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Abstract. Conflict-free Replicated Data Types (CRDTs) are abstract data types that support developers when
designing and reasoning about distributed systems with eventual consistency guarantees. In their core they solve
the problem of how to deal with concurrent operations, in a way that is transparent for developers. However in the
real world, distributed systems also suffer from other relevant problems, including security and privacy issues and
especially when participants can be untrusted.
In this paper we present the first formal cryptographic treatment of CRDTs, as well as proposals for secure
implementations. We start by presenting a security notion that is compatible with standard definitions in cryptography.
We then describe new privacy-preserving CRDT protocols that can be used to help secure distributed cloud-backed
applications, including NoSQL geo-replicated databases. Our proposals are based on standard CRDTs, such as sets
and counters, augmented with cryptographic mechanisms that allow operations to be performed on encrypted data.
Our proposals are accompanied with formal security proofs and implement and integrate them in AntidoteDB, a
geo-replicated NoSQL database that leverages CRDTs for its operations. Experimental evaluations based on the
Danish Shared Medication Record dataset (FMK) exhibit the tradeoffs that our different proposals make and show
that they are ready to be used in practical applications.

1 Introduction

A Conflict-Free Replicated Data Type [26] (CRDT) is a recent abstraction for distributed cloud-backed protocols that
allows maintaining multiple replicas of a data value with high availability and low latency for local access. These
protocols explore a tradeoff where one forsakes strong consistency in exchange for a weaker, but sufficient, notion of
coherence between geographically distributed operations, called eventual consistency. Apple [10], Microsoft [18],
Facebook [16], and Google [13] are some of the many organizations that have used CRDTs in one or more of
their products. Example systems built on top of CRDTs include geo-replicated databases [23], collaborative text
edition [12], and chat systems for massive-multiplayer online video games [22].

In this paper we present the first secure CRDT proposals that enable building distributed and privacy-preserving
CRDT-based applications.

CRDT CONCEPTS. A CRDT is a distributed protocol in which a set of clients interacts with a set of replica server
nodes to update and query values stored under the form of complex data-structures, including registers, sets, lists,
maps, and counters. Server nodes maintain the current value of the replica and additional meta information that is
needed to provide the prescribed consistency semantics. Server nodes may propagate full or aggregate information
about their internal states to other replicas, which leads to a notion of eventual consistency: the idea is that, if local
updates cease to occur and enough propagation of replica states takes place, the whole system will converge to the
same observable data value in all replicas. The rate at which replica propagation occurs is application-specific.

CRDT APPLICATION. CRDTs can be used in different scenarios. In this paper, we are particularly interested in their
application to support cloud-backed geo-replicated NoSQL databases. An example implementation available in the
real-world is AntidoteDB [1]. This type of technology is important, for instance, for medical hospitals that need to
store large volumes of patient health records in the cloud in a highly-available and privacy-preserving way. In this
scenario, each cloud server stores an AntidoteDB replica for high-availability, and clients (i.e., the medical doctors)
connect to a cloud of their choice and search/update health records of their patients. Moreover, cloud servers are
typically considered untrusted, following an honest-but-curious model and hence justifying the need for privacy, while
medical doctors are usually considered trustworthy and require, at most, access control mechanisms.

CRDT SECURITY. There is no formal treatment of CRDT security in the literature, and so we begin our treatment
of this topic by proposing a notion of security in the Universal Composability framework [8]. Intuitively, the notion
we propose, with respect to adversaries that control the scheduling of CRDT operations, is realisable using fully



homomorphic encryption and general secure multiparty computation. However, in the first case the solution is not
practical and, in the second, the trust model associated with efficient protocols [9] would require sharing secret data
between multiple nodes, which goes against the purpose of CRDTs in the first place.

OUR CONTRIBUTIONS. The contributions presented in this paper are as follows:

– Definitions: We give a definition of security for CRDTs in the Universal Composability framework. Our ideal
functionality is general enough to capture solutions that leak no information about the stored data, as well as those
that may leak partial information. We then focus on honest-but-curious adversaries and give a restricted execution
model tailored for this class of adversaries that is still strong enough to capture the consistency requirements of
arbitrary CRDTs.

– Black-box constructions: we give efficient constructions that introduce minimum overhead over standard CRDTs.
A black-box construction overlays encryption over CRDT protocols, which permits the usage of existing CRDT
implementations without modification. The feasibility of this construction depends on the CRDT context, as we
may require encryptions to leak partial information about stored values. In this case, we map the protocol leakage
to standard weaker notions of encryption security.

– Homomorphic transformations: For CRDT protocols that are not covered by the previous approach (e.g., counters
and bounded counters) we show that partially homomorphic encryption schemes can also be used to naturally
transform them into secure ones with small overhead and leakage, and minimal alterations to the implementation.

– Integration with AntidoteDB: Using our new secure CRDTs, we implement a privacy-preserving version of
AntidoteDB, which is a NoSQL key-value store that leverages CRDTs to perform its operations. By integrating
our secure CRDT constructions with AntidoteDB, its clients can have security guarantees of the data stored in it.

We support these results with both formal security proofs and an experimental evaluation. Concretely, we leverage a
benchmark based on the Danish Shared Medication Record (FMK) and conduct experiments on our secure version of
AntidoteDB, measuring the latency and throughput of operations over the different CRDTs proposed. Results obtained
show that our proposals achieve practical performance and scalability, with different CRDTs making different trade-
offs between efficiency and security.

2 Technical Overview

Fig. 1. High-level view of our system.

We start by presenting an overview of our system. In a CRDT protocol, clients interact with a group of servers
nodes via update and query operations, and servers propagate their states between themselves to ensure that the view



of each node will eventually become consistent with respect to all operations performed by the clients. Our setting
for CRDT security is focused on providing guarantees to the clients against an untrusted network and servers. Ideally,
we want a layer of security between clients writing and reading data, such that one can encrypt sensitive data before
sending to the untrusted network and have it be decrypted when it exits, while seamlessly propagating and merging
encoded states.

Figure 1 captures this scenario. First, we have a setup phase where clients establish cryptographic material beforehand
to use in the security layer. This can be done with symmetric keys, by having clients perform an a-priori key-exchange
protocol; or with asymmetric keys, i.e. by separating writer from readers, having a private key shared by all writers
to perform updates, and creating a public key for readers to encode queries. Our execution model is agnostic to this
setup, as it can be defined by the chosen cryptographic techniques.

From then onwards, every update operation is preceded by an encryption operation to ensure security (step 1).
Given the encrypted data, the server can then perform the CRDT update operation (step 2). This will be followed by
(potentially multiple) propagations and merges (step 3), which are processed over the encrypted data. This is the core
challenge of our constructions, as the chosen security mechanism must also ensure that all computations in both update
and merge steps can be performed efficiently over encrypted data. The nodes can then be queried for the encrypted
state (step 4). Finally, the obtained result must be decrypted to retrieve the query response (step 5).

Adversary Model We assume adversaries will be honest-but-curious. This is a common adversarial model for cloud
computing and secure computation solutions [5], as it captures attack vectors where, for instance, the service provider
does not deviate from its service level agreements but may still observe all data state and accesses; or when an external
intruder briefly gains access to the system and can access the database and execution logs. In particular, we show our
solutions to be secure in a setting where all server nodes can reveal their internal executions. Given this setup, one
cannot prevent however an attacker with total control over the network from delaying or shutting down the system (i.e.,
denial-of-service). Our goal is instead to demonstrate that the attacker is unable to extract any meaningful information
from encrypted messages, or to have the system deviate in any other way besides delaying updates.

3 CRDT Security

SYNTAX. A CRDT protocol is deployed over a network composed of n server nodes, or replicas, statically defined
at the beginning of the protocol and identified by id1, . . . , idn. These nodes are accessible to an arbitrary number
of client nodes—the entities performing read/write accesses to the data-type—which we model as two (distributed)
entities. This allows for client nodes to share long-term keys, and is sufficiently flexible to capture symmetric scenarios,
where both have the same keys, and asymmetric scenarios, where readers and writers play different roles and thus have
access to different cryptographic material. Secure CRDT protocols have the following syntax:

– setupC() is the global client setup procedure, which produces a set of private parameters prvq, prvu and public
parameters pub.

– setupS(pub, id) is the server node initialization procedure, which on input the public parameters pub and the
server node identifier id outputs the inital state st for that node.

– query〈prvq, op | st〉 is an interactive protocol executed between a client node and a server node. On the client-side
it takes as input the private parameters for query prvq and a query operation op. On the server-side, it takes a state
st as input. There is no server-side output. The client recovers output o.

– update〈prvu, op, v | st〉 is an interactive protocol executed between a client node and a server node. On the client-
side it takes as input the private parameters for update prvu, an input operation op and an input value v. On the
server side it takes as input a state st. At the end of the protocol the server gets an updated state st′ and the client
may recover output o, e.g., indicating the success of the operation.

– prop(st, id) is a local server node operation that takes st and a target replica identifier id and produces update data
up to be sent over the network to the target replica.

– merge(up, st) is a local server node operation that takes an initial state st and an update up and produces an
updated state st′.

SECURITY. We formalize security in the Universal Composability framework [7], but we simplify presentation of the
execution model as a consequence of focusing on a restricted class of adversaries, as follows:



– We consider an honest-but-curious adversary with adaptive corruptions: the attacker will attempt to break system
confidentiality by observing messages passed in the system and internal server states, but it does not have full
control over any of the entities of the system (e.g., causing them to send arbitrary messages), nor does it have full
control over the communication channels, which we assume to be authenticated.

– To guarantee confidentiality and correctness are preserved for any possible scheduling of CRDT operations we
allow the adversary to control the sequence of operations, namely the interactions between server nodes and the
points at which clients provide inputs and receive outputs from the system at different server nodes. This essentially
means that we adopt an asynchronous execution model and allow the attacker to control the message scheduling.

