
Fuzzy Asymmetric
Password-Authenticated Key Exchange

Andreas Erwig1, Julia Hesse2, Maximilian Orlt1, and Siavash Riahi1

1Technische Universität Darmstadt, Germany
2IBM Research - Zurich, Switzerland

{andreas.erwig, maximilian.orlt, siavash.riahi}@tu-darmstadt.de,
jhs@zurich.ibm.com

August 16, 2020

Abstract

Password-Authenticated Key Exchange (PAKE) lets users with passwords exchange a cryptographic
key. There have been two variants of PAKE which make it more applicable to real-world scenarios:

• Asymmetric PAKE (aPAKE), which aims at protecting a client’s password even if the authentication
server is untrusted, and

• Fuzzy PAKE (fPAKE), which enables key agreement even if passwords of users are noisy, but “close
enough”.

Supporting fuzzy password matches eases the use of higher entropy passwords and enables using biomet-
rics and environmental readings (both of which are naturally noisy).

Until now, both variants of PAKE have been considered only in separation. In this paper, we consider
both of them simultaneously. We introduce the notion of Fuzzy Asymmetric PAKE (fuzzy aPAKE), which
protects against untrusted servers and supports noisy passwords. We formulate our new notion in the
Universal Composability framework of Canetti (FOCS’01), which is the preferred model for password-
based primitives. We then show that fuzzy aPAKE can be obtained from oblivious transfer and some
variant of robust secret sharing (Cramer et al, EC’15). We achieve security against malicious parties
while avoiding expensive tools such as non-interactive zero-knowledge proofs. Our construction is round-
optimal, with message and password file sizes that are independent of the schemes error tolerance.

1 Introduction
In a world of watches interacting with smartphones and our water kettle negotiating with the blinds in
our house, communicating devices are ubiquitous. Developments in user-centric technology are rapid, and
they call for authentication methods that conveniently work with, e.g., biometric scans, human-memorable
passwords or fingerprints derived from environmental readings.

Password-authenticated Key Exchange (PAKE) protocols [BM92,BPR00,BMP00,KOY01,GL03,KV11,
CDVW12, BBC+13] are the cryptographic answer to this need. They solve the problem of establishing a
secure communication channel between two users who share nothing but a low-entropy string, often sim-
ply called password. Two interesting variants of PAKE protocols that are known from the literature are
asymmetric PAKE [BM93,GMR06,JKX18,BJX19] which aims at protecting the user’s password even if his
password file at some server is stolen, and fuzzy PAKE [DHP+18] which can tolerate some errors in the
password. The former is useful in settings where authentication servers store thousands of user accounts

1

and the server cannot be fully trusted. The latter introduces a usability aspect to PAKE protocols used by
humans trying to remember passwords exactly. Furthermore, fuzzy PAKE broadens applicability of PAKE
to the fuzzy setting and thereby allows using environmental readings or biometrics as passwords.

This work is the first to consider a combination of both PAKE variants. Namely, we introduce the
notion of fuzzy asymmetric PAKE (fuzzy aPAKE). This new primitive allows a client and an untrusted
server to authenticate to each other using a password, and both parties are guaranteed to derive the same
cryptographic key as long as their passwords are within some predefined distance (in some predefined metric).
Consider a client authenticating to a server using his fingerprint scan. In this setting, asymmetric PAKE
protocols would not work since subsequent scans do not match exactly. Fuzzy PAKE, on the other hand,
would require the server to store the fingerprint (or at least some template of it that uniquely identifies the
person) in the clear, which is unacceptable for sensitive and ephemeral personal data that is biometrics.
Fuzzy asymmetric PAKE, as introduced in this paper, is the only known cryptographic solution that applies
to this setting: it works with fuzzy authentication data and does not reveal this authentication data to the
server.

Why is this hard? Given that there is a lot of literature about both asymmetric PAKE and fuzzy
cryptography, one could ask whether existing techniques could be used to obtain fuzzy aPAKE. As explained
already in [DHP+18], techniques from fuzzy cryptography such as information reconciliation [BBR88] or fuzzy
extractors [DRS04] cannot be used with passwords of low entropy. Essentially, these techniques lose several
bits of their inputs, which is acceptable when inputs have high entropy, but devastating in case of passwords.

Looking at techniques for asymmetric PAKE, all of them require some kind of password hardening such
as hashing [GMR06,HL19,PW17], applying a PRF [JKX18] or a hash proof system [BJX19]. Unfortunately,
such functions destroy all notions of closeness of their inputs by design. Further, it is unclear how to define
a fuzzy version of, e.g., an oblivious PRF as used in [JKX18] that is not simply a constant function. While
such definitions exist for “fuzzy” cryptographic hashing (e.g., robust property-preserving hashing [BLV19]),
these functions either do not provide useful error correction or already their description leaks too much
information about the password of the client. Overall, there seems to be no candidate asymmetric PAKE
which can be made fuzzy.

Regarding more naive approaches, it is tempting to try to apply generic techniques for multi-party
computation to obtain a fuzzy PAKE such as garbled circuits [Yao86]. The circuit would be created w.r.t
some function of the password h ← H(pw). The user’s input would be pw′. Now the circuit finds all
passwords close enough to pw′ and outputs the shared key if one of these passwords yield h. Despite the
inefficiency of this approach, it is unclear how to actually write down the circuit. As shown in [Hes19], h
needs to be the output of some idealized assumption such as a programmable random oracle, and thus has
no representation as a circuit.

Our contributions In this paper, we give the first formal definition of fuzzy asymmetric PAKE. Our
definition is in the Universal Composability framework of Canetti [Can01], which is the preferred model for
PAKE protocols (cf., e.g., [JKX18] for reasons). Essentially, we take the aPAKE functionality from [GMR06]
(in a revised version due to [Hes19]) and equip it with fuzzy password matching (taken from the fuzzy PAKE
functionality FfPAKE from [DHP+18]). Our resulting functionality FfaPAKE is flexible in two ways: it can
be optionally equipped with a mutual key confirmation (often called explicit authentication), and, just as
FfPAKE, FfaPAKE can be parametrized with arbitrary metrics for distance, arbitrary thresholds and arbitrary
adversarial leakage. Thus, our model is suitable to analyze protocols for a wide range of applications, from
tolerating only few language-specific typos in passwords [CWP+17] to usage of noisy biometric scans of few
thousand bits length.

We then give two constructions for fuzzy asymmetric PAKE. Our first construction ΠfaPAKE uses error-
correcting codes (ECC)1 and oblivious transfer (OT) as efficient building blocks. ΠfaPAKE works for Hamming

1More precisely, we use a variant of Robust Secret Sharing, which can be instantiated with some class of error-correcting
codes. However, since most readers are presumably more familiar with the latter, we describe our constructions in terms of
codes.

2

distance and can correct O(log(n)) errors in n-bit passwords. Let us now give more details on ΠfaPAKE.
The idea of our protocol is to first encode a cryptographic key and store it at the server, in a file together

with random values to hide the codeword. The exact position of the codeword in the file is dictated by
the password. A client holding a close enough password is thus able to retrieve almost the whole codeword
correctly and can thus decode the session key given the error correction capabilities of the encoding. An
attacker stealing the password file, however, cannot simply decode since the file contains too much random-
ness. To remove this randomness, he is bound to decode subsets of the file until he finds two subsets which
decode to the same session key. Since decoding can be assumed to be as expensive as hashing, the effort
of an off-line dictionary attack on the password file follows from a purely combinatorial argument on the
parameters of the scheme (i.e., password size and error correction threshold).

To bound the client to one password guess per run of the protocol (which is the common security
requirement for PAKE), we employ an n-times 1-out-of-2 OT scheme. Each OT lets the client choose either
the true or the random part of the codeword for each of the n password bits (here we assume that the
codeword is from Fn for some large field F). Further, we apply randomization techniques to keep a client
from collecting parts of the password file over several runs of the protocol.

A plus of our protocol is that it elegantly circumvents usage of expensive techniques such as non-interactive
zero-knowledge proofs to ensure security against a malicious server. Indeed, a malicious server could make
the client reconstruct the session key regardless of her password by entering only the true codeword in the
OT. Such attacks would be devastating in applications where the client uses the session key to encrypt
her secrets and sends them to the bogus server. Thus, the client needs a means to check correct behavior
of the server. We achieve this by letting the server send his transcript of the current protocol run (e.g.,
the full password file) to the client, symmetrically encrypted with the session key. The client decrypts and
checks whether the server executed the protocol with a password close enough to his own. Crucially, a
corrupted client can only decrypt (and thus learn the server’s secrets) if he holds a close enough password,
since otherwise he will not know the encryption key.

Our proof of security is in the UC model and thus our protocol features composability guarantees and
security even in the presence of adversarially-chosen passwords. As shown in [Hes19], strong idealized
assumptions are necessary in order to achieve security in the UCmodel in case of asymmetric PAKE protocols.
The reason lies in the adaptive nature of a server compromise attack (an adversary stealing the password
file), against which our fuzzy version of asymmetric PAKE should also provide some protection. And indeed,
our proof is in the generic group model and additionally requires encryption to be modeled as an ideal cipher.
Both assumptions provide our simulator with the power to monitor off-line password guesses (observability)
of the environment as well as to adjust a password file to contain a specific password even after having
revealed the file (programmability)2. As a technicality, usage of the generic group model requires the client
to perform decoding in the exponent. We give an example of a code that is decodable in the exponent.

Our second construction Πtransf is a “naive” approach of building fuzzy aPAKE from aPAKE. Namely,
for a given pw, a server could simply store a list of, say, k hashes H(pw′) for all pw′ close enough to pw.
Then, client and server execute k times an aPAKE protocol, with the client entering the same password
every time and the server entering all hashes one by one. The fully secure protocol would need to protect
against malicious behavior, e.g., by having both parties prove correct behavior. Unfortunately, this approach
has two drawbacks. First, it does not scale asymptotically and has huge password files and communication
overhead depending not only on the fuzziness threshold but also on the size of the password. Second, we
show that Πtransf cannot be considered a secure fuzzy aPAKE, but has slightly weaker security guarantees.

On the plus side, Πtransf is already practical (and sufficiently secure) for applications where only few
passwords should let the client pass. Facebook’s authentication protocol, for example, is reported to correct
capitalization of the first letter [Ale15], resulting in only two hashes to be stored in the password file. As
analyzed in [CAA+16, CWP+17], correcting few common typographical mistakes as, e.g., accidental caps
lock, increases usability significantly more than it decreases security. For such applications, our protocol

2We mention that already the fuzzy PAKE construction for Hamming distance from [DHP+18] relies on both the ideal
cipher and random oracle model. Usage of the generic group model (together with a random oracle) has been recently shown
useful in constructing strongly secure aPAKEs [BJX19].

3

Πtransf is a good choice.

1.1 Roadmap
In Section 2 we give a definition of our main building blocks, error-correcting codes which are decodable
in the exponent. In Section 3, we provide the formal definition of fuzzy aPAKE and discuss the design of
our functionality. Our fuzzy aPAKE protocol can be found in Section 4. Our naive approach of building
faPAKE from aPAKE can be found in Section 5. Efficiency is considered in Section 6.

2 Preliminaries

2.1 Robust Secret Sharing in the exponent
An l-out-of-n secret sharing scheme allows to share a secret value s into n shares (s1, · · · , sn) in such a way
that given at least l of these shares, the secret can be reconstructed. Simultaneously, any tuple of shares
smaller than l is distributed independently of s. Robust secret sharing (RSS) [CDD+15] improves upon secret
sharing schemes in the presence of malicious shares. Intuitively, an (n, l − 1, r)q-RSS is an l-out-of-n secret
sharing scheme which allows the presence of up to n − r corrupted shares. In detail the reconstruction of
the secret is reliable for an n-tuple input (ŝ1, · · · , ŝn) of r different secret shares si and n− r random values
ai even if the positions of the correct shares are unknown.

We recall the definition of RSS as stated in [DHP+18]. For a vector c ∈ Fnq and a set A ⊆ [n], we denote
with cA the projection Fnq → F|A|q , i.e., the sub-vector (ci)i∈A.

Definition 2.1. Let λ ∈ N, q a λ-bit prime, Fq a finite field and n, l, r ∈ N with l < r ≤ n. An (n, l, r)q robust
secret sharing scheme (RSS) consists of two probabilistic algorithms Share : Fq → Fnq and Rec : Fnq → Fq with
the following properties:

• l-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ l, the projections cA of c $← Share(s) and c′A of
c′

$← Share(s′) are identically distributed.

• r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s), and any c̃ such that
cA = c̃A, it holds that Rec(c̃) = s.

We now introduce a variant of RSS which produces shares that are hidden in the exponent of some group
G, and which features a reconstruction algorithm that can handle shares in the exponent. At the same time
we sacrifice absolute correctness of Rec and allow for a negligible error in the definition of robustness.

Definition 2.2 (Robust Secret Sharing in the Exponent). Let λ ∈ N, q a λ-bit prime, Fq a finite field
and n, l, r ∈ N with l < r ≤ n. Let RSS = (Share′,Rec′) be a (n, l, r)q robust secret sharing scheme and
let G = 〈g〉 be a cyclic group of prime order q. An (n, l, r)q robust secret sharing scheme in the exponent
(RSSExp) with respect to G consists of two probabilistic algorithms Share : Fq → Gn and Rec : Gn → G
which are defined as follows:

• Share(s) : On input a secret value s ← Fq, obtain secret shares (s1, · · · , sn) ← Share′(s) and output
(gs1 , · · · , gsn).

