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Abstract-  A  new  post-quantum,  hash-based  signature  (HBS)
scheme is introduced.  In known HBS, the size and cost of each
signature increase as the number of messages one wishes to sign
increase.  In  real-world  applications,  requiring  large  volumes  of
signatures, they can become impractical. This paper studies HBS in
a blockchain, like bitcoin: a public, decentralized database.  The
proposed HBS scheme shows that, when all signatures are known,
quite  the  opposite  is  possible:  the signatures can become more
efficient as the number of signatures grows. Authenticating large
volumes  of  messages  results  less  costly  on  average  than
authenticating only a few.

Index  Terms—post-quantum  cryptography,  hash-based  signatures,
authentication, blockchain.

I. INTRODUCTION

The security  of  classical  signatures  -such  as  RSA,  DSA,
ECDSA, and Schnorr- relies both on the existence of a secure
hash function, and the intractability of a problem such as the
discrete logarithm. In contrast,  hash-based signatures (HBS)
rely  only  on  the  first.  This  property  makes  HBS  resistant
against quantum computers, capable of breaking the discrete
logarithm using Shor's algorithm [1]. 

Despite  their  tighter  security,  hash-based  signatures  never
reached widespread acceptance for practical reasons.

HBS transform a hash function into a  one-time signature
(OTS) scheme,  only useful  to authenticate one message per
key. Then, the OTS is transformed into a many-times scheme
(MTS), useful to sign an unlimited (or at least large) number
of  messages.  In  both,  the  difficulty  of  breaking  a  signature
reduces to the problem of breaking the hash function they are
built from.

In  known MTS constructions,  the  size  and  cost  of  each
signatures depends on the maximum number of signatures that
can be authenticated from a single key: if a key is used to sign
a million signatures, those signatures will be more costly and
much larger than others from a key that can only sign ten. In
applications that require the authentication of a large number
of messages, the size and cost can grow to the point of being
impractical.

This paper studies the generation of hash-based signatures
in conjunction with a blockchain, like bitcoin. A blockchain is
a public, decentralized, immutable database. Once inserted in
a blockchain, signatures become public.

The proposed scheme shows that, when all signatures are
known, it is possible to construct many-times signatures more
efficient than the OTS they are built from, rather than less. A
method is introduced to transform a one-time signature into an
unlimited many-times scheme.

The  size  of  each  signature  remains  constant,  and  the
verification cost decreases as the number of signatures grows.

II. 2. BACKGROUND

A. One-Time Signatures

Lamport proved a method to transform a hash function into
a signature that is secure as long as each key is used only once
[2]. 

The one-time signature (OTS) does not rely on the hardness
of some arithmetic  problem like the discrete  logarithm, nor
any  other  assumption.  Breaking  the  OTS  reduces  to  the
problem of breaking the hash function it is build from. So, an
OTS is secure as long as the hash function is secure.

    In practice,  usually a keyed hash function is used (for
example, an HMAC) to make each hash instance unique and
increase the difficulty to an attacker [3].

There are many different one-time signature schemes. This
paper will consider a broad family of signatures that includes
Lamport [2], and Winternitz [4] as special cases.

The  proposed  scheme  requires  an  OTS  that  uses  a  hash
chain as its main building block (Fig. 1, left). To construct a
chain,  a  hash function is applied a number of times over a
value  vn in the private key, until obtaining a value  pn in the
public key. A signature requires multiple chains, represented
by each column in the illustration (Fig. 1, right).
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Generally, an OTS works as follows:

First, a private key is created. The key is an  L-tuple, with
each element chosen at random, with the same size in bits as
the hash function output.

Then,  to  create  the  keys,  Alice  iterates  the  keyed  hash
function z times over each value in the private key. The result
is the public key.

To sign a message, Alice maps a hash m of the message into
a tuple u. The function that maps m into u depends on the OTS
algorithm.  Through  this  paper, u will  be  referred  as the
verification  tuple.  Each  part  in  the  verification  tuple  takes
values in the range 0...z.

Alice computes a complementary signing tuple y, such that
y  and u  add  up  to  the  L-tuple  (z,  z,  ...).  With  each  value
satisfying  yn = z - un.