– For simplicity, we restrict the adversary’s scheduling capabilities when it comes to the query and update subprotocols,
and assume that they are atomic in the execution model; the attacker receives an execution trace t whenever one of
them is run between a client and a server. However, all our results for concrete protocols hold in the more general
execution model where the attacker could also arbitrary schedule the intermediate messages of query and update.

As in standard UC, the correctness and security of the protocol are specified via an ideal functionality which we
introduce next.

IDEAL FUNCTIONALITY. The ideal functionality F is shown in Figure 2. It is parametrised by an algorithm correct
and a leakage function L, and it maintains a log L of all operations carried out over the CRDT.

The correct algorithm can be used to specify arbitrary concurrency semantics [21] for the CRDT: whenever the
environment provides an input via write, or reads a value via read, the functionality computes the correct client-side
result that should be observed by the environment by computing correct(L) over the entire history of operations carried
out over the CRDT. The history of operations is accumulated in a numbered list L (implemented here as a set) and
includes both the input/output operations carried out by the environmentZ and the scheduling of state merges between
replicas specified by the adversary S. The latter are specified via two commands: snap allows S to commit to a point
in the global history where a snapshot of the state of replica i is sent to replica j, whereas the set command allows S
to register into the global log the merge into the state of replica j of the oldest available snapshot. The restriction of
using the oldest replica snapshot limits the power of the simulator so that it is not able to instruct the functionality to
forget commands to propagate the state from one replica to another: it can only delay the time at which that snapshot
of the state is merged. Secure CRDTs therefore need to be consistent with this scheduling restriction, which in most
cases is achieved by relying on standard authenticated channels between server nodes.

The leakage function L allows the adversary S to obtain leakage from the global trace. A fully secure CRDT will
reveal only how many operations the environment carried out, plus the sizes of inputs and outputs to these operations.
Weaker security definitions can be obtained by revealing to S more information about which operations were carried
out and partial leakage of the input/output values themselves, such as equality patterns. For conciseness throughout
the paper, when describing specific leakage functions, these will detail the additional leakage over this baseline, i.e.
L(L) = ε reveals how many operations the environment carried out, and sizes of inputs parameters and output values.

We will later demonstrate how CRDT solutions can be constructed with this baseline leakage, as well as exemplify
how specific protocols can rely on some leakage to achieve improved performance.

Note that by defining correct behaviour as a function of the whole history our functionality permits specifying the
strong convergence requirements of CRDTs via the UC-security requirement. Confidentiality follows from the fact
that the adversary/simulator can control the sequence of server node interactions, but it obtains no information about
the client inputs other than what is specified by the leakage functions.

SECURITY MODEL. Figure 3 shows the simplified execution model for our UC security definition. As usual, we
consider an environment Z that will collaborate with adversary A to distinguish the real world from an ideal world
where it interacts with a simulator S. In both worlds, Z can call oracles write and read to trigger client actions on
the CRDT. In the real world these actions map to client updates and client queries to a CRDT replica. As previously
mentioned, we consider these to be atomic in the execution model for simplicity: the update/query protocols are
executed and then the attacker can retrieve the execution trace.

Furthermore, in the real world, environment Z can control the sequence of prop and merge operations between
server nodes via adversary A. Rather than requiring protocols to explicitly rely on a hybrid authenticated channel
functionality, and since we are dealing with honest-but-curious adversaries, we simplify the execution model by
exposing two oracles to A that directly map to these operations and impose that values output by the propagate oracle
are delivered to merge in the correct order.



Environment Z interface

proc read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, op)}
r ← correct(L)
Return r

proc write(id, op, v)):
c← c+ 1
L← L ∪ {(c,write, id, op, v)}
r ← correct(L)
Return r

Adversary S interface

proc snap(idi, idj):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}

proc leak( ):
Return L(L)

proc set(idi, idj):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈
L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

Fig. 2. Ideal functionality F . F .setupS sets L to ⊥ and c to 0.

The fundamental difference between real and ideal world is that the real world will be executing and displaying the
protocolΠ on the different nodes, while the ideal world will be displaying the interface F of read and write. Messages
exchanged in the network will instead be emulated by a simulator S, whose only interaction with F is via its snap, set
and leak commands. S is also responsible for presenting a consistent replica state upon corrupt. The concrete security
goal is to show that the distribution of output bit b produced by Z is essentially the same in both worlds.

The intuition behind this security definition is that, for any secure CRDT protocol, a real world adversary cannot
influence the system beyond refusing to transmit state transitions (denial-of-service), and gains no information other
than what is concretely specified by our leakage functions. This is because the real world trace can be simulated
without access to non-leaked internal values of F , by a simulator that can only control the schedule of server node
interactions.

Game RealΠ,Z,A(n):
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
(prvq, prvu, pub)←$ Π.setupC()

For id ∈ [n] : stid ← Π.setupS(pub, id, n)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
〈o | stid〉t←$ Π.update〈prvu, op, v | stid〉
T ← T‖t
Return o

Oracle read(id, op):
〈o | ·〉t←$ Π.query〈prvq, op | stid〉
T ← T‖t
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle prop(i, j):
p←$ Π.prop(sti, j)
pi,j ← pi,j || [p]
Return p

Oracle merge(i, j):
p← head pi,j
sti←$ Π.merge(sti, p)
pi,j ← tail pi,j

Game IdealF,Z,S(n):
F.setupS()
pub←$ S.setup(n)
b←$ ZS,write,read(pub, n)

Oracle write(id, op, v):
o← F.write(id, op, v)
Return o

Oracle read(id, op)):
o← F.read(id, op)
Return o

Fig. 3. Real and Ideal security games. In the real world (left), A has access to oracles corrupt, trace, prop and merge. In the ideal
world (right), S has access to the adversarial interface of F .

Definition 1. Let n ∈ N. Let F be an ideal functionality, and let Π be the corresponding CRDT protocol. We say that
Π realises F if there exists a simulator S such that, for any environment Z and adversary A,

RealΠ,Z,A(n) ≈ IdealF,Z,A,S(n)

CORRECTNESS AND RELATION TO CRDT CONCURRENCY SEMANTICS. Our ideal functionality can also be used to
give a crypto-style definition of correctness for CRDT protocols. Indeed, we can take correct to be the algorithm that
implements the concurrency semantics for a given CRDT as in [21].

Concurrency semantics of a CRDT can be seen as a function sem : O → (≺)→ V , where:

– O is a set of client update operations on the entire CRDT that is known to a given replica. Each element in this set
is of the form oi,j , indicating that update operation o occurred in replica i and this was the j-th update operation
in this node.

– (≺) is a partial order on the operations in O capturing the happens-before causality notion [15]: oi,j ≺ ok,l holds
if and only if, when replica k processed its l-th client update, it had received information depending on the j-th
update at replica i.



– V is the set of possible CRDT read values.

When client update operations may return immediate feedback to the caller, e.g., to indicate success or failure of the
operation, then usually this is expressed as a predicate inv that takes the current replica state and update operation and
determines the validity of the update operation.

Given sem and inv it is easy to see that one can define an algorithm correct that exactly matches these concurrency
semantics: correct first computes O and (≺) from the global history recorded by F and then uses sem and inv to
compute the value that should be observed by the client. Then, a CRDT protocol is correct in the sense of [21] if
it securely emulates functionality F with full leakage.1 To see this, suppose the protocol is incorrect. Then there
exists an adversary that can drive the CRDT in the real world into a configuration that is inconsistent with the
concurrency semantics, and hence with correct. However, no simulator can ever do this. It is also the case that a
CRDT protocol securely emulates functionality F with full leakage if it is correct in the sense of [21], making these
definitions equivalent. To see this, observe that with full leakage we can have a trivial simulator that follows the
protocol specifications to produce indistinguishable states and traces. In this case, the difference is only on the outputs
of Π and correct. However, correct was defined according to sem and inv, so these are also the same.

4 Secure CRDT Protocols

We now present several CRDT constructions that are demonstrably secure under the proposed security model. These
designs can be seen as natural instantiations of CRDT solutions with a security layer ensuring confidentiality of stored
data. The client will perform an encryption to protect sensitive information in update operations, and a decryption to
successfully query the CRDT state. Replica-side states must merge efficiently, even when storing encrypted data.

Intuitively, the differences between constructions are dependent on the underlying functionality provided by the
CRDT. For instance, registers perform no server-side computation over the stored values, so we can rely on a standard
encryption scheme seamlessly. On the other hand, counters assume that the servers can perform arithmetic over the
stored value, suggesting the value of using encryption schemes with homomorphic properties. This highlights the
natural correlation between CRDT functionality and the necessary properties of the underlying security mechanism.

4.1 Register CRDT

A register CRDT is a standard data structure holding a single value. Update operation replaces the register value, and
query returns it. This is often a fundamental building block to more complex data structures, such as multi-value maps.

Register CRDTs are very simple data types, in which merge operations compare and maintain only the most recent
version of the register. This means we have no computational requirements over the values maintained, and thus can
rely on their encoded versions without disrupting their behavior. Concretelly, when a client wants to update the register,
it encrypts it before sending to the server. When the client wants to read the register, it requests its encoding from the
server and decrypts it to retrieve the plaintext value. Since no computations must be done by the servers on the register
value, the CRDT runs seamlessly over encoded values.

Our protocol is described in Figure 4 and is as follows. We rely on a black-box standard register CRDT Πreg, with
operations for setupS, update, query, prop and merge, and on a standard encryption scheme Θ. The client generates
and maintains symmetric key key. update calls Θ.Enc to instead store the ciphertext in Πreg. query retrieves the
ciphertext from Πreg and calls Θ.Dec to obtain the original value.

SECURITY. We argue that our construction is a CRDT register with baseline leakage

Theorem 1. If Πreg is a correct CRDT, and Θ is a IND-CPA encryption scheme, the construction in Figure 4 is a
secure CRDT with leakage

Lreg(L) = ε

Confidentiality is ensured by an encryption scheme, and correctness comes from the underlying CRDT. The full proof
can be read in Appendix A, and the sketch is as follows.