• Rec(gŝ1 , · · · , gŝn) : On input n group elements, this algorithm outputs gŝ, where ŝ← Rec′(ŝ1, · · · , ŝn).

Further, an (n, l, r)-RSSExp scheme fulfills the following properties:

• l-privacy: as in Definition 2.1.

• r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s), and any c̃ such that
cA = c̃A, it holds that Rec(c̃) = gs with overwhelming probability in n.

Note that any (n, l, r)-RSSExp scheme trivially fulfills the l-privacy property. In the next part of this
section we show how to achieve r-robustness.

4

Instantiations of RSSExp In [DHP+18], it is shown how to construct an RSS scheme from any maximum
distance separable (MDS) code. An (n+1, k)q MDS code is a linear q-ary code of length n and rank k, which
can correct up to b(n−k+1)/2c errors. We refer to [Rot06] for a more in depth introduction to linear codes.

Concretely, [DHP+18] propose to use Reed-Solomon codes, which are closely related to Shamir’s secret
sharing scheme [MS81]. In general, we are not aware of any RSS scheme that is not also an MDS code. For
this reason, we focus now on decoding algorithms of linear codes.

Which decoding alorithm works also in the exponent? In the following Lemma we show that it
is possible to build an (n, l − 1, l + t, g)-RSSExp scheme from an l-out-of-(l + 2t) Shamir’s secret sharing
scheme.

Lemma 2.3. Let n, l ∈ N and (Share′,Rec′) be an l-out-of-n Shamir’s secret sharing scheme with n = l+ 2t
for some t and t · l = O(n log n), G = 〈g〉 a cyclic group of order q. Further let Share be the algorithm
that outputs gShare

′(s) on input s ∈ Fq. Then there exists an algorithm Rec using poly(n) · O(log q) group
operations such that (Share,Rec) is an (n, l − 1, l + t)-RSSExp scheme with respect to G.

Proof. (l−1)-privacy of l-out-of-n Shamir’s secret sharing scheme is shown in [DHP+18], Lemma 5, and can
be directly applied to the case where shares are lifted to the exponent of some group. Let Rec be the “unique
decoding by randomized enumeration” algorithm defined by Canetti and Goldwasser [CG99] (essentially, the
algorithm decodes random subsets of shares until it finds redundancy), but applied to shares in the exponent
using, e.g., Lagrange interpolation. Peikert [Pei06] shows in his Proposition 2.1 that, if t < (n+1− l)/2 (i.e.,
the number of errors allows for unique decoding) and t · l = O(n log n), then Rec succeeds with overwhelming
probability in n and requires poly(n)·O(log q) group operations. Since n = l+2t, it holds that t < (n+1−l)/2
and hence (l + t)-robustness is achieved.

3 Security Model
We now present our security definition for asymmetric fuzzy password authenticated key exchange (ΠfaPAKE).
Our functionality combines the fuzzy PAKE functionality FfPAKE from [DHP+18] with the asymmetric PAKE
functionality FapwKE [GMR06] (with revisions due to [Hes19]). In order to capture the notion of fuzziness in
our model, we say that a key exchange using passwords pw and pw′ is successful if d(pw, pw′) ≤ δ, where d is
an arbitrary distance function and δ a fixed threshold. FfPAKE can be parametrized with arbitrary functions
hdist() such as Hamming distance or edit distance.

Roles: In this work we consider an asymmetric setting, namely a client PC and a server PS . Each party
executes different code. In this setting PC uses a password pw while PS has access to some value denoted
by file, which is generated from a password pw′ but does not immediately reveal pw′. The goal of PC is
convincing PS that d(pw, pw′) ≤ δ, while PS only has access to file (and does not have access to pw′).

Modeling Adversarial Capabilities: The standard security requirement for PAKE is that an attacker
is bound to one password guessing attempt per run of the protocol. This resistance to off-line dictionary
attacks is also featured by our functionality FfaPAKE via the TestPwd interface that can be called by the
adversary only once per session. Since we are in the setting of asymmetric PAKE, however, the adversary
can also gain access to the password file file by compromising the server. Such a compromise is essentially
a corruption query with the effect that a part of the internal state of the server is leaked to the adversary.
However, opposed to standard corruption, the adversary is not allowed to control the party or modify its
internal state. FfaPAKE provides an interface for server compromise named StealPwdFile. As a conse-
quence of such a query (which, as natural for corruption queries, can only be asked by the adversary upon
getting instructions from the environment), a dictionary attack becomes possible. Such an attack is reflected
in FfaPAKE by the OfflineTestPwd interface, which allows an unbounded number of password guesses.
Accounting for protocols that allow precomputation of, e.g., hash tables of the form H(pw), FfaPAKE accepts

5

OfflineTestPwd queries already before StealPwdFile was issued. FfaPAKE silently stores these guesses
in the form of (offline, pw) records. Upon StealPwdFile, FfaPAKE sends the client’s pwC to the adversary
in case a record (offline, pwC) exists. This models the fact that the adversary learns the client’s password
from his precomputated values only upon learning the password file, i.e., compromising the server3. Besides
offline password guesses, the adversary can use file of the compromised server to run a key exchange session
with the user. This is captured within the Impersonate interface.

All these interfaces were already present in aPAKE functionalities in the literature. The key difference
of FfaPAKE is now that all these interfaces apply fuzzy matching when it comes to comparing passwords.
Namely, FfaPAKE is parametrized with two thresholds δ and γ. δ is the “success threshold”, for which it is
guaranteed that passwords within distance δ enable a successful key exchange. On the other hand, γ can
be seen as the “security threshold”, with γ ≥ δ. Guessing a password within range γ does not enable the
adversary to successfully exchange a key, but it might provide him with more information than just “wrong
guess”. Following [DHP+18], we enable weakenings of FfaPAKE in terms of leakage from adversarial interfaces
(cf. Figure 2). Here, the adversary, in addition to learning whether or not his password guess was close
enough, is provided with the output of different leakage functions Lc, Lm and Lf . Essentially, he learns
Lc(pw, pw

′) if his guess was within range δ of the other password, Lm if it was within range γ > δ and Lf
if it was further away than γ. FfaPAKE can be instantiated with any thresholds γ, δ and arbitrary functions
Lc, Lm, Lf . Looking ahead, the additional threshold γ enables us to prove security of constructions using
building blocks such as error-correcting codes, which come with a “gray zone” where reliable error correction is
not possible, but also the encoded secret is not information-theoretically hidden. While guessing a password
in this gray zone does not enable an attacker to reliably compute the same password as the client, security is
still considered to be compromised since some information about the honest party’s password (and thus her
key) might be leaked. To keep the notion flexible, we allow describing the amount of leakage with Lm(·, ·)
and mark the record compromised to model partial leakage of the key.

Naturally, one would aim for δ and γ to be close, where δ = γ offers optimal security guarantees in terms
of no special adversarial leakage if passwords are only δ + 1 apart (an equivalent formulation would be to
set Lm = Lf). FfaPAKE is strongest if Lf = Lm = Lc = ⊥. Below we provide examples of nontrivial leakage
functions, verbatim taken from [DHP+18].

Since in a fuzzy aPAKE protocol the password file stored at the server needs to allow for fuzzy matching,
files are required to store the password in a structured or algebraic form. An adversary stealing the file could
now attempt to alter the file to contain a different (still unknown) password. This kind of attack does not
seem to constitute a real threat, since the attacker basically just destroyed the file and cannot use it anymore
to impersonate the server towards the corresponding client. To allow for efficient protocols, we therefore
choose to incorporate malleability of password files into our functionality FfaPAKE by allowing the adversary
to present a function f within an Impersonate query. The impersonation attack is then carried out with
f(pw) instead of pw, where pw denotes the server’s password.

Figure 1 depicts FfaPAKE with the set of leakage functions from the second example below, namely leaking
whether the password is close enough to derive a common cryptographic key.

3Recent PAKE protocols [JKX18,BJX19] have offered resistance against so-called precomputation attacks, where an attacker
should not be able to pre-compute any values that can be used in the dictionary attack. Our protocols do not offer such
guarantees.

6

The functionality FfaPAKE is parameterized by a security parameter λ and tolerances δ ≤ γ. It interacts
with an adversary S and a client and a server party P ∈ {PC ,PS} via the following queries:
Password Registration

• On (StorePwdFile, sid,PC , pw) from PS , if this is the first StorePwdFile message, record
(file,PC ,PS , pw) and mark it uncompromised.

Stealing Password Data

• On (StealPwdFile, sid) from S, if there is no record (file,PC ,PS , pw), return “no password file” to
S. Otherwise, if the record is marked uncompromised, mark it compromised; regardless, for all records
(offline, pw′) set d← d(pw, pw′) and do:

– If d ≤ δ, send (“correct guess” , pw′) to S;
If no such pw′ is recorded, return “password file stolen” to S.

• On (OfflineTestPwd, sid, pw′) from S, do:

– If there is a record (file,PC ,PS , pw) marked compromised, then set d← d(pw, pw′) and do:
∗ If d ≤ δ, mark record compromised and send “correct guess” to S;
∗ If d > δ, mark record interrupted and send “wrong guess” to S.

– Else, record (offline, pw′)

Password Authentication

• On (UsrSession, sid, ssid,PS , pw′) from PC , send (UsrSession, sid, ssid,PC ,PS) to S. Also, if this is
the first UsrSession message for ssid, record (ssid,PC ,PS , pw′) and mark it fresh.

• On (SrvSession, sid, ssid) from PS , retrieve (file,PC ,PS , pw) and send (SrvSession, sid, ssid,PC ,PS)
to S. Also, if this is the first SrvSession message for ssid, record (ssid,PS ,PC , pw) and mark it fresh.

Active Session Attacks

• On (TestPwd, sid, ssid,P, pw′) from S, if there is a record (ssid,P,P ′, pw) marked fresh, then set
d← d(pw, pw′) and do:

– If d ≤ δ, mark record compromised and send “correct guess” to S;
– If d > δ, mark record interrupted and send “wrong guess” to S.

• On (Impersonate, sid, ssid, f) from S, if there is a record (ssid,PC ,PS , pw) marked fresh and a record
(file,PC ,PS , pw′) marked compromised, then set d← d(pw, f(pw′)) and do:

– If d ≤ δ, mark record compromised and send “correct guess” to S;
– If d > δ, mark record interrupted and send “wrong guess” to S.

Key Generation and Implicit Authentication

• On (NewKey, sid, ssid,P, k) from S where |k| = λ or k = ⊥, if there is a record (ssid,P,P ′, pw) not
marked completed, do:

– If the record is marked compromised, or either P or P ′ is corrupted, send (sid, ssid, k) to P.
– Else if the record is marked fresh, (sid, ssid, k′) was sent to P ′, and at that time there was a

record (ssid,P ′,P, pw) with d(pw, pw′) ≤ δ marked fresh, send (sid, ssid, k′) to P.
– Else if k 6= ⊥, the record is marked fresh, (sid, ssid, k′) was sent to P ′, and at that time there was

a record (ssid,P ′,P, pw) with d(pw, pw′) ≤ δ marked fresh, send (sid, ssid, k′) to P.
– Else, pick k′′

$← {0, 1}λ and send (sid, ssid, k′′) to P.
Finally, mark (ssid,P,P ′, pw) completed.

Figure 1: Ideal functionality FfaPAKE. Framed queries can only be asked upon getting instructions from Z.

7

• If d ≤ δ, mark the record compromised and reply to S with Lc(pw, pw′);
• If δ < d ≤ γ, mark the record compromised and reply to S with Lm(pw, pw′);
• If γ < d, mark the record interrupted and reply to S with Lf (pw, pw′).

Figure 2: Modified distance checks to allow for different leakage to be used in TestPwd, OfflineTestPwd,
Impersonate and StealPwdFile. In StealPwdFile, record marking is skipped.

Examples of leakage functions.

1. No leakage. The strongest option is to provide no feedback at all to the adversary. We define FNfaPAKE to
be the functionality described in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd
and StealPwdFile use the check depicted in Figure 2 with

LNc (pw, pw′) = LNm(pw, pw′) = LNf (pw, pw′) = ⊥ .

2. Correctness of guess. The basic functionality FfaPAKE, described in Figure 1, leaks the correctness of
the adversary’s guess. That is, in the language of Figure 2,

Lc(pw, pw
′) = “correct guess” ,

and Lm(pw, pw′) = Lf (pw, pw′) = “wrong guess” .

3. Matching positions (“mask”). Assume the two passwords are strings of length n over some finite
alphabet, with the jth character of the string pw denoted by pw[j]. We define FMfaPAKE to be the
functionality described in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd and
StealPwdFile use the check depicted in Figure 2, with Lc and Lm that leak the indices at which the
guessed password differs from the actual one when the guess is close enough (we will call this leakage
the mask of the passwords). That is,

LMc (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “correct guess”),
LMm (pw, pw′) = ({j s.t. pw[j] = pw′[j]}, “wrong guess”)

and LMf (pw, pw′) = “wrong guess” .

4. Full password. The weakest definition — or the strongest leakage — reveals the entire actual password
to the adversary if the password guess is close enough. We define FPfaPAKE to be the functionality
described in Figure 1, except that TestPwd, Impersonate, OfflineTestPwd and StealPwdFile
use the check depicted in Figure 2, with

LPc (pw, pw′) = LPm(pw, pw′) = pw and LPf (pw, pw′) = “wrong guess” .

