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Abstract

Reducing the rounds of interaction in secure multiparty computation (MPC) protocols has been the topic
of study of many works. One popular approach to reduce rounds is to construct round compression compilers.
A round compression compiler is one that takes a highly interactive protocol and transforms it into a protocol
with far fewer rounds. The design of round compression compilers has traditionally focused on preserving
the security properties of the underlying protocol and in particular, not much attention has been given towards
preserving their computational and communication efficiency. Indeed, the recent round compression compilers
that yield round-optimal MPC protocols incur large computational and communication overhead.

In this work, we initiate the study of efficiency-preserving round compression compilers, i.e. compilers that
translate the efficiency benefits of the underlying highly interactive protocols to the fewer round setting. Fo-
cusing on the honest majority setting (with near-optimal corruption threshold 1

2 − ε, for any ε > 0), we devise
a new compiler that yields two round (i.e., round optimal) semi-honest MPC with similar communication effi-
ciency as the underlying (arbitrary round) protocol. By applying our compiler on the most efficient known MPC
protocols, we obtain a two-round semi-honest protocol based on one-way functions, with total communication
(and per-party computation) cost Õ(s + n4) – a significant improvement over prior two-round protocols with
cost Õ(nτs+ nτ+1d), where τ ≥ 2, s is the size of the circuit computing the function and d the corresponding
depth. Our result can also be extended to handle malicious adversaries, either using stronger assumptions in the
public key infrastructure (PKI) model, or in the plain model using an extra round.

An artifact of our approach is that the resultant protocol is “unbalanced” in the amount of computation
performed by different parties. We give evidence that this is necessary in our setting. Our impossibility result
makes novel use of the “MPC-in-the-head” paradigm which has typically been used to demonstrate feasibility
results.
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1 Introduction

Understanding the minimal rounds of interaction required to carry out a cryptographic task has been the subject of
extensive study over the past few decades. While ad-hoc techniques are often used to obtain low round complexity
solutions, a more systematic approach adopted in the literature is to build a round compression compiler. As the
name suggests, a round compression compiler transforms a highly interactive protocol into one with far fewer
rounds. The celebrated compiler of Fiat and Shamir [FS87] is one such example that transforms a public-coin
interactive proof system into a non-interactive one (in the random oracle model).

Recently, a sequence of works have designed round compression compilers to resolve major open problems
in cryptography. For instance, the recent result on non-interactive zero knowledge proofs for NP from learning
with errors was designed by instantiating the Fiat-Shamir methodology [CCH+19, PS19]. In the context of secure
multiparty computation (MPC) [Yao86, GMW87, BGW88, CCD88] – the focus of this work – a recent sequence
of exciting works devised novel round compression compilers to construct round-optimal MPC protocols based on
minimal assumptions [GS18, BL18, ACGJ18, ABT18, ABT19, ACGJ19, GIS18].

Rounds vs Computation in MPC. In this work, we continue the study of round compression in MPC. Starting
from [BMR90], round compression in MPC has been extensively studied over the years in a variety of models.
Traditionally, most works have focused on devising compilers that preserve the security properties of the underlying
protocol. However, not much emphasis has been placed on preserving the computational and communication
efficiency.

Indeed, the recent round compression compilers that yield round-optimal MPC [GS18, BL18, ACGJ18, ABT18,
GIS18, ACGJ19, ABT19] incur a large overhead in computation and communication. Some of these compilers
work in the setting where a majority of parties are allowed to be dishonest, while others require a majority of
the parties to be honest. In this work, we focus on the latter setting, referred to as honest majority. In this set-
ting, consider an arbitrary round MPC protocol with total computational work W = W (n, s), where n denotes
the number of parties executing the protocol and s denotes the size of the circuit implementing the function be-
ing computed. Then, applying the compilers of [ACGJ18, ABT18, GIS18, ACGJ19, ABT19] on such a protocol
yields a two round protocol with total communication and per-party computation Õ(nτ · W ), where τ ≥ 2,
ignoring multiplicative factors in security parameter. Plugging in the most efficient known multi-round MPC pro-
tocols [GIP15, DIK+08, DIK10] with total cost Õ(s + nd) (where d is the circuit depth), we obtain a two round
protocol with significantly worse total communication (and per-party computation) Õ(nτs+ nτ+1d).

The above state of affairs raises the question: does round compression necessarily require high computational
and communication cost? If not, can we design efficiency-preserving round compression compilers for MPC that
preserve both the security as well as the computational and communication efficiency of the underlying protocol?

1.1 Our Results

We study efficiency-preserving round compression compilers for MPC. As a first step in this direction, we narrow
our focus on the honest majority setting.

Our main result stated below holds with respect to semi-honest adversaries. Later, we also discuss extensions
to the case of malicious adversaries.

Theorem 1 (Informal). Let n be the number of parties and let λ be the security parameter, such that n is poly-
nomially related to λ. Assuming one-way functions, there is a round compression compiler that transforms a
semi-honest secure MPC protocol Π for any n-party functionality F into a two-round semi-honest secure protocol
Π′ for F with the following properties:

– If Π tolerates corruption threshold ε, then Π′ tolerates ε′, for arbitrary constants ε′ < ε < 1
2 .
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– If the total computation cost of Π is W = W (n, s), where s is the circuit size representation of F , then the
amortized per-party computation cost and total communication cost of Π′ is

Õ
(
(W (log2(n), s) + n4)

)
,

where the Õ notation suppresses polynomial factors in λ and polylog factors in n.

To handle smaller values of n, we can use a hybrid mode of compilation: if n is small, simply use existing
compilers; for larger values of n, one should use our compiler.

Comparison with Prior Work. Our compiler performs significantly better than previous compilers [ABT18,
ABT19, ACGJ18] that yield two-round protocols with total communication and per-party computation cost of
Õ(nτW (n, s)), where τ ≥ 2. All of these existing two round compilers [ABT18, ABT19, ACGJ18] rely on the
following high level idea1- they view the entire computation done in the underlying protocol as a circuit and then
require all the parties to communicate at least one-bit for each gate in this circuit, with every other party over
pair-wise private channels in the first round. This adds a multiplicative overhead of at least n2 in the complexity of
the resulting protocol. Infact, the exact overhead in these compilers might even be more than n2, because these are
not the only messages that the parties compute and send in those compilers. However, for comparison, it suffices
for us to use a conservative approximation, i.e., τ ≥ 2.

On the other hand, by applying our compiler on the most asymptotically efficient MPC protocols [GIP15,
DIK+08, DIK10] with total computation cost W (n, s) = Õ(s + nd), we obtain a two-round protocol with total
communication and per-party computation cost Õ(s + n4). In contrast, applying previous compilers on the same
protocols yields two-round protocols with total communication and per-party computation cost Õ(nτ ·s+nτ+1d),
where τ > 2.

Extensions. With suitable modifications to the above compiler, we can obtain additional results that achieve
different tradeoffs, both in the case of semi-honest and malicious adversaries.

– Semi-honest: The above compiler can be easily modified such that the total (as opposed to amortized per-party)
computation cost is Õ(W (log2(n), s) + n4), at the cost of increasing a round of interaction. 2

– Malicious: The above compiler can also be easily modified to work against malicious adversaries, yielding
either two round protocols in the PKI model assuming verifiable random functions [MRV99], or three round
protocols in the plain model without additional assumptions. Both these protocols achieve the standard notion
of security with abort, assuming that the underlying protocol also achieves the same security.

Impossibility of Balanced Protocols. Our compiler utilizes a committee-based approach which has been used in
many prior works in the larger round setting. A caveat of this approach is that it results in unbalanced protocols
where a small subset of parties (namely, the committee members) perform much of the “heavy” computation,
while other parties only do “light” computation. Furthermore, this approach also yields a sub-optimal corruption
threshold (i.e., n > 2t+ 1, where t is the number of corrupted parties). In view of this, we investigate whether this
is inherent.

We give evidence that our approach is “tight” by showing that there exists some functionality for which there
does not exist a balanced constant round (even insecure) MPC protocol with total computational cost Õ(s). In
contrast, our compiler yields an unbalanced constant-round secure MPC protocol with roughly the same total cost
(ignoring additive terms).

1While this idea is made explicit in [ABT18, ABT19], it is easy to observe that [ACGJ18] also implicitly uses the same idea.
2If there are only a constant number of parties that are recipients of the output, then the resultant protocol from Theorem 1 already

achieves this result.
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1.2 Our Techniques

In this section we describe the main ideas underlying our results. In Section 1.2.1 we give an overview of our tech-
niques for designing efficiency-preserving round-compression compilers. Later, in Section 1.2.2, we describe ideas
for proving impossibility of balanced constant-round MPC protocols with total computation cost Õ(s). Throughout
this section we assume τ ≥ 2, and is hereby omitted for clarity of exposition.

1.2.1 Efficiency-Preservation via Committees

We now proceed to describe the techniques used in our compiler. At a high-level, we devise a two step approach:

– Step 1: Special two round MPC. First, given a potentially highly interactive MPC protocol with total com-
putational work W = W (n, s), where s is the size of the circuit and n is the number of parties, we apply a
round-compression compiler to obtain a special two round protocol with some specific structural properties.
The total computational complexity of this special MPC is proportional to Õ(nτ ·W ).3 Even though it does
not achieve our desired efficiency, its structural properties are crucially used in the second step.

– Step 2: Efficiency boost. We then leverage the structural properties of the special two round MPC to transform
it into a new protocol with the same round complexity, but improved asymptotic computational and communi-
cation complexity.

We postpone the discussion on the structural properties required from the two round protocol. Instead, we first
focus on Step 2; the efficiency boosting transformation would then guide us towards identifying these structural
properties.

Starting Ideas for Efficiency Boost. We first focus on the semi-honest setting, and defer the malicious case
to later. Given a special two-round MPC, our starting idea for improving its efficiency is to use the classical
committee-based approach, where the bulk of the computation is “delegated” to a small committee of parties,
while the remaining parties do very little work.

More specifically, the main idea in a committee-based approach is to first elect a “small” committee, while
ensuring that a majority of the parties in the committee are honest and letting these elected parties run the actual
protocol. Since the parties not elected to the committee are no longer doing any work, we need a mechanism to
allow these parties to transfer their inputs to the committee members. To ensure privacy of their inputs, the parties
who are not elected in the committee, secret-share their inputs amongst the committee members. The elected
committee then runs an MPC computing a modified functionality F ′, that collects all the secret shares of all the
non-elected parties, reconstructs their inputs, and computed the original function F . Unlike the original function
F ,F ′ requires inputs from only the elected committee members, which as described above, also implicitly contains
the remaining parties’ inputs. Since the cost of the computation is dominated by the number of parties involved in
the “heavy” computation, it suffices to use a committee of size poly-logarithmic in the total number of parties to
yield non-trivial savings in the total cost.

In order to prevent an adversary from corrupting a majority of the members in the committee, it is important
to choose the committee at random. This means that the identities of the committee members are unknown to
all parties at the start of the protocol; instead, we must implement a committee election mechanism during the
protocol execution. Let Π be the two-round protocol obtained by applying the round-compression compiler in the
first step. Now, applying the committee-based approach over Π, we get the following five round protocol Π′:

1. Round 1. Each party tosses an appropriately biased coin to decide whether or not it will be in the committee
and reveals the result to all other parties.

3While special MPC with total computation proportional to Õ(nτ ·W ) can be constructed (as we discuss later), the second step of our
approach is actually less sensitive to the exact asymptotic complexity of special MPC. In particular, the exact dependence on n is not very
important as long the total computation in special MPC has only linear dependence on W .
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2. Round 2. The parties that are not part of the committee secret share their inputs amongst the committee
members.

