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Abstract—It is standard practice that the secret key derived
from an execution of a Password Authenticated Key Exchange
(PAKE) protocol is used to authenticate and encrypt some data
payload using a Symmetric Key Protocol (SKP). Unfortunately,
most PAKEs of practical interest are studied using so-called
game-based models, which – unlike simulation models – do not
guarantee secure composition per se. However, Brzuska et al.
(CCS 2011) have shown that a middle ground is possible in
the case of authenticated key exchange that relies on Public-
Key Infrastructure (PKI): the game-based models do provide
secure composition guarantees when the class of higher-level
applications is restricted to SKPs. The question that we pose in
this paper is whether or not a similar result can be exhibited
for PAKE. Our work answers this question positively. More
specifically, we show that PAKE protocols secure according
to the game-based Real-or-Random (RoR) definition with the
weak forward secrecy of Abdalla et al. (S&P 2015) allow for
safe composition with arbitrary, higher-level SKPs. Since there
is evidence that most PAKEs secure in the Find-then-Guess
(FtG) model are in fact secure according to RoR definition,
we can conclude that nearly all provably secure PAKEs enjoy
a certain degree of composition, one that at least covers the
case of implementing secure channels.

Index Terms—Cryptographic Protocols, Password
Authenticated Key Exchange, Composability, Composition
Theorem.

1. Introduction

1.1. The problem

The objective of Password-Authenticated Key Exchange
(PAKE) is to allow secure authenticated session key
establishment over insecure networks between two or more
parties who only share a low-entropy password. Even though
there may be other applications of PAKE, it is common
practice that the secret key derived from a PAKE execution
is used to authenticate and encrypt some data payload
using a Symmetric Key Protocol (SKP). For example, two
certificate-less TLS proposals that integrate PAKE as a
key exchange mechanism have recently appeared on the
IETF [1], [2]1. When looking at these two drafts through

1. The reason behind this integration - and not using PAKE with some
symmetric cipher over TCP - is to circumvent the need to establish a
network protocol for data transfer (i.e. TCP or UDP) and to negotiate
symmetric key algorithms (or protocols) on their own.

the lens of composition, one sees that both of them suggest
the PAKE be followed by Authenticated Encryption (AE)
algorithms (namely AES-CCM and AES-GCM). Another
project that makes use of PAKE is Magic Wormhole [3],
the file transfer protocol in which PAKE is composed
with NaCl’s crypto secretbox containing the stream cipher
XSalsa20 and MAC algorithm Poly1305. Consequently,
being able to guarantee the overall security of a composed
protocol, consisting of first running a PAKE and then a
symmetric key application, is imperative.

Unfortunately, the provably secure composition is
difficult to automatically obtain without using complex,
usually simulation-based models. Furthermore, most PAKEs
that are considered for use in real-world applications [4],
[5], [6] and appear in relevant standards (i.e. ISO [7],
IETF [8], IEEE [9]) are studied using so-called game-
based models, which – while being workable to obtain
acceptable proofs – do not guarantee secure composition.
Two most commonly used such models are the Find-
then-Guess (FtG) model of Bellare, Pointcheval, and
Rogaway [10] and Real-or-Random (RoR) definition of
Abdalla, Fouque, and Pointcheval [11]. In essence, while
the FtG security model makes sure that session keys
are individually indistinguishable from random, RoR
offers stronger guarantees: the session keys are globally
indistinguishable from random, and also independent from
each other.

In [12], Brzuska et al. show that a middle ground
is possible in the case of Public-Key Infrastructure-based
key exchange (PKI-KE): Among other things, they define
a framework for PKI-KE that (1) is game-based and (2)
allows to prove that, under a certain technical condition,
secure composition holds when the class of higher-level
applications is restricted to SKPs. The question is whether
or not a similar result can be exhibited for PAKE.

1.2. Our contribution

In this paper, we answer this question positively by
essentially adapting the framework in [12] to the password-
based case. More specifically, our findings are as follows:
• First of all, we demonstrate in Sect. 1.3 that the

composition theorem of Brzuska et al. [12] can not
be directly applied in PAKE setting. Namely, the FtG
definition that was used in [12] to show that PKI-
KE securely composes with an arbitrary Symmetric



Key Protocol (SKP), does not seem to be sufficient
in the case of PAKE. Fortunately, we show that PAKE
enjoys similar composition properties when satisfying
a stronger security notion, i.e. RoR.

• We provide a specific syntax and introduce three stand-
alone security models: game-based RoR PAKE with
weak forward secrecy following [6] and [13]; SKP
(closely following [12]); and a composition model –
which was built by carefully merging the previous
two. More specifically, we define a security game for
the two-party composed protocol that consists of a
PAKE protocol and an arbitrary SKP and determine the
optimal lower bound of security for such composition.
In addition, we provide an intuition why RevealReveal query
might be, in fact, necessary when (1) modeling forward
secrecy in RoR and (2) trying to achieve composability
(see Sect. 2.2.7).

• Most importantly, we present a composition theorem
showing that PAKE protocols secure in the sense
of RoR definition from [6] and [13] allow for
automatic, secure composition with arbitrary, higher-
level symmetric key protocols, thus yielding secure
composition.

Since in [11] the authors provide evidence that most
PAKEs secure in the FtG model of [10] are in fact
secure according to RoR (see also [14]), we can conclude
that nearly all provably secure PAKEs enjoy a certain
degree of composition, one that at least covers the case
of implementing secure channels. It should be noted that
for our result to hold, we also need the technical condition
mentioned earlier to be fulfilled. However, we emphasize
that to the best of our knowledge, for nearly all published
PAKEs this is always the case. Prominent examples include
EKE [15], PAK [4], [16], SPAKE2 [5], [17], Dragonfly [8],
[18], SPOKE [14] and J-PAKE [6]. The next section
explains our work in more detail.

1.3. Password-induced subtleties

It is well-known that already when dealing with “basic”
PAKE definitions, the usual low-entropy nature of the long-
term authentication material causes definitional headaches.
It is, therefore, no surprise that similar issues should
be encountered here. We begin with a simple recap of
how PAKE security is defined in [10]. Then, we briefly
explain the theorem of Brzuska et al. [12] and show
where passwords cause trouble. Finally, we show how to
circumvent this problem, and in particular why RoR is more
suitable than FtG.

1.3.1. The Find-then-Guess model for PAKE. As in
all reasonable key exchange security models, in [10] the
adversary A is modeled as a network adversary: It can
bring to life protocol participants with access to the secret
long-term keying material and deliver to these instances
messages of its choice. In the event that an instance accepts
and computes a session key, A may ask that this key is

revealed, modeling higher-level protocol leakage. In some
models, it may even corrupt protocol participants in an effort
to account for e.g. forward secrecy.

Crucially, to capture the fundamental notion of session
key semantic security, A is allowed to make a single TestTest
query, from which it receives either the real session key
computed by the target instance or a random key. A’s goal
is to determine which it is. Its advantage AdvAdvFtG

P (A) against
protocol P is essentially defined as the distance of its success
probability from 1/2.

In PKI-KE, i.e. when users’ long-term keys are public
key/secret key pairs, it is natural to ask that AdvAdvFtG

P (A)
be a negligible function in the security parameter. When
the long-term keys are passwords however – say, uniformly
selected from a dictionary PassPass of size N – the best we can
expect is:

AdvAdvFtG
P (A) ≤ B · nse

N
+ ε, (1)

where B is some constant, ε is negligible, and nse measures
the number of instances A has tried online attacks on using
guessed passwords2. Note that the first right-hand term is
not negligible in general.

1.3.2. The composition result for PKI-KE in [12]. Let S
be some arbitrary, two-party, symmetric key protocol and
P; S denote its “natural” composition with P. The main
theorem established in [12] for the PKI-KE case states that
for every probabilistic polynomial-time (PPT) adversary A
playing a suitably defined security game against P; S there
exist PPT adversaries B against P and C against S such that
following formula holds:

AdvAdvP;S(A) ≤ q · AdvAdvFtG
P (B) + AdvAdvS(C), (2)

where q is the maximum number of instances in play in
the key exchange game. Of course, in [12]’s framework,
security of the composition holds when the left-hand term
is negligible. Therefore, the upper bound implies this under
the condition that P and S are secure. Indeed, observe that
q is at most polynomial in the security parameter and that
AdvAdvFtG

P (B) is supposed to be negligible when using PKI-
KE. (And, of course, S is secure if AdvAdvS(C) is negligible
for all C.) This effectively shows that the security of the
composition P; S is guaranteed by the stand-alone security
of P and S.