4 Fuzzy aPAKE from Secret Sharing
We now describe our protocol for fuzzy aPAKE with Hamming distance as metric for closeness of passwords.
The very basic structure of our protocol is as follows: we let the server encode a cryptographic key K using
an error-correcting code4. The resulting codeword (different parts of codeword are depicted as white circles
in the illustration below) is then transmitted to the client, who decodes to obtain the key.

4Formally, we will define our scheme using the more general concept of robust secret sharing. However, for this overview it
will be convenient to use the terminology of error-correcting codes.

8

Client Server

K

K

ECC.Encode

ECC.Decode

To make the retrieval of the cryptographic key password-dependent, the server stores the codeword
together with randomness (depicted as grey circles below) in a password file. The position of the true
codeword values in the file are dictated by the password bits. For example, in the illustration below, the
server uses the password 01110. For this, we require the encoding algorithm to output codewords whose
dimension matches the number of password bits. Now instead of getting the full password file, the client
can choose to see only one value per column (either a part of the codeword or a random value). Technically,
this is realized by employing a n-time 1-out-of-2 oblivious transfer (OT) protocol 5, where n = 5 is the
password size of our toy example. The oblivious part is crucial to keep the server from learning the client’s
password. With this approach, passwords within the error correction threshold of the password used by the
server are sufficient to let the client decode the cryptographic key. In the illustration below, the client uses
password 11110, letting him obtain 4/5 of the codeword correctly. Furthermore, an adversary stealing the
password file is now faced with the computationally expensive task of finding the codeword within the file.
Generalized to an (n − 2t)-out-of-n RSS, the naive approach of finding n − 2t shares of the codeword by
taking random subsets succeeds with probability 1/2n−2t (as there are

(
n
2t

)
“good” choices containing shares

only, and
(
n
2t

)
· 2n−2t choices overall). Here, n is the password size and t the number of errors that the fuzzy

aPAKE protocol allows in passwords.

Client Server

K

K

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

The above protocol can only be used to derive a single cryptographic key. Further, it is prone to a
malicious client who could send pw and pw ⊕ 1n in two subsequent runs and obtain the full password file.
The solution is randomization of the password file in each run of the protocol. This is straightforward for
linear secret sharing.

5The protocol is not restricted by 1-out-of-2 OT, but can use 1-out-of-n OT for any n ∈ N. In this work we consider n = 2,
but in practice n > 2 might be useful to reduce the number of wrong shares (e.g. n = 27 in case of ASCII encoding).

9

Client Server

K

K ′

ECC.Encode
+ random shares

5x 1-out-of-2-OT

ECC.Decode

rerandomize shares
to encode K ′

Unfortunately, the above protocol cannot be proven UC secure. As already mentioned before, UC-secure
asymmetric PAKE protocols require an idealized assumption to reveal password guesses against the file to
the adversary [Hes19]. Furthermore, we need to require that a password file does not fix the password that is
contained in it, in order to prove security in the presence of adaptive server compromise attacks. To remedy
the situation, we let the server store the password file in the exponent of a publicly known large group and
prove security of our construction in the generic group model [Sho97]. As a consequence, the client now
needs to perform decoding in the exponent. We summarize in Section 2 which known decoding techniqes
work also in the exponent, and detail in Section 6 how this affects the parameter choices of our scheme.

To complete our high-level protocol description, we now consider malicious behavior of client and server
in the above protocol. Firstly, we observe that the client cannot cheat apart from using a different password
in the OT (which does not constitute an attack) or outputting a wrong cryptographic key (which also does
not constitute an attack). Things look differently when we consider a malicious server. The server could,
e.g., deviate from the protocol by entering only correct codeword parts in the OT, making the key exchange
succeed regardless of the password the client is using. To prevent such attacks, we let the server prove correct
behavior by encrypting his view of the protocol run under the symmetric key K ′. The view consists of the
randomized password file as well as gpw. A client being able to derive K ′ can now check whether the server
indeed holds a password pw close enough to his own, and whether the transmitted password file parts match
the password file created with pw. The formal description of our protocol can be found in Figure 3.

It is worth noting the similarity of our protocol to the fuzzy PAKE from RSS/ECC of [DHP+18]. Namely,
the overall idea is the same (server choosing and encoding K, sending it to the client who can decode if and
only if his password is close enough). Essentially, both protocols transmit the codeword encrypted with
the password, using a symmetric cipher that tolerates errors in the password - let us call this a fuzzy
symmetric cipher. [DHP+18] uses the following fuzzy symmetric cipher: XOR the codeword (the message)
with cryptographic keys derived from the individual password bits. These cryptographic keys are exchanged
using PAKE on individual password bits. Unfortunately, this approach does not work in the asymmetric
setting, since the server would have to store the password in the clear to access its individual bits. For the
asymmetric case, one has to come up with a fuzzy cipher that works with a key that is some function of
the password. This function needs to have two properties: hide the password sufficiently, and still allow to
evaluate distance of its input.

4.1 Security
Theorem 4.1. Let n, l, t ∈ N with n = l + 2t and (Share,Rec) be an (n, l − 1, l + t)-RSSExp scheme with
respect to a generic group G. Then the protocol depicted in Figure 3 UC-emulates FPfaPAKE in the FIC,FnOT-

10

User(p̃w, g) Server(pw, t, q, g)

parse p̃w =: p̃w1|| . . . ||p̃wn parse pw =: pw1|| . . . ||pwn
n← |pw|, l← n− 2t, k

$←− Zq
K ← gk, P ← gpw

(s1, . . . , sn)← Sharenl (k), (r1, . . . , rn)
$←− Znq

File Registration Phase apwi,i ← gsi , i ∈ [n], apwi⊕1,i ← gri , i ∈ [n]
store file← ((a0,i, a1,i)i∈[n], P,K)

delete pw, k, (si)i∈[n], (ri)i∈[n]

Key Exchange Phase k′
$←− Zq,K ′ ← Kk′

A← (ak
′

0,i, a
k′

1,i)i∈[n]

�(Enc,K ′, (A, P))

FIC
-c

� c

-(Rec, (p̃wi)i∈[n]) �(Send,A)

FnOT Ks ← PRG(K ′)
K̃ ← Rec(b̃1, . . . , b̃n) � (b̃i)i∈[n] output Ks

-(Dec, K̃, c)

FIC
� (Ã, P̃)

parse (ã′0,i, ã
′
1,i)i∈[n] ← Ã

If ∃i s.t. b̃i 6= ãp̃wi,i
or

�∃ pw s.t. d(pw, p̃w) < t ∧ gpw = P̃

then set x $←− Zq, else set x← K̃
Kc ← PRG(x)
output Kc

Figure 3: Protocol ΠfaPAKE for asymmetric fuzzy PAKE using an n times 1-out-of-2 Oblivious Transfer.

11

hybrid model, with γ = 2t, δ = t, Hamming distance d() and with respect to static byzantine corruptions and
adaptive server compromise.

Before giving a detailed proof of Theorem 4.1, we present a high level proof sketch in which we consider
the different cases of corruption.

Proof sketch: The overall proof strategy is to give a simulated transcript and output of the protocol that
is indistinguishable from a real protocol execution and runs independently of the parties’ passwords. The
simulator is allowed to make one password guess per execution (in case of compromised server the simulator
can run several offline password guesses). In the following, we describe the different cases of corruption that
have to be considered.

• Honest session: Apart from the interaction between client and server through the UC-secure OT, the
only message that needs to be simulated is one ideal cipher output which is sent from the server to the
client and serves as a commitment to the servers values. Since the ideal cipher generates a uniformly
random ciphertext from the ciphertext space, the simulator can replace the FIC output by a random
value as long as the key is unknown. Hence, the simulator runs independently from the passwords of
the parties.

• Corrupted client: In case of corrupted client, it is crucial to bind the client to submitting all n
password bits at once such that the client is not able to adaptively change the password bits based
on previous OT outputs. We achieve this by using non-adaptive n times 1-out-of-2 OT executions.
Hence, S is able to query TestPwd on the submitted password bits before it needs to simulate the
OT outputs for the client. In case TestPwd returns the server’s password, S can simulate valid OT
outputs. Otherwise, S chooses random outputs which is indistinguishable from the real execution due
to the privacy property of the RSSExp scheme.

• Corrupted server: Whenever the corrupted server sends the ciphertext that contains the OT in-
puts and gpw, S reconstructs pw from the inputs to the ideal cipher and the generic group operations
requestes by the environment. S then checks whether pw is close to the client’s password using the
TestPwd interface. If so the simulator gets the client’s password and can simulate the client. Oth-
erwise the client’s behavior is independent of its password. Hence, S can simulate the client with an
arbitrary password that is not close to the server’s.

• Server compromise: (1) Simulating the password file. S assembles a table with random group ele-
ment handles as password file, and a random handle corresponding to gk. As soon as Z starts decoding
with some subset of these elements by querying the GGM, S learns these queries. As soon as this subset
of elements corresponds to a password, the simulator submits this password to OfflineTestPwd. If
the answer includes the server’s password, then S programs the GGM such that the decoding results
in the handle of gk.
(2) Impersonation attacks. The environment could use a file (e.g., the one obtained from S or a
randomized variant of it) to impersonate the server. For this, the environment has to modify the
ciphertext c to encrypt the file. Upon the environment sending an encryption query to FIC including
an element P at the end of the message to be encrypted, the simulator checks if the GGM contains a
tuple (pw, P). If so, S runs a TestPwd query on pw and learns the client’s password p̃w in case pw
and p̃w are close6. If there is no tuple (pw, P) in the GGM, S checks whether P was computed from
the file (A′, P ′) by the environment sending f(P ′) to the GGM (and the simulator replying with P).
If such a query happened, S issues an Impersonate query using the same function f .

• MITM attack on honest session: Apart from the interaction between client and server through the
UC-secure OT, the only message that is sent is one ideal cipher output from the server to the client.
Any attempt by Z to tamper with this message can be detected and hence S can simulate accordingly.

6We could alternatively let S issue an Impersonate query, but since the password is known issueing TestPwd works just
as well.

12

The detailed proof can be found in Appendix 4.1.

Password Salting. In the UC modeling each protocol session has access to a fresh instantiation of the
ideal functionalities. Consequently each protocol session invokes a fresh instantiation of RO or GGM, which
return different values when queried on the same input in different sessions. Therefore the password files
generated for two users with the same password are different. In practice however the passwords must be
salted, i.e. instead of storing the gpw, the server stores g(sid||pw) where sid is the respective session identifier.
By applying this standard technique of salting in practice, the password files for two clients who use the
same password would be different.

Use Cases for Hamming Distance metric. Although hamming distance is not the most optimal way
to measure the distance of two passwords, it is quite suitable for biometric applications. As an example,
a server can derive the password file from a client’s iris scan or fingerprint such that the client can use
this biometric data for authentication. Another example would be wearable or IoT devices. Such devices
can measure unique characteristics of the user or environment, such as heart beat patterns and use these
measurements for authentication. Our next construction is more suitable for password matching applications
where users authenticate themselves with a human memorable password, but might input some characters
of the password incorrectly.

5 Fuzzy aPAKE from standard aPAKE
We now show how to construct a fuzzy aPAKE from asymmetric PAKE. Essentially, the idea is to let the
server run an aPAKE protocol with the client multiple times, entering all the passwords that are close to
the password he originally registered. For formally defining the protocol, it will be convenient to assume a
(possibly probabilistic) function close(pw) := {pwi|d(pw, pwi) < δ} that produces a set of all authenticating
passwords. For example, for d(), δ accepting passwords where the first letter’s case should be ignored, we
would get close(holy–moly!) = {Holy–moly!, holy–moly!}. When asking to register a password file containing
pw, the server stores file := {H(pwi)|pwi ∈ close(pw) ∀i = 1, ..., |close(pw)|} as arbitrarily ordered list of
hash values of all authenticating passwords. Let k := |file| be the number of such passwords. Now client
and server execute the aPAKE protocol k times, where the client always enters his password, and the server
enters all values from the password file (in an order determined by a random permutation τ). Then, similar
to our protocol ΠfaPAKE, the server proves honest behavior by encrypting the (permuted) password file under
all k keys generated by the aPAKE protocol. The client decrypts and looks for a password file that was
generated from a password that is close to his own password. If he finds such a file, he uses the corresponding
decryption key (generated from aPAKE) to perform an explicit authentication step with the server. Note
that this extra round of explicit authentication cannot be skipped, since otherwise the server would not know
which key to output. While the computation on the client side sounds heavy at first sight, if both parties
follow the protocol, all but one decryption attempts on the client side will fail. The client can efficiently
recognized a failed decryption attempt by searching the decrypted message for the hash of his own password.
The protocol is depicted in Figure 4.

Πtransf does not scale asymptotically, neither in the size of the password nor the number of errors. As
an example, for correcting only one arbitrary error in an n-bit password, the password file size is already
k = n+ 1. For correcting up to t errors, we get k := 1 +

∑t
i=1

(
n
i

)
. Note that k determines not only the size

of the password file but also the number of aPAKE executions. On the plus side, the construction works
with arbitrary metric and distances, does not have a “security gap” between δ and γ and has reasonable
computational complexity on both the client and server side.