3. Round 3. The committee members compute and send their first round messages in π.

4. Round 4. The committee members compute and send their second round messages in π.

5. Round 5. The committee members reconstruct the output and then send the output to all other parties.

Since the bulk of the computation is performed by the committee members, the amortized per-party computation in
Π′ depends only on polylog(n) as opposed to poly(n). The main problem however, is that Π′ requires five rounds,
while we seek a two round protocol.

Committee-Based Approach in Two-Rounds. Towards obtaining a two round protocol, we start with the obser-
vation that if protocol Π allows for public reconstruction of output based on the transcript of the last round, then
Rounds 4 and 5 of Π′ can be parallelized. Indeed, this property is satisfied by the protocol output by our compiler
in Step 14 and is also true for other recent round-compression compilers [GS18, BL18, ACGJ19]. While this yields
a saving of one round, it is not clear how to proceed further. Indeed, to obtain a two-round protocol, the task of
electing a committee and sharing of inputs by the remaining parties must be parallelized with the computation
done by the committee members using Π. In other words, Rounds 1,2 and 3 must seemingly be executed in the
first round of Π′, and Round 4 in the second round. This, however, raises some fundamental challenges:

1. Challenge 1: Sharing of Inputs. If the committee election happens in parallel with input sharing, the non-
committee members (henceforth referred to as the clients) would not know the identities of the committee
members (henceforth referred to as the servers) at the time of distributing their inputs. How can the clients
secret share their inputs with the servers, without knowing their identities? It seems like there is no way to get
around this, which means that the servers must start their computation without knowing their “entire input”.
But parallelizing committee election and input sharing is crucial both for the correctness and security. Indeed,
in any two round MPC protocol, the private inputs of all parties must be “fixed” in the first round to prevent
input resetting attacks [HLP11].

2. Challenge 2: Blind Computation. All known two-round honest majority MPC protocols based on minimal
assumptions [ACGJ18, ACGJ19, ABT18, GIS18, ABT19] necessarily rely on the use of private channels in the
first round. Since the committee election and computation must happen simultaneously, it is not clear how the
servers would exchange private channel messages in the first round without knowing each other’s identities. It
seems like we require the servers to start their computation “in the blind”.

To address these two challenges, we require some structural properties from Π. We now describe them.

Special Two Round MPC. We require the following two structural properties from the special two round MPC
in Step 1:

1. Decomposability: The first round messages of each party in a special two round MPC protocol can be decom-
posed into: (i) “light” messages that depend on the input but whose computational complexity is independent
of W , and (ii) “heavy” messages that are independent of the input but whose computational complexity may
depend on W . The light and heavy messages may share common randomness.

2. Independence: The private channel messages in a special two round MPC protocol should be independent of
the inputs of the parties.

4Protocols obtained by applying the compiler from [ACGJ18] always satisfy this property, while the compilers in [ABT18, ABT19],
yield protocols that satisfy the “public reconstruction of outputs” property only when applied to a (multi-round) protocols that also satisfy
this property.
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At a first glance, these properties may seem quite unconventional and strong. Indeed, our main technical contribu-
tion is in identifying these rather unconventional and specific structural properties of two-round protocols and then
leveraging these properties for efficiency gains in the setting of two rounds. In particular, as we describe below,
the decomposability property, with additional delegation of computation techniques, is used to address Challenge
1 and the independence property is used to address Challenge 2. Moreover, as we discuss later, these properties
can, in fact, be achieved generically.

Solving Challenge 1. Towards explaining our main ideas, let us first consider a simpler scenario where Π only
consists of broadcast channel messages (we deal with private channel messages later while addressing challenge
2). As noted earlier, the main issue in parallelizing input distribution and committee election is that the servers
cannot know their entire input in the first round, yet the first round messages of the protocol must fix the inputs
of all the parties. Moreover, the second round messages of all parties can also depend on the entire first round
transcript (which in turn must depend on the inputs).

To address these problems, a natural starting idea is to require the clients to aid the servers in the computation
of the first and second round messages of Π while still achieving the desired efficiency. Let us first focus on the
second round messages of Π; specifically, that of a particular server (say) Si. Our first idea is to run a separate
helper protocol involving all parties (servers and clients) to help compute the second round messages of Si. This
helper protocol can take the input shares from all clients and the randomness from all servers to first internally
compute the first round messages of all servers and then compute and output the second round message of Si. A
naive implementation of this approach, however, runs into an obvious problem: since the per-party complexity for
computing second round messages of the servers in Π is Õ(nτ ·W ), the size of the functionality implemented
by the helper protocol, and thereby the per-party computation performed by the clients, also has the same total
complexity of Õ(nτ ·W ).

Towards addressing this problem, we first use a delegation of computation approach implemented via garbled
circuits and a modified two-round helper protocol as follows:

– We require the server Si to garble and send its second round next-message function of Π in the second round
of Π′. This circuit takes as input the entire first round transcript of Π and computes, and outputs, Si’s second
round messages in Π.

– The input wire labels for this garbled circuit are computed via a modified two-round helper protocol for a
specific functionality. This functionality takes as input, secret-shares from the clients and randomness used to
compute the first round messages from the servers. It also takes as input all of the garbled circuit input wire
labels from Si. It internally computes the first round message of all servers and then selects and outputs the
corresponding input wire labels.

Thus far we have ignored the first round messages and an observant reader may notice that this solution still does
not suffice; indeed, since the size of the first round messages in Π is also proportional to Õ(nτ ·W ), the clients
still need to spend the same computational effort.

Our main conceptual idea to overcome this problem is to leverage the decomposability property of special
MPC. Recall that the decomposability property requires that in the first round, each party sends computationally
light messages depend on its input and computationally heavy messages that are independent of its input. We
leverage this property as follows: we require the servers to compute (on their own) and send the heavy messages in
the first round, which can then be hardwired in the circuit that Si garbles in the second round. The helper protocol
involving all parties is now only required to compute the input wire labels corresponding to the light messages,
as opposed to the entire first round messages, which is efficient. Moreover, this also ensures that the inputs of all
parties are indeed fixed in the first round, which is necessary for security.

Finally, we remark that if the light messages in Π can be computed using a degree-1 computation over the
parties’ inputs, then we can use lightweight protocols such as [IKP10] (satisfying security with abort) for quadratic
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functionalities to further reduce the work done by clients. We later show that our compiler from Step 1 achieves
this property as well.

Solving Challenge 2. While so far we have only considered the simplified setting of broadcast-only protocols,
in reality, our protocol Π from the first step (necessarily) consists of both the broadcast and P2P messages. As
described earlier, this creates the challenge that the servers cannot send P2P messages to each other in the first
round without knowing their identities. Since the computation must start in the first round itself, we need a
mechanism for “computing in the blind”.

We implement such a mechanism by allowing the servers to encrypt their private channel messages and broad-
casting them in the first round and then enabling others to somehow compute on these encrypted messages. To
help compute on the encrypted messages, we again utilize a delegation of computation approach:

– Each server garbles a circuit that takes the decryption key as input and decrypts the corresponding first round
encrypted message that was intended for it and computes its second round message.

– Wire labels corresponding to the decryption key are computed via a helper protocol involving all properties,
similar to the solution to the previous challenge. Since the helper protocol is only responsible for computing
labels corresponding to the decryption keys, the total work done by the parties (especially clients) in this helper
protocol does not depend upon the complexity of the next-message functions of the parties in Π.

An observant reader, however, may notice that this approach fails completely, if the P2P messages in Π were
dependent on the input. Indeed, since the servers do not have access to their entire input in the first round, it is
unclear how they would compute and encrypt these messages in such a case.

Our next conceptual idea to overcome this problem is to leverage the independence property of special MPC.
Recall that this property requires all of the private channel messages in Π to be independent of the inputs. Given
this property, the above solution already works.

Realizing Special Two Round MPC. Recall that a special two-round MPC must satisfy the following require-
ments:

1. Structural Properties: It must satisfy the decomposability and independence properties defined earlier.

2. Complexity: The total communication complexity of the special MPC must be Õ(nτ · W ). (As discussed
earlier, the key requirement here is the linear dependence on W , whereas the exact multiplicative dependence
on n is less important since this special MPC is only executed by polylog(n)-sized) committee of parties.)

We address each of these requirements separately. There is a surprisingly simple approach for achieving the
structural properties generically. Specifically, we show that any two-round protocol π with the delayed-function
property5 can be made to achieve these structural properties without affecting its asymptotic efficiency. The idea
is to have each party Pi sample a random mask ri for its input xi, and broadcast xi ⊕ ri in the first round.
Additionally, the parties run π on a modified functionality f ′x1⊕ri,...,xn⊕rn that has x1⊕ ri, . . . , xn⊕ rn hardwired
in its description, such that

f ′x1⊕ri,...,xn⊕rn(r1, . . . , rn) = f(x1, . . . , xn),

where f is the original functionality. It is easy to see that because of this simple modification, the first round
messages of party Pi in the modified protocol Π can now be decomposed into a “light” message xi ⊕ ri that
depends on its input and “heavy” messages which correspond to its first round messages in π. Moreover, because
of the delayed-function property of π, these “heavy” first round messages in Π are independent of their actual
inputs. This already achieves decomposability. With regards to independence property, we first note that the above

5At a high level, a two-round MPC protocol satisfies the delayed-function property if the first round messages of the honest parties are
computed independent of the functionality, but may depend on the size of the circuit implementing the functionality.
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transformation already ensures that the first round private channel messages in Π are independent of the parties’
inputs. However, their second round private channel messages may still depend on their inputs. Towards this,
we observe that any two-round protocol that makes use of private channel messages in the second round can be
modified into one that only uses broadcast channel messages in the second round. This can be done by letting
the parties exchange one-time pads with each other in the first round, and then broadcasting their second round
messages encrypted under these one-time pads. With this modification, we can also achieve independence.

Since the above approach works generically with any protocol that satisfies the delayed-function property, it
can also be applied to a delayed-function variant of [ABT18, ABT19, ACGJ18]. We note that while [ACGJ18]
already satisfies the delayed function property, the two-round compilers of [ABT18, ABT19] do not. A simple
modification to this construction can yield two-round protocols with delayed-function property without compro-
mising its efficiency. We refer the reader to Section 2.1 for more details on this modification.

Moreover, when applied to an interactive protocol with total computation W , the compilers of [ACGJ18,
ABT18, ABT19] already yield two-round protocols with total communication at least Õ(nτ · W ). Hence, in
summary, either of the recent two-round protocols [ACGJ18, ABT18, ABT19] in the honest majority setting, with
the above modifications, can be used to obtain a two-round special MPC with all of the required properties.

Summary (so far). Putting the above solutions together, we now obtain a two-round semi-honest protocol
that achieves total communication complexity Õ(W (polylog(n), s) + n4)6 and total computation complexity
Õ(nW (polylog(n), s) + n5) if we elect a committee of size polylog(n). The computation complexity is higher
than the communication complexity. This is because in order to reconstruct the output, all the parties must locally
compute on all the second round messages of all parties, which adds a multiplicative overhead of n to the com-
putation complexity. We note that we are limited to this computation complexity in two rounds, since we do not
know of any two round compilers with better and more efficient output reconstruction algorithms. However, if we
add another round such that only one of the parties the output at the second round and broadcasts it to others in the
third round, we can get optimal computational efficiency.7

Handling Malicious Adversaries. The above approach only works against semi-honest adversaries. For the
malicious setting, we need to start with a malicious special two round MPC protocol.We are now faced with the
following additional issues in the malicious setting:

1. Input Consistency. Recall that in the semi-honest protocol proposed above, the servers are required to use
the same randomness as input in multiple sub-protocols: (1) for computing its “heavy” first round messages
in Π and (2) in the helper protocol for computing its “light” first round messages. Since the light messages
depend on the inputs of clients, if a malicious server does not use the input randomness consistently in the two
sub-protocols, it could potentially change the input share of an honest client.

