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Abstract. This paper presents the first functional encryption schemes for quadratic functions (or degree-2 poly-

nomials) achieving simulation-based security in the semi-adaptive model with constant-size secret key. The

unique prior construction with the same security guarantee by Gay [PKC 20] has secret keys of size linear in the

message size. They also enjoy shorter ciphertexts:

– our first scheme is based on bilateral DLIN (decisional linear) assumption as Gay’s scheme and the cipher-

text is 15% shorter;

– our second scheme based on SXDH assumption and bilateral DLIN assumption is more efficient; it has 67%

shorter ciphertext than previous SXDH-based scheme with selective indistinguishability security by Baltico

et al. [CRYPTO 17]; the efficiency is comparable to their second scheme in the generic group model.

Technically, we roughly combine Wee’s “secret-key-to-public-key” compiler [TCC 17] with Gay’s paradigm [PKC

20]. We avoid (partial) function-hiding inner-product functional encryption used in Gay’s work and make our

schemes conceptually simpler.

1 Introduction

Functional encryption (FE) [BSW11,O’N10] is an extension of attribute-based encryption (ABE) [SW05,GPSW06]

which allows a user to recover partial information of encrypted data. More concretely, in a FE scheme for func-

tionality F : X×Y→ Z, a ciphertext is associated with input X ∈X while a key is associated with a function index

Y ∈ Y, decryption recovers F(X ,Y ) ∈Z without revealing any other information about X . There are two flavors of

security, indistinguishability-based security (IND-security, for short) and simulation-based security (SIM-security,

for short). The IND-security ensures that the adversary can not distinguish encryptions of two messages X0, X1

given a set of keys for Y1, . . . ,YQ such that F(X0,Yi ) = F(X1,Yi ) for i = 1, . . . ,Q. The SIM-security ensures that an

encryption of X and a set of keys Y1, . . . ,YQ can be simulated with F(X ,Yi ) for all i = 1, . . . ,Q instead of X . In gen-

eral, SIM-security is stronger and more desirable in many theoretical applications. Actually, it is shown that, in the

context of FE, IND-security is insufficient in some cases [BSW11,O’N10].

In practice, FE is useful in real-world applications requiring fine-grained access control like ABE; theoretically,

FE for general functionality implies powerful primitives such as indistinguishability obfuscation [BV15,AJ15]. How-

ever such general FE have no construction from standard assumption such as k-Lin or LWE. In fact, existing con-

structions come from indistinguishability obfuscation/multilinear map [GGH13a,GGH+13b,GGHZ16] with many

candidates broken. Therefore, an important line of research is to build FE for concrete functionality whose secu-

rity can be based on standard assumptions; this also provides us with reasonable efficiency suitable for real-world

applications.

Abdalla et al. [ABDP15] proposed the first FE for inner product or linear function (IPFE): a ciphertext and a key

are associated with x ∈Zn
p and y ∈Zn

p , respectively; decryption recovers their inner product 〈x,y〉. Their proposals

are based on DDH or LWE assumption but only achieve selective IND-security where the adversary is asked to

commit the challenge before seeing public parameter. Agrawal et al. [ALS16] improved the result with adaptively

IND-secure schemes from various standard assumptions even including DCR assumption; the challenge can be



chosen at any stage. It was also shown that SIM-security is achievable in the context of IPFE [Wee17,ALMT20] un-

der various standard assumptions. This opens a fruitful research area studying extensions of IPFE such as multi-

input/multi-client IPFE [AGRW17,ACF+18,CDG+18] supporting more complex scenarios. Theoretically, IPFE (with

various features like function-hiding) also plays a crucial role in building other cryptographic primitives and some-

times offers a clean exposition [LL20].

Baltico et al. [BCFG17] proposed the first (public-key) functional encryption for quadratic function or degree-2

polynomial (QFFE): a ciphertext and a key are associated with (x,y) ∈ Zn
p ×Zm

p and F ∈ Zn×m
p , respectively; de-

cryption recovers x>Fy; it is additionally required that the ciphertext size is linear in n +m, i.e., the input size1.

In their work, two schemes were proposed: one is selectively IND-secure based on SXDH and 3-party DDH as-

sumption while another is adaptively IND-secure in the generic group model (GGM). Ryffel et al. [RPB+19,DGP18]

described an efficient variant of Baltico et al.’s first scheme in GGM and showed its application in the field of

privacy-preserving machine learning. There also exists several constructions [AS17,Lin17,JLS19] in the secret-key

setting where the encryption procedure requires the knowledge of secret key. Recently, Gay [Gay20] proposed the

first scheme achieving semi-adaptive SIM-security where the adversary can admit the challenge after seeing public

parameter but before seeing any keys. The scheme is based on bilateral DLIN (decisional linear) assumption.

Motivation. As the unique SIM-secure scheme, Gay’s work [Gay20] has a drawback in terms of efficiency — secret

key size is linear in the size of message. We naturally pose the following question.

Q1: Can we achieve (semi-adaptive) SIM-security with shorter, say constant-size, secret keys?

Given all known (IND-secure) QFFE schemes have constant-size keys, it is asking whether it is inevitable to blow

up secret key in order to achieve SIM-security even in the weaker semi-adaptive model?

We also observe that there is an unexpected efficiency gap between existing QFFE schemes in GGM and in

standard model. In the context of ABE, a selectively secure scheme in the standard model and an adaptively secure

scheme in GGM typically have almost the same efficiency. However, in the context of QFFE, the schemes of the

former type are less efficient; in particular, they roughly double the ciphertext size. This work also concerns the

following question.

Q2: Can we achieve selective (or semi-adaptive) security with shorter ciphertexts, especially compa-

rable to the schemes in GGM?

Note that it is natural and reasonable to have larger ciphertexts in order to achieve adaptive security in the standard

model such as those by dual-system method [Wat09,Wee14,Att14,CGW15,AC17b].

1.1 Results

In this paper, we affirmatively answer the aforementioned questions by proposing two QFFE schemes from stan-

dard assumptions in prime-order bilinear groups. Both of them

(1) achieve semi-adaptive SIM-security as in [Gay20];

(2) enjoy constant-size secret keys as all prior QFFE schemes except [Gay20];

(3) have shorter ciphertexts than prior QFFE schemes in the standard model;

and the second scheme is comparable to GGM-based schemes in [BCFG17, §4] and [RPB+19,DGP18] in terms of

ciphertext size. We compare our schemes with existing schemes in Fig. 1:

1 An IPFE scheme trivially implies a QFFE without the efficiency requirement, which is not interesting in many cases.
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– The first scheme, denoted byΠ1, relies on the so-called bilateral k-Lin assumption. When we instantiate it with

k = 2, i.e., bilateral DLIN assumption, the ciphertext in our scheme is 15% shorter than Gay’s scheme based on

the same assumption [Gay20] (roughly 6n vs. 7n for |x| = |y| = n).

– The second scheme, denoted by Π2, is a variant of the first one; the security can be based on standard k-Lin

assumption and bilateral d-Lin assumption while the ciphertext size is in the form 2(k +1)n +poly(k,d). This

allows us to get shorter ciphertext using k = 1, i.e., SXDH assumption as in [BCFG17, §3], the ciphertext is

roughly 67% shorter than the scheme based on SXDH and 3PDDH in [BCFG17, §3] (roughly 4n vs. 12n for

|x| = |y| = n).

reference |ct| |sk| security assumption

[BCFG17, §3] 12n +2 2 SEL-IND SXDH + 3PDDH

[BCFG17, §4] 4n +2 2 AD-IND GGM

[RPB+19,DGP18] 4n +1 1 AD-IND GGM

[Gay20] 7n +2 5n +2 sAD-SIM Bi-DLIN

Π1 §4, §6.1 6n +6 6 sAD-SIM Bi-DLIN

Π2 §5, §6.2 4n +10 10 sAD-SIM SXDH + Bi-DLIN

Fig. 1. Public-key functional encryption schemes for quadratic functions computing x>Fy for x ∈ Zn
p and y ∈ Zm

p . In the figure,

we consider the case of |x| = |y| = n and does not distinguish which source group contributes when counting the group elements

in the ciphertext and secret key. In the column security, “SEL”, “sAD” and “AD” stand for selective, semi-adaptive and adaptive

model; “IND” and “SIM” stand for indistinguishably-based and simulation-based security. In the column assumption, “GGM”

means generic group model.

A Quick Glance. To get our first QFFE scheme Π1, we roughly follow the two-step workflow which is commonly

used in building various functional encryptions [Wee17,CGW18,BCFG17]:

Step 1. We start from a secret-key QFFE which achieves selective SIM-security.

Step 2. We upgrade the secret-key scheme to public-key setting reaching semi-adaptive SIM-security.

In this work, we choose the secret-key scheme with constant-size keys in [BCFG17, §3] as the starting point in

Step 1. We show that the scheme is actually selectively SIM-secure under k-Lin assumption; prior to our work,

it is only known to be selectively IND-secure. Apart from this, we provide a compact and clean exposition of the

scheme in the language of inner product of matrices which facilitates future adaptation. In Step 2, in order to

upgrade the secret-key scheme we have in Step 1 into the public-key setting, we integrate Wee’s “secret-key-to-

public-key” compiler [Wee17] with Gay’s paradigm leading to his QFFE in [Gay20]. We indeed use IPFE as building

block following [Gay20]; however, by borrowing the idea from Wee’s compiler [Wee17], we avoid the reliance of

partial function-hiding property used in [Gay20]. This preserves the constant-size keys and gives the first QFFE

with semi-adaptive SIM-security with constant-size keys.