The simulator S will initialize its parameters (a symmetric key), a trace status counter, and the emulated state of
every replica. Whenever any operation is called on S, it will call F .leak to obtain the list of environment operations

1 By full leakage we mean the identity leakage function, revealing everything that occurred in the environment interface to the
adversary.



Oracle query〈prvq, op | st〉:
〈c | ·〉t←$ Πreg.query〈op | st〉
r ← Θ.Dec(prvq, c)

Return 〈r | ·〉t

Oracle update〈prvu, op, v | st〉:
c←$ Θ.Enc(prvu, v)
〈ε | st〉t ← Πreg.update〈op, c | st〉
Return 〈ε | st〉t

Oracle setupC():

key←$ Θ.Gen(1λ)
Return (key, key, ε)

Oracle setupS(pub, id, N):
st← Πreg.setupS(id, N)
Return st

Oracle prop(st, id):
ReturnΠreg.prop(st, id)

Oracle merge(up, st):
ReturnΠreg.merge(up, st)

Fig. 4. Construction of Secure register from standard encryption scheme Θ.

and their length, and update its view for the operations not yet processed (accounted by the trace status counter). This
will be a common behavior pattern for secure CRDT simulators, as presenting indistinguishable views for prop, merge,
trace and corrupt follows the same simulation strategy: emulate environment operations according to what is given by
F .leak, then follow the protocol for the simulated states/traces. The protocol-specific nuances in simulation strategy
are related to the processing of environment operations, which are as follows.

For every write operation, the simulator S receives the size of the update and generates a dummy ciphertext
(encrypts zeros) with the same length. Since these will be the messages stored in Πreg, S has perfect information of
its global log, and can call its trivial simulator to produce the associated execution trace and states. The proof is done
in three hops.

– Hop 1 - Instead of using the outputs of Πreg, use an idealized structure for storing encrypted values and to present
the output of read (decrypted before being returned). These games are identical given the correctness of Πreg.

– Hop 2 - Instead of using a structure with encrypted values, use a structure with plaintext values. These games are
identical given the assumption that the CRDT behaves seamlessly over encoded values.

– Hop 3 - Replace values on update operations by dummy encryptions. IND-CPA ofΘ will ensure that the difference
between these games is negligible. We are now in a simulatable ideal world.

DISCUSSION. The cryptographic overhead of this security layer, considering widely available hardware acceleration
of modern processors, is as minimal as one can expect to achieve: we require one key generation step at the start of
the protocol, one encryption on update and one decryption on query.

We stress that this is only possible given that operations for managing replica states do not rely on any computation
over the actual encrypted state. This suggests the potential of having highly scalable secure CRDT solutions when the
protocol for ensuring consistency only relies on associated metadata (e.g. timestamps).

We can also further reduce the leakage of this CRDT by having the client pad updates to the maximum length of
the register value, which is free if we are storing fixed length values.

4.2 Set CRDT

Set CRDTs present a slightly more complex problem, as internal operations require the servers to compute over
stored values. Standard set CRDTs merge values by having the servers perform comparisons to maintain only unique
elements. This suggests the need for equality comparison, a functionality for which cryptography presents multiple
solutions. As such, our security layer will encrypt set values upon update, decrypt values when queries are performed,
and replace (if necessary) server-side comparisons with equivalent operations on encrypted data.

Concretely, we denote CRDT set to be a data structure enabling update operations for adding (add, v) and removing
(rem, v) elements to the set. This can then be queried using (cont, v), which checks if v is in the set; and get, which
retrieves the full set.

To demonstrate a feasible implementation, we instantiate our comparison-enabling security layer with a deterministic
encryption scheme. This allows us to rely on any set CRDT in a black-box manner, as our encoded value comparison
is seamless. Observe that this is for simplicity in presentation and not restrictive, as we can freely choose other
implementations that enable comparisons, such as searchable encryption [3]. This extension entails replacing instances
of comparison within the CRDT with the respective secure operations, and minimal changes to the proof.

Our protocol is described in Figure 5, and is very similar to the previous one. We rely on a black-box protocol of
set CRDT Πset, with operations for update, query, prop and merge, and on a deterministic encryption scheme Ω. The



client generates and maintains a symmetric key. update callsΩ.Enc to instead store the ciphertext inΠreg. query either
performs a contains operation, with inputs op = cont and v, or retrieves the ciphertext from Πreg and calls Ω.Dec to
obtain the set’s full state.

Oracle query〈prvq, op | st〉:
If op = (cont, v):
cph←$ Ω.Enc(prvq, v)

〈r | ·〉t ← Πset.query〈(cont, cph) | st〉
Else:
〈cph | ·〉t ← Πset.query〈op | st〉
r ← Ω.Dec(prvq, cph)

Return 〈r | ·〉t

Oracle update〈prvu, op, v | st〉:
cph←$ Ω.Enc(prvu, v)
〈ε | st〉t ← Πset.update〈op, cph | st〉
Return 〈ε | st〉t

Oracle setupC():

key←$ Ω.Gen(1λ)
Return (key, key, ε)

Oracle setupS(pub, id, N):
st← Πset.setupS(id, N)
Return st

Oracle prop(st, id):
ReturnΠset.prop(st, id)

Oracle merge(up, st):
ReturnΠset.merge(up, st)

Fig. 5. Construction of secure set from deterministic encryption scheme Ω.

SECURITY. We argue that our construction is a CRDT set with additional write leakage of the operation, and of a
synthetic label lv for each stored/checked values v, allowing for the adversary to know when a duplicate is processed.

Theorem 2. If Πset is a secure CRDT with full leakage, and Ω is a secure deterministic encryption scheme, the
construction in Figure 5 is a secure CRDT with leakage

Lwrite(L) = (op, lv)

Lread(L) = (cont, lv)

where Lwrite denotes the behavior of L for every write operation, and Lread denotes the behavior of L for every read
operation for op = cont.

SECURITY. The security reasoning is very similar to the one of the register: confidentiality is ensured by the encryption
scheme (with leakage of duplicates), and correctness comes from the underlying CRDT. The full proof is structurally
identical to the previous one, modulo simple extensions of write and read operations to parametrize for the different
operations and a slight tweak on the simulator. To avoid redundancy, we explain the differences.

The simulator S will behave exactly like the one for the register, modulo the creation of dummy encryptions. It
will maintain a table from labels to dummy encryptions, initialized empty. For read/write operations, the simulator
receives a label (leakage): if it is not in the map, it will encrypt it with Ω, and add it to the map, otherwise it reuses the
previous one. This ensures that every different encryption in the system is replaced by a dummy encryption without
breaking consistency in equalities. S can then have perfect information of the values stored in Πset, and rely on its
trivial simulator to emulate traces and states.

The proof sketch follows the same overall structure of the previous proof. The main difference is on the third hop,
as the difference between these games can be established as negligible given a restricted indistinguishability security
setting for deterministic encryption schemes [3]. Here, the adversary can also perform adaptive queries, but has pattern
restrictions for repeated queries (to prevent trivial attacks), which are enforced by the simulator.

DISCUSSION. Similar to the register, regarding performance the cryptographic overhead imposed is minimal. Again,
this is only possible with the assumption that operations do not rely on any computation over the encrypted values
other than equality comparison.

Albeit not being able to directly retrieve the plaintext values, the leakage implies that rogue replicas have full
knowledge of when an element that already exists in the set is removed, and of the results of all cont queries. To
reduce this to have standard indistinguishability security, we must exclude all behaviors that require this equality
comparison – which has communication and computation tolls – or have an implementation that relies on techniques
for homomorphic equality comparison – which cannot be done black-box, and will naturally be less efficient than
standard equality comparisons.



4.3 Counter CRDT

A counter CRDT is a numerical data structure that can be either incremented or decremented by an arbitrary amount, at
any server on the network. The implementation of these data structures usually involves maintaining two counters per
replica, one for increments and another for decrements. Update operations increment to the respective replica counter.
These are compared upon merge and added upon query, to obtain the observed value.

For this secure CRDT protocol, we propose a transformation that removes the need for comparing counter values
upon merge. This consists in the inclusion of a per-replica Lamport clock, stored in plaintext since it is not sensitive
data, to establish partial ordering of events.2. This allows us to restrict the necessary computations on the encrypted
counter to additions, which can be done over encrypted values if we instantiate our security layer with an additively
homomorphic scheme.

Compared to the previous black-box proposals, this protocol requires some changes to the underlying CRDT. To
argue that the resulting CRDT does not deviate from the correct behavior of a counter, we specify the concurrency
semantics of our counter. LetO denote the set of all update operations seen by the queried replica, and i integer values:∑

{inc(i) | inc(i) ∈ O} −
∑
{dec(i) | dec(i) ∈ O}

These concurrency semantics can be instantiated in our functionality syntax by defining correctctr(L) as:

– Get the last identifier idq and last operation in L. If that is (·, read, ·, ·) return the baseline leakage ε (no feedback
on update).

– Construct sets C[id] as projections of (c,write, id, op, v) in L for all id ∈ N .
– Sequentially, for every (·, set, idi, idj , c) ∈ L, copy all entries (write, idk, op, v, c

′) in C[idi] to C[idj ] such that
c′ < c, remove duplicates.

– Sum every (·,write, id, inc, v) ∈ C[idq], subtract the sum of all (·,write, id, dec, v) ∈ C[idq] and produce it as
output.

Here, correctctr is simply reconstructing and computing on the local view of the replica at the time of the operation: i.
collect all update operations seen by each replica; ii. complete the view with merges taken from previous snapshots; iii.
sum all operations to produce the result. For concretess in our proofs, we will demonstrate correctness of the counter
CRDT based on this correctctr(L), which we assume to adequately capture the concurrency semantics of counters
specified in [21].

