
A Differential Meet-in-the-Middle Attack on the
Zip cipher
Michael Stay

Pyrofex Corp., USA, stay@pyrofex.net

Abstract. We report the successful recovery of the key to a Zip archive containing
only two encrypted files. The attack improves on our 2001 ciphertext-only attack,
which required five encrypted files. The main innovations are a new differential
meet-in-the-middle attack for the initial stages and the use of lattice reduction to
recover the internal state of the truncated linear congruential generator.
Keywords: Cryptanalysis · Stream cipher

Contents
1 Introduction 1

2 The Zip cipher 3

3 Analysis of work required to mount the 2001 attack 4

4 Lattice reduction 5

5 Differential meet-in-the-middle attack 7
5.1 Code common to both stages . 8
5.2 Stage 1 . 9
5.3 Stage 2 . 12

6 Conclusion 15

1 Introduction
PKZIP is data compression software written by Phil Katz. Roger Schafly designed the
original stream cipher used by PKZIP to encrypt files in the archive, herein called the Zip
cipher. PKZIP has since adopted strong encryption by default. Katz described the Zip
archive file format and the Zip cipher in a file named appnote.txt that has been bundled
with every version of the software [5].

Info-Zip is an open-source implementation of the Zip software. Most Zip software other
than PKZIP has been based on the Info-Zip implementation. In 2001, we described a
ciphertext-only attack on implementations derived from Info-Zip’s codebase [7]. After that
attack was published, most commercial Zip software upgraded to using strong cryptography,
but Info-Zip still defaults to the Zip cipher.

The Zip cipher, which we will describe in detail in section 2, is a plaintext feedback
stream cipher: it begins with a known initial state, then updates the state by consuming
the password, ten salt bytes, two CRC bytes, and the plaintext. After each input byte,
the cipher updates its internal state and outputs a stream byte. The stream bytes

mailto:stay@pyrofex.net

2 A Differential Meet-in-the-Middle Attack on the Zip cipher

corresponding to the password are discarded; the remainder get xored with the salt, CRC,
and the plaintext. The internal state of the cipher consists of three 32-bit words: keys[0],
keys[1], and keys[2]. The words keys[0] and keys[2] are the states of two copies of
CRC32, a linear feedback shift register (LFSR). The word keys[1] is the internal state of
a truncated linear congruential generator (TLCG). The LFSR is linear with respect to
xor, while the TLCG is linear with respect to addition modulo 232. The cipher gets its
strength by alternating between the incompatible linear structures, taking the output of
one register or generator as input to the next. The output byte of the cipher is a nonlinear
function of some bits in the middle of keys[2].

PKZIP gets entropy for the ten salt bytes of each file by allocating uninitialized memory.
Info-Zip and other software based on it use the timestamp xor the process ID to initialize
C’s rand pseudorandom number generator. It appears that the authors of Info-Zip knew
about Biham and Kocher’s known-plaintext attack [1] and knew that encrypting the output
of rand would provide known plaintext. Instead, Info-Zip generates salt by generating
pseudorandom bytes with rand and then encrypting them with the password. The salt
is then encrypted a second time, followed by the CRC and the compressed plaintext.
Unfortunately, because the internal state of cipher is the same during both encryptions of
the last password byte, the first stream byte is the same both times. Since any stream
byte xor itself is zero, the first byte of each encrypted file in the archive leaks about eight
bits of the 31-bit internal state of rand.

In the 2001 attack, given an archive with five encrypted files, we recover the internal
state of rand, giving doubly-encrypted plaintext. We then do several stages of guessing
key material and decrypting one byte of each file twice. If the result is consistent with the
output of rand, we move onto the next stage; if not, we backtrack. The Zip cipher has 96
bits of key material. The five bytes at each stage allow us to eliminate all but one in 240

key guesses; after four stages, we expect to have the unique key.
In August of 2019, we were approached by a man who had lost the password to a zip

archive. The archive contained only two files. He had read our 2001 paper and asked
whether the attack described there would allow him to open the file. He had the laptop on
which the file was created, the timezone, and the timestamp. The timestamp provided
sixteen bits of entropy, while the first byte of the two encrypted files provided another
sixteen, leaving approximately one candidate internal state for rand. However, with
only sixteen bits to filter each stage’s guessed key material instead of forty, many more
candidates would pass each stage, exponentially increasing the amount of work required to
find the key. Our initial analysis said it would be feasible, but would cost on the order
of ∼$100,000 of GPU time. Since the zip archive contained information necessary for
recovering several hundred thousand dollars worth of Bitcoin, he was willing to pay that
much for a successful key recovery. We drew up a contract and began a more detailed
analysis.

The analysis revealed two major problems to solve. The first was how to get sets of key
candidates over the network to the GPUs fast enough that the GPUs would not be sitting
idle. The second was how to find the internal state of a truncated linear congruential
generator given a few outputs. In the 2001 attack, there was only one key candidate after
stage 4, so we could simply try all 232 possibilities. However, because we had only sixteen
bits to filter each key guess with instead of forty, we expected around 252 keys instead of
only one; the naive approach would mean trying 284 keys, which was completely infeasible.

To solve the first problem, we came up with a differential meet-in-the-middle (DMITM)
attack that not only drastically reduced the amount of work for the first two stages, it let
us generate key material in place rather than needing to send it over the network. To solve
the second, we used the lattice reduction technique of Freize, Hastad, Kannan, Lagarias,
and Shamir [2] to reduce the number of candidates from 232 to 35.