The scheme Π1 relies on bilateral k-Lin assumption as in [Gay20], which does not hold for k = 1. With k = 2,

the ciphertext size will be 6n. We present an adaptation of Π1, denoted by Π2, which is motivated by [BCFG17] and

employs the technique from multi-input IPFE (MIFE) [AGRW17]. Roughly, an idea shown in [BCFG17] allows us

to replace bilateral k-Lin with standard k-Lin assumption where k = 1 is available; however we need a common
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technique from MIFE to finalize the proof which introduces the use of bilateral d-Lin assumption again in our set-

ting. However, this only causes an additive constant overhead to the ciphertext size and indeed gives us a scheme

of ciphertext size 4n, which is comparable to that in GGM.

1.2 Overview of Scheme Π1

We give a technical overview of our first scheme Π1 based on bilateral k-Lin assumption. Before that, we first

introduce some notations. For X = (xi j ),Y = (yi j ) ∈Zn×m
p , we define their inner product as

〈X,Y〉 =∑
i , j xi j yi j ∈Zp .

This is a natural extension of inner product of vectors and is bilinear. One can compactly write it in the trace of

matrix:

〈X,Y〉 = tr(X>Y) ∈Zp (1)

where tr(M) for M over Zp is the sum of entries on the diagonal. Then we can rewrite the quadratic function using

inner product of matrices:

x>Fy = 〈F,xy>〉 ∈Zp

where F ∈Zn×m
p describes quadratic function and (x,y) ∈Zn

p ×Zm
p is the input.

Starting Point. We start from the secret-key QFFE described in [BCFG17]. Let (G1,G2,GT ) be an asymmetric bilin-

ear groups of prime order p equipped with bilinear map e; we let g1, g2, gT be random generators of G1,G2,GT . We

employ the implicit representation of group elements: for a matrix M over Zp , we write [M]i := g M
i where i = 1,2,T

and the exponentiation is carried out component-wise. We review the scheme in the language of inner product of

matrices as follows. Note that, essentially, this does not change the scheme but makes further manipulation easier

due to the compactness.

msk : U ←Zn×k
p , V ←Zm×k

p

ctx,y : [(x‖U)M∗]1, [(y‖V)M]2

skF : [〈F,UV>〉]T

(2)

where M∗ and M are picked uniformly over Z(k+1)×(k+1)
p satisfying the restriction M∗M> = I and “‖” means the

concatenation of two matrices. The decryption is done in three steps:

1. compute [P]T from the two terms of ctx,y via bilinear map e where

P = ( 1st term︷ ︸︸ ︷
(x‖U)M∗ ) · ( 2nd term︷ ︸︸ ︷

(y‖V)M
)> = (x‖U)(y‖V)> = xy>+UV> (3)

the second equality uses the fact that M∗M> = I; note that this step does not require the presence of any secret

key;

2. compute [Z ]T from [P]T and skF via group operation on GT where

Z = 〈F,

(3)︷︸︸︷
P 〉−

skF︷ ︸︸ ︷
〈F,UV>〉 = 〈F,xy>〉

the second equality uses the linearity of inner product (of matrices);

3. recover Z from [Z ]T via brute-force discrete log algorithm; here we will assume that Z is always polynomially

bounded [ABDP15,BCFG17].
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In [BCFG17], it is proved to be selectively IND-secure under MDDH assumption which is implied by k-Lin assump-

tion. However, by almost the same proof technique, we can show that the scheme is actually selectively SIM-secure

under the same assumption. More concretely, we have

real ct︷ ︸︸ ︷
[(x‖U)M∗]1, [(y‖V)M]2,

real sk︷ ︸︸ ︷
[〈F,UV>〉]T (4)

≈c [Ũ]1, [Ṽ]2,︸ ︷︷ ︸
simulated ct

[〈F,ŨṼ>〉−〈F,xy>〉]T︸ ︷︷ ︸
simulated sk

where Ũ ←Z
n×(k+1)
p and Ṽ ←Z

m×(k+1)
p serves as the simulated master secret key. The second row shows the simu-

lated ciphertext and key that solely leak 〈F,xy>〉 (as well as function F).

From Secret-key to Public-key: Attempt & Issue. With a secret-key functional encryption scheme (2), we bor-

row the idea from Wee’s “secret-key-to-public-key” compiler [Wee17] to get its public-key variant; the compiler is

able to upgrade selectively secure secret-key scheme to semi-adaptively secure public-key scheme. (Note that our

approach is not exactly the same as Wee’s.) In particular, we will publish

A ←Zn×k
p and B ←Zm×k

p

in the exponent as master public key and apply the following substitution to (2):

U 7−→ AS and V 7−→ BT

where S,T ←Zk×k
p . This yields the following public-key “scheme”:

mpk : [A]1 ←Gn×k
1 , [B]2 ←Gm×k

2

ctx,y : [(x‖AS)M∗]1, [(y‖BT)M]2

skF : [〈F,AST>B>〉]T

(5)

Observe that, given ctx,y and skF in this form, decryption works as before with AS,BT in the place of U,V. Further-

more, with MDDH assumption:

[A]1, [AS]1 ≈c [A]1, [U]1 and [B]2, [BT]2 ≈c [B]2, [V]2

we have the following argument which decouples both ciphertext and keys from mpk and reduces the “semi-

adaptive security” of (5) to the selective security of (2):

mpk︷ ︸︸ ︷
[A]1, [B]2,

ctx,y︷ ︸︸ ︷
[(x‖ AS )M∗]1, [(y‖ BT )M]2,

skF︷ ︸︸ ︷
[〈F, AST>B> 〉]T (6)

≈c [A]1, [B]2, [(x‖ U )M∗]1, [(y‖ V )M]2, [〈F, UV> 〉]T︸ ︷︷ ︸
scheme (2) with msk= (U,V)

However the secret key and ciphertext in (5) will have to share random coins S and T. In fact we may naturally view

S and T as the random coins for ciphertext. Clearly, this violates the syntax of functional encryption: in order to

decrypt a ciphertext with random coins S and T, one might need a specific key with S and T embedded inside.

From Secret-key to Public-key: Solution. To fix the issue we take a closer look at the structure of secret key in (5)

and observe that

〈F,AST>B>〉 = tr(F>AST>B>) = tr(B>F>AST>) = 〈A>FB,ST>〉. (7)

Here the first and the last equalities follows the definition, cf.(1), while the second equality uses the property of

trace: for matrices A,B of the same size, it holds that tr(A>B) = tr(BA>). Notice that, in last expression in (7),
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– A>FB depends on mpk and quadratic function F and is independent of either random coins in the ciphertext

or message (x,y);

– ST> solely depends on random coins in the ciphertext and is independent of quadratic function F.

Therefore equation (7) suggests that we can fix the aforementioned issue if we can embed A>FB and ST> into the

key and the ciphertext (with random coins S,T), respectively, such that one can recover [〈F,AST>B>〉]T during the

decryption.

Our Scheme. We implement the above strategy using IPFE for matrices, denoted by (KeyGen1,Enc1,Dec1), for

inner product of matrices. Here we require Enc1 to encrypt a matrix over G1, say [X]1, and KeyGen1 to generate a

key for a matrix over G2, say [Y]2, of the same dimension as X. The decryption recovers the inner product of X and

Y over GT , i.e., [〈Y,X〉]T . Keeping the observation (7) in mind, we

split [〈F,AST>B>〉]T into KeyGen1([A>FB]2), Enc1([ST>]1)

and modify the scheme (5) by

– attaching Enc1([ST>]1) to ctx,y (with random coins S,T);

– taking KeyGen1([A>FB]2) as the secret key skF.

This yields our first QFFE scheme Π1:

mpk : [A]1 ←Gn×k
1 , [B]2 ←Gm×k

2 , Enc1,Dec1

ctx,y : [(x‖AS)M∗]1, [(y‖BT)M]2, Enc1([ST>]1)

skF : KeyGen1([A>FB]2)

(8)

where S,T ←Zk×k
p . We use dashed boxes to highlight differences with (5). During the decryption, one first assemble

KeyGen1([A>FB]2) and Enc1([ST>]1) together by the decryption procedure of IPFE as follows:

skF in (5)︷ ︸︸ ︷
[〈F,AST>B>〉]T =Dec1(

skF in (8)︷ ︸︸ ︷
KeyGen1([A>FB]2),

ctx,y in (8)︷ ︸︸ ︷
Enc1([ST>]1)) (9)

and then use the recovered term as a secret key in (5). Clearly, this matches the syntax of functional encryption, i.e.,

each key can be used to decrypt any ciphertext. As a matter of fact, the method basically follows [Gay20]; however

we will not require the underlying IPFE to be partially function-hiding as in [Gay20]. Instead, we will show that an

IPFE over G1 with standard security, whose key indeed reveals [A>FB]2 in our setting, has been sufficient for the

proof.

