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This note describes several attacks on the MALICIOUS framework for cre-
ating backdoored tweakable block ciphers [2]. It is shown that, although the
embedded malicious tweak pair itself is hard to recover, it is feasible to find
additional weak tweak pairs that can be used to mount key-recovery attacks.
Full-round attacks on most instances of LowMC-M are given. Our attacks are
far from optimized and significant future improvements are to be expected.

We focus on low-data attacks, since these are the most relevant for typical use-
cases of LowMC. In addition, this implies that our attacks can not be prevented
by limiting the amount of data that can be encrypted using the weak tweak pair.

Despite our findings, we believe that the MALICIOUS framework can be
used to create backdoored variants of LowMC provided that the parameters are
modified.

1 DMalicious and Weak Tweak Pairs

Let n denote the block size in bits, k the key size, s the size of the nonlinear
part, and r the number of rounds. Peyrin and Wang [2] argue that, since the
malicious round tweak difference is unique with overwhelming probability, find-
ing a malicious tweak pair costs roughly 2("+("=1)5)/2 eyaluations of the XOF
which is used as the tweak-schedule (assuming the tweak is long enough).

As noted by the authors, this reasoning does not take into account the exis-
tence of tweak pairs which might be a backdoor for a different input difference.
In the following section, we compute the probability that this is the case for a
random round-tweak difference. It will be argued that some weak tweak pair can
be found at a cost of roughly 2("*=")/2 XOF evaluations. Although this is a much
lower cost than for finding the backdoor itself, it does not allow an attacker to
find a malicious tweak pair in time lower than the security level of 2* for any of
the LowMC-M instances because rs — n > 2k.

Nevertheless, it is feasible to find ‘weak’ tweak pairs such that a probability
one related-tweak differential exists for some smaller number of rounds. It will
be shown in Section 2 how such a pair can be used to set up a key-recovery
attack on full-round instances of LowMC-M.

1.1 Counting Weak Round Tweak Differences

A round-tweak difference (Atg, Aty,...) will be called weak if there exists a
differential characteristic with input difference A; € Fy such that the nonlinear
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part of the state is inactive in the first 7 rounds. Note that At; € Fy, but the
bottom n — s coordinates are zero when 7 > 0. The difference before the S-box
layer in round i + 1 > 1 is given by A, = L; A; + At; where L; € F3*™ is the
linear layer of round 4. Consequently,

Ai = (L’iLi—l e Ll)Al + Z(L]Lj—l . Ll)At]
7=0

Let |-]s denote the first s coordinates of some vector. The tweak difference
(Atg, Atq, .. .) does not activate the nonlinear part in the first r rounds if

!
|[(LiLi—1 -+ Lj1) Atj)s = [(LiLi—y - L) Aq s,
7=0

for any [ € {1,...,r}. For any fixed choice of the tweak difference variables, this
results in a system of s X r linear equations in n unknowns. For random linear
layers, and assuming s x r > n, such a system will be inconsistent with high
probability. More precisely, the probability that a random choice of the first r
round tweaks results in a right hand side that makes the system consistent, will
be 2775 Indeed, the column space of the coefficient matrix of the linear system
is of dimension n in an ambient space of dimension r x s [2, p. 21-22].

1.2 Finding Weak Round Tweak Differences

A tweak pair such that the round-tweak differences (Aty, ..., At,_1) result in a
consistent linear system can be found by using collision search methods at the
cost of roughly 2("$=)/2 XOF evaluations, and including the cost of a multipli-
cation by a (rs —n) X rs matrix to account for the checking of the consistency of
the system of equations above. The amount of memory required depends on the
input size of the XOF H : F§ — IE‘721+(T71)5. It will be assumed that £ > (rs—n)/2,
which will be the case throughout this note.

Specifically, let A € ngx(m_") be a matrix with column space the orthogo-
nal complement of the column space of the coefficient matrix of the system of
equations. Let B € ]F;SX (n+(r=Dsl b the matrix mapping the round tweak to the
right-hand side of the equations. The goal is to find a collision for the function
f TS — F°~™ defined by f(t) = AT x B x H(t).