1.3.3. Two immediate password problems. There are two
main obstacles to overcome when trying to get a password
analog of Eq. 2 to work, and both stem from the non-
negligible term in Eq. 1.

First, it is clear that the term q · AdvAdvFtG
P (B) cannot be

negligible anymore. Thus, it makes no sense to try and
deduce from Eq. 2 that the left-hand side is ultimately
negligible. The only way out of this is to “boost” the left-
hand side. Fortunately, there is a natural way to do this.
Indeed, intuitively it should be clear that the composed

2. B is usually interpreted as the number of passwords that can be tested
simultaneously during one log-on attempt.



protocol will also suffer from a breach in the event A
guesses a password and mounts an online attack. Thus, it
is the definition of security for the composed protocol that
has to change, in that it needs to incorporate the same non-
negligible bound as in Eq. 1. In other words, at best we can
only require by definition that:

AdvAdvP;S(A) ≤
B · nse
N

+ ε, (3)

where B is some constant, ε is negligible, and nse counts
A’s online attacks. In short, our first problem is handled at
the definition level. But, Eq. 3 leads to our second problem.

If we simply plug our optimal FtG PAKE bound into
the right-hand side of Eq. 2, we obtain

AdvAdvP;S(A) ≤
B · q · nse

N
+ AdvAdvS(C). (4)

This is not what we want: The q factor is still making the
desired upper bound too large for our purpose! This is where
using the RoR model comes in handy.

In the proof of the main theorem in [12], the authors
need to make use of a hybrid argument indexed by the
instances in play: The idea is to have the simulator plant
the only available TestTest query at the randomly chosen index.
This is what makes the q come out. Our observation is that
by using the RoR model – in which multiple TestTest queries are
allowed – we can avoid having this parasite factor appear.

In short, our main theorem says that for every PPT
adversary A playing against P; S there exist PPT adversaries
B and C such that:

AdvAdvP;S(A) ≤ AdvAdvRoR
P (B) + AdvAdvS(C), (5)

and from this theorem we get that if P and S are actually
secure, the optimal bound stated in Eq. 3 holds3.

1.3.4. The technical condition. Let us briefly return to
the “technical condition” mentioned above. Roughly, it
states that when observing many PAKE interactions over
a network, it is publicly possible to determine pairs of
communicants holding the same session key. This property
is related to partnering 2.2.4 and is formally described
further down (see Sect. 2.3). Often in PAKE research [10],
partnering is defined using session identifiers that are locally
computed. In practice, most published PAKEs define these
identifiers simply by concatenating the PAKE message flows
with their identities. Clearly, this is a publicly checkable
criterion. Hence, the condition causes no real limitation to
our result.

1.4. Related work

1.4.1. Password-authenticated key exchange. PAKE
protocols have been very heavily studied in the past twenty-
five years. Bellovin and Meritt pioneered the idea of PAKE
in [15]. The first reasonable security models for PAKE,

3. Note that the presence of passwords has no effect on the security of S
as a stand-alone primitive. This is why AdvAdvS(C) should remain negligible.

FtG and BMP, appeared in [10] and [19], respectively.
Later, Katz et al. [20] showed how to practically realize
provably secure PAKE without random oracles (but using
a common reference string). In parallel to this, in more
theoretical work Goldreich et al. [21] showed that PAKE is
possible just using general complexity assumptions, and no
trusted setup whatsoever. Finally, Canetti et al. introduced
Universally Composable (UC) PAKE in [22]. This list is
massively incomplete; more works can be found in [23].
From a strict PAKE standpoint, the work most relevant
to ours is [11], where it was shown among other things
that allowing multiple TestTest queries in the model (RoR) as
opposed to only one (as in FtG model of [10]) yields a
strictly stronger security notion in the password case. The
known relations between PAKE security definitions [24] are
summarized in Fig. 1. In the rest of this section, we focus
on works that have contributed to secure composition of key
exchange with other protocols.

RoR BMP

FtG UC

Figure 1: Known relations between PAKE definitions.

1.4.2. Composition of key exchange. The first to
successfully provide a framework in the game-based setting
that grants stronger composition guarantees were Canetti
and Krawczyk [25]. Indeed, they identified a security notion
(SK-security) that is sufficient to yield a secure channel
when appropriately composed with a secure symmetric
encryption algorithm and MAC. As far as we know,
this result was never adapted to the password-based
case. The simulation-based models of Shoup [26] (for
ordinary key exchange) and Boyko et al. [19] (for PAKE)
claim to have a “built in” composition guarantee, but
this only been informally argued. Later, applying the
methodology of Universal Composability (UC) for key
exchange [27], a second, stronger simulation-based notion
– UC PAKE – was proposed by [22]. These models’
robust composition guarantees are profoundly appealing.
Also, when working with UC PAKE framework of [22], one
makes no assumption regarding the password distribution
used by the protocol participants. This property, together
with direct composability are the two main advantages of
UC approach. On the other hand, the models themselves are
harder to work with than the simpler, game-based models.
Another shortcoming of UC approach is its restrictive nature
which yields not overly efficient protocols. However, this
efficiency gap between UC and game-based PAKE is slowly
diminishing [28], [29], [30]. Unfortunately, the adoption of
UC PAKE in practice seems to be low, especially when
looking at the activity around the various standards for
PAKEs [7], [8], [9].



Although key exchange protocols proven in the game-
based model of [31] remained mostly used in practice, it
took almost a decade before someone started addressing
the problem of studying the composability properties of
this setting. Namely, this was done by Brzuska et al.
in [12], [32], [33]. They presented a more general framework
which allowed showing that FtG secure PKI key exchange
protocols are composable with a wide class of symmetric
key protocols under the condition that a public session
matching algorithm for the key exchange protocol exists.
In subsequent work [34], the authors have shown that even
a weaker notion for key exchange protocols would still
be enough for composition, and apply this to the TLS
handshake. As far as we are aware, no similar study has been
conducted in the password-based setting. With this work, we
aim to begin filling this gap, by adapting the results of [12].

2. Password Authenticated Key Exchange

Password Authenticated Key Exchange (PAKE) offers a
cryptographic service that allows two users that share a low-
entropy key to agree upon a short-term, cryptographically
strong session key. Informally, from the security perspective,
we expect a PAKE protocol to be secure in the presence
of offline dictionary attacks against the user’s password
while limiting online password guessing attempts to a
constant number per impersonation attempt. In other words,
eavesdropping on PAKE communications leaks no password
information to the adversary, and online interaction leaks the
validity or invalidity of only a constant number (ideally, one)
of password guesses4.

Below, we first formally define PAKE protocols. Then,
using some notational elements from [12], we present in
detail a variant of Real-or-Random (RoR) model that was
originally described in [11]. This variant has been recently
used in [6], [13], and in contrast to the original RoR model
from [11], it considers (weak) forward secrecy by allowing
weak adaptive corruptions5.

2.1. PAKE protocols

A PAKE protocol can be represented as a pair of
algorithms (PWGen,P): a password generation algorithm
PWGen and an algorithm P that defines the execution of
the PAKE protocol. PWGen takes as input a set of possible
passwords PassPass, equipped with a probability distribution
P . For simplicity of exposition, we make the assumption
that P is the uniform distribution on PassPass, and that user
passwords are selected independently. It is possible to drop
the uniformity requirement by adjusting the security of each
password to be the min-entropy of the password distribution
(see [35]). We denote N the cardinality of PassPass. We can

4. Note that this is a purely algorithmic guarantee, independent of the
implementation of a feature that locks an account after too many failed
login attempts.

5. The corruption of a principal reveals only its password without
revealing associated internal state.

assume that algorithm P specifies several sub-algorithms,
one of which generates the system’s public parameters,
common to all principals.

2.2. The Real-Or-Random model

Let us denote a game that represents the RoR security
model GRoR. For such a game, there exists a challenger
CHRoR that will keep the appropriate secret information
away from an adversary A while administrating the security
experiment.