Due to mixing up the thread index and block index in our GPU code, we spent ten

Michael Stay 3

days running through the entire keyspace once and failed to find the key. Once we found
the bug, we ran the attack again and succeeded after a day and a half. The total cost for
GPU time was around $7K. The client was very pleased and gave us a nice bonus.

The full source code is available at https://gitlab.com/pyrofex/breakzip/.

2 The Zip cipher
Here we quote from the Info-Zip codebase [3], slightly edited for clarity. The variable
crctab refers to an array of 256 thirty-two-bit words. It implements a linear function, i.e.
crctab[i ^ j] = crctab[i] ^ crctab[j].

The CRC32 function takes the current state c of the LFSR, a byte b, and crctab as
inputs. It outputs the new state of the LFSR. The index into crctab is given by the eight
bits shifted out of the register xored with the input byte; the resulting word is fed back
into the state.
define CRC32 (c, b, crctab) (crctab [((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))

To prime the cipher, the keys array gets initialized and then gets updated with each
byte of the password.
/***

* Initialize the encryption keys and the random header according to
* the given password .
*/

void init_keys (__G__ passwd)
__GDEF
ZCONST char * passwd ; /* password string with which to modify keys */

{
GLOBAL (keys [0]) = 0 x12345678 ;
GLOBAL (keys [1]) = 0 x23456789 ;
GLOBAL (keys [2]) = 0 x34567890 ;
while (* passwd != ’\0’) {

update_keys (__G__ (int)* passwd);
passwd ++;

}
}

Each of the three words of the keys array gets updated in turn. First, keys[0] gets
updated using the input byte. Next, keys[1] gets updated using the low byte of the new
state of keys[0]. Finally, keys[2] gets updated using the high byte of the new state of
keys[1].
/***

* Update the encryption keys with the next byte of plain text
*/

int update_keys (__G__ c)
__GDEF
int c; /* byte of plain text */

{
GLOBAL (keys [0]) = CRC32 (GLOBAL (keys [0]) , c, CRY_CRC_TAB);
GLOBAL (keys [1]) = (GLOBAL (keys [1])

+ (GLOBAL (keys [0]) & 0xff))
* 0 x08088405 + 1;

{
register int keyshift = (int)(GLOBAL (keys [1]) >> 24);
GLOBAL (keys [2]) = CRC32 (GLOBAL (keys [2]) , keyshift , CRY_CRC_TAB);

}
return c;

}

Once the cipher has been primed, it will start generating stream bytes. The output
byte depends nonlinearly on bits 2 through 15 of keys[2].

https://gitlab.com/pyrofex/breakzip/

4 A Differential Meet-in-the-Middle Attack on the Zip cipher

/***
* Return the next byte in the pseudo - random sequence
*/

int decrypt_byte (__G)
__GDEF

{
unsigned temp;

temp = ((unsigned) GLOBAL (keys [2]) & 0 xffff) | 2;
return (int)(((temp * (temp ^ 1)) >> 8) & 0xff);

}

Info-Zip generates salt bytes by using the timestamp xor the process ID (ZCR_SEED2
below) as the seed to rand, and then encrypts the output of rand using the password. The
cipher is then re-initialized; after consuming the password, the cipher encrypts the ten salt
bytes again and two CRC bytes to produce the encryption header. The zencode function
calls update_keys, then returns the output of decrypt_byte.
/***

* Write encryption header to file zfile using the password passwd
* and the cyclic redundancy check crc.
*/

void crypthead (passwd , crc)
ZCONST char * passwd ; /* password string */
ulg crc; /* crc of file being encrypted */

{
int n; /* index in random header */
int t; /* temporary */
int c; /* random byte */
uch header [RAND_HEAD_LEN]; /* random header */
static unsigned calls = 0; /* ensure different random header each time */

/* First generate RAND_HEAD_LEN -2 random bytes . We encrypt the
* output of rand () to get less predictability , since rand () is
* often poorly implemented .
*/

if (++ calls == 1) {
srand ((unsigned)time(NULL) ^ ZCR_SEED2);

}
init_keys (passwd);
for (n = 0; n < RAND_HEAD_LEN -2; n++) {

c = (rand () >> 7) & 0xff;
header [n] = (uch) zencode (c, t);

}
/* Encrypt random header (last two bytes is high word of crc) */
init_keys (passwd);
for (n = 0; n < RAND_HEAD_LEN -2; n++) {

header [n] = (uch) zencode (header [n], t);
}
header [RAND_HEAD_LEN -2] = (uch) zencode ((int)(crc >> 16) & 0xff , t);
header [RAND_HEAD_LEN -1] = (uch) zencode ((int)(crc >> 24) & 0xff , t);
bfwrite (header , 1, RAND_HEAD_LEN , BFWRITE_DATA);

}

Finally, the compressed plaintext gets encrypted.

3 Analysis of work required to mount the 2001 attack
Because there is limited diffusion between the three keys, the stream byte does not depend
on all the bits of the state. Given the low eight bits of CRC32(keys[0], 0), the high eight
bits of keys[1] * 0x08088405, bits 2 through 15 of keys[2], and whether a carry into
the most significant byte of keys[1] occurs, there is a single output stream byte for any
input byte.