Concretely, our protocol is an adaptation of the state-based CRDT counter (Specification 7) in [25], generalised
to allow for arbitrary increments and decrements. Our only functional tweak is in the behavior of merge, where we
use a per-replica operation count to establish freshness in updating the counter. Afterwards, given that all replica-side
operations on the counter are additions, we can again overlay security using an additively homomorphic encryption
scheme ∆, encrypting inputs, decrypting outputs, and allowing replicas to perform additions. Our protocol is detailed
in Figure 6, where Cp and Cn respectively store the positive and negative increments observed in each replica, as well
as the counter for each increment (e.g., Cp[id].cph represents the encrypted positive increment of replica id, while
Cp[id].ts represents its counter).

SECURITY. We argue that our construction is a secure CRDT counter with additional leakage of the operation, i.e.

Theorem 3. If∆ is an IND additively homomorphic encryption scheme, the construction ofΠctr described in Figure 6
is a secure CRDT with leakage

L(L) = op

The full proof can be read in Appendix B, and the proof sketch is as follows. Security is ensured by the underlying
homomorphic encryption scheme, and allows the leakage of the operation being performed at update. This will ensure
confidentiality, as well as the capability to perform correct additions over ciphertexts. Per-replica timestamps will
ensure the same verifications as the ones in the original specification of [21], enforcing the expected behavior defined
by correctctr(L).

The protocol-specific nuances of the simulator are as follows. For every write operation, the simulator S receives
the operation and generates a dummy ciphertext (encrypts zero). These two values will be the trace of write operations.
The trace of read operations is calculated according to the replica state.

2 Considering our assumption that adversaries have full control over the network and scheduling of operations, this approach
reveals no additional information.



Oracle query〈prvq, op | st〉:
(Cp, Cn, ·, N, pub)← st
cph1←$ ∆.Enc(pub, 0)
cph2←$ ∆.Enc(pub, 0)
For id ∈ N :
cph1 ← ∆.Add(cph1, (fstCp[id]))
cph2 ← ∆.Add(cph2, (fstCn[id]))
r1 ← ∆.Dec(prvq, cph1)

r2 ← ∆.Dec(prvq, cph2)

t← (cph1, cph2)
Return 〈(r1 − r2) | ·〉t

Oracle update〈prvu, op, v | st〉:
(Cp, Cn, id, N, pub)← st
cph←$ ∆.Enc(prvu, v)
If op = inc: i← p
Else: i← n
cph← ∆.Add(cph, (fstCi[id]))
t← ((sndCi[id]) + 1)
Ci[id]← (cph, t)
st← (Cp, Cn, id, N, pub)
t← (cph, op)
Return 〈ε | st〉t

Oracle setupC():
(pk, sk)←$ ∆.Gen()
Return (sk, pk, pk)

Oracle setupS(pub, id, N):
cph←$ ∆.Enc(pub, 0)
For k ∈ N :
Cp[k]← (cph, 0)
Cn[k]← (cph, 0)

st← (Cp, Cn, id, N, pub)
Return st

Oracle prop(st, id):
(Cp, Cn, ·, ·, ·)← st
Return (Cp, Cn)

Oracle merge(up, st):
(Cp, Cn, id, N, pub)← st
(C′
p, C

′
n)← up

For id ∈ N :
If (sndC′

p[id]) > (sndCp[id]):
Cp[id]← C′

p[id]

If (sndC′
n[id]) > (sndCn[id]):

Cn[id]← C′
n[id]

Return (Cp, Cn, id, N, pub)

Fig. 6. Counter from additively homomorphic scheme ∆

– Hop 1 - All operations are stored in a global log L. Read executes correctctr(L) to produce the client output. This is
possible from the construction and the correctness and additively homomorphic properties of ∆: on every oracle
call we are updating L of id with the same operations reproduced on their respective states.

– Hop 2 - Replace every client-side encryption with an encryption of the value 0. This can be done by the simulator
(only requires the public key), and is indistinguishable from the previous hop, as the difference between these
games is an instantiation of the indistinguishability game of ∆.

DISCUSSION. Our design explicitly reveals the operation being performed, for the replica to know which structure will
receive the addition. Observe that we can reduce this leakage by having all write operations produce two ciphertexts,
one for increments and one for decrements, where the client will simply encrypt 0 as the operation not being performed.
This requires additional client-side computation (encryption), as well as larger update messages (both the ciphertexts
must be sent).

4.4 Bounded Counter

As an extension to the counter CRDT, Shapiro et. al. [24] suggest the value in enforcing numeric invariants over these
distributed datatypes (e.g., x ≥ K) for enforcing application correctness. CRDT counters enforcing such invariants are
often designed following concepts from the escrow transactional model [19], where the difference between the actual
value of the counter and its upper or lower bound is seen as a cumulative set of rights that enables said operations. For
example, a counter of value N with lower bound 0 can be seen as having N rights, which are consumed as the counter
is decremented, and created as the counter is incremented. These CRDT counters are known as Bounded Counters,
and can perform five operations:

– value(), which returns the counter value.
– inc(v), which increments v to the value.
– dec(v), which decrements v to the value.
– rights(), which returns the local rights of the replica.
– tran(v, id), which transfers v rights from the target replica to replica id.

All of these operations can fail, if the consequence of applying it breaks the underlying invariant; e.g., if a replica has
3 rights to a counter and is requested to transfer 5 to any other replica.

A natural implementation of the bounded counter is structurally similar to the counter, as the CRDT has to keep
track of how many rights each replica has and how many it has sent/received. As such, on top of using comparisons
and additions, it also has the server check the invariant. We can reduce the need for comparisons by instead using
per-replica Lamport clocks (similarly to the previous protocol), which leaves additions and invariant checks. The



concurrency semantics for the bounded counter are similar to the previous counter, with an additional step for verifying
the invariant. We omit these for brevity.

Now observe that merges will never break the invariant, as each individual replica never adds (or subtracts)
more than what it has the rights to. This means that all operations in which the invariant must be checked involve
interaction with the client, allowing these to be off-loaded to the client. Given these transformations, the only remaining
computations on encrypted values are additions, and again we can use an additively homomorphic encryption scheme.

Our transformation is similar to that of the counter. We build on the protocol of [2] and perform two main functional
changes: (i) we use per-replica operation counters to establish freshness of updates (same as before), and (ii) upon
updates, we delegate to the client the verification of the invariant. After this verification, the client sends an encryption
of either the operation value (in case of success), or of a neutral element to the operation (in case of failure). This
allows replica-side processing of both successful and unsuccessful operations without disclosing the result of invariant
validation.

The techniques for adapting the protocol follow a very similar approach as the secure counter, with an added step
of straightforward client-side invariant verification. For succinctness, we detail the full construction in Appendix C.

SECURITY. We argue that our construction is a secure bounded CRDT counter with additional leakage of the operation,
and target replica for right transition (tran), i.e.

Theorem 4. If ∆ is an IND additively homomorphic encryption scheme, the construction of Πbctr is a secure CRDT
with leakage

L(L) = (op, idt)

where (·, idt)← v for op = tran and idt = ε otherwise.

The security argument is similar to that of the previous counter, as the underlying encryption scheme allows for
operations to transfer encryptions indistinguishable from dummy values. The main differences are that query now
leaks the operation being performed op and, if tran(v, id), the replica id to which it is transferring to. update now
contains two additional ciphertexts (cph1, cph2), for client-side validation of the invariant.

The initialization stage is similar to the previous proof. For every write operation, the simulator receives the
operation and the replica receiving the rights (if that is the case) but does not know the actual value. It will instead
produce a new encryption of 0, to emulate the updated value, and add either to the increment, decrement, or to the
replica receiving the value. The values presented in the trace are cph1, cph2 following the specifications of update,
alongside the operation and the produced dummy encryption. For every read operation, the simulator will provide the
two ciphertexts within the simulated replica state as trace, as well as the received operation.

Observe that designing our CRDT to send an encryption of the neutral value when the invariant fails allows us
to conceal when an operation has no effect due to this restriction. Formally, this allows the simulator to present an
indistingishable dummy ciphertext that can correspond either to the value or to 0. The proof is done in three hops, two
similar to those of the previous proof and one additional to enforce the invariant. The proof sketch is as follows.

– Hop 1 - All operations are stored in a global log L. Read parses over L to produce the client output, filtering
operations that break the local invariant. The reasoning here is analogous to the previous proof (in the proposed
construction, the operations filtered from L are also excluded by the client).

– Hop 2 - Read executes correctbctr(L). The only difference here is that now we are exactly following the description
of F , which means that we must also account for the global invariant. The argument for this hop is similar as the
one in [2] regarding how the concurrent validations ensure not breaking the global invariant.

– Hop 3 - Replace every client-side encryption with an encryption of value 0, just like the previous proof.

DISCUSSION. We can also reduce the leakage of both operations, but at a much steeper cost than the previous design.
Hiding queries duplicates the size of replica-client messages, as the replica must now prepare and send 4 ciphertexts
(two for value queries, and two for rights).

Hiding updates is possible via the same strategy as before, but if we do not want to reveal the replica receiving the
rights, the client must now prepare N + 1 encryptions instead of 1, encrypting the neutral value for parts of the state
that must remain unchanged. The benefit is that we can now perform the same update operation on the replica-side
without knowing if what occurred was an increment, decrement, or right transfer, and if the latter, to which replica the
rights were transferred to.



5 Integration with AntidoteDB

We implemented a prototype version of our secure CRDT protocols, integrating them in AntidoteDB [1], a replicated
NoSQL database that uses CRDTs as the data model. AntidoteDB’s core is implemented in Erlang, while there are
clients in multiple programming languages. As such, we adapted both an Erlang and Python clients to integrate our
secure CRDT operations, and modified the Erlang core only when strictly necessary.

Concretely, for AntidoteDB’s Register and Set CRDTs operations, we extended the client to encrypt/decrypt data
before storage. Given that server-side operations are seamless over encrypted data, no adaptation of the server-side
Erlang core is necessary. For the Counter and Bounded Counter CRDTs, it is necessary to modify both clients, to
ensure consistency of arithmetic over encoded data. For the bounded counter, we further leveraged AntidoteDB’s
transactions to implement its logic, ensuring that the client maintains a consistent view of the state between read/write
operations, and that there is no local concurrent operation that might compromise invariant verification.