Alice  iterates  the  hash  function  over  each  value  in  the
private key, a number of times given by y. And publishes the
result  as  the  signature.  The signature  is  represented  by  the
dotted blocks in the illustration.

Then, to verify Bob completes the path from the signature
to the top of the graph, iterating the hash function u times over
each  value  in  the  signature.  The  signature  is  valid  if  the
resulting hash outputs and the public key match.

In the example (Fig. 1), with L=6 and z=4, the tuple u is (2,
1, 0, 2, 1, 2), and the corresponding  tuple y is (2, 3, 4, 2, 3, 2).
Where:

(2, 1, 0, 2, 1, 2) +
(2, 3, 4, 2, 3, 2) =
(4, 4, 4, 4, 4, 4)

Security:

Once a signature becomes public, all hashes going from the
signature to the public key become public as well. They can be
easily computed by applying the hash function.

For a OTS scheme to be secure against forgery,  it  means
that those hashes    must be insufficient to generate another
signature. That condition restricts the set of tuples that can be
valid within a scheme.

Applying the hash function allows to compute hashes that
correspond  to  smaller  un values,  and  their  complementary
larger yn values. Then, in every possible pair of valid u tuples,
each tuple must have at least one part  un that is greater than
the same part in the other tuple. In other words:

If a verification tuple u corresponds to a valid
signature, a second, distinct tuple u' with each

u'n ≤ un does not (lemma 1).

For example, if a tuple  (0, 1, 2, 3) corresponds to a valid
signature within a scheme, a second tuple (0, 0, 2, 3) cannot be
valid, since all of its values can be computed from the first.

B. Many-Times Signatures
 
Merkle proved that a one-time signature can be transformed

into  a  many-times  signature  scheme  [5].  To  do  so,  he
introduced the Merkle Tree 

To  create  the  keys,  Alice  generates  as  many  OTSs  as
messages she wishes to sign. The public keys of the OTSs are
hashed and placed at the leaves of the tree. Then, all values are
hashed in pairs until reaching the root of the tree at the top.
The root is the many-times public key.

To sign a message, Alice chooses an unused OTS and makes
public the hashes needed to authenticate the OTS to the root
(the purple values in the figure).

There  are  later  variants  of  the  scheme  (XMSS,  and
SPHINCS) [6] [8]. They are out of the scope of this paper, so
they'll be commented briefly. In the variants, each OTS is used
to  authenticate  the  root  of  another  tree.  The  process  is
repeated, forming and hypertree. An OTS from the final tree is

Fig. 1

Fig. 2
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then  used  to  authenticate  the  actual  message.  There  is  no
longer need to compute all the final OTSs when creating the
keys. Thus it is possible to generate keys able to authenticate
very  large  number  of  messages.  But,  by  replacing  simple
hashes in the authentication path with intermediate OTSs, the
schemes increase the size of each signature and its verification
cost.

The Problem:

The Merkle Tree itself has proven to be useful  in lots of
applications.  But  it  never  reached  widespread  use  as  a
signature scheme.

In the Merkle signature and its variants, the size and cost
depend on the number of signatures. As the number grows, the
tree becomes larger. And, as a result, the size and cost of each
signature increase as well. The signatures can get quite large,
to the point of being impractical for most applications.

In addition,  the signature  is  stateful.  The signer  needs to
keep track of the number of messages he signs to avoid using
an OTS more than once.  A memory failure could make the
signer reuse an OTS and degrade the security.

C. Blockchain

Usually,  the  security  of  transactions  relies  on  the
assumption  that  a  third  party  acting  as  a  middleman  (for
example, a bank) is honest. Bitcoin [7] removes the need for a
middleman. Rather than relying in people and institutions not
misbehaving,  the  authenticity  and  correctest  of  the
transactions are secured using a cryptographic construction.

To do so, the blockchain (or chain of blocks) is introduced:
it is a timestamped, decentralized, and immutable  database.
Each  block  in  the  chain  contains  a  set  of  signed  messages
combined in a Merkle Tree.

