, Yi)i∈{1,...,q}, (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf }),

where Z∗
i′ = ⊥, ∀i′. We separate τ into434

τe = (Ni, Ai, Mi, Yi)i∈{1,...,q} and τd = (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf },435

16 GIFT-COFB

and we first see that for a good view τ , ipideal(τ) equals to 1/2n(q+σ).436

Now we consider the real case. Since B1 and B2 do not hold with τ , all inputs of437

the random function inside τe are distinct, which implies that the released Y -values are438

independent and uniformly random. The variables in τe are uniquely determined given439

these Y -values, and there are exactly q + σ distinct input-output of R. Therefore, Pr[τe] is440

exactly 2−n(q+σ).441

We next evaluate442

ipreal(τ) = Pr[τe, τd] = Pr[τe] · Pr[τd|τe] = 1
2n(q+σ) · Pr[τd|τe]. (2)443

We observe that Pr[τd|τe] equals to Pr[⊥all|τe], where ⊥all denotes the event that Z∗
i = ⊥444

for all i = 1, . . . , qf , as other variables in τd are determined by τe.445

We now define an event η that captures a collision between X∗
i [j] in a decryption query446

with some Xi1 [j1] in an encryption query, or with some X∗
i2

[j2] in a decryption query.447

Concretely, let η denote the event that, for all i = 1, . . . , qf , X∗
i [j] for pi < j ≤ ℓ∗

i is not448

colliding to X-values (represented by Xi1 [j1]s) in τe and X∗
i2

[j2] for all i2 ∈ {1, . . . , qf} and449

0 ≤ j2 ≤ ℓ∗
i2

, except for trivial collisions in decryption queries. For j = pi + 1, the above450

condition is fulfilled by B4 except the case when X∗
i [pi + 1] collides with some nonce in τe451

and it is not the last block. This case, fulfilled by B5, B6 and B7 holds for j = pi + 2.452

Thus, depending on the cases, X∗
i [pi + 1] or X∗

i [pi + 2] are fresh with high probability and453

almost uniform (almost due to 1-bit entropy degradation, since the rank of G + I is n− 1).454

Hence, all the subsequent X∗ values are also fresh and almost uniform due to the property455

of feedback function (here, observe that the mask addition between the chain of Y ∗
i [j] to456

X∗
i [j + 1] does not reduce the randomness).457

Now we have Pr[⊥all|τe] = 1−Pr[(⊥all)c|τe], and we also have Pr[(⊥all)c|τe] = Pr[(⊥all)c, η|τe]+458

Pr[(⊥all)c, ηc|τe]. Here, Pr[(⊥all)c, η|τe] is the probability that at least one T ∗
i for some459

i = 1, . . . , qf is correct as a guess of Y ∗
i [ℓ∗

i]. Here Y ∗
i [ℓ∗

i] is completely random from η,460

hence using the union bound we have461

Pr[(⊥all)c, η|τe] ≤ qf

2n
.462

For Pr[(⊥all)c, ηc|τe] which is at most Pr[ηc|τe], the above observation suggests that463

this can be evaluated by counting the number of possible bad pairs (i.e. a pair that a464

collision inside the pair violates η) among the all X-values in τe and all X∗-values in τd, as465

in the same manner to the collision analysis of e.g., CBC-MAC using R. The difference is466

that, due to the rank of G + I being n− 1, the chaining value determined by a decryption467

query has n− 1-bit randomness rather than n as mentioned above. The total number of468

bad pairs is at most (q + σ + σf) · σf , and each pair has collision probability of 1/2n−1.469

Hence, we have470

Pr[(⊥all)c, ηc|τe] ≤ 2(q + σ + σf) · σf

2n
.471

Combining all, we have472

ipreal(τ) = 1
2n(q+σ) · Pr[τd|τe] = ipideal(τ) · Pr[⊥all|τe]473

≥ ipideal(τ) · (1− (Pr[(⊥all)c, η|τe] + Pr[(⊥all)c, ηc|τe]))474

≥ ipideal(τ) ·
(

1− qf + 2(q + σ + σf) · σf

2n

)
.475

476

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 17

5.2 Brief summary of security analysis of GIFT477

The thorough security analysis of GIFT-128 is provided in Section 4 of [4] and by third478

party cryptanalysis. Here we highlight several important features.479

Differential cryptanalysis. Zhu et al. applied the mixed-integer-linear-programming based480

differential characteristic search method for GIFT-128 and found an 18-round differential481

characteristic with probability 2−109 [43], which was further extended to a 23-round key482

recovery attack with complexity (Data, T ime, Memory) = (2120, 2120, 280). We expect483

that full (40) rounds are secure against differential cryptanalysis.484

Linear cryptanalysis. GIFT-128 has a 9-round linear hull effect of 2−45.99, which means485

that we would need around 27 rounds to achieve correlation potentially lower than486

2−128. Therefore, we expect that 40-round GIFT-128 is enough to resist against linear487

cryptanalysis.488

Integral attacks. The lightweight 4-bit S-box in GIFT may allow efficient integral attacks.489