2.2.1. Participants and passwords. In the two-party PAKE
setting, each principal or user U , named by a string, is
either from a Clients set or a Servers set, which are finite,
disjoint, nonempty sets. The set IDpake represents the union
of Clients and Servers. Furthermore, we assume that each
client C ∈ Clients possesses a password pwC , while each
server S ∈ Servers holds a vector of the passwords of all
clients pwS := 〈pwC〉C∈Clients. Following the convention
in Sect. 2.1, these passwords are sampled independently and
uniformly from PassPass at the beginning of GRoR.

2.2.2. Protocol execution. The protocol P is a PPT
algorithm that specifies the reaction of principals to network
messages. In reality, each principal may run multiple
executions of P with different users, thus in the model,
each principal is allowed an unlimited number of instances
executing P in parallel. We denote U i the i-th instance of
principal U . In some places, where distinction matters, we
will denote client instances Ci and server instances Sj .

When assessing the security of P, we assume that
the adversary A has complete control of the network. In
practice, this means that principals communicate solely
through the attacker, who may consider delaying, reordering,
modifying, and dropping messages sent by honest principals,
or injecting messages of its choice to attack the protocol6.
Moreover, A has access to principals’ instances through the
game’s interface, which is offered by CHRoR. Thus, while
playing the security game, A provides the inputs to CHRoR

– who parses the received messages and forwards them to
corresponding instances – via the following queries:

• SendSend(U i,M ): A sends message M to instance U i.
As a response, U i processes M according to P,
the corresponding internal state7 is updated, and the
instance outputs a reply that is given to A. Also, the
adversary A will be informed in case a SendSend query
causes an instance to accept or terminate. To keep
our result as general as possible, we do not assume
that the session and partner identifiers (sid and pid),
once computed, are given to A (contrary to [10]). A
SendSend(U i, V ) query has instance U i output P’s first
message, destined to principal V . The purpose of the

6. This model assumes that the passwords setup procedure is private.
7. The description of the internal state and the definitions of partnering

and freshness can be found below.



SendSend query is to model communication and active
attacks.

• ExecuteExecute(Ci, Sj): This query triggers an honest run of P
between client Ci and server Sj , and the transcript of
the protocol execution is given to A. It covers passive
eavesdropping on protocol flows.

• RevealReveal(U i): As a response to this query, A receives the
current value of the session key skPi

U . A may do this
only if U i has accepted (holding a session key) and
a TestTest query has not been made to U i or its partner
instance. This query captures potential session key
leakage as a result of its use in higher level protocols.
It ensures that if some session key gets exposed, other
session keys remain protected.

• TestTest(U i): At the beginning of GRoR, a hidden bit b
is randomly selected by CHRoR and used for all TestTest
queries. If b = 1, A receives skPi

U as an answer to
the TestTest(U i) query. Otherwise, A receives a random
string from the session key space8. In contrast to the
FtG model, some additional care must be taken in case
the TestTest keys are random (b = 0): CHRoR needs to
make sure that two partnered instances will respond
with the same random value. Note that only a fresh
instance can be a target of a TestTest query. This query
measures the semantic security of session keys.

• CorruptCorrupt(U ): The password pwU is given to A if U is
a client, and the list of passwords pwU in case U is a
server. This query models compromise of the long-term
key and captures weak forward secrecy.

As can be seen above, the adversary is allowed to send
multiple SendSend, ExecuteExecute, RevealReveal, CorruptCorrupt, and TestTest queries
to the challenger. Note that the validity and format of each
query are checked upon receipt.

2.2.3. Internal state and initialization. In the interest
of running a sound simulation, the challenger CHRoR

maintains two types of internal state in the form of certain
random variables, and updates it as (1) the actual network
interactions between A with the instances running P on
the lower level and (2) the security game GRoR on the
higher level, progress. The first type of internal state
contains the necessary data for the actual execution of P
by the instances. It is called the execution state ESTpake.
The other kind of state is referred to as the game state
GSTpake; it stores information used by CHRoR to keep
track of and administer the game, as well as define security
(e.g. a hidden bit, flags that indicate corruptions, etc.).
Figure 2 lists all of these variables, which we also detail
below. Notice that variables may be user-specific (e.g.
passwords), others are defined per instance (e.g. statusPi

U ,
sidiU , skPi

U ), and yet others are global to the game (e.g.
the test bit b).

8. Thus, the session keys that are forwarded to A in response to TestTest
queries are either all real or all random.

Execution state. Let U be a user and U i an instance.
U holds – and instance U i uses – the long-term keying
information pwU , set at the beginning of the game. The
variable skPi

U stores the session key which U i may establish
during a protocol run. The session identifier sidiU uniquely
labels the protocol session U i wishes to establish with some
other instance. U i also holds a partner identifier pidPi

U ,
representing the identity of the principal with which U i

believes it shares a session key. All three variables (skPi
U ,

sidiU , and pidPi
U ) start out set to ⊥. The value statusPi

U
tracks the status of an instance U i and it is initially set
to running. When statusPi

U = running, the instance is
simply waiting for the next protocol message. U i changes
its statusPi

U from running to accepted once it computes
skPi

U , sidiU , and pidPi
U . An instance U i that has accepted

sets its status to terminated once it no longer accepts or
sends any messages. When statusPi

U = rejected, U i stops
sending and receiving messages and refuses to establish a
session key. Finally, a variable infoPi

U stores any additional
information U i needs in order to perform its computations
(e.g. exponents for Diffie-Hellman-type terms).

Internal State: For U ∈ IDpake, C ∈ Clients, S ∈
Servers, and i ∈ N, the internal state is maintained as
follows:
Execution State ESTpake
? pwC ∈ PassPass; pwS := 〈pwC〉C
? statusPi

U ∈ {running, accepted, terminated, rejected}
? sidiU , skP

i
U , infoP

i
U ∈ {0, 1}∗ ∪ {⊥}

? pidPi
U ∈ IDpake ∪ {⊥}

Game State GSTpake
? b ∈ {0, 1}; riU ∈ {⊥, hidden, revealed}
? tiU ∈ {⊥, untested, tested}
? pnrPi

U ∈ IDpake × N ∪ {⊥}
? f i

U ∈ {⊥, unfresh, fresh}
? δ ∈ {0, 1}; δiU ∈ {honest, corrupted}.

Figure 2: The internal state of PAKE in the RoR model.

Game state. Concerning the game state, we first have the
test bit b which is flipped by CHRoR at the beginning of
the game. The flag riU indicates the status of a session
key held by U i, thus showing if the instance has been a
target of a RevealReveal query or not. It is set to ⊥ until skPi

U
is non-⊥; then it is by default set to hidden. Similarly, tiU
shows if an instance has been the target of a TestTest query. It
is set to ⊥ until skPi

U is non-⊥; then it is by default set
to untested. The variable pnrPi

U , which starts out as ⊥,
stores the identity of the partner instance. Freshness of an
instance (defined below) is tracked with f iU ; this is set to
⊥ until skPi

U is non-⊥. Then, it is set by default to fresh.
Lastly, the corruption flags are maintained: (1) the value
δ indicates if a CorruptCorrupt query has been made so far; (2)
the flag δiU , which starts out set to honest, shows whether
the instance U i received a message after some password



disclosure has occurred: the value of the flag switches from
honest to corrupted only if a SendSend(U i,M ) query was
made while δ = 1 and statusPi

U = running9. In contrast,
if U i is the target of an ExecuteExecute query while δ = 1, then
δiU remains set to honest.

Initialization. In an initialization phase (see Fig. 3), which
occurs before the execution of a protocol, public parameters
and the internal state are fixed. The appropriate sub-
algorithm of P, called ParamGen, is run to generate the
system’s public parameters ParamsP. From the adversary’s
perspective, an instance U i comes into being after SendSend(U i,
V ) query is asked. For each client a secret pwC is drawn
uniformly and independently at random from a finite set
PassPass of size N and is given to all servers.

InitialPAKE(1k): The Clients and Servers sets are
fixed in advance. For i ∈ N, U ∈ IDpake, C ∈
Clients, and S ∈ Servers, the initialization procedure
is performed as follows:

Generate Public parameters
? ParamsP← ParamsGen(1k)

Initialize ESTpake

? pwC ← PWGen; pwS [C] := pwC

? statusPi
U := running

? sidiU , skP
i
U , infoP

i
U , pidP

i
U := ⊥

Initialize GSTpake

? b← {0, 1}; riU , t
i
U := ⊥

? pnrPi
U , f

i
U := ⊥

? δ := 0; δiU := honest

Figure 3: The initialization procedure for PAKE.