Michael Stay 5

In the 2001 attack, given an archive with five encrypted files, we recover the internal
state of rand, giving doubly-encrypted plaintext. We then do several stages of guessing
key material and decrypting one byte of each file twice. We guess somewhat more than
the thirty-one bits above, because we have no information about the zeroth stream byte
and because we guess one carry bit per encryption per file. Rather than guess more
bits of keys[1] * 0x08088405, at stage n we guess the high eight bits of keys[1] *
0x08088405**n, where ** denotes exponentiation. If the result is consistent with the
output of rand, we move onto the next stage; if not, we backtrack. The Zip cipher has 96
bits of key material. The five bytes at each stage allow us to eliminate all but one in 240

key guesses; after four stages, we expect to have the unique key.
In this case, we had only two files instead of five. The timestamp let us derive a single

seed for rand, but we had far fewer bits to filter with.
In stage 1, we would need to guess bits 0 to 23 of keys[2], bits 0 to 7 of CRC32(keys[0],

0), bits 24 to 31 of (keys[1] * 0x08088405), and two carry bits for each of the two files,
a total of 44 bits. We get 16 bits to filter with from the encryption header, resulting in 228

key candidates and 246 encryptions.
In stage 2, for each of the key candidates from the previous stage we would need

to guess bits 24 to 31 of keys[2], bits 8 to 15 of CRC32(keys[0], 0), bits 24 to 31 of
(keys[1] * 0xD4652819), and two carry bits for each of the two files, a total of 28 bits.
We get 16 bits to filter with from the encryption header, resulting in 240 key candidates
and 258 encryptions.

In stage 3, for each of the key candidates from the previous stage we would need to
guess bits 16 to 23 of CRC32(keys[0], 0), bits 24 to 31 of (keys[1] * 0x576EAD7C),
and two carry bits for each of the two files, a total of 20 bits. We get 16 bits to filter with
from the encryption header, resulting in 244 key candidates and 262 encryptions.

In stage 4, for each of the key candidates from the previous stage we would need to
guess bits 24 to 31 of (keys[1] * 0x1201d271), a total of 8 bits. We would try the 232

possible initial values of keys[1] and filter them based on the previous guesses. We get
24 filter bits from previous guesses for the high bytes and 12 carry bits setting upper or
lower bounds on the low 24 bits at stage n. At most one in 216 key candidates pass this
stage, resulting in 228 key candidates with 284 encryptions.

In stage 5, for each of the key candidates from the previous stage we would need to
guess bits 24 to 32 of CRC32(keys[0], 0), a total of 8 bits. We get 16 bits to filter with
from the encryption header, resulting in 220 key candidates and 236 encryptions.

In stage 6, we do not need to guess any more key material. We get 16 bits to filter
with from the encryption header, resulting in 24 key candidates and 220 encryptions.

In stage 7, we do not need to guess any more key material. We get 16 bits to filter
with from the encryption header, resulting in a single key candidates and 24 encryptions.

4 Lattice reduction
The 284 encryptions required in stage 4 make the 2001 attack cost far more than necessary.
Freize, Hastad, Kannan, Lagarias, and Shamir [2] described a method of recovering the
internal state of a TLCG given several bytes of output. The method relies on lattice
reduction: by taking multiple consecutive outputs of a TLCG as coordinates into a
high-dimensional space, one can see that they land on hyperplanes in the space. Lattice
reduction is the problem of finding short vectors that span those hyperplanes.

Sage [6] is a computer algebra package that includes the LLL lattice reduction algorithm
[4]. In the Sage code below, we first define a basis L for our lattice. One of the basis
vectors is the modulus 232 in the first column, zero elsewhere. The other basis vectors are
nth powers of 0x08088405 in the first column and -1 in the n + 1st column. We then use
LLL to compute a new basis B with much smaller entries than L.

6 A Differential Meet-in-the-Middle Attack on the Zip cipher

M = 2^32
c = 0 x08088405
L = matrix ([

[M, 0, 0, 0],
[c^1, -1, 0, 0],
[c^2, 0, -1, 0],
[c^3, 0, 0, -1]

])
B = L.LLL ()

Instead of trying all 232 possible values for keys[1], we can take our existing guesses
relating to keys[1], guess the high eight bits of (keys[1] * 0x1201d271), multiply B
by the vector of most significant bytes, and subtract off the nearest lattice point to get a
vector w in the new basis.
int64_t w[4] = {

+ 109 * msbs [0] - 18 * msbs [1] - 125 * msbs [2] + 74 * msbs [3] ,
+ 72 * msbs [0] - 145 * msbs [1] - 60 * msbs [2] - 163 * msbs [3] ,
- 108 * msbs [0] - 123 * msbs [1] - 19 * msbs [2] + 198 * msbs [3] ,
- 319 * msbs [0] + 137 * msbs [1] - 245 * msbs [2] - 85 * msbs [3]};

for (int i = 0; i < 4; ++i) {
w[i] = -(w[i] & 0 xffffffff);

}

Next, we switch back to the original basis to get a vector v.
int64_t v[4] = {

(13604679 * w[0] - 563513 * w[1] - 8196160 * w[2] - 6167539 * w[3]) >> 32,
(4624483 * w[0] - 16015901 * w[1] - 13783360 * w[2] + 2631745 * w[3]) >> 32,
(- 18096657 * w[0] - 4513425 * w[1] - 38464 * w[2] - 7189179 * w[3]) >> 32,
(8556971 * w[0] - 10689749 * w[1] + 8655040 * w[2] - 2419111 * w[3]) >> 32};

With five or more known outputs of the TLCG, the first element of v would con-
tain the low 24 bits of (keys[1] * 0x08088405). Given the full value of (keys[1] *
0x08088405), we can multiply by the modular inverse of 0x08088405 to recover the orig-
inal value of keys[1]. However, in this attack, we have guessed only four outputs, so
the error vector is too large to get the correct answer every time. The vector v, however,
always differs from the true value by one of only 35 other vectors, listed below, which we
found by iterating over all 232 possible values for keys[1].
int64_t ntable [35][4] = {