The bit-based division property is evaluated against GIFT-128 by the designers, which490

detected a 11-round integral distinguisher.491

Meet-in-the-middle attacks. Meet-in-the-middle attack exploits the property that a part492

of key does not appear during a certain number of rounds. The designers and the follow-up493

work by Sasaki [41] showed the attack against 15-rounds of GIFT-64 and mentioned the494

difficulty of applying it to GIFT-128 because of the larger ratio of the number of subkey495

bits to the entire key bits per round; each round uses 32 bits and 64 bits of keys per round496

in GIFT-64 and GIFT-128, respectively, while the entire key size is 128 bits for both.497

5.3 New third-party analysis and its implications498

Besides the security argument by the designers, GIFT has received a lot of third-party499

analysis. Moreover, during the first and second rounds, several groups analyzed the security500

of GIFT-COFB. Here, we summarize the third-party analysis against GIFT and GIFT-COFB,501

which suggests that GIFT-COFB is highly secure against cryptanalysis.502

5.3.1 Third-party analysis on GIFT-128503

In short, our underlying 40-round block cipher GIFT-128 [3] remains secure with high504

security margin. We have summarized the latest third-party cryptanalysis results in505

Table 2.506

[43] is the corrected version of [44] with the 22-round differential cryptanalysis on GIFT,507

the original 23-round attack was invalid.508

We remark that the biclique attacks claimed in [17] are flawed, as detailed in [13].509

Although GIFT did not make related-key security claims, third-party analysis [9, 24, 31]510

have shown that GIFT is actually resistant against related-key attacks.511

5.3.2 Third-party analysis on GIFT-COFB512

Zong et al. [45] applied their linear cryptanalysis to mount the key-recovery attack on513

the reduced-round variant of GIFT-COFB, in which the number of rounds of GIFT is514

reduced to 15 rounds. In short, it makes many encryption queries under different nonces to515

obtain pairs of plaintext and ciphertext in the consequent two blocks. The pairs partially516

reveal the internal state value. By setting the linear masks only to exploit those values,517

linear cryptanalysis can be mounted. The attack complexity is (Time, Data, Memory) =518

18 GIFT-COFB

Table 2: Summary of third-party analysis result on GIFT. Rounds with asterisk (∗) are
optimal results. SK – single-key, RK – related-key, LC – linear cryptanalysis, DC –
differential cryptanalysis.

Setting Rounds Approach Prob. Time Data Mem. Ref.
Distinguisher

SK 11 Integral 1 - 2127 - [14]
SK 9∗ LC 2−44 - - - [23]
SK 10∗ LC 2−52 - - - [23]
SK 15 LC 2−109 - - - [45]
SK 9∗ DC 2−45.4 - - - [30]
SK 10∗ DC 2−49.4 - - - [30]
SK 11∗ DC 2−54.4 - - - [30]
SK 12∗ DC 2−60.4 - - - [30]
SK 13∗ DC 2−67.8 - - - [30]
SK 14∗ DC 2−79.000 - - - [23]
SK 15∗ DC 2−85.415 - - - [23]
SK 16∗ DC 2−90.415 - - - [23]
SK 17∗ DC 2−96.415 - - - [23]
SK 18 DC 2−109 - - - [43]
SK 18∗ DC 2−103.415 - - - [23]
SK 19 DC 2−110.83 - - - [23]
SK 20 DC 2−121.415 - - - [29]
SK 20 DC 2−120.245 - - - [24]
SK 20 DC 2−121.813 - - - [45]
SK 21 DC 2−126.4 - - - [30]
RK 7 DC 2−15.83 - - - [9]
RK 10 DC 2−72.66 - - - [9]
RK 19 Boomerang 2−121.2 - - - [31]
RK 19 Boomerang 2−109.626 - - - [24]

Key-Recovery
SK 22 LC - 2117 2117 278 [45]
SK 22 DC - 2114 2114 253 [43]
SK 26 DC - 2124.415 2109 2109 [29]
SK 26 DC - 2123.245 2123.245 2109 [24]
SK 27 DC - 2124.83 2123.53 280 [45]
RK 21 Boomerang - 2126.6 2126.6 2126.6 [31]
RK 22 Boomerang - 2112.63 2112.63 252 [24]
RK 23 Rectangle - 2126.89 2121.31 2121.63 [24]

(290.7, 262, 296). Note that the number of attacked rounds is significantly smaller than that519

of GIFT, because of the limited degrees of freedom for the attacker to set the active bit520

positions. Also note that Zong et al. [45] show that the similar attack can be mounted on521

SUNDAE-GIFT up to 16 rounds, 1 round longer than GIFT-COFB because of the difference522

of the bit-positions to extract the key stream. This illustrates the validity of GIFT-COFB523

on the bit-positions of extracting the key stream.524

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 19

Khairallah analyzed the security of GIFT-COFB as a mode [25, 26], i.e., GIFT is treated525

as a black box. In [25], a forgery attack against GIFT-COFB that makes O(2n/2) encryption526

queries and O(2n/2) decryption queries in a single key setting is presented. An analysis in527

the multi-key setting is also presented. In [25], the forgery attack is improved to make528

