
On the Query Complexity of Constructing PRFs from
Non-adaptive PRFs?

Pratik Soni1 and Stefano Tessaro2

1 University of California, Santa Barbara, USA
pratik soni@cs.ucsb.edu

2 Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, USA

tessaro@cs.washington.edu

Abstract. This paper studies constructions of pseudorandom functions (PRFs) from non-adaptive
PRFs (naPRFs), i.e., PRFs which are secure only against distinguishers issuing all of their queries at
once.
Berman and Haitner (Journal of Cryptology, ’15) gave a one-call construction which, however, is
not hardness preserving – to obtain a secure PRF (against polynomial-time distinguishers), they
need to rely on a naPRF secure against superpolynomial-time distinguishers; in contrast, all known
hardness-preserving constructions require ω(1) calls. This leaves open the question of whether a stronger
superpolynomial-time assumption is necessary for one-call (or constant-call) approaches. Here, we show
that a large class of one-call constructions (which in particular includes the one of Berman and Haitner)
cannot be proved to be a secure PRF under a black-box reduction to the (polynomial-time) naPRF
security of the underlying function.
Our result complements existing impossibility results (Myers, EUROCRYPT ’04; Pietrzak, CRYPTO
’05) ruling out natural specific approaches, such as parallel and sequential composition. Furthermore,
we show that our techniques extend to rule out a natural class of constructions making parallel but
arbitrary number of calls which in particular includes parallel composition and the two-call, cuckoo-
hashing based construction of Berman et al. (Journal of Cryptology, ’19).

Keywords: Pseudorandom functions, black-box separations, foundations.

1 Introduction

We study the problem of building a pseudorandom function (PRF) which resists adaptive attackers
from a non-adaptive PRF (naPRF), i.e., a PRF which is only secure against adversaries choosing
their inputs non-adaptively at once. This problem has attracted substantial amounts of interest
(see e.g. [Mye04,MP04,Pie06,Pie05,MPR07,CLO10,BH15,BHKN19]) – indeed, a naPRF may ini-
tially be easier to devise than a full-fledged PRF.3 However, to date, the complexity of the best
possible transformation remains unknown,4 and natural approaches such as sequential and parallel
composition have been proved to fail.

The main contribution of this paper is a proof that highly-efficient black-box naPRF-to-PRF
transformations are unlikely to exist: We rule out a large class of one-call constructions with respect
to hardness-preserving black-box security proofs. Here, hardness preserving means that the trans-
formation preserves security against PPT adversaries. As we argue below, understanding one-call

? A preliminary version of this work appears in the 12th Conference on Security and Cryptography for Networks,
SCN 2020 which is available at https://doi.org/10.1007/978-3-030-57990-6_27. This is the full version.

3 See [AR16] for a concrete example.
4 Note that as naPRFs imply one-way functions and PRGs, and thus in turn also PRFs, such transformations are

always possible.

https://doi.org/10.1007/978-3-030-57990-6_27

constructions is a challenging first step towards understanding the overall problem. This in partic-
ular shows that previous work by Berman and Haitner (BH) [BH15], giving a one-call construction
relying on complexity leveraging in the security proof, is best possible. Also, it is consistent with
the fact that all hardness-preserving transformations make ω(1) calls.

We also extend our result to a class of multi-call parallel constructions, and prove that these, too,
do not transform a naPRF into a PRF. This result can be seen as a generalization of Myers [Mye04]
black-box separation for the parallel composition.

We elaborate on this below, but first give some more context. An overview of our results is
given in Table 1.

From non-adaptive to adaptive security. The problem of building PRFs from naPRFs is
well-understood in the information-theoretic case, i.e., attackers are only bounded in query com-
plexity (but not in their running time). Here, simple constructions are sufficient (e.g., sequential
and parallel composition). This was first proved by Vaudenay [Vau03], and also follows as the
application of general composition theorems [MP04,MPR07].

However, negative results have shown that such simple approaches fail in the computational
regime, both with respect to black-box reductions [Mye04], as well as without any proof restriction,
but assuming DDH holds [Pie05]. Later, it was also shown [Pie06] that public-key assumptions are
necessary for counter-examples. This already suggests that the computational setting is harder, but
note that these results only cover specific constructions. Here, we aim for more general impossibility,
and this presents several additional challenges – in fact, already for one-call constructions, which
are the main focus of this work.

From naPRFs to PRFs: Prior works. The most efficient known transformations can be cast
in terms of the same two steps: (1) we use a naPRF H (say, in the following, with n-bit seeds,
inputs, and outputs) to build a PRF with a “small” domain, i.e., the strings of length ` = ω(log λ);
(2) the domain of the resulting PRF is extended without extra calls by using (almost) universal
hashing – this is often referred to as “Levin’s trick”, and is also reminiscent of universal-hashing
based MACs [WC81,Sti92].5

There are two ways to accomplish step (1):

- Cascading. A first, folkore approach (which is hardness-preserving) is via a variant of the
cascade construction [BCK96]. For a fixed polynomial p = p(λ), we first fix distinct n-bit
strings z1, . . . , zp. Now, let ` = d log p for some d = ω(1), and think of an `-bit input x as a
vector x = (x1, . . . , xd) ∈ [p]d. Then, the output with seed k is yd, where

y0 = k , yi = H(yi−1, zxi) for all i = 1, . . . , d.

This is a secure PRF as long as H is a secure PRF on the domain {z1, . . . , zp}, and since p is
a fixed polynomial, it is enough that H is a naPRF for p-query distinguishers that query all of
z1, . . . zp at once.

- The BH approach. The core idea of the BH construction can be cast as the fact that every
sufficiently secure naPRF secure against (t = O(2`))-time distinguishers, where ` = ω(log λ), is
already an adaptively secure PRF for polynomial-time distinguishers, as long as we only query
a (fixed) subset of the domain of size 2`. (This follows by a straightforward reduction which

5 We stress that this approach inherently relies on an asymptotic view targeting PPT security, which we take in this
paper – if we are interested in concrete security, the best we can hope for is 2`/2 security, and thus we may need
even more calls to the underlying naPRF.

2

queries all of these points beforehand.) I.e., we can then obtain an adaptively secure PRF with
`-bit domain as F(k, x) = H(k, x‖0n−`). Note that it is necessary to fix a super-polynomial
t a-priori, since the construction depends on t and we want security for all polynomial-time
distinguishers.

Main result. This still leaves open the question whether the BH construction is secure only as-
suming H to be secure against PPT adversaries. Here, we consider the general class of constructions
of the form

F((s, k), x) = y , where w = C(s, x) , z = H(k,w) , y = G(s, x, z) ,

where C is an arbitrary (seeded) pre-processing function from n bits to n bits.6 In particular, the
BH construction takes this form. We show that there exists no (fully) black-box reduction to show
PRF security assuming H is a naPRF.

This class in fact includes all possible constructions which do not manipulate the seed k of
the underlying naPRF. As our main result, we show an oracle with respect to which (1) naPRFs
exist, but (2) the above construction is insecure, provided C satisfies a mild combinatorial property
and the output length of G is lower bounded by a small constant. This implies the impossibility of
providing a fully-BB reduction of security for such a construction to the (polynomial-time) security
of H as a naPRF.

The combinatorial condition is that for some constant c = O(1), the function C satisfies a notion
we refer to as c-universal, which means that for any choice of c distinct n-bit strings x1, . . . , xc, and
a random seed s, the values C(s, x1), . . . ,C(s, xc) are unlikely to be all equal. While this condition
appears inherent using traditional security proofs (which often requires the input to H to be “fresh”),
it is not clear how to prove it is necessary for any post-processing function G.

However, we can drop this condition for some special cases. For example, when G simply outputs
(part of) z, then we see that if C is not 2-universal, then we can break PRF security of the
construction directly, provided the output length is ω(log λ). There are cases where however our
result does not completely rule out construction – it is possible that C is not 2-universal and we
can achieve security nonetheless when the naPRF has a single-bit output. We give a more detailed
technical overview in Section 2.

Multi-call constructions. We also extend the techniques to prove our main result on one-call
constructions to a restricted class of parallel κ-call constructions that output, on input x,

y = G(sκ+1, x)⊕
⊕
i∈[κ]

H(ki,C(si, x))

where C is a c-universal pre-processing function, whereas G can be arbitrary. This family includes
e.g. the Cuckoo-Hashing based construction from [BHKN19]. This result can be seen as a general-
ization of the work of Myers [Mye04], which studies the special case without any pre-processing.
In Section 8.2, we also give examples of multi-call constructions which cannot be excluded by our
technique.

6 The choice of an n-bit input for C is arbitrary here, because for any domain length ` = ω(logn), we can modify
C to make the domain n bits, either by appending 0`−n to the input if ` > n, or by using universal hashing as
described above if ` < n.

3

Construction Evaluation y = F((s, k), x) Rule out for any c = O(1) Section

FH[C,G]
y = G(s, x, z) where

w = C(s, x); z = H(k,w)

C is c-universal, any r

any m ≥ log(8ce)
Section 4

FH[C, g]
y = g(x,w, z) where

w = C(s, x); z = H(k,w)

any C, g and r

any m ≥ (n+ r)/c+ ω(logn)
Section 7.1

FH[C] y = H(k,C(s, x))[1, . . . ,m]
any C

any m, r = ω(logn)
Section 7.2

FH[κ,C,G] y = G(sκ+1, x)⊕
⊕κ

i=1 H(ki,C(si, x))
C is c-universal

any κ, r, G
Section 8

Table 1: We rule out fully black-box constructions of PRF F from n bits to m bits of the form
described in first and second column from a naPRF H from n bits to r bits, whenever the conditions
in the third column are true for some constant c ≥ 2. C is a (keyed) function family from n bits
to n bits and g is a function from 2n+ r bits to m bits. For first row, G is a function family from
n+ r bits to m bits and G is a family from n bits to r bits for the last row.

Impossibility for general reductions. One may wonder whether the results claimed in this
paper can be extended to rule out general reductions, e.g., from polynomial hardness of DDH,
following the paradigm of Pietrzak [Pie05]. But this is far from clear as the techniques due to
Pietrzak are tailored to the specific case of sequential and parallel composition whereas we want to
rule out more general constructions.

A perspective. We believe the question of assessing how efficiently we can obtain a PRF from a
non-adaptive object like a naPRF to be among the most fascinating ones in classical cryptography
(although perhaps somewhat overlooked). Constructions are easy in retrospect, and, like in many
other instances, seemingly very hard to improve, yet proving that they are indeed best possible
appears to be out of reach.

This in particular justifies the perhaps limited-looking scope of our results – we hope to provide
evidence that ruling out even a subclass of one-call constructions is a challenging problem and sub-
stantial progress. It would be of course desirable to provide impossibility for all constant-query con-
structions – a statement we conjecture to be true. However, we believe this to remain a challenging
open question. Our work can be seen as one among a large body of results that provide lower bounds
on the efficiency of black-box constructions, e.g. [HS12,BMG07,GT00,GGK03,BJP11,Vio05,MV11].

2 Technical Overview

The study of black-box separations for cryptographic primitives was initiated by the seminal paper
of Impagliazzo and Rudich [IR90] which provided a framework (later formalized by [RTV04]) to
provide such results. Impagliazzo and Rudich observed that fully black-box constructions relativize
w.r.t. any oracle and hence to rule out fully black-box constructions it suffices to show the existence
of an oracle relative to which there exists a naPRF H but FH[C,G] is not a PRF. Furthermore,
Gertner, Malkin and Reingold [GMR01] observed that the oracle can depend on the construction
F. Our result will be of this flavor.

In the rest of this section, we give a brief overview of our main result (stated as Theorem 2 in
the body). For the sake of this overview, we will only focus on a special case of the construction F –

4

a composition of a pre-processing function C and the naPRF H, and rule out F as a fully black-box
construction whenever C is an almost-universal function.

1-call pre-processing construction F(·)[C]. Let H be some function family from n bits to m
bits with n-bit keys and let C be function family from n bits to n bits with σ-bit seeds. We consider
the function family FH[C] from n bits to m bits that makes oracle calls to H and takes the following
form,

F((s, k), x) = H(k,C(s, x)) .

Theorem (Informal). For any almost-universal C, there exists an oracle (O,R) relative to which
there exists a naPRF H such that FH[C] is not a PRF.

Although the approach of providing oracles has been the focus of many black-box separa-
tions [Sim98,IR89,GT00,GGK03], Myers [Mye04] was the first to apply such techniques in the
context of ruling out fully black-box constructions of PRFs from naPRFs, albeit, for restricted
forms of constructions. We borrow ideas from Myers [Mye04] to design our oracle, but the general
nature of our result brings in a number of challenges as we discuss below. Following [Mye04,Sim98]
we will allow our oracles to make random choices (and hence we give a distribution of oracles)
and show that the theorem holds except with negligible probability which suffices to guarantee the
existence of an oracle (in the uniform setting).

Oracle (O,R) and naPRF H.For simplicity of presentation, we will present the oracle as a pair
(O,R) instead of a single oracle. The oracle O embeds a natural information-theoretically secure
PRF. More formally, for every n ∈ N and for every k ∈ [2n], O(1n, k, ·) is implemented by a function
from Funcs(n, r) sampled uniformly and independently at random (with replacement). Relative to
O there exists a natural naPRF H where for every k ∈ {0, 1}n and x ∈ {0, 1}n,

HO(k, x) = O(k, x) .

We emphasize that H is a naPRF relative to O.

The oracle R is designed to provide a trivial way to break F. While it is easy to come up with
such an oracle, we need to ensure that only adversaries making adaptive queries (to F) be able to
use R to break the PRF-security of F. For this, we decompose R into (R1,R2,R3) where R1 (takes no
inputs and) returns sufficiently many (say l) random challenges x1, . . . , xl (in the domain of F), R2

takes y1, . . . , yl (in the range of F) as inputs and returns more random challenges xl+1, . . . , x2l, and
R3 accepts yl+1, . . . , y2l as inputs and returns 1 iff there exists a key (s, k) such that yi = F((s, k), xi)
for all i ∈ [2l]. Note that like R1, R2 also provides random challenges but, additionally, forces an
adversary to commit to responses y1, . . . , yl for challenges x1, . . . , xl issued by R1. This property of
R will be crucial to show the naPRF security of H relative to both O and R.

FH[C] is not a PRF relative to (O,R). R provides a trivial way for an adaptive adversary to

break F. An adversary Af relative to (O,R) can provide yi = f(xi) to R3 for challenges xi (issued
by R1 and R2) by adaptively querying f . When f = F((s, k), ·) for some randomly sampled (s, k),

R clearly outputs 1. In the random world (when f
$← Funcs(n, r)), R outputs 1 if for the randomly

chosen n-bit strings yi’s there exists some (s, k) for which F((s, k), xi) = yi for all i. Since there
are only 2σ+n such (s, k)’s in F, the probability of this happening is upper bounded by 2σ+n/22ml,
which is negligible for sufficiently large l. Therefore, A breaks F relative to (O,R).

5

H remains naPRF relative to (O,R)? To conclude the theorem, we need to show that the

above construction of H remains naPRF relative to (O,R).7 Unfortunately, despite the adaptive
nature of R, this is not true in general. Consider the following universal family C for which for some
sbad we have,

C(sbad, x) =

{
0n lsb(x) = 0 ,

1n lsb(x) = 1 .

And for all s 6= sbad, C(s, ·) is a permutation. Now consider the following non-adaptive adversary
Ana relative to (O,R) which breaks H and makes only two non-adaptive queries to the challenge
oracle h. Ana first queries h on Q = {0n, 1n} and then computes yi = Fh(sbad, xi) for any adaptive
challenges xi’s provided by R1,R2, where the construction Fh(s, ·) replaces the calls to H in FH(s, ·)
with calls to h. Recall that R3 returns 1 if it finds any (s, k) such that yi = F((s, k), xi). In the
real world h = H(k, ·) and therefore R3 returns 1 as for (sbad, k), F((sbad, k), xi) = yi. However, the
probability that R3 returns 1 when h is a randomly sampled function can be upper bounded by the
probability that there exists some k ∈ {0, 1}n such that H(k, x) = h(x) for x ∈ {0n, 1n}. Since there
are at most 2n k’s and h is a random function, the above happens only with probability 2n/22n

which is negligible and hence R3 returns 0, thereby breaking H. This highlights an important bug
in the design of the oracle R – it allows for a non-adaptive adversary Ana to use it effectively in
breaking the naPRF-security of H by exploiting weaknesses in the pre-processing function family
C.

Oracle R Revisited.The issue with the previous oracle was that R accepts a seed sbad for which
a non-adaptive adversary Ana can make few (polynomially many) queries (let Q be this set of
queries) to its oracle h and compute the entire function Fh(sbad, ·), thereby provoking R3 to output
1 in the real world. We ask R3 to ignore “bad” seeds. A seed s is β-good if for every w in the range
of C(s, ·) Prx[C(s, x) = w] ≤ β. Let β be some negligible function (we will explain how to set this
later), we modify R3 to return 1 iff it finds some (s, k) where s is β-good. A consequence of this is
that for any polynomially sized Q and any s that is β-good, it is only with negligible probability
that C(s, x) ∈ Q for a random x.

Security of H Revisited. For simplicity let us assume that R1 and R2 just output one random
challenge each (i.e., l = 1). Let x1 and x2 be those random challenges. Let us fix some s that is
β-good. Let wi = C(s, xi). We are interested in Ana that trigger R3 to output 1 for this fixed seed.
Any Ana has two choices: either (1) make its queries to h after learning x1 but before learning x2 or
(2) make queries after learning x2 (after committing to y1). Let Q be the set of queries Ana made
to h. In case (1) since x2 is sampled randomly and s is β-good, C(s, x2) /∈ Q. To succeed, Ana now
needs to correctly guess the y2 = h(C(s, x2)) which happens with prob. 2−m as h is random. In case
(2) to succeed, Ana can just hope that h(C(s, x1)) = y1 which also happens with prob., 2−m as h is
random. Therefore, it is only with prob. 2−m that Ana can trigger R3 to output 1 for a fixed β-good
seed s. Instead of sampling one challenges each, if Ri’s had sampled tuples X1 = (x1, . . . , xl) and
X2 = (xl+1, . . . , x2l) then in (1) we can show that, except with probability (βq)l/2, at least l/2 of
the C(s,X2[i])’s fall outside Q leading to the probability of success of Ana to drop to 2−ml/2, and in
(2) the probability of success instead drops to 2−ml. Therefore, a union bound over all β-good seeds
would show Ana fails in triggering R3 to output 1 (for l = ω(σ)). In other words, by sampling tuples

7 We emphasize that the non-adaptivity restriction on the adversary is only on the challenge oracle in the naPRF-
security game. It can query the oracle (O,R) adaptively.