{ -14363699 , -11151615 , -7227643 , 6235929} ,
{ -13800186 , 4864286 , -2714218 , 16925678} ,
{ -8196160 , -13783360 , -38464 , 8655040} ,
{ -7632647 , 2232541 , 4474961 , 19344789} ,
{ -6167539 , 2631745 , -7189179 , -2419111} ,
{ -5604026 , 18647646 , -2675754 , 8270638} ,
{ -2028621 , -16415105 , 7150715 , 11074151} ,
{ -1465108 , -399204 , 11664140 , 21763900} ,
{ -759020 , -6527132 , -25324300 , 14792900} ,
{ -563513 , -16015901 , -4513425 , -10689749} ,
{ -195507 , 9488769 , -20810875 , 25482649} ,
{0, 0, 0, 0},
{563513 , 16015901 , 4513425 , 10689749} ,
{4138918 , -19046850 , 14339894 , 13493262} ,
{5408519 , -9158877 , -18135121 , 17212011} ,
{5604026 , -18647646 , 2675754 , -8270638} ,
{5972032 , 6857024 , -13621696 , 27901760} ,
{6167539 , -2631745 , 7189179 , 2419111} ,
{6731052 , 13384156 , 11702604 , 13108860} ,
{7437140 , 7256228 , -25285836 , 6137860} ,
{8000653 , 23272129 , -20772411 , 16827609} ,
{11576058 , -11790622 , -10945942 , 19631122} ,
{11771565 , -21279391 , 9864933 , -5851527} ,
{12139571 , 4225279 , -6432517 , 30320871} ,

Michael Stay 7

{12335078 , -5263490 , 14378358 , 4838222} ,
{13041166 , -11391418 , -22610082 , -2132778} ,
{13604679 , 4624483 , -18096657 , 8556971} ,
{14168192 , 20640384 , -13583232 , 19246720} ,
{17743597 , -14422367 , -3756763 , 22050233} ,
{19208705 , -14023163 , -15420903 , 286333} ,
{19772218 , 1992738 , -10907478 , 10976082} ,
{20335731 , 18008639 , -6394053 , 21665831} ,
{25376244 , -16654908 , -8231724 , 2705444} ,
{25939757 , -639007 , -3718299 , 13395193} ,
{26503270 , 15376894 , 795126 , 24084942}};

We iterate over these 35 vectors, adding them to v, and discard any results whose
components are negative, have entries greater than or equal to 224, or are inconsistent
with the carry bits we have guessed. This reduces the total work of stage 4 to roughly 257

encryptions.

5 Differential meet-in-the-middle attack

In the 2001 attack, there are 1.1 trillion key candidates at the end of stage 1 and 17.6
trillion at the end of stage 2. After some experimentation with the GPU farm, it became
clear that we could not get the candidates to the GPUs fast enough to keep them occupied.
We also wanted to make better use of the information we had to derive bits rather than
merely guessing them and filtering them.

The basic idea of the DMITM attack is to notice that a difference delta_m in the high
byte of keys[1] gives a difference crctab[delta_m] in keys[2] that is independent of
keys[2]. If we guess the stream byte sx on the first encryption of a salt byte, we can
derive what the stream byte sy must have been on the second encryption: sy must be
sx xored with the known rand output and the corresponding encrypted byte in the file.
Given a stream byte, there are exactly 64 possible values of bits 2 to 15 of keys[2] that
could have produced it; we build a table of these values and call the index of a value the
“prefix”. If we guess the prefix for sx, the fact that the difference in keys[2] must be an
entry in crctab means that we get, on average, a unique prefix for sy.

If we guess the stream byte sxf0 for the first encryption of salt from file 0, the prefix
pxf0, and the stream byte sxf1 for the first encryption of salt from file 1, we can derive
three 8-bit differences between pairs of most significant bytes for keys[1].

We guess other bits for the first half of the cipher, compute the three 8-bit differences,
and store the guesses for the first half of the cipher in a table. Then we go through the
process above for the second half and look up the candidates in the table. Given the
guesses for both halves, we can derive bits of keys[2] for each encryption pass. We end
up producing around 222 candidates and use a few hundred megabytes of memory for the
table. The process took about two minutes on a 2017 Macbook Pro.

In the new stage 2, for each of the 222 candidates, we do another DMITM attack.
The relevant difference between keys[2] values does not depend on the initial value of
keys[2], but does depend on the guesses from the previous stage. Running the new stage
2 took about a day on a fast desktop machine with lots of RAM. We wrote batches of key
candidates to disk, uploaded them to the machines with the GPUs, and ran the rest of the
stages on the GPUs.

The code below refers to “chunks”, which are groups of bits all related to a single
element of the keys array in the order they are needed in the 2001 attack:

8 A Differential Meet-in-the-Middle Attack on the Zip cipher

chunk bits

1 0 to 15 of keys[2]
2 0 to 7 of CRC32(keys[0], 0)
3 23 to 31 of keys[1] * 0x08088405
4 16 to 23 of keys[2]
5 24 to 32 of keys[2]
6 8 to 15 of CRC32(keys[0], 0)
7 23 to 31 of keys[1] * 0xD4652819

5.1 Code common to both stages
We define CRYPTCONST to be 0x08088405 and CRYPTCONST_POW2, CRYPTCONST_POW3, and
CRYPTCONST_POW4 to be its successive powers.