O(2n/4) encryption queries and O(2n/2) decryption queries. These attacks are almost529

matching attacks to the provable security bound, up to the logarithmic factor. That is,530

these results show that the provable security bound presented in Theorem 1 is almost531

tight. Subsequently, Khairallah [27] showed an attack using 2n/2 decryption queries with532

single encryption query, and Inoue and Minematsu [21] showed a forgery attack using 2n/2
533

encryption queries with single decryption query. These attack do not contradict our bound534

of GIFT-COFB.535

There was a paper posted on Cryptology ePrint Archive 2020/698 [10] claiming forgery536

attack on GIFT-COFB, but we have contacted and clarified with the authors that the537

attack is invalid due to an oversight of the GIFT-COFB specification and the authors have538

since been withdrawn their paper.539

Inoue et al. [20] presented a distinguishing attack of complexity q ∼ 2n/2, which shows540

that there is an error in the previous version (Cryptology ePrint Archive 2020/738, version541

20200618) of this article. We remark that this does not contradict the so called “bit542

security” claims. We, together with Akiko Inoue, inspected the proof and identified that543

one condition was missing in a bad event that increases the bound by σ/2n/2, as pointed544

out in [20]. The current proof in Sect. 5.1 has been fixed incorporating this condition. We545

also fixed other minor issues and improved the readability. The revised bound matches546

the result of Inoue et al. and shows its tightness.547

5.3.3 Third-party analysis from various viewpoints548

In addition to conventional cryptanalysis, GIFT receives third-party evaluation from549

different viewpoints.550

Hou et al. [19] investigated physical security of GIFT-COFB, in particular differential551

ciphertext side-channel attacks.552

Jang et al. [22] and Bijwe et al. [6] evaluated the post-quantum security of GIFT, in553

particular, amount of quantum resource to implement the Grover search on GIFT.554

6 Hardware Implementation Details555

The COFB mode was designed with rate 1, that is every message block is processed only556

once. Such designs are not only beneficial for throughput, but also energy consumption.557

However the design does need to maintain an additional 64 bit state, which requires a 64-bit558

register to additionally included in any hardware circuit that implements it. Although559

this might not be energy efficient for short messages, in the long run COFB performs560

excellently with respect to energy consumption. The GIFT block cipher was designed with561

a motivation for good performance on lightweight platforms. The roundkey additon for562

the cipher is over only half the state and the keyschedule being only a bit permutation563

does not require logic gates. These characteristics make the GIFT family of block ciphers564

well suited for lightweight applications. In fact as reported in [3], among the block ciphers565

defined for 128-bit block size GIFT-128 has the lowest hardware footprint and very low566

energy consumption. Thus GIFT-COFB combines the best of both the advantages of the567

design ideologies.568

6.1 Hardware API569

NIST has yet to publish a hardware API for the evaluation of the lightweight candidates,570

and the discussion about the best way forward is still ongoing. Hence we use a minimal571

20 GIFT-COFB

API, designed to be simple enough such that it can easily be plugged into existing systems572

and ensures that any AEAD scheme can be used in all possible configuration such as no573

associated data or plaintexts blocks and partially filled blocks. Our reasoning for favoring574

this simpler API is to ensure that no significant energy is consumed to handle the API575

itself, e.g. the CAESAR HW API [18] requires padding to be done by the circuit, which576

brings a large array of multiplexers and amplifies the energy consumption for each loaded577

authenticated data and message block. Nonetheless, a preprocessor circuit could be placed578

before our AE schemes to ensure CAESAR HW API compatibility. The individual signals579

are defined in the following way:580

CLK, RST: System clock and active-low reset signal. We distinguish two different clock581

rates; 10 MHz for the partially unrolled versions and 20 MHz for the fully unrolled582

implementations. Inverse gating technique uses only the first phase of the clock cycle583

to compute the full block cipher call, therefore the clock period is doubled to ensure584

all glitches are stabilized during this clock phase.585

KEY, NONCE: Key and nonce vectors. These signals are stable once the circuit is reset586

and are kept active during the entire computation.587

DATA: Single data vector that comprises both associated data and regular plaintext588

material. This choice saves an additional large multiplexer, since all the schemes589

process associated data and plaintext blocks separately and not in parallel.590

EAD, EPT: Single bit signals that indicate whether there are no associated data blocks591

(EAD) or no plaintext blocks (EPT). Both signals are supplied with the reset pulse592

and remain stable throughout the computation.593

LBLK, LPRT: Single bit signals that indicate whether currently processed block is the594

last associated data block or the last plaintext block (LBLK), and also whether it595

is partially filled (LPRT). Both signals are supplied alongside each data block and596

remain stable during its computation.597

BRDY, ARDY: Single bit output indicators whether the circuit has finished processing a598

data block and a new one can be supplied on the following rising clock edge (BRDY)599

or the entire AEAD computation has been completed (ARDY).600

CT, TAG: Separate ciphertext and tag vectors. This again saves an additional multiplexer601

in schemes where the ciphertext and tag are not ready at the same time, or they602

appear at different wires.603

Figure 4 details the hardware circuit for round based GIFT-COFB. The mode is designed604

to require one additional 64-bit state apart from the ones used in the block cipher circuit.605