Regarding cryptographic computations, we used AES-OFB with random IVs and a 128 bit key for standard
encryption operations on the Register, AES-OFB with fixed IVs (to ensure determinism) and 128 bit key for the
Set, and the Paillier cryptosystem with a 2048 bit key for both counters.

6 Experimental Evaluation

This experimental evaluation section aims to assess the performance and scalability overhead of our secure CRDT
protocols, when compared to their non-secure versions. We performed two sets of experiments, micro-benchmarks
that measure the latency and throughput of the operations of the different CRDTs designed, and macro-benchmarks
that show how our secure version of AntidoteDB behaves with a realistic benchmark and in comparison with its
original plaintext version.

Our experiments were performed in a cluster with seven machines, where two acted as servers and the others
executed multiple clients in parallel. The server machines had an AMD EPYC 7281 16-core 2.1GHz CPU and 128GB
of RAM each. Amongst the client machines, three had the same CPU and RAM of the server, while the other two had
two Intel Xeon E5-2620 v2 6-core 2.1GHz CPU each and 64GB of RAM. With this setup we were able to saturate the
servers with 128 clients in parallel. Communication between machines was done through a one gigabit network.

6.1 Micro Experiments

To demonstrate the performance and scalability of our different secure CRDTs, we ran a micro-benchmark with our
Python client, where clients execute operations in a closed loop for 2 minutes. For each CRDT, we ran multiple
experiments, increasing the number of clients until the servers were saturated (from 8 to 128 clients). The size of data
objects stored in maps and register was 2500 bytes. Results are presented in the form of latency × throughput plots,
where the x-axis represents the throughput of the servers (i.e., the number of operations per second performed by the
servers) and the y-axis exhibits the average latency, as observed by the clients. The successive dots in a line correspond
to the results of experiments with an increasing number of clients.
Register CRDT. Figure 7 (left) compares AntidoteDB’s plaintext Register CRDT and our secure version with a
workload consisting of 50% reads and 50% writes. The results show that the two versions exhibit a similar behaviour,
although the secure version has an overall higher latency and lower throughput. While the servers are not saturated,
the latency of the plaintext and secure CRDT is similar, with around 7-8 milliseconds per operation respectively.

The servers start becoming saturated close to 2200 ops/s for the secure CRDT and 2500 ops/s for the plaintext
version. This can be explained by the cryptographic expansion of the data in the secure version, which entails a larger
amount of data processed and stored by the server. The small difference between the two suggests that very little
overhead is imposed when considering the secure version of the Register CRDT.
Set CRDT. Figure 7 (right) shows the results for the secure set CRDT. For these results we used a 50% gets, 35%
inserts, and 15% deletes benchmark. Again, results are very similar given the small adaptations necessary for the
secure version. Indeed, at some points the secure set outperforms the plain version. This is justifiable due to small
variations at the saturation point of AntidoteDB’s servers, and suggests the minimal overhead of the security layer.
Counter CRDT. Figure 8 (left) shows the results obtained for the plaintext and secure counters. For these tests we
used 33% reads, 33% increments, and 33% decrements. Naturally, the counter imposes a higher performance overhead
than its Register and Set counterparts. This is a consequence of relying on cryptographic schemes enabling server-side
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Fig. 7. Throughput/latency for the plaintext and secure versions of the Register CRDT (left) and Set CRDT (right.

arithmetic over encoded data, which are fundamentally richer in functionality than the previous examples. Results for
the secure CRDT start at 127 ops/s and 57ms of latency, however latency quickly increases without any growth in
throughput. The reason for this is that the server gets saturated quickly as it has to perform operations over encoded
data (we note that for registers and sets, the servers only store the ciphered data, never executing operations other than
comparison over that data). The plaintext version goes from 1250 to 3000 ops/s always with very small latency (from
6 to 33 ms).

Bounded Counter CRDT. Figure 8 (right) shows the results for the plaintext and secure bounded counter. Results
are very similar to the ones of the secure counter, despite the additional step for invariant preservation. Results for the
secure bounded counter start with 100 ops/s and 50ms latency, then they reach a throughput cap at 220 ops/s, at which
point latency starts to increase at a very steep rate. The plaintext bounded counter scales well up to 1700 ops/s.
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Fig. 8. Throughput/latency for the plaintext and secure versions of the Counter CRDT (left) and Bounded Counter CRDT (right).

Discussion Our experimental results support a natural and important trade-off for designing secure CRDT solutions:
the cost of security is proportional to the requirements imposed to the cryptographic scheme. For Register and Set
CRDTs, we were able to rely on standard cryptographic techniques, as little interaction was necessary with the
encrypted data. On the other hand, if we require server-side computations over stored data, then richer cryptographic
techniques are necessary, which impose different overheads in scalability.

Comparing client/server overheads, there are several aspects that should be noted. For registers and sets, clients
do all cryptographic operations and the only overhead for servers come from the cryptographic expansion of stored
data. Thus, the throughput achieved by systems storing encrypted data and plaintext data is similar, with only a small
decrease of throughput on the former. For counters and bounded counters, the server has to execute operations over
encrypted data (specifically, modular multiplications of large numbers, instead of normal additions), which imposes
a non-negligible overhead. This has direct impact in the maximum throughput that a system with encrypted data can
achieve.



6.2 Macro Experiments

To demonstrate the performance and scalability of our secure CRDTs when supporting real-world applications, we
performed additional experiments with FMKe [28], a medical benchmark based on the Danish National Joint Medicine
Card and specifically designed for NoSQL databases. FMKe populates AntidoteDB with over one million patients
records, five thousand prescriptions, ten thousand medical staff, three hundred pharmacies and fifty healthcare facilities,
being that the majority of the operations are carried over register and set CRDTs. FMKe includes different update and
get operations over these records, including create-prescription, get-prescription-medication, among others. To conduct
these experiments we used our Erlang client, as FMKe was developed in Erlang, and the same experimental test-bench
that was used in the micro-benchmarks, measuring latency and throughput with increasing number of clients. The
benchmark was executed for 600 seconds, and unless stated otherwise, results presented next represent average values.
Throughput. Figure 9 shows how AntidoteDB throughput behaves as we increase the number of clients, comparing
both our secure AntidoteDB and its original plaintext version.

On one hand, results obtained reveal that throughput increases steadily up to 32 clients in both secure and plaintext
versions, decreasing as we add more clients. This suggests a breaking point at which the server saturates (around 32
clients), as adding more clients actually has a negative impact on the number of operations processed per second. On
the other hand, results also show that the security overhead imposed by our CRDTs is minimal (around 350 ops/s) and
that it increases/decreases in a similar trend as the plaintext version, suggesting that adding security mechanisms does
not impose additional restrictions on system scalability.
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increasing number of clients.

Latency. To further understand the practicality of relying on secure CRDTs in the development of real-world systems,
we now increase the granularity of our analysis to operation latency. Results are presented in Table 1.

All get operations exhibit similar behavior, consisting in simple retrieval of values from the database, with further
value decryption in the secure version. We can observe that adding security requires an overhead of 1.62ms to 4.28ms
over its plaintext counterpart, corresponding to an average latency increase of 24% to 51%. In contrast, Update
Prescription and Update Prescription Medication are write operations and require the storage (and encryption in
the secure version) of values in the database. This also shows a low impact of roughly 2.7ms when compared to
the plaintext version, corresponding to an average latency increase of roughly 20%. Create prescription is the most
computationally intensive operation of the group, as it requires multiple reads and writes from the dataset to construct
the prescription data structure, which in its secure instantiation also require multiple calls to the cryptographic library.
Here we can observe an average latency increase of roughly 12.7ms, corresponding to a 46% increase. A thorough
description of each operation and associated pseudo-code can be found in [28].

Table 1 also presents values corresponding to percentiles 95 and 99. The increased latency (in both versions) in
comparison to average values is due to the amount of data accessed by operations - for instance, the amount of data
returned by the Get Patient operation depends on how many prescriptions the patient has. This means that the values
shown are not outliners but a natural consequence of how FMKe data is distributed. Moreover, the differences between
plaintext and secure versions of the system are reduced when considering these percentiles. This is observable in all
operations, with get operations being reduced to 9%-30% increases in P95 and 6%-9% in P99; write operations to
roughly 7% in P95 and 6% in P99, and create prescription having an increase of roughly 11% in both P95 and P99.



These results demonstrate that security mechanisms do not provoke additional outliers and thus are not expected to
produce unexpected system delays.

Average P95 P99

Get Patient
Plain 8.22 61.10 67.00
Secure 10.25 66.81 70.80

Get Pharmacy Presc.
Plain 8.21 61.63 67.03
Secure 12.29 69.22 73.37

Get Prescription
Plain 6.94 48.17 65.61
Secure 8.72 63.84 69.72

Get Presc. Medication
Plain 7.01 59.24 66.03
Secure 8.63 65.35 69.99

Get Processed Presc.
Plain 8.21 61.50 67.00
Secure 12.44 69.30 73.21

Average P95 P99

Get Staff Presc.
Plain 8.16 61.33 66.98
Secure 10.49 67.16 71.32

Update Prescription
Plain 13.65 67.45 71.98
Secure 16.39 72.50 76.47

Update Presc. Med.
Plain 13.46 67.23 71.98
Secure 16.30 72.59 76.51

Create Prescription
Plain 27.43 75.75 79.55
Secure 40.14 84.20 89.81

Table 1. Operation latency, considering average and percentiles 95 and 99. Values are in milliseconds.

Stability. Another important issue regarding the overhead of security mechanisms is related to system stability.
Specifically, we are interested in understanding the performance of our security mechanisms as our system develops.