2.2.4. Partnering. We say that instance U i is a partner
instance to V j and vice versa if: (1) U is a client and V is
a server or vice versa, (2) sid := sidiU = sidjV 6= ⊥, (3)
pidPi

U = V and pidPj
V = U , (4) both instances U i and V j

have accepted, (5) skPi
U = skPj

V , and (6) no other instance
has a non-⊥ session identity equal to sid.

2.2.5. Freshness. This property captures the idea that the
adversary should not trivially know sessions keys being
tested. An instance is said to be fresh if it has accepted (with
or without a partner) and f iU = fresh. (Before acceptance,
f iU = ⊥.) The value f iU switches to unfresh if any of the
following conditions holds: (1) riU = revealed, or (2) if
U i has a partner instance V j and rjV = revealed, or (3)
δiU = corrupted.

9. Note that here we mean that any CorruptCorrupt query may have been asked
and not necessary one that targets the principal U . This is arguably a very
weak notion of forward secrecy, but one that is typically used in PAKEs
[4], [6], [13], [36]. A slightly stronger forward secrecy notion can be found
in [10], [14], [37].

2.2.6. PAKE security. Now that we have defined
partnering, freshness and all the queries available to
the adversary A, we can formally define the password
authenticated key exchange (RoR) advantage of A against
P.

Eventually, A ends the game and outputs a bit b′. We
say that A wins and breaks the RoR security of P if b′ = b,
where b is the hidden bit selected at the beginning of the
protocol execution. We denote the probability of this event
by P[b′ = b]. The RoR-advantage of A in breaking P is
usually defined as

AdvAdvRoR
P (A) := |2 · P[b′ = b]− 1| . (6)

It turns out to be more convenient for us later to
reformulate the RoR-advantage function. Let b be a bit. We
denote GRoR−b the game played exactly as GRoR, except
that (1) the bit b has been fixed in advance and (2) at the end
of the game GRoR−b outputs a final bit denoted b′′ computed
as follows: b′′ := 1 if and only if b = b′. (Recall that b′ is
the bit output by A.) Using Pb to denote probabilities in the
space defined by game GRoR−b, it is then easy to see that
AdvAdvRoR

P (A) as defined in Eq. 6 can be re-written as

AdvAdvRoR
P (A) :=

∣∣P1[b′′ = 1]− P0[b′′ = 0]
∣∣ . (7)

Finally, we say that P is ake-secure if there exists a
positive constant B such that for every PPT adversary A it
holds that

AdvAdvRoR
P (A) ≤ B · nse

N
+ ε (8)

where nse is an upper bound on the number of SendSend queries
A makes, and ε is negligible in the security parameter.
Recall that N is the cardinality of PassPass and that passwords
are assigned uniformly at random to users. This formula
adequately captures the idea that an adversary’s advantage
in breaking a PAKE should only significantly grow if the
adversary actively tests candidate passwords against user
instances. In particular, a protocol secure in this model
guarantees that an offline dictionary attack succeeds with
at most negligible probability.

2.2.7. Forward secrecy. While being considered an
advanced security feature, forward secrecy is a valuable
property in the context of key exchange protocols. It
provides the guarantee that past session keys will not be
automatically divulged by the compromise of long-term keys
(obviously assuming that past session keys are deleted from
memory before the compromise).

As in other game-based models for key exchange
protocols, the notion of Forward Secrecy (FS) in our RoR
model is captured by allowing the adversary to make the
CorruptCorrupt query, which may come in different flavors. The FS
property is then fine-tuned through the freshness definition
or the power given to the adversary10.

10. In the literature, several types of CorruptCorrupt queries have appeared [37],
based on the amount of secret information the adversary learned or had
the opportunity to modify.



This additional adversarial power (CorruptCorrupt query),
imposes certain changes in the model. For instance, recall
that the RevealReveal query was disallowed in the original RoR
model [11]. There, misuse of the keys (session key leakage)
was modeled solely using TestTest queries. Nevertheless, as
in the recent works [6] and [13], in our model we again
allow the adversary to make the RevealReveal query. This change
is essential to accommodate corruption queries in the RoR
model. Specifically, the reason for re-inclusion of the RevealReveal
query is the following. After the corruption of any principal
(δ set to 1), the adversary is no longer allowed to use
TestTest queries to target instances that hold newly-established
session keys (except those originating from ExecuteExecute query).
Therefore, the RevealReveal query is needed to model misuse of
those keys as well. Moreover, without the RevealReveal query we
would not be able to achieve our secure composition result
that includes FS under above-specified freshness condition
(see Fig. 10 on page 13).

2.3. Public partner matching

As in [12], for our composition result to hold, we
need the underlying PAKE protocol to satisfy an additional
property that we will call partner matching. Informally,
we say that a PAKE protocol meets the partner matching
property if an observer of network communications can
deduce partnering information.

The reason we need this property is the following. In our
reductionist proof, we will specify an algorithm, the RoR
adversary B, which will simulate the appropriate security
game for the adversary A it is using as a subroutine, in the
RoR security game. While only observing and forwarding
the communication between A and the RoR challenger
CHRoR, B has to be able to assign the same key to two
partner instances for the rest of A’s simulation to be sound.
To accomplish this, B would need to be capable, at any
time, to output a list of all partnered instances. However,
even if the PAKE protocol is RoR secure, this ability is not
always guaranteed: It depends how protocol handles session
and partner identifiers. In other words, RoR security does
not necessarily imply the partner matching property.

Note that in the FtG model of [10], the session identifier
sid and partner identifier pid are given to the adversary
after instance accepts and therefore is public information. In
[12], this is claimed to be enough to assume that a partner
matching algorithm is available. This happens to be often
true in the PAKE case. Indeed, most PAKEs in the literature
rely on session identifiers built as concatenations of sent and
received messages and identities to determine partners. This
makes partner matching immediate.

2.3.1. Partner matching algorithm. We define an efficient
partner matching algorithm M that enables an observer of
the RoR security game to identify partner instances by
outputting a partnering list LpnrP. This list consists of pairs
of user instances (U i, V j), one of which is marked as ⊥
if an instance does not have a partner yet. The input to the
algorithm M includes all the queries the RoR challenger

CHRoR receives from the adversary A and all the replies
CHRoR returns to A together with all the public values.

3. Symmetric Key Protocols

In [12], the authors introduced the notion of Symmetric
Key Protocols (SKP) as an umbrella term that encompasses
two-party protocols whose execution relies solely on a
shared symmetric secret key (e.g. authenticated encryption
protocols). In our work, we focus on the same class
of protocols, or, more precisely, on the security of their
composition with PAKEs. This study is of practical value
since in real world applications session keys that originate
from PAKEs are typically used in SKP protocols. In this
section, closely following [12] (except for minor notational
differences), we first formally define what an SKP entails,
and then present the model that captures generic security
requirements of SKP.

3.1. Symmetric key protocols

We formally define an SKP protocol as a pair of
algorithms (KGen,S), where KGen is a PPT key
generation algorithm, and S is a PPT algorithm that defines
the execution of the SKP protocol. The KGen algorithm
outputs the session keys from the key space K according
to some probability distribution K when given as input a
security parameter k.

3.2. Security model

We denote Gsym a game that captures the security of
the symmetric key protocol. Informally, the security game
should allow the adversary to initialize a new honest instance
that is equipped with a fresh session key unknown to the
attacker. Then, being in the two-party symmetric setting, the
adversary should also be able to initialize a new instance and
partner it with another already existing one - this models the
prior result of two partner instances having established the
same session key11. Additionally, the attacker may create
as many dishonest instances as it desires equipped with a
secret key of its choice.

3.2.1. Participants. In two-party symmetric key protocols,
each principal W comes from a finite, nonempty set IDskp.
Note that we do not make any assumption on the principals’
possession of a long-term secret.

3.2.2. Protocol execution. An algorithm S specifies the
reaction of parties involved in SKP to messages that appear
on the network. The security game mechanism and the
assumption on the power of the adversary are analogous to
those for PAKE. Thus, we assume that an adversary A has
complete control of the network. Naturally, each principal
may run multiple executions of S with different partners,

11. The number of instances sharing the same key should be at most
two.



and thus we allow an unlimited supply of instances to be
initialized for each principal. In this model, the adversary
A may make at least the following queries:

• InitHInitH(U i): Upon receiving this query, the challenger
CHsym initiates an instance U i with a new session key
from the KGen algorithm.