Thus the design requires an additional 64-bit register. The initial nonce (denoted by Nonce606

in the above figure) to the encryption routine, and other control signals are generated607

centrally depending on the length of the plaintext and associated data. Depending on608

the phase of operation the state register may need to feed either the nonce, the output609

of the GIFT-128 round function, which is the sum of the encryption output, associated610

data/plaintext and the additional state Delta.611

The state Delta is updated by multiplying with suitable filed elements of the form612

γ = αx(1 + α)y with x + y ≤ 4. Thus we allocate 4 clock cycles to compute the potential613

Delta update signal. Depending on the value of γ, we update the Delta register by either614

doubling, tripling or the identity operation. For example if γ = α2, we execute doubling for615

2 cycles and the identity operation for 2 more cycles. Thus in addition to the field operation,616

the circuit requires a 3:1 multiplexer controlled by a Sel signal generated centrally.617

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 21

⊕⊕
⊕

⊕
⊕

bb
b

b

b
b

b
b

b

⊕

G
G
IF
T

ro
u
n
d

fu
n
ct
io
n D
at
a

C
T

V

N
on

ce
V

G
IF
T

ke
y

sc
h
ed
u
le

K

K
K
ey

S
ta
te

re
gi
st
er

K
ey

re
gi
st
er

C
on
tr
ol

S
ig
n
al

G
en
er
at
or

b
b

b
b

R
op

S
el

D
el
ta

re
gi
st
er

D
el
ta

U
p
d
at
e

2X
3X

X

S
el

b

⊕⊕
b

R
op

b
64

M
S
B

12
8

64 64

64
64

64 64

2

b
T
ag

Figure 4: Hardware circuit for round based GIFT-COFB

22 GIFT-COFB

6.2 Timing618

The GIFT-128 block cipher takes TE = 40 cycles to complete one encryption function.619

This is the number of clock cycles required in the encryption of the nonce. Each block620

of associated data would take TE cycles to process. Before each block of associated data621

or plaintext is processed we spend Du = 4 cycles to update the Delta. Thus if na, nm622

are the total number of associated data/ message blocks an encryption pass requires623

T = TE + (na + nm)(TE + Du) cycles to compute.624

6.3 Clock Gating625

The state register in Figure 4, requires an additional Enable signal to prevent overwrite626

when the Delta register is being computed. A flip-flop with such an additional functionality627

usually requires more hardware area. One could circumvent this requirement by gating628

the clock signal input to the flip-flop bank, so as to prevent unwanted overwrites. This not629

only brings down the area of the circuit but also power and energy consumptions.630

6.4 Performance631

We present the synthesis results for the design. The following design flow was used: first632

the design was implemented in VHDL. Then, a functional verification was first done using633

Mentor Graphics Modelsim software. The designs were synthesized using the standard cell634

library of the 90nm logic process of STM (CORE90GPHVT v2.1.a) with the Synopsys635

Design Compiler, with the compiler being specifically instructed to optimize the circuit for636

area. A timing simulation was done on the synthesized netlist. The switching activity of637

each gate of the circuit was collected while running post-synthesis simulation. The average638

power was obtained using Synopsys Power Compiler, using the back annotated switching639

activity.640

Our smallest implementation of GIFT-COFB (with clock gating) occupied 3271 GE.641

The power consumed at an operating frequency of 10 MHz is 118.8 µW. The energy642

consumption figures for various lengths of data inputs are given in the first two rows of643

Table 3.644

6.5 Threshold Implementation645

The algebraic degree of the GIFT S-box is 3 (same as PRESENT) and as such constructing646

threshold circuits is slightly more difficult than for quadratic S-boxes, since it is known647

that a threshold construction of any function with algebraic degree d requires at least d + 1648

shares [7]. However threshold implementations of the round-based GIFT-128 circuit has649

been extensively studied in [16]. Since the S-box is cubic, the number of direct shares it650

must be decomposed to needs to be at least 4. However, the authors in [16] report three651

philosophies.652

The first decomposes the S-box as the composition F ◦ G of two quadratic S-boxes653

F, G, and implements each decomposed S-box using 3 shares with a register separating the654

two shared implementations, as in [34]. As such complete evaluation of the substitution655

layer requires 2 clock cycles instead of one. A second optimization uses the fact that the656

shares of both G, F are algebraically similar to each other, and differs only in the order of657

input bits. Hence the authors can further apply an optimization due to [28], that reduces658

the area of the circuit by implementing the shares over 3 cycles, using a multiplexer to659

permute the order of bits each time. The third is a direct sharing approach using 4 shares.660

For this work, since we focus on energy minimization as an additional optimizable661

metric, we focus on only the constructions that evaluate the Substitution layer in at most662

two cycles. Thus we adopted two approaches:663

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 23

Table 3: Implementation results for GIFT-COFB. (Power reported at 10 MHz). Circuits
with clock gating are suffixed by ”-CG”. The notations (xSK), (xS) denote circuits with x
shares with/without keypath shared.