2. Malicious Secure Committee Election. Our naive way of doing a committee election where the parties can
randomly elect themselves to be in the committee, clearly does not work in the malicious setting. A corrupt
party can always elect it self to be in the committee.

Towards describing our solution to the first problem, let us first address why simply compiling a maliciously
secure protocol Π with the compiler described above is not sufficient. Recall that in general, a maliciously secure
protocol cannot prevent adversarial parties from choosing their inputs arbitrarily. However, in the above compiler,
since the underlying (maliciously secure) protocol Π is only run amongst the committee members and their inputs
also contain input shares of the honest clients, we cannot afford to let them choose their entire input arbitrarily.

To prevent this, we make use of one-time message authentication codes (MACs). The honest clients compute
a MAC over each of their input shares. For the MAC’s to be verified, they must be checked, and hence require

6For this technical overview, some details of the protocol are omitted. The resultant protocol incurs an additive term of n4, which is
elaborate upon in the technical section.

7Alternatively, if the number of parties computing the output are already a constant, then even the two round protocol achieves optimal
computation.
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the key. However, providing a (potentially corrupt) server with the MAC key defeats the purpose, since there is
no longer any security. Therefore, for each input share, we shall create MACs with each of the server keys, i.e.,
one corresponding to each server. These keys are sent to the respective servers, while the input share and all the
corresponding MAC tags are sent only to the designated server. The functionality computed by the protocol Π is
modified to first check if for each input share that it gets as input, all its corresponding MACs are valid. As long
as there is an honest party, for which the adversary does not have access to the key, it cannot create a mauled tag
that will verify with that key. We use the helper protocols exactly as described earlier with the only exception that
now instead of just their input shares, the clients also communicate these MACs and MAC keys to the servers via
the helper protocol.

To implement a maliciously secure committee election protocol, we use the following standard techniques:

– Using VRFs: We use the strategy from Algorand [GHM+17] based on verifiable random functions (VRFs)
[MRV99]. This is implemented in the reusable8 correlated randomness model where the adversarial corruption
may happen after the setup. We note that since VRFs are known from non-interactive witness indistinguisha-
bility proofs (NIWIs) [Bit17, GHKW17], we get a resulting maliciously secure two-round protocol in the cor-
related randomness model based on NIWI, whose communication complexity is Õ(W (polylog(n), s) +nτ+4)
and total computation complexity is Õ(nW (polylog(n), s) + nτ+5). 9

– Feige’s Lightest Bin Protocol [Fei99]: This gives a statistically secure committee election protocol. However
each party learns whether or not it is in the committee only at the end of this protocol, so it adds another round
at the start of the two-round protocol. As a result we get a three-round maliciously secure protocol in the plain
model, whose communication complexity is Õ(W (polylog(n), s) + nτ+4) and total computation complexity
is Õ(nW (polylog(n), s) + nτ+5).

Comparison with Existing Maliciously Secure Compilers: By applying our compiler on the most asymptot-
ically efficient MPC protocols [GIP15, DIK+08, DIK10] with total computation cost W (n, s) = Õ(s + nd),
we obtain a two-round protocol with total communication and per-party computation cost Õ(s + nτ+4). In con-
trast, applying previous maliciously secure compilers on the same protocols yields two-round protocols with total
communication and per-party computation cost Õ(nτ · s+ nτ+1d+ nτ+2), where τ > 2.

1.2.2 Impossibility of Balanced Protocols

While our approach gives an efficiency preserving compiler in 3 rounds, a drawback of our compiler is that it yields
unbalanced protocols with sub-optimal corruption threshold of t < n/2. This is a consequence of our committee-
based approach. Next, we provide some evidence towards the fact that a committee-based approach is necessary.
In particular, we show that it is impossible to obtain a constant round MPC protocol with equal division of labor,
where the total work done by parties is Õ(|C|), where |C| is the size of the circuit implementing the functionality.
We show this impossibility using the player emulation methodology [HM00, CDI+13, IKOS09]. To the best of
our knowledge, this is the first time that this paradigm is used for proving a negative result.

Let us assume that there exists an r−round MPC protocol Π, where the total work done by each party is
approximately Õ(|C|)/n, where r is some constant. In other words, the size (and depth) of the circuit implementing
the next-message function of each party is Õ(|C|)/n. In every round, we can recursively use protocol Π to
implement the next-message function of each party. The total number of rounds in the resulting protocol is r2,
while the total work done by each party in each round is still Õ(|C|)/n, it can now be computed using n-parallel
circuits each of depth Õ(|C|)/n2.

8A simpler solution using non-reusable correlated randomness can be obtained using regular digital signatures which are known from
one-way functions.

9As for the semi-honest setting, the additive term will be elaborated upon in the technical sections.
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If we repeat this approach of recursively replacing the next-message function of each party in each round with
an execution of Π for k iterations, we get a protocol with rk rounds where in each round, the next message function
of each party can be computed using a circuit of depth Õ(|C|)/nk. Let k, c be constants such that Õ(|C|)/nk = c.
In each round the total computation done by the parties can be viewed as an execution of n-parallel circuits, each
of depth at most c. Overall, the total work done by the parties in the final protocol, can be viewed as an execution
of n−parallel circuits, each of depth at most c · rk = O(1).

This approach can be used to reduce any arbitrary-depth circuit C into a constant-depth circuit, which is a
contradiction since we know that functions like parity are not computable in constant depth.

1.3 Related Work

The study of multiparty computation was initiated in the seminal works of [Yao86, GMW87, BGW88, CCD88].
Beaver et al. [BMR90] initiated the study of constant round protocols in the honest majority setting. Subsequently,
there has been extensive work in the study of constant round protocols, resulting in round optimal protocols both in
the honest majority and dishonest majority settings [GGHR14, GS18, BL18, ACGJ18, ABT18, GIS18, ACGJ19,
ABT19].

Further, the design of efficient protocols have been studied in both the computational and information theoretic
settings [DI06, HN06, DN07, DIK+08, DIK10, DKMS12, ZMS14, SZ15, BCP15, DKM+17]. Some of these
results [DIK+08, DIK10] achieve optimal computational and communication complexity of Õ(s). Similar to us,
their results also have an additive factors which are polynomial in both the security parameter and number of
parties.

Committee based techniques have been used primarily in the context of scalable computation, where the goal
is to build secure computation protocols that scale well with a large number of parties. Of these, the works
of [SZ15, BCP15, ZMS14, BGT13, DKMS14] seek to reduce computational and communication complexity work
in the large round setting. See [SZ15] and the references therein for for a detailed survey of the use of committee
based techniques in the context of scalable computation. To the best of our knowledge no prior works apply
committee based approaches in the two round setting. This is perhaps unsurprising given the recency of the two
round protocols based on standard assumptions.

2 Two-Round Efficiency Preserving Compiler in the Client-Server Model

In order to describe our compiler in a manner that easily extends to the malicious setting, we will present our
solution in two steps, spread across Sections 2 and 3. In this section, we construct a maliciously secure efficiency
preserving, round compression compiler in the Client-Server model (see Section A.1 for definition). Recall that
in the client-server model, every party is designated to be either a client or a server, and is additionally aware of
the roles of all the other parties. The clients share their inputs among all the servers (servers may additionally
have inputs), who in turn do the computation and broadcast the result. Later in Section 3, we will show how this
protocol in the client-server model can be extended to obtain an efficiency preserving compiler in the plain model,
namely, where the parties do not have any pre-designated roles assigned to them.

The rest of this section is organized as follows. First, we present a two-round special MPC with some specific
structural properties in Section 2.1. Then in Section 2.2, we make use of the properties of this protocol to present
a two-round, maliciously secure, efficiency preserving compiler in the client server model.

2.1 Special Two-Round MPC

As discussed in the technical overview, given an interactive protocol with total computation work W , as a starting
step, we need to transform it into a two-round special MPC protocol that satisfies the following properties:
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1. Decomposability: The first round messages of each party in Π can be decomposed into “light” messages that
depend on the input but not W , and “heavy” messages that depend on W but not on the input; however they
may share common randomness.

2. Independence: The private channel messages in Π are independent of the inputs.

3. Complexity: The total computation complexity of the resulting protocol should only be linearly dependent on
W .

In this section we show how such a protocol can be obtained. Formally, we prove the following Lemma.

Lemma 1. Let λ be the security parameter. There is a round compression compiler that transforms a maliciously
(and semi-honest, resp.) secure MPC protocol π for any n-party functionality F into a two-round maliciously (and
semi-honest, resp) secure protocol Π for F with the following properties:

1. If π tolerates corruption threshold ε, then Π tolerates ε′, for arbitrary constants ε′ < ε < 1/2.

2. If the computational cost of π is W = W (n, s), where s is the circuit size representation of F , then the amor-
tized per-party computational cost of Π is O(nτW ) and the per-party communication cost of Π isO(nτ−1W ).

3. Each party in Π sends messages over both private channels and a broadcast channel in the first round. While
in the second round, each party only sends messages over a broadcast channel.

4. Each party Pi in Π broadcasts its masked input (xi ⊕ γi) in the first round, where xi is its input and γi is a
random value. The rest of its first round broadcast messages are independent of its input but may depend on ri.

5. The private channel message of each party Pi in Π is independent of its input xi but may depend on ri.

Special MPC. As discussed in the technical overview, we observe that any two-round protocol π that satisfies
delayed-function property can be transformed into a two-round protocol Π that achieves the structural properties
of special MPC. Let P = {P1, . . . , Pn} be the set of parties in the system and x1, . . . , xn and R1, . . . , Rn be their
respective inputs and randomness. The modified protocol Π proceeds as follows:

– Round 1. Each partyPi (for i ∈ [n]) samples a random string ri←$ {0, 1}|xi| and computes π1
i ← NMF1

π(ri;Ri),
where NMF1

π(ri;Ri) denotes the first round next message function of π on input ri and randomness Ri10. In
addition to sending its broadcast and private channel messages from π1

i , it also broadcasts Xi = xi ⊕ ri.

– Round 2. Each party Pi (for i ∈ [n]) computes and sends

π2
i ← NMF2

π(FX1,...,Xn , ri, π
1
1, . . . , π

1
n;Ri),

where NMF2
π(FX1,...,Xn , ri, π

1
1, . . . , π

1
n;Ri) denotes the second round next message function of π on input ri,

first round transcript π1
1, . . . , π

1
n and randomness Ri, for the MPC functionality FX1,...,Xn defined as:

FX1,...,Xn(r1, . . . , rn) = F(x1, . . . , xn),

where F is the original functionality that Π computes.

Remark 1. If π makes use of private channel messages in the second round, then the parties additionally exchange
random pads of appropriate length with each other in the first round and then broadcast their second round
messages encrypted under these one-time pads.

10Note that since π satisfies the delayed-function property, its first first round next message function is independent of the MPC func-
tionality.
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It is easy to see that π satisfies the last three properties listed in Lemma 1. Since the above transformation
works for any two-round protocol with delayed-function property, π can be instantiated with a delayed-function
version of [ABT18, ABT19, ACGJ18]. While [ACGJ18] already satisfies the delayed function property, the two-
round compilers of [ABT18, ABT19] do not. We observe that the compilers of [ABT18, ABT19] can be made
to satisfy the delayed function property without compromising its efficiency (which we discuss next). Moreover,
since these compilers already achieve total computation complexity proportional to O(nτ+1W ), instantiating π
with the output of these compilers will yield a two-round protocol Π that satisfies all the 5 properties listed in
Lemma 1.