Proof Overview. More concretely, we require that the underlying IPFE achieves selective SIM-security, namely

there exists simulator (Ẽnc1, ãKeyGen1) which, in our setting, ensures that

Enc1,Dec1,Enc1([ST>]1),KeyGen1([A>FB]2) (10)

≈c Enc1,Dec1, Ẽnc1(), ãKeyGen1([A>FB]2, [〈A>FB,ST>〉]2)

Our proof roughly consists of three steps putting aforementioned ideas together in a reversed order:

1. assemble Enc1([ST>]1) and KeyGen1([A>FB]2) together by the SIM-security of underlying IPFE, namely ap-

ply (10);

2. decouple the challenge ciphertext and keys with mpk following (6);
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3. apply the selective SIM-security of secret-key QFFE, namely use (4);

in more detail, our proof employs the following hybrid arguments, each of which corresponds to one step:

mpk︷ ︸︸ ︷
[A]1, [B]2,

ctx,y︷ ︸︸ ︷
[(x‖AS)M∗]1, [(y‖BT)M]2, Enc1([ST>]1) ,

skF︷ ︸︸ ︷
KeyGen1([A>FB]2)

≈c [A]1, [B]2, [(x‖AS)M∗]1, [(y‖BT)M]2, Ẽnc1() , ãKeyGen1([A>FB]2, [〈F,AST>B>〉]2)

≈c [A]1, [B]2, [(x‖ U )M∗]1, [(y‖ V )M]2, Ẽnc1(), ãKeyGen1([A>FB]2, [〈F, UV> 〉]2)

≈c [A]1, [B]2, [Ũ]1 , [Ṽ]2 , Ẽnc1(),︸ ︷︷ ︸
simulated ctx,y

ãKeyGen1([A>FB]2, [〈F,ŨṼ>〉−〈F,xy>〉]2 )︸ ︷︷ ︸
simulated skF

(11)

where the last row gives out the structure of simulated ciphertext and key. We note that, compared with (6), the

second ≈c in (11) (cf. second bullet) should additionally take the leakage A>FB (of master secret key A and B) into

account. In [Gay20], a similar leakage is handled by using partially function-hiding IPFE. However, observe that

the term appears over G2 in our scheme and this leaks no more information than mpk up to which source group

is used. In fact, when we work with MDDH assumption (and its variant) as in our case, we do not need to worry

about this kind of leakage at all. This almost works as is except we have to replace MDDH assumption w.r.t. [A]1

with its bilateral variant:

[A]1, [A]2, [AS]1, [AS]2 ≈c [A]1, [A]2, [U]1, [U]2

where A,AS are also given out over G2. The reasons are:

– In the second ≈c of (11), term [〈F,AST>B>〉]2 and [A>FB]2 (which involves A) are over G2 instead of GT as in (6).

We will need terms on G2 in the assumption to simulate secrete key;

– In the third ≈c of (11), term [〈F,UV>〉]2 is over G2 instead of GT in scheme (4); the corresponding secret-key

QFFE can be proved from bilateral MDDH assumption for the same reason as the first bullet.

1.3 More Efficient Scheme: Overview of Scheme Π2

We show how to get our scheme Π2 with more efficient instantiation.

Strategy. According our discussion in the end of last section, in order to avoid bilateral MDDH assumption, the

simulator should have the ability to switch A>FB, 〈F,AST>B>〉 and 〈F,UV>〉 between G1 and G2:

– when we use MDDH assumption w.r.t. [A]1, they appear over G1;

– when we use MDDH assumption w.r.t. [B]2, they appear over G2.

Let us focus on A>FB which appears in the scheme and has the simplest structure among the three terms. The two

requirements can be realized by an idea from [BCFG17]: we

split [A>FB]2 into [A>FB−R]2, [R]1

where R ←Zk×k
p and the proof relies on the following statistical statement: for all A,B,F, we have

[A>FB−R]2, [R]1 ≈s [R]2, [A>FB−R]1

over the probability space defined by R ← Zk×k
p . The form on the left-hand side will be used when MDDH as-

sumption w.r.t [B]2 is required; the form on the right-hand side will be used when MDDH assumption w.r.t. [A]1 is

required.
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Attempt. To handle the extra term [R]1 on the key side, we use IPFE for matrices over G2, denoted (KeyGen2,Enc2,Dec2);

this is analogous to IPFE over G1 except that we switch the role of G1 and G2: Enc2 is used to encrypt [X]2 and

KeyGen2 is used to generate a key for [Y]1. In particular, we adapt Π1, cf. (8), by

– setting KeyGen1([A>FB−R]2), KeyGen2([R]1) as skF;

– attaching Enc2([ST>]2) to the ciphertext ctx,y with random coins S,T.

The first change corresponds to our strategy while the second one fixes the issue on correctness caused by the first

change. This yields the following scheme:

mpk : [A]1 ←Gn×k
1 , [B]2 ←Gm×k

2 , Enc1,Dec1, Enc2,Dec2

ctx,y : [(x‖AS)M∗]1, [(y‖BT)M]2, Enc1([ST>]1), Enc2([ST>]2)

skF : KeyGen1([A>FB−R]2), KeyGen2([R]1)

(12)

where S,T ←Zk×k
p . We use dashed boxes to highlight differences with our main Π1, i.e.,(8). Decryption recovers

[〈F,AST>B>〉−〈R,ST>〉]T = Dec1(KeyGen1([A>FB−R]2),Enc1([ST>]1))

[〈R,ST>〉]T = Dec2(KeyGen2([R]1),Enc2([ST>]2))

which are sufficient to compute [〈F,AST>B>〉]T as in (9) for the correctness.

Scheme. Although 〈R,ST>〉 indeed connects the two IPFE instances for the correctness but this is not sufficient

for the proof. We employ the idea of connecting IPFE instances from multi-input IPFE [AGRW17]. For this, IPFE is

extended to two-slot variant: ciphertext and key are additionally associated with a vector (over group) and decryp-

tion recovers the inner product of matrices (as usual) plus the inner product of vectors. Our second scheme Π2 is

as follows:
mpk : [A]1 ←Gn×k

1 , [B]2 ←Gm×k
2 , Enc1,Dec1,Enc2,Dec2

ctx,y : [(x‖AS)M∗]1, [(y‖BT)M]2, Enc1([ST>]1, [s]1 ), Enc2([ST>]2, [s]2 )

skF : KeyGen1([A>FB−R]2, [−r]2 ), KeyGen2([R]1, [r]1 )

(13)

where S,T ← Zk×k
p and s,r ← Zd

p . We use dashed boxes to highlight the extension on (12). Decryption procedure

described above will recover
[〈F,AST>B>〉−〈R,ST>〉− 〈r,s〉 ]T

[〈R,ST>〉+ 〈r,s〉 ]T

The correctness is preserved. The proof will be analogous to (11) with an extra step extracting randomness τ from

r and s following [AGRW17] (see H2 in Section 5.3 and Lemma 5). This will give us the following terms involving

〈F,AST>B>〉 and 〈F,UV>〉 in the proof which have similar structure handling term A>FB:

[〈F,AST>B>〉−τ]2, [τ]1,

[〈F,UV>〉−τ]2, [τ]1.

Note that this step itself requires bilateral MDDH assumption which increases the size of IPFE ciphertext; however

this only causes constant overhead.

Concurrent Work. Gay et al. constructed a partially-hiding functional encryption (PHFE) to build iO [GJLS20].

Basically, their PHFE supports computation of quadratic functions where the function F is computed by a NC1

circuit (the circuit and input are associated with secret key and ciphertext, respectively). This definitively covers

QFFE considered in our work. In fact, the derived QFFE scheme is quite similar to ours and the key size is constant;

however it only achieves selective SIM-security as reported and has slightly larger ciphertexts.
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Organization. We describe notations and definitions in Section 2. In Section 3, we revisit the secret-key QFFE

schemes from [BCFG17] which will serve as our starting point. Our two QFFE schemes from distinct assumptions

will be presented in Section 4 and 5. We show concrete schemes in Section 6.

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly from a finite set S. We use ≈s to denote two

distributions being statistically indistinguishable, and ≈c to denote two distributions being computationally in-

distinguishable. We use lower case boldface to denote vectors and upper case boldcase to denote matrices. For a

square matrix M, we use tr(M) to denote it trace, i.e., the sum of entries on the diagonal. Throughout the paper, we

use prime number p to denote the order of underlying groups.

Inner product of matrices. We define the inner product of X,Y ∈Zn×m
p as

〈X,Y〉 = tr(X>Y).

Assume X = (xi j ) and Y = (yi j ), one can verify that 〈X,Y〉 = ∑
i , j xi j yi j that is a natural extension of inner product

of vectors. Furthermore, one can also consider this as the inner product of two vectors of length nm induced from

X,Y; in particular, we have

〈X,Y〉 = 〈vec(X),vec(Y)〉 (14)

where vec(M) is the vector of length nm formed by piling columns of M ∈Zn×m
p .

2.1 Functional Encryptions

Let X,Y,Z be sets, we call F : X×Y→ Z an functionality; this induces a family of functions mapping from X to Z

indexed by Y. Let p be a prime, we will use the following two concrete functionalities in the paper.

Inner product (Linear) function IPn,m . Let X=Zn×m
p , Y=Zn×m

p and Z=Zp for some n,m ∈N, we define

IPn,m : (X,Y) 7−→ 〈X,Y〉.

Quadratic function QFn,m . Let X=Zn
p ×Zm

p , Y=Zn×m
p and Z=Zp for some n,m ∈N, we define

QFn,m :
(

(x,y),F
) 7−→ x>Fy.

Note that we have x>Fy = 〈F,xy>〉 which will be used throughout the paper.

Algorithm. A functional encryption (FE) Π for functionality F :X×Y→Z consists of four PPT algorithms:

– Setup(1λ,F) → (mpk,msk): The Setup algorithm takes security parameter 1λ and functionality F as input, out-

puts master public/secret key pair (mpk,msk).

– Enc(mpk, X ∈X) → ctX : The Enc algorithm takes master public key mpk and message X ∈X as input, outputs

a ciphertext ctX .

– KeyGen(msk,Y ∈ Y) → skY : The KeyGen algorithm takes master secret key msk and function index Y ∈ Y as

input, outputs a functional secret key skY .