Configuration Clock Area Power Energy(nJ)
Gated (GE) (µW) AD PT AD PT AD PT

16B 32B 16B 128B 16B 800B
Unshared
COFB NO 3446 122.0 2.098 5.319 27.865
COFB-CG YES 3271 118.8 2.043 5.180 27.134
4 Shares
COFB(4S) NO 20292 794.0 13.657 34.618 181.350
COFB(4S)-CG YES 19506 789.6 13.581 34.427 180.345
COFB(4SK) NO 22510 896.7 15.423 39.096 204.806
COFB(4SK)-CG YES 21697 902.0 15.514 39.327 206.017
3 Shares
COFB(3S) NO 11186 423.7 14.067 35.421 184.902
COFB(3S)-CG YES 10555 400.6 13.300 33.490 174.822
COFB(3SK) NO 13131 504.8 16.759 42.201 220.294
COFB(3SK)-CG YES 12179 444.9 14.771 37.194 194.154

1. Direct Sharing using 4 shares: A direct implementation using 4 shares is a straight-664

forward one as the GIFT s-box has an algebraic degree of 3. This circuit requires665

4 registers to implement each state share as well as 4 registers to store the shared666

values of ∆. One may choose or not to share the key path which would require one667

or 4 registers to implement the keyschedule.668

Since the s-box computation can be cone in one cycle, the number of cycles that this669

circuit takes to compute the ciphertext/tag pair is the same as the unshared version.670

Figure 5, gives a block level representation of the circuit (the key path is omitted671

for simplicity). As can be seen in the figure, depending on whether the key path is672

shared or not we need 3/6 random 128 bit masks to do all computations.673

2. Decomposing as F ◦ G using 3 shares: Since the GIFT s-box is quadratic, it can be674

decomposed as F ◦G1, where F and G are quadratic s-boxes. Each of these functions675

can be constructed using 3 shares. To prevent propagation of glitches from the676

G to the F layer, we need to put register banks in between them. Hence one677

substitution layer evaluation is carried out over 2 clock cycles, computation of an678

encryption operation requires 2 · TE = 80 cycles. Hence an encryption pass requires679

T = 2 · TE + (na + nm)(2 · TE + Du) cycles to compute. So this type of construction680

is considerably slower. On the other hand, from Figure 6, it is clear that depending681

on whether the key path is shared, the construction requires 2/4 random 128 bit682

masks.683

Table 3 tabulates detailed experimental results of all threshold circuits constructed684

with 3 as well as 4 shares. The smallest threshold circuit, is the one with 3 shares after685

applying clock gating and occupies 10555 GE.686

1for the exact description of the algebraic expressions for the shared F, G, S boxes please refer to [16]

24 GIFT-COFB

⊕
R1

R3

R2

R4

⊕

⊕

⊕

⊕

E1

E2

E3

E4

R1

R2

R3

R4

E1

E2

E3

E4

G

G

G

G

data

ct1

ct2

ct3

ct4

V1

V2

V3

V4

S1

S2

S3

S4

nonce+
∑
mi

E1

V1

m2

E2

V2

m3

E3

V3

m4

E4

V4

Sub Layer Bit Permutation ∆ register + Update

tagi = Ei

Figure 5: GIFT-COFB using 4 shares (key path is omitted for simplicity)

⊕
R1

R3

R2

⊕

⊕

⊕

E1

E2

E3

R1

R2

R3

E1

E2

E3

G

G

G

data

ct1

ct2

ct3

V1

V2

V3

G1

G2

G3

nonce+
∑
mi

E1

V1

m2

E2

V2

m3

E3

V3

G Layer Bit Permutation ∆ Register + Update

tagi = Ei

F1

F2

F3

F Layer

Figure 6: GIFT-COFB using 3 shares (key path is omitted for simplicity)

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 25

7 Software Implementation Details687

In this section, we discuss software implementation of GIFT-128. Due to its inherent bitslice688

structure, it seems natural to consider that the most efficient software implementations of689

GIFT-128 will be a bitslice strategy, which also offers a constant-time guarantee. This is690

also the reason why we have used bitslice loading of plaintext/key when using GIFT-128691

in the operating mode. The COFB mode being rate-1 and quite simple, as long as a692

non-parallel implementation is used the entire GIFT-COFB primitive will have similar693

throughput to GIFT-128 as the input to be handled becomes longer.694

Indeed, since COFB is not a parallel operating mode, one can’t use several consecutive695

encryption blocks, which might prevent us to fully use the power of bitslice implementations.696

More precisely, as the GIFT-128 Sbox size is 4 bits, one will need x parallel blocks on a697

32x-bit architecture. This fits perfectly architecture of 32-bit or less. For bigger registers,698

one can simply use dummy extra blocks (blocks with random or zero data) to simulate699

a real bitslice implementation (1 dummy block for 64-bit registers, 3 dummy blocks for700

128-bit registers, etc.), which will of course lead to an efficiency penalty. We note however701

that on a server communicating with several clients, one could consider avoiding the702

dummy blocks penalty by ciphering all these communications in parallel.703

Assume then an architecture with 32-bit registers. The 128-bit plaintext, already in704

bitslice form, is directly loaded in four registers (similarly for the key). The implementation705

of the Sbox is straightforward and is provided below. It requires only 6 XORs, 3 ANDs, 1706

OR and 1 NOT instruction.707

1 /* Input : (MSB) x[3] , x[2] , x[1] , x[0] (LSB) */
2 x[1] = x[1] XOR (x[0] AND x[2]);
3 t = x[0] XOR (x[1] AND x[3]);
4 x[2] = x[2] XOR (t OR x[1]);
5 x[0] = x[3] XOR x[2];
6 x[1] = x[1] XOR x[0];
7 x[0] = NOT x[0];
8 x[2] = x[2] XOR (t AND x[1]);
9 x[3] = t;

10 /* Output : (MSB) x[3] , x[2] , x[1] , x [0] (LSB) */

Figure 7: Software-optimized implementation of the GIFT Sbox.