A blockchain,  as  a  cryptographic  primitive,  ensures  that
anyone observing a block is observing the same information,
without  modifications  nor  omissions.  Once  included  in  the
blockchain,  anyone  can  observe  the  number  of  signatures
generated from each key, and what those signatures are.

III. A SIMPLE SYNCED SIGNATURE

This section explains the basics of how synced signatures
work. First, how chains are created. Then, how those chains
are  used   generate  synced  signatures  in  conjunction with  a
blockchain.

A. Stream

To sign many messages, rather than creating a new set of
chains for each signature, it would be better to have one large
set  of many chains.  We will take a few as needed for  each
signature and prove they are members of the set.

Let’s define a long but finite set of chains, as in figure 3,
and hash each public key at the top, from right to left. Each
hash value hn takes as input the public key below it (pn) and
the  hash  value  to  the  right  (hn+1).  Will  make  public  the
leftmost hash h0.

A  sequence  of  public  keys p0,  p1,  ...,  pn   can  be
authenticated against  h0 by including the hash value  hn+1. To
verify the values, they must be hashed from right to left, the
same way the stream was created, to compute the sequence
h’n,  h’n-1,  ...,  h’0.  The resulting value  h’0 must  be checked
against h0.

Extension:

To obtain an unlimited number of signatures, it should be
possible to extend the stream as needed.  To do that,  a new
stream can be generated, and the previous one can be used to
sign a message together with the leftmost h'0 value of the new
stream:

sign (message || h'0 )

B. Signing

Let's start by generating the first signature, the same way as
with the OTS (Fig. 4, top). First, let’s map a message to its
corresponding u tuple. Then, let’s compute the corresponding
tuple y. Using the first chains from the stream, let’s iterate the
hash  function y  times  over  the  private  key  to  compute  the
signature.

Figure  4,  at  the  top,  shows  our  first  signature.  In  our
example,  u=(2,  1,  0,  2,  1,  2).  The  illustration,  to  the  left,
shows the hashes that become public. To the right, the values
from u that the chains encode.

Fig. 3
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Then, the signature and the hn value must be published to
the blockchain. Now is when things start to get a bit different.

For a one-time signature to remain secure,  it  is important
that  the  hashes  from  one  signature  are  never  reused  for
another.  This  is  usually  achieved  by  discarding  the  chains
from an OTS after its use.

But  once  the signature  is  inserted  in  a  public  blockchain
something  interesting  happens.  The  hashes  going  from  the
signature to the public key are known to everyone now, and
cannot be reused. The hashes at the bottom, from the private
key to the preimage of the signature, remain unknown. Since
everyone  can  observe  in  the  blockchain  which  hashes  are
already used, the remaining unspent hashes can be safely used
to authenticate a next signature.

Now,  Let’s  generate  a  second  signature,  using  the  set  of
chains from the past signature (we'll  call that set the stack),
and new chains from the stream.

Let’s assign the possible values in un to the unspent hashes
in each chain from the stack, from top to bottom: 0, 1, .... As
shown in figure 3 at the bottom.

To generate the signature, let’s make public the hashes that
correspond to the tuple  u  from our second message. In our
example, u=(1, 4, 2, 2, 1, 0).

Since the number of unspent hashes in the stack is smaller
than originally, some parts from u cannot be encoded by them.
When a chain from the stack is insufficient to encode a part in
u, the signer will need to take a new chain from the stream to

encode the remaining values.  From top to bottom, counting
from where we left.

In our example, the unspent hashes in the stack can encode
the following ranges of values:

a: 0...1, b: 0...2, c: 0...3, d: 0...1, e: 0...2, f: 0...1

To finish, the signer will publish the hashes in the stack that
correspond  to values  from our  tuple  u.  Four  values  can  be
encoded from u:

u: (1, , 2, , 1, 0)∅ ∅

Two positions are missing (b and  d). So, two extra chains
from the stream are needed. Let’s assign the new chains to the
missing positions (letters)  in  order:  the first  chain to b,  the
second to d.

The chains  from the stack at  those positions encoded the
values  0,  1,  2 and  0,  1  respectively.  So,  we'll  assign  the
remaining values to the stream: 3, 4 to the first chain and 2, 3,
4 to the other. From top to bottom.