6

X1, X2 and considering only β-good seeds, R has now rendered itself useless to a non-adaptive
adversary allowing us to reduce the naPRF-security of H relative to (O,R) to naPRF-security of H
relative to only O. One issue that still needs to be addressed is to ensure that the new R continues
to allow to break F. This is where the universality is crucial. We show that a randomly sampled s
is indeed β-good for an appropriate β.

Comparison to [Mye04]. Our oracles are similar to Myers [Mye04] except that they are signif-
icantly more complicated. Myers rules out arbitrary number of parallel compositions of H. In its
simplest form (2-call case) Myers construction can be viewed in terms of our preprocessing function
FH[C] where C = H and hence C is also implemented from O. Therefore, in the non-adaptive security
proof, the adversary has very little information about the structure of C. This is unlike our case
where it was the structure of C, more importantly, the existence of a single “bad” seed that allowed
Ana to break H relative to trivial attempts of designing R.

Extending to our general one-call result. Although the preprocessing case captures our
core ideas, ruling it out is considerably simpler than our more general construction. An important
property that the construction enjoys is that for every x, s, y the probability that Ff (s, x) = y for
a random f is 2−m. We refer to such constructions are “unbiased”. When moving on to construc-
tions with post-processing, such guarantees are not readily available making the proof difficult. In
addition, working with weaker notion of c-universality for c > 2 brings in additional challenges. We
detail our formal proof in Section 4.

On ruling out two- or more call constructions.The main result of this work is ruling out
a large class of constructions as a PRF, that make only one call to an underlying naPRF. A natural
question is to understand whether such separations can be proved for constructions making two
calls or more generally O(1) number of calls. We devote Section 8 for this. More specifically, (1)
In Section 8.1 we show that our techniques from the 1-call case can be lifted to rule out a specific
2-call construction (even its generalization to arbitrary number of calls). We note that Berman
et al. [BHKN19] studied a (non-black-box8) variant to construct a PRF from a naPRF. (2) The
oracle (O,R) used to rule out one-call constructions admits natural extensions to constructions that
make more than one call, we describe in Section 8.2 two explicit constructions making two-calls and
four-calls respectively which also allow a non-adaptive adversary to break the underlying naPRF
relative to (O,R). With these examples we hope to highlight that a general result that rules out all
O(1)-call constructions will require new techniques or at least new oracle designs.

3 Preliminaries

For n,m ∈ N, Funcs(n,m) denotes the set of all functions {0, 1}n → {0, 1}m. By [n] we denote the

set {1, . . . , n}. By d
$← D we denote the process of sampling a random element from some finite set

D and assigning it to d. For l ∈ N, (d1, . . . , dl)
$← (D)l and (d1, . . . , dl)

$← (D)[l] denote the process
of sampling l elements from D where each di is sampled independently and uniformly from D with
and without replacement, respectively. For l, p ∈ N and f ∈ Funcs(n,m), X = (x1, . . . , xl) denotes
an ordered tuple where x1, . . . , xl ∈ {0, 1}n and X[i] denotes the i-th element in the tuple. f(X)
denotes the ordered tuple (f(x1), . . . , f(xl)). For X = (x1, . . . , xl) and Y = (y1, . . . , yp), by X||Y
we denote (x1, . . . , xl, y1, . . . , yp). We use capital letters to denote both tuples and sets, our usage

8 the construction depends on the security of the underlying primitives

7

will be clear from the context. A function α : N→ R≥0 is negligible if for every c ∈ N, there exists
n0 such that α(n) ≤ n−c for all n ≥ n0.
Function Families. For polynomially bounded functions m,σ : N → N, a function family F =
(F.Kg,F.Eval) from n bits tom bits with σ-bit keys/seeds consists of two polynomial-time algorithms
– the key (or seed) generation algorithm F.Kg and the evaluation algorithm F.Eval. In particular,
F.Kg is a randomized algorithm that on input the security parameter 1n returns a key k sampled
uniformly from {0, 1}σ(n). F.Eval is a deterministic algorithm that takes three inputs: 1n, key k ∈
{0, 1}σ(n) and query x ∈ {0, 1}n and returns an m(n)-bit string y = F.Eval(1n, k, x). We generally
write F(1n, k, ·) = F.Eval(1n, k, ·) and even drop the first input (i.e., 1n) of both Kg and Eval for

ease of notation. By f
$← F we denote the process of sampling k

$← F.Kg and assigning f = F(k, ·).
Oracle Function Families. In this work, we consider function families F where F.Kg and F.Eval
can make queries to another function family modeled as an oracle O. We refer to such families as
oracle function families and denote it by F(·) and by FO when the underlying oracle is O. By F(·)[C]
we denote function family F having access to the entire description of the function family C.

Universal Function Families. Below we define a generalization of the well-known notion of
almost α-universal hash function family.

Definition 1 For polynomially bounded functions m,σ, let C be a function family from n bits to m
bits with σ-bit seeds, α be some function from N to R≥0, and c ∈ N. We say that C is (α, c)-universal
family if for all n ∈ N, every X ∈ ({0, 1}n)[c],

Pr
s

$←C.Kg(1n)

[C(s,X[1]) = C(s,X[2]) = . . . = C(s,X[c])] ≤ α(n) .

We retrieve the standard notion of almost α-universal hash function family when c = 2. When-
ever α is a negligible function, we refer to C as a c-universal function family. We emphasize that
the reader should not confuse our notion of c-universality with the notion of c-wise independent
hashing.

3.1 (Non-) Adaptive Pseudo-random Functions Relative to Oracles

In this work, we consider pseudo-randomness of function families relative to an oracle which we
define next.

Definition 2 Let m be a polynomially bounded function over N and O be some oracle. Let F(·) be an
oracle function family from n bits to m bits. For probabilistic polynomial-time (PPT) distinguisher
A, let

Advrel−prfA,F,O (n) =

∣∣∣∣∣ Pr
f

$←F

[Af
O,O(1n) = 1]− Pr

g
$←Funcs(n,m(n))

[Ag,O(1n) = 1]

∣∣∣∣∣ ,
where probability is also taken over the random coins of A.

We say that F(·) is a pseudo-random function (PRF) relative to oracle O if for all PPT distin-

guishers A Advrel−prfA,F,O (1n) is negligible in n. F(·) is a non-adaptive PRF (naPRF) relative to O if
the above is true for all PPT distinguishers that only make non-adaptive queries to the challenge
oracle f/g.

8

In naPRF definition, we require that A only make non-adaptive queries to the challenge oracle
f/g and can query O adaptively. In the absence of the oracle O we recover the standard notions of
PRFs and naPRFs. Although as stated the oracle O is deterministic, in this work we will consider
randomized oracles O and the above probabilities is taken also over the random choices made by
O.

3.2 Black-Box Separations

The study of black-box separations for cryptographic primitives was initiated by the seminal paper
of Impagliazzo and Rudich [IR90] which provided a framework (later formalized by [RTV04]) to
provide such results. They observed that fully black-box constructions relativize w.r.t. any oracle
and hence to rule out fully black-box constructions it suffices to show the existence of an oracle
relative to which there exists a naPRF H but FH[C,G] is not a PRF. Furthermore, Gertner, Malkin
and Reingold [GMR01] observed that the oracle can depend on the construction F.

Theorem 1 ([GMR01]). An oracle function family F(·) is not a fully BB construction of a PRF
from naPRF if there exists an oracle O and an oracle function family H(·) such that HO is a naPRF
relative to O but FH is not a PRF relative to O.

When restricting to uniform adversaries (which is the focus of this work) it is sufficient to exhibit
a oracle that makes random choices (or a distribution of oracles) and show that Theorem 1 holds
except with negligible probability. This is the approach adopted in all previous works on black-box
separations. We formally state this as the following Proposition.

Proposition 1. An oracle function family F(·) is not a fully BB construction of a PRF from naPRF
if there exists a randomized oracle O and an oracle function family H(·) such that HO is a naPRF
relative to O but FH is not a PRF.

Theorem 1 for the uniform setting follows from Proposition 1 by relying on the Borel-Cantelli
Lemma and on the countability of the family of uniform Turing machines. All results in this work
will be of the flavor of Proposition 1. Establishing Proposition 1 w.r.t. non-uniform adversaries
may not be sufficient to lift BB separations to the non-uniform model due to the uncountability
of non-uniform Turing Machines. We leave it to future work to lift our results to the non-uniform
setting, following ideas from [BLN09,GT00].

4 Main Result

In Section 4.1 we formally describe the class of one-call constructions to which our separation result
applies. Then in Section 4.2 we state our main result and provide its proof’s overview in Section 4.3.

4.1 General 1-call Construction

Let σ, r,m be any polynomially bounded functions. Let C be a function family from n bits to n
bits with σ-bit seeds, let H be a function family on n bits to r bits with n-bit seeds and let G be a
function family from n+ r bits to m bits with σ-bit seeds. Consider the family FH[C,G] (depicted
in Figure 1a) from n bits to m bits with σ+n-bit seeds such that for every n ∈ N, F.Kg(1n) outputs

9

- C(s, ·) - H(k, ·) -
- G(s, ·) -

x yzw

(a) 1-call construction

�
�
�

- C(s1, ·) -
w1

H(k1, ·)
z1

L
L
L-x

C(s2, ·) -
w2

H(k2, ·)
z2 ⊕ -y

L
L
L

- G(s3, ·)
w3 �

�
�

(b) 2-call construction

Fig. 1: (a) General 1-call construction FH[C,G] where C (resp., G) is a family from n bits (resp.,
n+ r bits) to n bits (resp., m bits) with σ-bit keys and H is a function family from n bits to r bits
with n-bit keys. Figure shows the evaluation of F on input x and key (s, k) where s is the key for
both C and G and k is key for H. (b) Two-call construction FH[C,G] where C (resp., G) is a family
from n bits (resp., n bits) to n bits (resp., m bits) with σ-bit keys and H is a function family from
n bits to m bits with n-bit keys. Figure shows the evaluation of F on input x and key (s,k) where
s = (s1, s2, s3) and k = (k1, k2) is key for H.

(s, k) where s and k are randomly chosen σ(n)-bit seeds for both C and G, and n-bit key for H
respectively. The evaluation of F on x ∈ {0, 1}n proceeds as follows,

y = FH((s, k), x) = G(s, x, z) where z = H(k,C(s, x)) . (1)

Remark 1. Note that the function families C and G in Equation (1) share the same seed s. This, in
fact, is a generalization of the case when C and G have independent seeds s1 and s2 respectively –
for every such C and G we can construct families C′ and G′ which share the same seed s = (s1, s2),

C′(s = (s1, s2), ·) = C(s1, ·) ; G′(s = (s1, s2), ·, ·) = G(s2, ·, ·) .

Furthermore, as G and C share the same seed s, G can compute w = C(s, x) from its inputs (s, x, z)
and hence w.l.o.g. we do not feed w as an input to G.

Remark 2. The choice of the input length of C is arbitrary as any C mapping l = ω(log n)-bit strings
to n-bit strings can be converted into C′ which maps n-bit strings to n-bit strings by padding 0l−n

to the input whenever l ≥ n and pre-processing the input via a universal hash family from n bits
to l bits whenever l < n. Furthermore, the resulting family C′ is c-universal hash family whenever
C is c-universal for any c ≥ 2.

The construction in Equation (1) covers all one-call constructions which do not modify the key
of the naPRF. In particular, it also covers the Berman-Haitner [BH15] construction – one recovers
the BH construction from F[C,G] by letting C be a universal hash family and letting G(s, (x, z)) = z.

4.2 Main Theorem

Below we state our main theorem which provides an oracle relative to which a naPRF H exists
but the construction FH[C,G] is not a PRF as long as C is universal function family. This in turn
implies that F cannot be a fully black-box construction of a PRF from a naPRF.

10

Theorem 2 (Main Theorem). Let c = O(1) and r, σ,m be any polynomially bounded functions
such that m ≥ log(8ce). Let C be a c-universal family from n bits to n bits. Then, for every F(·)[C,G]
(as in Equation 1) from n bits to m bits there exists a randomized oracle (O,R) such that,9

1. There exists an oracle function family H(·) from n bits to r bits with n-bit keys that is a naPRF
relative to (O,R).

2. FH[C,G] is not a PRF relative to (O,R).

Removing the c-universality assumption. Theorem 2 holds for every constant c, allowing us
to show black-box separations for increasingly weaker assumptions on C. However, to completely
resolve the question, one would wish to remove the assumption altogether. This is far from simple:
The naive approach is to argue that likely collisions in the non-universal family C can be turned into
a distinguishing attack on F. But it is not clear how to argue this generically as the post-processing
family G can potentially resolve collisions in C.

Nevertheless, we can remove the c-universality assumption on C altogether for two important
subclasses of F[C,G]: (1) A special case of F[C, g] (second row in Table 1), where G consists of a
single function g (i.e., independent of any seed material) and (2) A special case of F[C] (third row
in Table 1) where G is a family that on input (s, x, z) just outputs z. At a very high level, note that
for the construction F[C], collisions in C lead to collisions in F, however such collisions occur for a
random function only with negligible probability when the output length satisfies m = ω(log n).
Therefore, an adversary that knows collisions in C can trivially break the PRF security of F.
For the construction F[C, g] one needs to go a step further and analyze the entropy of the output
(F(x1), . . . ,F(xc)) for inputs xi’s for which collisions under C are likely. We can show a distinguishing
attack whenever m = Ω(n). We defer the formal proofs to the full version.

Overall, we believe removing c-universality from Theorem 2 for all one-call constructions is
closely related to the long-standing open problem in symmetric-key cryptography of proving security
beyond the birthday barrier for the composition of a non-universal hash family and a short-output
PRF. The challenge is that collisions in the hash function may still be less likely than actual output
collisions when the range is small. We believe removing the c-universality assumption is unlikely to
happen without making progress on this open question, and we believe that the answer depends
on a more fine-grained understanding of the combinatorics of C.

4.3 Proof Overview of Theorem 2

We prove Theorem 2 in two parts: First, in Proposition 2 we provide an oracle for constructions
F[C,G] that satisfies a structural property – “unbiasedness” (define next) and provide an oracle for
“biased” constructions in Proposition 3.

(1− δ)-unbiased F(·)[C,G].Before we formally define the structural property of “(1−δ)-unbiasedness”
of F it would be helpful to consider the following definition.

Definition 3 For the function family G, for some n ∈ N, let x ∈ {0, 1}n, s ∈ {0, 1}σ(n) and
y ∈ {0, 1}m(n), we say that y is 1/2-bad w.r.t. (s, x) if Pr

z
[y = G(s, x, z)] > 1/2 , otherwise y is

1/2-good w.r.t. (s, x).

9 For simplicity we present our oracle as a pair (O,R).

11

If for some pair (s, x) there exists a 1/2-bad y then the output of F (on input x and seed s) will
be biased towards y even if H is a truly random function family. We call F as unbiased if at least
(1− δ) fraction of the outputs y’s will be 1/2-good for some δ < 1.

Definition 4 ((1− δ)-unbiased) For any functions r,m, σ, let C be a family from n bits to n bits
and G be a family from n+ r bits to m bits. Then for δ ≤ 1 we say that F(·)[C,G] is (1− δ)-unbiased
if for all polynomials l = ω(σ)/δ there exists some negligible function ν(·) such that

Pr
X,s,f

[|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}}| ≥ δ · l] ≤ ν(n) ,

for every n ∈ N where Y [i] = Ff (s,X[i]), s
$← {0, 1}σ(n), f $← Funcs(n, r(n)) and X

$← ({0, 1}n)[l(n)].
Otherwise, we call F(·)[C,G] as δ-biased.

We state Proposition 2 (proof in Section 5) which handles unbiased F’s.

Proposition 2. Let c = O(1) and r,m, σ be any polynomially bounded functions. Let C be a c-
universal family from n bits to n bits with σ-bit seeds and G be a family from n + r bits to m bits
with σ-bit seeds such that F(·)[C,G] is

(
1− 1

4c

)
-unbiased. Then, there exists a randomized oracle

(O,R) such that there exists an oracle function family H(·) from n bits to r bits with n-bit keys that
is a naPRF relative to (O,R) but FH[C,G] is not a PRF relative to (O,R).

Next, we state our Proposition 3 (proof in Appendix B) which relies on F being biased.

Proposition 3. Let c = O(1) and let r, σ,m be polynomially bounded functions such that m ≥
log(2ce). For every F(·)[C,G] from n bits to m bits, if F(·)[C,G] is 1/c-biased then there exists a
randomized oracle (O,R) such that there exists an oracle function family H(·) from n bits to r bits
with n-bit keys that is a naPRF relative to (O,R) but FH[C,G] is not a PRF relative to (O,R).

Remark 3. Note that Proposition 2 rules out F for any output length m (even m = 1). However,
we can only prove Proposition 3 when m ≥ log(2ce) for some constant c. For this reason Theorem 2
requires m ≥ log(2ce). It is an important open question to extend our results for smaller m’s.

Proof of Theorem 2. Given Propositions 2 and 3, Theorem 2 follows immediately by analyzing
the following two cases: (1) If F(·)[C,G] is 1

4c -biased then Theorem 2 follows from Proposition 3

with parameter 4c (instead of c), and (2) If F(·)[C,G] is
(
1− 1

4c

)
-unbiased then Theorem 2 follows

from Proposition 2. ut

5 Proof of Proposition 2

First, in Section 5.1 we establish some preliminary notation necessary to describe our oracles (O,R)
and the naPRF family H (which are defined in Section 5.2). Then, in Section 5.3 we argue the
insecurity of F relative to (O,R) and in Section 5.4 we argue that H is a naPRF relative to (O,R).

12

5.1 Preliminary Notation for Defining (O,R)

First, we observe an important property of c-universal function families called (β, δ)-sparseness.

Definition 5 (s is β-sparse) Let C be a family from n bits to n bits with σ-bit seeds. For n ∈ N,
β ≤ 1, we say that s ∈ {0, 1}σ(n) is β-sparse if Pr

x
[C(s, x) = w] ≤ β for every w ∈ {0, 1}n.