– Dec(ctX ,skY ) → Z ∈ Z: The decryption algorithm takes a ciphertext ctX and a functional secret key skY as

input, outputs Z ∈Z.

In this paper we use IPFE and QFFE to indicate FE for IPn,m and QFn,m , respectively, for short.
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Correctness. For all λ ∈N, X ∈X, Y ∈Y, we require that

Pr

Dec(ctX ,skY ) =F(X ,Y ) :

(mpk,msk) ← Setup(1λ,F)

ctX ←Enc(mpk, X )

skY ←KeyGen(msk,Y )

= 1.

As a relaxation, we require the correctness described above holds when F(X ,Y ) ∈ B where B ⊆Zp has polynomial

size. This comes from the use of discrete-log algorithm during decryption as in [ABDP15,ALS16].

Semi-adaptive simulation-based security (SIM-security). For every efficient stateful adversary A, there exists

simulator (�Setup, Ẽnc, ãKeyGen) such that
(mpk,msk) ← Setup(1λ,F);

X ∗ ←A(mpk);

ct∗ ←Enc(mpk, X ∗);

output AKeyGen(msk,·)(mpk,ct∗)

≈c


(mpk,m̃sk) ← �Setup(1λ,F);

X ∗ ←A(mpk);

c̃t∗ ← Ẽnc(m̃sk);

output A
ãKeyGen(msk∗,·,·)(mpk, c̃t∗)


where the algorithm ãKeyGen(msk∗, ·, ·) gets Y along withF(X ∗,Y ) wheneverAmakes a query Y ∈Y toKeyGen(msk, ·).

We use AdvΠA(λ) to denote the advantage in distinguishing the distributions.

Secret-key FE. We also consider the secret-key FE where the algorithmSetup solely outputs msk and algorithmEnc

takes msk instead of mpk as input. Both correctness and semi-adaptive SIM-security (basically selective security

due to the absence of mpk) can be formulated analogously.

2.2 Prime-order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description G := (p,G1,G2,GT ,e), where p is a

prime of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e : G1 ×G2 → GT is a non-degenerate bilinear

map. The group operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time

inλ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT be the respective generators. We employ the implicit representation

of group elements: for a matrix M over Zp , we define [M]i := g M
i for all i ∈ {1,2,T }, where exponentiation is carried

out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T when the multiplication is well-defined.

Computational assumptions. We review the matrix Diffie-Hellman (MDDH) assumption [EHK+13] over G1; the

variant over G2 can be defined analogously.

Assumption 1 (MDDHd
k,` Assumption over G1) Let `,k,d ∈N. For all PPT adversaries A, the following advantage

function is negligible in λ.

Adv
MDDHd

k,`

A
(λ) := ∣∣Pr[A(G, [M]1, [MS]1 ) = 1]−Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Z`×k

p , S ←Zk×d
p and U ←Z`×d

p .

Escala et al. [EHK+13] showed that it is tightly implied by k-Lin assumption. Note that the assumption uncondi-

tionally holds in the case ` ≤ k. When k = 1, we call it symmetric external Diffie-Hellman (SXDH) assumption;

when k = 2, we call it decisional linear (DLIN) assumption.

The bilateral matrix Diffie-Hellman (Bi-MDDH) assumption [AC17a,Gay20] extends the basic MDDH assump-

tion by giving out M and MS (or U) over both G1 and G2 and is not stronger than the version on symmetric bilinear

groups [EHK+13], cf. [AC17a,Gay20].
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Assumption 2 (Bilateral MDDHd
k,` Assumption) Let `,d ∈ N and k ≥ 2. For all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
BI-MDDHd

k,`

A
(λ) := ∣∣Pr[A(G, { [M]i , [MS]i }i∈{1,2}) = 1]−Pr[A(G, { [M]i , [U]i }i∈{1,2}) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Z`×k

p , S ←Zk×d
p and U ←Z`×d

p .

Note that it does not hold with parameter k = 1; with other paratmers, we have BI-MDDHd
k,` ⇒ MDDHd

k,`. When

k = 2, we call it bilateral decisional linear (Bi-DLIN) assumption.

2.3 Building Block: (Two-slot) IPFE in Bilinear Groups

Let k and d be two independent parameters. We will use two-slot IPFE over G1 which is a FE for the following

functionality:

X=Gk×k
1 ×Gd

1 , Y=Gk×k
2 ×Gd

2 , Z=GT

F : [X,x]1 × [Y,y]2 7−→ [〈X,Y〉+〈x,y〉]T

and equipped with ãKeyGen taking an element from G2 as the last input for the SIM-security. (Recall that the first

input is m̃sk while the second input is in Y = Gk×k
2 ×Gd

2 as defined). An IPFE over G2 can be defined analogously

by switching the role of G1 and G2. By (14), we can adapt Wee’s IPFE scheme over cyclic groups [Wee17] to realize

these two functionalities; we use IPFE1 and IPFE2 to denote the two schemes, respectively. Note that we always

use the instance under SXDH assumption. When we invoke IPFE1 and IPFE2, we take 1k and 1d as inputs of Setup

algorithm. Furthermore, when we omit the input 1d , the scheme is just standard IPFE over G1 or G2 and the input

correspond to the second slot is omitted in Enc and KeyGen.

3 Revisiting Baltico et al.’s Secret-key QFFE

In this section, we review Baltico et al.’s secret-key QFFE scheme [BCFG17]. We begin with a variant, denoted byπ1,

which achieves selective SIM-security under Bi-MDDH assumption. The scheme in [BCFG17], denoted by π2 in

this work, is described based onπ1 which achieves the same security guarantee but from MDDH assumption. With

the inner product of matrices, we give a simple and clean exposition. The proof of SIM-security basically follows

that in [BCFG17], we only describe the main theorem along with the simulator and leave the proof in the appendix

for completeness. Note that it is previously known to be selective IND-secure [BCFG17].

3.1 π1: Secret-key QFFE from Bi-MDDH

The secret-key QFFE scheme π1 for QFn,m in prime-order bilinear groups is described as follows.

– Setup(1λ,1n ,1m): Sample

U ←Zn×k
p , V ←Zm×k

p

and output

msk= (U,V).

– Enc(msk, (x,y)): Let x ∈Zn
p and y ∈Zm

p . Sample

(M,M∗) ←Z(k+1)×(k+1)
p ×Z(k+1)×(k+1)

p

such that M∗M> = I. Output

ctx,y =
(

[(x‖U)M∗]1, [(y‖V)M]2
) ∈Gn×(k+1)

1 ×Gm×(k+1)
2 .
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– KeyGen(msk,F): Let F ∈Zm×n
p . Output

skF = [〈F,UV>〉]2 ∈G2.

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2 ) and skF = [K ]2.

Compute

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉, [Z ]T = [D]T ·e([1]1, [K ]2)−1

and recover Z ∈Zp via brute-force DLOG. Note that 〈F, ·〉 is a linear function and thus [D]T can be computed

from [P]T with the knowledge of F.

This is the same as the scheme described in the TECHNICAL OVERVIEW in [BCFG17, Section 3] (also see (2)) except

that skF is over G2 instead of GT .

Correctness. For all x ∈Zn
p , y ∈Zm

p and F ∈Zn×m
p , we have

P = xy>+UV> (15)

D = 〈F,xy>〉+〈F,UV>〉 (16)

Z = 〈F,xy>〉 (17)

Here equality (15) follows from the fact:

C1C>
2 = ((x‖U)M∗)((y‖V)M)> = (x‖U)(y‖V)> = xy>+UV>.

where the second step follows from the fact M∗M> = I. Equality (16) follows from (15) and the linearity of 〈F, ·〉. The

last equality is straightforward. This readily proves the correctness.

Simulation-based Security. We have the following theorem stating that scheme π1 described above achieves se-

lective SIM-security under Bi-MDDH assumption.

Theorem 1. For all adversaries A, there exist algorithms B1 and B2 such that

Advπ1
A

(λ) ≤Adv
BI-MDDHk,n

B1
(λ)+Adv

MDDHk,m

B2
(λ)

and Time(B1),Time(B2) ≈Time(A).

We describe the simulator which will be used in the rest of the paper.

– �Setup(1λ,1n ,1m): Sample

Ũ ←Zn×(k+1)
p , Ṽ ←Zm×(k+1)

p

and output

m̃sk= (Ũ, Ṽ).

– Ẽnc(m̃sk): Output

c̃t= (
[Ũ]1, [Ṽ]2

)
.

– ãKeyGen(m̃sk,F, [µ]2): Output

s̃kF = [〈F,ŨṼ>〉−µ]2.

We sketch the proof in Section A (cf. [BCFG17]).
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3.2 π2: Secret-key Scheme from MDDH

The secret-key QFFE scheme π2 for QFn,m in prime-order bilinear groups has the same Setup and Enc algorithms

as π1 but KeyGen and Dec working as follows:

– KeyGen(msk,F): Sample τ←Zp and output

skF = (
[τ]1, [〈F,UV>〉−τ]2

) ∈G1 ×G2.

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2 ) and skF = ( [K1]1, [K2]2 ).

Compute

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉

and

[Z ]T = [D]T ·e([K1]1, [1]2)−1 ·e([1]1, [K2]2)−1.

Recover Z ∈Zp from [Z ]T via brute-force DLOG.

Correctness. The correctness can be verified as that for π1. In fact we compute the same P,D, Z by the fact:

e([K1]1, [1]2)−1 ·e([1]1, [K2]2)−1 = [〈F,UV>〉]−1
T = e([1]1, [K ]2)−1.