Delayed-Function Version of [ABT18, ABT19]. We first suggest a small modification to [ABT18, ABT19] that
yields two-round protocols with delayed-function property. Given an interactive protocol π, recall that in these
compilers, the parties collectively compute a point and permute garbling of the circuit representing the entire
transcript of π. Such a compiler can be easily transformed into one that satisfies the delayed function property by
having the parties garble a universal circuit instead. This universal circuit11 takes as input the functionality of MPC
and then executes π accordingly. In order to compute input-wire keys corresponding to the functionality, each party
can simply secret share both its wire keys (for bit 0 and 1) for the input wires corresponding to the functionality
in the first round. Later, upon learning the functionality in the second round, the parties can use appropriate input
wire keys corresponding to the functionality and discard the remaining keys. For a boolean circuit, this only adds
a constant multiplicative overhead, and does not affect the overall asymptotic complexity.

Remark 2. We note that we consider the computation of functions represented by circuits consisting of AND, OR
and NOT gates.

2.2 From Special MPC to Efficiency Preserving Compiler in the Client-Server Model

Now that we have a two-round protocol Π with the desired structural properties from Lemma 1, we use it to present
a two-round maliciously secure, efficiency preserving compiler in the client-server model. Since our protocol
works in the client server model, for ease of presentation we use indices with different fonts for referring to
specific servers and clients: i ∈ n for servers (double-struck) and i ∈ n for clients (bold).

Protocol Overview. At a high level, given n servers and n clients, where n + n = n, the semi-honest protocol
works as follows. Each client generates n additive secret shares of its input - one for each server. The servers
then engage in a single execution of the two round protocol Π to compute the function. But recall that the servers
are not in possession of the shares of the client inputs at the start of this protocol execution and waiting for shares
before continuing with the execution of Π would render it impossible to complete the overall computation in two
rounds. In order to overcome this, the servers delegate the computation of their second round message to a garbled
circuit. This garbled circuit has all the partially computed first round messages that are independent of the clients’
inputs hardwired in it, and additionally takes the input shares of all the clients as input.

Therefore, to parallelize their computation, instead of sending their shares directly to each server, the clients
engage in a two round helper protocol Πhelp with all the other servers to enable transferring of shares. Since the
second round computation is done via a garbled circuit, the helper protocol Πhelp computes the input wire labels
for this circuit corresponding to the input shares of the clients. As discussed in the technical overview, for security
against malicious adversaries, we must prevent a malicious server from modifying the input shares of an honest
client. To do so, we need to add some form of consistency checks in the protocol Π to make sure that an adversarial
server cannot maul the input share of an honest client. We make use of one-time message authentication codes
(MACs) to enforce these consistency checks. So, in addition to secret sharing their inputs, the clients compute
n MAC’s on each of their shares using a different MAC key. All the MACs corresponding to a particular input

11We slightly abuse terminology here. By universal circuit, we mean a slightly modified circuit representing π that takes the functionality
as input.
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share are sent to the recipient server, while the other servers get a key for one of these MACs. The functionality
computed by the protocol π first checks if for each input share that it gets as input, all its corresponding MACs
are valid. Only if this check succeeds, does it start computing on them. Intuitively, the reason why this approach
works is because an adversary only controls a minority of the servers, and hence it is never in possession of all
the n keys for any of honest client’s input share. Thus, except with some negligible probability, it cannot forge all
the n MACs on a message of its choice. This prevents the adversary from potentially changing the input share of
an honest client. We use the helper protocol Πhelp exactly as described earlier with the only exception that now
instead of just their input shares, the clients also communicate these MACs and MAC keys to the servers via the
helper protocol.

Formally, we prove the following theorem. In this theorem we also enlist additional properties achieved by
our resulting protocol. These properties are crucially used by our compiler in Section 3 to obtain an efficiency
preserving compiler in the plain model. We refer the reader to Section 3 for a detailed discussion on the relevance
of these properties.

Theorem 2. Let n be the number of parties and λ be the security parameter. Assuming one-way functions, there
is a round compression compiler that transforms a maliciously (and semi-honest, resp.) secure MPC protocol Π
for any n-input functionality F into a two-round maliciously (and semi-honestly, resp.) secure protocol Φ for F in
the client-server model with the following properties:

1. Let n be the number of servers and n = n − n be the number of clients. If the computational cost of π is
W = W (n, s), where s is the circuit size representation of F , then the amortized per-party computational cost
and total communication of maliciously (and semi-honest, resp.) secure protocol Φ is Õ(W (n, s) + nτ+4),
(and Õ(W (n, s) + n4), resp.), where the Õ notation suppresses suppresses polynomial factors in λ and n.

2. If π tolerates corruption threshold ε, then Φ tolerates ε′, for arbitrary constants ε′ < ε < 1/2 corruptions in
the server set and ε corruptions in the client set.

3. Each party can send messages over both private channels and a broadcast channel in the first round in Φ.
While in the second round, each party only sends messages over a broadcast channel.

4. The private channel messages sent by clients in Φ are independent of the role (client/server) of the receiving
party in the protocol.

5. The total length of messages sent by all clients is O(n2nn3λ3) in the semi-honest case and Õ(nτ−1n3n3λ3 +
nn3nτ+1λ) in the malicious case.

6. The private channel messages sent by servers in Φ can be divided into messages that are independent of the
role (client/server) of the receiving party and ones that are specifically intended for other server parties.

7. The total length of messages sent by all servers in Φ is O(n4nnλ3 + nτ+1Wλ) in the semi-honest case and
Õ(nτ−1n5nλ3 + n3nnτ+1λ) + nτ+1Wλ in the malicious case.

We now give a constructive proof of theorem 2 using the protocol described below.

2.2.1 Construction

We start by establishing some notations that will be used throughout this section.

Notations. We use various underlying protocols for different functionalities in our construction. We use ΠX to
denote the underlying protocol used for computing functionality FX . The rth next message function of protocol
ΠX is denoted by Πr

X . We use multiple instantiations of these underlying protocols. In the rth round of the yth
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instantiation of ΠX , we use Mr,yX [i, j] to the message that server i sends to client j and M
r,y
X [i] denotes the message

that it broadcasts. I
y
X [i] denotes the input of server i in the yth instantiation of ΠX . Often times, we replace

some indices in the above notations with symbols such as •, � or ∗ to denote a set. For instance M
r,y
X [i, •] ={

M
r,y
X [i, j]

}
j∈n. Similarly, � is used to denote all servers and ∗ is used for referring to all clients and all parties

respective. The collection of labels (of a garbled circuit) are denoted as lab := {labi,0, labi,0}i∈[L]. Projection
of a string of c ∈ {0, 1,⊥}L is defined as Projection(c, lab) = {labi,c[i]}i∈[L], where labi,⊥ is defined to be
⊥. The output of Projection is treated as a string. For convenience, we also specify that ⊥ under the XOR
operation remains unchanged. Specifically, ∀b ∈ {0, 1}, b⊕ ⊥=⊥. Wherever necessary, we augment the protocol
description with comments denoted as //comment.

Next, we list the building blocks used in our construction.

Building Blocks. The main primitives required in this construction for computing an n-input functionality F are
the following:

1. An unconditionally secure message authentication scheme (MAC,Verify) as described in Section A.4.

2. A two-round protocol Πaug [ABT19] for n parties output by the compiler in Lemma 1, for the function Faug

defined in Figure 1.

Function: Faug

Parties: n parties P1, · · · , Pn.
Inputs: Each party has input

Xi := xi||
{
x[j, i]||

{
tag`j→i

}
`∈[n] ||

{
kij→`

}
`∈[n]

}
j∈[n]

Output:

– ∀i, ` ∈ [n], j ∈ [n], check if
Verify

(
x[j, i], tag`j→i, k

`
j→i

)
= 1

If all checks verify, set xj :=
⊕n

i=1 x[j, i], output := F
(
{xi}i∈[n], {xj}j∈[n]

)
– Else, if any of the checks failed, set output to be ⊥.

Return output.

Figure 1: The augmented function Faug

Faug takes inputs from n parties, and parses each input as: (1)its own input; (2) input shares (from parties not
involved in the computation of F ′); (3) MAC tags for each share; (4) MAC keys to verify tags.12

Upon aggregation the functionality checks if all the MAC tags verify. If the verification succeeds, input shares
are used to reconstruct inputs of the parties not involved in the computation. Output the result on evaluating F
on the inputs (both parties’ own and reconstructed).

Remark 3. Throughout this work, B will be used to denote broadcast messages.

3. A Garbled Circuit scheme GC = {Gen,Garb,Eval} as described in Section A.2, based on one-way functions.

4. A two-round maliciously secure honest majority protocol [ABT19] Πhelp computing function Fhelp, which
helps the client select labels, of a garbled circuit, corresponding to its input share.

12The MAC keys correspond to tags held by other parites.
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Function: Fhelp

Parties: Clients C = {C1, · · · , Cn} and servers S = {S1, · · · , Sn}
Inputs:

– Client Ci (called sender) has input xi.

– Server Sj (called receiver) has input γj and
{
yjw,0, y

j
w,1

}
w∈[|xi|]

– Each server Sk ∈ S \ {Sj} (called label receiver) has input
{
ykw,0, y

k
w,1

}
w∈[|xi|]

.

– Each client Ck ∈ C \ {Ci}, (called helper) has no input.

Output: ∀Sk ∈ S, set outkhelp = Projection(xi[w]⊕ γj[w],
{
ykw,0, y

k
w,1

}
w∈[|xi|]

). Output outhelp := {outkhelp}k∈[n]
to all parties.

Figure 2: The function Fhelp

Fhelp separates out its participants into two sets, clients and servers. In addition, it designates two special
parties: client Ci, and server Sj. Ci provides input xi, and Sj provides input γj. Additionally, all servers
(including Sj) provide as input labels to a garbled circuit. The other clients do not have any inputs. The
functionality outputs to all parties the projection of the labels corresponding to xi ⊕ γj. Since the parties have
asymmetric roles, the next message function of this protocol additionally takes one of these labels as input
(sen, rec, lrec, hel) to specify the exact role of the party.

Protocol. For each i ∈ [n], server i has input xi and for each i ∈ [n], client i has input xi. For simplicity
we assume that each these inputs are of length 1. Our protocol easily extends to the setting with longer inputs.
We assume that every party samples a sufficiently long random string at the start of the protocol, which is used
appropriately throughout the protocol. Therefore we remove the randomness from protocol description and assume
that it is implicit in all the algorithms used in the protocol.

Round 1. Each client Ci for i ∈ [n] computes the following:

1. Computes n additive shares of xi:
⊕n

j=1 x[i, j] = xi

2. Authentication tags for each share: ∀j, ` ∈ [n], sample k`i→j←$ {0, 1}λ and compute tag`i→j
:= MAC(k`i→j, x[i, j]).

3. Aggregate inputs: ∀j ∈ [n], Ihelp[i, j] := x[i, j] ◦ {tag`i→j}`∈[n] ◦ {k
j
i→`}`∈[n]

4. First round of Πhelp:

(a) ∀j ∈ [n]: (i, j)-th instance as sender, M1,(i,j)help [i, ∗]← Π1
help(i, sen, Ihelp[i, j])

(b) ∀j ∈ [n] \ {i} ,k ∈ [n]: (j,k)-th instance as helper, M1,(j,k)help [i, ∗]← Π1
help(i, hel,⊥)

5. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to server Sj.

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

Each server Si for i ∈ [n] computes the following:

1. Sets Iaug[i] := xi ◦ Ihelp[•, i], where Ihelp[•, i] = ⊥ of appropriate length.
//This indicates the missing inputs that are contributed by the clients.

2. Computes first round messages of Π with random mask γi←$ {0, 1}|Iaug[i]|:
(
(Iaug[i]⊕ γi), M1aug[i, �], M1aug[i]

)
←

Π1
aug(i, Iaug[i], γi)

3. Samples wire labels for a garbled circuit: labi[•, �]← Gen(1λ).

4. First round of Πhelp:
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(a) ∀j ∈ [n]: (j, i)-th instance as receiver, set I
(j,i)
help [i] = γi|j ◦ labi[j, i] and computes M

1,(j,i)
help [i, ∗] ←

Π1
help

(
i, rec, I

(j,i)
help [i]

)
//γi|j denotes the part of γi that is used to mask input Iaug[i, j].