• InitPInitP(U i, V j): This query initiates an honest instance
U i and assigns to it the key held by V j , making them
partners. A restriction in this model is that at any time
during a protocol execution A may only use once each
instance as an input to an InitPInitP query. Note that this
query faithfully models the asymmetry at the time of
key acceptance, since in key exchange there is always
one instance waiting for the last protocol message.

• InitCInitC (U i, skS): As a result of this query, a dishonest
instance U i is initialized with the session key of the
adversary’s choice skS.

• SendSend(U i,M ): The message M is sent to instance U i

by the adversary A. As a response, U i processes M
according to S, updates its corresponding internal state,
and outputs a reply. In this model a SendSend(U i, ·) query is
valid only if the instance U i has been already initialized
and is holding the session key. A SendSend(U i, StartStart) query
causes the instance U i to output S’s first message. As
in PAKE, the purpose of the SendSend query is to model
communication and active attacks12.

In addition, the validity and format of each query are
checked upon receipt.
Discussion. We emphasize that this is the minimal set of
queries A has access to. Additional queries may be needed
depending on the specification of the service S provides.
For instance, in case SKP protocol should provide Chosen-
Plaintext Attack (CPA) security in a multi-user setting,
the adversary would be given access to a Left-or-Right
LoRLoR(U i,M0,M1) query.

3.2.3. Internal state and initialization. The internal state
for Gsym, presented in Fig. 4, is maintained by the
challenger CHsym.
Execution state. The execution state, necessary for the
execution of the protocol S for every user instance, includes
at the very least a session key skSiU , a partner identifier
pidSiU , and the variable statusSiU that shows the status of an
instance. Depending on the particular scheme, the execution
state may also include additional values, stored in infoSiU .
Game state. As in [12], the game state, which stores
information relevant to the security game’s administration,
is left under-specified, due to the generic nature of the
model. Therefore, in GSTskp, we only include a flag siU
that tracks the status of the session key held by U i, and
a variable pnrSiU that stores the identity of the partner
instance. Both values are set to ⊥. The status of the session
key is upon initialization set to private, except in two

12. One could add ExecuteExecute query, but it does not seem useful for SKP.

Internal State: For U ∈ IDskp and i ∈ N, the internal
state is maintained as follows:

Execution State ESTskp
? statusSi

U ∈ {pending, running, aborted}
? skSi

U ∈ {0, 1}∗ ∪ {⊥}; pidSi
U ∈ IDskp ∪ {⊥}

? infoSi
U ∈ {0, 1}∗ ∪ {⊥}

Game State GSTskp
? siU ∈ {⊥, private, known}
? pnrSi

U ∈ IDskp × N ∪{⊥}
? addSi

U ∈ {0, 1}∗ ∪ {⊥}.

Figure 4: The internal state of symmetric key protocol.

cases: (1) the instance came into being through an InitCInitC
query, and (2) the instance was partnered with a dishonest
instance through the InitPInitP query. In these two cases, the
status of the instance is set to known13. Finally, we include
addSiU , for any additional values the game state may require.

Initialization. The initialization procedure of SKP is slightly
different than one from PAKE, since here the adversary uses
dedicated queries to fully initialize an instance. As shown
in Fig. 5, the internal state is updated based on the type of
initialization query.

InitialSKP(1k): For U ∈ IDskp and i ∈ N, the
initialization procedure is performed as follows:

Initialize ESTskp
? statusSi

U := pending

? skSi
U , pidS

i
U := ⊥

? infoSi
U := ⊥

Initialize GSTskp
? siU , pnrS

i
U := ⊥

? addSi
U := ⊥

If the adversary asks one of InitInit queries, statusSiU is
set to running and rest of the internal state is updated
as follows:

if InitHInitH(U i): skSi
U ← KGen; siU := private;

if InitCInitC(U i, skS): skSi
U := skS; siU := known;

if InitPInitP(U i, V j): skSi
U := skSj

V ; siU := sjV ;

pidSj
V := U ; pidSi

U := V ;

pnrSi
U := V j ; pnrSj

V := U i.

Figure 5: The initialization procedure for SKP.

13. As usual, we cannot guarantee the security of such instances.



3.2.4. Partnering. We say that instance U i is a partner
instance to V j and vice-versa if: (1) statusSiU = running
and statusSjV = running; (2) pidSiU = V and pidSjV =
U ; and (3) skSiU = skSjV .

3.2.5. SYM security. The definition of sym-security
depends on the protocol in use. In general, we say that A
wins and breaks the sym-security of S if he triggers some
event that a particular security definition deems bad (e.g.
correctly guessing the challenge bit in the CPA security
experiment, successfully forging a MAC tag in the message
authentication experiment, etc.). We denote this bad event
symsym. The sym-advantage of A in breaking S is

AdvAdvsym
S (A) := |P[symsym]−4| , (9)

for some constant 414 that depends on S. Note that in
contrast to the PAKE case, here it is natural to define security
as requiring that the adversary’s advantage be negligible.

4. Composition of PAKE with SKP

In the previous two sections, we defined Password
Authenticated Key Exchange (PAKE) and Symmetric Key
Protocols (SKP), and presented their stand-alone security
models. In this section, we first show how the composition
of the two is realized on the algorithmic level and then we
present a way to model its security. In this composition,
PAKE is responsible for the authenticated key establishment
between two users. Afterwards, the composition runs an
SKP that may serve different purposes, such as providing
authenticated or confidential channels (or both), etc. In a
similar fashion as in [12], the composition works as follows.

4.1. Composed protocol

Recall that in Sects. 2 and 3 we defined a password
authenticated key exchange protocol and symmetric
key protocol as pairs of algorithms (PWGen,P) and
(KGen,S), respectively. Given these, we now define a
composed protocol as a pair (CGen,C).

We instantiate the CGen algorithm as PWGen, i.e. the
long-term keys of the composition are those from the key
exchange, which in the PAKE case are passwords. Note that
the same limitation of game-based models applies here; as
in PAKE, we shall assume that passwords are independent
and uniformly distributed. In contrast to CGen, algorithm
C is instantiated as the “natural” composition of both P and
S. More precisely, C first runs the PAKE protocol P and
whenever an instance successfully terminates after running
P, a freshly generated session key is passed as input to the
protocol S, which is thereupon performed. The algorithm C
will choose appropriate algorithms to run based on the status
of an instance, which can be checked through the statusPi

U
and statusSiU variables. Namely, if the statusPi

U of an

14. Typical values include 1/2 and 0 for e.g. encryption and MACs
respectively.

instance is set to running or accepted, the P algorithm will
be executed. By contrast, in case statusPi

U = terminated,
S will be performed.

4.2. Security model for the composition

Now, given a composed protocol (CGen,C), the next
step is to define a security model for it. We denote by Gcom

a security game for the composed protocol. As one may
expect, the composed game will borrow elements from both
GRoR and Gsym.

Following [12], we assert that the adversary’s ultimate
goal against the composition is to break the security of the
symmetric key protocol that follows the PAKE. However,
since the authentication means in this composed protocol are
passwords, it is natural to expect that the best we can hope
for in case of an active attacker is that the security definition
of the composition is “broken” as soon as a password is
guessed.

4.2.1. Participants. The two-party composition of PAKE
and SKP inherits PAKE’s participant format of disjoint
clients and servers. Thus, we will assume that the sets
IDpake and IDskp are equal and we denote this single set
IDcom.

4.2.2. Protocol execution. The protocol C is a PPT
algorithm that specifies the reaction of principals to network
messages. The adversary A is allowed to interact with
multiple distinct executions of both the key exchange and
symmetric key protocols. Therefore, we keep the notion of
instance intact: An instance of the principal that holds the
password - denoted as before U i - will participate in the
execution of the composed protocol. Of course, we also give
A access to certain queries. These are a combination of those
in GRoR and Gsym.