If £ > (rs—mn)/2, then a parallel collision search using Van Oorschot-Wiener
collision search costs roughly 2("5=™)/2 extended (by a single matrix-vector mul-
tiplication) XOF evaluations with little memory [4]. If £ = (rs — n)/2, then a
golden collision search with a cost of O(23¢/2/v/M) evaluations and M memory
can be used.

To conclude, a weak tweak pair can be found with a computational cost
of 2(rs=7)/2 extended XOF evaluations. We assume the attacker is capable of
2¢ < 2k guch evaluations. Note that a small constant factor in the collision
search cost is neglected here, which can be justified by arguing that an extended



XOF evaluation takes significantly less time than a single LowMC-M evaluation.
The memory cost depends on ¢, which we assume to be at least as large as the
security level k.

2 Key-Recovery Attacks

This section describes two key-recovery approaches that exploit weak round-
tweak differences: a simple differential-linear attack and a difference-enumeration
attack. The latter attack is simply an adaptation of the attack by Rechberger et
al. [3]. Both attacks can be used in the low-data setting.

2.1 Simple Differential-Linear Attack

By the results in the previous section, an adversary capable of 2¢ extended
XOF evaluations can find a weak tweak pair such that there exists a differential
characteristic with probability one over the first r; = [(2¢ 4+ n)/s] rounds of
LowMC-M. Denote this first part of the cipher by Fy.

By choosing an appropriate input mask » and output mask v, one can always
find a linear trail over 7o = |n/s| rounds of LowMC which does not activate
any S-boxes. This approximation over the second part of the cipher, F», can be
combined with the deterministic differential Ay — Ay over Fi. Indeed,

v (FyoF)(z+ A1) =v' (FaoFy)(x) +u' A,

Consequently, one obtains a differential-linear distinguisher for r1 + 3 ~ 2(c +
n)/s rounds of LowMC-M. The data requirements of the distinguisher are min-
imal.

Finally, we can set up a key-recovery attack based on this distinguisher. The
last r3 rounds of LowMC can be decrypted by guessing r3 X s bits. For each such
guess, the attacker can proceed as follows:

1. Partially decrypt the ciphertext pairs through the last r3 rounds. The decryp-
tion operation requires one unstructured and one highly structured matrix
multiplication per round. When the number of tested pairs is small and r3
is much smaller than the total number of rounds, the total time-complexity
of this computation does not exceed that of a single LowMC-M evaluation.

2. On average, two pairs will suffice to discard a wrong guess.

Once the last r3 rounds have been decrypted, the attacker may proceed to de-
crypt the remaining rounds in a round-by-round manner. To ensure that the
candidate key is likely to be unique in each step, r3 X s plaintext pairs suffice.
In this case, the memory usage is low and the time requirements are dominated
by the first step, which has a total computational complexity of less than 273°
LowMC-M evaluations. As shown in Table 1, a full-round attack is possible for
several instances of LowMC-M.



Table 1. Cost of the basic differential-linear attack assuming n = k, and for several
values of c¢. Only instances for which a full-round attack is possible are shown. The
data requirements could be reduced (but not below 4) at a modest increase in time
complexity.

Key-recovery
s r r1 72 r3logy(Time) Data

3208 128 42 38 114 228

n =128 c=128 6104 642119 114 228
9 70 421414 126 252

¢ — 256 3 384 256 85 43 129 258

n = 256 - 9129 8528 16 144 288
c=196 3 384 216 85 83 249 498

The number of rounds covered by this attack is at most

e 2] 5]+ D)

If ¢ = k, then the above simplifies to roughly (n + 4k)/s rounds.