Let’s append to the signature the hashes that correspond to
the two remaining positions in u :

u: ( , 4, , 2, , )∅ ∅ ∅ ∅

Figure 3, at the bottom, show our second signature. To the
left, the hashes that become public with our signature. To the
right, the values from u encoded by the the stack and the the
stream.

The  resulting  synced  signature  can  be  represented  using
three tuples: ustack, ustream, and pos:

    The  first  tuple  ustack indicates  the  number  of  hash
iterations to the first hashes in the signature,  until obtaining
the known values in the stack.

    The tuple ustream indicates the number of hash iterations
to last hashes in the signature, until obtaining the values at the
top of each chain in the stream.

    And pos indicates the positions of the used the chains in
the stack.

In our example, the mapping from u to the synced signature
is:

u = (1, 4, 2, 2, 1, 0) →
ustack, ustream, pos = (2, 3, 2, 1), (1, 0), (0, 2, 4, 5)

    Notice in the figure that in the synced signature, the 0
(zero) value of the u tuple isn't encoded by the upper known
hash. It is encoded by the hash below it instead (its preimage).
We want the signer to prove in all cases he knows a new hash

Fig. 4
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from the chain. When using the stream, that isn't  necessary,
since the hash at the top is unknown.

Size: The size of the signature is the same as before. But the
size  of  public  key  has  expanded.  Since  the  new  signature
authenticates in part  to the previous signature, that previous
signature has become part of the public key.

Cost: If the values in the verification tuple u are random with
uniform  distribution,  nearly  half  of  those  values  will  be
encoded using the chains from the stack. And the other half
will be encoded using chains from the stream. Verification will
require  nearly  half  the  number  of  hash  function  iterations.
Then, the synced signature will have the same length as the
initial signature, but nearly half the expected verification cost.

C. Security

Since  the  values  in  the  u  tuple  are  encoded  from top  to
bottom (Fig. 3), the u values known from the synced signature
are only useful to compute smaller u values.. So, the synced
signature is secure as long as the original OTS is secure (from
lemma 1, section 2.1).

In fact, the range of known values is smaller in the synced
signature than in the original OTS.

The positions (letters) within the u tuple that the chains in
the stream encode are determined by the used chains in the
stack.

Since the length of the signature is constant, a fixed number
of chains must be used. To modify those positions, an attacker
would  need  to  discard  a  known  value  and  publish  an
additional, unused value from a different chain.  Either from
the stack or from the stream. In both cases, a forgery would
require  a  value  that  is  not  known,  and  cannot  be  obtained
without breaking the hash function. In other words: 

If  the signature  consists  of  a  fixed  number of
hashes, an attacker cannot replace values from
chains at  given  positions (in  the  stack  or  the
stream)  to  a  different  set  of  positions  without
breaking the hash function (lemma 2).

Synced State:

The signatures is stateful, but the the signer does not need to
store the state. Signer and verifiers synchronize the state of the
signature using the blockchain. By observing the blockchain,
the  signer  and  the  verifiers  can  recover  the  number  of
signatures,  the  hash  values  that  were  spent  and  cannot  be
reused, and the hash values that remain unspent and can be
used to authenticate a new message.

IV. GENERALIZATION TO MANY SIGNATURES

Now,  let’s  extended  the  scheme  from  two  signatures  to
many. Each signature will be authenticate using the unspent
values from all previous chains.

A. Stack

Lets’s  create  a  stack,  containing  all  chains  with  unspent
values from previous signatures (Fig. 5).

Each chain has an spent part (in purple, above the line), that
is  already  known  and  cannot  be  reused.  And  an  unspent,
unknown  part,  that  ranges  from  the  private  key  to  the
preimage of the last known hash. The chains are sorted in the
stack in the same order they had in the stream.

After each signature,  the chains that are completely spent
will be discarded .

B. Signing

As  the  number  of  signatures  grows,  there  will  be  more
chains in the stack. To make the signature more efficient, we
want to use all of them to encode the u tuple. So, rather than
encoding the values at a position (letter) from u using a single
chain, we will split those values among multiple chains in the
stack.