From GRoR, A gets access to the CorruptCorrupt and ExecuteExecute
queries, but is no longer allowed to make RevealReveal or TestTest
queries. The reason is that in GRoR these latter two
queries model session key leakage in higher-level protocols.
Since in the composed game the higher-level protocol in
question is specified (SKP), inheriting these from GRoR

is not necessary. By allowing the adversary to ask the
CorruptCorrupt query, we model “forward secrecy” for composed
protocol15.

From Gsym, A no longer has access to InitHInitH, InitPInitP,
and InitCInitC. This is because intuitively, in the composition,
symmetric key-protocol instance initialization coincides
with session-key acceptance. However, A does have access
to any supplementary query available in Gsym relevant to
S’s exact definition. (See the last paragraph of “protocol
execution” in Sect. 3.2.2.)

Finally, A still has access to the SendSend query, in order
to deliver arbitrary messages to instances. Whether these
messages are treated as PAKE messages or symmetric

15. Notice that the forward secrecy of the composed protocol directly
stems from the forward secrecy of PAKE protocol.



protocol messages depends on the status of the targeted
instance: before the instance successfully terminates (thus
holding a session key), it is in “PAKE mode”, and after
it terminates, it is in “symmetric mode”. Upon receipt, a
SendSend(U i,M) query - having the same structure in both
phases of composition - is first parsed and checked for
validity, and then the message M is processed according
to C. Once this is finished and the corresponding internal
state of U i and its partner (if it has one) is updated, the
instance outputs a reply that is given to A.

4.2.3. Internal state and initialization. As before, the
challenger CHcom will maintain the execution and game
state; for Gcom, these are detailed in Fig. 6.
Execution state. The execution state ESTcom for the
composition includes all previously defined variables from
that of PAKE and SKP.

Internal State: For U ∈ IDcom, C ∈ Clients, S ∈
Servers and i ∈ N, the internal state is maintained as
follows:

Execution State ESTcom
? pwC ∈ PassPass; pwS := 〈pwC〉C
? statusPi

U ∈ {running, accepted, terminated, rejected}
? sidiU , skP

i
U , infoP

i
U ∈ {0, 1}∗ ∪ {⊥}

? pidPi
U ∈ IDcom ∪ {⊥}

? statusSi
U ∈ {pending, running, aborted}

? skSi
U ∈ {0, 1}∗ ∪ {⊥}; pidSi

U ∈ IDcom ∪ {⊥}
? infoSi

U ∈ {0, 1}∗ ∪ {⊥}

Game State GSTcom
? pnrPi

U ∈ IDcom × N ∪ {⊥}
? f i

U ∈ {⊥, unfresh, fresh}
? δ ∈ {0, 1}; δiU ∈ {honest, corrupted}
? siU ∈ {⊥, private, known}; pnrSi

U ∈ IDcom×N∪{⊥}
? addSi

U ∈ {0, 1}∗ ∪ {⊥}.

Figure 6: The internal state of composed protocol.

Game state. As we mentioned before, we consider the
security of the composition to fail if the security of
the underlying symmetric key protocol is breached, either
directly as in Gsym, or via a correct password guess.
Therefore, the game state of the composition GSTcom
includes all Gsym-specific variables used to measure Gsym-
security. Of course, some of the flags from GSTpake –
such as the partner instance variable, the freshness flag and
corruption flags – are also included in GSTcom.
Initialization. To initiate the PAKE portion of the internal
state we put in use the procedure from Fig. 3. As for the SKP
portion of the internal state, except statusSiU variable that is
set as pending, most other variables are set to ⊥ at the start

of the game. Only those variables used to measure SKP’s
security which are initialized at the beginning of Gsym are
also initialized at the beginning of Gcom.

4.2.4. Bridge between two models. Above, we have shown
how the internal state of the composed protocol is defined.
Now we need to fuse the two models and protocols together
by connecting the queries and the internal states from
different phases (PAKE and SKP) with each other.

First, we start by modifying a SendSend query’s influence
on the internal state. As can be seen in Fig. 7, in case the
instance U i terminates as a result of a SendSend and ExecuteExecute
query, the corresponding SKP portion of the internal state
is initialized by linking it with the internal state from the
PAKE phase.

Also, in case of SendSend query, it may happen that an
instance U i that has just accepted with f iU = unfresh (due
to corruption) has a partner instance V j with f jV = fresh.
In this case, even though U i is unfresh, we will keep the
key siU as private16 (this is incorporated in the partnered
case in Fig. 7). This is so, since the adversary in this case
is not able to influence or learn the session key without
breaking the partnering definition from Sect. 2.2.4.

4.2.5. COM security. As mentioned above, the composition
game’s security is measured by examining if the protocol
S is broken or not. This means that the adversary against
the composed game wins if he satisfies the winning
condition for the security game of the underlying symmetric
key protocol. Formally, A’s advantage in breaking the
composition is defined as

AdvAdvcom
C (A) := |P[symsym]−4| , (10)

where symsym denotes the same bad event the adversary tries
to cause in game Gsym. This definition is perfectly valid
since the game state as defined for the composed game
incorporates the necessary variables from Gsym.

Yet, it is clear that the composed protocol will inherit the
limitations built into the use of passwords as key exchange
authenticators. Therefore, the best that we can expect is to
declare C secure if there exists some positive constant B
such that the com-advantage of A in breaking C satisfies

AdvAdvcom
C (A) ≤ B · nse

N
+ ε, (11)

where ε is negligible, and nse is an upper bound on
the number of SendSend queries A makes to instances where
statusPi

U = running. This last point is crucial: Indeed,
only those SendSend queries that involved the key exchange
phase of the composed protocol should be counted here,
since the password’s authentication role only plays a part in
this phase. Notice that, just like in the case of plain PAKE,
this bound implies that ExecuteExecute queries do not significantly
contribute to the adversary’s advantage.

16. Notice that in case an instance has accepted following a SendSend query
(see Figs. 7, 8 and 10), the flag f iU that tracks freshness is solely determined
by the corruption flag δiU . This means that if δiU = corrupted, then
f iU := unfresh, and if δiU = honest, then f iU := fresh. This is so,
because the RevealReveal query is not available in the composed model.



In addition to the rules from PAKE and SKP
for SendSend queries, if an instance U i changes its
statusPi

U to terminated – upon processing its
last PAKE message – CHcomupdates the internal
state as follows:

Link ESTcom
? statusSi

U := running

? skSi
U := skPi

U ;

? pidSi
U := pidPi

U

Link GSTcom
? pnrSi

U := pnrPi
U

? siU is initialized as
presented below

The status of U i’s session key siU will be initialized
(linked) differently depending on which of the
following cases occur:
• if there exists a partner instance V j (according

definition from 2.2.4) then:
? siU := sjV

• else if f i
U = unfresh (implies δiU = corrupted)

then:
? siU := known

• otherwise,
? siU := private.

An ExecuteExecute(Ci, Sj) query is simulated as
if the challenger would successively run the
honest simulations of SendSend queries up until the
termination for both instances. The PAKE internal
state is linked as it is for SendSend queries, and siC
and sjS are both set to private.

As a result of the CorruptCorrupt(U ) query, if U ∈
Client the simulator returns the password
pwC , and otherwise the vector of passwords
pwS := 〈pwC〉C . The corruption flags are affected
according to the rules specified in Sect. 2.2.

Figure 7: Linking of the internal state between two phases
for the Send and Execute query, and the simulation of
Corrupt query.

5. Composition Result

As already explained in the introduction, for our
composition result to hold we need to work with a PAKE
model that is stronger than the FtG one from [10], namely
the RoR model of [11]. This model guarantees that the
adversary who does not know the correct password cannot
distinguish any honestly generated session key from a
random key drawn from the key space. In contrast, in the
FtG model, only the session key that is targeted by the single
available TestTest query is indistinguishable from random. It will
become evident later in Sect. 5 why this difference matters,

i.e. why a stronger model is necessary.
The rest of this section is devoted to a proof of the

following theorem:
Theorem 1. Let (PWGen,P) be a password authenticated

key exchange protocol outputting keys according to
a distribution K, that is secure according to the
RoR game GRoR, and for which an efficient public
partner matching algorithm exists. Let (KGen, S) be
a symmetric key protocol secure according to the game
Gsym. If the keys used in the symmetric key protocol
algorithm S are distributed according to K, then the
composed protocol (CGen,C) is secure according to
Gcom and the advantage of any probabilistic polynomial-
time (PPT) adversary A against composed protocol
satisfies

AdvAdvcom
C (A) ≤ AdvAdvRoR

P (B) + AdvAdvsym
S (C) (12)

for some PPT adversaries B and C.