Applying the subkeys and constants is also straightforward with XOR instructions (one708

could even consider that subkeys/constants are precomputed and stored in memory). A709

much more difficult task if to apply the bit permutation, as it is quite costly the move710

individual bits around in software. A crucial property of the GIFT bit permutations is711

that a bit in slice i is always sent to the same slice i during this permutation. Thus,712

applying the bit permutation layer means simply permuting the ordering of the bits inside713

the registers independently. Fortunately, we have found a new representation of the714

GIFT-64 and GIFT-128 bit permutations that makes it efficient and simple to implement715

in software. This strategy, named fix-slicing [2], indeed leads to very efficient one-block716

constant-time GIFT-128 implementations on 32-bit architectures such as ARM Cortex-M717

family of processors (79 cycles/ byte on ARM Cortex-M3), making GIFT-COFB one of the718

most efficient candidate according to microcontroller benchmarks [35, 42]. Using smaller719

architecture will not be an issue as we will actually save more operations comparatively,720

since part of the bit permutation can be done by proper unrolling and register scheduling.721

This is confirmed with 8-bit AVR benchmarks [35, 42] where GIFT-COFB is again ranked722

among the top candidates. Note that using exactly this implementation will also provide723

decent performance on recent high-end processors (and excellent performances if parallel724

computations of GIFT-COFB instances are considered and vector instructions are used).725

26 GIFT-COFB

8 Other Implementation/Benchmarking Results on GIFT-726

COFB727

8.1 Software Benchmarking by Renner et. al. [35]728

This benchmark results are mainly obtained on five different microcontroller unit platforms.729

The results are based on the custom made performance evaluation framework, introduced730

at the NIST LWC Workshop in November 2019. Precisely, the result contains speed, ROM731

and RAM and benchmarks for software implementations of the 2nd round candidates.732

We would like to point that, though GIFT-COFB is not designed for microcontrollers, it733

still stands among the top five designs of the 2nd round candidates. Notably, among the734

finalists candidates, it ranks in 2nd position on 8-bit AVR, a key platform for comparison735

at is it much more constrained than larger 32-bit microcontrollers. The detailed table can736

be found in [35].737

8.2 Software Implementations and Benchmarking by Weatherley et.738

al. [42]739

Rhys Weatherley provides efficient 8-bit AVR and 32-bit ARM Cortex-M3 implementations740

of GIFT-COFB using the fix-slicing strategy. All these implementations are available on741

the corresponding GitHub repository and benchmarks on these two platforms are provided.742

Again, we point that, though GIFT-COFB is not designed for microcontrollers, among743

the finalists candidates it again ranks in 2nd position on 8-bit AVR, a key platform for744

comparison at is it much more constrained than larger 32-bit microcontrollers. On 32-bit745

platforms, it ranks at 5th place on ARM Cortex-M3 and 3rd on ESP32.746

8.3 Hardware Benchmarking by Rezvani et. al. [36]747

This work implements 6 NIST LWC Round 2 candidates SpoC, GIFT-COFB, COMET-AES,748

COMET-CHAM, ASCON, and Schwaemm and Esch, on Artix-7, Spartan-6, and Cyclone-V.749

The results show that SpoC, GIFT-COFB and COMET-CHAM achieves the lowest increase750

in dynamic power with increasing frequency.751

8.4 Hardware Benchmarking by Rezvani et. al. [37]752

This work implements three NIST LWC Round 2 candidates GIFT-COFB, SpoC and Spook753

and few other CAESAR candidates on Artix7. All the implementations are validated on754

the CAESAR API. The results depict that GIFT-COFB has the highest throughput-to-area755

(TPA) ratio at 0.154 Mbps/LUT.756

9 Conclusion757

In this work, we presented a lightweight and efficient AEAD scheme GIFT-COFB that758

instantiate AEAD operating mode COFB with block cipher GIFT. In comparison with the759

previous publications [3, 11], small but significant tweaks are introduced to both COFB and760

GIFT to further improve the efficiency and performance. With provable security bounds761

for the operating mode and thorough security analysis, including third party cryptanalysis,762

on the underlying block cipher primitive, GIFT-COFB is one of the more well-established763

and competitive candidates in the NIST lightweight cryptography competition.764

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 27

References765

[1] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for766

Authentication. NIST Special Publication 800-38B, 2005. National Institute of767

Standards and Technology.768

[2] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A new GIFT769

representation. IACR Cryptol. ePrint Arch., 2020:412, 2020.770

[3] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,771

and Yosuke Todo. GIFT: A small present - towards reaching the limit of lightweight772

encryption. In Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th773

International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages774

321–345, 2017.775

[4] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Siang Meng Sim, Yosuke776