We split up the update_keys function into two parts, first_half_step and second_
half_step. In the first_half_step function, we pass in the input byte, the bits we are
guessing, and a parameter extra, which keeps track of the difference between the state
of keys[1] at stage n + 1 and the initial state of keys[1] times 0x08088405 to the nth
power. We also pass in upper and lower bounds on the unknown low 24 bits of keys[1]
implied by the carry bits we’ve guessed. The function updates keys[0], extra, and the
upper and lower bounds.
// Computes one step of the first half of the zip encryption
// Supposing we ’re on stage n+1,
// x is plaintext [n]
// Set the crc_flag to false for n = 0 and true for n > 0
// k1msb is msb(k10 * CRYPTCONST_POW <n+1 >)
// carry is the carry bit for this file and x/y pass
// k0 is crc32 (k00 , 0) when n=0; gets updated to k0n
// extra is 0 when n=0; gets updated
// upper is the current upper bound on low24 (k10* CRYPTCONST_POW <n+1 >); may get
// updated lower is the current lower bound on low24 (k10* CRYPTCONST_POW <n+1 >);
// may get updated
uint8_t first_half_step (uint8_t x, bool crc_flag , uint8_t k1msb , uint8_t carry ,

uint32_t &k0 , uint32_t &extra , uint32_t &upper ,
uint32_t & lower) {

if (crc_flag) {
k0 = crc32 (k0 , x);

} else {
k0 ^= crctab [x];

}
extra = (extra + (k0 & 0xff)) * CRYPTCONST + 1;
uint32_t bound = 0 x01000000 - (extra & 0 x00ffffff);

if (carry) {
lower = bound > lower ? bound : lower ;

} else {
upper = bound < upper ? bound : upper ;

}

return k1msb + (extra >> 24) + carry ;
}

In the second_half_step function, we pass in bits 2 to 15 of keys[2] from one
encryption and the stream byte from another encryption. The function outputs the set of
indices idx such that keys[2] ^ crctab[idx] produces the given stream byte. To find
the index, we use a table crcinvtab whose entries satisfy

crcinvtab[(crctab[i] >> 3) & 0xff] == i.

// Finds idxs such that crctab [idx] is the xor of offset and some prefix of
// stream_byte . We expect one on average .
void second_half_step (const uint16_t offset , const uint8_t stream_byte ,

vector <uint8_t > &idxs) {
for (uint8_t prefix = 0; prefix < 0x40; ++ prefix) {

uint16_t preimage = preimages [stream_byte][prefix];

Michael Stay 9

uint16_t xored = offset ^ preimage ;
// For these 8 bits there ’s one crctab entry that matches them
uint8_t inv = (xored >> 1) & 0xff;
uint8_t idx = crcinvtab [inv];
// Check that the other 6 bits match
// We expect one prefix on average to work.
uint16_t match = (crctab [idx] >> 2) & 0 x3fff ;
if (match == xored) {

idxs. push_back (idx);
}

}
}

5.2 Stage 1
5.2.1 Stage 1a

The mitm_stage1a function simply guesses the 0th stream byte, chunk 2, chunk 3, and
the carry bits, computes the most significant bytes of keys[1] for each encryption, and
stores the guess at the 24-bit value formed by xoring the most significant byte from the
first encryption with those of the next three.
void mitm_stage1a (archive_info &info , vector <vector <stage1a >> & table) {

// STAGE 1
//
// Guess s0 , chunk2 , chunk3 and carry bits.
uint8_t xf0 = info.file [0].x[0];
uint8_t xf1 = info.file [1].x[0];
uint32_t extra (0);

for (uint16_t s0 = 0; s0 < 0x100; ++ s0) {
for (uint16_t chunk2 = 0; chunk2 < 0x100; ++ chunk2) {

for (uint16_t chunk3 = 0; chunk3 < 0x100; ++ chunk3) {
for (uint8_t carries = 0; carries < 0x10; ++ carries) {

uint8_t carryxf0 = carries & 1;
uint8_t carryyf0 = (carries >> 1) & 1;
uint8_t carryxf1 = (carries >> 2) & 1;
uint8_t carryyf1 = (carries >> 3) & 1;
uint32_t upper = 0 x01000000 ; // exclusive
uint32_t lower = 0 x00000000 ; // inclusive

uint32_t k0crc = chunk2 ;
uint32_t extra = 0;
uint8_t msbxf0 =

first_half_step (xf0 , false , chunk3 , carryxf0 , k0crc ,
extra , upper , lower);

uint8_t yf0 = xf0 ^ s0;
k0crc = chunk2 ;
extra = 0;
uint8_t msbyf0 =

first_half_step (yf0 , false , chunk3 , carryyf0 , k0crc ,
extra , upper , lower);

if (upper < lower) {
continue ;

}
k0crc = chunk2 ;
extra = 0;
uint8_t msbxf1 =

first_half_step (xf1 , false , chunk3 , carryxf1 , k0crc ,
extra , upper , lower);

if (upper < lower) {
continue ;

}
uint8_t yf1 = xf1 ^ s0;
k0crc = chunk2 ;

10 A Differential Meet-in-the-Middle Attack on the Zip cipher

extra = 0;
uint8_t msbyf1 =

first_half_step (yf1 , false , chunk3 , carryyf1 , k0crc ,
extra , upper , lower);

if (upper < lower) {
continue ;

}
uint32_t mk = toMapKey (msbxf0 , msbyf0 , msbxf1 , msbyf1);
stage1a candidate = { uint8_t (s0), uint8_t (chunk2),

uint8_t (chunk3), carries , msbxf0 };
table [mk]. push_back (candidate);

}
}

}
}

}

5.2.2 Stage 1b

The mitm_stage1b function is more complicated. It guesses a stream byte and a prefix for
the first encryption of a salt byte from file 0, then computes the set of possible differences
in the most significant byte of keys[1] that would give the stream byte for the second
encryption. If that set is empty, it tries the next guess. Otherwise, it guesses a stream
byte for the first encryption of a salt byte from file 1, then computes the set of possible
differences for that stream byte. If that set is empty, it tries the next guess. Otherwise, it
computes the set of possible differences for the stream byte for the second encryption of
the salt byte from file 1. If that set is empty, it tries the next guess.