Proof of Theorem 1: Let us fix a PPT adversary A
attacking the protocol Ci in the security game Gcom

i . Our
proof is given as a sequence of three games to bound the
advantage of A. Recall that the KGen algorithm outputs
the session keys from the key space K according to some
probability distribution K when given as input a security
parameter k.

To prove Theorem 1, we first argue that all the session
keys computed by the PAKE can be randomized, since the
protocol is assumed to be RoR secure (with weak forward
secrecy). With this step, we will practically decouple
the PAKE and SKP phases of the composed protocol,
because the session keys that are used in the SKP phase
of the composition will, from that point on, be completely
independent of those computed in the PAKE phase. Then,
in the next step, we will show that the advantage of
an adversary against the resulting composed game (with
random keys) is upper bounded by the advantage of
an adversary against the security game of the underlying
symmetric key protocol. Let us now proceed with a detailed
proof.

Game Gcom
0 : (The original game.) Let this be the game

defined in Sect. 4.2 for the composed protocol (CGen,C0)
described in Sect. 4.1.

Recall that in this game the adversary A may make
multiple SendSend, ExecuteExecute, and CorruptCorrupt queries to the
challenger. These queries are simulated as described in
Sects. 2.2 and 3.2 and Fig. 7.

Game Gcom
1 : (Key randomization game.) In Gcom

1 , all
the session keys skP derived from the PAKE protocol and
later used in the SKP portion of the composed protocol
are replaced by random keys drawn according to the output
distribution of the symmetric key protocol’s key generation
algorithm, with partnered instances getting the same random
key.

We first explain how the game Gcom
1 differs from Gcom

0 .
First, from now on, we assume that the underlying PAKE



of the composed protocol C1 is forward secure in the RoR
model from 2.2. As the RevealReveal and TestTest queries are not
available to A and the CorruptCorrupt query does not have influence
on the security of session keys (due to forward secrecy), the
modification brought to Gcom

1 is only related to the SendSend and
ExecuteExecute queries and is shown in Fig. 8.

SendSend query modifications:
While all the other rules for internal states remain
the same, an instance U i whose statusPi

U changed
to accepted sets the session key as follows:
• if there exist the partner instance V j (according

definition from 2.2.4) then:
? skPi

U := skPj
V

• else if f i
U = unfresh then:

? as before: the session key is computed according
to the protocol P (real key)

• otherwise,
? skPi

U ← K.

ExecuteExecute(Ci, Sj) query modifications:
The client instance Ci and the server instance Sj

are assigned the same random key drawn according
to the output distribution K of the symmetric key
protocol’s key generation algorithm KGen.

Figure 8: Modification of the Send and Execute in Gcom
1

The following lemma shows that by invoking RoR
security, the two games are indistinguishable to the
adversary.

Lemma 1. Let (PWGen,P) be a password authenticated
key exchange protocol outputting keys according to
a distribution K, that is secure according to the
RoR game GRoR, and for which an efficient public
partner matching algorithm exists. Let (KGen, S)
be a symmetric key protocol, where the keys used
in algorithm S are distributed according to K. The
advantage of any PPT adversary A in distinguishing
games Gcom

0 and Gcom
1 satisfies

AdvAdvcom
C0

(A) ≤ AdvAdvcom
C1

(A) + AdvAdvRoR
P (B) (13)

for some PPT adversary B.

Discussion. Before we prove this result, it is worth
explaining its contents a bit more. Fundamentally, it is in the
statement and proof of this lemma that using the RoR model
is important, and where we differ from what is done in [12].
Namely, the games Gcom

0 and Gcom
1 are distinct in that the

“honest keys” are all real in Gcom
0 and all random in Gcom

1 .
If we were to use the FtG model to get from the first game
to the second, the fact that FtG only makes one TestTest query
available to the adversary implies that we would have to

use a hybrid argument to gradually replace the real keys by
random ones. This yields an additional security degradation.
However, the RoR model lets us move directly from Gcom

0

to Gcom
1 by replacing all of the real keys in one swoop.

Thus, the degradation vanishes.

Proof of Lemma 1: Given an adversary A against
the original game Gcom

0 , we construct an algorithm B that
attempts to break the RoR security of PAKE (i.e. guess the
hidden bit selected by challenger CHRoR) by running the
adversary A as a subroutine (see Fig. 9). We know that A
asks at most nse SendSend, nex ExecuteExecute, and nco CorruptCorrupt queries
to its challenger (B in this case) (resp.) from the composed
game interface.

A

CHv

CHv
B

PAKE PAKE

M

com

RoR

partner info

passwords

link

SKP

Figure 9: Security reduction in Gcom
1 to prove Lemma 1.

The dashed box indicates that B is not actually running
PAKE, only tracking the internal state associated with the
PAKE phase of the composition.

Now we need to show that B can faithfully simulate A’s
security game. The main idea is the following: B directly
forwards to the challenger CHRoR all of A’s queries that
are related to the PAKE phase of the composition, while
queries from the SKP phase are directly processed by
B using session keys obtained from GRoR. Please note
that to this end, we adopt the convention that B makes
an appropriate query to recover a session key as soon
as the instance accepts. (Whether this query is a TestTest or
RevealReveal query depends on the situation, see further below
and Figs. 10 and 11.) When looking in more detail at the
simulation, notice that B, in order to safely simulate the
SKP phase of the composition, has to initiate and track the
internal state of this game (not only session keys) while not
having an access to the internal state of GRoR, which will
be denoted as (ESTpake, GSTpake)CHRoR . On the bright
side, B has at her disposal all the RoR queries together
with the partner matching algorithm. This allows B to keep
track of the variables from the internal state of PAKE and
store them in (ESTpake, GSTpake)B. These variables are
necessary for the initialization of the internal state of the
SKP phase (ESTskp, GSTskp)B, which is done through
linking of the variables from two phases as defined in Fig. 7.

Internal state tracking. Now we describe how B can obtain
information on the internal state of the PAKE protocol
that is run by CHRoR. Namely, B does this in three ways:



statusPi
U , δ, δiU , and f iU are tracked by observing A’s

queries and CHRoR’s answers; skPi
U , tiU , riU , and pw are

tracked by making queries such as TestTest, RevealReveal or CorruptCorrupt;
and sidiU , pidPi

U , and pnrPi
U are tracked using the partner

matching algorithm.

Simulation. Now, B runs the simulation for A as follows.
First, B initiates her copy of the internal state for both
phases of the composition as described in Sect. 4.2. Then,
the challenger CHRoR randomly selects a hidden bit b. After
this, A is allowed to start making queries. B answers to
A’s SendSend queries as described in Fig. 10. There is a small
subtlety here worth mentioning: the fact that an instance
is unfresh does not necessarily mean that B knows or
can compute its session key. Hence, RevealReveal query seems
necessary for our composition result to hold.

Upon receipt of a SendSend(U i,M ) query, B first checks
the value of statusPi

U in his copy of the internal state.
Then, if statusPi

U is equal to running or accepted,
the SendSend(U i,M ) query is forwarded to CHRoR, whose
response (statusPi

U
′, M ′) is given back to A. After

that, B updates the state value to statusPi
U
′ and stores

the output message M ′ in his list of made queries and
responses. Furthermore, in case in the received value
statusPi

U
′
= terminated, B first calls the partner

matching algorithm to obtain a partnering list LpnrP

and then does the following:

• if there exist the partner instance V j (B looks at
LpnrP) then:
? set skPi

U := skP j
V , where skP j

V was already
previously set as a response to a RevealReveal or TestTest query
from the cases below.

• else if f iU = unfresh

? a RevealReveal(U i) query is sent to CHRoR to recover
skPi

U .

• otherwise,
? a TestTest(U i) query is sent to CHRoR that answers with
skPi

U . Note that the value of the received skPi
U

depends on the hidden bit b.

After acquiring the session key, B initiates (links) the
internal state of SKP for instance U i (including siU )
according to Fig. 7 and continues with the simulation.

Figure 10: A Send query simulation by B.