Unfortunately Πtransf cannot be proven secure given the original ideal functionality FfaPAKE, or rather
its variant with explicit authentication (see Figure 9). In a nutshell, an attacker tampering with the single
aPAKE executions can issue k password guesses using arbitrary passwords from the dictionary. A fuzzy
aPAKE as defined within FfaPAKE, however, needs to bound the attacker to use k close passwords. To
remedy the situation we modify the TestPwd interface of our FfaPAKE functionality such that it allows

13

n single password guesses (see Figure 8). By single guess we mean that, instead of comparing a guess to
all passwords within some threshold of the password of the attacked party (as it is done by FfaPAKE), it is
compared to just one password. In case the client is attacked, the functionality compares with the client’s
password (and allows k such comparisons). In case the server is attacked, comparison is against a randomly
chosen password close to the server’s password7. Overall, the amount of information that the attacker obtains
from both TestPwd interfaces in Figures 1 and 8 is comparable: they both allow the attacker to exclude
k passwords from being “close enough” to authenticate towards an honest party. Stated differently, to go
through the whole dictionary D of passwords, with both TestPwd interfaces an attacker would need to
tamper with |D|/k key exchange sessions.

We let F ′faPAKE denote the ideal functionality FPfaPAKE with interfaces TestPwd and NewKey taken
from Figures 8 and 9.

Theorem 5.1. Protocol Πtransf UC-emulates F ′faPAKE with arbitrary distance function d() and arbitrary
threshold δ = γ in the (FaPAKE,FRO,FIC)-hybrid model w.r.t static corruptions and adaptive server compro-
mise and H() denoting calls to FRO.

Proof sketch. We need to consider the following attack scenarios:

• Passive attacks: The environment Z tries to distinguish uncorrupted real and ideal execution by merely
observing transcript and outputs of the protocol, while providing the inputs of both honest parties.
Since the outputs of the protocol are random oracle outputs and the transcript consists of a random
ciphertext vector −→e output by the ideal cipher, Z cannot distinguish real outputs from simulated
random values unless it queries either the ideal cipher functionality FIC or the random oracle FRO with
the corresponding inputs. This can be excluded with overwhelming probability since these inputs are
uniformly random values of high entropy chosen by honest parties.

• Active message tampering : We consider Z injecting a message into a protocol execution between two
honest parties. The only messages being sent in unauthenticated channels are the encryption vector
−→e and the explicit authentication message h. Replacing the message h would simply result in two
different keys as output for the parties, simulatable by sending ⊥ via NewKey. Tampering with −→e is
a bit more tricky. Namely, we have to consider Z modifying only single components of −→e . Tampering
with each element of the vector −→e lowers the probability for the parties to output the same key. Hence,
the simulator needs to adjust the probability for the parties to output the same key by forcing the
functionality to only output the same session key with this exact probability, i.e., the simulator sends
⊥ via NewKey with the inverse probability.

• (Static) Byzantine corruption: We consider the case where Z corrupts one of the parties.

– In case of corrupted server, given an adversarially computed −→e , the simulator extracts all k
passwords used by Z from the server’s inputs to FIC and FRO and submits them as password
guess to F ′faPAKE (via TestPwd). S then uses the answers (either “wrong guess” or the client’s
true password) to continue the simulation faithfully. In case the corrupted server deviates from
the protocol (e.g., −→e does not encrypt a set of passwords generated by close(), or sends garbage
to the FaPAKE instance in which the server uses the client’s password), the simulator sends ⊥ via
the NewKey interface to simulate failure of the key exchange.

– The case of a corrupted client is handled similarly using the freedom of k individual TestPwd
queries.

• Server compromise: The password file is simulated without knowledge of the password by sampling
random hash values. The simulator now exploits observability and programmability of the random
oracle (that models the hash function) as follows: as soon as Z wants to compute H(pw), S submits

7Programming this randomized behavior into the functionality greatly simplifies proving security of Πtransf and does not
seem to weaken the functionality compared to one using non-randomized equality checks.

14

pw to its OfflineTestPwd interface. Upon learning the server’s true password, S programs the
random oracle such that the password file contains hash values of all passwords close to pw.

• Attacking FaPAKE: While using FaPAKE as hybrid functionality helps the parties to exchange the key,
it gives us a hard time when simulating. Essentially, the simulator has to simulate answers to all
adversarial interfaces of each instance of FaPAKE since Z is allowed to query them. And FaPAKE has
a lot of them: StealPwdFile, TestPwd, OfflineTestPwd and Impersonate. In a nutshell,
OfflineTestPwd queries can be answered by querying the corresponding interface at F ′faPAKE. The
same holds for StealPwdFile and Impersonate, only that they can be queried only once in F ′faPAKE.
Our proof thus needs to argue that the one answer provided by FfaPAKE includes already enough
information to simulate answers to all k. The most annoying interface, namely TestPwd is handled
by forwarding each individual TestPwd guess to F ′faPAKE. This explains why F ′faPAKE needs to allow
k individual password guesses instead of one fuzzy one (as provided by FfaPAKE).

6 Efficiency
Efficiency of ΠfaPAKE. When instantiated with the statically secure OT from [BDD+17], ΠfaPAKE is round-
optimal and requires each party to send only one message. While 2 consecutive messages are in any case
required for the OT, we can conveniently merge the ciphertext send by the server with his message send within
the OT. As detailed in Section A, this results in a total message size of 8λn+ |c| = 8λn+ (2n+ 1)λ ≈ 10λn
bits. For each login attempt of a client, the server needs to perform 2n+ 1 group exponentiations in order to
refresh the values in the password file, as well as an encryption of 2n+ 1 group elements. Finally, the server
has to perform one PRG execution. Note that the server has to do some additional computations during
the initial setup phase of the protocol, however since this phase is only run once, we do not consider its
complexity in this section. The client’s computation is where our protocol lacks efficiency. Namely, with the
naive decoding technique from [CG99], client’s computation is only polynomial in |pw| if the error correction
capability δ is not larger than log |pw|. And still for such δ, going beyond password sizes of, say, 40 bits does
not seem feasible.

Efficiency of Πtransf. In order to achieve the fuzzy password matching in Πtransf, the server is required to
store one hash value for each password that lies within distance δ of the original password. As a consequence,
the password file size is highly dependent on these threshold parameters. If we consider Hamming distance
as done in our first construction, for δ = 1 the password file is of size O(n). However for δ = 2 it grows
to O(n2) and for δ = 3 to O(n3). Hence, such error tolerance can only be achieved in Πtransf at the cost of
huge password files. The same correlation to the error tolerance holds for the amount of aPAKE executions
in Πtransf.

In order to determine the computational complexity of Πtransf in terms of required group operations, we
chose an instantiation of an aPAKE protocol, OPAQUE [JKX18], that requires a constant number of group
exponentiations. As previously discussed, Πtransf requires k aPAKE executions with k being the size of the
password file.

Despite its shortcomings when used with Hamming distance, Πtransf serves as a good illustration for
how to construct a general purpose faPAKE protocol that already has practical relevance. Instantiated with
distance and threshold suitable to correct, e.g., capitalization of first letters or transposition of certain digits,
we obtain an efficient "almost secure" fuzzy aPAKE scheme.

We present a comparison of the two schemes in Table 1. Πtransf is listed twice. First it is compared to
ΠfaPAKE when using Hamming distance. The last row indicates its efficiency for parameters resulting in k
authenticating passwords, where k can be as small as 2.

15

Client(pw) Server(pw′)

{pw′1, ..., pw′k} ← close(pw′)
File Registration Phase file := (H1, ...,Hk), Hi := H(pw′i)

τ ← Πk

fileτ ← (Hτ(1), . . . ,Hτ(n))

for i = 1, . . . , k -
pw

� Hτ(i) for i = 1, . . . , k

FaPAKE
� kC,i -kS,i

�(Enc, kS,i, fileτ)

Key Exchange Phase FIC
-

ei

�
−→e

for i = 1, · · · , k -(Dec, kC,i, ei)

FIC
� e′i

x
$←− K; parse e′i to a set Mi of hash values

if ∃1pw′ ∈ close(pw) s.t. Mi = {H(x1), ...,H(xk)}
where {x1, ..., xk} ← close(pw′)
then KC ← H(kC,i) and x← kC,i
else KC ← ⊥

h = H(x||0) -h for i = 1, . . . , k
if H(kS,i||0) = h

KS ← H(kS,i)
Explicit Authentication Phase else

KS ← ⊥
Output KC Output KS

Figure 4: Protocol Πtransf for fuzzy asymmetric PAKE. The parties participate in k executions of the aPAKE
protocol. Afterwards they verify if at least one of the produced k keys match and agree on it. We denote
Πn := perm(1, ..., k) the set of permutations [k] → [k]. close(pw) is a function outputting a list of all
authenticating passwords (see text for a formal description).

File size Message size Thresholds Metric Client Server Assumption
ΠfaPAKE (2n+ 2)λ 10λn 2δ = γ Hamming poly(n) · O(log q) O(n log q) IC, GGM
Πtransf O(nδ) O(nδ) δ = γ Hamming O(nδ log q) O(nδ log q) IC, ROM
Πtransf λk O(k) δ = γ arbitrary O(k) O(k) IC, ROM

Table 1: Comparison of ΠfaPAKE and Πtransf. We assume n-bit passwords in case of Hamming distance. File
size and communication complexity are in bits. The Client and Server column indicate the number of group
operations.

16

7 Conclusion
In this paper, we initiated the study of fuzzy asymmetric PAKE. Our security notion in the UC framework
results from a natural combination of existing functionalities. Protocols fulfilling our definition enjoy strong
security guarantees common to all UC-secure PAKE protocols such as protection against off-line attacks and
simulatability even when run with adversarially-chosen passwords.

We demonstrate that UC-secure fuzzy aPAKE can be build from OT and Error-Correcting Codes, where
fuzziness of passwords is measured in terms of their Hamming distance. Our protocol is inspired by the
ideas of [DHP+18] for building a fuzzy symmetric PAKE. We also show how to build a (mildly less secure)
fuzzy aPAKE from (non-fuzzy) aPAKE. Our construction allows for arbitrary notions of fuzziness and yields
efficient, strongly secure and practical protocols for use cases such as, e.g., correction of typical orthographic
errors in typed passwords.

Our two constructions nicely show the trade-offs that one can have for fuzzy aPAKE. The “naive” con-
struction from aPAKE has large password file size when used with Hamming distance, but also works for
arbitrary closeness notions possibly leading to small password files and practical efficiency. The construction
using Error-Correcting Codes is restricted to Hamming distance and log(|pw|) error correction threshold. I
comes with a computational overhead on the client side, but has only little communication and small pass-
word file size. It is worth noting that, for this construction, all efficiency drawbacks could be remedied by
finding a more efficient decoding method that works in the exponent. We leave this as well as finding more
fuzzy aPAKE constructions as future work. Specifically, no fuzzy aPAKE scheme with strong compromise
security (as defined in [JKX18]) is known.

Acknowledgments
This work was partly supported by the German Research Foundation (DFG) Emmy Noether Program FA
1320/1-1, by the DFG CRC 1119 CROSSING (project S7), by the German Federal Ministry of Education
and Research (BMBF) iBlockchain project (grant nr. 16KIS0902), by the German Federal Ministry of
Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within
their joint support of the National Research Center for Applied Cybersecurity ATHENE, by the VeriSec
project 16KIS0634 from the Federal Ministry of Education and Research (BMBF), and by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No. 786725 – OLYMPUS.

We would like to thank Sophia Yakoubov for helpful discussions on earlier versions of this work.

References
[Ale15] Alec Muffet. Facebook: Password hashing & authentication, presentation at real world crypto,

2015.

[BBC+13] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud.
New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475. Springer, Heidel-
berg, August 2013.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

[BDD+17] Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Morozov, and Anderson C. A.
Nascimento. A framework for efficient adaptively secure composable oblivious transfer in the
ROM. CoRR, abs/1710.08256, 2017.

[BJX19] Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu. Strong asymmetric PAKE based on trapdoor
CKEM. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 798–825. Springer, Heidelberg, August 2019.

17

[BLV19] Elette Boyle, Rio LaVigne, and Vinod Vaikuntanathan. Adversarially robust property-preserving
hash functions. In Avrim Blum, editor, ITCS 2019, volume 124, pages 16:1–16:20. LIPIcs,
January 2019.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84. IEEE Computer Society Press, May 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise. In Dorothy E.
Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM
CCS 93, pages 244–250. ACM Press, November 1993.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 156–171. Springer, Heidelberg, May 2000.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, Heidelberg, May 2000.

[CAA+16] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas Ristenpart. pASS-
WORD tYPOS and how to correct them securely. In 2016 IEEE Symposium on Security and
Privacy, pages 799–818. IEEE Computer Society Press, May 2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDD+15] Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear
secret sharing schemes from error correcting codes and universal hash functions. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
313–336. Springer, Heidelberg, April 2015.

[CDVW12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient pass-
word authenticated key exchange via oblivious transfer. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 449–466. Springer, Heidel-
berg, May 2012.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 90–106. Springer, Heidelberg, May 1999.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005.

[CWP+17] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas Ristenpart.
The TypTop system: Personalized typo-tolerant password checking. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 329–346.
ACM Press, October / November 2017.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 393–424. Springer, Heidelberg,
April / May 2018.