(b) ∀k ∈ [n] \ {i} , j ∈ [n]: (j,k)th instance as label receiver, set I(j,k)help [i] = labi[j,k] and computes M1,(j,k)help [i, ∗] ←
Π1

help

(
i, lrec, I

(j,k)
help [i]

)
5. ∀j ∈ [n], send M

1,(•,�)
help [i, j], M1aug[i, j] to server Sj

6. ∀j ∈ [n], send M
1,(•,�)
help [i, j] to client Cj.

7. Broadcast M1[i] :=
(
M1aug[i], (Iaug[i]⊕ γi)

)
Round 2.

– Each clientCi for i ∈ [n] computes and broadcasts second round messages of Πhelp: ∀k ∈ [n], j ∈ [n], (j,k)-th instance:

M
2,(j,k)
help [i]← Π2

help

(
i, M

1,(j,k)
help [∗, i]

)
– Each server Si for i ∈ [n]:

1. Second round of Πhelp: ∀k ∈ [n], j ∈ [n] (j,k)-th instance: computes M2,(j,k)help [i]← Π2
help

(
i, M

1,(j,k)
help [∗, i]

)
2. Garbled circuit: sets ckti := P

[
i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]

]
and computes P̃i ←

Garb
(
Pi, labi[•, �]

)
, where program P is as defined in figure 3.

3. Broadcast
(
M
2,(•,�)
help [i], P̃i

)
Output Computation. Each every client and server computes the following:

1. Output of Πhelp: ∀j ∈ [n],k ∈ [n] l̃abi[j,k] := Π3
help

(
Mhelp,(j,k)[∗]

)
2. Evaluate garbled circuits: ∀i ∈ [n], M2aug[i] := Eval(P̃i, l̃abi[�, •])

3. Output of Π, y := Π3
aug(M

2
aug[�])

4. Output y.

Program: P

Input: {Ihelp[k, j]⊕ γj|k}k∈[n],j∈[n]
Hardcoded: i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]
Function:

– For each j ∈ [n], update Iaug[j]⊕ γj with values {Ihelp[k, j]⊕ γj|k}k∈[n].

– Compute and output the second round messages using these updated values of the first round.

M2aug[i]← Π2
aug

(
i, M1aug[�], M1aug[�, i], {(Iaug[j]⊕ γj)}j∈[n]

)
Figure 3

Semi Honest Protocol. We note that for the semi-honest variant of the above protocol, the MAC checks are no
longer needed. Therefore, Fhelp can be simplified. The rest of the protocol remains the same, except that we can
instantiate the underlying protocols used in this protocol with their semi-honest variants.

Complexity. Note that there are n · n instances of Πhelp. Given that Πhelp implements a quadratic functionality,

17



the resulting circuit computed by each instance has size O(λ2 · n2). Also, each instance is run by all n parties.
Importantly, the circuit size is independent of s, size of circuit representing the underlying protocol. There is also a
single instance of Πaug computing a circuit of size swith n parties. From the described properties of the underlying
protocols, this gives us a protocol with the desired complexity. The details of the exact calculations are presented
in Appendix B.

2.2.2 Proof of Security

We denote by A both the adversary and set the adversarial parties. H denotes the set of honest parties.
We assume that the security parameter 1λ is an implicit parameter, and do not specify it explicitly. Additionally,

we define the following functions and describe briefly their purpose:

– sanitize: From Lemma 1, we know that the underlying protocol requires broadcasting masked inputs in the
first round. But in our use case, the party attempting to broadcast this, is not aware of its entire input in the
first round, although completely determined by the other protocols that are additionally run. When we run the
simulator of the underlying protocol, it simulates masked inputs for all input bits independent of our usage of
the protocol. Thus, when we pass it along to the adversary, we need to replace positions corresponding to the
masked inputs that it is unaware of by ⊥ (as in the real protocol). The sanitize function takes the broadcast
messages output by the simulator and “sanitizes” the output by replacing appropriate positions by ⊥. This can
then be sent to the adversary.

– fillIn: As above, when the adversary of the overall protocol sends the broadcast message, due to the protocol
specification, the adversary’s broadcast messages will contain⊥ in positions that its input is unknown. But this
cannot be fed in as such into the simulator of the underlying protocol, since the underlying protocol expects
a complete broadcast message without ⊥. We’ve already stated that even though the party is unaware of
its input, the input is completely determined by the first round messages of the other protocols. We extract
the masked inputs from the other protocols, and replace the ⊥ in the adversarial broadcast messages by the
corresponding masked inputs. The fillIn functions takes the broadcast message and the masked inputs and
replaces the appropriate positions with the masked inputs.

– extractMasked: Although we “sanitized” the broadcast prior to sending to the adversary, we require these
masked inputs at a later point during simulation. The function extractMasked takes the first round broadcast
message, and an index i to return the masked input that the party receives from party i.

We note that all of the above are deterministic procedures that run in polynomial time.
The simulator for the underlying protocol, garbled circuit and Fhelp is denoted by Simaug, SimGC and SimΠhelp

respectively.

Simulator. We describe the simulator below.

Round 1 Sim→ A

1. Sample input shares for each i ∈ H and j ∈ A: x[i, j]← {0, 1}.

2. Compute tags for the generated shares. For each i ∈ H, j ∈ A, ` ∈ [n], sample k`i→j←$ {0, 1}λ and compute
tag`i→j

:= MAC(k`i→j, x[i, j])

3. Aggregate the inputs: For each i ∈ H and j ∈ A, set Ihelp[i, j] := x[i, j] ◦ {tag`i→j}`∈[n] ◦ {k
j
i→`}`∈[n]

4. Simulate the first round messages for each instance of Πhelp: ∀i ∈ [n], j ∈ [n], compute M
1,(i,j)
help [∗H, ∗A] ←

Simhelp(1λ,H) and send it to the adversary.
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5. Simulate the first round messages for Πfaug:
(M1

aug[�H], M1
aug[�H, •A])← Simaug(1λ,H ∩ S)

We note that while in the protocol description we write the two components (the masked input and the remain-
ing part) of the broadcast message separately. For simplicity, here we assume that M1

aug[�H] represents the both
those components.

Since in the overall protocol, a party is not aware of its complete output, multiple positions in the masked input
component will contain ⊥. But the underlying simulator generates messages independent of this condition. So
we “sanitize” the output generated by Simaug by replacing appropriate positions by⊥. Specifically, ∀i ∈ H∩S ,

compute ˜M1
aug[�H] := sanitize

(
M1
aug[�H]

)
. Note that this is a deterministic procedure.

6. Send ˜M1
aug[�H] and M1

aug[�H, •A] to A.

Round 1 A → Sim

Input Extraction. Feed the messages to the corresponding simulator and extract the following inputs

1. Πhelp: ∀i ∈ [n], j ∈ [n],

– if i ∈ A, extract Ihelp[i, j] = x[i, j] ◦ {tag`i→j}`∈[n] ◦ {k
j
i→`}`∈[n]

– if j ∈ A, extract γi|j ◦ labj[i, j]

– ∀k ∈ A, extract labk[i, j]

2. Πaug: Note that like the case of simulating first round messages, the adversary sends first round messages of Π
which includes ⊥ in various locations. The underlying simulator Simaug cannot deal with this, and needs to be
appropriately updated. Recall that all the adversarial inputs, even the ones the adversary isn’t aware of in the
first round, is committed via a combination of protocols. We use the extracted inputs from Πhelp to “fill in” the
missing values. Specifically, ∀j ∈ A, set

M1
aug[j] := fillIn

(
M̃1
aug[j], γj|•, Ihelp[i, j]

)
.

Note that γj|i→j was extracted in the previous step, Ihelp[i, j] for i ∈ A is extracted in the previous step and
Ihelp[i, j] for i ∈ H was generated previously.

Now, use M1
aug[j] to extract the following inputs: ∀j ∈ A, extract

xj||
{
x̃[i, j]||

{
t̃ag

`
i→j

}
`∈[n]
||
{

k̃
j

i→`

}
`∈[n]

}
i∈[n]

We note that the extracted values can potentially be different from the sent values.

Check A computation. Using the extracted inputs, we perform the following checks to ensure that A’s inputs do
not lead Faug to abort.

– We perform a special check to ensure that A has not managed to maul any of the honest party inputs such that
the MACs verify. Specifically, check if ∃j ∈ A, i ∈ H such that

1. the shares extract and the ones sent are different: x̃[i, j] 6= x[i, j]; and
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2. all the corresponding MACs verify: ∀` ∈ [n],

Verify
(
x̃[i, j], k̃

`

i→j, t̃ag
`
i→j

)
= 1

where k̃
`

i→j is the honest key k`i→j.

If above conditions are met, then we output a special abort symbol ⊥MAC and stop simulation.

– check if all the MACs verify. Specifically, check if ∃j ∈ A, i ∈ [n], ` ∈ [n] such that

Verify
(
x̃[i, j], k̃

`

i→j, t̃ag
`
i→j

)
6= 1

If the above condition is met, then we set the output y∗ :=⊥.

– else, send inputs to the ideal functionality F by appropriately combining input shares of the clients prior to
sending. Set the returned value to be y∗.

Round 2. Sim→ A

1. Simulate the second round messages of Π:

M2
aug[�H]← Simaug(1λ,H, y∗, M1

aug[�A, �H], M1
aug[�A])

Note that we need to provide the simulator the filled in first round messages of the protocol, previously com-
puted.

2. Simulate the garbled circuit ∀i ∈ H,
(

P̃i, l̃abi[•, �]
)
← GC.Sim

(
1λ, M2

aug[i]
)

send P̃i to A.

3. Set the output for Πhelp. ∀i ∈ [n], j ∈ [n]:

– if j ∈ A,
y(i,j) :=

{{
Projection

(
labk[i, j], Ihelp[i, j]⊕ γj|i

)}
k∈A ,

{
l̃abk[i, j]

}
k∈H

}
where as described earlier, we have all components of Ihelp[i, j].

– else, since we do not have shares, or masks, defined for honest servers, we need to use the the implicit
masked inputs from the first round simulator messages of the underlying protocol. This exactly corre-
sponds to the components of the message that we had previously “sanitized”. We now denote the com-
plementary action, of extracting those components, “extract masked”. Since at a given time we only need
some components of this masked input, we pass along an additional parameter corresponding to the client
index.

y(i,j) :=
{{

Projection
(
labk[i, j], extractMasked

(
M1
aug[i], i

))}
k∈A ,

{
l̃abk[i, j]

}
k∈H

}
4. Simulate the second round messages for Πhelp and send to A: ∀i ∈ [n], j ∈ [n]:

M
2,(i,j)
help [∗H]← Simhelp(1λ,H, y(i,j), i, j, M

1,(i,j)
help [∗A, ∗H])
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Round 2. A → Sim
Receive the corresponding messages from A and use the output step to evaluate the garbled circuits. If either

the garbled circuits, or the simulator of the underlying protocol, return ⊥ sent ⊥ to F . Otherwise, send continue.

Hybrids. We describe below the hybrids used to prove security of Sim.

Hyb0 : This is the real execution of the protocol.

Hyb1 : Hyb1 is identical to Hyb0 except that we simulate each invocation of Πhelp.

Claim 1. From the security of Πhelp, hybrids Hyb0 and Hyb1 are computationally indistinguishable.

Proof. Indistinguishability of Hyb0 and Hyb1 follows from n · n invocations of the security of Πhelp.

Hyb2 : Hyb2 is identical to Hyb1 except that we simulate each of the honestly generated garbled circuits.
We can do this because we’ve stopped using the honest parties’ garbled circuit labels by this point.