Notice that our assumption that the PAKE protocol is
secure in the RoR model implies that at least the PAKE
partnering definition is satisfied and therefore we can be
sure that only two partners from a partnering list LpnrP

will share the same key.
B’s simulation of rest of the queries A may ask is

covered in Fig. 11. It is interesting to see that in the case
of eavesdropping adversary (no SendSend query), the partner
matching algorithm is not needed. Notice also that there may

exist other possible queries that A may make – which are
added depending on a particular symmetric key protocol.
Nevertheless, B can perfectly simulate these queries by
using (ESTskp, GSTskp)B.

Upon receipt of an ExecuteExecute(Ci, Sj) query, B forwards
it to CHRoR, whose response (statusPi

C
′

:=

terminated, statusPj
S

′
:= terminated, M ′) is given

back to A. After that, B issues a TestTest query to CHRoR

targeting either Ci or Sj . Upon receipt of skP, whose
value depends on the hidden bit b, B may initiate (link)
the internal state of SKP for the instances Ci and Sj

according to Fig. 7 (i.e. set siC and sjS to private) and
continue with the simulation.

In case A makes a CorruptCorrupt(U ) query, B forwards this
query to CHRoR. As an output, the challenger CHRoR

returns the long term secret of the user U , which can
be either a password or a vector of passwords. If this is
the first CorruptCorrupt query A has asked, B sets δ := 1 in his
copy of the internal state. Recall that other corruption
flags are changed after corresponding SendSend query is
made.

Figure 11: Simulation of the Execute and Corrupt queries.

Reduction argument. Now, we argue that if the TestTest query
that B issues to CHRoR returns a real key, then this
simulation coincide with the game Gcom

0 . At the same time,
if CHRoR after receiving the TestTest query returns a random
key drawn according to K, then B simulates the Gcom

1 game.
W.l.o.g. we will assume that at some point A will terminate.
If A wins against the composed game, B will submit b′′ := 1
to CHRoR, and b′′ := 0 otherwise. Therefore we have

P0[b′′ = 0] = AdvAdvcom
C1

(A) and P1[b′′ = 1] = AdvAdvcom
C0

(A).
(14)

By applying Eq. 7 we have

AdvAdvRoR
P (B) :=

∣∣P1[b′′ = 1]− P0[b′′ = 0]
∣∣

=
∣∣AdvAdvcom

C0
(A)− AdvAdvcom

C1
(A)

∣∣ . (15)

Thus we can bound the increase in the advantage of the
adversary A from Gcom

0 to Gcom
1 by using a reduction from

RoR security of PAKE (with weak forward secrecy). With
this, we conclude our proof of Lemma 1.

Game Gcom
2 : (Reduce Gcom

1 to Gsym.) Following lemma
will show that the Gcom

1 game in which all session keys
coming from PAKE are randomized can be reduced to the
security of the symmetric key protocol game Gsym.

Lemma 2. Let Gcom
1 be the composed game in which all

session keys held by instances running the RoR secure
PAKE are computed as per the rules of Fig. 8 using
a distribution K. Let (KGen, S) be a symmetric key
protocol, where the keys that are used in algorithm S are



distributed according to K. The advantage of any PPT
adversary A′ in winning the Gcom

1 game is bounded by

AdvAdvcom
C1

(A′) ≤ AdvAdvsym
S (B′), (16)

for some PPT adversary B′.
Proof of Lemma 2: Given an adversary A′ against

the game Gcom
1 , we construct an algorithm B′ that attempts

to break the security of the game Gsym by running the
adversary A′ as a subroutine. The main idea behind the
proof is the following: Since the session keys used in the
SKP phase of composed protocol are independent from
those coming from the PAKE phase, B′ can internally
simulate the PAKE execution for A′ and then play his game
Gsym with A′’s SKP phase queries. It is then easy to see
that if A′ wins Gcom

1 game, B′ will win his.
Simulation. To prove Lemma 2, we need to formally show
that B′ can faithfully simulate the security game A′ is
attempting to break. To accomplish this, B′ maintains the
internal state of the complete composed game Gcom

1 . The
simulation of A′’s game goes as follows: First, B′ initiates
the PAKE portion of the internal state. Then B′ allows A′
to make query calls. For all queries that A′ makes for the
PAKE phase, B′ executes the PAKE algorithm. Once an
instance, during the PAKE execution, changes its status to
terminated, B′ proceeds according to the rules from Fig.
12. As can be seen in the same figure, B′ just forwards A′’s
SKP phase queries towards CHsym and returns the response.
Reduction argument. Now let us compare two games Gcom

1

and Gcom
2 in relation to the distribution of the session keys

used in the SKP phase of the composition. This can be
done by looking at Figs. 8 and 12. There exist three cases
to cover: In case of honestly generated keys, in both games,
keys that are used in the SKP phase are drawn according to
the probability distribution K (either selecting them directly
or through InitHInitH query). In case of an unfresh (corrupted)
instance, the protocol in both games is using real keys,
computed according to the specifications of the protocol17.
Finally, in case of an instance that has terminated and
already has a partner instance, the key from the instance
in question gets assigned that partner’s session key value,
which happens in both games. Therefore, we can conclude
that session keys are identically distributed in both games
and that the simulation is sound.

W.l.o.g. we will assume that at some point A will
terminate. It is then easy to see that if A′ wins Gcom

1 game,
B′ will win Gsym. Therefore, we have

AdvAdvcom
C1

(A′) ≤ AdvAdvsym
S (B′). (17)

With this we conclude our proof of Lemma 2.
Finally, by combining the Lemmas 1 and 2 we obtain

Theorem 1.

An immediate consequence of our theorem is that preceding
a secure symmetric key algorithm with an optimally

17. As an input to InitCInitC, B′ provides a key that comes from true
simulation of the PAKE protocol execution.

Upon receipt of a SendSend(U i,M ) query, B′ first checks
the value of statusPi

U in his copy of the internal state
and does the following:
• If statusPi

U = terminated, then B′ forwards the
SendSend(U i,M ) query directly to CHsym and returns
the response back to A′.

• Otherwise, B′ executes the P protocol, updates the
internal state, and returns the response (statusPi

U
′,

M ′) to A. Furthermore, in case the new status
of the instance U i is set to statusPi

U
′

:=
terminated, B′ does the following:
– if there exists the partner instance V j , then B′

sends InitPInitP(U i, V j) query to CHsym.

– else if f iU = unfresh, then B′ issues InitCInitC
(U i, skP ) query to CHsym, where skP is the
key from the internal state of B′.

– otherwise, B′ makes an InitHInitH(U i) query to
CHsym.

Note that after acquiring the session key by executing
the PAKE, B′ initiates (links) the internal state of SKP
for the instance U i (including siU ) in a similar way as
in Fig. 7.

Upon receipt of a ExecuteExecute(Ci, Sj) query, B′ issues first
an InitHInitH(Ci) query to CHsym, which is then followed
with InitPInitP(Ci, Sj) call. Thus, the client instance Ci and
the server instance Sj are assigned random keys drawn
according to the output distribution K of KGen.

Figure 12: Modification of the Send and Execute in Gcom
2 .

RoR-secure PAKE (with weak forward secrecy) yields
an optimally secure composed protocol according to our
definition of composition security. Also, note that to obtain
this result, it is absolutely critical to avoid any kind of
security degradation in Lemma 1. This seems to only be
possible by working with RoR rather than FtG.

6. Conclusion and Future Work

Considered well-studied cryptographic objects in
academia, PAKE protocols are just starting to appear
more widely as building blocks in commercial real-world
applications. They are typically used to generate keys
that will grant two (or more) parties means to establish
subsequently some type of secure channel between them.
However, one cannot directly claim that the security of
such a composed protocol holds since PAKEs that are
typically deployed – due to their efficiency and easier setup
– are proven secure in game-based models that do not
necessarily provide composition guarantees. Therefore, to
substantiate the expected security claims, a new security
proof would need to be exhibited for the entire protocol



from scratch. As a result of Theorem 1, a modular design
of more complex protocols is possible: One can obtain
the secure protocol that would consist of forward secure
RoR PAKE protocol followed by a secure symmetric key
protocol, without any additional analysis.

As future work in the password-based realm, it would
be interesting to adapt the study in [34] that aims to take
into account the incorporation of certain specific session-
key-dependent messages (e.g. the “Finished” message from
TLS). Such result could be useful for detailed analysis of
the protocols recently specified on the IETF [1], [2].
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