Given three nonempty sets of differences, it iterates over all possible triples and looks
up the set of candidates from stage 1a. It then combines the information from stage 1a
with the information from stage 1b to derive, on average, four possible values for the low
24 bits of keys[2]. If there are no values of keys[2] that work, it goes onto the next
guess; otherwise, it outputs the information as a candidate.
// info: the info about the archive to attack
// table : the output of mitm_stage1a
// candidates : an empty vector
void mitm_stage1b (const archive_info &info ,

const vector <vector <stage1a >> &table ,
vector < stage1_candidate > & candidates) {

// Second half of MITM for stage 1
for (uint16_t s1xf0 = 0; s1xf0 < 0x100; ++ s1xf0) {

for (uint8_t prefix = 0; prefix < 0x40; ++ prefix) {
uint16_t pxf0(preimages [s1xf0][prefix]);
vector <uint8_t > firsts (0);
uint8_t s1yf0 = s1xf0 ^ info.file [0].x[1] ^ info.file [0].h[1];
second_half_step (pxf0 , s1yf0 , firsts);
if (! firsts .size ()) {

continue ;
}
for (uint16_t s1xf1 = 0; s1xf1 < 0x100; ++ s1xf1) {

vector <uint8_t > seconds (0);
second_half_step (pxf0 , s1xf1 , seconds);
if (! seconds .size ()) {

continue ;
}
vector <uint8_t > thirds (0);
uint8_t s1yf1 = s1xf1 ^ info.file [1].x[1] ^ info.file [1].h[1];
second_half_step (pxf0 , s1yf1 , thirds);
if (! thirds .size ()) {

continue ;
}
for (auto f : firsts) {

Michael Stay 11

for (auto s : seconds) {
for (auto t : thirds) {

uint32_t mapkey (f | (s << 8) | (t << 16));
for (stage1a candidate : table [mapkey]) {

stage1_candidate g;
g. chunk2 = candidate . chunk2 ;
g. chunk3 = candidate . chunk3 ;
g.cb1 = candidate .cb;
g.m1 =

(candidate . msbk11xf0 * 0 x01010101) ^ mapkey ;

// Get ~4 possible solutions for lo24(k20) =
// chunks 1 and 4
// A B C D k20
// ^ E F G H crctab [D]
// ----------
// I J K L crck20
// ^ M N O P crctab [msbk11xf0]
// ----------
// Q R S T (pxf0 << 2) matches k21xf0

// Starting at the bottom , derive 15..2 of KL
// from 15..2 of ST and OP
uint16_t crck20 =

((pxf0 << 2) ^
crctab [candidate . msbk11xf0]) &

0 xfffc ;

// Now starting at the top , iterate over 64
// possibilities for 15..2 of CD
for (uint8_t i = 0; i < 64; ++i) {

uint32_t maybek20 =
(preimages [candidate .s0][i] << 2);

// and 4 possibilities for low two bits of D
for (uint8_t lo = 0; lo < 4; ++ lo) {

// CD
maybek20 = (maybek20 & 0 xfffc) | lo;
// L’ = C ^ H
uint8_t match =

(maybek20 >> 8) ^
crctab [maybek20 & 0xff];

// If upper six bits of L == upper six
// of L’ then we have a candidate
if ((match & 0xfc) == (crck20 & 0xfc)) {

// KL ^ GH = BC. (B = BC >> 8) &
// 0xff.
uint8_t b =

((crck20 ^
crctab [maybek20 & 0xff]) >>

8) &
0xff;

// BCD = (B << 16) | CD
g. maybek20 [g. k20_count] =

(b << 16) | maybek20 ;
g. k20_count += 1;

}
}

}

if (0 == g. k20_count) {
continue ;

}

candidates . push_back (g);
}

12 A Differential Meet-in-the-Middle Attack on the Zip cipher

}
}

}
}

}
}

}

5.3 Stage 2
5.3.1 Stage 2a

The function mitm_stage2a is similar to mitm_stage1a; given a stage 1 candidate, it
guesses chunk 6, chunk 7, and some carry bits, then computes the three 8-bit differences
and stores the guess in the table.
void mitm_stage2a (archive_info & info , stage1_candidate & c1 ,

vector <vector <stage2a >>& table) {
uint8_t cb1 = c1.cb1;
uint8_t carryx0f0 = cb1 & 1;
uint8_t carryy0f0 = (cb1 >> 1) & 1;
uint8_t carryx0f1 = (cb1 >> 2) & 1;
uint8_t carryy0f1 = (cb1 >> 3) & 1;
// We always have at least one k20 candidate .
// All candidates for k20 give the same s0 byte ,
// and all single -step updates of a candidate
// give the same four s1 bytes
uint8_t s0 = get_s0 (c1. maybek20 [0] & 0 xffff);
uint32_t s1xf0 = get_s0 (crc32 (c1. maybek20 [0] , c1.m1 >> 24));
uint32_t s1xf1 = get_s0 (crc32 (c1. maybek20 [0] , (c1.m1 >> 8) & 0xff));