Claim 2. From the security of the garbled circuits, hybrids Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Indistinguishability of Hyb1 and Hyb2 follows from |H| invocations of the garbled circuit security.

Hyb3 : Hyb3 and Hyb2 are identical except that we simulate Πaug. Note that this also enforces the checks, and
outputs ⊥MAC if the adversary has managed to maul the message.

Claim 3. ⊥MAC is output with only negligible probability.

Proof. If this was not the case, and it happens with some noticeable probability, then we can construct an adversary
that breaks the security of the MAC scheme.

First, we guess randomly the indices j ∈ A, i ∈ H, ` ∈ [n] that we believe will result in the forgery. Since there
are only polynomially many such indices to choose from, the resultant adversary still has noticeable probability
of success. We sample a random message that corresponds to an input share generated for an honest client, and
query the MAC challenger. The resultant tag, along with the share is used for the subsequent simulation for the
selected indices. If the guess for the indices is correct, the adversary returns a different (message,tag) pair that we
forward to the challenger. Since the adversary has a noticeable probability of success, the constructed adversary
for the MAC also has noticeable probability of success. Therefore, we break the security of MAC. This completes
the proof of our claim.

Now the indistinguishability follows in a straightforward manner.

Claim 4. From the security of Πaug, hybrids Hyb2 and Hyb3 are statistically indistinguishable.

Proof. Given that ⊥MAC is output with only negligible probability, the remaining behavior for setting the output is
identical to the real world. Thus, indistinguishability of Hyb2 and Hyb3 follows from the security of Πaug and the
correctness of the defined functions sanitize, fillIn, extractMasked.

3 Efficiency Preserving Compiler in the Plain Model

In this section we go from the compiler in the client-server model in Section 2 to present our main result, namely
an efficient two-round compiler in the plain model. Formally we prove the following theorem.

Theorem 3. Let n be the number of parties and λ be the security parameter, such that n is polynomially related
to λ and let k be set to log2(n).
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1. Assuming one-way functions, there is a round compression compiler that transforms a semi-honest MPC pro-
tocol π for any n-party functionality F into a two-round semi-honest protocol Π′ for F with the following
properties:

(a) If π tolerates corruption threshold ε, then Π′ tolerates ε′, for arbitrary constants ε′ < ε < 1
2 .

(b) If the computational cost of π is W = W (n, s), where s is the circuit size representation of F , then the
amortized per-party computational cost and total communication cost of Π′ is

O
(
(W (k, s+ kn) + n4λ2) · λ · k3

)
.

We will denote this by Õ(W (k, s + kn)kτ−2 + n4), where the Õ notation suppresses polynomial factors
in k and λ. For most known protocols, the additive term in the circuit size (kn) will be suppressed by the
additive term of n4 simplifying the expression to Õ(W (k, s) + n4).

2. Assuming one-way functions, there is a round compression compiler that transforms a maliciously secure MPC
protocol π for any n-party functionalityF into a three-round maliciously secure protocol Π′ forF that satisfies
properties 1(a) and amortized per-party computational cost Õ(W (k, s) + nτ+4).

3. Assuming NIWIs, there is a round compression compiler that transforms a maliciously secure MPC protocol
π for any n-party functionality F into a two-round maliciously secure protocol Π′ in the reusable corre-
lated randomness setup model for F that satisfies properties 1(a) and amortized per-party computational cost
Õ(W (k, s) + nτ+4).

Overview. We now present an overview of the compiler that builds on the protocol output by the compiler from
Section 2 (Theorem 2) in the client-server model to get a compiler in the plain model. Along the way, we shall
discuss the relevant properties used from Theorem 2. We shall do this in two steps.

1. Phase one: Compile the protocol in Section 2 to a protocol in the Felection-hybrid model. In this model, at
the start of the protocol, each party receives a bit from Felection indicating whether it is in the committee. The
functionality Felection is described in Figure 4.

2. Phase two: Instantiate Felection based on the desired security properties of the final protocol.

Function: Felection

Parameter: k
Parties: P := {P1, . . . , Pn}
Inputs: Parties do not have inputs.
Select, in expectation, a random k-sized subset of the parties to be elected to the committee.

Output: For each Pi: if Pi was selected, send 1. Else, send 0.

Figure 4: The randomized functionality that selects a k-sized committee in expectation

The main challenge in going from the client-server model to the plain model is that parties are no longer aware
of the roles of the other parties, i.e. which parties are clients and which are servers. To get around this issue, we
will leverage the fact that Felection guarantees that every party knows whether it is a server, but doesn’t know its
index in the server set.

Since the party doesn’t know its role (index) in the server (resp. client) set, it computes messages assuming all
n (resp. n) roles. At the end of the first round, when all parties are aware of the elected committee based on the
messages sent, the irrelevant messages are discarded. But a problem with this approach is that the protocol involves
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private messages, which require knowledge of the recipient’s role. Based on the properties listed in Theorem 2
from Section 2, we can divide the private messages into two categories which are handled differently:

private message independent of the role of the receiving party . This is the case for all private messages sent
by the clients, and some of the private messages sent by the servers. This is an easy setting to handle since these
messages can be sent privately without the need to know the recipient’s role.

private message intended for the parties in the server set . This is of concern only to parties that are elected into
the committee. Since a party is not aware of other elected parties, these messages cannot be sent privately. Instead,
the party masks these messages, and broadcasts the masked messages. But we want the designated party to receive
the mask, and unmask the message to proceed with the computation. We seem to be back where we started, but
we use a solution similar to Section 2, where the second round computation of the server parties are delegated to
a garbled circuit. Now, the party generating the mask initiates a helper protocol that will enable the appropriate
party’s garbled circuit to receive the mask, thereby allowing to proceed with the computation. To ensure there is
no complexity blow-up by involving all parties, we make sure that the size of the computation involving all parties
is independent of the underlying circuit. This is easily done by utilizing a pseudo-random generator (PRG) to
generate the masks.

The relevance of the other properties listed in Theorem 2 is in the efficiency of the resultant protocol.

3.1 Phase One: Felection-hybrid Model

In this section, we shall perform the first step of our compilation. Namely, we shall compile the protocol in Section
2 from the client-server model to a protocol in the Felection-hybrid model. To differentiate from the client-server
models, we shall refer to parties “elected” to be in the server set to be a part of a committee.

Building Blocks. The main primitives required in this construction are the following:

1. The two-round protocol Πfc-s from Section 2 in the client-server model.

For this section, we shall use the following notation to refer to the first round messages of Πfc-s . There are spe-
cial first round messages13 that are privately sent among the servers, these will be denoted by an additional S:
M1
fc-s

[i, j, S] indicates the special message sent from server indexed by i to the server indexed by j. Other mes-
sages are denoted as previous sections with M1

fc-s
[i, j] indicating a message from party i to j (with appropriate

font to differentiate between clients and severs). Broadcast messages correspondingly defined. Additionally,
as before, we group messages corresponding clients (•), servers (�) or all parties (∗).

2. A Garbled Circuit scheme GC = {Gen,Garb,Eval} (Section A.2).

3. A two-round maliciously secure honest majority protocol ΠmOT computing functionFmOT described in Figure
5.

FmOT is similar to a multi-party variant of oblivious transfer. There are two designated parties, sender (sen)
and receiver (rec) with inputs b and (x0, x1) respectively, while all other parties are referred to as helper (hel)
parties. FmOT outputs xb to all the parties.

Our protocol will use multiple instance of the ΠmOT protocol, which is indexed by indices corresponding to
(sender, receiver).

13This will correspond to the messages whose size depend on the size of the circuit being computed.
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Function: FmOT

Parties: P := {P1, . . . , Pn}
Inputs:

– Party Pi (also called the receiver) has input {xi,0, xi,1}i∈[q]
– Party Pj (also called the sender) has input b ∈ {0, 1}q .

– For each Pk ∈ P \ {Pi, Pj} (also called the helper parties) have no inputs.

Output: Every party receives
{
xi,b[i]

}
i∈[q]

Figure 5: The function FmOT where Pi acts as the sender and Pj acts as receiver

4. A pseudo-random generator PRG : {0, 1}λ → {0, 1}poly(λ) (Section A.3).

As explained earlier, prior to sending the first round messages, a party is only aware if it is in the committee,
but not its role (index) in the committee (or outside). In our protocol, depending on whether party Pi is in the
committee (resp. outside), Pi computes the first round message for every possible role in the committee (resp.
outside). The index of the sender in the protocol message is thus denoted by (i, j) (resp. (i, j)) to indicate Pi’s
message for role j in the committee (resp. role j outside).

Although no party is aware of the roles of the other parties at the start of the first round of the protocol, there is
an implicit mapping from the set of all parties to the corresponding role in the committee (or outside). Q (resp. Q)
denotes this mapping. At the end of the first round, all parties will be able to locally compute both the mappings and
discard the relevant messages. We shall also abuse notation slightly and use Q and Q to denote the corresponding
sets.

Protocol. Let P = {P1, · · · , Pn} be the set of parties in the protocol and let the corresponding inputs be
x1, · · · , xn. We now give a formal description of the protocol in the Felection-hybrid model. We assume par-
ties sample appropriate random strings in the protocol description.

Initialization-Election. At the start of the protocol, each party Pi receives a bit from Felection. If the received bit is 1, then
Pi is a committee member, else it is a non-committee member.

Round 1. Each non-committee member Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:

– Client message in Πfc-s : M
1
fc-s

[(i, i), ∗]← Π1
fc-s

(i, xi)

– ∀j,k ∈ [n], (j,k)-th instance of ΠmOT as helper: M1,(j,k)mOT [(i, i), ∗]← Π1
mOT(hel,⊥)

2. For every j, send
(
i, M1fc-s

[(i, •), j], M1,(�,�)mOT [(i, •), j]
)

to Pj privately.

3. Broadcast M1fc-s
[(i, •), B].

Each committee members Pi for i ∈ Q computes the following:

1. For i ∈ [n] compute the first round of the following assuming role i:

(a) First round server messages in Πfc-s : M
1
fc-s

[(i, i), ∗], M1fc-s
[(i, i), �,S]← Π1

fc-s
(i, xi)

(b) Sample PRG seeds s[(i, i), �]
(c) Wire labels for a garbled circuit: lab(i,i)[�, (i, i)]← Gen(1λ)

(d) ∀j ∈ [n]: ct[(i, i), j] := M1fc-s
[(i, i), j,S]⊕ PRG(s[(i, i), j])

(e) First round of ΠmOT, for every j ∈ [n],

i. (i, j)-th instance as sender: M1,(i,j)mOT [(i, i), ∗]← Π1
mOT(sen, s[(i, i), j]).
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ii. (j, i)-th instance as receiver: M1,(j,i)mOT [(i, i), ∗]← Π1
mOT(rec, lab(i,i)[j, (i, i)]).

iii. for every k ∈ [n], (j,k)-th instance as helper: M1,(j,k)mOT [(i, i), ∗]← Π1
mOT(hel,⊥).

2. For every j ∈ [n], send
(
i, M1fc-s

[(i, �), j], M1,(�,�)mOT [(i, �), j]
)

to Pj .

3. Broadcast msg1
i :=

(
i, M1fc-s

[(i, �), B], ct[(i, �), �]
)

At the end of Round 1. Each party locally computes the mappings Q and Q, discards the extra messages and updates
sender index from (i,Q(i)) to i(= Q(i)) for Pi in the committee and (i,Q(i)) to i(= Q(i)) for Pi not in the committee.

Round 2. Each committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. A garbled circuit as Pi ← Garb(Pi, labi[�, i]) where Pi is computed as
Pi := Pplain[xi, ct[�, i], M1fc-s

[∗, B], M1fc-s
[∗, i]] where Pplain defined in Figure 6.