Simulation-based Security. We have the following theorem stating that scheme π2 described above achieves se-

lective SIM-security under MDDH assumption.

Theorem 2. For all adversaries A, there exist algorithms B1 and B2 such that

Advπ2
A

(λ) ≤Adv
MDDHk,n

B1
(λ)+Adv

MDDHk,m

B2
(λ)

and Time(B1),Time(B2) ≈Time(A).

The simulator has the same �Setup and Ẽnc as π1 but ãKeyGen working as follows:

– ãKeyGen(m̃sk,F, [µ]2): Sample τ←Zp and output

s̃kF = (
[τ]1, [〈F,ŨṼ>〉−τ−µ]2

)
We sketch the proof in Section A (cf. [BCFG17]).

4 Π1: Our QFFE from BI-MDDHk

In this section, we show our first QFFE scheme Π1 which achieves semi-adaptive SIM-security under BI-MDDHk

assumption. The scheme is based on the secret-key QFFE scheme π1 and use IPFE over G1 as building block.
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4.1 Scheme

Let IPFE1 = (Setup1,Enc1,KeyGen1,Dec1) be an IPFE over G1, cf. Section 2.3. Our QFFE scheme Π1 based on π1 in

prime-order bilinear groups is described as follows.

– Setup(1λ,1n ,1m): Run

(mpk1,msk1) ← Setup1(1λ,1k )

and sample

A ←Zn×k
p , B ←Zm×k

p .

Output

mpk= (
mpk1, [A]1, [B]2

)
and msk= (

msk1, A, B
)
.

– Enc(mpk, (x,y)): Let x ∈Zn
p and y ∈Zm

p . Sample

(M,M∗) ←Z(k+1)×(k+1)
p ×Z(k+1)×(k+1)

p

such that M∗M> = I. Sample

S,T ←Zk×k
p

and output

ctx,y =
(

[(x‖AS)M∗]1, [(y‖BT)M]2, Enc1(mpk1, [ST>]1)
)
.

– KeyGen(msk,F): Let F ∈Zm×n
p . Output

skF =KeyGen1(msk1, [A>FB]2).

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2,ct1 ) and skF = sk1

and recover

[L]T ←Dec1(ct1,sk1).

Compute

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉, [Z ]T = [D −L]T

and recover Z from [Z ]T via brute-force DLOG.

Correctness. For all x ∈Zn
p , y ∈Zm

p and F ∈Zn×m
p , we have

L = 〈F,AST>B>〉 (18)

P = xy>+AST>B> (19)

D = 〈F,xy>〉+〈F,AST>B>〉 (20)

Z = 〈F,xy>〉 (21)

Here equality (18) follows from the correctness of IPFE1 and the fact:

〈A>FB,ST>〉 = tr
(
(B>F>A)(ST>)

)
= tr

(
F>(AST>B>)

)
= 〈F,AST>B>〉

The first and third steps follow from the definition of inner product (cf. Section 2) and the second step uses the

property of trace (i.e., tr(A>B) = tr(BA>) for matrices A,B of the same size). All remaining equalities can be verified

analogously as (15), (16) and (17), respectively, in Section 3.1 with AS and BT in the place of U and V. This readily

proves the correctness.
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4.2 Simulator

Before we proceed to the security proof, we show the simulator forΠ1. Let (�Setup1, Ẽnc1, ãKeyGen1) be the simulator

for IPFE1, the simulator for Π1 works as follows.

– �Setup(1λ,1n ,1m): Run

(mpk1,m̃sk1) ← �Setup1(1λ,1k )

and sample

A ←Zn×k
p , B ←Zm×k

p , Ũ ←Zn×(k+1)
p , Ṽ ←Zm×(k+1)

p .

Output

mpk= (
mpk1, [A]1, [B]2

)
and m̃sk= (

m̃sk1, A, B, Ũ, Ṽ
)
.

– Ẽnc(m̃sk): Output

c̃t= (
[Ũ]1, [Ṽ]2, Ẽnc1(m̃sk1)

)
.

– ãKeyGen(m̃sk1,F,µ): Output

s̃kF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F,ŨṼ>〉−µ]2).

4.3 Security

We prove the following theorem stating that our QFFE scheme Π1 achieves semi-adaptive SIM-security under Bi-

MDDH assumption.

Theorem 3. For all adversaries A, there exist algorithms B1,B2,B3,B4 such that

AdvΠ1
A

(λ) ≤AdvIPFE1
B1

(λ)+Adv
BI-MDDHk

k,n

B2
(λ)+Adv

MDDHk
k,m

B3
(λ)+Advπ1

B4
(λ)

and Time(B1),Time(B2),Time(B3),Time(B4) ≈Time(A).

Game Sequence. Let (x,y) ∈Zn
p ×Zm

p be the semi-adaptive challenge. We prove the theorem via the following game

sequence.

G0: Real game.

G1: Identical to G0 except that we run

(mpk1, m̃sk1 ) ← �Setup1 (1λ,1k )

and return mpk= (
mpk1, [A]1, [B]2

)
at the beginning of the game and the challenge ciphertext and secret key

for F are as follows:

ct∗ = (
[(x‖AS)M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1)

)
skF = ãKeyGen1 (m̃sk1, [A>FB]2, [〈F,AST>B>〉]2)

where S,T ←Zk×k
p . We claim that G0 ≈c G1. This follows from the selective SIM-security of IPFE1. See Lemma 1

for more details proof.

15



G2: Identical to G1 except that the challenge ciphertext and secret key for F are as follows:

ct∗ = (
[(x‖ U )M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1)

)
skF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F, U T>B>〉]2)

where U ←Zn×k
p . We claim that G1 ≈c G2. This follows from BI-MDDHk

k,n assumption:

[A]1, [A]2, [AS]1, [AS]2 ≈c [A]1, [A]2, [U]1, [U]2

where A ← Zn×k
p , S ← Zk×k

p and U ← Zn×k
p . In the reduction, we use [A]1 and [AS]1 (or [U]1) to simulate mpk

and c̃t∗; we use [A]2 and [AS]2 (or [U]2) to simulate all skF. See Lemma 2 for more details.

G3: Identical to G2 except that the challenge ciphertext and secret key for F are as follows:

ct∗ = (
[(x‖U)M∗]1, [(y‖ V )M]2, Ẽnc1(m̃sk1)

)
skF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F,U V> 〉]2).

where U ←Zn×k
p and V ←Zm×k

p . We claim that G2 ≈c G3. This follows from the MDDHk
k,m assumption:

[B]2, [BT]2 ≈c [B]2, [V]2

where B ←Zm×k
p , T ←Zk×k

p and V ←Zm×k
p . See Lemma 3 for more details.

G4: Identical to G3 except that the challenge ciphertext and secret key for F are as follows:

c̃t∗ = (
[Ũ]1, [Ṽ]2 , Ẽnc1(m̃sk1)

)
s̃kF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F,ŨṼ>〉−〈F,xy>〉]2 )

where Ũ ←Z
n×(k+1)
p and Ṽ ←Z

m×(k+1)
p . We claim that G3 ≈c G4. This follows from the selective SIM-security of

secret-key scheme π1 under msk= (U,V). See Lemma 4 for more details.

Note that G4 can be simulated using the simulator described in Section 4.2 by setting µ= 〈F,xy>〉.

4.4 Lemmas

Let Advi (λ) be the advantage function of A in Gi . We describe lemmas for Gi−1 ≈c Gi with i ∈ [4].

Lemma 1 (G0 ≈c G1). There exists algorithm B1 such that Time(B1) ≈Time(A) and

|Adv0(λ)−Adv1(λ)| ≤AdvIPFE1
B1

(λ).

Proof (of Lemma 1). The lemma follows from the selective SIM-security of IPFE1. In particular, the algorithm B1

works as follows:

(Setup) Pick S,T ← Zk×k
p . Submit [ST>]1 as the selective challenge of IPFE1 and get back (mpk1, �msk1) along with

ĉt∗1 . Sample A,B honestly and publish mpk= (mpk1, [A]1, [B]2).

(Challenge) Once receiving the semi-adaptive challenge (x,y), sample M∗ and M honestly and return

ĉt∗ = (
[(x‖AS)M∗]1, [(y‖BT)M]2, ĉt∗1

)
where A,B,S,T and ĉt∗1 are picked during Setup.
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(Key Queries) On input F, submit a key query [A>FB]2 and return the response ŝkF.

(Analysis) Observe that

– when (mpk1, �msk1) = (mpk1,msk1) ← Setup1(1λ,1k ) and

ĉt∗1 ←Enc1(mpk1, [ST>]1), ŝkF ←KeyGen1(msk1, [A>FB]2)

the simulation is identical to G0;

– when (mpk1, �msk1) = (mpk1,m̃sk1) ← �Setup1(1λ,1k ) and

ĉt∗1 ← Ẽnc1(m̃sk1), ŝkF ← ãKeyGen1(m̃sk1, [A>FB]2, [〈F,AST>B>〉]2)

the simulation is identical to G1.

This readily proves the lemma. ut
Lemma 2 (G1 ≈c G2). There exists algorithm B2 such that Time(B2) ≈Time(A) and

|Adv1(λ)−Adv2(λ)| ≤Adv
BI-MDDHk

k,n

B2
(λ).

Proof (of Lemma 2). This follows from BI-MDDHk
k,n assumption:

[A]1, [A]2, [AS]1, [AS]2 ≈c [A]1, [A]2, [U]1, [U]2

where A ← Zn×k
p , S ← Zk×k

p and U ← Zn×k
p . On input [A]1, [A]2, [Z]1, [Z]2 where Z = AS or Z ← Zn×k

p , the algorithm

B2 works as follows:

(Setup) Run (mpk1,m̃sk1) ← �Setup1(1λ,1k ), sample B ←Zm×k
p and output

mpk= (
mpk1, [A]1, [B]2

)
where [A]1 is fetched from the input.