Figure 10 presents the average latency variation for Create Prescription, Get Patient and Update Prescription
operations. Similar values were observed in other operations for respective get and update processes, which we omit
for succinctness. In both plain and secure system modes, latency variation is relatively small. We can also highlight
that neither version has any noticeable deterioration as the benchmark progresses, suggesting that using cryptography
to enhance security is not imposing an increasing overhead on the system. This close margin between plaintext and
secure version of operations is clearly observable in Get Patient, with baseline small latency values, and to a lesser
extent in Update Prescription, where the variation in measurements sometimes presents the processing of requests in
the secure system as having lower latency than those of the plaintext system.
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Fig. 10. Average latency variation over the duration of the benchmark. Elapsed time is in seconds, Latency is in milliseconds.

Discussion. Our macro experiments present the feasibility of our design for developing privacy-critical applications
relying on secure CRDTs. The latency overhead can be directly mapped to the cost of the underlying cryptographic
operations, as exemplified in the micro experiments, which is a standard overhead for enhancing real-world systems



with confidentiality guarantees. Furthermore, we have shown that, when applied to a benchmark emulating a real-world
application, the cryptographic overhead on throughput and latency is similar to the cost of enforcing standard security
guarantees in key-value databases: encrypting and decrypting values when writing and reading from the database,
respectively. These experiments also suggest that security measures impose no additional impact on the system, as the
benchmark maintained consistent performance values throughout its lifecycle in both settings.

7 Related Work

CRDTs were originally designed for decentralized distributed systems without any security concerns [26]. In this work
we propose the first formal security treatment of CRDTs, nonetheless a few previous works have studied how to protect
distributed applications that leverage CRDTs for synchronization. Snapdoc [14] studied how to offer collaborative
document edition with authenticated snapshots and history-privacy, where a new participant joining a document being
edited can have authentication guarantees regarding the consistency of the document while simultaneously preserving
the privacy of the document’s edition history. Snapdoc uses CRDTs to ensure concurrent edits can be merged, however
it is not a central component in their security proposal. Shoker et al. [27], in a work in progress report, aims to detect
and tolerate malicious participants in CRDT-based systems by allowing replicas to perform operations normally and
then running a Byzantine fault tolerance algorithm in the background.

CRDT security is also related with outsourcing of computations and multiparty computation [17], in the sense
that clients are collaboratively performing a computation over a shared database state. Cachin et al. [6] proposed
Authenticated Data Types (ADTs) for authenticated data outsourcing and computation. However their setting is
restricted to a single client performing operations and single server holding the data.

Secure data storage has also been achieved through techniques other than CRDTs. However such systems typically
require synchronization to detect adversarial behaviour. DepSky [4] uses Byzantine fault tolerance to ensure that
replicas converge, and traditional encryption to preserve data privacy, however it does not support data computation.
CryptDB [20] leverages some of the techniques we also explore in this work, including deterministic encryption and
partially homomorphic encryption, however it only considers a single server. SPORC [11] supports secure group
collaboration and data storage, however it only supports multiple servers in a shared-nothing architecture, where
servers are independent.

8 Conclusion

We have presented the first cryptographic treatment of CRDTs, which establishes a formal framework for the validation
of new secure CRDT algorithms, specifically designed to explore trade-offs between performance and information
leakage.

Our results show that one can instrument correct CRDT constructions with a layer of security (e.g. standard
encryption) to achieve secure CRDT solutions, provided that this encoding does not break the functional part of
the CRDT. Our transformations also show that we can leverage cryptographic schemes with additively homomorphic
properties to have secure CRDT solutions even when merge operations process over encoded data.

Experimental validation suggests the performance overhead for secure CRDT solutions is proportional to the
underlying security mechanism. When considering a benchmark for real-world CRDT applications we can observe
that the security cost is relatively low, with an average latency increase of 37.5% and 20% for get and put operations,
and a throughput reduction of 5%. These results suggest the feasibility of considering secure CRDT solutions for
applications managing sensitive data.
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A Proof of Register Construction

In game GZ1 , we replace the execution of Πreg with its idealized version with F and S. Functionality F will maintain
global log L, updated on write and read, and by the simulator on prop and merge. F produces the output of read
by calling correct on the global log. Since the read operations of registers are always get and write operations are
always set, these are stored as such in L. Recall that correct CRDTs imply total leakage, so the trivial simulator can
simply call the protocol specification to generate indistinguishable traces and states. These reconstructions are done
with process(), which executes as follows:

– Call L to receive all the execution log.
– Update the trace and states of each replica using Πreg.



Again, observe that since L returns the full log, S can simply execute the protocol to emulate it. We argue that these
games are identical, given the correctness of Πreg, i.e.

|Pr[GZ0 (n)⇒ T]− Pr[GZ1 (n)⇒ T]| = 0

If there exists an environment Z that successfully distinguishes these two games, we demonstrate that there also exists
a successful environment Z ′ against the correctness game of Πreg. Z ′ emulates GZ1 as follows: with the exception of
the calls to Θ, all other operations are replaced by their respective oracles in the correctness game of Πreg. Indeed,
if we are in the real world of the correctness game, this exactly matches GZ0 ; and if we are in the ideal world of
the correctness game with the trivial simulator, this exactly matches GZ1 . Given that the differences between the two
games are exactly that, and that our assumption ensures that no Z ′ can break the correctness of Πreg, then no Z can
distinguish our two games.

Game G0Πreg,Z,A(n):

T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu, prvq←$ Θ.Gen(); pub← ε

For id ∈ [n] : stid ←
Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
cph←$ Θ.Enc(prvu, v)
〈ε | stid〉t ← Πreg.update〈op, cph | stid〉
T ← T‖t
Return ε

Oracle prop(i, j):
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
〈cph | ·〉t←$ Πreg.query〈op | stid〉
r ← Θ.Dec(prvq, cph)

T ← T‖t
Return r

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle merge(i, j):
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Game G1Πreg,Z,A(n):

L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu, prvq←$ Θ.Gen(); pub← ε

For id ∈ [n] : stid ←
Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
cph←$ Θ.Enc(prvu, v)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Return ε

Oracle prop(i, j):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, get)}
cph← correct(L)
r ← Θ.Dec(prvq, cph)
Return r

Oracle corrupt(id):
process()
Return stid

Oracle trace( ):
process()
Return T

Oracle merge(i, j):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Fig. 11. First hop, correctness of Πreg.

In game GZ2 , we replace the output of read by having it compute over another idealized structure L′ that stores
the original values of write, instead of having them encrypted and decrypted at the end. We argue that the behavior of
these games is identical given the seamless behavior of the register CRDT on encoded values.

|Pr[GZ2 (n)⇒ T]− Pr[GZ1 (n)⇒ T]| = 0

The only difference between these two games is that on GZ2 we have the output of read being computed over L′ with
plaintext values, and on GZ1 we have the output of read being computed over L with encryptions of the same values,
decrypted afterwards. Under our assumption, we know that

∀L′ : correct(L′) = decode(correct(map(encode, L′)))

thus the outputs of read are the same.
Observe that the encrypted values of st are no longer used for read. As such, game GZ3 we replace encrypted states

stid with dummy messages of the same length. Since Z does not have access to key, we upper bound the distance
between these two games by constructing an adversary B against the IND-CPA security of Θ, such that

|Pr[GZ2 (n)⇒ T]− Pr[GZ3 (n)⇒ T]| ≤ AdvIND-CPA
Θ,B (λ)

AdversaryB simulates the environment of GZ3 by replacing the encryption on the write operation by Encrypt((op, v, c), {0}|v|).
B presents the result of GZ3 as the guessing bit of IND-CPAΘ,B.

Let the internal bit of IND-CPA be 0. Then, the environment presented to Z is exactly the same as that of GZ2 .
Now, let the internal bit of IND-CPA be 1. The environment presented to Z is exactly the same as that of GZ3 . Given



Game G1Πreg,Z,A(n):

L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu, prvq←$ Θ.Gen(); pub← ε

For id ∈ [n] :
stid ← Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
cph←$ Θ.Enc(prvu, v)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Return ε

Oracle prop(i, j):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, get)}
cph← correct(L)
r ← Θ.Dec(prvq, cph)
Return r

Oracle corrupt(id):
process()
Return stid

Oracle trace( ):
process()
Return T

Oracle merge(i, j):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Game G2Πreg,Z,A(n):

L′ ← {}; c′ ← 0
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu←$ Θ.Gen(); pub← ε
For id ∈ [n] :
stid ← Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′,write, id, set, v)}
cph←$ Θ.Enc(prvu, v)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Return ε

Oracle prop(i, j):
c′ ← c′ + 1
L← L ∪ {(c′, snap, idi, idj)}
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′, read, id, get)}
r ← correct(L′)
c← c+ 1
L← L ∪ {(c, read, id, get)}
Return r

Oracle corrupt(id):
process()
Return stid

Oracle trace( ):
process()
Return T

Oracle merge(i, j):
c′ ← c′ + 1
C′ ← { ĉ′ | (ĉ′, snap, idi, idj) ∈ L′ }
If C′ 6= ∅:
ĉ′ = min(C′)
L′ ← L′ ∪ {(c′, set, idi, idj , ĉ′)}
L′ ← L′ \ {(ĉ, snap, idi, idj)}

c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Fig. 12. Second hop, functionality-preserving encoding Egen.
Game G2Πreg,Z,A(n):

L′ ← {}; c′ ← 0
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu←$ Θ.Gen(); pub← ε
For id ∈ [n] :
stid ← Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′,write, id, set, v)}
cph←$ Θ.Enc(prvu, v)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Return ε

Oracle prop(i, j):
c′ ← c′ + 1
L← L ∪ {(c′, snap, idi, idj)}
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′, read, id, get)}
r ← correct(L′)
c← c+ 1
L← L ∪ {(c, read, id, get)}
Return r

Oracle corrupt(id):
process()
Return stid

Oracle trace( ):
process()
Return T

Oracle merge(i, j):
c′ ← c′ + 1
C′ ← { ĉ′ | (ĉ′, snap, idi, idj) ∈ L′ }
If C′ 6= ∅:
ĉ′ = min(C′)
L′ ← L′ ∪ {(c′, set, idi, idj , ĉ′)}
L′ ← L′ \ {(ĉ, snap, idi, idj)}

c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Game G3Πreg,Z,A(n):

L′ ← {}; c′ ← 0
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
prvu←$ Θ.Gen(); pub← ε
For id ∈ [n] :
stid ← Πreg.setupS(id, N)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′,write, id, set, v)}
cph←$ Θ.Enc(prvu, {0}

|v|)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Return ε

Oracle prop(i, j):
c′ ← c′ + 1
L← L ∪ {(c′, snap, idi, idj)}
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c′ ← c′ + 1
L′ ← L′ ∪ {(c′, read, id, get)}
r ← correct(L′)
c← c+ 1
L← L ∪ {(c, read, id, get)}
Return r

Oracle corrupt(id):
process()
Return stid

Oracle trace( ):
process()
Return T

Oracle merge(i, j):
c′ ← c′ + 1
C′ ← { ĉ′ | (ĉ′, snap, idi, idj) ∈ L′ }
If C′ 6= ∅:
ĉ′ = min(C′)
L′ ← L′ ∪ {(c′, set, idi, idj , ĉ′)}
L′ ← L′ \ {(ĉ, snap, idi, idj)}

c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Fig. 13. Third hop, IND-CPA of Θ.

that the difference between the two games is exactly that, then the advantage of Z distinguishing between these two
games is exactly that of breaking the IND-CPA security of Θ.