Fig. 5

Fig. 6
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Let’s start by grouping the chains in the stack as evenly as
possible. And let’s assign each group to a position in the tuple
u, indicated by a letter (Fig. 6, left). Each row in the figure
contains a group of chains, and its letter.

Then, let’s assign the possible values in the u tuple to the
hashes in each group (Fig. 6, right). From top to bottom in
each chain, and from the first chain in a group to the last. The
same as before, we'll use the stream if needed to encode the
remaining values.

In the example, a tuple u=(7, 1, 12, 6, 3) is mapped to the
synced signature as follows:

u = (7, 1, 12, 6, 3) →
ustack, ustream, pos = (2, 2, 1), (2, 0), (2, 4, 16)

C. Security

The security follows the same principles as before:

From the values in the synced signature, and attacker could
only  compute  smaller  u tuple  values.  So,  the  signature  is
secure as long as the original OTS is secure (from lemma 1,
section 2.1).

Like before, the letters that correspond to the chains in the
stream are determined by the used chains in the stack. Since
the  number  of  hashes  in  the  signature  is  fixed,  an  attacker
cannot  change  the  positions  without  breaking  the  hash
function (from lemma 2, section 3.3).

V. ADAPTIVE ENCODING

To encode the verification tuple  u, the stack was split into
groups, and used a single chain from each group.

As  a  result,  there  are  combinations  of  chains  that  don't
encode any message. For example, a signature taking values
from  two  chains  in  the  first  row  (at  position  a)  has  no
meaning.

It  would  be  better  to  use  all  possible  combinations  of
chains, to maximize the number of distinct tuples the stack can
encode.  To  achieve  that,  an  adaptive  method  can  be  used,
where the values assigned to each chain depend on the chain
that was used before.

The method (Fig. 7) works as follow:

Suppose we want to encode a tuple with length Lu, and we
have a stack with a number of chains Lstack .

To  encode  the  first  position  in  u,  we'll  use  a  number  of
chains La from the stack, given by:

La = ceiling (Lstack / Lu)

Let’s  assign the  hashes  in  those  La chains  to  encode the
value from the u in the same way as before, using the stream if
necessary.

Now, suppose a chained is used at position  n in the stack,
counting from zero. The following chains  (n+1, n+2, ...)  are
not needed for this encoding. So, we will reuse them to encode
the next value from u.

Let’s recompute the number of remaining chains from the
stack, and the remaining values to encode from the tuple u:

L'stack = Lstack – (n + 1)
L'u = Lu – 1

Now, let’s recompute La, using the same equation as before.
We'll  take  the  next  La chains,  starting  from  position  n to
encode the next value from u.

The procedure must be repeated until all values from u are
encoded, as illustrated in figure 8.

The mapping in our example has become:

u = (7, 1, 12, 6, 3) →
ustack, ustream, pos = (2, 2, 1, 1), (2), (2, 3, 11, 13)

Fig. 7
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A. Security

Now,  the  position  of  each  used  chain  from  the  stack
modifies the value the next chain encodes.

Since the length of the signature is constant, to modify the
position  an  attacker  would  need  to  publish  a  value  from a
different  chain,  either  from  the  stack  or  the  stream.  Like
before, the attacker needs a value that is unknown, and cannot
be obtained without breaking the hash function (from lemma
2, section 3.3).

VI. BALANCED CHAINS

When we assign the possible values from the u tuple to the
hashes  in  the  stack,  it  is  possible  that  all  values  end  up
encoded  in  the  first  few  chains.  To  minimize  the  cost  of
verification, they should be as evenly distributed as possible
among the chains.

For  that  purpose,  let’s  limit  the amount  assigned  to  each
chain. Suppose we have g values to encode (0...15). And La+1
chains to encode them,  La from the stack and an extra one
from the stream if needed. We will limit the values a single
chain can encode to:

limit = ceiling (g / ( La + 1))

For  example,  if  we have  16  values  to  encode  (0...15),  5
chains from the stack, and an extra chain from the stream, we
will assign at most 3.