(Challenge) Once receiving the semi-adaptive challenge (x,y), sample T ← Zk×k
p and M∗,M ← Z

(k+1)×(k+1)
p with

M∗M> = I. Output

ĉt∗ = (
[(x‖Z)M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1)

)
using [Z]1 from the input.

(Key Queries) On input F, return

ŝkF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F,ZT>B>〉]2)

where [A>FB]2 and [〈F,ZT>B>〉]2 are simulated using [A]2 and [Z]2, respectively. Note that B,T are known.

(Analysis) Observe that, when Z = AS, the simulation is identical to G1; when Z ←Zn×k
p , the simulation is identical

to G2. This readily proves the lemma. ut
Lemma 3 (G2 ≈c G3). There exists algorithm B3 such that Time(B3) ≈Time(A) and

|Adv2(λ)−Adv3(λ)| ≤Adv
MDDHk

k,m

B3
(λ).

Proof (of Lemma 3). This follows from MDDHk
k,m assumption:

[B]2, [BT]2 ≈c [B]2, [V]2

where B ←Zm×k
p , T ←Zk×k

p and V ←Zm×k
p . On input [B]2, [Z]2 where Z = BT or Z ←Zm×k

p , the algorithm B3 works

as follows:
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(Setup) Run (mpk1,m̃sk1) ← �Setup1(1λ,1k ), sample A ←Zn×k
p and output

mpk= (
mpk1, [A]1, [B]2

)
where [B]2 is fetched from the input. Also sample U ←Zn×k

p .

(Challenge) Once receiving the semi-adaptive challenge (x,y), sample M∗,M ← Z
(k+1)×(k+1)
p with M∗M> = I. Out-

put

ĉt∗ = (
[(x‖U)M∗]1, [(y‖Z)M]2, Ẽnc1(m̃sk1)

)
using [Z]2 from the input.

(Key Queries) On input F, return

ŝkF = ãKeyGen1(m̃sk1, [A>FB]2, [〈F,UZ>〉]2)

where [A>FB]2 and [〈F,UZ>〉]2 are simulated using [B]2 and [Z]2, respectively. Note that A,U are known.

(Analysis) Observe that, when Z = BT, the simulation is identical toG2; when Z ←Zm×k
p , the simulation is identical

to G3. This readily proves the lemma. ut

Lemma 4 (G3 ≈c G4). There exists algorithm B4 such that Time(B4) ≈Time(A) and

|Adv3(λ)−Adv4(λ)| ≤Advπ1
B4

(λ).

Proof (of Lemma 4). The lemma follows from the selective SIM-security ofπ1. In particular, the algorithmB4 works

as follows:

(Setup) Run (mpk1,m̃sk1) ← �Setup1(1λ,1k ) and sample A ←Zn×k
p , B ←Zm×k

p . Output

mpk= (
mpk1, [A]1, [B]2

)
.

(Challenge) Once receiving the semi-adaptive challenge (x,y), submit it as the selective challenge of π1 and get

back ĉt∗π1
. Return

ĉt∗ = (
ĉt∗π1

, Ẽnc1(m̃sk1)
)
.

(Key Queries) On input F, submit a key query F and get the response ŝkF,π1 ∈G2. Output

ŝkF = ãKeyGen1(m̃sk1, [A>FB]2, ŝkF,π1 )

where A,B are picked during Setup.

(Analysis) Observe that

– when ĉt∗π1
= ([(x‖U)M∗]1, [(y‖V)M]2) and ŝkF,π1 = [〈F,UV>〉]2 with U ←Zn×k

p , V ←Zm×k
p and M∗,M ←Z

(k+1)×(k+1)
p

with M∗M> = I, the simulation is identical to G3;

– when when ĉt∗π1
= ([Ũ]1, [Ṽ]2) and ŝkF,π1 = [〈F,ŨṼ>〉− 〈F,xy>〉]2 with Ũ ← Z

n×(k+1)
p , Ṽ ← Z

m×(k+1)
p , the simula-

tion is identical to G4.

This readily proves the lemma. ut
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5 Π2: Our QFFE from MDDHk and BI-MDDHd

In this section, we present our second QFFE scheme Π2 based on Π1. The scheme achieves semi-adaptive SIM-

security as Π1 but under standard MDDHk and BI-MDDHd assumption. Technically, we will additionally use

IPFE over G2 as building block and require two-slot extension; the underlying secret-key QFFE is π2 instead of π1.

5.1 Scheme

Let IPFE1 = (Setup1,Enc1,KeyGen1,Dec1) be two-slot IPFE over G1; IPFE2 = (Setup2,Enc2,KeyGen2,Dec2) be two-

slot IPFE over G2, cf. Section 2.3. Our QFFE scheme Π2 in prime-order bilinear groups is described as follows.

– Setup(1λ,1n ,1m): Run

(mpk1,msk1) ← Setup1(1λ,1k ,1d ), (mpk2,msk2) ← Setup2(1λ,1k ,1d )

and sample

A ←Zn×k
p , B ←Zm×k

p .

Output

mpk= (
mpk1, mpk2, [A]1, [B]2

)
and msk= (

msk1, msk2, A, B
)
.

– Enc(mpk, (x,y)): Let (x,y) ∈Zn
p ×Zm

p . Sample

(M,M∗) ←Z(k+1)×(k+1)
p ×Z(k+1)×(k+1)

p

such that M∗M> = I. Sample

S,T ←Zk×k
p , s ←Zd

p

and output

ctx,y =
(

[(x‖AS)M∗]1, [(y‖BT)M]2,

Enc1(mpk1, ([ST>]1, [s]1)), Enc2(mpk2, ([ST>]2, [s]2))

)
.

– KeyGen(msk,F): Let F ∈Zn×m
p . Sample R ←Zk×k

p , r ←Zd
p and output

skF = (
KeyGen1(msk1, ([A>FB−R]2, [−r]2)), KeyGen2(msk2, ([R]1, [r]1))

)
.

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2,ct1,ct2 ) and skF = (sk1,sk2)

and recover

[L1]T ←Dec1(ct1,sk1), [L2]T ←Dec2(ct2,sk2).

Compute

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉, [Z ]T = [D −L1 −L2]T

and recover Z from [Z ]T via brute-force DLOG.
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Correctness. For all x ∈Zn
p , y ∈Zm

p and F ∈Zn×m
p , we have

L1 = 〈F,AST>B>〉−〈R,ST>〉−〈r,s〉 (22)

L2 = 〈R,ST>〉+〈r,s〉 (23)

P = xy>+AST>B> (24)

D = 〈F,xy>〉+〈F,AST>B>〉 (25)

Z = 〈F,xy>〉 (26)

Here (23) follows the correctness of IPFE2; the remaining four can be verified as in Section 4.1. In fact we compute

the same P,D, Z by the fact that

L1 +L2 = 〈F,AST>B>〉 = L.

This readily proves the correctness.

5.2 Simulator

Let (�Setup1, Ẽnc1, ãKeyGen1) and (�Setup2, Ẽnc2, ãKeyGen2) be the simulators of IPFE1 and IPFE2, respectively, the

simulator for Π2 is described as follows.

– �Setup(1λ,1n ,1m): Run

(mpk1,m̃sk1) ← �Setup1(1λ,1k ,1d ), (mpk2,m̃sk2) ← �Setup2(1λ,1k ,1d )

and sample

A ←Zn×k
p , B ←Zm×k

p , Ũ ←Zn×(k+1)
p , Ṽ ←Zm×(k+1)

p .

Output

mpk= (
mpk1, mpk2, [A]1, [B]2

)
and m̃sk= (

m̃sk1, m̃sk2, A, B, Ũ, Ṽ
)

– Ẽnc(m̃sk): Output

ct= (
[Ũ]1, [Ṽ]2, Ẽnc1(m̃sk1), Ẽnc2(m̃sk2)

)
.

– ãKeyGen(m̃sk,F,µ): Sample R ←Zk×k
p , r ←Zd

p , τ←Zp and output

skF =
(ãKeyGen1(m̃sk1, ([A>FB−R]2, [−r]2), [〈F,ŨṼ>〉−τ−µ]2)ãKeyGen2(m̃sk2, ([R]1, [r]1), [τ]1)

)
.

5.3 Security

We prove the following theorem stating that our QFFE schemeΠ2 achieves semi-adaptive SIM-security from MDDHk

and BI-MDDHd assumption.

Theorem 4. For all adversaries A, there exist algorithms B1,B2,B3,B4,B5,B6 such that

AdvΠ2
A

(λ) ≤AdvIPFE1
B1

(λ)+AdvIPFE2
B2

(λ)+Adv
BI-MDDHd ,Q

B3
(λ)+Adv

MDDHk
k,n

B4
(λ)+Adv

MDDHk
k,m

B5
(λ)+Advπ2

B6
(λ)

andTime(B1),Time(B2),Time(B3),Time(B4),Time(B5),Time(B6) ≈Time(A) where Q is the number of key queries.
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Game Sequence. Let (x,y) ∈Zn
p ×Zm

p be the semi-adaptive challenge. We prove the theorem via the following game

sequence. WLOG, we assume the adversary A makes Q key queries F1, . . . ,FQ and we will use specific subscript to

indicate random coins used in each key.

H0: Real game.