2.2 Modified Difference Enumeration Attack

This section gives a better attack by slightly modifying the difference-enumeration

attacks from Rechberger et al. [3]. For simplicity, we consider only the case d = 1.
The attack covers the first 1 rounds of the cipher using a deterministic

difference. In LowMC without a tweak, the largest possible choice of r; is!

n
pLowMC _ {7J '
S

In LowMC-M, however, this number of rounds can be significantly increased by
choosing a good weak tweak pair. Finding a weak tweak pair can be done in time
2(rs=n)/2 For an attacker with the capability of 2¢ extended XOF evaluations,
the number of rounds r; thus increases to

{20 + nJ
T = .
s
Let § denote the average number of possible output differences over the S-box
layer for a uniform random input difference. Recall that we have § = (29/8)/3

for LowMC [3, Sect. 3.1.3]. In the next ro rounds, all 62 possible differences
in the forward direction are enumerated. In the final r3 rounds, the differences

L A few extra rounds may be possible if s does not divide n, but this will be ignored
for simplicity.



are enumerated in the backward direction. The differences are matched in the
middle, which means that §"27" < 2" should hold in order to avoid random
collisions. That is, ro + 73 < n/logy § must hold. The complexity of this dis-
tinguisher is dominated by the list creation, which amounts to max{§"2,4"s}
memory accesses.

For key-recovery, one also has to compute the characteristic (which is likely
to be unique) followed by the inputs. This can be done in roughly §"2 4§ time
for each input pair using a meet-in-the-middle approach. Due to the fact that
the LowMC S-box is differentially 2-uniform, the key-recovery step requires only
two plaintext pairs. The time-complexity of the entire attack is thus dominated
by 2(6™ 4 §"3) storage operations. The storage requirements are n(d" + 0"3)
bits. To optimize the time-complexity, we set ro & r3. Specifically,

r—r r—r
ng{ 21J and 7‘32[ 21—‘.

The complexities for full-round LowMC-M are given in Table 2. For all instances
except those with the largest value of s (for n = 128, s = 90 and for n = 256,
s = 120), one can find a weak tweak pair in less than 2% time such that the
attack improves over brute-force.

2.3 Other Strategies

The attacks described above both apply to the low-data setting. In principle, the
LowMC-M specification allows for up to 264 chosen plaintexts. To exploit this
data, it would be natural to consider a standard differential attack. Based on the
calculations in the original LowMC paper [1] related to differential characteris-
tics, one would conclude that full-round attacks are possible. Nevertheless, the
estimates in [1] — coming from the design point of view — are very conservative. A
more detailed investigation seems to be necessary to obtain good cost estimates.

Similarly, the differential-linear attack could be significantly improved by
adding a statistical part.
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Table 2. Cost of the difference-enumeration attack assuming n = k, and for several
values of c¢. Only instances for which a full-round attack is more efficient than brute
force are listed. Memory requirements are listed in bits.

Key-recovery
s r 71 T2 r3log,(Time) log,(Memory) Datal

3208 128 40 40 76.32 82.32 4

— 128 6104 64 20 20 76.32 82.32 4

= 9 70 42 14 14 80.04 86.04 4

30 23 12 5 6 112.48 118.48 4

n =128 3208106 51 51 96.76 102.76 4
c =96 6104 53 25 26 97.72 103.72 4

9 70 35 17 18 101.36 107.36 4

3208 85 61 62 116.55 122.55 4

c=64 6104 42 31 31 117.19 123.19 4

9 70 28 21 21 119.05 125.05 4

3384 256 64 64 120.91 127.91 4

c =256 9129 85 22 22 124.63 131.63 4

60 21 12 4 5 186.80 193.80 4

n = 256 3384213 85 86 161.14 168.14 4
c =196 9129 71 29 29 163.64 170.64 4

60 21 10 5 6 223.96 230.96 4

¢ — 128 3 384 170 107 107 200.80 207.80 4

o 9129 56 36 37 207.27 214.27 4

 As noted by Rechberger et al. [3, §4.2.1], it might be necessary to use slightly more
than two pairs to ensure distinct differences over the S-boxes are available.