Definition 6 (C is (β, δ)-sparse) Let C be a function family from n bits to n bits. For functions
β and δ we say that C is (β, δ)-sparse if Pr[s not β(n)-sparse] ≤ δ(n) for all n ∈ N over the random

choice of s
$← C.Kg.

Lemma 1. For any c = O(1), any (α, c)-universal function family C from n bits to n bits is also
(β, δ)-sparse for β = max(α1/2c, 2c

2n), δ = 2c−1
√
α. Furthermore, β and δ are both negligible for

c = O(1) and negligible α.

The following lemma show that a universal family is sparse (proof in Appendix A.1).
For the rest of this section let us fix some (α, c)-universal function family C from n bits to n bits

with σ-bit seeds, some n+ r bit to m bit function family G with σ-bit seeds such that F = F[C,G]
is a (1 − 1/4c)-unbiased function family (as in the statement of Proposition 2). Furthermore, for
(α, c) let β, δ be functions (as defined by Lemma 1) such that C is (β, δ)-sparse. For C and F we
define two sets of “good” seeds namely GoodC and GoodF necessary to describe (O,R).

The set GoodC(β,X). For some tuple X ∈ ({0, 1}n)l, the set GoodC(β,X) is a set of β-sparse
seeds for which there are no c-way collisions among C(s,X[i])’s. To match the usage of GoodC later
in the proof, we define GoodC(β,X) for X = X1||X2 where each Xi’s are l-length tuples.

Definition 7 For n, l ∈ N, β ≤ 1, X = X1||X2 ∈ ({0, 1}n)[2l] where Xi ∈ ({0, 1}n)[l], let GoodC(β,X)
denote the set of all s ∈ {0, 1}σ such that s is β-sparse and there are no c-way collisions in C(s,X)
– for every I ⊆ [2l] fof size c there exists i, j ∈ I such that C(s,X[i]) 6= C(s,X[j]) where we are
viewing C(s,X) as a set instead of the tuples.

The set GoodF(β,X, Y).Here we extend the definition of “good” seeds relative to the outputs Y .
Recall that F is (1 − 1/4c)-unbiased and so for some sufficiently large l we expect at most 1/4c
fraction of the Y [i]’s to be 1/2-bad. GoodF is the set of seeds that are in GoodC for which 1/4c
fraction of the Y [i]’s are 1/2-bad.

Definition 8 For X as in Def. 7 and Y ∈ ({0, 1}n)2l, let GoodF(β,X, Y) denote the set of seeds
s ∈ {0, 1}σ such that s ∈ GoodC(β,X) and
|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| ≤ 2l/4c = l/2c.10

5.2 Oracles (O,R) and HO

Recall that we are designing (O,R) for constructions F(·)[C,G] where C is (α, c)-universal and also
(β, δ)-sparse (as observed in Lemma 1), and F(·)[C,G] is (1− 1/4c)-unbiased for some c = O(1) and
negligible α. Let us, furthermore, fix some sufficiently large l = ω(σ + n). Next, we describe our
oracles (O,R) which will depend on the families C,G,F and parameters β, c, l.

10 Note that we have 2l/4c because our X,Y are tuples of 2l length tuples.

13

Oracle R1(1n):

if Tn1 = ⊥ then Tn1
$← ({0, 1}n)[l(n)]

return Tn1

Oracle R2(1n, X, Y):

if ¬isValid(1n, l, X, Y) then return 1
if X 6= Tn1 then return ⊥
if Tn2 [Y] = ⊥ then Tn2 [Y]

$← ({0, 1}n \ Tn1)[l(n)]

return Tn2 [Y]

Oracle R3(1n, X = X1||X2, Y = Y1||Y2):
if ¬isValid(1n, 2l,X, Y) then return ⊥
if X1 6= Tn1 ∨X2 6= Tn2 [Y1] then return ⊥
if ∃(s, k) ∈ GoodF(β,X, Y)× {0, 1}n :

FHO
[C,G]((s, k), X) = Y then return 1

return ⊥

Proc. isValid(1n, t,X, Y)

if X /∈ ({0, 1}n)[t] then return 0
if Y /∈ ({0, 1}m)t then return 0
return 1

Adversary A(O,R),f (1n):

X1 ← R1(1n)
Y1 ← f(X1)
X2 ← R2(1n, X1, Y1)
Y2 ← f(X2)
if R3(1n, X1||X2, Y1||Y2) = 1 then

return 1
return 0

Fig. 2: Description of oracle R and adaptive adversary A that breaks the security of F relative to
(O,R).

Oracle O and HO. Oracle O embeds an information theoretically secure PRF. That is, for every
n ∈ N and every k ∈ {0, 1}n, O(1n, k, ·) is implemented by a function from Funcs(n, r) which is
sampled uniformly and independently at random with replacement. Relative to such an oracle there
exists a naPRF HO from n bits to r bits with n-bit keys. H.Kg(1n) returns a randomly chosen key
k ∈ {0, 1}n and HO(k, x) = O(k, x) for every key k ∈ {0, 1}n and input x.

Oracle R. We decompose R into three oracles (R1,R2,R3) as described in Fig 2.

Oracle R1: Oracle R1 for every n ∈ N samples an l(n) length tuple Tn1 of n-bit strings without
replacement. It accepts as input the security parameter 1n and outputs the corresponding Tn1 .

Oracle R2: Oracle R2 works identically to the oracle R1 except that it takes as inputs the security
parameter 1n, and tuples X ∈ ({0, 1}n)[l(n)] and Y ∈ ({0, 1}n)l(n) and returns a random l(n)-
length tuple of n-bit strings (Tn2 [Y] in Figure 2) iff X = Tn1 . The tuple Tn2 [Y] is sampled without
replacement from {0, 1}n\Tn1 . We should think of R1 as providing the first challenge tuple X1 = Tn1
and R2 as providing the second, “adaptive” challenge tuple X2 = Tn2 [Y1] after receiving the response
Y1 for the first challenge X1.

Oracle R3: R1 and R2 are just fancy random string generators and provide no way to break the
security of F as both these oracles are in fact independent of F. The responsibility of ensuring
that one can break F is on R3. More precisely, R3 accepts as queries a tuple (X = X1||X2, Y =
Y1||Y2) outputs 1 iff it finds some key (s, k) for F which maps X to Y where k ∈ {0, 1}n and s ∈
GoodF(β,X, Y) and it is also required that X1 = R1(1

n) = Tn1 and X2 = R2(1
n, X1, Y1) = Tn2 [Y1].

This completes the description of R. Note that R depends on the entire description of oracle O
in addition to the function families C and G and the parameters l, β. For notational convenience,
we will drop the superscript n from Tni and the input 1n from all oracles. Next, in Section 5.3 we
establish the insecurity of F as a PRF and in Section 5.4 the security of H as a naPRF relative to
(O,R) which put together will conclude the proof of Proposition 2.

14

5.3 F is not a PRF relative to (O,R)

Relative to the oracle (O,R) there exists a trivial uniform adversary A(O,R),f which uses adaptive
access to the challenge oracle f to compute Yi = f(Xi) for X1, X2 provided by R. In Lemma 2 we
show that A indeed breaks the PRF security of F. The proof is detailed in Appendix A.2.

Lemma 2 (F is insecure relative to (O,R)). For A described in Figure 2 there exists a non-

negligible function ε such that, Advrel−prfA,F,(O,R)(n) ≥ ε(n).

5.4 H is a naPRF relative to (O,R)

In this section, we establish the non-adaptive security of H relative to (O,R) by reducing it to the
non-adaptive security of H relative to only O. That is, for every A relative to (O,R) making only
non-adaptive queries to its challenge oracle f but adaptive queries to O and R, we construct an
adversary B relative to only O that also only makes non-adaptive queries to its challenge oracle f
and is just as successful as A in the non-adaptive security game of H. The adversary BO,f internally
runs A(O,R),f and answers all of its queries to O and f by forwarding to its own oracles. For the
queries to R, B attempts to simulate the oracle R internally for A. Recall that R is decomposed into
three oracles (R1,R2,R3) where R1 and R2 just output random l-length tuples of n-bit strings and
hence are easy to simulate. The challenge is to simulate the oracle R3, which depends on the entire
description of O, with only oracle access to O. Nevertheless, we show that B can still simulate R3

queries correctly. We emphasize that the non-adaptive query restriction on A is only w.r.t. querying
f . It can query (O,R) adaptively.

Lemma 3 (H is a naPRF relative to (O,R)). For any non-adaptive adversary A that makes at

most q ≤ 2n/2 to its oracles we have for every n ∈ N, Advrel−naprfA,H,(O,R)(n) ≤ 2q · ε+ 2q
2n where

ε =
(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2 ; t =

l

2c(c− 1)
.

Note that since l = ω(σ + n) and β is negligible, the advantage of A for any polynomial q is
negligible. This, with Lemma 2 concludes Proposition 2’s proof.

Remark 4. Although for concreteness we state A’s advantage for q ≤ 2n/2, note that for the ad-
vantage to be negligible we require q < 1/2β. Therefore, we can only prove non-adaptive security
of H (in an asymptotic sense) only when q < 1/2β. We note that an adversary A making q ≥ 1/β
queries can, indeed, break the non-adaptive security of H. This is because, the range of function
C(s, ·) for any β-sparse s has at least 1

β elements and hence an A can just query the challenge oracle

f on the entire range of C(s, ·) and force R3 to return 1 when f
$← H(this is the same attack as

described in Section 2). This is how we avoid the 1-call non-security preserving proof of Berman
and Haitner [BH15]. More precisely, they establish PRF security of their construction assuming the
naPRF is secure against q = β−1-queries for some negligible β.

15

Game G0,G1:
foreach k ∈ {0, 1}n do

πk
$← Funcs(n,m)

k∗
$← {0, 1}n

b
$← A(O,R),f

return b

Oracle R3(X = X1||X2, Y = Y1||Y2): //Game G0

if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s, k) ∈ GoodF(β,X, Y)× {0, 1}n :

FH[C,G]((s, k), X) = Y then return 1
return ⊥

Oracle R3(X = X1||X2, Y = Y1||Y2): //Game G1

if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s, k) ∈ GoodF(β,X, Y)×Q :

FH[C,G]((s, k), X) = Y then return 1
return ⊥

Oracle R1():

if T1 = ⊥ then T1
$← ({0, 1}n)[l]

return T1

Oracle R2(X,Y):

if ¬isValid(1n, l, X, Y) then return 1
if X 6= T1 then return ⊥
if T2[Y] = ⊥ then

T2[Y]
$← ({0, 1}n \ T1)[l(n)]

return T2[Y]

Oracle O(k, x):

Q← Q ∪ {k}
return πk(x)

Oracle f(x):

y ← πk∗ (x)
return y

Fig. 3: Games G0 and G1 used in the proof of naPRF security of H relative to (O,R). The only
difference is the implementation of the R3 oracle – in G0 the R3 oracle while answering its queries
considers all k ∈ {0, 1}n while in G1 it only considers k ∈ Q. The isValid procedure (omitted here)
is as described in Fig. 2.

Proof of Lemma 3. Fix some computationally unbounded adversary A making q queries and also
some n ∈ N. Let us assume w.l.o.g. that A makes q distinct queries to its oracles and is deterministic.
We will proceed via a sequence of games and then appropriately describe the adversary B relative
to O.

Game G0 is identical to the real-world of the non-adaptive game for H except that G0 maintains
a set Q of all keys k for which A had issued an O-query on (k, x) for some x. The code for G0 is
shown in Figure 3. This is just a syntactic change, therefore Pr[G0] = Pr

O,R,f
$←F

[A(O,R),f = 1].

Recall that any R3 query (X = X1||X2, Y = Y1||Y2) in G0 returns 1 iff it finds a key (s, k) for
F such that F((s, k), X) = Y where k ∈ {0, 1}n and s ∈ GoodF(β,X, Y). Such an R3 seems too
generous in providing help to A. This is because it also considers k’s for which A has not made an
(k, ·) query to O, or equivalently k /∈ Q, to determine its answer. Since for each k, Ok (implemented
by the function πk in Fig 3) behaves as a random function independent of other k′’s it is unlikely
that A has any information about Ok for any k /∈ Q. Hence A’s queries to R3 should only depend on
k ∈ Q. Carrying this intuition we move to the game G1 where R3 only considers k ∈ Q as opposed
to k ∈ {0, 1}n.

Games G0 and G1 are close: To give an intuition of why G0 and G1 are close, let us assume that A
only makes one R3 query and furthermore is its last query. It is easy to see that the games remain
identical until the R3 query. Let the query be on some (X = X1||X2, Y = Y1||Y2). Furthermore, let
us assume that X1 = R1(1

n) and X2 = R2(X1, Y1) as otherwise R3 outputs ⊥ in both G0 and G1,
hence identical responses. Now, the output of the R3 query in G0 differs from that in G1 if there
exists some k /∈ Q and some s ∈ GoodF(β,X, Y) such that F((s, k), X) = Y . Fix one such k /∈ Q

16

and some s ∈ GoodF(β,X, Y). The probability that R3 in G1 errs by ignoring this (s, k) can be
upper bounded by the probability that over the choice of Ok (a random function) that for each
i ∈ [l], we have Y1[i] = FOk(s,X1[i]). Let W1[i] = C(s,X1[i]) for all i ∈ [l]. Since, s ∈ GoodF(β,X, Y)
(Definition 8) we know that there exists at least l/(c− 1) distinct W1[i]’s as |C(s,X1)| > l/(c− 1).
Furthermore, we know that for Y = Y1||Y2 at most l/2c of the Y [i]’s are 1/2-bad w.r.t. (s,X[i]).
Therefore, we can safely conclude that there exists a subset Is ⊆ [l] of size at least l/(c− 1)− l/2c
such that for every i 6= j ∈ Is, we have

1. W1[i] 6= W1[j], where recall that W1 = C(s,X1)

2. Y1[i] is 1/2-good w.r.t. (s,X1[i]).
11

Furthermore, none of the W1[i] have been queried before and hence Z1[i] = O(k,W1[i]) are random
independent strings. Therefore, the probability that

Pr
Ok

[∀i ∈ Is : FOk(s,X1[i]) = Y1[i]] ≤ Pr
Ok

[∀i ∈ Is : G(s,X1[i], Z1[i]) = Y1[i]] ≤
1

2t
,

where t = |Is| ≥ (c+1)·l
2c(c−1) = Ω(l) as c = O(1). Taking the union bound over all σ-bit s’s and n-bit k’s

we can show that the probability that G1 errs on the first R3 query is negligible. In other words, G1

can safely ignore k /∈ Q and this is because if for some X and Y and some s if A has not already
determined that F((s, k), X) = Y then the probability that it is indeed the case is small. We will
use this fact a number of times in the proof. Let us make this formal.

Definition 9 We say that a set Q ⊆ {0, 1}n × {0, 1}m is a (n,m)-query-set if for every w there
exists at most one y such that (w, y) ∈ Q. Furthermore, let Query(Q) define the set of queries, that
is, Query(Q) = {w : ∃y s.t. (w, y) ∈ Q}.

Lemma 4. For n, l, t ∈ N, consider X ∈ ({0, 1}n)[l], Y ∈ ({0, 1}m)l and let Q ⊆ {0, 1}n × {0, 1}m
be an (n,m)-query set. Let s be such that there exists Is ⊆ [l] of size t such that ∀i 6= j ∈ Is the
following holds: (1) C(s,X[i]) 6= C(s,X[j]), (2) C(s,X[i]) /∈ Query(Q), and (3) Y [i] are 1/2-good
w.r.t. (s,X[i]). Then,

Pr
g

$←Funcs(n,m)|Q
[Fg(s,X) = Y] ≤ 2−t ,

where g
$← Funcs(n,m)|Q is the process of sampling a function uniformly at random from Funcs(n,m)

such that for every (w, y) ∈ Q we have g(w) = y.

But is bounding the above probability for k /∈ Q enough to show that G0 and G1 close? Recall
that A has access to the oracle f which internally calls Ok∗ (where k∗ is the random key sampled
by the games to implement f . That is, f = Ok∗) . It could very well be that k∗ /∈ Q but that
hardly ensures that A has made no queries to O on (k∗, ·). In fact if A manages to find some s such
that Ff (s,X) = Y then R3 queries answered in G1 are necessarily incorrect. For this to happen,
A needs to find some s such that Ff (s,X1) = Y1 and Ff (s,X2) = Y2. This is where the iterative
nature of R1,R2 is supremely crucial which ensures that A learns X2 after committing to Y1 (i.e.,
after querying R2 on (X1, Y1)). Since A only makes non-adaptive queries to f it is either in one
of the following cases: (1) Issues all f queries after committing to Y1 or (2) Issues all f queries

11 Recall that y is 1/2-good w.r.t. (s, x) if Pr
z

[G(s, x, z) = y] ≤ 1/2.

17

before learning X2. In (1) A succeeds only if the challenge oracle f agrees with Y1 on all of X1 (for
some s ∈ GoodC(β,X)) which is unlikely by a discussion we made in the context of handling k /∈ Q
and in (2) A succeeds only if C(s,X2) falls inside the set of f queries it had issued. Fortunately,
such an event is also unlikely for s that is β-sparse and randomly sampled X2. In both cases, for
every s ∈ GoodC(β,X) the conditions of Lemma 4 are satisfied for some t = Θ(l). The full proof is
in Section 6.

Lemma 5. For t = l/(2c(c− 1)),

|Pr[G0]− Pr[G1]| < q ·
(

(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2

)
.

Next, we consider a similar transition from the game H0 (identical to the random world of the
naPRF security game of H) to a game H1 where R3 queries are answered only by considering k ∈ Q
as done in G1. By a similar analysis(more details in Section 6.3),

Lemma 6. For t == l/(2c(c− 1)),

|Pr[H0]− Pr[H1]| < q ·
(

(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2

)
.