In our final game GZ3 , we can produce all the information presented in the adversarial interface using the leakage
of L. As such, we can now define a simulator that makes GZ3 match the ideal world. This simulator S is described in
Figure 14.



Algorithm setup(n):
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
key←$ Θ.Gen(); c← 0
s← 0
For id ∈ [n] : stid ← ε
Return ε

Algorithm prop(i, j):
F.snap(i, j)
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
process()
p← sti
pi,j ← pi,j || [p]
Return p

Algorithm merge(i, j):
F.set(i, j)
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

process()
p← head pi,j
sti←$ (sti || p)
pi,j ← tail pi,j

Algorithm trace( ):
process()
Return T

Algorithm corrupt(id):
process()
Return stid

Algorithm process( ):
O← F.leak()
For (c′, op, l) ∈ O ∧ (s < c′)

If op = write:
cph←$ Θ.Enc(key, {0}l)
c← c+ 1
L← L ∪ {(c,write, id, set, cph)}
Sreg.process()

Else:
c← c+ 1
L← L ∪ {(c, read, id, get)}
Sreg.process()

Fig. 14. Simulator for register construction proof. F .leak returns the set of operation identifiers O, with corresponding input/output
lengths.

The simulation strategy is as follows: the states and traces shown to the environment are those emulated by the
trivial simulator of Πreg (now referred to as Sreg.process). In this register will be stored dummy encryptions known
to S. To construct these encryptions, S will call F .leak to obtain the correct sizes of the register values. These
will constitute all operations placed in Πreg, and thus S has all the information necessary to perfectly emulate the
functionality of Πreg, by maintaining its global log L and responding to LReg(L) with L, as is required by the trivial
simulator Sreg.process.

Now, the only differences between GZ3 and IdealF,Z,S instantiated with the simulator of Figure 14 are when traces
and states of L and L′ are constructed, as in GZ3 they are processed as soon as the operations occur, and observed
afterwards, and in IdealF,Z,S they are only produced upon calling process. This is a standard eager processing
argument, as the inputs used for constructing traces at the time of write and read on GZ3 are exactly the same as
those used later on IdealF,Z,S , computed upon request on process.

Let λ be the security parameter and µ(λ) a negligible function in it. To conclude, we have that

AdvSecΠ,Z = (|Pr[GZ0 (n)⇒ T]− |Pr[GZ1 (n)⇒ T])+

(|Pr[GZ1 (n)⇒ T]− Pr[GZ2 (n)⇒ T]|)+
(|Pr[GZ2 (n)⇒ T]− Pr[GZ3 (n)⇒ T]|)
≤ AdvIND-CPA

Θ,B (λ)

≤ µ(λ)

and Theorem 1 follows.

B Proof of Counter Construction

Our proof is a sequence of three games, presented in Figures 15 and 16.
Game GZ0 is the real world of Figure 3, extended with the protocol of Figure 6. In game GZ1 , we have an idealized

data set L, containing all global operations. The only functional difference is in read, where instead of using a state that
is composed of ciphertexts are are constructed via multiple additions on write, we refer to the L structure that contains
all the operations seen, and instead call correctctr(L). We argue that the behavior of these games is identical, given the
correctness of ∆, i.e.

|Pr[GZ0 (n)⇒ T]− Pr[GZ1 (n)⇒ T]| = 0

To show equality of these two games we prove an invariant that shows that the sum of operations C[id] constructed by
correctctr(L) (used on GZ1 ) produces exactly the same result as what is encoded by stid (used on GZ0 ).

∀id : decryptState(stid) = sum(C[id])



Where sum(C[id]) computes the counter value of C[id] according to correctctr, and decryptState(st) denotes the
operation that presents the internal value of stid:

cph1←$ ∆.Enc(prvu, 0)

cph2←$ ∆.Enc(prvu, 0)

∀id ∈ N : cph1 ← ∆.Add(cph1, st.(fstCp[id]))

∀id ∈ N : cph2 ← ∆.Add(cph2, st.(fstCn[id]))

r1 ← ∆.Dec(prvq, cph1)

r2 ← ∆.Dec(prvq, cph2)

(r1 − r2)

At beginning, the correctness of ∆ shows that the invariant holds, as we will have the encryption and decryption of 0
on the left, and 0 on the right from the empty C[id]. We now present our arguments for the rest of the oracle calls.

– read(id, op) changes nothing on both sides.
– write(id, op, v)

• op = inc on the left performs ∆.Add(cph1, ∆.Enc(pub, v)) before ∆.Dec(sk, cph). From the correctness of
∆ and its additively homomorphic property, the result will be the an increase of v to the total value, which
exactly matches the difference on the right, which adds (·,write, id, inc, v) to the list.

• op = dec is the same for the analogous reasoning.
– prop(idi, idj) changes nothing on both sides.
– merge(id, up) by construction will contain a up that matches the state of some replica idx at time of prop(idx, id).

As such, on the left-hand side it will update positive and negative encrypted values of outdated replica ids
(tested via timestamps: sndC[idx] > sndC[id]). By the construction of (sndC[id]) in write we can see that
this will correspond exactly to a value update corresponding to the unique operations observed in idx at time of
prop(idx, id), that are not in id.
On the right-hand side we have correctctr(L) updating C[id] according to the respective (·, snap, idx, id), which
will extend C[id] with the operations in idx that were not yet in id. Thus, let pre denote the result before the
operation and post denote the result after the operation, we can see that

decryptStatepost[stid]− decryptStatepre[stid] =

sum(Cpre[id] ∩ C[idx])

and the invariant holds.

In game GZ2 we replace updates with encryptions of zero. Since Z does not have access to key, we upper bound
the distance between these two games by constructing an adversary B against the indistinguishability of ∆, such that

|Pr[GZ1 (n)⇒ T]− Pr[GZ2 (n)⇒ T]| ≤ AdvIND∆,B(λ)

Adversary B simulates the environment of GZ2 by replacing the encryption on the write operation by Encrypt(v, 0). B
presents the result of GZ2 as the guessing bit of IND∆,B.

Let the internal bit of IND be 0. Then, the environment presented to Z is exactly the same as that of GZ1 . Now,
let the internal bit of IND be 1. The environment presented to Z is exactly the same as that of GZ2 . Given that the
difference between the two games is exactly that, then the advantage of Z distinguishing between these two games is
exactly that of breaking the IND security of ∆.

In our final game GZ2 , we can produce all the information presented in the adversarial interface using the leakage
of L. As such, we can define a simulator that makes GZ2 match the ideal world. This simulator S is very similar to the
one in Figure 14, so for conciseness we highlight the few differences.

– Instead of encrypting zeros using Ω, it will encrypt the value 0 using ∆.
– Instead of having the trace be the encryption, it will set it to be the pair (op, cph). It can do this because L also

provdides op.



Game G0Π,Z,A(n):
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
(prvq, prvu, pub)←$ Π.setupC()

For id ∈ [n] :
cph←$ ∆.Enc(pub, 0)
For k ∈ [n]:
Cp[k]← (cph, 0)
Cn[k]← (cph, 0)

stid ← (Cp, Cn, id, n, pub)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
(Cp, Cn, id, N, pub)← stid
cph←$ ∆.Enc(prvu, v)
If op = inc: i← p
Else: i← n
cph← ∆.Add(cph, (fstCi[id]))
t← ((sndCi[id]) + 1)
Ci[id]← (cph, t)
stid ← (Cp, Cn, id, N, pub)
t← (cph, op)
T ← T‖t
Return ε

Oracle prop(i, j):
(Cp, Cn, ·, ·, ·)← sti
p← (Cp, Cn)
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
sk← prvq
(Cp, Cn, ·, N, pub)← stid
cph1←$ ∆.Enc(pub, 0)
cph2←$ ∆.Enc(pub, 0)
For id ∈ N :

cph1 ← ∆.Add(cph1, (fstCp[id]))
cph2 ← ∆.Add(cph2, (fstCn[id]))

r1 ← ∆.Dec(sk, cph1)
r2 ← ∆.Dec(sk, cph2)
t← (cph1, cph2)
T ← T‖t
o← (r1 − r2)
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle merge(i, j):
p← head pi,j
(Cp, Cn, id, N, pub)← sti
(C′
p, C

′
n)← p

For id ∈ N :
If (sndC′

p[id]) > (sndCp[id]):
Cp[id]← C′

p[id]

If (sndC′
n[id]) > (sndCn[id]):

Cn[id]← C′
n[id]

sti ← (Cp, Cn, id, N, pub)
pi,j ← tail pi,j

Game G1Π,Z,A(n):
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
(prvq, prvu, pub)←$ Π.setupC()