H1: Identical to H0 except that we run

(mpk1, m̃sk1 ) ← �Setup1 (1λ,1k ,1d ), (mpk2, m̃sk2 ) ← �Setup2 (1λ,1k ,1d )

and return mpk= (
mpk1, mpk2, [A]1, [B]2

)
at the beginning of the game and the challenge ciphertext and secret

key for Fi with i ∈ [Q] are as follows:

ct∗ = (
[(x‖AS)M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1) , Ẽnc2(m̃sk2)

)
skFi =

 ãKeyGen1

(
m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi ,AST>B>〉−〈Ri ,ST>〉−〈ri ,s〉]2

)
ãKeyGen2 (m̃sk2, ([Ri ]1, [ri ]1), [〈Ri ,ST>〉+〈ri ,s〉]1)


where S,T,Ri ← Zk×k

p and ri ← Zd
p for all i ∈ [Q]. We claim that H0 ≈c H1. This follows from the selective SIM-

security of IPFE1 and IPFE2. This is analogous to “G0 ≈c G1” for Π1 in Section 4.3. We omit the detail.

H2: Identical to H1 except that the challenge ciphertext and secret key for Fi are as follows:

skFi =
(ãKeyGen1(m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi ,AST>B>〉− τi ]2)ãKeyGen2(m̃sk2, ([Ri ]1, [ri ]1), [τi ]1 )

)

where τi ← Zp for all i ∈ [Q]. We claim the H1 ≈c H2. This follows from the BI-MDDHd ,Q assumption which

implies that, for all S,T,Ri , we have

{[ri ]1, [ri ]2, [〈Ri ,ST>〉+〈ri ,s〉]1, [〈Ri ,ST>〉+〈ri ,s〉]2}i∈[Q]

≈c {[ri ]1, [ri ]2, [τi ]1, [τi ]2 }i∈[Q]

where ri ,s ←Zd
p and τi ←Zp for all i ∈ [Q]. See Lemma 5 for more details.

H3: Identical to H2 except that the challenge ciphertext and secret key for Fi are as follows:

ct∗ = (
[(x‖ U )M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1), Ẽnc2(m̃sk2)

)
skFi =

(ãKeyGen1(m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi , U T>B>〉−τi ]2)ãKeyGen2(m̃sk2, ([Ri ]1, [ri ]1), [τi ]1)

)

where U ←Zn×k
p . We claim that H2 ≈c H3. This follows from the MDDHk

k,n assumption:

[A]1, [AS]1 ≈c [A]1, [U]1

where A ←Zn×k
p , S ←Zk×k

p and U ←Zn×k
p . This is analogous to “G1 ≈c G2” for Π1 in Section 4.3 except that we

will use MDDHk
k,n instead of BI-MDDHk

k,n assumption. In particular, in the reduction, we simulate

[A>Fi B−Ri ]2, [Ri ]1 as [Ri ]2, [A>Fi B−Ri ]1

[〈Fi ,AST>B〉−τi ]2, [τi ]1 as [τi ]2, [〈Fi ,AST>B〉−τi ]1

thanks to Ri ←Zk×k
p and τi ←Zp . This ensures that the reduction only requires [A]1, [AS]1 (on the right-hand

side) instead of [A]2, [AS]2 (on the left-hand side) in order to simulate secret keys. See Lemma 6 for more details.
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H4: Identical to H3 except that the challenge ciphertext and secret key for Fi are as follows:

ct∗ = (
[(x‖U)M∗]1, [(y‖ V )M]2, Ẽnc1(m̃sk1), Ẽnc2(m̃sk2)

)
skFi =

(ãKeyGen1(m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi ,U V> 〉−τi ]2)ãKeyGen2(m̃sk2, ([Ri ]1, [ri ]1), [τi ]1)

)

where U ←Zn×k
p and V ←Zm×k

p . We claim that H3 ≈c H4. This follows from the MDDHk
k,m assumption:

[B]2, [BT]2 ≈c [B]2, [V]2

where B ←Zm×k
p , T ←Zk×k

p and V ←Zm×k
p . This is analogous to “G2 ≈c G3” for Π1 in Section 4.3. We omit the

detail.

H5: Identical to H4 except that the challenge ciphertext and secret key for F are as follows:

c̃t∗ = (
[Ũ]1, [Ṽ]2 , Ẽnc1(m̃sk1), Ẽnc2(m̃sk2)

)
s̃kFi =

(ãKeyGen1(m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi ,ŨṼ>〉−τi −〈Fi ,xy>〉]2 )ãKeyGen2(m̃sk2, ([Ri ]1, [ri ]1), [τi ]1)

)

where Ũ ←Z
n×(k+1)
p , Ṽ ←Z

m×(k+1)
p . We claim that H4 ≈c H5. This follows from the selective SIM-security of π2

under msk= (U,V). This is analogous to “G3 ≈c G4” for Π1 in Section 4.3. We omit the detail.

Note that H5 can be simulated using the simulator described in Section 5.2 by setting µ= 〈F,xy>〉.

5.4 Lemmas

Let Advi (λ) be the advantage function of A in Gi . We prove H1 ≈c H2 and H2 ≈c H3.

Lemma 5 (H1 ≈c H2). There exists algorithm B3 such that Time(B3) ≈Time(A) and

|Adv1(λ)−Adv2(λ)| ≤Adv
BI-MDDHd ,Q

B3
(λ).

Proof. This follows from the BI-MDDHd ,Q assumption which implies that, for S,T,Ri ←Zk×k
p , we have

{[ri ]1, [ri ]2, [〈Ri ,ST>〉+〈ri ,s〉]1, [〈Ri ,ST>〉+〈ri ,s〉]2}i∈[Q]

≈c {[ri ]1, [ri ]2, [τi ]1, [τi ]2 }i∈[Q]

where ri ,s ←Zd
p and τi ←Zp for all i ∈ [Q]. On input

S,T, {Ri , [ri ]1, [ri ]2, [zi ]1, [zi ]2}i∈[Q]

where either zi = 〈Ri ,ST>〉+〈ri ,s〉 or zi = τi ←Zp for all i ∈ [Q], the algorithm B3 works as follows:

(Setup) Run

(mpk1,m̃sk1) ← �Setup1(1λ,1k ,1d ), (mpk2,m̃sk2) ← �Setup2(1λ,1k ,1d )

and sample A ←Zn×k
p , B ←Zm×k

p . Output

mpk= (
mpk1, mpk2, [A]1, [B]2

)
.

(Challenge) Once receiving the semi-adaptive challenge (x,y), create the challenge ciphertext as in H1 (or H2)

using A,B,m̃sk1,m̃sk2 sampled during Setup and S,T ←Zk×k
p that are provided in the input.
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(Key Queries) On input Fi , sample Ri ,ri honestly and output

skFi =
(ãKeyGen1(m̃sk1, ([A>Fi B−Ri ]2, [−ri ]2), [〈Fi ,AST>B>〉− zi ]2)ãKeyGen2(m̃sk2, ([Ri ]1, [ri ]1), [zi ]1)

)
using [ri ]1, [ri ]2, [zi ]1, [zi ]2 given out in the input.

(Analysis) Observe that, when zi = 〈Ri ,ST>〉 + 〈ri ,s〉, the simulation is identical to H1; when zi = τi ← Zp , the

simulation is identical to H2. This readily proves the lemma. ut
Lemma 6 (H2 ≈c H3). There exists algorithm B4 such that Time(B4) ≈Time(A) and

|Adv2(λ)−Adv3(λ)| ≤Adv
MDDHk

k,n

B4
(λ).

Proof. This follows from MDDHk
k,n assumption:

[A]1, [AS]1 ≈c [A]1, [U]1,

where A ← Zn×k
p , S ← Zk×k

p and U ← Zn×k
p . On input [A]1 and [Z]1 where either Z = AS or Z = U ← Zn×k

p , the

algorithm B4 works as follows:

(Setup) Run

(mpk1,m̃sk1) ← �Setup1(1λ,1k ,1d ), (mpk2,m̃sk2) ← �Setup2(1λ,1k ,1d )

and sample B ←Zm×k
p . Output

mpk= (
mpk1, mpk2, [A]1, [B]2

)
using [A]1 given out in the input.

(Challenge) Once receiving the semi-adaptive challenge (x,y), sample T ← Zk×k
p and M∗,M ← Z

(k+1)×(k+1)
p with

M∗M> = I. Output

ct∗ = (
[(x‖Z)M∗]1, [(y‖BT)M]2, Ẽnc1(m̃sk1), Ẽnc2(m̃sk2)

)
using [Z]1 given out in the input.

(Key Queries) On input Fi , sample Ri ←Zk×k
p , ri ←Zd

p ,τi ←Zp and output

skFi =
( ãKeyGen1(m̃sk1, ([Ri ]2, [−ri ]2), [τi ]2)ãKeyGen2(m̃sk2, ([A>Fi B−Ri ]1, [ri ]1), [〈Fi ,ZT>B>〉−τi ]1)

)
using [A]1 and [Z]1 given out in the input. Note that both T and B are known.