Now, we are set to describe our adversary B relative to O. Note that in both G1 and H1 the R3

queries only depend on k ∈ Q. Consider the following adversary B which is relative to O and has
non-adaptive access to the challenge oracle f . It internally runs A and answers its queries to O and
f by forwarding them to its own oracles. It internally simulates R1 and R2 and to simulate R3 we
allow B to learn the entire description of Ok whenever the first query to Ok is made by A. Such a
B can then perfectly simulate the game G1 (resp., H1) for A. Therefore, we have argued that,

Pr[G1] = Pr
O,k∗

$←{0,1}n
[BO,f=HO

k∗ = 1] ;Pr[H1] = Pr
O,f

$←Funcs(n,m)

[BO,f = 1] . (2)

The final step is to invoke the security of H relative to O. For this, we consider an extended
version of the security game of H relative to O where for every (k, x) query to O instead of just
getting O(k, x) the adversary B gets the entire description of Ok – we refer to such queries as
“advanced” queries. Note that B makes exactly q “advanced” queries and also only makes non-
adaptive queries to f . Then, we claim the following whose proof follows from standard techniques,∣∣∣∣∣ Pr

O,k∗
$←{0,1}n

[BO,f=HO
k∗ = 1]− Pr

O,f
$←Funcs(n,r)

[BO,f = 1]

∣∣∣∣∣ ≤ 2q

2n
. (3)

Combining Lemmas 5, 6 with Equations 2,3 concludes the proof of Lemma 3. Next, we discuss
the proofs of Lemma 5 and Lemma 6 in Section 6. ut

6 Proofs of Lemma 5 and Lemma 6

We will first focus on showing Lemma 5. The proof of Lemma 6 is similar and we discuss it
in Section 6.3.

18

Proof of Lemma 5. To show the indistinguishability of G0 and G1 we consider for every i ∈
{0, . . . , q} an intermediate game Gi where any queries to R3 within the first i queries are answered
as in G1 (i.e., by just considering k ∈ Q), while the rest of the R3 queries are answered as done in
G0 (which consider all k ∈ {0, 1}n). Note that G0 is identical to G0 and Gq to G1. Therefore,

|Pr[G0]− Pr[G1]| ≤
∑

i∈{0,...,q−1}

|Pr[Gi]− Pr[Gi+1]| . (4)

Let us fix some i ∈ {0, . . . , q−1} and consider Gi and Gi+1. The first point of difference between
Gi and Gi+1 is the i + 1-st query. Furthermore, if the i + 1-st query is to any oracle other than
R3 then both games remain identical as queries to oracles other than R3 are handled identically
throughout both games. Therefore, w.l.o.g. we assume that the i+ 1-st query in both games is to

R3. Given this, we introduce two games Ĝ
i

and Ĝ
i+1

for Gi and Gi+1 respectively (Figure 4).

Description of Game Ĝ
i
: Game Ĝ

i
is identical to the game Gi except that the oracles O and f are

implemented via lazy sampling until the i+ 1-st query.
More precisely, for the first i queries: (1) For any query to O on (k, x) which is the first query

to Ok (i.e., k /∈ Q), a random function is sampled from Funcs(n,m) and assigned to πk. The game
also inserts k in the set Q. The response for this query and any future query x on Ok is replied with

πk(x). (2) For any query to f on x, if k∗ /∈ Q the response is a uniformly random value y
$← {0, 1}m

otherwise the response is y = πk∗(x).
The oracles f and Ok∗ are correlated and hence the function πk∗ in (1) is sampled to be

consistent with the set Qf . We denote this by πk∗
$← Funcs(n,m)|Qf in Figure 4. Furthermore,

the game maintains the queries/responses to Ok∗ in the set Qk∗ and queries/responses to f in a
different set Qf .

By the assumption on A’s behavior, we know that the i+1-st query is to R3. Since this query to
R3 (in Gi) depends on all k ∈ {0, 1}n (even the ones not in the set Q) the game at the beginning of
this call to R3 completes the description of the oracles O and f . That is, it first samples functions πk
for all k /∈ Q∪{k∗} inside the subroutine CompleteO and completes the description of f (equivalently,
Ok∗) inside Completef. Now, the response for this i+ 1-st query is 1 if there exists some k ∈ {0, 1}n
and some s ∈ GoodF(β,X, Y) such that F((s, k), X) = Y . Otherwise, R3 returns ⊥. It is clear that

this R3 query is computed as in Gi. In the process, Ĝ
i

sets two bad flags bad1 and bad2 where bad1
is set if there exists some k /∈ Q for which F((s, k), X) = Y , and bad2 is set if the same is true for

k = k∗. The game Ĝ
i

is only syntactically different from Gi, therefore

Pr[Gi] = Pr[Ĝ
i
] . (5)

Description of Game Ĝ
i+1

: Game Ĝ
i+1

is identical to that of Ĝ
i

except that in the i+ 1-st query,
R3 responds with 1 iff there exists some k ∈ Q such that F((s, k), X) = Y . This is identical to how

this query to R3 is handled in Gi+1. The game Ĝ
i+1

is also a syntactic variant of Gi+1, therefore

Pr[Gi+1] = Pr[Ĝ
i+1

] , (6)

Furthermore, the games Ĝ
i

and Ĝ
i+1

are identical until either of the bad flags are set in Ĝ
i
. By

the fundamental lemma of game playing we have,

|Pr[Ĝi]− Pr[Ĝ
i+1

]| ≤ Pr[bad in Ĝ
i
] . (7)

19

Game Ĝ
i
, Ĝ
i+1

:

bad1, bad2, done← false; c← 0

k∗
$← {0, 1}n

b
$← AO,R,f

return b

Proc. R3(X = X1||X2, Y = Y1||Y2):
c← c+ 1; b← 0
if c ≤ i then

if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s, k) ∈ GoodF(β,X, Y)×Q : F((s, k), X) = Y then

return 1
return ⊥

elseif c = i+ 1 then
if ¬isValid(2l,X, Y) ∨X1 6= T1 ∨X2 6= T2[Y1] then

CompleteO();Completef()
done← true
return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y)×Q :
F((s, k), X) = Y then b← 1

CompleteO()
if ∃(s, k) ∈ GoodF(β,X, Y)× (Qc \ {k∗}) :

F((s, k), X) = Y then

bad1 ← true; b← 1

Completef()
if ∃s ∈ GoodF(β,X, Y) : Ff (s,X) = Y then

bad2 ← true; b← 1

done← true
if b = 1 then return 1
return ⊥

else
if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s, k) ∈ GoodF(β,X, Y)× {0, 1}n :

F((s, k), X) = Y then return 1
return ⊥

Proc. R1(1):
c← c+ 1
if T1 = ⊥ then

T1
$← ({0, 1}n)[l]

return T1

Proc. R2(X,Y):
c← c+ 1
if ¬isValid(1n, l, X, Y) then return 1
if X 6= T1 then return ⊥
if T2[Y] = ⊥ then

T2[Y]
$← ({0, 1}n \ T1)[l(n)]

return T2[Y]

Proc. O(k, x):
c← c+ 1
if ¬done ∧ k /∈ Q then

if k = k∗ then

πk∗
$← Funcs(n,m)|Qf

else πk
$← Funcs(n,m)

Q← Q ∪ {k}
return πk(x)

Proc. CompleteO():

foreach k /∈ Q ∪ {k∗} do
πk

$← Funcs(n,m)
return 1

Proc. Completef():

if k∗ /∈ Q then

πk∗
$← Funcs(n,m)|Qf

return 1

Proc. f(x):
c← c+ 1
if ¬done ∧ k∗ /∈ Q then

y
$← {0, 1}m

else y ← πk∗ (x)
Qf ← Qf ∪ {(x, y)}
return y

Fig. 4: Intermediate Games used in the proof of non-adaptive security of H relative to (O,R).

20

Next, we bound the probability of bad being set in Ĝ
i

in Lemma 7.

Lemma 7. For every i ∈ {0, . . . , q},

Pr[bad is set in Ĝ
i
] ≤ (q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2 .

Before we prove Lemma 7, we note that Lemma 5 follows directly by combining Lemma 7
and Equation (5), Equation (6) and Equation (7).

The rest of this section is devoted to proving Lemma 7: Let us fix some i ∈ {0, . . . , q}. Note that

bad is set in Ĝ
i

if either of bad1 or bad2 is set. While the analysis of bad1 is straightforward, some
care needs to be taken while bounding bad2. In Section 6.1 we define some bad events on which we
will condition on to bound the probability of setting bad = bad1 ∨ bad2 in Section 6.2.

6.1 Bad Events in Ĝ
i

In this section we define bad events and bound the probability of these events occurring in Ĝ
i
.

The first event is BadO which captures the event that A makes a direct query to O(k∗, ·) within
its first i queries. Conditioned on ¬BadO the queries/responses to f and O are independent.

Definition 10 The event BadO occurs in Ĝ
i

if within the first i queries, there exists an O(k, ·)
query such that f = Ok. In other words, BadO occurs if there exists a O(k∗, ·) query within the first
i queries.

The second event is BadR which captures the event that after all parallel queries to f have been
made, a future R2 query results in an X2 for which more than l/2 of the C(s,X2[i])’s fall inside the
set queried Qf , enabling A to compute the Ff (s,X2[i]).

Definition 11 The event BadR occurs in Ĝ
i

if within the first i queries, immediately after an

assignment T2[Y1]
$← ({0, 1}n \ T1)[l] there exists some s such that the following holds for Q =

Qk∗ ∪Qf ,

1. s is β-sparse.

2. there exists some Is ⊆ [l] of size at least l/2 such that for every i ∈ Is,

C(s, T2[Y1][i]) ∈ Query(Q) ,

where by Query(Q) = {w : (w, y) ∈ Q}.

Informally, Badf captures the event that after all parallel queries to f have been made, for a
prior R2 query on (X1, Y1) there exists some seed s (e.g., for which no c-way collisions occur) for
which more than l/2 of the C(s,X1[i])’s fall inside the query set Qf and furthermore for all such i’s
we have Ff (s,X1[i]) = Y1[i]. A direct consequence of showing that Badf doesn’t occur allows us to
focus on seeds s for which at least l/2 of the C(s,X1[i])’s do not belong to Qf . This will be helpful
in later bounding the probability of setting bad2.

21

Definition 12 The event Badf occurs in Ĝ
i

within the first i queries, if immediately after all
parallel queries to f there exist some Y1 such that T2[Y1] 6= ⊥ and s such that the following hold
for Q = Qf ∪Qk∗,

1. there are no c-way collisions in C(s, T1).
12

2. for Is = {i ∈ [l] : C(s,X1[i]) ∈ Query(Q)}, we have |Is| ≥ l/2.
3. |{i : Y1[i] is 1/2-bad w.r.t. (s, T1[i])}| ≤ l/2c. 13

4. for every i ∈ Is,
G(s, T1[i], z) = Y1[i] , (8)

where (C(s, T1[i]), z) ∈ Q.

Definition 13 The event Bad happens in Ĝ
i

if the event BadO ∨ BadR ∨ Badf happens.

Next, we bound the probability of the event Bad happening.

Claim 1

Pr[Bad] ≤ 6q

2n
+ q · 2σ

2t
+ q 2σ

(
l

l/2

)
(2β · q)l/2 where t =

l

2c(c− 1)
.

At a high level the proof of Claim 1 proceeds in two steps – (1) bounding the probability of
each of the three bad events BadO, Badf and BadR happening, and (2) doing a simple union bound.
The formal proof can be found in Section 6.4.

6.2 Bounding bad in Ĝ
i

In this section, we bound the probability of flags bad1 and bad2 getting set in the game Ĝ
i

(see Lemma 7). We will be conditioning on ¬Bad event (Definition 13). Recall that each of bad1 and
bad2 are set only when the i+ 1-st query is made, furthermore this query is to R3. Let us assume
that this i+1-st query is on (X = X1||X2, Y = Y1||Y2). If isValid(X1, Y1, X2, Y2) is false then condi-
tioned on this the probability of setting bad is zero. So, w.l.o.g. assume that isValid(X1, Y1, X2, Y2)
is indeed true. This means that X1 = T1 and T2[Y1] 6= ⊥. In fact, T2[Y1] = X2. Since, T2[Y1] 6= ⊥,
this means that prior to this query to R3 there was a query to R2 on (X1, Y1) which is when the
value T2[Y1] was defined. Let us assume that this was some j-th query where j < i. Using the above
notation we next bound the probability of bad1 being set.

Claim 2 Pr[bad1] ≤ 2σ+n

2t·(c+1) , where t = l
2c(c−1) .

Proof. By the description of Game Ĝ
i
, we note that bad1 is set only if for the query (X =

X1||X2, Y = Y1||Y2) to R3, the set Q and k∗, there exists some s ∈ GoodF(β,X, Y) and k ∈ Qc\{k∗},
such that F((s, k), X) = Y where Qc is the set complement of Q. That is,

Pr[bad1] ≤ Pr[∃s ∈ GoodF(β,X, Y), k ∈ Qc \ {k∗} : F((s, k), X) = Y]

≤ Pr[∃s ∈ GoodF(β,X, Y), k ∈ Qc \ {k∗} : F((s, k), X1) = Y1] ,
(9)

12 Recall that R3 ignores seeds s for which there are c-way collisions in C(s, T1).
13 Recall that R3 ignores pairs (s, Y = Y1||·) for which there are more than l/2c bad Y1[i]’s.

22

where we use the fact that probability that F((s, k), X1) = Y1 upperbounds the probability of
F((s, k), X) = Y .

Let us fix some such k ∈ Qc\{k∗} and some s ∈ GoodF(β,X, Y). Since for such k, the CompleteO
subroutine sampled a uniform function πk,

Pr
πk

[Fπk(s,X1) = Y1] ≤ Pr
πk

[∀i ∈ [l] : Fπk(s,X1[i]) = Y1[i]] , (10)

Since s ∈ GoodF(β,X, Y) we know that there exists some subset Is ⊆ [l] of size l/(c − 1) − l/2c
where for every i 6= j ∈ Is, we have

1. C(s,X1[i]) 6= C(s,X1[j])
2. Y1[i] is 1/2-good w.r.t. (s,X1[i])

Furthermore, no queries to Ok have been made, therefore none of the C(s,X1[i]) have been queried
yet. Therefore, we can bound the probability in Equation 10 by a simple application of Lemma 4
by 1

2t where t = l
2c(c−1) · (c+ 1). The final bound follows by a union bound over all such 2n k’s and

2σ s’s.

Next, we bound the probability of bad2 being set conditioned ¬Bad.

Claim 3 Pr[bad2|¬Bad] ≤ 2σ

2t , where t = l
2c(c−1) .

Proof. By the description of Game Ĝ
i
, we note that bad2 is set only if for the query (X =

X1||X2, Y = Y1||Y2) there exists some s ∈ GoodF(β,X, Y) and such that Ff ((s, k), X) = Y . Here,
we will condition on ¬Bad. Since BadO doesn’t happen, the responses to the oracle f and O are
independent.

Recall that the R2 query corresponding to this R3 query was for some j ≤ i. Let us assume that
A makes exactly p distinct queries to f . Since A only has non-adaptive access to f , it makes all its
queries to f at once. Let us assume the p distinct queries are the t-th, t+ 1-th, . . . , (t+ p− 1)-th
queries. Now there are two cases to consider here depending on the ordering of R2 and f queries.
The first case is when j < t, that is, the R2 query was made earlier than the first f query and the
second case is that j > t+ p− 1.

- Case (a) j < t: We condition on ¬Badf. Since the event Badf doesn’t happen we only need to
focus on s ∈ GoodF(β,X, Y) for which at most l/2 of all the l many C(s,X1[i]) were queried to
f . Fix one such s. We make three observations for this s (1) at least l/2 of the l many C(s,X1[i])
are not yet queried to f , (2) since there are no c way collisions in C(s,X1), at least l/2(c − 1)
of the l many C(s,X1[i])’s are distinct, and (3) there are at most l/2c Y1[i]’s that are 1/2-bad
w.r.t. (s,X1[i]) (by definition of s). Combining (1), (2) and (3), we have that there exists Is ⊆ [l]
of size at least l/2(c− 1)− l/2c such that for all i 6= j ∈ Is,
1. C(s,X1[i]) 6= C(s,X1[j])
2. C(s,X1[i]) /∈ Query(Qf)
3. Y1[i]’s are 1/2-good w.r.t. (s,X1[i]).
Then the bound follows from a simple application of Lemma 4 with parameter t = l

2c(c−1) .
Taking union bound over all such s, we have that,

Pr[bad2 ∧ j < t|¬Bad] ≤ 2σ

2t
, (11)

where t = l
2c(c−1) .

23

- Case (b) j > t+ p− 1: We now condition on ¬BadR. Let us fix some s ∈ GoodF(β,X, Y).
Since the event BadR didn’t happen we know that for every β-sparse s (and hence every
s ∈ GoodF(β,X, Y)) at least l/2 of the C(s,X2[i])’s are not in the set Query(Qf). Then by
the same argument as done in Case (a) when j < t, we note that there exists a set Is of size
l/2(c− 1)− l/2c such that for all i 6= j ∈ Is,
1. C(s,X2[i]) 6= C(s,X2[j])

2. C(s,X2[i]) /∈ Query(Qf)

3. Y2[i]’s are 1/2-good w.r.t. (s,X2[i]).

Then the bound follows from a simple application of Lemma 4 with parameter t = l
2c(c−1) .

Taking union bound over all such s, we have that,

Pr[bad2 ∧ j > t+ p− 1|¬Bad] ≤ 2σ

2t
, (12)

where t = l
2c(c−1) .

Since Case (a) and Case (b) are exclusive, from Equation (11) and Equation (12) we have,

Pr[bad2|¬Bad] ≤ 2σ

2t
, (13)

where t = l
2c(c−1) .

Finally, we arrive at the probability of bad being set by combining Claim 1,Claim 2 and Claim 3,

Pr[bad] ≤ Pr[bad1] + Pr[bad2] ≤ Pr[bad1] + Pr[bad2|¬Bad] + Pr[Bad]

≤ 2σ+n

2t(c+1)
+

2σ

2t
+

6q

2n
+ q · 2σ

2t
+ q

(
l

l/2

)
(2β · q)l/2 ,

where t = l
2c(c−1) . This concludes the proof of Lemma 7. ut

6.3 Proof of Lemma 6

The proof is identical to the proof of Lemma 5. More precisely we consider a sequence of hybrids
Hi except that there is no dependence between the oracles f and O as in case of Gi. The indistin-
guishability of neighboring games Hi and Hi+1 by bounding the probability of bad flag being set in
Hi computed identically to the probability of bad being set in Gi (discussed in Lemma 7). The only
difference is that in the case of Hi the event BadO happens with probability zero as there is no k∗

such that f = O(k∗, ·). The rest of the analysis is identical to Lemma 7. We skip the formal proof.

6.4 Proof of Claim 1

We bound the probability of the event Bad by first individually bounding the probabilities of each
of the three bad events BadO, Badf and BadR defined in Section 6.1, and then applying a simple
union bound.

Claim 4 Pr[BadO] ≤ 2q
2n .