For id ∈ [n] :
cph←$ ∆.Enc(pub, 0)
For k ∈ [n]:
Cp[k]← (cph, 0)
Cn[k]← (cph, 0)

stid ← (Cp, Cn, id, n, pub)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c← c+ 1
L← L ∪ {(c,write, id, op, v)}
(Cp, Cn, id, N, pub)← stid
cph←$ ∆.Enc(prvu, v)
If op = inc: i← p
Else: i← n
cph← ∆.Add(cph, (fstCi[id]))
t← ((sndCi[id]) + 1)
Ci[id]← (cph, t)
stid ← (Cp, Cn, id, N, pub)
t← (cph, op)
T ← T‖t
Return ε

Oracle prop(i, j):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
(Cp, Cn, ·, ·, ·)← sti
p← (Cp, Cn)
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, op)}
o← correct(L)
sk← prvq
(Cp, Cn, ·, N, pub)← stid
cph1←$ ∆.Enc(pub, 0)
cph2←$ ∆.Enc(pub, 0)
For id ∈ N :
cph1 ← ∆.Add(cph1, (fstCp[id]))
cph2 ← ∆.Add(cph2, (fstCn[id]))

t← (cph1, cph2)
T ← T‖t
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle merge(i, j):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

p← head pi,j
(Cp, Cn, id, N, pub)← sti
(C′
p, C

′
n)← p

For id ∈ N :
If (sndC′

p[id]) > (sndCp[id]):
Cp[id]← C′

p[id]

If (sndC′
n[id]) > (sndCn[id]):

Cn[id]← C′
n[id]

sti ← (Cp, Cn, id, N, pub)
pi,j ← tail pi,j

Fig. 15. First hop, correctness of ∆

Again, the differences between GZ2 and IdealF,Z,S instantiated with this simulator are when traces and states are
constructed. We can repeat the eager processing argument as before.

Let λ be the security parameter and µ(λ) a negligible function in it. To conclude, we have that

AdvSecΠ,Z = (|Pr[GZ0 (n)⇒ T]− |Pr[GZ1 (n)⇒ T])+

(|Pr[GZ1 (n)⇒ T]− Pr[GZ2 (n)⇒ T]|)
≤ AdvIND∆,B(λ)

≤ µ(λ)

and Theorem 3 follows.

C Bounded Counter

The bounded counter construction is detailed in Figure 17. Its behavior is similar to the counter construction, however
each replica maintains a matrix of counters. These track rights held, sent and received by all replicas (R).

Query operatins can refer to operations for value, or rights. The first is the result of adding all rights held by each
replica, subtracted by all decrements. The second is the result of all rights held by a replica, adding all rights received
and subtracting all rights sent and subtracted.

Update operations can be increments, decrements, or rights transferred. The first two either increment or decrement
rights to a replica, depending on an invariant check. Transferring rights also requires invariant check, but inestad
changes values in the matrix accordingly.



Game G1Π,Z,A(n):
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
(prvq, prvu, pub)←$ Π.setupC()

For id ∈ [n] :
cph←$ ∆.Enc(pub, 0)
For k ∈ [n]:
Cp[k]← (cph, 0)
Cn[k]← (cph, 0)

stid ← (Cp, Cn, id, n, pub)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c← c+ 1
L← L ∪ {(c,write, id, op, v)}
(Cp, Cn, id, N, pub)← stid
cph←$ ∆.Enc(prvu, v)
If op = inc: i← p
Else: i← n
cph← ∆.Add(cph, (fstCi[id]))
t← ((sndCi[id]) + 1)
Ci[id]← (cph, t)
stid ← (Cp, Cn, id, N, pub)
t← (cph, op)
T ← T‖t
Return ε

Oracle prop(i, j):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
(Cp, Cn, ·, ·, ·)← sti
p← (Cp, Cn)
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, op)}
o← correct(L)
sk← prvq
(Cp, Cn, ·, N, pub)← stid
cph1←$ ∆.Enc(pub, 0)
cph2←$ ∆.Enc(pub, 0)
For id ∈ N :
cph1 ← ∆.Add(cph1, (fstCp[id]))
cph2 ← ∆.Add(cph2, (fstCn[id]))

t← (cph1, cph2)
T ← T‖t
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle merge(i, j):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

p← head pi,j
(Cp, Cn, id, N, pub)← sti
(C′
p, C

′
n)← p

For id ∈ N :
If (sndC′

p[id]) > (sndCp[id]):
Cp[id]← C′

p[id]

If (sndC′
n[id]) > (sndCn[id]):

Cn[id]← C′
n[id]

sti ← (Cp, Cn, id, N, pub)
pi,j ← tail pi,j

Game G2Π,Z,A(n):
L← {}; c← 0
T ← ε; For i, j ∈ [n] : pi,j ← [ ]
(prvq, prvu, pub)←$ Π.setupC()

For id ∈ [n] :
cph←$ ∆.Enc(pub, 0)
For k ∈ [n]:
Cp[k]← (cph, 0)
Cn[k]← (cph, 0)

stid ← (Cp, Cn, id, n, pub)

b←$ ZA,write,read(pub, n)

Oracle write(id, op, v):
c← c+ 1
L← L ∪ {(c,write, id, op, v)}
(Cp, Cn, id, N, pub)← stid
cph←$ ∆.Enc(prvu, 0)
If op = inc: i← p
Else: i← n
cph← ∆.Add(cph, (fstCi[id]))
t← ((sndCi[id]) + 1)
Ci[id]← (cph, t)
stid ← (Cp, Cn, id, N, pub)
t← (cph, op)
T ← T‖t
Return ε

Oracle prop(i, j):
c← c+ 1
L← L ∪ {(c, snap, idi, idj)}
(Cp, Cn, ·, ·, ·)← sti
p← (Cp, Cn)
pi,j ← pi,j || [p]
Return p

Oracle read(id, op):
c← c+ 1
L← L ∪ {(c, read, id, op)}
o← correct(L)
sk← prvq
(Cp, Cn, ·, N, pub)← stid
cph1←$ ∆.Enc(pub, 0)
cph2←$ ∆.Enc(pub, 0)
For id ∈ N :
cph1 ← ∆.Add(cph1, (fstCp[id]))
cph2 ← ∆.Add(cph2, (fstCn[id]))

t← (cph1, cph2)
T ← T‖t
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Oracle merge(i, j):
c← c+ 1
C ← { ĉ | (ĉ, snap, idi, idj) ∈ L }
If C 6= ∅:
ĉ = min(C)
L← L ∪ {(c, set, idi, idj , ĉ)}
L← L \ {(ĉ, snap, idi, idj)}

p← head pi,j
(Cp, Cn, id, N, pub)← sti
(C′
p, C

′
n)← p

For id ∈ N :
If (sndC′

p[id]) > (sndCp[id]):
Cp[id]← C′

p[id]

If (sndC′
n[id]) > (sndCn[id]):

Cn[id]← C′
n[id]

sti ← (Cp, Cn, id, N, pub)
pi,j ← tail pi,j

Fig. 16. Second hop, indistinguishability of ∆

Oracle query〈prvq, op | st〉:
(M, sk)← prvq
(R, Tr, U, Tu, id, N, pub)← st
If op = value:
cph1←$ Ω.Enc(pub, 0)
cph2←$ Ω.Enc(pub, 0)
For id′ ∈ N :
cph1 ← Ω.Add(cph1, R[id′][id′])
cph2 ← Ω.Add(cph2, U [id′])

Else:
cph1 ← R[id][id]
cph2 ← U [id])
For id′ ∈ N :
cph1 ← Ω.Add(cph1, R[id′][id])
cph2 ← Ω.Add(cph2, R[id][id′])

r1 ← Ω.Dec(sk, cph1)
r2 ← Ω.Dec(sk, cph2)
If op = value: r = M + r1 − r2
Else: r = r1 − r2
t← (op, cph1, cph2)
Return 〈r | ·〉t

Oracle update〈prvu, op, v | st〉:
(M, pk, sk)← prvu
(R, Tr, U, Tu, id, N, pub)← st
valid = T
If op = tran: (id′, v)← v
c1 ← R[id][id]; c2 ← U [id])
For id′ ∈ N :
cph1 ← Ω.Add(c1, R[id′][id])
cph2 ← Ω.Add(c2, R[id][id′])
r1 ← Ω.Dec(sk, cph1)
r2 ← Ω.Dec(sk, cph2)
If op 6= inc ∧ (!inv(r1 − r2 + v)):
cph←$ Ω.Enc(pk, 0)
valid = F

Else: cph←$ Ω.Enc(pk, v)
If op = inc:
R[id][id]← Ω.Add(cph, R[id][id])

If op = dec:
U [id]← Ω.Add(cph, U [id]

If op = tran:
R[id][id′]← Ω.Add(cph, R[id][id′])

st← (R, Tr, U, Tu, id, N, pub)
t← (cph1, cph2, cph, op)
Return 〈valid | st〉t

Oracle setupC():
(pk, sk)←$ Ω.Gen()
Return ((M, sk), (M, pk, sk), pk)

Oracle setupS(pub, id, N):
cph←$ Ω.Enc(pub, 0)
For k ∈ N :
For j ∈ N :
R[k][j]← cph; Tr[k][j]← 0
U [k]← cph; Tu[k]← 0

st← (R, Tr, U, Tu, id, N, pub)

Oracle prop(st, id):
(R, Tr, U, Tu, ·, ·, ·)← st
Return (R, Tr, U, Tu)

Oracle merge(up, st):
(R, Tr, U, Tu, id, N, pub)← st
(R′, T ′

r, U
′, T ′

u)← up
For id1 ∈ N :
For id2 ∈ N :

If T ′
r[id1][id2] > Tr[id1][id2]:

R[id1][id2]← R′[id1][id2]
Tr[id1][id2]← T ′

r[id1][id2]
If T ′

u[id1] > Tu[id1]:
U [id1]← (U ′[id1]
Tu[id1]← T ′

u[id1]
Return (R, Tr, U, Tu, id, N, pub)

Fig. 17. Bounded Counter from additively homomorphic scheme Ω.