18

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg, May 2004.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key ex-
change. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543.
Springer, Heidelberg, May 2003. http://eprint.iacr.org/2003/032.ps.gz.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based
key exchange resilient to server compromise. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 142–159. Springer, Heidelberg, August 2006.

[Hes19] Julia Hesse. Separating standard and asymmetric password-authenticated key exchange. Cryp-
tology ePrint Archive, Report 2019/1064, 2019. https://eprint.iacr.org/2019/1064.

[HL19] Björn Haase and Benoît Labrique. Aucpace: Efficient verifier-based PAKE protocol tailored for
the iiot. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):1–48, 2019.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg,
April / May 2018.

[KOY01] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 475–494. Springer, Heidelberg, May 2001.

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key
exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310. Springer,
Heidelberg, March 2011.

[MS81] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes. Commun.
ACM, 24(9):583–584, 1981.

[Pei06] Chris Peikert. On error correction in the exponent. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 167–183. Springer, Heidelberg, March 2006.

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis password exponential
key exchange. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors,
ASIACCS 17, pages 301–312. ACM Press, April 2017.

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press, New York, NY, USA,
2006.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Ideal Functionalities
In this Section we recall ideal functionalities from the literature, sometimes slightly adapted to our purposes.

19

http://eprint.iacr.org/2003/032.ps.gz
https://eprint.iacr.org/2019/1064

The functionality FIC takes as input the security parameter k, and interacts with an adversary S and with
a set of (dummy) parties P1, . . . , Pn by means of these queries:

• FIC keeps a (initially empty) list L containing 3−tuples of bit strings and two (initially empty) sets
Csk and Msk for every sk. (The sets are not created until sk is first used, thus avoiding the need to
instantiate exponentially many sets.)

• Upon receiving a query (Enc, sid, sk,m) (with m ∈ {0, 1}k) from some party Pi or S,
do:

– If there is a 3−tuple (sk,m, c̃) for some c̃ ∈ {0, 1}k in the list L, set c := c̃.

– If there is no such record, choose uniformly c ∈ {0, 1}k\Csk which is the set consisting of
ciphertexts not already used with sk. Next, it stores the 3−tuple (sk,m, c) ∈ L and sets both
Msk ←Msk ∪ {m} and Csk ← Csk ∪ {c}.

Once c is set, reply to the activating machine with (Enc, sid, c).

• Upon receiving a query (Dec, sid, sk, c) (with c ∈ {0, 1}k) from some party Pi or S, do:

– If there is a 3−tuple (sk, m̃, c) for some m̃ ∈ {0, 1}k in L, set m := m̃.

– If there is no such record, choose uniformly m ∈ {0, 1}k\Msk which is the set consisting of
plaintexts not already used with sk. Next, it stores the 3−tuple (sk,m, c) ∈ L and sets both
Msk ←Msk ∪ {m} and Csk ← Csk ∪ {c}.

Once m is set, reply to the activating machine with (Dec, sid,m).

Figure 5: Functionality FIC

Ideal Cipher. An ideal cipher [BPR00] is a block cipher that takes a plaintext or a ciphertext as input.
We describe the ideal cipher functionality FIC in Figure 5. FIC a perfectly random permutation for each key
by ensuring injectivity for each query simulation: to this aim, it uses a list L and projections Msk and Csk,
that are global, independently of the sid.

Ideal Oblivious Transfer (OT). The functionality FnOT describes a bundled version of a 1-out-of-2 OT,
where output is only generated if n inputs have been provided. The functionality maintains subsession
identifiers ssid and can thus be used to exchange an n-fold 1-out-of-2 OT multiple times. For simplicity, we
require both the sender and the receiver to input all n inputs with one message.
FnOT can be realized by any UC-secure protocol for 1-out-of-2 OT with the slight modification that the

sender only continues the protocol after having received n input-dependent messages of the client (in UC-
secure protocol, the client is usually committed to his input when sending his first message). E.g., one could
modify the round-efficient statically secure OT protocol from [BDD+17], Figure 3, to let the sender Alice
wait for receiver Bob to complete the first step of the protocol n times. The protocol requires one round of
communication. In total, 3 strings, 1 public key and 2 ciphertexts are send around per 1-out-of-2 OT. For
sender inputs from F2

q and security parameter λ with q = 2λ, the communication complexity of the n-fold
1-out-of-2 OT is then 8λn bits.

B UC execution of ΠfaPAKE

• PC upon receiving (UsrSession, sid, ssid,PS , pw′) from Z does the following:
1. Parse pw as pw = pw1|| · · · ||pwn and wait to receive (sid, c) from PS .
2. Send (Rec, sid, ssid,PS , (pwi)i∈[n]) to FnOT.

20

The functionality FnOT is parameterized with a security parameter λ. It interacts with an adversary S
and a client and a server party P ∈ {PC ,PS} via the following queries.

• On (Send, sid, ssid,PC , (v0,i, v1,i)i∈[n]) from PS where (v0,i, v1,i) ∈ F2
q ∀i ∈ [n], store

(ssid, (v0,i, v1,i)i∈[n]) and send (Send, sid, ssid,PS ,PC) to S. Ignore further Send messages with
the same ssid from PS .

• On (Rec, sid, ssid,PS , (xi)i∈[n]) from PC where xi ∈ F2 ∀i ∈ [n], store (ssid, (xi)i∈[n]) and send
(Rec, sid, ssid,PC ,PS) to S. Ignore further Rec messages with the same ssid from PC .

• On (Continue, sid, ssid) from S,
– if there are records (ssid, (v0,i, v1,i)i∈[n]) and (ssid, (xi)i∈[n]) output (ssid, (vxi,i)i∈[n]) to PC .
– else ignore this message.

Figure 6: Ideal functionality FnOT for an Oblivious Transfer.

3. Upon receiving (ssid, (b̃i)i∈[n]) execute the the algorithm K̃ ← Rec(b̃1, · · · , b̃n)

4. Send (Dec, sid, K̃, c)) to FIC and receive (Dec, sid, (Ã, P̃)).
5. Check if

(∃i s.t. b̃i 6= ãp̃wi,i
) ∨ (�∃ pw s.t. d(pw, p̃w) < t ∧ gpw = P̃)

If so choose x uniformly random from Zq, otherwise set x as K̃
6. Output (sid, ssid, PRG(x)) to Z.

• PS upon receiving (StorePwdFile, sid,PC , pw) from Z does the following:
1. Parse pw := pw1|| . . . ||pwn
2. Compute the following:

n← |pw|, l← n− 2t, k
$←− Zq

(s1, . . . , sn)← Sharenl (k)

(r1, . . . , rn)
$←− Znq

(a0,i, a1,i)i∈[n] where apwi,i
:= gsi

store file← ((a0,i, a1,i)i∈[n], g
pw, gk)

delete pw, k, (si)i∈[n] , (ri)i∈[n]

• PS upon receiving (SrvSession, sid, ssid) from Z retrieves file := ((a0,i, a1,i)i∈[n], P,K) and does the
following:
1. Compute k′ $←− Zq,A′ ← (ak

′

0,i, a
k′

1,i)i∈[n],K
′ ← Kk′

2. Send (Enc, sid,K ′, (A′, P))) to FIC and receive (Enc, sid, c).
3. Send (sid, c) to PC
4. Send (Send, sid, ssid,PC , (A)) to FnOT.
5. Output (sid, ssid, PRG(K ′)) to Z.

C Proof of Theorem 4.1
Proof. We start with the real execution of protocol ΠfaPAKE as detailed in Appendix B, where parties are
running with the dummy adversary A. We then modify the execution in a way indistinguishable for the
environment, ending up in the ideal execution where dummy parties run with FMfaPAKE and a simulator S.

21

First, we note that in the case of Hamming distance as a metric of closeness, FMfaPAKE = FPfaPAKE (i.e.,
knowing the wrong bit positions of one’s password reveals already the full password) and we thus are allowed
to assume that FMfaPAKE replies with the password whenever a guess contained less than γ errors.

Our proof works in the generic group model (GGM). This means that the simulator is in charge of
performing all group operations. Formally, upon input an exponent a to the GGM, S creates a fresh group
element identifier ida and replies with ida. S internally stores a table with entries of the form (a, ida) (where
essentially ida represents the element ga). Further, S also answers queries ida ∗ idb to the GGM, where ∗ is
symbolic for the group operation. If there exists entries (a, ida), (b, idb), (c, idc) with c = a+ b, then S replies
with idc, otherwise S picks a fresh identifier as answer. Similarly, S answers queries (ida)b with idc if there
exist entries (a, ida), (c, idc) with c = ab. Further S keeps track of functions submitted to the GGM. If S
simulates group elements for unknown exponent e.g. idpw = gpw and idf(pw) = gf(pw), the elements are also
added to the table with functions x, f(x) as placeholder for the exponent (x, idpw), (f(x), idf(pw)).

Game G0: Real execution
This is the real execution of ΠfaPAKE where the environment Z runs the protocol Fig. 3 (UC execution
is given in Appendix B) with parties PC and PS , both having access to ideal functionalities FnOT and
FIC, and the dummy adversary A.

Game G1: Fully simulated
We now make purely conceptual changes without modifying the interfaces of Z. First we add a relay
ITI between each wire of the parties and Z. These relays are in fact the dummy parties from [Can01].
In addition another relay, denoted by F , is added covering all of the wires between the dummy and
the real parties (all wires first enter F and then are routed according to the original wires to the
real parties). Lastly we group all existing instances from the previous game (this includes all the real
parties, ideal functionalities and A) in one machine and call it the simulator, or S for short. We
emphasize that S is now responsible for executing FIC and FnOT. The differences from this game to the
previous one are illustrated in Figure 7 .

FOT FIC

PC PS
A

Z Z

F

S
PC PS

FOT FIC

A

Figure 7: Transition from game G0 (left) to game G1 (right), showing a setting where both parties are
honest.

Game G2: Password File Attacks/Server Compromise
In this game we change the simulation to simulate the password file attacks (stealing the password file)

22

without receiving the password file. In addition the simulation does not require the password of the
server in case it is queried to the GGM and the file is stolen.

Modifications to F : Add StorePwdFile, StealPwdFile, TestPwd and OfflineTestPwd in-
terfaces to F as in Figures 1 and 2 with leakage functions LPc (pw, pw′) = LPm(pw, pw′) = pw and
LPf (pw, pw′) = “wrong guess”. F still forwards the server’s password to S upon the registration of the
password file.

Modifications to S: First we note that, opposed to the previous game where all inputs were re-
layed to S, due to F now implementing interface StorePwdFile, S will not receive the trigger
(StorePwdFile, sid,PC , pw) to simulate the server’s password file registration. Instead, we detail
below when (and how) S will produce a file.

• Upon v from Z for the GGM, S sends (OfflineTestPwd, sid, v) to F . If F returns an answer
including the server’s password pw, S simulates the password registration phase of the server using
pw.

• Upon receiving a query from Z to the GGM that constitutes a linear combination of n−2t shares
abi,i, S sets pwi := bi for n− 2t values of i. S sets all 2t missing bits of pw := pw1...pwn to 0 and
sends (OfflineTestPwd, sid, pw) to F .
– If F returns an answer including the server’s password pw′, S simulates the password registra-

tion phase of the server using pw′. After having generated the values gs1 , ..., gsn , he programs
the GGM to contain pairs (sj , idj,pw′

j
), j ∈ [n] where pw′j denotes the j-th bit of the password

pw′.
– If F returns only “wrong guess” without any password, S does nothing (i.e., gives back

activation to Z).
• Upon receiving (StealPwdFile, sid) from Z, S sends (StealPwdFile, sid) to F .

– If F replies “no password file”, S forwards “no password file” to Z.
– If F replies “password file stolen”, S creates a password file containing fresh group element

identifiers ((id i,1, id i,0)i∈[n], idP , idK) and sends it to Z.
– If F replies with a password pw′, then S simulates the password registration phase of the server

using pw′. For every password pw with d(pw, pw′) ≤ γ, if S submitted (OfflineTestPwd, pw)
due to Z querying the GGM with a linear combination of n − 2t shares as described above,
S additionally programs the GGM as described above.

The main difference between this game and the previous game is that the password file is not forwarded
to S and upon the server being compromised by Z, S generates the password file by choosing fresh
group elements. Z can only test a password against the file if it either queries pw to the GGM, or
reconstructs k by sending a linear combination of at least n − 2t = l identifiers of the password file
to the GGM (which includes randomization attacks). Note that less identifiers do not reveal anything
about k due to (l − 1)-privacy of the RSSExp. In both cases S sends an (OfflineTestPwd, pw) to
F and learns if the password queried by the Z is close to server’s password. If so S can program the
GGM. Note that due to the fact that GGM outputs elements at random querying far away passwords
or bits of the password would not revile any information to the environment.

If the simulator learns pw from the OfflineTestPwd query, he can perfectly simulate the server’s
password file. Otherwise the environment has not yet queried pw to the GGM and thus Z’s view
of the password file is fresh identifiers in this as well as the previous game. Since the FIC generates
ciphertexts randomly and the output of the GGM is random as well, Z cannot distinguish the ciphertext
generated in this game and the previous game. In addition S outputs Ks ← PRG(K ′) where k′ $←− Zq
andK ′ ← idk

′

K as the server’s key which is indistinguishable from theG1. HenceG2 is indistinguishable
from G1.

Game G3: Functionality Produces and Forwards The Key
In this game the simulator does not generate the keys on behalf of the honest parties and uses F in

23

order to send keys to the parties. In addition in case of two honest parties S does not use the password
of the parties.