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M2,(j,k)mOT [i, B]← Π2
mOT(M

1,(j,k)
mOT [∗, i]).

3. Broadcast Pi, M
2,(�,�)
mOT [i, B]

Each non-committee member Pi for i ∈ Q sets i := Q(i) and computes:

1. Client messages in Πfc-s : M
2
fc-s

[i, B]← Π2
fc-s

(M1fc-s
[∗, B], M1fc-s

[∗, i])

2. ∀j,k ∈ [n], (j,k)-th instance of ΠmOT: M2,(j,k)mOT [i, B]← Π2
mOT(M

1,(j,k)
mOT [∗, i]).

3. Broadcast M2fc-s
[i, B], M

2,(�,�)
mOT [i, B].

Output Computation. Each party does the following:

1. ∀j,k ∈ [n] output of ΠmOT: l̃abk[j,k]← Πout
mOT(M

2,(j,k)
mOT [∗, B]).

2. ∀i ∈ [n], evaluate the garbled circuits: M2fc-s
[i, B]← Eval(Pi, l̃abk[�,k])

3. Output y ← Πout
fc-s

(M2fc-s
[∗, B])

Program: Pplain

Input: s[�, i]
Hardcoded: xi, ct[�, i], M1fc-s

[∗, B], M1fc-s
[∗, i]

Function:

– For each j ∈ [n], M1fc-s
[j, i,S] := ct[j, i]⊕ PRG(s[j, i])

– Compute server messages in Πfc-s : M
2
fc-s

[i, B]← Π2
fc-s

(M1fc-s
[∗, B], M1fc-s

[∗, i], M1fc-s
[∗, i,S])

– Output M2fc-s
[i, B]

Figure 6: Program Pplain unmasks the first round messages sent via broadcast, and computes the second round
messages of Πfc-s .

Complexity. Note that there are n2 instances of ΠmOT, where the sender has inputs of length O(λ), while the
receiver has inputs of length O(λ2). Given that ΠmOT implements a quadratic functionality, the resulting circuit
computed by each instance has size O(λ2). Also, each instance is run by all n parties. Importantly, the circuit size
is independent of s, size of circuit representing the underlying protocol. There is an additional overhead of parties
not knowing their own role in the committee. Finally, there is a single instance of Πfc-s computed by all parties.
The cost then follows from the properties of the underlying protocols and the details are presented in Appendix B.
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3.1.1 Proof of Security

We prove security of the above protocol in the Felection-hybrid model. LetA be any Real-world PPT adversary. We
construct an Ideal-world adversary Sim who simulates the Real-world view of A by simulating the honest parties
in the Ideal-world experiment. Let I be the set of parties that the adversary corrupts. We use H to denote the set
of honest parties. We will internally use Simfc-s for the underlying client-server protocol, SimmOT for ΠmOT and
SimGC for the garbled circuit. Recall that A is static and henceH is known prior to the protocol execution.

Initialization : The simulator simulates the randomized functionality Felection, and sends the appropriate bits to
the adversarial parties. Let IQ denote the set of adversarial parties in the committee. Correspondingly,HQ denotes
the set of honest parties in the committee. For simplicity of notation, we assume that the simulator keeps state, and
additional inputs to the simulator are ignored hereon. As in the protocol, we shall group messages accordingly.
Additionally, we denote by ∗A the indices corresponding to the adversarial party, and ∗H the corresponding indices
for the honest parties. We will augment this notation with appropriate superscripts when talking about group honest
or adversarial indices within or outside the committee.

When grouping indices of the parties receiving a message, we overload ∗A to also include broadcast messages.

Round 1 Sim→ A:

1. For each i ∈ C, simulate first round client messages in for honest non-committee members in Πfc-s :
M1
fc-s

[(∗HQ
, i), ∗A]← Simfc-s(1

λ,HQ).

2. For each i ∈ S, simulate first round server messages for each honest committee member in Πfc-s :
M1
fc-s

[(∗HQ , i), ∗A], M1
fc-s

[(�HQ , i), �AQ ,S]← Simfc-s(1
λ,HQ).

3. For each j,k ∈ S simulate the first round messages of honest parties in ΠmOT: M1,(j,k)
mOT [∗H, ∗A]← SimmOT(1λ,H).

4. For each (i, i) ∈ HQ × S and each j ∈ S do the following:

– If j ∈ HQ, ct[(i, i)→ j]←$ {0, 1}poly(λ)

– Else sample a seed s[(i, i), j] and compute ct[(i, i), j] := M1
fc-s

[(i, i), j,S]⊕ PRG(s[(i, i), j])

Round 1 Messages from A to Sim: Receive the corresponding first round messages from A. Drop all first round
messages other than those satisfying the mapping defined in the protocol at the end of round 1. Feed adversarial
messages into the corresponding simulator, that in turn makes calls to the corresponding ideal functionality.

– Simfc-s makes calls fc-s with adversarial inputs −→x A. Send these to F and get output y.

– For each j,k ∈ S, SimmOT makes calls to FmOT depending on the role of the adversarial party:

– if j,k are both honest, SimmOT sends ⊥.

– if j is adversarial, SimmOT sends s[j,k].

– if k is adversarial, SimmOT sends labk[j,k].

Round 2 Sim→ A:

1. Simulate second round messages of honest parties in Πfc-s : M
2
fc-s

[∗H, B]← Simfc-s(1
λ,−→x A, y).

2. For each i ∈ HQ, simulate garbled circuit as follows: Pi, l̃abi[∗, i]← SimGC(1λ, M2
fc-s

[i, B]).

3. j,k ∈ S, simulate ΠmOT,

26



– if k is honest, M2,(j,k)
mOT [∗H, B]← SimmOT(1λ, l̃abi[j, i]).

– else if k is adversarial, M2,(j,k)
mOT [∗H, B]← SimmOT(1λ,Projection(s[j,k], labk[j,k])). where the labels are

from the input queried by SimmOT. The seed has either already been sampled if j is honest, or been queried
by the simulator if j is adversarial.

4. Broadcast M2
fc-s

[∗HQ
, B].

Round 2 Messages from A to Sim: Feed the received second round messages into the corresponding simulators
in the following order.

– Feed messages in SimmOT. If any of them output ⊥, send ⊥ to the ideal functionality F . Else, collect all the
labels.

– Evaluate the garbled circuits sent by the adversary using the labels obtained above. If any of them evaluate to
⊥, send ⊥ to the ideal functionality F .

– Feed the output of the garbled circuits into Simfc-s , if it outputs ⊥ send ⊥ to the ideal functionality F . If it
outputs continue, send continue to the ideal functionality.

3.1.2 Hybrids

We describe below the hybrids used to prove security of Sim.

Hyb0 : This is the real execution of the protocol.

Hyb1 : Hyb1 is identical to Hyb0 except that we simulate each invocation of ΠmOT.

Claim 5. From the security of ΠmOT, hybrids Hyb0 and Hyb1 are computationally indistinguishable.

Proof. Indistinguishability of Hyb0 and Hyb1 follows from n · n invocations of the security of ΠmOT.

Hyb2 : Hyb2 is identical to Hyb1 except that we simulate each of the honestly generated garbled circuits.
We can do this because we’ve stopped using the honest parties’ garbled circuit labels by this point.

Claim 6. From the security of the garbled circuit scheme, hybrids Hyb1 and Hyb2 are computationally indistin-
guishable.

Proof. Indistinguishability of Hyb1 and Hyb2 follows from |H| invocations of the garbled circuit security.

Hyb3 : Hyb3 and Hyb2 are similar except that we use a random string to encrypt messages for the honest parties
instead of a pseudorandom string.

Now the indistinguishability follows from the indistinguishability PRG outputs.

Claim 7. From the security of the pseudorandom generator, hybrids Hyb2 and Hyb3 are computationally indistin-
guishable.

Proof. Given that an adversary can distinguish an output of a random function from that of a pseudorandom
generator only with a negligible probability, hybrids Hyb2 and Hyb3 are indistinguishable.

Hyb4 : Hyb4 is similar to Hyb3 except that we simulate Πfc-s .

Claim 8. From the security of protocol Πfc-s , hybrids Hyb3 and Hyb4 are computationally indistinguishable.

Proof. Indistinguishability of hybrids Hyb3 and Hyb4 follows from the malicious security of Πfc-s .

Note that Hyb4 is identical to the ideal execution in the presence of the simulator. This proves the security of
our construction.
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3.2 Phase Two

We can now complete the description of our compiler by instantiating the randomized functionality Felection used
in the protocol described in the Felection-hybrid model. We consider three different settings, which will lead to
corresponding results. The settings are

– semi-honest

– malicious in the reusable correlated randomness model

– malicious in the plain model

Semi-honest. For the semi-honest setting, the protocol idea is simple: every party tosses appropriately biased
coins to determine if it is in the committee. The only thing left to do is to determine the right parameters so that
we have a committee with poly-logarithmic size and honest majority. This is a non-interactive process, and the
resultant protocol is given below. The committee size will be (1− δ) · k, where δ is any non-zero constant.

Round 1. Each party does the following:

– Toss a coin that outputs 1 with probability p = k
n . If output 1, it assumes it is a part of the committee

and computes the messages

– If it is in the committee, pick an element ai←$Zq, from an exponentially sized field Zq. This is to pick
the relative position within the committee and trim the committee if needed.

– All parties compute the client messages, and the parties that assumed they were in the committee addi-
tionally compute server messages. This is because the committee might be larger than the final size, and
a party make not make it to the final committee.

– Only parties that assumed they were in the committee broadcast their ai value.

Round 2. On receiving the first round messages, each party knows both (a) which parties are in the committee;
and (b) the relative roles of each party in the committee. This follows from picking the committee to be the
ordered set of first (1 − δ) · k parties based on their broadcast ai. It then executed the rest of the protocol
appropriately.

Since each party independently samples coins to determine if it is in the committee, the expected party size
is k. If we set k = Ω(log2(n)), from the Chernoff bound, other than with negligible probability, the size of the
committee is > (1 − δ) log2(n), and thus will not end up with a smaller committee. By a similar argument, it is
easy to see that other than with negligible probability, honest majority is maintained in the committee. This gives
us a resultant two round semi-honest protocol in the plain model.

Lemma 2. Assuming the that the fraction of adversarial parties are bounded by
(

1
2 − ε

)
for some ε > 0, our

constructed protocol is a two round semi-honest protocol.

Remark 4. While our protocol is proven in the malicious setting, we instantiate the underlying protocols with their
corresponding semi-honest versions. The semi-honest versions also satisfy Lemma 1.

The security of the protocol follows from the composition theorem for semi-honest protocols [Gol04].

Malicious in the reusable correlated randomness model. We consider the setting of the reusable correlated ran-
domness model, where the trusted set up can select the public and private keys for a verifiable random function
(VRF) [MRV99]. We then follow the same strategy of selecting a committee as done in Algorand [GHM+17].
While they select committees by weight, we set the weights for each party to be identical (say 1).

Specifically, the trusted parties select public/private key pairs (pki, ski) for each party i, and a random seed.
Additionally, a threshold τ is picked based on the required size of the committee.
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Round 1. Each party receives the public key for all parties, and a public/private key pair (pki, ski) unique to it. It
then evaluates the VRF to determine if it is in the committee. It then computes the first round messages of
the Phase one protocol, and also broadcasts the messages indicating it is in the committee.

Round 2. Compute the second round messages of the Phase one protocol.

We allow the adversary to adaptively pick the parties it corrupts having seen only the public keys for all parties and
the private keys for the parties it has corrupted thus far.

As stated in [GHM+17], we have the following two properties. Given a random seed, VRF outputs a pseudo-
random value. Hence the parties are randomly picked into the committee. An adversary that does not know the
secret key ski for party i cannot guess if i was chosen at all (more precisely, the adversary cannot guess any better
than just by randomly guessing).