24

Proof. First note that R1 and R2 are independent of oracles f and O, and responses by R3 within
the first i queries only depend on k ∈ Q. Therefore querying the oracle R = (R1,R2,R3) gives
no more information to A about k∗ than it already has from its queries to (f,O). Therefore, the
probability of querying the oracle O on key k∗ in the j + 1-st query is no better than 1

2n−j . Using

this, the probability of the event BadO happening can be upper bounded by
∑i−1

j=0
1

2n−j (i.e., union

bound over all q queries). Finally note that as i ≤ q << 2n/2, the later can be upper bounded by
2i/2n.

Next, we proceed to bound the probabilities of events BadR and Badf. Here we will be condi-
tioning on ¬BadO which ensures that no queries to O on key k∗ are made, that is, Qk∗ = φ. This,
furthermore ensures that (a) responses by oracles f and O are independent of each other, and (2)
allows us to view Q = Qf in the definitions of BadR (Definition 16) and Badf (Definition 12).

Claim 5 Pr[BadR|¬BadO] ≤ q 2σ
(
l
l/2

)
(2β · q)l/2 .

Proof. Recall that the event BadR occurs in Ĝ
i

if within the first i queries, immediately after an

assignment T2[Y1]
$← ({0, 1}n \ T1)[l] (happens during an R2(T1, Y1) query), there exists some s such

that the following holds for Q = Qk∗ ∪Qf ,

1. s is β-sparse.
2. there exists some Is ⊆ [l] of size at least l/2 such that for every i ∈ Is,

C(s, T2[Y1][i]) ∈ Query(Q) ,

where by Query(Q) = {w : (w, y) ∈ Q}.

To bound BadR, we will condition on ¬BadO which ensures that Qk∗ = φ and hence Q = Qf in
the definition of BadR. If Qf = φ within the first i queries then the set Q is also empty, conditioned
on which the probability of BadR occurring is 0. So, w.l.o.g. let us assume that Q = Qf 6= φ. This
means some queries to f were made within the first i queries. In fact, since A has only non-adaptive
access and the i + 1-st query is to R3, A must then have made all its queries to f within the first
i queries. Let j-th query be the first query to f for some 0 < j ≤ i. Let us assume that there are
p ≤ q distinct queries to f . Then j + p − 1-th query is the last query to f . We denote the set of
queries made to f with Query(Qf).

Now, let us consider some R2 query made after these f queries. Let the query be on some
(X1, Y1). Let us furthermore assume that X2 is the response of this R2 query, that is, X2 =
R2(X1, Y1). If X1 6= T1 or if isValid(X1, Y1) 6= 1 then X2 = ⊥ and conditioned on the probability
of BadR occurring is zero. Let us, w.l.o.g. assume that X1 and Y1 are indeed as necessary then
X2 = T2[Y1] is a l-length tuple of n-bit strings. Since A only makes distinct queries, it must be that
X2 = T2[Y1] was freshly sampled at random. The event BadR occurs for such an R2 query if for the
freshly chosen, random tuple X2 there exists some seed s that is β-sparse for which there exists
Is ⊆ [l] of size l/2 such that for all i ∈ Is, we have

C(s,X2[i]) ∈ Query(Q) .

Let us fix one such s that is β-sparse. We are interested in the following,

Pr
X2

[
∃Is⊆[l]
|Is|=l/2 : ∀i ∈ Is,Cs(X2[i]) ∈ Query(Q)

]
.

25

Let us furthermore fix some arbitrary subset Is = [l] of size l/2.
By definition of β-sparseness, we know that for every w ∈ Query(Qf) the number of pre-images

under s is at most β · 2n. Therefore, the number of pre-images of Query(Qf) under s is at most
β · p · 2n. Therefore, for the above fixed Is,

Pr
X2

[∀i ∈ Is : Cs(X2[i]) ∈ Query(Q)] ≤
l/2−1∏
i=0

β · p2n − i
2n − (3l/2 + i)

,

where recall that X2 is sampled with replacement from {0, 1}n \ T1. Since 2l < 2n/2,

l/2−1∏
i=0

β · p2n − i
2n − (3l/2 + i)

≤
(

β · p2n

2n − (2l − 1)

)l/2
≤ (2βp)l/2 .

Therefore,
Pr
X2

[∀i ∈ Is : Cs(X2[i]) ∈ Query(Q)] ≤ (2βp)l/2 .

The final bound follows by taking a union bound over all
(
l
l/2

)
number of subsets of [l] of size

l/2, over all 2σ s’s and over all q queries to R2.

Claim 6 Pr[Badf|¬BadO] ≤ q·2σ
2t , where t = l

2c(c−1) .

The idea of the proof is pretty similar to the Proof of Lemma 4 presented in the discussion.

Proof. Throughout the proof we will condition on BadO not happening which implies Qk∗ = φ. We
divide the proof into two cases depending on when queries f were made.

- Case A: No queries to f were made within the first i queries (i.e., Qf = φ). Then, the probability
of Badf is 0 (by Definition 12).

- Case B: Let us now consider the case f was queried within the first i queries. Since A has only
non-adaptive access to f it must make all its queries to f before this i+ 1-th query to R3. Let
us assume that A makes p ≤ q distinct queries to f and denote this set of queries by Query(Qf).
Let us fix some query to R2 on Y1 that occurs before the first query to f and fix some s that
satisfies the following conditions:
1. T2[Y1] 6= ⊥.
2. there are no c-way collisions in C(s, T1).
3. for Is = {i ∈ [l] : C(s,X1[i]) ∈ Query(Qf)}, we have |Is| ≥ l/2.
4. |{i : Y1[i] is 1/2-bad w.r.t. (s, T1[i])}| ≤ l/2c.
Badf occurs for the pair (Y1, s) iff for all i ∈ Is the responses Z1[i] = f(W1[i]) were such
that G(s, T1[i], Z1[i]) = Y1[i]. We are interested in computing the probability of this happening.
Recall that, since there are no c-way collisions in C(s, T1[i]) it must be that are at least l/(c−1)
distinct elements in C(s, T1[i]). Furthermore, it must be that there are at least l/2(c−1) distinct
elements among W1’s restricted to the set Is. That is,

|{W1[i] : ∀i ∈ Is}| > l/2(c− 1) .

Next, there are at most l/2c i’s in [l] for which Y1[i] is 1/2-bad (by assumption on Y1 and s).
Therefore, we can safely conclude that there exists a subset Js ⊆ [l] of size at least l/2(c−1)−l/2c
such that for every i 6= j ∈ Js, we have

26

1. W1[i] 6= W1[j] .

2. Y1[i] is 1/2-good w.r.t. (s, T1[i]).

Since we are conditioning on ¬BadO, we know that no queries to f (or O∗k) have be made
earlier. Therefore, Z1[i] = f(C(s, T1[i])) for all i ∈ Js are sampled at random. So the probability
of Badf happening for the fixed (s, Y1) can be upper bounded by the probability that over the
random choice of Z1[i]’s, we have Ff (s,X1[i]) = Y1[i]. This can be upper bounded by 1

2t where

t = |Js| ≥ l/2(c− 1)− l/2c = l
2c(c−1) .

Now, for every such Y1 there exists some R2 query on (·, Y1). Therefore, there are at most q
such Y1’s. Final bound follows by taking union bound over all 2σ s’s’ and q such Y1’s.

Proof of Claim 1. Finally, we are ready to bound the probability of Bad. Note that,

Pr[Bad] ≤ Pr[BadO ∨ BadR ∨ Badf] ,

≤ 3 · Pr[BadO] + Pr[Badf|¬BadO] + Pr[BadR|¬BadO] ,

≤ 6q

2n
+ q · 2σ

2t
+ q 2σ

(
l

l/2

)
(2β · q)l/2 , where t =

l

2c(c− 1)
,

where inequalities follow from Claim 4,Claim 5,Claim 6. ut

7 Removing c-universality Assumption on C for Specific 1-call Constructions

In this section we study two special cases of the construction F(·)[C,G] and rule out F(·) as a fully
black-box construction of a PRF from a naPRF for any C.

7.1 1-call Constructions with Post-processing with a Fixed Function

In this section, we study the first special case of the construction F(·)[C,G]. We begin by describing
the construction formally and then provide the black-box separation.

Construction FH[C, g]. Let σ, r,m be any polynomially bounded functions. Let C be a function
family from n bits to n bits with σ-bit seeds, let H be a function family on n bits to r bits with
n-bit seeds and let g be a function from 2n+ r bits to m bits with σ-bit seeds. Consider the family
FH[C, g] from n bits to m bits with σ+n-bit seeds such that F.Kg outputs (s, k) where s is a random
σ-bit seed for C. And the evaluation for F on x proceeds as follows,

y = FH((s, k), x) = g(x,w, z) where w = C(s, x) ; z = H(k,w) . (14)

Note that FH[C, g] is a special case of the construction FH[C,G] from Section 4 as for every g
there exists a family G where G(s, x, z) can simulate g(x,w, z) as G can compute w = C(s, x) with
its seed.

Theorem 3 rules out F[C, g] as a fully black-box construction of a PRF from a naPRF for every
C and g.

Theorem 3. Let r, σ,m be any polynomially bounded functions such that m = Ω(n+ r). Then for
every oracle function family F(·)[C, g] (defined in Equation 14) there exists an oracle (O,R) relative
to which naPRF H exists but FH[C, g] is not a PRF.

27

Proof. Towards proving Theorem 3, let c ≥ 2 be the smallest constant such that m ≥ (n+ r)/c+
ω(log n). Note that such a c exists as m = Ω(n + r). Theorem 3 follows from the following two
cases,

- Case (a) C is c-universal: Here, Theorem 2 provides us with the relevant oracles (note that
m ≥ log(8ce) as m = Ω(n+ r)) implying Theorem 3 for c-universal C’s.

- Case (b) C is not c-universal: In Lemma 8 we present the necessary oracles to handle this case.
This concludes the proof of Theorem 3.

Lemma 8. Let c = O(1) and r, σ,m be any polynomially bounded functions such that m ≥ (n +
r)/c + ω(log n). Then for every function family F(·)[C, g] (defined in Equation 14) where C is not
c-universal there exists an oracle (O,R) relative to which naPRF H exists but FH[C, g] is not a PRF.

Proof. Since C is not c-universal, there exists some non-negligible function ε such that for every
n ∈ N there exists distinct x1, . . . , xc ∈ {0, 1}n,

Pr
s

[C(s, x1) = . . . = C(s, xc)] ≥ ε(n) .

Let us fix some n. Let x1, . . . , xc be the corresponding distinct inputs for which collisions are likely.
Now, under a random s not only do they share the same w = C(s, xi) but for any function H and
any k, they also share the same z = H(k,w) = H(k,C(s, xi)). Now, we consider the set Yg of all
possible outputs (y1, . . . , yl)

Yg = {(y1, . . . , yk) : ∃(w, z) s.t. g(xi, w, z) = yi∀i ∈ [3]} .

Clearly, |Yg| ≤ 2n+r. However, the (y1, . . . , yk) where yi = f(xi) when f is a random function from
n-bits to m-bits come from a set of size 2mc. We exploit this fact to build an oracle (O,R) relative
to which a secure naPRF H exists but FH[C, g] is not a PRF.

Oracle R. The oracle R is decomposed into two oracles (R1,R2) such that R1 on input 1n provides
strings (x1, . . . , xc) which collide under C with non-negligible probability ε. The oracle R2 just
accepts a tuple of c inputs (x1, . . . , xc) and c outputs (y1, . . . , yc) and returns 1 iff there exist some
(w, z) such that g(xi, w, z) = yi for all i ∈ [c].

Oracle O and HO. The oracle O and HO are identical to the ones described in Section 5.2.

F is not a PRF relative to (O,R). Consider a uniform adversary A that first queries R1 to receive
likely collisions x1, . . . , xc of C. Then, it computes yi = f(xi) by making queries to its challenge

oracle f and outputs whatever R2 for ((x1, . . . , xc), (y1, . . . , yc)). When A is interacting with f
$← F,

oracle R2 outputs 1 with probability ε. But, as discussed above, R2 outputs 1 with probability at

most 2n+r/2mc when f
$← Funcs(n,m). Since, m ≥ (n + r)/c + ω(log n), we know R2 outputs 1

when f is random only with negligible probability. Hence, A achieves non-negligible advantage in
breaking F.

H is naPRF relative to (O,R). Recall that R is independent of O and furthermore can be computed
by a computationally unbounded adversary. Therefore, as done in the Proof of Proposition 3 we
can reduce the naPRF security of H relative to (O,R) to naPRF security of H relative to O. This
concludes the proof of Lemma 8.

28

7.2 1-call Constructions with Only Pre-processing

In this section, we study the most basic one-call construction which is a composition of preprocessing
function C with the naPRF H. We begin by describing the construction formally and then provide
the black-box separation.

Construction FH[C]. Let σ, r,m be any polynomially bounded functions. Let C be a function
family from n bits to n bits with σ-bit seeds, let H be a function family on n bits to m bits with
n-bit keys. Consider the family FH[C] from n bits to m bits with σ + n-bit seeds such that F.Kg
outputs (s, k) where s is a random σ-bit seed for C. And the evaluation for F on x proceeds as
follows,

y = F((s, k), x) = H(k,C(s, x))[1, . . . ,m] . (15)

Theorem 4 rules out F[C, g] as a fully black-box construction of a PRF from a naPRF for every
C and g.

Theorem 4. Let σ,m be any polynomially bounded functions such that m = ω(log n). Then for
every oracle function family F(·)[C, g] (defined in Equation 14) there exists an oracle (O,R) relative
to which naPRF H exists but FH[C, g] is not a PRF.

Proof. Theorem 4 follows from the following two cases –

- Case (a) - C is 2-universal: Here, Theorem 2 provides us with the relevant oracles (note that
m ≥ log(16e) as m = ω(log n)) implying Theorem 4 for C’s which are 2-universal.

- Case (b) - C is not 2-universal: Here, it is clear that collisions in C lead to collisions in F[C]. That
is, if for inputs x1 6= x2 and some non-negligible function ε, C(s, x1) = C(s, x2) with probability
ε then F((s, k), x1) = F((s, k), x2) also with probability ε over the choice of (s, k). However, such
collisions happen only with negligible probability for a random function whenever m = ω(log n).
Therefore, an adversary that receives collisions in C (as non-uniform advice) can break the PRF
security of F. But, to show the separation in our case (uniform security), one needs to exhibit a
uniform adversary that breaks F. We make the adversary uniform by designing an oracle that
provides collisions in C. We handle this case explicitly in Lemma 9.

This concludes the proof of Theorem 4.

Lemma 9. Let σ,m be polynomially bounded functions such that m = ω(log n). Then for every
oracle function family F(·)[C] (defined in Equation 15) where C is not 2-universal there exists an
oracle (O,R) relative to which naPRF H exists but FH[C, g] is not a PRF.

Proof. Since C is not 2-universal, there exists some non-negligible function ε such that for every
n ∈ N there exists x1 6= x2 ∈ {0, 1}n,

Pr
s

[C(s, x1) = C(s, x2)] ≥ ε(n) .

We exploit this fact to build an oracle (O,R) relative to which naPRF H exists while F[C] is not a
PRF.

Oracle R. The oracle R on input 1n provides strings (x1, x2) which collide under C with non-
negligible probability ε.

Oracle O and HO. The oracle O and HO are identical to the ones described in Section 5.2.

29

F is not a PRF relative to (O,R). Consider a uniform adversary A that first queries R to receive
likely collisions x1, x2 of C. Then, it computes yi = f(xi) by making queries to its challenge oracle

f and outputs 1 iff y1 = y2. When f
$← F, A outputs 1 with probability ε but A outputs 1 only

with negligible probability when f
$← Funcs(n,m), thereby achieving a non-negligible advantage in

breaking the PRF-security of F.

H is naPRF relative to (O,R). Recall that R is independent of O and furthermore can be computed
by a computationally unbounded adversary. Therefore, as done in the Proof of Proposition 3 we
can reduce the naPRF security of H relative to (O,R) to naPRF security of H relative to O. This
concludes the proof of Lemma 9.

8 Multiple-call Constructions

We devote this section to study multiple call constructions. First, in Section 8.1, we lift our tech-
niques from Section 4 to a specific 2-call construction (and its generalization to arbitrary calls).
This result is a generalization of [Mye04] which only rules our arbitrary parallel composition of
naPRFs as a PRF. In Section 8.2 we provide examples of constructions making two- and four-calls
which cannot be ruled out using our techniques. While it is unlikely that these constructions will
admit a security proof, we want to highlight that ruling them out will require new techniques (or
at least new designs of separation oracles).

8.1 Ruling out Two-call Cuckoo-hashing based Construction

Let σ,m be polynomially bounded functions, C (resp., G) be a function family from n bits to n
bits (resp., m bits) with σ-bit seeds, and let H be a function family on n bits to m bits with n-bit
seeds. Consider the family FH[C,G] (Figure 1b) from n bits to m bits with (3σ+ 2n)-bit seeds such

that for every n ∈ N, F.Kg(1n) outputs (s,k) where s
$←
(
{0, 1}σ(n)

)3
and k

$← ({0, 1}n)2. The
evaluation of F on x ∈ {0, 1}n with s = (s1, s2, s3) and k = (k1, k2) is,

y = FH((s,k), x) = H(k1,C(s1, x))⊕ H(k2,C(s2, x))⊕ G(s3, x) . (16)

We note that the construction in Equation (16) covers the cuckoo-hashing based naPRF to PRF
construction [BHKN19] – one recovers their construction by letting C and G be hash function family
with sufficient independence. Informally, they showed that for every polynomial time computable
function t, if C and G are O(log t(n))-wise independent and H is a naPRF secure for adversaries
making at most t queries, then F is a PRF for adversaries making at most t/4 queries.14

Below we state our result which provides an oracle relative to which there exists an naPRF H
such that F (in Equation (16)) is not a PRF as long as C is a 2-universal hash function family. This
in turn implies that F cannot be a fully black-box construction of a PRF from a naPRF.

Theorem 5. Let σ,m be polynomially bounded functions, C be a 2-universal family from n bits to
n bits and G be a function family from n bits to m bits. Then, for F(·)[C,G] (Equation (16)) from n
bits to m bits there exists a randomized oracle (O,R) and an oracle function family H(·) from n bits
to m bits with n-bit keys such that H(·) is a naPRF relative to (O,R) but FH[C,G] is not a PRF.