Since  the  number  of  unspent  hashes  in  each  chain  is
random, the number may also be smaller than ideal. So, rather
than applying the same limit to all chains, we will recompute
the limit for each. In our example, after assigning the first 3
values  (0, 1, 2), we'll update the number of remaining values
and  remaining  chains,  and  we'll  use  the  same  equation  to
recompute the limit.

After assigning 3 values, we have 13 values and 4+1 chains
remaining. The next limit becomes:

limit = ceiling (13 / (4 + 1)) = 3

We will repeat the procedure, until all values are assigned to
the chains, as in table 1.

Remaining La+1 Limit Unspent Assigned

16 5+1 3 4 3

14 4+1 3 1 1

13 3+1 3 5 3

10 2+1 3 2 2

8 1+1 4 3 3

5 0+1 4 16 4

Table 1

VII. CALCULATIONS

We will estimate the cost of a synced many-times signature,
and see how it  compares  against  the OTS it  is  made of.  A
signer  will  use  the  scheme  to  sign  a  sequence  of  many
messages  m0, m1, m2,  ....  The initial,  zeroth  signature will
have  the  same  cost  as  the  OTS.  And  each  consecutive
signature is expected to cost less than the signatures before.

We'll use u tuples with length 18 and each part in the range
0...212−1.  Those  values  were  chosen  to  match  a  Winternitz
OTS with parameters bits=192 and w=12. 

We will run a large number of simulations and average the
cost from all samples. to estimate to expected cost of each of
the 100 signatures, from the 0th to the 99th. Figure 10 shows
the results.

As the plot shows (Fig 10.), the cost reduction can be quite
drastic:  the 99th signature costs only 5.8% compared to the
initial OTS.

...

...

Fig. 8

Fig. 9
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VIII. COMPARISON TO OTHER SCHEMES

Table 2 shows the public key, and signatures sizes of the
SPHINCS, and XMSSTM schemes for comparison (XMSSTM is
an optimized variation of XMSS) [9]. The synced signature is
256-bit  to  match  the  others,  with  a  Winternitz  parameter
w=10.

Scheme Total messages Public key
(bits) 

Signature
(bits)

XMSSMT 210 544 39 704

XMSSMT 220 544 44 840

XMSSMT 260 544 67 136

Sphincs-256 virt. unlimited 8 448 328 000

Synced-Wots unlimited ≥ 512 7 424

Table 2

Notice that XMSSTM, and SPHINCS signatures grow in size as
the  maximum  capacity  of  messages  grows,  while  synced
signatures remain short. For the synced signature, the size of
the public key corresponds to the initial value: since synced
signatures authenticate to past signatures,  as more messages
are signed and included in the blockchain, they became part of
the public key. 

IX. FURTHER IMPROVEMENTS

A. Limited Stack

We could impose a limit to the size of the stack, to prevent
it from growing. To achieve that, we could trim the stack after

each signature and keep a maximum number of chains: the last
ones, or the ones with most unspent values.

B. A Smaller Blockchain

As more  signatures  are  added,  many intermediate  hashes
from each  chain  are  published.  Those  values  can  be  easily
computed by iterating the hash function over the known value
at the bottom of the chain. 

Each signature contains hashes from the stack, and from the
stream.  The  ones  from  the  stream  increase  the  amount  of
information.  The  ones  from  the  stack  only  update  existing
information, since older values in the same chain in the stack
can be pruned and reconstructed from the newer one.

Then,  a  synced  blockchain  would  require  storing  all
messages, but only the hashes from the latest signatures. Most
hash values from older signatures can be removed from the
blockchain database, without any loss of information.

X. CONCLUSIONS

Previously known hash-based, many-times schemes grow in
size and cost as the number of needed signatures grows. This
can make the signatures impractical in real-world applications.

This papers has shown that is possible to transform an OTS
into  a  many-times  signature  that  is  more  efficient  than  the
OTS it is made of, rather than less.

The  proposed  scheme  permits  an  unlimited  number  of
signatures. The size of the signatures is constant, and the same
as in the OTS. The verification cost starts the same as in the
OTS and decreases with each new signature, becoming more
and more efficient as the number of signatures grows.
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