Modifications to S:
• Two Honest Parties:

– Upon receiving a request from Z to replace the ciphertext c with c′ that is being sent by the
Server to the Client, S checks:

∗ If c 6= c′ then send (NewKey, sid, ssid,PC ,⊥) and (NewKey, sid, ssid,PS ,⊥) to F
∗ Otherwise (Z does not interrupt) Ignore the keys produced by PC and PS , produce
the keys Kc and Ks uniformly at random from the key space and send (NewKey, sid,
ssid,PC ,Kc) and (NewKey, sid, ssid,PS ,Ks) to F

• Impersonation Attack:
– Upon Z impersonating the server and sending a ciphertext c which is not obtained by querying
FIC, S chooses x from Zq uniformly at random and sends (NewKey, sid, ssid,PC ,⊥) to F .

– Upon Z impersonating the server and sending the input values (Enc,K ′, (A, P)) to FIC, S
checks if the GGM contains the pair (pw, P).

∗ If there is no tuple (pw, P) in GGM:
· If there was query f(idP ′) to the GGM for idP ′ sent by S as second-to-last value in
the password file and S answered this query with P , send (Impersonate, sid, ssid, f)
to F .

· Else S simulates that PC chooses x from Zq uniformly at random, set Kc ← PRG(x)
and sends (NewKey, sid, ssid,PC ,⊥) to F .

∗ Else S sends (TestPwd, sid, ssid,PC , pw) to F .
∗ After sending (Impersonate, sid, ssid, f) or (TestPwd, sid, ssid,PC , pw) to F check:

· Upon receiving “wrong guess” from F , S chooses a random pwS and continues the
simulation of the client with pwS but S chooses x uniformly at random and sets Kc ←
PRG(x).

· Otherwise upon receiving “correct guess” and the client’s password p̃w, S continues the
simulation of the client with p̃w.

· Regardless of the F ’s response, upon calculating Kc, S sends (NewKey, sid, ssid,
PS ,Kc) to F .

• One Corrupt Party:
– Upon the calculation ofKC andKS by the simulated parties, S sends (NewKey, sid, ssid,PC ,Kc)

and (NewKey, sid, ssid,PS ,Kc) to F .
Modifications to F : F stores all relayed values in form of records as done by FMfaPAKE in Figure 1.
Additionally, the UsrSession, SrvSession and NewKey interfaces of FMfaPAKE are added to F , with
the difference that F still includes passwords in the messages to S.
In case both parties are honest, the environment has no information about the pre-image of Kc and
Ks, namely x and K ′. In case of d(pw, p̃w) ≤ δ, in G3, F outputs the same key to both parties. In G2,
in case d(pw, p̃w) ≤ δ, both parties outputted the same key due to (l + t)-robustness of the RSSExp
scheme. This is because an honest client with close password would get at least l + t = n − δ correct
shares and at most t = δ wrong shares from the server. According to (l + t)-robustness the client can
reconstruct the same K̃ from these n shares except with negligible probability.

In case of d(pw, p̃w) > δ, without any information about the secret key given to FIC, the output
of FIC is indistinguishable from a random string of the same length. Since the environment has no
information about the uniformly distributed K ′, it can only learn the encrypted message by guessing
K ′, which succeeds with negligible probability. Since x is either K̃ or chosen uniformly at random,
the keys Kc = PRG(x) and Ks = PRG(K ′) are indistinguishable from a random value except with
negligible probability by the PRG assumption. Hence if Z does not interrupt the protocol execution
between two honest parties, S can ignore the passwords, c and keys of the two parties and submits
(NewKey, sid, ssid,PC ,Kc) and (NewKey, sid, ssid,PS ,Ks) to F for randomly generated Kc and Ks

24

and G3 would be indistinguishable from G2 except with the negligible probability of distinguishing
between the random keys generated by F in G3 and the pseudorandom keys generated by the parties
in G2.

Finally, without knowing the value K ′ used by the honest server, the environment cannot produce a
new valid ciphertext c′. Therefore, the Client can not decrypt c′ to a valid massage ((a′0,i, a

′
1,i)i∈[n], g

pw)
and hence the Client will produce a random key. Hence, S can ignore the passwords, c and keys of the
two parties and submits (NewKey, sid, ssid,PC ,⊥) and (NewKey, sid, ssid,PS ,⊥) to F . Therefore in
case both parties are honest G3 is indistinguishable from G2 except with negligible probability.

In case the environment impersonates the server, i.e. the server is not participating in the protocol
execution while Z communicates with the client, if Z does not query FIC and sends a random ciphertext
c to the client, the honest client can not decrypt c′ to a valid massage ((a′0,i, a

′
1,i)i∈[n], g

pw). If Z queries
FIC but uses a value P which is not produced by the GGM, the client cannot find a pw such that
gpw = P . Hence in both of these cases the honest client will generate x uniformly at random. There
are two possibilities in case c is generated by FIC and P is produced by GGM. Either P is generated
upon Z querying the value pw to GGM, or P is generated by GGM upon Z querying f(idP ′) to GGM
where idP ′ is part if the password file (representing gpw) generated by S at random and given to Z.
If there is a tuple (pw, P) in the GGM, S sends (TestPwd, sid, ssid,PC , pw) to F and checks if this
password is close to the client’s password. Otherwise if P is generated by applying f to idP ′ , S sends
(Impersonate, sid, ssid, f) to F and checks if after applying f to server’s password the passwords are
still close. Regardless, after the TestPwd or Impersonate interface is used the password record will
either be marked compromised or interrupted, in the first cases F outputs the keys that it gets as
input from S and a randomly chosen key otherwise. If TestPwd or Impersonate interface return
“correct guess” (and the record is marked compromised) then S learns the client’s password and can
simulate the execution perfectly. Otherwise Z has queried FIC using a password which is not close
to client’s password. In this case the simulator can simulate the client with a random pwS and since
the honest client does not have a password pw such that that gpw = P it will choose x randomly.
Hence in both cases F produces keys for the client which are indistinguishable to the keys produced
in G2 except with negligible probability. Therefore in case Z impersonates the server, this case G3

is indistinguishable from G2 except with negligible probability. We recall that the case where the Z
re-randomizes the password file after stealing it is handled in G2.

If one of the parties is corrupted, F outputs the keys that it gets as input from S. Since the protocol
simulation still uses the password of the honest party, simulation of transcript, FIC and FOT is as in
the game before, and thus G3 is indistinguishable from G2 game except with negligible probability.

Game G4: Replacing Ciphertext With Random Ciphertext and Ignoring the Password of the
Parties In Case of Two Honest Parties:

In this game S does not generate a ciphertext c on behalf of the server and chooses a random ci-
phertext in case both parties are honest and participating in the protocol (this does not include the
impersonation case).

Modifications to S: In case of both parties being honest, the ciphertext c is replaced by a value chosen
uniformly at random from the ciphertext space.

Since the functionality FIC generates ciphertexts that are chosen uniformly at random, the environment
can only distinguish the ciphertext from a random string if it has some information about the key K ′.
Since K ′ is chosen uniformly at random by the honest server, the environment can only succeed in
distinguishing the ciphertext in G4 and G3 with negligible probability by guessing the correct key.
The Simulator’s calculations in G3 in the case where both parties are honest and participating in the
protocol execution are independent from the client’s and server’s password. We recall that in case both
parties are honest and participating in the protocol execution, no TestPwd or Impersonate queries
are made to F . Therefore G4 and G3 are indistinguishable.

25

Game G5: Ignoring Client’s Password in case of Corrupted Server

In this game S does not use the client’s and server’s password in order to simulate the honest client
and instead S uses the TestPwd interface.

Modifications to S: S ignores the password of the client, waits until the server sends the ciphertext c to
the client. If Z has not received c from querying FIC or Z queries FIC on input values (Enc,K ′, (A, P))
where GGM does not contain the pair (pw, P), S simulates that PC chooses x from Zq uniformly at
random. Else S sends (TestPwd, sid, ssid,PC , pw) to F . Upon receiving “wrong guess” from F , S
chooses a random pwS with d(pw, pwS) > γ and continues the simulation of the client with pwS .
Otherwise upon receiving “correct guess” and the client’s password p̃w, S continues the simulation of
the client with p̃w.

We now show that the key outputted by the honest client in G5 is indistinguishable from the key
that the client outputs in G4. In case S receives a password from F , the simulation in G5 and G4

are perfectly indistinguishable. In case S receives “wrong guess” from F it holds that d(p̃w, pw) > γ,
where p̃w denotes the password of the honest client. This means that the honest client obtains at most
n− γ− 1 correct shares. Since (l− 1) = (n− γ− 1), (l− 1)-privacy of the RSSExp guarantees that the
client in the previous game as well as in this game, cannot reconstruct the password and will output
PRG(x) for some randomly chosen x. If Z chose c without querying FIC, the client cannot decrypt c
to a correct value and will receive a randomly chosen plain-text. Finally if GGM does not contain the
pair (pw, P) the honest client cannot reconstruct a password pw such that gpw = P , hence the client
will output PRG(x) for some randomly chosen x. Thus all three cases are indistinguishable from the
view of Z.

Game G6: Ignoring Servers’s Password in case of Corrupted Client
In this game S does not use the server’s and client’s password in order to simulate the honest server.

Modifications to S: In case of a corrupted client, S chooses a string c uniformly at random from the
ciphertext space of FIC and sends it to the client. Upon the client sending the inputs (Rec, (p̃wi)i∈[n])
to FOT, S sets p̃w = p̃w1|| · · · ||p̃wn and sends (TestPwd, sid, ssid,P, p̃w) to F .

• If F returns “correct guess” alongside a password pw, S computes the correct password file file←
((a0,i, a1,i)i∈[n], g

pw,K) by using pw. Afterwards S computes K ′ ← Kk′ where k′ is chosen
uniformly at random from Zq, and uses the values (ak

′

0,i, a
k′

1,i)i∈[n] to simulate FOT. Upon the
client querying FIC with the values (Dec,K ′, c), S returns the tuple ((ak

′

0,i, a
k′

1,i)i∈[n], g
pw).

• If F returns “wrong guess”, S chooses the values ((a0,i, a1,i)i∈[n], g
pw,K) uniformly at random and

uses the values (ak
′

0,i, a
k′

1,i)i∈[n] to simulate FOT where k′ is chosen uniformly at random from Zq.
Upon the query (Dec, K̃, c) to FIC, S returns m which is chosen uniformly at random from the
message space.

Modifications to F : F does not forward the server’s and client’s password of the parties to S.
FIC produces random ciphertexts and since Z does not know the key K ′ used and chosen uniformly
at random by the server, it cannot distinguish the real cipher text and a randomly chosen one except
with negligible probability. Hence S can replace the output of FIC by a uniform random value.

Upon making the TestPwd query, if the server uses a password within distance γ from p̃w, the
simulator receives “correct guess”, learns the server’s password pw. In this case S can perfectly simulate
the server and decrypt the randomly chosen ciphertext to a valid message of the form (A, P), hence
in this case G6 is indistinguishable from G5. If the password used by the server is not close to the one
used by the corrupted client, namely d(pw, p̃w) > γ, all encrypted values can be replaced by random
values due to the properties of FIC and the fact that (l − 1) = (n − γ − 1)-privacy of the RSSExp
ensures that the client cannot reconstruct the correct encryption key K ′ and will only reconstruct a
random key. This decrypted message is therefore indistinguishable from a random value, again due to
the definition of FIC.

26

Finally inG6, S does not uses the client’s and server’s password in any of the cases (both parties honest
or one party corrupted). Therefore F does not forward them to S and G6 would be indistinguishable
from G5 except with negligible probability.

In the last game, it holds that F = FPfaPAKE. For this, it is crucial to observe that F is not forwarding the
passwords of client and server to S anymore, and indeed our simulation in G6 is independent of the true
passwords of both parties. Thus, G6 is equal to the ideal execution with the simulator given below. This
concludes our proof of the theorem.

Simulator code

1. Upon v from Z for the GGM, S sends (OfflineTestPwd, sid, v) to F . If F returns an answer
including the server’s password pw, S simulates the password registration phase of the server using
pw.

2. Upon receiving a query from Z to the GGM that constitutes a linear combination of n−2t shares
abi,i, S sets pwi := bi for n− 2t values of i. S sets all 2t missing bits of pw := pw1...pwn to 0 and
sends (OfflineTestPwd, sid, pw) to F .

• If F returns an answer including the server’s password pw′, S simulates the password reg-
istration phase of the server using pw′. After having generated the values gs1 , ..., gsn , he
programs the GGM to contain pairs (sj , idj,pw′

j
), j ∈ [n] where pw′j denotes the j-th bit of

the password pw′.
• If F returns only “wrong guess” without any password, S does nothing (i.e., gives back

activation to Z).

3. Upon receiving (StealPwdFile, sid) from Z, S sends (StealPwdFile, sid) to F .
• If F replies “no password file”, S forwards “no password file” to Z.
• If F replies “password file stolen”, S creates a password file containing fresh group element

identifiers ((id i,1, id i,0)i∈[n], idP , idK) and sends it to Z.
• If F replies with a password pw′, then S simulates the password registration phase of the

server using pw′. For every password pw with d(pw, pw′) ≤ γ, if S submitted (OfflineTestPwd, pw)
due to Z querying the GGM with a linear combination of n− 2t shares as described above,
S additionally programs the GGM as described above.