14 they require the range of C to be restricted to the first 4t(n) elements of {0, 1}n

30

Before we move on to proving Theorem 5, some remarks are in order. First, we emphasize
that our result rules out any output length m (even m = 1). Secondly, the proof of security
from [BHKN19] requires C to be a O(log n)-wise independent function family, the later implies our
notion of 2-universality. However, we here rule out F as a construction of a PRF which, at first,
seems to be contradictory to [BHKN19]. Here, we emphasize that our focus is on fully-black-box con-
structions (which are meant to work for any secure naPRF H) whereas the construction [BHKN19]
depends on the purported security of the underlying naPRF H and hence is not fully-black-box.
Thirdly, we emphasize that Theorem 5 readily extends to the case when C is assumed to only be
c-universal for some constant c > 2 - making much weaker assumptions on C and hence resulting
in a stronger negative result. We here choose to focus on the case of c = 2 for simplicity.

Finally, the construction in Section 8.1 is a specific case of the following κ(n)-call function

family F
(·)
κ [C,G] which takes as seed (s,k) where s ∈ ({0, 1}σ)[κ+1] and k ∈ ({0, 1}n)[κ] and on

input x ∈ {0, 1}n evaluates to y ∈ {0, 1}m where

y = FHκ ((s,k), x) = G(sκ+1, x)⊕
⊕

i∈[κ(n)]

H(ki,C(si, x)) . (17)

We note that Theorem 5 also extends to rule out F
(·)
κ for every polynomially bounded, polynomial-

time computable function κ. We state the theorem but only prove the case for κ = 2 for simplicitly
or equivalently Theorem 5.

Theorem 6. Let σ,m, κ be polynomially bounded functions and c ≥ 2. Let C be a c-universal family
from n bits to n bits with σ-bit seeds, and G be any function family from n bits to m bits with σ-bit
seeds. Then, for F(·)[C,G] (as in Equation 17) from n bits to m bits there exists a randomized oracle
(O,R) and an oracle function family H(·) from n bits to m bits with n-bit keys such that H(·) is a
naPRF relative to (O,R) but FH[C,G] is not a PRF relative to (O,R).

On proofs of Theorem 5 and Theorem 6.The proof of Theorem 5 closely follows that of Propo-
sition 2. At a high level the main challenge in proving Theorem 5 is to show that O remains a secure
naPRF relative to (O,R). Recall that a non-adaptive adversary A can break naPRF challenge oracle
f relative (O,R) if it can predict the output of F on challenges X = X1||X2 issued by R under some
(s,k) where either (a) k = (·, f) or (b) k = (f, ·). Because of non-adaptive access to f and iterative
nature of R, A is forced to make all its queries to f either after committing to Y1 (potential outputs
for X1) or before learning X2. Irrespective of which is the case, A (to trigger case (a)) needs to
hope that for sufficiently large set I ⊆ [|X|]: ∀i ∈ I where X[i] is a fresh query to f we have

f(C(s1, X[i])) = G(s3, X[i])⊕ H(k,C(s2, X[i]))⊕ Y [i] .

Restricting R to only consider “good” seeds s1 ensures that enough of C(s1, X[i])’s are distinct
and since f is randomly sampled for fresh queries, the above happens with exponentially small
probability. Case (b) is symmetrical. The proof of Theorem 5 is detailed in Appendix C.

The general case of κ-calls (Theorem 6) is a syntactic generalization of the proof of Theorem 5:
the oracle (O,R) is a straightforward extension of the ones used to show Theorem 5. Here as well
it is crucial to show that it is hard for an adversary A having only non-adaptive access to the
challenge oracle f in the naPRF game to find some (s,k) such that F((s,k), X) = Y where for
k = (k1, . . . , kκ) there exists some i ∈ [κ] for which ki = f for. This requires us to union bound
over κ many cases instead of just two cases (case (a) and (b)) for the two-call case. Setting l = |X|
large enough suffices to cover the union bound.

31

8.2 Challenges to Ruling out General O(1)-call Constructions

In this section, we describe two constructions which make more than one call to the underlying
naPRF, for which natural extensions of the oracle from Section 5.2 allow to break both PRF- and
naPRF-security. While it is unlikely that these constructions will admit a security proof, we want
to highlight that ruling them out will require new techniques (or at least new designs of separation
oracles). This also provides some justification to the limited-looking scope of our results. We provide
a two-call and a four-call construction in this section.

Two-call Combiner Construction Let H be a function family on n-bit seeds mapping n bits to
n bits. Consider the following two-call construction F2[H] on 2n-bit seeds mapping n-bits to n-bits:
For every (k1, k2) ∈ {0, 1}n × {0, 1}n and every x ∈ {0, 1}n,

F2((k1, k2), x) = H(k1, x)⊕ H(k2, b
n) ,

where b = x[0]. This construction can be seen as the parallel (i.e., xor) composition of the one-
call, pre-processing-only construction (Section 2) with itself, albeit with different pre-processing
functions for each call. A peculiar property of the construction F2 is that the second call to H (on
key k2) is either on input 0n or 1n even when the inputs x for F2 are n-bit strings. We show how
a non-adaptive adversary can exploit this property to break the naPRF-security of H relative to a
natural extension of (O,R) from Section 5.2.

Oracle (O,R).Recall the oracle (O,R) from Section 5.2 where O embeds an information-theoretically
secure naPRF, and R1 and R2 provide adaptive challenges (inputs in the domain of F). The idea be-
hind having R1 and R2 was to disallow non-adaptive adversaries from being able to successfully use
R3 to break pseudo-randomness. The oracle R3 on inputs tuple of challenges X = X1||X2 (issued by
R1 and R2) and tuple Y = Y1||Y2 returns 1 iff there exist some key for the construction that maps
X to Y . We extend the oracle (O,R) in the most natural way to the above two-call construction F2
(formal code in Figure 5). We claim that relative to (O,R) there exists a natural adaptive adversary
that breaks the PRF-security of F2. We just focus on showing that naPRF-security of H breaks
down relative to (O,R).

naPRF-security of H relative to (O,R). Recall that in the naPRF-security-game for H rel-

ative to (O,R), an adversary A(O,R,h) can make adaptive queries to (O,R) but only non-adaptive
queries to the challenge oracle h where h is sampled uniformly from either Funcs(n, n) or HO. Con-

sider the case when h
$← H, that is, there exists some k∗ ∈ {0, 1}n such that h(·) = H(k∗, ·). To be

able to use R successfully, A would need to compute the outputs Y = Y1||Y2 (under F2) for adaptive
challenges X = X1||X2 (issued by R) by mimicking one of the two calls in F2 using h, while only
having non-adaptive access to h. This, in fact, is possible due to the peculiar property of the con-
struction F2 described above, let us explain. A can obtain h(0n) and h(1n) (non-adaptive queries
are sufficient). Then for some k1 of its choice, A can compute the outputs Y = F2((k1, k

∗), X)
for adaptively chosen challenges X. For this it requires adaptive access to O(k1, ·) but only non-
adaptive access to h. The oracle R3 always returns 1 for such Y computed by A. However, note

that when h
$← Funcs(n, n) the above strategy of computing Y would result in R3 outputting 1 only

when h(bn) = O(k, bn) for both b ∈ {0, 1} and some k ∈ {0, 1}n. For a particular k, this happens
with probability 1/22n (over the randomness of sampling Ok), by a union bound over 2n possible k’s
we can show that R3 returns 1 with only 1/2n probability, ensuring A can break the non-adaptive
security of H.

32

Oracle R1(1n):

if Tn1 = ⊥ then Tn1
$← ({0, 1}n)[l(n)]

return Tn1

Oracle R3(1n, X = X1||X2, Y = Y1||Y2):
if ¬isValid(1n, 2l,X, Y) then return ⊥
if X1 6= Tn1 ∨X2 6= Tn2 [Y1] then return ⊥
if ∃(k1, k2) ∈ {0, 1}n × {0, 1}n :

FHO

2 ((k1, k2), X) = Y then return 1
return ⊥

Oracle R2(1n, X, Y):

if ¬isValid(1n, l, X, Y) then return 1
if X 6= Tn1 then return ⊥
if Tn2 [Y] = ⊥ then Tn2 [Y]

$← ({0, 1}n \ Tn1)[l(n)]

return Tn2 [Y]

Proc. isValid(1n, t,X, Y)

if X /∈ ({0, 1}n)[t] then return 0
if Y /∈ ({0, 1}n)t then return 0
return 1

Fig. 5: Description of oracle R for the two-call construction F2 in Section 8.2. Oracles R1 and R2

samples random n-bit tuples without replacement from {0, 1}n, the subroutine isValid performs
sanity checks on the lengths of its inputs X and Y and the oracle R3 returns 1 if it finds a pair
(k1, k2) that maps X to Y under F. T1 and T2 are internal data-structures maintained by R for
book-keeping.

We note that the non-adaptive attack described above is very similar to the one mentioned
in Section 2 for the one-call pre-processing-only construction F[C,H] = H(k,C(s, x)). The major
difference is that for pre-processing-only construction, the attack was possible because of the ex-
istence of negligible fraction of “bad seeds” in an actually universal hash family C. But, here the
second call can be viewed as being pre-processed by a non-universal family C∗(s, x) = x[0], for
which all seeds are “bad”. We note that the one-call construction with C∗ can trivially be ruled out
but for the two-call case such trivial approach does not seem to help.

Four-call Construction In this section, we present a general family of constructions for which
our natural extensions of (O,R) from Section 5.2 would fail to provide separations. At a high level,
take any (q ≥ 2)-call construction F where all the q calls to H are on independent and uniform
chosen keys (k1, . . . , kq), sampled as part of the key for the construction. Now, construct a family
F̃ that makes 2q-calls where the additional q calls are used to first generate the q keys (k1, . . . , kq)
from a short key k on some a-priori fixed inputs, e.g., ki = H(k, i). We show that this allows a non-
adaptive adversary to break the non-adaptive security of H relative to a natural extension of the
oracle from Section 5.2 to the 2q-call construction. For simplicitly we only describe the construction
for q = 2, i.e., a four-call construction.

Let H be a function family on n-bit seeds mapping n bits to n bits. Let F[H] be any two-
call construction on σ + 2n-bit seeds mapping n bits to n bits, where the two calls to H are on
independent keys (k1, k2) sampled during key generation.

Consider the following four-call construction F̃[H] on σ + n-bit seeds mapping n bits to n bits
such that for all (s, k) ∈ {0, 1}σ × {0, 1}n and x ∈ {0, 1}n,

F̃((s, k), x) = F((s, k1, k2), x) ,

where ki = H(k, i).

As in the two-call case, we show that a certain property of the construction F̃ allows a non-
adaptive adversary to break H relative to natural generalizations of the oracle (O,R) from Sec-
tion 5.2. At a high level, a non-adaptive adversary A(O,R,h) can use its challenge oracle h to compute

33

k1 = h(1) and k2 = h(2) using only non-adaptive queries. Then for some randomly chosen s, A
can compute Y = F((s, k1, k2), X) for any adaptive challenges X using adaptive access to O(k1, ·)
and O(k2, ·). When h

$← H, A outputs 1 with probability 1 as there exists some k∗ such that

H(k∗, ·) = h for which Y computed by A equals F̃(s, k∗)(X). However, when h
$← Funcs(n, n) the

probability that A outputs 1 can be upper bounded by the probability that there exists some k for
which h(i) = O(k, i) for i ∈ [2]. As seen in the two-call case this probability can be upper bounded
by 1/2n which implies that A breaks the naPRF-security of H. The main ideas are similar to the
two-call case and we skip describing the oracles and the non-adaptive adversary more formally here.

In conclusion, the constructions described in this section highlight that the natural class of
oracles R that break the adaptive security of the construction (e.g., F2 or F̃) by finding keys
consistent to some tuple (X,Y) of input and output pairs, in some cases allow even non-adaptive
adversaries to, additionally, break the underlying naPRF H. This provides some insight into why
ruling out constructions that make more than one call construction is significantly more challenging.
We believe tackling the general case of ruling out all O(1) calls constructions will, at the minimum,
require a new approach for designing separations oracles which perhaps will need to be significantly
different from natural approaches known in the literature.

Acknowledgements. This work was partially supported by NSF grants CNS-1719146, CNS-
1553758 (CAREER), and by a Sloan Research Fellowship. Pratik Soni was additionally supported
by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER), the Defense Advanced Re-
search Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-
15-C-0236, and a subcontract No. 2017-002 through Galois. The views and conclusions contained in
this document are those of the authors and should not be interpreted as the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

References

AR16. Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander graphs. In
TCC 2016-B, Part I, LNCS, pages 27–56. Springer, Heidelberg, November 2016.

BCK96. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade con-
struction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer Society Press, October
1996.

BH15. Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom functions. Journal of
Cryptology, 28(2):297–311, April 2015.

BHKN19. Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness-preserving reductions via
cuckoo hashing. Journal of Cryptology, 32(2):361–392, 2019.

BJP11. Josh Bronson, Ali Juma, and Periklis A. Papakonstantinou. Limits on the stretch of non-adaptive con-
structions of pseudo-random generators. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
504–521. Springer, Heidelberg, March 2011.

BLN09. Ahto Buldas, Sven Laur, and Margus Niitsoo. Oracle separation in the non-uniform model. In Josef
Pieprzyk and Fangguo Zhang, editors, ProvSec 2009, volume 5848 of LNCS, pages 230–244. Springer,
Heidelberg, November 2009.

BMG07. Boaz Barak and Mohammad Mahmoody-Ghidary. Lower bounds on signatures from symmetric primitives.
In 48th FOCS, pages 680–688. IEEE Computer Society Press, October 2007.

CLO10. Chongwon Cho, Chen-Kuei Lee, and Rafail Ostrovsky. Equivalence of uniform key agreement and com-
position insecurity. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 447–464. Springer,
Heidelberg, August 2010.

GGK03. Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the efficiency of encryption and
digital signature schemes. In 35th ACM STOC, pages 417–425. ACM Press, June 2003.

34

GMR01. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor functions on
trapdoor predicates. In 42nd FOCS, pages 126–135. IEEE Computer Society Press, October 2001.

GT00. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic constructions.
In 41st FOCS, pages 305–313. IEEE Computer Society Press, November 2000.

HS12. Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator requires an almost linear
number of calls. In 53rd FOCS, pages 698–707. IEEE Computer Society Press, October 2012.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

IR90. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 8–26. Springer, Heidelberg, August
1990.

MP04. Ueli M. Maurer and Krzysztof Pietrzak. Composition of random systems: When two weak make one
strong. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 410–427. Springer, Heidelberg,
February 2004.

MPR07. Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability amplification. In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 130–149. Springer, Heidelberg, August
2007.

MV11. Eric Miles and Emanuele Viola. On the complexity of non-adaptively increasing the stretch of pseudo-
random generators. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 522–539. Springer,
Heidelberg, March 2011.

Mye04. Steven Myers. Black-box composition does not imply adaptive security. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 189–206. Springer, Heidelberg,
May 2004.

Pie05. Krzysztof Pietrzak. Composition does not imply adaptive security. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 55–65. Springer, Heidelberg, August 2005.

Pie06. Krzysztof Pietrzak. Composition implies adaptive security in minicrypt. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 328–338. Springer, Heidelberg, May / June 2006.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryptographic primi-
tives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 1–20. Springer, Heidelberg, February
2004.

Sim98. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general
assumptions? In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer,
Heidelberg, May / June 1998.

Sti92. Douglas R. Stinson. Universal hashing and authentication codes. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 74–85. Springer, Heidelberg, August 1992.

Vau03. Serge Vaudenay. Decorrelation: A theory for block cipher security. Journal of Cryptology, 16(4):249–286,
September 2003.

Vio05. Emanuele Viola. On constructing parallel pseudorandom generators from one-way functions. Cryptology
ePrint Archive, Report 2005/159, 2005. http://eprint.iacr.org/2005/159.

WC81. Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265–279, 1981.

A Proofs from Section 5

A.1 Proof of Lemma 1

Clearly, β and δ are negligible whenever α is negligible and c = O(1). Now suppose for contradiction
that for the above defined β and δ,

Pr
s

[s is not β-sparse] > δ .

That is, with probability at least δ for the randomly sampled s there exists some ws with more than
β · 2n pre-images under Cs. We sample c inputs xi at random without replacement and compute
the probability that all map to C(s, xi) = ws.

35

http://eprint.iacr.org/2005/159

With probability at least β the first input x1 will be mapped to ws, with probability at least
β·2n−1
2n−1 the second input x2 will be mapped to ws and so on. That is,

Pr
x1,...,xc,s

[∀i ∈ [c] : C(s, xi) = ws] > δ ·
c∏
i=1

β · 2n − (i− 1)

2n − (i− 1)

Since, β = max(α1/2c, 2c/2n), each of the numerator β2n− (i− 1) is lower bounded by β2n/2. The
denominators 2n − (i− 1) are upper bounded by 2n. Therefore,

Pr
x1,...,xc,s

[∀i ∈ [c] : C(s, xi) = ws] > δ ·
(
β · 2n

2 · 2n

)c
≥ δ · β

c

2c−1
,

We know that δ βc

2c−1 ≥ α. Therefore what we have shown is that,

Pr
x1,...,xc,s

[C(s, x1), . . . ,C(s, xc)] > α ,

then by averaging we know that there must exist some distinct x1, . . . , xc for which,

Pr
s

[C(s, x1), . . . ,C(s, xc)] > α ,

which contradicts the (α, c)-universality of C. ut

A.2 Proof of Lemma 2

Before we describe the proof of Lemma 2, we write down the following simple but useful claim.
Informally, it states that for every tuple X, most seeds s of C are “good” in the sense of Definition 7.

Claim 7 For n, l ∈ N and any X = X1||X2 ∈ ({0, 1}n)[2l] where each Xi are of l-length tuples,

Pr
s

[s /∈ GoodC(β,X)] ≤ δ + α ·
(

2l

c

)
,

where β, δ are as defined in Lemma 1.

Remark 5. We remark that the right hand side in Claim 7 is negligible only when c = O(1) and
this is why our results are restricted to c = O(1).

Proof sketch of Claim 7. From Definition 7, we know that s /∈ GoodC(β,X) if either s is not β-
sparse or s leads to c-way collisions among X. The probability of former was analyzed in Lemma 1
and the later follows directly from union bound and (α, c)-universality of C. ut

Now we are set to prove Lemma 2.