for (uint16_t chunk6 = 0; chunk6 < 0x100; ++ chunk6) {
for (uint16_t chunk7 = 0; chunk7 < 0x100; ++ chunk7) {

for (uint8_t cb2 = 0; cb2 < 0x10; ++ cb2) {
auto flag = false ;
uint8_t carryx1f0 = cb2 & 1;
uint8_t carryy1f0 = (cb2 >> 1) & 1;
uint8_t carryx1f1 = (cb2 >> 2) & 1;
uint8_t carryy1f1 = (cb2 >> 3) & 1;
// bounds on low 24 bits of k10 * CRYPTCONST
uint32_t upper1 = 0 x01000000 ;
uint32_t lower1 = 0 x00000000 ;
// bounds on low 24 bits of k10 * CRYPTCONST_POW2
uint32_t upper2 = 0 x01000000 ;
uint32_t lower2 = 0 x00000000 ;

// Compute msbk12s
uint32_t k0crc = c1. chunk2 | (chunk6 << 8);
uint32_t extra = 0;
first_half_step (info.file [0].x[0] , false , c1.chunk3 , carryx0f0 ,

k0crc , extra , upper1 , lower1);
uint32_t msbxf0 =

first_half_step (info.file [0].x[1] , true , chunk7 , carryx1f0 ,
k0crc , extra , upper2 , lower2);

k0crc = c1. chunk2 | (chunk6 << 8);
extra = 0;
first_half_step (info.file [0].x[0] ^ s0 , false , c1.chunk3 ,

carryy0f0 , k0crc , extra , upper1 , lower1);
uint32_t msbyf0 =

first_half_step (info.file [0].x[1] ^ s1xf0 , true , chunk7 ,
carryy1f0 , k0crc , extra , upper2 , lower2);

if (upper2 < lower2) {
continue ;

}
k0crc = c1. chunk2 | (chunk6 << 8);

Michael Stay 13

extra = 0;
first_half_step (info.file [1].x[0] , false , c1.chunk3 , carryx0f1 ,

k0crc , extra , upper1 , lower1);
uint32_t msbxf1 =

first_half_step (info.file [1].x[1] , true , chunk7 , carryx1f1 ,
k0crc , extra , upper2 , lower2);

if (upper2 < lower2) {
continue ;

}
k0crc = c1. chunk2 | (chunk6 << 8);
extra = 0;
first_half_step (info.file [1].x[0] ^ s0 , false , c1.chunk3 ,

carryy0f1 , k0crc , extra , upper1 , lower1);
uint32_t msbyf1 =

first_half_step (info.file [1].x[1] ^ s1xf1 , true , chunk7 ,
carryy1f1 , k0crc , extra , upper2 , lower2);

if (upper2 < lower2) {
continue ;

}
uint32_t mk = toMapKey (msbxf0 , msbyf0 , msbxf1 , msbyf1);
stage2a s2a;
s2a. chunk6 = chunk6 ;
s2a. chunk7 = chunk7 ;
s2a.cb2 = cb2;
s2a. msbk12xf0 = msbxf0 ;
table [mk]. push_back (s2a);

}
}

}
}

5.3.2 Stage 2b

Let k1n and k2n denote the states of keys[1] and keys[2], respectively, after processing
n input bytes, msb indicate the most significant byte, and x and y indicate the first
and second encryption of the salt byte. If we xor two k22 values together, the result is
independent of k20:

k22x ^ k22y = CRC32(k21x, msbk12x) ^ CRC32(k21y, msbk12y)
= CRC32(CRC32(k20, msbk11x), msbk12x) ^ CRC32(CRC32(k20, msbk11x), msbk12y)
= CRC32(CRC32(k20, msbk11x) ^ CRC32(k20, msbk11y), msbk12x ^ msbk12y)
= CRC32(CRC32(0, msbk11x ^ msbk11y), msbk12x ^ msbk12y)
= CRC32(crctab[msbk11x ^ msbk11y], msbk12x ^ msbk12y)
= (cy >> 8) ^ crctab[(cy & 0xff) ^ msbk12x ^ msbk12y]

where cy = crctab[msbk11x ^ msbk11y]. This value depends on the candidate from
stage 1, but not on anything else.

The function mitm_stage2b begins by computing the cy value for three keys[2]
differences, extracts some relevant bits, then follows the same logic as mitm_stage1b with
the exception that it also iterates over the list of keys[2] values in each candidate. Once
it has the bits from both halves of the cipher, it derives more bits of keys[2], but the
computation is far simpler.
void mitm_stage2b (const mitm :: archive_info & info ,

const mitm_stage1 :: stage1_candidate & c1 ,
const std :: vector <std :: vector <stage2a >>& table ,
stage2_candidate * candidates , /* output */
const size_t array_size ,
size_t & stage2_candidate_count , /* output */) {

uint32_t mk1 = c1.m1 ^ ((c1.m1 >> 24) * 0 x01010101);
// Compute the constants from stage1 .
uint32_t cyf0 = crc32tab [mk1 & 0xff];
uint32_t cxf1 = crc32tab [(mk1 >> 8) & 0xff];
uint32_t cyf1 = crc32tab [(mk1 >> 16) & 0xff];