• In case of two honest parties upon receiving a request from Z to replace the ciphertext c
with c′ that is being sent by the Server to the Client, S checks:
– If c 6= c′ then choose x uniformly at random from Zq and set Kc ← PRG(x). In addition,

send (NewKey, sid, ssid,PC ,⊥) and (NewKey, sid, ssid,PS ,⊥) to F
– Otherwise (Z does not interrupt) Ignore the keys produced by PC and PS , produce

the keys Kc and Ks uniformly at random from the key space and send (NewKey, sid,
ssid,PC ,Kc) and (NewKey, sid, ssid,PS ,Ks) to F

• Upon Z impersonating the server and sending a ciphertext c which is not obtained by querying
FIC, S chooses x from Zq uniformly at random and sends sends (NewKey, sid, ssid,PC ,⊥).

• Upon Z impersonating the server and sending the input values (Enc,K ′, (A, P)) to FIC, S
checks if the GGM contains the pair (pw, P).
– If there is no tuple (pw, P) in GGM:

∗ If there was query f(idP ′) to the GGM for idP ′ sent by S as second-to-last value in
the password file and S answered this query with P , send (Impersonate, sid, ssid, f)
to F .

∗ Else S simulates that PC chooses x from Zq uniformly at random, set Kc ← PRG(x)
and sends (NewKey, sid, ssid,PC ,⊥) to F .

– Else S sends (TestPwd, sid, ssid,PC , pw) to F .

27

– After sending (Impersonate, sid, ssid, f) or (TestPwd, sid, ssid,PC , pw) to F check:
∗ Upon receiving “wrong guess” from F , S chooses a random pwS and continues the
simulation of the client with pwS but S chooses x uniformly at random and sets
Kc ← PRG(x).

∗ Otherwise upon receiving “correct guess” and the client’s password p̃w, S continues
the simulation of the client with p̃w.

∗ Regardless of the F ’s response, upon calculating Kc, S sends (NewKey, sid, ssid,
PS ,Kc) to F .

• In case of one corrupted party, upon the calculation of KC and KS by the simulated parties,
S sends (NewKey, sid, ssid,PC ,Kc) and (NewKey, sid, ssid,PS ,Kc) to F .

4. In case of both parties being honest, the ciphertext c is replaced by a value chosen uniformly at
random from the ciphertext space.

5. In case of corrupted server, S ignores the password of the client, waits until the server sends the
ciphertext c to the client. If Z has not received c from querying FIC or Z queries FIC on input
values (Enc,K ′, (A, P)) where GGM does not contain the pair (pw, P), S simulates that PC
chooses x from Zq uniformly at random. Else S sends (TestPwd, sid, ssid,PC , pw) to F . Upon
receiving “wrong guess” from F , S chooses a random pwS with d(pw, pwS) > γ and continues
the simulation of the client with pwS . Otherwise upon receiving “correct guess” and the client’s
password p̃w, S continues the simulation of the client with p̃w.

6. In case of a corrupted client, S chooses a string c uniformly at random from the ciphertext space
of FIC and sends it to the client. Upon the client sending the inputs (Rec, (p̃wi)i∈[n]) to FOT, S
sets p̃w = p̃w1|| · · · ||p̃wn and sends (TestPwd, sid, ssid,P, p̃w) to F .

• If F returns “correct guess” alongside a password pw, S computes the correct password file
file ← ((a0,i, a1,i)i∈[n], g

pw,K) by using pw. Afterwards S computes K ′ ← Kk′ where k′ is
chosen uniformly at random from Zq, and uses the values (ak

′

0,i, a
k′

1,i)i∈[n] to simulate FOT.
Upon the client querying FIC with the values (Dec,K ′, c), S returns ((ak

′

0,i, a
k′

1,i)i∈[n], g
pw).

• If F returns “wrong guess”, S chooses the values ((a0,i, a1,i)i∈[n], g
pw,K) uniformly at random

and uses the values (ak
′

0,i, a
k′

1,i)i∈[n] to simulate FOT where k′ is chosen uniformly at random
from Zq. Upon the query (Dec, K̃, c) to FIC, S returns ((ak

′

0,i, a
k′

1,i)i∈[n], g
pw) which were

chosen uniformly at random.

D Proving Theorem 5.1
We first give a modified TestPwd interface that allows proving security of Πtransf in Figure 8. Additionally,
we give a NewKey interface which requires explicit authentication, taken from, e.g., [CHK+05,Hes19].

Game G0: Real execution
This is the real execution of Πtransf where the environment Z runs the protocol 4 with parties PC and
PS , both having access to an ideal aPAKE functionality FaPAKE and FIC, and an adversary Adv that,
w.l.o.g., can be assumed to be the dummy adversary as shown in [Can01].

Game G1: Fully simulated
We now make purely conceptual changes without modifying the interfaces of Z. First we add a relay
between each wire of the parties and Z. These relays are in fact the dummy parties from [Can01].
In addition another relay, denoted by F , is added covering all of the wires between the dummy and
the real parties (all wires first enter F and then are relayed according to the original wires to the real
parties). Lastly we group all existing instances from the previous game in Z (this includes all the real
parties ideal functionalities etc.) in one machine and call it S. We emphasize that S is now responsible
for executing the core of FIC, FRO and FaPAKE.

28

On (TestPwd, sid, ssid,PS , pw′}) from S, if there is a record (ssid,PS ,PC , pw) marked fresh do:

• If less than n+ 1 TestPwd queries are sent by S and if d(pw′, pw) ≤ δ, choose a password denoted by
pw′′ uniformly at random such that pw′′ is not marked tested and d(pw′′, pw) ≤ δ, mark pw′′ as tested
and do:

– If pw′′ = pw′, mark record compromised and send “correct guess” to S;
– If pw′′ 6= pw′ send “wrong guess” to S and check:

∗ if this is the n+1th TestPwd query and the record is not marked compromised, mark record
interrupted.

On (TestPwd, sid, ssid,PC , pw′}) from S, if there is a record (ssid,PC ,PS , pw) marked fresh do:

• If less than n+ 1 TestPwd queries are sent by S, do:
– If pw′ = pw, mark record compromised and send “correct guess” to S;
– If pw′ 6= pw send “wrong guess” to S and check:

∗ if this is the n+1th TestPwd query and the record is not marked compromised, mark record
interrupted.

Figure 8: n-times exact TestPwd functionality. In case of a TestPwd query against the client’s password,
the functionality checks if the queried password and the client’s password are equal. In case of a TestPwd
query against the server’s password, the functionality checks if the queried password is close to the server’s
password and if so randomly chooses an untested password close to server’s password and checks if this
password is equal to the queried password.

Game G2: Functionality Produces and Forwards The Key
Modifications to S: Upon the calculation ofKC andKS by the simulated parties, S sends (NewKey, sid,
ssid,PC ,KC) and (NewKey, sid, ssid,PS ,KS) to F .

Modifications to F : F stores all relayed values in form of records as done by F ′faPAKE. Additionally,
the UsrSession and SrvSession interfaces from Figure 1 and the NewKey interface from Figure 9
are added to F , with the difference that F still includes passwords in the messages to S.

From the point of view of Z, the only difference between this and the previous game is that F produces
the key in case of an honest session. In case one of the parties is corrupted the functionality outputs
the keys that it gets as input from S, which are still produced from the true passwords (the one of the
client is learned via UsrSession queries from F , the one of the server still gets relayed by F within
the StorePwdFile input).

In case both parties are honest and the passwords are close, the environment has no information about
the pre-image of KC and KS , namely kC,i and kS,i. Therefore it cannot distinguish KC and KS

generated by FRO from the uniform random session keys generated by F . If the passwords are not
close the output of the parties is ⊥ in both games.

Game G3: Simulating the Server when there are no Byzantine corruptions and Handling the
queries OfflineTestPwd, Impersonate and TestPwd to FaPAKE For Corrupted Client
and Honest Server
In this game we show how to simulate a password file and the server’s part in the FaPAKE instances
without knowing the true password, but only in case there are no Byzantine corruptions. Since we
assume static Byzantine corruption, we can let the simulation depend on the Byzantine corruption
status. The simulator keeps track of the passwords used in the internal aPAKEs by the server. To this
end the simulator produces a permuted list L which contains the password list used by the server. The

29

Key Generation and Explicit Authentication

• On (NewKey, sid, ssid,P, k) from S where |k| = λ or k = ⊥, if there is a record (ssid,P,P ′, pw) not
marked completed, do:

– If the record is marked compromised, or either P or P ′ is corrupted, or k = ⊥ and the record is
fresh, then send (sid, ssid, k) to P.

– Else if the record is marked fresh, a (sid, ssid, k′) tuple was sent to P ′, and at that time there
was a record (ssid,P ′,P, pw′) marked fresh with d(pw, pw′) ≤ δ, send (sid, ssid, k′) to P.

– Else if the record is interrupted or if it is fresh and there is a record (sid,P ′,P, pw′) with
d(pw, pw′) ≤ δ, then send (sid, ssid,⊥) to P.

– Else, pick k′′
$← {0, 1}λ and send (sid, ssid, k′′) to P.

Finally, mark (ssid,P,P ′, pw) as completed.

Figure 9: NewKey interface for explicit authentication.

ordering in the list represents the order in which passwords are input in the FaPAKE instances, i.e., the
i-th entry is input to the i-th instance of FaPAKE.

Since we can assume PID-wise corruption, S is allowed to issue StealPwdFile to all instances of
FaPAKE and to FfaPAKE as soon as Z compromised the server in any protocol instance.

Modifications to S: We modify the simulation in case of no Byzantine corruptions or corrupted client
as follows.
Simulating the password file. Upon receiving (StealPwdFile, sid) from Z, S sends the message
(StealPwdFile, sid) to F .

• If F responds with “no password file”, forward “no password file” to Z.
• Else if F responds with “password file stolen”, for all values v queried already to the FRO, S sends

a message (OfflineTestPwd, sid, v) to F .
– If F returns an answer including a password pw, S executes the password registration phase

of the server using pw.
– Else S creates a password file containing fresh random elements (Hi)i∈[k] not yet used within

the simulation of FRO.
– S uses the password file in the simulation of all FaPAKE instances (i.e., S does not let the

simulated PS input passwords into any FaPAKE anymore).
– S sends the resulting password file to the environment.

• Upon Z sending x to FRO, S sends (OfflineTestPwd, sid, x) to F :
– If F returns an answer including a password pw, S executes the password registration phase

of the server using pw. After having generated the values pw′1, ..., pw
′
k that are close to the

password pw, he programs FRO to contain pairs (pw′j , Hj)j∈[k] where (Hj)j∈[k] is the password
file given to Z previously.

– If F returns only “wrong guess”, S does nothing (i.e., gives back activation to Z).
Simulating server’s participation in FaPAKE instances.

• In case S receives a password pw from F , S generates a list L as follows: given a password pw,
compute all close passwords to pw, store them in a list L and apply a random permutation to the
list such that from these close passwords, password’s marked as “position i” are at position i and
password’s marked as “not position i” are not in position i of the list L.

• Upon Z sending (StealPwdFile, sid) to the i-th FaPAKE, if the i-th entry of L contains a pass-
word pw′ then send (“correct guess” , pw′) to Z. Otherwise, if not already done S issues StealP-
wdFile to F and relays the F ’s answer to Z.

30

• Upon Z sending (OfflineTestPwd, sid, pw′) to the i-th FaPAKE after sending a StealPwdFile
request, if S has not yet received “correct guess” as reply to StealPwdFile from F and no
password list L was generated before, S sends (OfflineTestPwd, sid, pw′) to F . If F returns
“correct guess” and a password pw, S computes the list L. Regardless, if the list was created in
this case or before, check if the i-th element of L is equal to pw′ return “correct guess” to Z.
Otherwise if no list exists or the previous check fails return “wrong guess” to Z.

• Upon Z sending (Impersonate, sid, ssid) to the i-th FaPAKE distingish the following cases:

– Case both parties are honest (no byzantine corruptions):
1. If this is Z’s first impersonate request and a password for the i-th FaPAKE is already

registered and the password file stolen, aPAKE instance is not marked non-fresh and no
password list L was generated before, send the message (Impersonate, sid, ssid) to F . If
F responds with “correct guess” and a password pw, compute the list L. Otherwise return
“wrong guess”.

2. If there exists a list L send (TestPwd, sid, ssid,PC , pwi) to F , where pwi is the i-th
password in the list L. Forward F ’s response to Z and if the response is “correct guess”
mark pwi as “client’s password”, otherwise return “wrong guess”.

Regardless mark the i-th aPAKE as non-fresh.
– Case client is corrupted:

1. If both client and server have successfully made UsrSession and SrvSession queries
to the i-th FaPAKE, the password file is stolen, the i-th aPAKE is not marked non-fresh
and no list L is stored, send the message (TestPwd, sid, ssid,PS , pw′i), where pw′i is the
password that client registered in this FaPAKE, to F . If F responds with “correct guess”
return “correct guess”. Otherwise return “wrong guess” and mark pw′i as “not position i”.

2. If there is a list L stored check if pw′i = pwi where pwi is the i-th password in the list
L and pw′i is the password that is used by the client in the i-th instance of aPAKE. If so
return “correct guess” and “wrong guess” otherwise to Z.

Regardless mark the i-th aPAKE as non-fresh.