Proof of Lemma 2. Let us fix some n ∈ N. Let the inputs received by A from R1 and R2 be X1 and
X2 respectively and let Y1 = f(X1) and Y2 = f(X2) where f is the challenge oracle given to A.

First, consider the real world where A is interacting with f
$← F (or implicitly f = F((s∗, k∗), ·)

for randomly chosen (s∗, k∗)). Here, A will output 1 whenever R3 outputs 1. For any X = X1||X2

and Y = Y1||Y2, R3 outputs 1 if there exists (s, k) such that (1) F((s, k), X) = Y and (2) s ∈
GoodF(β,X, Y). Clearly, (s∗, k∗) satisfies the condition (1). Now, let us upper bound the probability

36

that s∗ /∈ GoodF(β,X, Y). From Definition 8 we know that s∗ /∈ GoodF(β,X, Y) if either (a)
s∗ /∈ GoodC(β,X) or if (b) the number of Y [i]’s that are 1/2-bad w.r.t. (s,X[i]) are more than l/2c.
We first analyze (a). We can clearly bound the probability that s∗ /∈ GoodC(β,X) using Claim 7.
However, note that X in Claim 7 needs to be fixed before sampling s∗ but in our case X = X1||X2

are adaptively sampled. This is not an issue because ourXi’s are random and sampled independently
which allows us to alternatively view the experiment as first sampling X1, X2 and then sampling s∗

independently of them. Next, we analyze part (b). Recall that F is (1− 1/4c)-unbiased. Therefore
for l (which is set to be ω(σ + n)) we know that there exist some negligible function α′ such that
the probability that for Y = F((s∗, k), X) there are more than l/2c Y [i]’s that are 1/2-bad w.r.t.
(s,X[i]) is at most α′ (note that it is l/2c because |X| = 2l). Therefore, combining cases (a) and
(b) (and Claim 7),

Pr[s∗ /∈ GoodF(β,X, Y)] ≤ 2c−1
√
α(n) + α ·

(
2l(n)

c

)
+ α′ . (18)

Now, we consider the case that A is interacting with f
$← Funcs(n,m). The probability that

R3 outputs 1 on (X = X1||X2, Y = Y1||Y2) is clearly upper bounded by the probability that
there exists some (s, k) such that F((s, k), X1) = Y1. For X1, consider the set Y = {F((s, k), X1) :
(s, k) ∈ {0, 1}σ+κ}. Clearly, size of Y is upper bounded by 2σ+n. Since X1 is sampled without
replacement (hence all X1[i]’s are distinct) and hence for Y1 = f(X1), we can view each of the
Y1[i]’s to be sampled independently at random. Therefore, we can bound the required probability
as the probability as

Pr
Y

$←({0,1}n)l
[Y ∈ Y] <

2σ+n

2ml
. (19)

Combining Equation 18 and 19, we have

Advrel−prfA,F,(O,R)(n) ≥ 1− 2c−1
√
α(n)− α ·

(
2l(n)

c

)
− α′ − 2σ+n

2ml
.

Since, c = O(1), l = ω(σ + n) is a polynomial, and α and α′ are negligible functions, we can

conclude that Advrel−prfA,F,(O,R)(n) as stated above is non-negligible. ut

B Proof of Proposition 3

Let us fix some functions r,m, σ and some 1/c-biased function family F[C,G] (as in the statement
of Proposition 3). Since, F is 1/c-biased, we know by Definition 4 that there exists some sufficiently
large polynomial l = ω(σ) and some non-negligible function εl such that for all n ∈ N,

Pr
X,s,f

[|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}}| ≥ l/c] ≥ εl(n) . (20)

Let us fix one such l and εl. In the rest of this section we prove Proposition 3 as follows: First
in Section B.1 we provide our oracles (O,R) (that depends on F[C,G] and parameters l, c) and
function family HO. Then in Section B.2 we show that F is not a PRF relative to (O,R) and finally
in Section B.3 we discuss the non-adaptive PRF security of H relative to (O,R).

37

B.1 Oracle (O,R) and HO

Oracle O and the function family HO are identical to the ones defined in Section 5.2.

The oracle R is decomposed into (R1,R2), where R1 returns X
$← ({0, 1}n)[l]. The oracle R2

accepts an l-length tuple (X[i], Y [i]) where X[i]’s are distinct n-bit strings and Y [i]’s are m-bit
strings (possibly not distinct). R2 returns 1 iff it finds some seed s and set Is ⊆ [l] of size l/c such
that Y [i]’s are 1/2-bad w.r.t. (s,X[i]) for all i ∈ Is. We give the formal description of R in Fig. 6.
This completes the description of our oracles.

Remark 6. On first look it might seem that the oracle R1 is not necessary. Indeed, an adversary
that can receive the parameter l as non-uniform advice should be able to simulate R1 perfectly.
However, we are in the regime of uniform security where adversaries cannot receive non-uniform
advice. We solve this issue by designing an oracle R1 that provides l to a uniform adversary upon
query.

Oracle R1():

X
$← ({0, 1}n)[l]

return X

Oracle R2(X,Y):
if ∃s s.t. |{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| ≥ l/c then

return 1
return ⊥

Fig. 6: The oracle R for Section B.

B.2 F is not a PRF relative to (O,R)

First let us prove the following useful claim that captures the probability that R’s outputs 1 when
Y [i]’s are outputs of a random function.

Claim 8 For any n, l ∈ N, any X ∈ ({0, 1}n)[l],

Pr
Y

[∃s : |{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| > l/c] ≤
(
l

l/c

)
· 2σ

2ml/c
,

where Y
$← ({0, 1}m)l.

Proof. Let us fix some s and some Is ⊆ [l] of size l/c. We are interested in the probability that,

Pr
Y [1],...,Y [l]

[∀i ∈ Is : Y [i] is 1/2-bad w.r.t. (s,X[i])] ,

For any (s,X[i]) there can be at most one ys,X[i] which is 1/2-bad. That is, there is at most one
ys,X[i] for which,

Pr
z

[G(s,X[i], z) = ys,X[i]] > 1/2 .

Now the probability that a randomly sampled Y [i] equals ys,X[i] is at most 1/2m. Therefore,

Pr
Y [1],...,Y [l]

[∀i ∈ Is : Y [i] is 1/2-bad w.r.t. (s,X[i])] ≤
(

1

2m

)l/c
.

The proof follows from a union bound over all 2σ seeds s and
(
l
l/c

)
subsets Is.

38

Next, we show that relative to (O,R) the construction FH[C,G] is not secure.

Lemma 10 (F is insecure relative to (O,R)). There exists a PPT adversary A relative to (O,R)
and a non-negligible function ε such that for every n ∈ N,

Advrel−prfA,F,(O,R)(n) ≥ ε(n) .

Proof. First, we define the adversary A and then argue that it achieves a non-negligible advantage. A

relative to (O,R) proceeds by querying R1 to receive X
$← ({0, 1}n)[l] and then queries its challenge

oracle f to compute Y = f(X). A then queries R2(X,Y) and outputs whatever R2 outputs.
Now, let us first consider the case when A is interacting with f = FH((s, k), ·) for some randomly

chosen s and k. Recall that Hk(·) = O(k, ·) is sampled randomly from Funcs(n, r) and hence has the

same distribution as the f
$← Funcs(n, r). Since, F is 1/c-biased there exists some s with probability

εl (this was defined at the begining of Appendix B) for which at least l/c of the Y [i]’s are 1/2-bad
w.r.t. (s,X[i]). Therefore, R2 returns 1 with probability at least εl in this case.

Now consider the case when A is interacting with f
$← Funcs(n,m). Since X[i]’s are distinct,

the corresponding Y [1] = f(X[1]), . . . , Y [l] = f(X[l]) are l randomly chosen n-bit strings. Then
by Claim 8 the probability that R2 returns 1 is at most

(
l
l/c

)
· 2σ

2ml/c
. Since,

(
n
c

)
≤ (en/c)c, we

can upperbound
(
l
l/c

)
by cel/c. Therefore, probability that R2 outputs 1 in this case can be upper

bounded by 2σ · (ce/2m)l/c. Since 2m ≥ 2ce and l = ω(σ) and c = O(1), R2 returns 1 in this case
only with negligible probability.

Therefore, combining both cases we conclude that A achieves a non-negligible advantage in
breaking F relative to (O,R).

B.3 H is naPRF relative to (O,R).

Next we show that relative to (O,R), H remains a naPRF. Note that the oracle R is completely
independent of the oracle O, and hence also independent of H. This allows us to reduce the non-
adaptive security of H relative to (O,R) to the non-adaptive security of H relative to O. That is,
for every non-adaptive PPT adversary A relative to (O,R) participating in the naPRF-security of
H, we can construct a non-adaptive computationally unbounded adversary B relative to only O.
B, with l hardwired, internally runs A and answers A’s queries to oracles O and h by forwarding
to its own oracle (O, h) while perfectly simulating the oracle R for A. This is possible because R
can be computed by an unbounded adversary. Next, note that if A makes q queries to its oracles
then B also makes only q queries to its oracles. We claim (without proof) that adversary B making
at most q queries to its oracle achieves advantage at most 2q/2n in the naPRF security game of
H relative to only O, which clearly upperbounds the advantage of A in the naPRF security of H
relative to (O,R).

Lemma 11. For any adversary A making q polynomially bounded queries to its oracles where it
only makes non-adaptive queries to h, for every n ∈ N,

Advrel−naprfA,H,(O,R) ≤
2q(n)

2n
.

Combining Lemma 11 and Lemma 10 concludes the proof of Proposition 3.

39

Oracle R1(1n):

if Tn1 = ⊥ then Tn1
$← ({0, 1}n)[l(n)]

return Tn1

Oracle R2(1n, X, Y):

if ¬isValid(1n, l, X, Y) then return 1
if X 6= Tn1 then return ⊥
if Tn2 [Y] = ⊥ then Tn2 [Y]

$← ({0, 1}n \ Tn1)[l(n)]

return Tn2 [Y]

Oracle R3(1n, X = X1||X2, Y = Y1||Y2):
if ¬isValid(1n, 2l,X, Y) then return ⊥
if X1 6= Tn1 ∨X2 6= Tn2 [Y1] then return ⊥
if ∃(s,k) ∈ GoodF(X)× ({0, 1}n)[2] :

FHO
[C,G]((s,k), X) = Y then return 1

return ⊥

Proc. isValid(1n, t,X, Y)

if X /∈ ({0, 1}n)[t] then return 0
if Y /∈ ({0, 1}m)t then return 0
return 1

Fig. 7: Description of oracle R where R1 and R2 samples random n-bit tuples without replacement
from {0, 1}n, the subroutine isValid performs sanity checks on the lengths of its inputs X and Y
and the oracle R3 returns 1 if it finds an appropriate (s,k) that maps X to Y .

C Proof of Theorem 5

The oracles (O,R) and the proof follows the same skeleton as that of Proposition 2. Working with
the assumption of C that is 2-universal (as opposed to c > 2-universality in Proposition 2) simplifies
notation (e.g., the notion of GoodF(β,X, Y)) and even proofs. However the two calls to the naPRF
H requires more care when analysing bad events in proving the naPRF security of H relative to
(O,R). We emphasize that we focus on the case when C is 2-universal for simplicity and the theorem
extends to any C that is c-universal for constant c > 2.

For the rest of this section, let us fix some (α, 2)-universal function families C and G from
appropriate domain, range and seed-length as defined in Theorem 5. Furthermore, for (α, 2) let β, δ
be functions (as defined by Lemma 1) such that C is (β, δ)-sparse. First, let us define sets of “good”
seeds GoodC and GoodF necessary to describe our oracles.

Definition 14 For some n, l ∈ N, X = X1||X2 ∈ ({0, 1}n)[2l] where Xi ∈ ({0, 1}n)[l], let GoodC(X)
denote the set of all s ∈ {0, 1}σ such that

1. s is β-sparse,
2. there are no collisions in C(s,X) – for every i, j ∈ [2l] we have C(s,X[i]) 6= C(s,X[j]).

Furthermore, GoodF(X) ⊆ ({0, 1}σ)[3] is the set of all s = (s1, s2, s3) such that s1 6= s2 ∈
GoodC(X).

Oracles (O,R) and naPRF HO Oracles O and R = (R1,R2,R3), and the naPRF HO are essen-
tially identical to the ones defined in Section 5.2 except two difference in R3 – (1) R3 needs to
adapted to be consistent with the two-call construction F as in Equation (16) and (2) R3 in Sec-
tion 5.2 considered seeds s ∈ GoodF(β,X, Y) whereas here we will consider s ∈ GoodF(X) as defined
in Definition 14. We describe the oracle R formally in Figure 7.

To prove Theorem 5, we need to show (1) F is not a PRF relative to (O,R) and (2) H remains
a naPRF relative to (O,R). We discuss them next.

F is not a PRF relative to (O,R) The trivial uniform attacker described in section 5.3 extends
in a natural way to break the PRF-security of F relative to (O,R). We just state the lemma below
and skip its proof.

40

Lemma 12. For sufficiently large l = ω(σ + n), there exists an adversary A such that and a
non-negligible function ε such that,

Advrel−prfA,F,(O,R)(n) ≥ ε(n) .

C.1 H is a naPRF relative to (O,R)

At a high level, we reduce the naPRF security of H relative to (O,R) to its naPRF security relative
to only O. More formally,

Lemma 13 (H is a naPRF relative to (O,R)). For any non-adaptive adversary A that makes

at most q ≤ 2n/2 to its oracles we have for every n ∈ N, Advrel−naprfA,H,(O,R)(n) ≤ 2q · ε+ 2q
2n where

ε =
23σ+n

2lm/2
·
(

2q + 2 +
2n

2lm/2

)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2β · q)l/2 .

Note that since l = ω(σ + n) and β is negligible, the advantage of A for any polynomial q is
negligible. This, along with Lemma 12 then concludes the proof of Theorem 5.

Proof of Lemma 13. Let us fix some computationally unbounded adversary A making q queries. Let
us furthermore fix some n ∈ N. Furthermore, let us assume w.l.o.g. that Amakes q distinct queries to

its oracles and is deterministic. The proof goes through a similar set of hybrids G0 = Ĝ
0
, ...,G1 = Ĝ

q

as defined in Section 5.4 and Section 6. The main difference is in how to show that the neighbouring

hybrids Ĝ
i

and Ĝ
i+1

are indistinguishable and more specifically in bounding the probability of a

bad flag getting set in Ĝ
i
. This is the core of the proof and is showed in Claim 11. However, for

completeness, we will redefine the hybrids and the relevant lemmas below.
Game G0 is identical to the real-world of the non-adaptive game for H except that G0 maintains

a set Q of all keys k for which A had issued an O-query on (k, x) for some x. This is just a syntactic
change, therefore Pr[G0] = Pr

O,R,f
$←F

[A(O,R),f = 1].

Game G1 is identical to G0 except that while answering R3 queries in G1 we only consider
(s,k = (k0, k1)) where s ∈ GoodF(X) and importantly k0 6= k1 ∈ Q. We use the shorthand k ∈ Q[2]

to denote that k = (k0, k1) is such that k0 6= k1 ∈ Q. Then the following lemma claims that G0 and
G1 are indeed close (we provide a proof shortly).

Claim 9

|Pr[G0]− Pr[G1]| < q ·
(

23σ+n

2lm/2
·
(

2q + 2 +
2n

2lm/2

)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2β · q)l/2

)
.

Next, we consider a similar transition from the game H0 (identical to the random world of the
non-adaptive security game of H) to a game H1 where R3 queries are answered only by considering
k = (k0, k1) where k0 6= k1 ∈ Q as done in G1. By almost a similar analysis the following follows:

41

Claim 10

|Pr[H0]− Pr[H1]| < q ·
(

23σ+n

2lm/2
·
(

2q + 2 +
2n

2lm/2

)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2β · q)l/2

)
.

Then, by a similar argument as done in Section 5.4 we claim that

|Pr[G1]− Pr[H1]| < 2q/2n . (21)

Then combining Claim 9, Claim 10 and Equation (21) implies Lemma 13. Next, the rest of this
section is devoted to showing Claim 9. The proof of Claim 10 follows along the same lines.

Proof of Claim 9 To show the indistinguishability of G0 and G1 we consider for every i ∈
{0, . . . , q} an intermediate game Gi where any queries to R3 within the first i queries are answered
as in G1 (i.e., by just considering k ∈ Q[2]), while the rest of the R3 queries are answered as done
in G0 (which consider all k ∈ ({0, 1}n)[2]). Note that G0 is identical to G0 and Gq to G1. Therefore,

|Pr[G0]− Pr[G1]| ≤
∑

i∈{0,...,q−1}

|Pr[Gi]− Pr[Gi+1]| . (22)

Let us fix some i ∈ {0, . . . , q−1} and consider Gi and Gi+1. The first point of difference between
Gi and Gi+1 is the i + 1-st query. Furthermore, if the i + 1-st query is to any oracle other than
R3 then both games remain identical as queries to oracles other than R3 are handled identically
throughout both games. Therefore, w.l.o.g. we assume that the i+ 1-st query in both games is to

R3. Given this, we introduce two games Ĝ
i

and Ĝ
i+1

for Gi and Gi+1 respectively (Figure 8).

Description of Game Ĝ
i
: Game Ĝ

i
is identical to the game Gi except that the oracles O and f are

implemented via lazy sampling until the i+ 1-st query.
More precisely, for the first i queries: (1) For any query to O on (k, x) which is the first query

to Ok (i.e., k /∈ Q), a random function is sampled from Funcs(n,m) and assigned to πk. The game
also inserts k in the set Q. The response for this query and any future query x on Ok is replied with

πk(x). (2) For any query to f on x, if k∗ /∈ Q the response is a uniformly random value y
$← {0, 1}m

otherwise the response is y = πk∗(x).
The oracles f and Ok∗ are correlated and hence the function πk∗ in (1) is sampled to be

consistent with the set Qf . We denote this by πk∗
$← Funcs(n,m)|Qf in Figure 8. Furthermore,

the game maintains the queries/responses to Ok∗ in the set Qk∗ and queries/responses to f in a
different set Qf .

By the assumption on A’s behavior, we know that the i+1-st query is to R3. Since this query to
R3 (in Gi) depends on all k ∈ {0, 1}n (even the ones not in the set Q) the game at the beginning of
this call to R3 completes the description of the oracles O and f . That is, it first samples functions πk
for all k /∈ Q∪{k∗} inside the subroutine CompleteO and completes the description of f (equivalently,
Ok∗) inside Completef.