14 A Differential Meet-in-the-Middle Attack on the Zip cipher

uint32_t cyf0p = (cyf0 >> 10) & 0 x3fff ;
uint32_t cxf1p = (cxf1 >> 10) & 0 x3fff ;
uint32_t cyf1p = (cyf1 >> 10) & 0 x3fff ;
uint32_t cyf0l = cyf0 & 0xff;
uint32_t cxf1l = cxf1 & 0xff;
uint32_t cyf1l = cyf1 & 0xff;
for (uint16_t s2xf0 = 0; s2xf0 < 0x100; ++ s2xf0) {

uint8_t s2yf0 = s2xf0 ^ info.file [0].x[2] ^ info.file [0].h[2];
for (uint8_t prefix = 0; prefix < 0x40; ++ prefix) {

uint16_t pxf0(preimages [s2xf0][prefix]);

vector <uint8_t > firsts (0);
second_half_step (pxf0 ^ cyf0p , s2yf0 , firsts);
if (! firsts .size ()) {

continue ;
}
for (uint16_t s2xf1 = 0; s2xf1 < 0x100; ++ s2xf1) {

vector <uint8_t > seconds (0);
second_half_step (pxf0 ^ cxf1p , s2xf1 , seconds);
if (! seconds .size ()) {

continue ;
}
vector <uint8_t > thirds (0);
uint8_t s2yf1 = s2xf1 ^ info.file [1].x[2] ^ info.file [1].h[2];
second_half_step (pxf0 ^ cyf1p , s2yf1 , thirds);
if (! thirds .size ()) {

continue ;
}
for (auto f : firsts) {

for (auto s : seconds) {
for (auto t : thirds) {

uint32_t mapkey ((f ^ cyf0l) | ((s ^ cxf1l) << 8) |
((t ^ cyf1l) << 16));

for (auto c2 : table [mapkey]) {
stage2_candidate g;
for (int i = 0; i < c1. k20_count ; ++i) {

uint32_t k20 = c1. maybek20 [i];
uint32_t k21xf0 = crc32 (k20 , c1.m1 >> 24);
uint32_t k22xf0 =

crc32 (k21xf0 , c2. msbk12xf0);
if ((pxf0 & 0x3f) ==

((k22xf0 >> 2) & 0x3f)) {
// Find last byte of k20 , then store it
uint8_t hi_byte =

(pxf0 >> 6) ^
((k22xf0 >> 8) & 0xff);

g. maybek20 [g. k20_count] =
k20 | (hi_byte << 24);

g. k20_count += 1;
}

}

if (0 == g. k20_count) {
continue ;

}

g. chunk2 = c1. chunk2 ;
g. chunk3 = c1. chunk3 ;
g. chunk6 = c2. chunk6 ;
g. chunk7 = c2. chunk7 ;
g.cb = (c1.cb1 << 4) | c2.cb2;
g.m1 = c1.m1;
g.m2 = mapkey ^ (c2. msbk12xf0 * 0 x01010101);

candidates [stage2_candidate_count] = g;
++ stage2_candidate_count ;

Michael Stay 15

}
}

}
}

}
}

}
}

6 Conclusion
The Zip cipher is weak, but not so weak as to be trivial to crack. The 2001 attack works
because of flaws that Info-Zip introduced, and then only when there are enough files in the
archive; reducing the number of files increases the complexity exponentially. We were able
to use some clever tricks to avoid some of the problems associated with that exponential
growth, but we still had to use a GPU farm to break it. The amount of computation
required is a feat that would have been inconceivable twenty years ago, except perhaps for
nation states. An encrypted Info-Zip archive with only one file in it is still out of reach. It
will be interesting to see if the cipher is still in use in another twenty years.

References
[1] Biham, Eli and Paul Kocher. “A Known Plaintext Attack on the PKZIP Stream

Cipher”. Fast Software Encryption 2, Proceedings of the Leuven Workshop, LNCS
1008, December 1994. Also available at http://www.cs.technion.ac.il/users/wwwb/cgi-
bin/tr-get.cgi/1994/CS/CS0842.pdf.

[2] Frieze, Alan M., John Hastad, Ravi Kannan, Jeffrey C. Lagarias, and
Adi Shamir. “Reconstructing Truncated Integer Variables Satisfying Linear
Congruences”. Siam J. Comput. 17 (2): 262–280. 1988. Also available at
https://www.math.cmu.edu/∼af1p/Texfiles/RECONTRUNC.pdf.

[3] Info-Zip. “Info-Zip Home Page”. http://infozip.sourceforge.net/.

[4] Lenstra, A. K., H. W. Lenstra, Jr., and L. Lovász. “Factoring polynomials with
rational coefficients". Mathematische Annalen. 261 (4): 515–534. 1982. Also available
at https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.318.

[5] PKWARE. “Application Note Archives”. https://support.pkware.com/home/pkzip/
developer-tools/appnote/application-note-archives.

[6] SageMath Project. “SageMath - Open-Source Mathematical Software System”.
https://www.sagemath.org/.

[7] Stay, Michael. “ZIP Attacks with Reduced Known Plaintext”. Fast Software
Encryption, LNCS 2355, 125–134. Springer-Verlag, 2002. Also available at
http://www.math.ucr.edu/∼mike/zipattacks.pdf.

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1994/CS/CS0842.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1994/CS/CS0842.pdf
https://www.math.cmu.edu/~af1p/Texfiles/RECONTRUNC.pdf
http://infozip.sourceforge.net/
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.310.318
https://support.pkware.com/home/pkzip/developer-tools/appnote/application-note-archives
https://support.pkware.com/home/pkzip/developer-tools/appnote/application-note-archives
https://www.sagemath.org/
http://www.math.ucr.edu/~mike/zipattacks.pdf

	Introduction
	The Zip cipher
	Analysis of work required to mount the 2001 attack
	Lattice reduction
	Differential meet-in-the-middle attack
	Code common to both stages
	Stage 1
	Stage 2

	Conclusion