• Upon the query (TestPwd, sid, ssid,PS , pw′) from Z for the i-th FaPAKE and this aPAKE is not
marked non-fresh:

– If no list L is stored, send a query (TestPwd, sid, ssid,PS , pw′) to F . If F returned “correct
guess” mark pw′ as “position i” and otherwise “not position i” and forward F ’s response to Z.

– If there is a list L stored check if pw′ = pwi where pwi is the i-th password in the list L. If
so return “correct guess” and “wrong guess” otherwise to Z.

Regardless mark the i-th aPAKE as non-fresh.

• Upon the query (TestPwd, sid, ssid,PC , pw′) from Z for the i-th FaPAKE and this aPAKE is not
marked non-fresh distinguish between the following cases:

– Case both parties are honest (no byzantine corruptions):
∗ If no password is stored and marked as “client’s password”, send a query (TestPwd, sid, ssid,
PC , pw′) to F and forward F ’s response to Z. If the response is “correct guess” mark pw′

as “client’s password”.
∗ If there is a password pw marked as “client’s password” check if pw = pw′. If so return

“correct guess” and “wrong guess” otherwise to Z.
Regardless mark the i-th aPAKE as non-fresh.

– Case client is corrupted:
∗ If the corrupted client has sent a UsrSession and the password pw to the i-th FaPAKE

check if pw = pw′. If so return “correct guess” and if pw 6= pw′ return “wrong guess” to Z.
Regardless mark the i-th aPAKE as non-fresh.

31

Modifications to F : Add StorePwdFile, StealPwdFile, Impersonate and OfflineTestPwd
interfaces to F as in Figure 1 and TestPwd as in Figure 8. In case of any Byzantine corruptions, F
informs the simulator about the server’s password when receiving a StorePwdFile input.

We note that by adding interface StorePwdFile to F , S does not use the server’s password to
simulate the added interfaces and also does not receive any trigger from F anymore to simulate the
password registration phase. Therefore, the difference betweenG3 andG2 is that S now fully simulates
the server.

First, S now generates the password file only on demand (of Z) and by programming FRO instead of (as
in G2) executing PS ’s code with the true password. Z can only notice if it inputs a password close to
the server to FRO. But then, our S submits this password as OfflineTestPwd guess and programs
FRO consistently in case of a positive answer including the server’s true password. Otherwise, no
password close to server’s password has been queried to FRO and the simulated password file contains,
from the point of view of Z, uniformly random values just as in G2.

Second, S simulates the server’s part in the FaPAKE instances to be able to answer adversarial queries
to these instances issued by Z. For OfflineTestPwd, Impersonate (in case of no byzantine corrup-
tions) and StealPwdFile it is straightforward to verify that the interfaces in F ′faPAKE provide S with
enough information to simulate FaPAKE’s responses indistinguishable to a setting where all instances
of FaPAKE obtain the correct passwords. For a TestPwd guess against the client where the client is
honest, querying any instance of FaPAKE with a (previously untested) password close to the server’s true
password will result in “correct guess” in G2 with probability 1/k due to the honest server applying a
random permutation to its password file, while a password that is too far away results in “wrong guess”
in both games. TestPwd in F ′faPAKE produces “correct guess” with the exact same probability. On
the other hand, TestPwd in F ′faPAKE allows k "exact" guesses against the client’s password, which is
sufficient to answer all TestPwd queries that Z can send to the k FaPAKE instances.

In case the client is corrupted, when Z requests a TestPwd query against the client’s password, S
can check and respond according to the password registered by the client in this instance of aPAKE. In
addition in order to simulate the Impersonate query of the internal aPAKEs, S checks if the password
registered by the client in this instance of aPAKE is equal to the serve’s password. This is either done
by making the query (TestPwd, sid, ssid,PS , pw′i) to F or checking if the i-th element of the list L is
equal to pw′i (where pw′i is the password that the client registered in the i-th aPAKE). Hence G3 and
G2 are indistinguishable.

Game G4: Handling the queries OfflineTestPwd, Impersonate and TestPwd to FaPAKE
For Corrupted Server
Modifications to S:

• Upon a query from Z to send a message of the form (Impersonate, sid, ssid) to the i-th FaPAKE:

1. If both client and server have successfully made UsrSession and SrvSession queries to the
i-th FaPAKE, the password file is stolen and the i-th aPAKE is not marked non-fresh, send
the message (TestPwd, sid, ssid,PC , pwi), where pwi is the password that server registered
in this FaPAKE, to F . If F responds with “correct guess” return “correct guess” and mark pwi
as “client’s password”. Otherwise return “wrong guess”.

Regardless mark the i-th aPAKE as non-fresh.

• Upon the query (TestPwd, sid, ssid,PS , pw′) from Z for the i-th FaPAKE and this aPAKE is not
marked non-fresh check if the password registered by the server in this aPAKE is equal to pw′. If
so return “corect guess” and otherwise return “wrong guess”. Regardless mark the i-th aPAKE as
non-fresh.

• Upon the query (TestPwd, sid, ssid,PC , pw′) from Z for the i-th FaPAKE and this aPAKE is not
marked non-fresh, distinguish the following cases:

32

– If there is a password pw marked as “client’s password”, check if pw = pw′, if so return “correct
guess” and “wrong guess” otherwise.

– If there are no passwords marked as “client’s password”, send the message send the message
(TestPwd, sid, ssid,PC , pw′) to F . If F responds with “correct guess” return “correct guess”
and mark pw′ as “client’s password”. Otherwise return “wrong guess”.

Regardless mark the i-th aPAKE as non-fresh.

In this game S simulates the queries to the internal FaPAKE in case only the client is honest. This case
is very similar to the situation where only the server is honest except the passwords that the server
uses for each of the aPAKEs is known to S, hence there is no need to produce the list L. Similar to
the G3, TestPwd queries against the server’s password can be simulated exactly using the passwords
that the sever has registered in each of the aPAKEs and impersonate and TestPwd queries against
the client’s password are simulated by submitting TestPwd to F using the password that the server
has registered in this instance of aPAKE and the password that Z has queried respectively. Therefore
G4 and G3 are indistinguishable.

Game G5: Generating aPAKE keys at random For Two Honest Parties
Modifications to S: For all aPAKEs that are not marked non-fresh or S did not return “correct guess”
to Z produce kC,i and kS,i at random. For such keys that are chosen randomly, S creates ciphertexts
using random string as input of FIC. Furthermore choose h uniformly at random. In addition let l′ be
the number of non-fresh aPAKE instances and do:

• Upon receiving a request from Z to replace h with h′, check if the pre-image of h′ is of the
form kS,i||0 and kS,i is the key produced by an FaPAKE that for which Z has guessed the server’s
password correctly and received “correct guess”. If so S setsKS ← H(kS,i), otherwise setKS ← ⊥.

• Upon receiving a request from Z to replace −→e with −→e ′, the simulator computes the number of
changed ciphertexts in −→e where corresponding aPAKE is not marked non-fresh and demoted by
l. Otherwise if no such command is sent by Z set l = 0.

• Regardless with probability (l + l′)/k, set KC ← ⊥ and x to a uniformly chosen from K at the
end of the key exchange phase and KS ← ⊥ at the end of the Explicit Authentication phase.

Upon calculation of KC and KS send (NewKey, sid, ssid,PS ,KS) and (NewKey, sid, ssid,PS ,KC) to
F .
Modifications to F : F does not forward the password of the parties to the simulator.

In this game S stops using the passwords of the client and server and fully simulates the execution.
Since the environment does not know kS,i for any FaPAKE that is fresh, if h′ is not equal to H(kS,i||0)
where kS,i is outputted by a non-fresh FaPAKE, Z can only produce a correct hash value h′ with
negligible probability of guessing a kS,i correctly. Hence, in this case the parties produce different keys.
In addition Z knows kS,i if it has correctly guessed the password of the server in which case S can
decide what key would be sent to the server by F .
Without the knowledge of the keys kC,i with i ∈ [k], the environment cannot produce new valid
ciphertexts or decrypt the ciphertexts in −→e . In addition for all non-fresh aPAKEs, the keys that are
received by the client and server different (according to the functionality both records must be fresh
in order for the parties to get the same keys). Let l+ l′ be the total number of non-fresh aPAKEs and
the number of modified ciphertexts, even if the client and server uses a close password, the probability
for both parties producing the same key is now 1 − l+l′

k , due to the random permutation π used by
the Server. In other words both parties use the same password in one of the tampered locations
with probability l+l′

k . Therefore the simulator sets both the client’s and server’s key to ⊥ with this
probability. Finally Z does not have any information about the pre-image of h. As mentioned earlier
if Z has guessed the client’s password for one of these aPAKE instances correctly S can simulate the
protocol execution as in the real world. Otherwise the aPAKEs also produce keys unknown to Z
uniformly at random. Hence G5 is indistinguishable from G4 except with negligible probability.

33

Game G6: Removing Client’s Keys for Honest Client and Corrupted Server
Modifications to S: S ignores kC,is for all aPAKE indexes that are not marked non-fresh and only uses
the corresponding kS,is to open the encrypted openings in the simulated run. More precisely, upon C
receiving −→e where |−→e | = n, S decrypts every ei ∈ −→e for which i-th aPAKE is not marked non-fresh
using kS,i and if it is marked non-fresh using kC,i and gets H ′1, · · · , H ′n. The simulator sends a the
request (TestPwd, sid,PC , pw′i) to F for all aPAKE indexes that are not marked non-fresh where pw′i
is the pre-image of H ′i stored in the random oracle and do the following at the end of the Key exchange
phase:

1. If F returns “correct guess” and pw′i or if there already exists a password pwi marked “client’s
password”, check if the hash values are well formed and there exists only one key that can decrypt
the encrypted values, set KC ← H(kC,i) and x← kC,i if the i-th aPAKE is marked non-fresh or
set KC ← H(kS,i) and x← kS,i if the i-th aPAKE is not marked non-fresh.

2. Otherwise set KC ← ⊥ and x $←− K.

Upon calculation of KC and KS send (NewKey, sid, ssid,PS ,KS) and (NewKey, sid, ssid,PS ,KC) to
F .
In this game the distribution of KC is indistinguishable to the previous game, since if the client and
server do have a close password and the server sends a correct password file the client produces the
same key KC and x as in the previous game. We note that in case the aPAKE for which the client’s
password is used is marked non-fresh, S knows the key generated by this aPAKE and hence must set
KC ← H(kC,i) and x← kC,i otherwise (and since the correct password is used in this aPAKE) S must
set KC ← H(kS,i) and x← kS,i.
Finally if the parties do not have a close password (as in the previous game), KC is set to ⊥ and x is
chosen randomly. Hence G6 is indistinguishable from G5.

Game G7: Removing the aPAKE’s and the Client’s Password for an Honest Client and a
Corrupted Server
Modifications to S: The simulator chooses uniform random {kS,i}i=1,...,k instead of using the simulated
aPAKE protocols for aPAKE’s that are not marked non-fresh and the server did not get “correct guess”
when querying the TestPwd interface and guessing the server’s password.
Modifications to F : The Client’s password is not forwarded to S.
If the environment was able distinguish this game from the previous game, it can distinguish the random
keys from the keys produced by the aPAKE which contradicts the security of aPAKE. In addition based
on the G7, S does not use the Client’s password in case of honest Client and corrupted Server. Hence
the environment cannot distinguish G7 from G6.

Game G8: Removing the aPAKE’s In the Protocol for Corrupted Client and Honest Server
Modifications to S: For all aPAKEs that are not marked non-fresh, if the list L is not generated yet S
sends the query (TestPwd, sid,PS , pwC,i) to F where pwC,i is the password that the corrupted client
used in this aPAKE. If F returns “correct guess” mark it “position i” and “not position i” otherwise.
Furthermore if F returned “correct guess” produce the same key kC,i = kS,i uniformly at random for
both parties and otherwise produce different keys. If there exists a list L, for all aPAKEs that are not
marked non-fresh check if pwC,i = pwi where pwi is the i-th element of L and pwC,i is the password
that the corrupted client used in this aPAKE, if so produce the same key kC,i = kS,i uniformly at
random for both parties and otherwise produce different keys.
For all aPAKEs in which S has learned server’s password (from the TestPwd interface) and both the
server and client receive the same key, S uses this password and key in order to create the encryption.
Otherwise S uses randomly chosen ciphertext.
Upon calculation of KC and KS send (NewKey, sid, ssid,PS ,KS) and (NewKey, sid, ssid,PS ,KC) to
F .

34

Modifications to F : The Server’s pass-string is not forwarded to S.
According to the security of aPAKE, a key produced by the aPAKE is indistinguishable from a random
key. If both parties use the same password (and the aPAKE outputs the same key for both parties), S
must produce a valid encryption since the corrupted client should be able to decrypt these elements
in −→e . Otherwise the client can only decrypt other elements by guessing the correct key produced by
the aPAKE protocol which happens with negligible probability. In addition in G8, S does not use the
clients password in case of corrupted client and honest server, hence G8 is indistinguishable from G7

except with negligible probability.

35

	Introduction
	Roadmap

	Preliminaries
	Robust Secret Sharing in the exponent

	Security Model
	Fuzzy aPAKE from Secret Sharing
	Security

	Fuzzy aPAKE from standard aPAKE
	Efficiency
	Conclusion
	References
	Ideal Functionalities
	UC execution of faPAKE
	Proof of Theorem 4.1
	Proving Theorem 5.1