Now, the response for this i + 1-st query is 1 if there exists some k ∈ ({0, 1}n)[2] and some
s ∈ GoodF(X) such that F((s,k), X) = Y . Otherwise, R3 returns ⊥. It is clear that this R3 query

is computed as in Gi. In the process, Ĝ
i

sets two bad flags bad1 and bad2 where bad1 is set if there
exists some k = (k0, k1) such that either of k0 or k1 are not in Q but still F((s, k), X) = Y . The flag

42

Game Ĝ
i
, Ĝ
i+1

:

bad1, bad2, done← false; c← 0

k∗
$← {0, 1}n

b
$← AO,R,f

return b

Proc. R3(X = X1||X2, Y = Y1||Y2):
c← c+ 1; b← 0
if c ≤ i then

if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s,k) ∈ GoodF(X)×Q[2] : F((s,k), X) = Y then

return 1
return ⊥

elseif c = i+ 1 then
if ¬isValid(2l,X, Y) ∨X1 6= T1 ∨X2 6= T2[Y1] then

CompleteO();Completef()
done← true
return ⊥

if ∃(s,k) ∈ GoodF(X)×Q[2] :
F((s,k), X) = Y then b← 1

CompleteO()
if ∃s ∈ GoodF(X), k ∈ Qc \ {k∗}, k′ 6= k ∈ {0, 1}n \ {k∗} :

F((s, (k, k′)), X) = Y ∨ F((s, (k′, k)), X) = Y then

bad1 ← true; b← 1

Completef()
if ∃s ∈ GoodF(X), k ∈ {0, 1}n \ {k∗} : F(s, (k, f), X) =

Y ∨ F(s, (f, k), X) = Y then

bad2 ← true; b← 1

done← true
if b = 1 then return 1
return ⊥

else
if ¬isValid(2l,X, Y) then return ⊥
if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥
if ∃(s,k) ∈ GoodF(X)× ({0, 1}n)[2] :

F((s,k), X) = Y then return 1
return ⊥

Proc. R1(1):
c← c+ 1
if T1 = ⊥ then

T1
$← ({0, 1}n)[l]

return T1

Proc. R2(X,Y):
c← c+ 1
if ¬isValid(1n, l, X, Y) then return 1
if X 6= T1 then return ⊥
if T2[Y] = ⊥ then

T2[Y]
$← ({0, 1}n \ T1)[l(n)]

return T2[Y]

Proc. O(k, x):
c← c+ 1
if ¬done ∧ k /∈ Q then

if k = k∗ then

πk∗
$← Funcs(n,m)|Qf

else πk
$← Funcs(n,m)

Q← Q ∪ {k}
return πk(x)

Proc. CompleteO():

foreach k /∈ Q ∪ {k∗} do
πk

$← Funcs(n,m)
return 1

Proc. Completef():

if k∗ /∈ Q then

πk∗
$← Funcs(n,m)|Qf

return 1

Proc. f(x):
c← c+ 1
if ¬done ∧ k∗ /∈ Q then

y
$← {0, 1}m

else y ← πk∗ (x)
Qf ← Qf ∪ {(x, y)}
return y

Fig. 8: Intermediate Games used in the proof of non-adaptive security of H relative to (O,R) for
the cuckoo hashing construction.

43

bad2 is set if F((s,k), X) = Y holds and k∗ ∈ {k0, k1}. The game Ĝ
i

is only syntactically different
from Gi, therefore

Pr[Gi] = Pr[Ĝ
i
] . (23)

Description of Game Ĝ
i+1

: Game Ĝ
i+1

is identical to that of Ĝ
i

except that in the i+1-st query, R3

responds with 1 iff there exists some k ∈ Q[2] such that F((s,k), X) = Y . This is identical to how

this query to R3 is handled in Gi+1. The game Ĝ
i+1

is also a syntactic variant of Gi+1, therefore

Pr[Gi+1] = Pr[Ĝ
i+1

] , (24)

Furthermore, the games Ĝ
i

and Ĝ
i+1

are identical until either of the bad flags are set in Ĝ
i
. By

the fundamental lemma of game playing we have,

|Pr[Ĝi]− Pr[Ĝ
i+1

]| ≤ Pr[bad in Ĝ
i
] . (25)

Next, we bound the probability of bad being set in Ĝ
i

in Claim 11.

Claim 11 For every i ∈ {0, . . . , q},

Pr[bad gets set in Ĝ
i
] ≤ 23σ+n

2lm/2
·
(

2q + 2 +
2n

2lm/2

)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2β · q)l/2 .

Before we prove Claim 11, we note that Claim 9 follows directly by combining Claim 11
and Equation (23), Equation (24) and Equation (25).

C.2 Proof of Claim 11

Rest of this section is devoted to showing Claim 11. First, we will define some bad events that will
be useful in bounding probability of bad.

Bad Events in Ĝ
i
The bad events BadO and BadR essentially are defined in section 6.1. We include

the definitions below for completeness.

Definition 15 The event BadO occurs in Ĝ
i

if within the first i queries, there exists an O(k, ·)
query such that f = Ok. In other words, BadO occurs if there exists a O(k∗, ·) query within the first
i queries.

Definition 16 The event BadR occurs in Ĝ
i

if within the first i queries, immediately after an

assignment T2[Y1]
$← ({0, 1}n \ T1)[l] there exists some s ∈ {0, 1}σ such that the following holds for

Q = Qk∗ ∪Qf ,

1. s is β-sparse.
2. there exists some Is ⊆ [l] of size at least l/2 such that for every i ∈ Is,

C(s, T2[Y1][i]) ∈ Query(Q) ,

where by Query(Q) = {w : (w, y) ∈ Q}.

44

The event Badf is the only major change when compared to the proof of Proposition 2. In-
formally, Badf captures the event that after all parallel queries to f have been made, for a prior
R2 query on (X1, Y1) there exists some seed s for which more than l/2 of the C(sj , X1[i])’s fall
inside the query set Qf and furthermore for all such i’s we have F((s,k), X1[i]) = Y1[i] where either
k = (f, ·) or k = (·, f). Note that the definition of Badf here can be seen as a generalization of the
definition of Badf from section 6 to the two-call case.

Definition 17 The event Badf occurs in Ĝ
i

within the first i-queries, if immediately after all
(parallel) queries to f , there exists Y1 such that T2[Y1] 6= ⊥, some s = (s1, s2, s3) ∈ ({0, 1}σ)[3],
some k ∈ {0, 1}n such that Qk 6= φ such that either of the following events Badf1 or Badf2 hold for
Q = Qf ∪Qk∗,

1. Badf1 holds iff all of the following hold:

- there are no collisions in C(s1, T1),

- for I = {i ∈ [l] : C(s1, T1[i]) ∈ Query(Q)}, |I| ≥ l/2,

- for W1 = C(s1, T1), W2 = C(s2, T1), W3 = G(s3, T1) and every i ∈ I we have

f(W1[i]) = Y1[i]⊕W3[i]⊕ O(k,W2[i]) .

2. Badf2 holds iff all the following hold:

- there are no collisions in C(s2, T1),

- for I = {i ∈ [l] : C(s2, T1[i]) ∈ Query(Q)}, |I| ≥ l/2,

- for W1 = C(s2, T1), W2 = C(s2, T1), W3 = G(s3, T1) and every i ∈ I we have

f(W2[i]) = Y1[i]⊕W3[i]⊕ O(k,W1[i]) .

where by f(x) = y we actually mean to check whether (x, y) ∈ Qf .

Definition 18 The event Bad happens in Ĝ
i

if the event BadO ∨ BadR ∨ Badf happens.

As before, we will bound the probability of the event Bad by first individually bounding the
probabilities of each of the three bad events BadO, Badf and BadR defined above, and then applying
a simple union bound. Note that Badf is the only event among BadO, BadR, Badf that differs from
the ones defined in section 6. So, here we only prove bound the probability of Badf happening in

Ĝ
i
. For this, we will condition on the event ¬BadO. Formally,

Claim 12 Pr[Badf|¬BadO] ≤ 2q·23σ+n
2lm/2

.

Proof. Recall that Badf occurs for some fixed Y1 and s = (s1, s2, s3), k (and fixing of the entire
function table Ok) if either Badf1 or Badf2 occur. We here focus on bounding the probability of
Badf1 occuring, the analysis for Badf2 is symmetrical.

Furthermore, let us fix some Y1, s, k that satisifes the following:

1. T2[Y1] 6= ⊥.

2. there are no collisions in C(s1, T1).

3. for I = {i ∈ [l] : C(s,X1[i]) ∈ Query(Qf)}, we have |I| ≥ l/2.

45

Furthermore, let W1 = C(s1, T1), W2 = C(s2, T2) and W3 = G(s3, T3). Since the entire function
table for Ok is defined, we let Z2 = O(k,W2). Recall that Badf1 occurs for such a tuple (Y1, s, k)
iff for every i ∈ I,

f(W1[i]) = Y1[i]⊕W3[i]⊕ Z2[i] . (26)

As there are no collisions in C(s1, T1), all W1[i]’s are distinct. Furthermore, f is sampled uniformly
at random on every point. Therefore, the probability that Badf1 occurs for this fixing (Y1, s, k) is at
most 1

2lm/2
. Similarly, the probability that Badf2 occurs for this (Y1, s, k) is at most 1

2lm/2
. Finally,

the probability that Badf occurs for this (Y1, s, k) is at most 2
2lm/2

. Then the lemma follows for a
union bound over all choices of Y1, s, k. ut

Next, we bound the probability of the event Bad happening.

Claim 13

Pr[Bad] ≤ 6q

2n
+

2q · 23σ+n

2lm/2
+ q 2σ

(
l

l/2

)
(2β · q)l/2 .

The above claim follows from a simple union bound and Claim 12, Claim 4 and Claim 5.
Next, we are ready to bound the probability of setting bad1 and bad2 respectively. The proof

follows along the same lines as those of Claim 2 and Claim 3. We detail the proofs in Appendix C.3
and just state the statement here.

Claim 14 Pr[bad1] ≤ 2 · 23σ+2n

2lm
,

Claim 15 Pr[bad2|¬Bad] ≤ 223σ+n

2lm/2
.

Finally, we arrive at the probability of bad being set by combining Claim 13,Claim 14 and Claim 15,

Pr[bad] ≤ Pr[bad1] + Pr[bad2] ≤ Pr[bad1] + Pr[bad2|¬Bad] + Pr[Bad]

≤ 23σ+2n

2lm
+ 2

23σ+n

2lm/2
+

6q

2n
+

2q · 23σ+n

2lm/2
+ q 2σ

(
l

l/2

)
(2β · q)l/2

≤ 23σ+n

2lm/2
·
(

2q + 2 +
2n

2lm/2

)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2β · q)l/2 .

This concludes the proof of Claim 11. We only need to prove Claim 14 and Claim 15 which is done
in the next section.

C.3 Bounding bad - Proofs of Claim 14, Claim 15

We are now ready to bound the probability of flags bad1 and bad2 getting set in the game Ĝ
i

(see Figure 8). We will be conditioning on ¬Bad event (see Definition 18). Recall that each of
bad1 and bad2 are set only when the i + 1-st query is made, furthermore this query is to R3.
Let us assume that this i + 1-st query is on (X = X1||X2, Y = Y1||Y2). If isValid(X1, Y1, X2, Y2)
is false then conditioned on this the probability of setting bad is zero. So, w.l.o.g. assume that
isValid(X1, Y1, X2, Y2) is indeed true. This means that X1 = T1 and T2[Y1] 6= ⊥. In fact, T2[Y1] = X2.
Since, T2[Y1] 6= ⊥, this means that prior to this query to R3 there was a query to R2 on (X1, Y1)
which is when the value T2[Y1] was defined. Let us assume that this was some j-th query where
j < i. Using the above notation we next bound the probability of bad1 being set.

46

Proof of claim 14

Proof. By the description of Ĝ
i
, bad1 is set only if for some R3-query on (X = X1||X2, Y = Y1||Y2),

the set Q and k∗ there exists some s ∈ GoodF(X), k ∈ Qc \ {k∗} and some k′ 6= k ∈ {0, 1}n \ {k∗}
such that either (a) F((s, (k, k′)), X) = Y or (b) F((s, (k′, k)), X) = Y . We bound the probability
of case (a) happening, that of case (b) is similar.

Analysis of Case (a): Let us fix some s ∈ GoodF(X), k ∈ Qc \ {k∗}, k′ 6= k ∈ {0, 1}n \ {k∗}. Let
bads,k,k′ be the event that F(s, (k, k′), X1) = Y1. To bound the probability that F(s, (k, k′), X) = Y ,
it is sufficient to bound Pr[bads,k,k′] over the random choice of sampling the function table for Ok.

Let, W1 = C(s1, X1), W2 = C(s2, X1) and W3 = G(s3, X1). Furthermore, let us fix the entire
description of Ok′ which defines Z2 = O(k′,W2). Let Z1[j] = Y1[j] ⊕W3[j] ⊕ Z2[j] for all j ∈ [l].
Then,

Pr[bads,k,k′] ≤ Pr [∀j ∈ [l] : O(k,W1[j]) = Z1[j]] .

Since s ∈ GoodF(X), we have that s1 ∈ GoodC(X). This, furthermore, implies that there are
no collisions in C(s1, X1). Therefore, W1 is a set of distinct elements. Finally, since k /∈ Q and
CompleteO subroutine samples a uniformly random function πk for such a k, we have

Pr[bads,k,k′] ≤Prπk [∀j ∈ [l] : πk(W1[j]) = Z1[j]]

≤ 1

2lm
.

Therefore, the probability that bad1 because of case (a) happening follows by union bound over all
23σ choices of s and at most 22n choices of (k, k′). The analysis of Case (b) is symmetrical, and the
lemma follows by a union bound. ut

Proof of claim 15

Proof. By the description of Game Ĝ
i
, we note that bad2 is set only if for the query (X =

X1||X2, Y = Y1||Y2) there exists some s ∈ GoodF(X) and some k ∈ {0, 1}n \ {k∗} such that
either (1) F((s, (f, k)), X) = Y or (2) F((s, (k, f)), X) = Y . Next, we just focus on bounding the
probability of bad2 being set due to case (1) happening. The analysis for case (2) is symmetrical.

Analysis of Case (1): Here, we will condition on ¬Bad. Since BadO doesn’t happen, the responses
to the oracle f and O are independent. Next, recall that the R2 query corresponding to this R3

query was for some j ≤ i. Let us assume that A makes exactly p distinct queries to f . Since A only
has non-adaptive access to f , it makes all its queries to f at once. Let us assume the p distinct
queries are the t-th, t + 1-th, . . . , (t + p − 1)-th queries. Now there are two sub-cases to consider
here depending on the ordering of R2 and f queries. The first sub-case is when j < t, that is, the
R2 query was made earlier than the first f query and the second case is that j > t+ p− 1.

- Subcase (1.a) - j < t: We condition on ¬Badf. Since the event Badf doesn’t occur, we only need
to focus on s ∈ GoodF(X) for which

|{i ∈ [l] : F((s, (f, k)), X1[i]) = Y1[i]}| < l/2 .

Therefore, it is sufficient to focus on s ∈ GoodF(X) for which at least l/2 of all the l many
C(s1, X1[i]) were not queried to f . Fix one such s. Furthermore, as s1 ∈ GoodC(X), all
C(s,X1[i])’s are distinct. Therefore, we have that there exists I ⊆ [l] of size at least l/2 such
that for all i 6= j ∈ I,

47

1. C(s1, X1[i]) 6= C(s1, X1[j])
2. C(s1, X1[i]) /∈ Query(Qf)
Next, let us fix some k ∈ {0, 1}n \ {k∗} and furthermore assume that Ok is completely defined.
Let W1 = C(s1, X1), W2 = C(s2, X1) and W3 = G(s3, X1). Since Ok is completely defined and
we are in case (1), let us define Z2 = O(k,W2). Furthermore, let Z1[i] = Y1[i]⊕Z2[i]⊕W3[i] for
all i ∈ [l]. Therefore, the probability that bad2 due to subcase (1.a) happening for this choice
of s and k is upperbounded by

Pr [∀i ∈ Is : f(W1[i]) = Z1[i]] ≤
1

2lm/2
.

The later is because for all i ∈ I we have W1[i] /∈ Query(Qf) and f is sampled uniformly at
random at undefined points. Then, probability that bad2 is set due to subcase 1.a happening
follows by a union bound over all choices of s and k, that is,

Pr[bad2 ∧ Subcase 1.a happening|¬Bad] ≤ 23σ+n

2lm/2
. (27)

- Subcase (1.b) - j > t+ p− 1: We now condition on ¬BadR. Let us fix some s ∈ GoodF(X).
Since the event BadR didn’t happen we know that for every s ∈ GoodF(X)) at least l/2 of the
C(s1, X2[i])’s are not in the set Query(Qf). Then by the same argument as done in subcase (1.a)
when j < t, we note that there exists a set I of size l/2 such that for all i 6= j ∈ I,
1. C(s1, X2[i]) 6= C(s1, X2[j])
2. C(s1, X2[i]) /∈ Query(Qf)
By almost a similar analysis like subcase (1.a), we have

Pr[bad2 ∧ Subcase 1.b happening|¬Bad] ≤ 23σ+n

2lm/2
. (28)

Furthermore, since subcases (1.a) and Case (1.b) are exclusive, from Equation (27) and Equa-
tion (28) we have,

Pr[bad2 ∧ Case (1) happening|¬Bad] ≤ 23σ+n

2lm/2
. (29)

The analysis of Case (2) is identical and lemma follows by a union bound. ut

Proof of Theorem 6. The proof follows along the same lines as that of Theorem 5 except three
differences: (1) To account for c > 2-universality the definition of GoodF (Definition 14) is extended
in the same spirit as in Definition 8. The oracle R3 is also updated to be consistent with this new
definition of GoodF. (2) The definition of Badf (Definition 17) is now updated to take into account
κ-calls instead of just two-calls. Bounding the probability that Badf occurs then follows from a
simple union bound over all κ-calls. (3) The definition of bad (see Figure 8) and bounding the
probability of bad (Appendix C.3) being set readily extend to the κ-call case. Overall, by setting
l (the size of the challenges) to be a sufficiently large polynomial we can show that H is a naPRF
and F is not a PRF relative to (O,R) concluding the proof of Theorem 6. ut

48

	On the Query Complexity of Constructing PRFs from Non-adaptive PRFs