(Analysis) Observe that, when Z = AS, the simulation is identical to H2; especially, all keys given to the adversary

has the same distribution as those in H2 by the statistical argument

H2︷ ︸︸ ︷(
[A>Fi B−Ri ]2, [Ri ]1,

[〈Fi ,AST>B>〉−τi ]2, [τi ]1

)
i∈[Q]

≈s

simulation with Z = AS︷ ︸︸ ︷(
[Ri ]2, [A>Fi B−Ri ]1,

[τi ]2, [〈Fi ,AST>B>〉−τi ]1

)
i∈[Q]

;

where Ri ← Zk×k
p and τi ← Zp ; when Z = U ← Zn×k

p , the simulation is identical to H3; especially, all keys given to

the adversary has the same distribution as those in H3 by the statistical argument

H3︷ ︸︸ ︷(
[A>Fi B−Ri ]2, [Ri ]1,

[〈Fi ,UT>B>〉−τi ]2, [τi ]1

)
i∈[Q]

≈s

simulation with Z = U︷ ︸︸ ︷(
[Ri ]2, [A>Fi B−Ri ]1,

[τi ]2, [〈Fi ,UT>B>〉−τi ]1

)
i∈[Q]

.

where Ri ←Zk×k
p and τi ←Zp . This readily proves the lemma. ut
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6 Concrete Schemes

In this section, we present two concrete QFFE schemes instantiated fromΠ1 andΠ2, respectively. For both of them,

we use the parameter leading to the best efficiency. Recall that, we always instantiate (two-input) IPFE1 and IPFE2

using Wee’s selectively SIM-secure construction under SXDH.

6.1 Concrete scheme from Bi-DLIN

We instantiate our first QFFE scheme Π1 with k = 2. Namely, the semi-adaptive SIM-security is based on Bi-DLIN

assumption as in [Gay20]. Our scheme has constant-size keys and shorter ciphertexts. The scheme is as follows:

– Setup(1λ,1n ,1m): Sample

A ←Zn×2
p , B ←Zm×2

p , d ←Z2
p , W ←Z4×2

p .

Output

mpk= (
[A]1, [B]2, [d,Wd]1

)
and msk= (

A, B, d, W
)
.

– Enc(mpk, (x,y)): Let (x,y) ∈Zm
p ×Zn

p . Sample

(M,M∗) ←Z3×3
p ×Z3×3

p

such that M∗M> = I. Sample

S,T ←Z2×2
p , s ←Zp

and output

ctx,y =
(

[(x‖AS)M∗]1, [(y‖BT)M]2, [vec(ST>)+Wds]1, [ds]1
)

∈G3n
1 ×G3m

2 ×G4
1 ×G2

1 .

– KeyGen(msk,F): Let F ∈Zn×m
p . Output

skF = (
[vec(A>FB)]2, [W>vec(A>FB)]2

) ∈G4
2 ×G2

2 .

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2, [c3]1, [c4]1 ) and skF = ( [k1]2, [k2]2 ).

Compute

[L]T ← e([c>3]1, [k1]2) ·e([c>4]1, [k2]2)−1,

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉, [Z ]T = [D −L]T

and recover Z from [Z ]T via brute-force DLOG.

6.2 Concrete scheme from SXDH and Bi-DLIN

We instantiate our first QFFE scheme Π2 with k = 1 and d = 2. Namely, the semi-adaptive SIM-security is based on

SXDH and Bi-DLIN assumption. This gives even shorter keys and ciphertexts thanks to the smaller k. The scheme

is as follows:

– Setup(1λ,1n ,1m): Sample

a ←Zn
p , b ←Zm

p , d1,d2 ←Z2
p , W1,W2 ←Z3×2

p .

Output

mpk = (
[a]1, [b]2, [d1,W1d1]1, [d2,W2d2]2

)
msk = (

a, b, d1,d2, W1,W2
)
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– Enc(mpk, (x,y)): Let (x,y) ∈Zm
p ×Zn

p . Sample

(M,M∗) ←Z2×2
p ×Z2×2

p

such that M∗M> = I. Sample

s, t , s1, s2 ←Zp , s ←Z2
p

and output

ctx,y =

[(x‖as)M∗]1, [(y‖bt )M]2

[
(

st
s

)+W1d1s1]1, [d1s1]1

[
(

st
s

)+W2d2s2]2, [d2s2]2

 ∈G2n
1 ×G2m

2 ×G3
1 ×G2

1 ×G3
2 ×G2

2 .

– KeyGen(msk,F): Let F ∈Zn×m
p . Sample r ←Zp , r ←Z2

p and output

skF =
([(

a>Fb−r−r

)]
2

,
[
W>

1 ·
(

a>Fb−r−r

)]
2

, [
( r

r
)
]1, [W>

2

( r
r
)
]1

)
∈G3

2 ×G2
2 ×G3

1 ×G2
1 .

– Dec(ctx,y,skF): Parse

ctx,y = ( [C1]1, [C2]2, [c3]1, [c4]1, [c5]2, [c6]2 ), skF = ( [k1]2, [k2]2, [k3]1, [k4]1 )

Compute

[L1]T ← e([c>3]1, [k1]2) ·e([c>4]1, [k2]2)−1, [L2]T ← e([k>
3]1, [c5]2) ·e([k>

4]1, [c6]2)−1,

[P]T = e([C1]1, [C>
2]2), [D]T = 〈F, [P]T 〉, [Z ]T = [D −L1 −L2]T

and recover Z from [Z ]T via brute-force DLOG.
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A Selective SIM-Security of π1 and π2

In this section we sketch the proofs of selective SIM-security of π1 and π2, respectively. For this, we first sketch the

proof for (5) shown in the Introduction in detail and describe the difference with π1 and π2, respectively.

Game Sequence for (5). To prove the selective SIM-security of (5), we will employ the following game sequence.

G0: Real game.

G1.1: Identical to G0 except that the challenge ciphertext for (x,y) is:

[(x+ Ua ‖U)M∗]1, [(y‖V− ya> )M]2

where a ←Zk
p . We claim G1.1 ≈s G0. This follows from change of basis:

(M∗,M) 7−→ (P∗M∗,PM) where P∗ =
(

1 0

a I

)
,P =

(
1 −a>

0 I

)

G1.2: Identical to G1.1 except that the challenge ciphertext for (x,y) and a secret key for F are:

ct = [(x+Ua‖U)M∗]1, [(y‖V−��ya>)M]2;

skF = [〈F,UV>+ Uay> 〉]T

where a ←Zk
p . We claim G1.2 ≈s G1.1. This follows from change of variable:

V 7−→ V+ya>.
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G1.3: Identical to G1.2 except that the challenge ciphertext for (x,y) and a secret key for F are:

ct = [(x+ u ‖U)M∗]1, [(y‖V)M]2;

skF = [〈F,UV>+ uy> 〉]T

where u ←Zn
p . We claim G1.3 ≈c G1.2. This follows from the MDDH1

k,n assumption:

[U]1, [Ua]1 ≈c [U]1, [u]1

where U ←Zn×k
p , a ←Zk

p and u ←Zn
p .

G2.1: Identical to G1.3 except that the challenge ciphertext for (x,y) is:

[(x+u‖U− (x+u)a> )M∗]1, [(y+ Va ‖V)M]2

where a ←Zk
p . We claim G2.1 ≈s G1.3. This is analogous to G1.1 ≈s G0 and follows from change of basis:

(M∗,M) 7−→ (PM∗,P∗M)

where P,P∗ are defined as before. Here we exchange the role of P,P∗.

G2.2: Identical to G2.1 except that the challenge ciphertext for (x,y) and a secret key for F are:

ct = [(x+u‖U−����(x+u)a>)M∗]1, [(y+Va‖V)M]2;

skF = [〈F,UV>+ (x+u)a>V> +uy>〉]T

where a ←Zk
p . We claim G2.2 ≈s G2.1. This is analogous to G1.2 ≈s G1.1 and follows from change of variable:

U 7−→ U+ (x+u)a>.

G2.3: Identical to G2.2 except that the challenge ciphertext for (x,y) and a secret key for F are:

ct = [(x+u‖U)M∗]1, [(y+ v ‖V)M]2;

skF = [〈F,UV>+ (x+u)v> +uy>〉]T

where v ← Zm
p . We claim G2.3 ≈s G2.2. This is analogous to G1.3 ≈s G1.2 and follows from the MDDH1

k,m as-

sumption:

[V]2, [Va]2 ≈c [V]2, [v]2

where V ←Zm×k
p , a ←Zk

p and v ←Zm
p .

G3: Identical to G2.3 except that the challenge ciphertext for (x,y) and a secret key for F are:

ct = [( u ‖U)M∗]1, [( v ‖V)M]2;

skF = [〈F,UV>+ uv>−xy> 〉]T

where u ←Zn
p and v ←Zm

p . We claim G3 ≈s G2.3. This follows from change of variables:

(u,v) 7−→ (u−x,v−y).

Finally, we note that the distribution in G3 is identical to the simulator (see (4)) by setting

(u‖U)M∗ = Ũ and (v‖V)M = Ṽ

which are uniformly distributed over Zn×(k+1)
p and Zm×(k+1)

p , respectively, and gives us UV>+uv> = ŨṼ>.
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Game Sequence for π1. The scheme π1 is identical to (5) except that the secret key for F is over G2:

skF = [〈F,UV>〉]2

The simulator and game sequence are also similar. The main difference is that we need BI-MDDH1
k,n to prove

G1.3 ≈c G1.2 since U and Ua live over G2 in skF.

Game Sequence for π2. The scheme π2 is identical to (5) except that the secret key for F consists of two elements

from G1 and G2, respectively:

skF = (
[τ]1, [〈F,UV>〉−τ]2

)
.

The simulator and game sequence are also similar. The main difference is that when we prove G1.3 ≈c G1.2 we

equivalently simulate the secret key as:

skF = (
[〈F,UV>+ Uay> 〉−τ]1, [τ]2

)
such that the reduction only uses [U]1, [Ua]1 as for (5) and avoid the use of bilateral MDDH for π1.

29


	Simple and Efficient FE for Quadratic Functions