Todo, and Yu Sasaki. Gift: A small present. Cryptology ePrint Archive, Report777

2017/622, 2017. https://eprint.iacr.org/2017/622.778

[5] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block779

chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.780

[6] Subodh Bijwe, Amit Kumar Chauhan, and Somitra Kumar Sanadhya. Quantum781

Search for Lightweight Block Ciphers: GIFT, SKINNY, SATURNIN. IACR Cryptol.782

ePrint Arch., 2020:1485, 2020.783

[7] Begül Bilgin. Threshold implementationsas countermeasure against higher-order784

differential power analysis. Doctoral Dissertation to K.U.Leuven, 2015. https:785

//www.esat.kuleuven.be/cosic/publications/thesis-256.pdf.786

[8] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,787

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-788

Lightweight Block Cipher. In CHES 2007, pages 450–466, 2007.789

[9] Meichun Cao and Wenying Zhang. Related-Key Differential Cryptanalysis of the790

Reduced-Round Block Cipher GIFT. IEEE Access, 7:175769–175778, 2019.791

[10] Zhe CEN, Xiutao FENG, Zhangyi Wang, and Chunping CAO. (–Withdrawn–) Forgery792

attack on the authentication encryption GIFT-COFB. Cryptology ePrint Archive,793

Report 2020/698, 2020. https://eprint.iacr.org/2020/698.794

[11] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-795

based authenticated encryption: How small can we go? In Cryptographic Hardware796

and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,797

September 25-28, 2017, Proceedings, pages 277–298, 2017.798

[12] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating799

ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology800

- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and801

Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.802

Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 327–350.803

Springer, 2014.804

[13] The GIFT-COFB Designers. Invalidity of biclique attacks on full GIFT with significant805

complexity advantages. Comments to NIST LWC mailing list, 2022.806

https://eprint.iacr.org/2017/622
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf
https://eprint.iacr.org/2020/698

28 GIFT-COFB

[14] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen. Finding807

Integral Distinguishers with Ease. In SAC, volume 11349 of Lecture Notes in Computer808

Science, pages 115–138. Springer, 2018.809

[15] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost810

foolproof on-line authenticated encryption schemes. In Anne Canteaut, editor, Fast811

Software Encryption - 19th International Workshop, FSE 2012, Washington, DC,812

USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in813

Computer Science, pages 196–215. Springer, 2012.814

[16] Naina Gupta, Arpan Jati, Anupam Chattopadhyay, Somitra Kumar Sanadhya, and815

Donghoon Chang. Threshold implementations of GIFT: A trade-off analysis. IACR816

Cryptology ePrint Archive, 2017:1040, 2017.817

[17] Guoyong Han, Hongluan Zhao, and Chunquan Zhao. Unbalanced biclique cryptanalysis818

of full-round GIFT. IEEE Access, 7:144425–144432, 2019.819

[18] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand,820

Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. Caesar hardware api. Cryptology821

ePrint Archive, Report 2016/626, 2016. https://eprint.iacr.org/2016/626.822

[19] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. DNFA: Differential No-Fault Analysis823

of Bit Permutation Based Ciphers Assisted by Side-Channel. In DATE, 2021. to824

appear. The preprint version is available at IACR Cryptol. ePrint Arch. 2020/1554.825

[20] Akiko Inoue, Tetsu Iwata, and Kazuhiko Minematsu. Analyzing the provable security826

bounds of GIFT-COFB and photon-beetle. IACR Cryptol. ePrint Arch., page 1, 2022.827

[21] Akiko Inoue and Kazuhiko Minematsu. GIFT-COFB is Tightly Birthday Secure with828

Encryption Queries. IACR Cryptol. ePrint Arch., page 737, 2021.829

[22] Kyoungbae Jang, Hyunjun Kim, Siwoo Eum, and Hwajeong Seo. Grover on GIFT.830

IACR Cryptol. ePrint Arch., 2020:1405, 2020.831

[23] Fulei Ji, Wentao Zhang, and Tianyou Ding. Improving Matsui’s Search Algorithm for832

the Best Differential/Linear Trails and its Applications for DES, DESL and GIFT.833

The Computer Journal, 64(4):610–627, April 2021. available at IACR Cryptol. ePrint834

Arch. 2019/1190.835

[24] Fulei Ji, Wentao Zhang, Chunning Zhou, and Tianyou Ding. Improved (Related-key)836

Differential Cryptanalysis on GIFT. In SAC, Lecture Notes in Computer Science.837

Springer, 2021. to appear. The preprint version is available at IACR Cryptol. ePrint838

Arch. 2020/1242.839

[25] Mustafa Khairallah. Weak Keys in the Rekeying Paradigm: Application to COMET840

and mixFeed. IACR Trans. Symmetric Cryptol., 2019(4):272–289, 2019.841

[26] Mustafa Khairallah. Observations on the Tightness of the Security Bounds of GIFT-842

COFB and HyENA. IACR Cryptol. ePrint Arch., 2020:1463, 2020.843

[27] Mustafa Khairallah. Security of COFB against Chosen Ciphertext Attacks. IACR844

Trans. Symmetric Cryptol., 2022(1):138–157, 2022.845

[28] Sebastian Kutzner, Phuong Ha Nguyen, Axel Poschmann, and Huaxiong Wang. On846

3-share threshold implementations for 4-bit s-boxes. In Emmanuel Prouff, editor,847

Constructive Side-Channel Analysis and Secure Design - 4th International Workshop,848

COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected Papers, volume849

7864 of Lecture Notes in Computer Science, pages 99–113. Springer, 2013.850

https://eprint.iacr.org/2016/626

Banik, Chakraborti, Inoue, Iwata, Minematsu, Nandi, Peyrin, Sasaki, Sim, Todo 29

[29] Lingchen Li, Wenling Wu, Yafei Zheng, and Lei Zhang. The Relationship between851

the Construction and Solution of the MILP Models and Applications. IACR Cryptol.852

ePrint Arch., 2019:49, 2019.853

[30] Yu Liu, Huicong Liang, Muzhou Li, Luning Huang, Kai Hu, Chenhe Yang, and854

Meiqin Wang. STP Models of Optimal Differential and Linear Trail for S-box Based855

Ciphers. Science China Information Sciences, 64(159103), May 2021. available at856

IACR Cryptol. ePrint Arch. 2019/25.857

[31] Yunwen Liu and Yu Sasaki. Related-Key Boomerang Attacks on GIFT with Automated858

Trail Search Including BCT Effect. In ACISP, volume 11547 of Lecture Notes in859

Computer Science, pages 555–572. Springer, 2019.860

[32] NIST. Lightweight cryptography project, 2019.861

[33] Jacques Patarin. The "coefficients h" technique. In Roberto Maria Avanzi, Liam862

Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, 15th International863

Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised864

Selected Papers, volume 5381 of Lecture Notes in Computer Science, pages 328–345.865

Springer, 2008.866

[34] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,867

and San Ling. Side-channel resistant crypto for less than 2, 300 GE. J. Cryptology,868

24(2):322–345, 2011.869

[35] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. NIST LWC Software870

Performance Benchmarks on Microcontrollers, 2020.871

[36] Behnaz Rezvani, Flora Coleman, Sachin Sachin, and William Diehl. Hardware872

implementations of NIST lightweight cryptographic candidates: A first look. IACR873

Cryptol. ePrint Arch., 2019:824, 2019.874

[37] Behnaz Rezvani and William Diehl. Hardware Implementations of NIST Lightweight875

Cryptographic Candidates: A First Look, 2019.876

[38] Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of877

the 9th ACM Conference on Computer and Communications Security, CCS 2002,878

Washington, DC, USA, November 18-22, 2002, pages 98–107, 2002.879

[39] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements880

to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT 2004, 10th881

International Conference on the Theory and Application of Cryptology and Information882

Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, pages 16–31, 2004.883

[40] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-884

wrap problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT885

2006, 25th Annual International Conference on the Theory and Applications of886

Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings,887

volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.888

[41] Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle attacks:889

Application to gift. In Atsuo Inomata and Kan Yasuda, editors, Advances in Infor-890

mation and Computer Security, pages 227–243, Cham, 2018. Springer International891

Publishing.892

[42] Rhys Weatherley. Lightweight Cryptography Primitives, 2020.893

30 GIFT-COFB

[43] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack on894

round-reduced gift. Cryptology ePrint Archive, Report 2018/390, 2018. https:895

//eprint.iacr.org/2018/390.896

[44] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack on round-897

reduced GIFT. In CT-RSA, volume 11405 of Lecture Notes in Computer Science,898

pages 372–390. Springer, 2019.899

[45] Rui Zong, Xiaoyang Dong, Huaifeng Chen, Yiyuan Luo, Si Wang, and Zheng Li.900

Towards Key-recovery-attack Friendly Distinguishers: Application to GIFT-128. IACR901

Trans. Symmetric Cryptol., 2021(1):156–184, 2021.902

https://eprint.iacr.org/2018/390
https://eprint.iacr.org/2018/390
https://eprint.iacr.org/2018/390

	Introduction
	Preliminaries
	Notation
	Underlying Finite Field F2n
	Choice of Primitive Polynomials
	Authenticated Encryption and Security Definitions

	Specification
	Syntax
	Building Blocks of GIFT-COFB
	GIFT-COFB Pseudocode

	Design Rationale
	AEAD Scheme: GIFT-COFB
	Underlying Block Cipher: GIFT
	Authenticated Encryption Mode: COFB

	Security
	Security proof of COFB
	Brief summary of security analysis of GIFT
	New third-party analysis and its implications

	Hardware Implementation Details
	Hardware API
	Timing
	Clock Gating
	Performance
	Threshold Implementation

	Software Implementation Details
	Other Implementation/Benchmarking Results on GIFT-COFB
	Software Benchmarking by Renner et. al. lwc:micro
	Software Implementations and Benchmarking by Weatherley et. al. lwc:rhys
	Hardware Benchmarking by Rezvani et. al. DBLP:journals/iacr/RezvaniD19
	Hardware Benchmarking by Rezvani et. al. RezvaniHWimp2019

	Conclusion