This lets us allow the adversary to adaptively corrupt parties based on the public keys, seed and the secret keys
of the parties it has corrupted thus far. This would give us a two round protocol, maliciously secure against an
adaptive adversary in the presence of trusted set up.

Lemma 3. Assuming the that the fraction of adversarial parties are bounded by
(

1
2 − ε

)
for some ε > 0, our

constructed protocol is a two round protocol in the trusted set up model secure against malicious adversaries.

We note that the best known constructions for VRFs are based on non-interactive witness indistinguishable
proofs (NIWIs) [Bit17, GHKW17], which are in turn known from the assumption of bilinear maps [GOS12].

Malicious in the plain model. In the malicious setting, we cannot let the parties locally sample coins. Instead,
we run Feige’s lightest bin protocol [Fei99] to determine the committee. The protocol gives a method of selecting
a committee of approximately k parties for a given parameter k. It is a single round protocol, where the parties
broadcast their choice of a random bin in the set

[
n
k

]
. This adds an additional round to the start of the protocol.

Round 1. Every party broadcasts a random bin in the set
[

n
log2(n)

]
.

Round 2. Each party knows whether they are in the committee based on the received broadcast, by picking the
(1− δ) · k lightest bins. In fact at the end of this round, we get a stronger property that every party is aware
of the role of every party in the protocol, i.e. whether a given party is in the committee.

Now each party can compute first round messages of the protocol from Phase one.

Round 3. Each party computes second round messages of the protocol from Phase one.

The following lemma from [Fei99] is relevant to us.

Lemma 4 ( [Fei99]). For k = log2 n, if the number of corrupted parties is βn, for any constant δ > 0, other than
with negligible probability in n, the size of the committee C will be elected such that:

bound on size: (1− β − δ) log2 n ≤ |C| ≤ log2 n;

honest parties in committee: # honest parties in the committee is ≥ ((1− β − δ) log2 n).

In our setting, β <
(

1
2 − ε

)
, which guarantees an honest majority in the committee. This gives us a resultant three

round maliciously secure protocol in the plain model.

Lemma 5. Assuming the that the fraction of adversarial parties are bounded by
(

1
2 − ε

)
for some ε > 0, our

constructed protocol is a three round protocol secure against malicious adversaries.

The security of the protocol follows from the sequential composition theorem [Gol04].

Remark 5. We note that both Fhelp and FmOT resemble the multiparty homomorphic OT (M-OT) functionality
described in [ACGJ18]. These functionalities can be seen as special cases of the M-OT functionality, but we’ve
described them separately for ease of notation.
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4 Impossibility Result

In this section we prove our impossibility result showing that our committee based approaches are inherent to the
results we achieve.

Theorem 4. There exists an n-party function F , such that there does not exist an n-party, r-round balanced scal-
able (possibly insecure) MPC protocol, where each party does asymptotically equal amount of work, computing a
circuit C of size s, where r is some constant, and the protocol can be represented by a circuit of size Õ(s) defined
over the basis {AND,OR,NOT}.

Proof. We make a novel use of the “MPC in the head” paradigm [IKOS09] to prove this theorem.
Let us assume for contradiction that for every n-party functionality F , there exists an r-round scalable MPC

protocol Π computing F , where r is a constant and each party can be represented as a circuit over the basis
{AND,OR,NOT} of size Õ(s)/n. Let Π.NMFi, j be the next-message function of party i (for each i ∈ [n]) in
round j (for each j ∈ [r]). Since r is a constant, the size of the circuit implementing the next-message function of
each party i ∈ [n] in each round j ∈ [r] is

|Π.NMFi,j | =
Õ(s)

rn
=
Õ(s)

n

Hence, depth of each next message function |Π.NMFi,j |d = Õ(s)/n.

Base Step. We now modify Π to Π1 as follows: for each i ∈ [n], j ∈ [r], we execute MPC protocol Π (let us
denote this execution by Π1,i,j) to implement Π.NMFi,j . The size of the circuit implementing the next-message
function of each party i′ ∈ [n] in each round j′ ∈ [r] of this sub-protocol Π1,i,j is

|Π1,i,j .NMFi′,j′ | =
Õ(|Π.NMFi,j |)

n
=
Õ(s)

n2

Hence, depth of each next message function in each sub-protocol |Π1,i,j .NMFi′,j′ |d = Õ(s)/n2.
The total number of rounds in the resulting protocol Π1 is r2 and in each round j′ ∈ [r2], the next message

function of each party i′ ∈ [n] is

Π1.NMFi′,j′ = Π1,1,j .NMFi′,j′ || . . . ||Π1,n,j .NMFi′,j′

where j = j′ mod r. Note that since this is a parallel composition of n circuits, each of depth Õ(s)/n2, the depth
of each next message function in the modified protocol Π1 = Õ(s)/n2.

Let p be a constant such that Õ(s)/np is some constant c. Now for each k ∈ {2, . . . , p − 1}, we perform the
following recursion step.

Recursion Step. We modify the rk-round protocol Πk−1 to obtain Πk as follows: for each i ∈ [n], j ∈ [rk], we
execute MPC protocol Π (let us denote this execution by Πk,i,j) to implement Πk−1.NMFi,j . Similar to before, the
depth of the circuit implementing the next-message function of each party i′ ∈ [n] in each round j′ ∈ [r] of this
sub-protocol Πk,i,j is

|Πk,i,j .NMFi′,j′ |d =
Õ(|Πk−1.NMFi,j |d)

n
=
Õ(s)

nk+1

The total number of rounds in the resulting protocol Π1 is r2 and in each round j′ ∈ [rk+1], the next message
function of each party i′ ∈ [n] is

Πk.NMFi′,j′ = Πk,1,j .NMFi′,j′ || . . . ||Πk,n,j .NMFi′,j′
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where j = j′ mod r. Again since this is a parallel composition of n circuits, each of depth Õ(s)/nk+1, the depth
of each next message function in the resulting modified protocol Π1 = Õ(s)/nk+1.

Protocol Πp−1. The depth of the next message function of each party in each round, in the final rp-round protocol
Πp−1 is

Õ(s)

np
= c

Thus the final modified protocol Πp−1 can be viewed as a circuit of depth (c× No. of rounds ) = c·rp = O(1).
Moreover, the size of this circuit is poly(s).

This means that every n-party functionality F representable by a polynomial-sized circuit, also admits a
constant-depth polynomial-sized circuit over the basis {AND,OR,NOT} and thus is in AC0. However note
that there are functions like parity and majority that are not in AC0. Therefore, this is a clear contradiction.
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Appendix A Preliminaries

A.1 Secure Multi-Party Computation

A secure multi-party computation protocol is a protocol executed by n parties P1, · · · , Pn for a n-party function-
ality F . We allow for parties to exchange messages simultaneously. In every round, every party is allowed to
broadcast messages to all parties. A protocol is said to have k rounds if the number of rounds in the protocol is
k. We require that at the end of the protocol, all the parties receive the output F(x1, . . . , xn), where xi is the ith

party’s input.

A.1.1 Adversarial Behavior

One of the primary goals in secure computation is to protect the honest parties against dishonest behavior from the
corrupted parties. This is usually modeled using a central adversarial entity, that controls the set of corrupted parties
and instructs them how to operate. That is, the adversary obtains the views of the corrupted parties, consisting of
their inputs, random tapes and incoming messages, and provides them with the messages that they are to send in
the execution of the protocol. In our protocols we only consider the case where the adversary can only control a
minority of the parties in the protocol. In our protocols we consider the following adversarial models:

1. Semi-Honest Adversaries: A semi-honest adversary always follows the instructions of the protocol. This is an
”honest but curious” adversarial model, where the adversary might try to learn extra information by analyzing
the transcript of the protocol later.

2. Fail-Stop Adversaries: A non-rushing fail-stop adversary instructs the corrupted parties to follow the protocol
as a semi-honest adversary, but it may also instruct a corrupted party to halt early. The decision to abort or not
may depend on its view.

We consider security with abort against semi-honest adversaries and guaranteed output delivery against fail-stop
adversaries, to elaborate on these security notions, we define the real and ideal process below.
IDEAL PROCESS: This process is defined with respect to a trusted party. A subset of parties can be corrupted by a
PPT ideal process adversary Sim. The process proceeds in the following steps:

1. Input Distribution: The environment distributes the inputs x1, . . . , xn to parties P1, . . . , Pn respectively.

2. Inputs to Trusted Party: The parties now send their inputs to the trusted party. The honest parties send the
same input, it received from the environment, to the trusted party.

3. Trusted party answers partyPi: The trusted party sends the ith output yi, whereF(x′1, . . . , x
′
n) = (y1, . . . , yn)

to Pi.

4. Output: If the honest party Pi is honest, then it outputs yi. The adversarial party Sim outputs its entire view.

We denote the adversary participating in the above protocol to be Sim. We define IdealSim,F (x1, . . . , xn) to be the
joint distribution defined over the views of the adversary and the outputs of the honest parties.

REAL PROCESS: Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}`i . Party Pi receives the input xi. All the
parties then execute the protocol Π. A subset of parties S is controlled by an adversary A. As in the ideal process,
they receive inputs from the environment.

We define RealA,F (x1, . . . , xn) to be the joint distribution over the outputs of the adversary and the honest
party.
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Security with Abort. We say that Π is a computationally secure against semi-honest adversaries if for every n.u.
PPT adversary A controlling a subset of parties S in the real process, there exists a PPT adversary Sim in the ideal
process such that:

IdealSim,F (x1, . . . , xn) ≈s,ε RealA,F (x1, . . . , xn)

We only consider the honest majority setting, where the adversary only controls a minority of the parties.

Client-Server Model. We describe a related notion of the client-server model (see [CDI05, DI05, DI06] for
details), each party can have one of two different roles: clients that hold inputs and get outputs, and servers who
may be involved in the computation but hold no inputs and get no outputs.

Note that every protocol in the client-server model can be stated as a protocol in the standard MPC model by
asking every party to play a single client and a single server. We consider a setting where a subset of the parties
will play the role of both a client and a server, while the remaining parties play only the role of a client.

A.2 Garbled Circuits

Definition 1 (Garbling Scheme). A garbling scheme for circuits is a tuple of PPT algorithms GC := (Gen,Garble,
Eval) such that

– ({labw,b}w∈inp,b∈{0,1}) ← Gen(1λ, inp): Garble takes the security parameter 1λ and length of input for the
circuit as input and outputs a set of input labels {labw,b}w∈inp,b∈{0,1}.

– C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1}): Garble takes as input a circuit C : {0, 1}inp → {0, 1}out and a set of
input labels {labw,b}w∈inp,b∈{0,1} and outputs the garbled circuit C̃.

– y ← Eval(C̃, labx): Eval takes as input the garbled circuit C̃, input labels labx corresponding to the input
x ∈ {0, 1}inp and outputs y ∈ {0, 1}out.

This garbling scheme satisfies the following properties:

1. Correctness: For any circuit C and input x ∈ {0, 1}inp,

Pr[C(x) = Eval(C̃, labx)] = 1

where ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp) and C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1}).

2. Security: There exists a PPT simulator SimGC such that, for any PPT adversary A, there exists a negligible
function µ(.) such that,

|Pr[ExpA,λGC(1λ, 0) = 1]− Pr[ExpA,λGC(1λ, 1) = 1]| ≤ µ(λ)

where the experiment ExpA,SimGC
(1λ, b) is defined as follows:

(a) The adversary A specifies the circuit C and an input x ∈ {0, 1}inp and gets C̃ and labx, which are
computed as follows:

– If b = 0:
– ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp)

– C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1})
– If b = 1:

– (C̃, labx)← SimGC(11λ , C, x)

(b) The adversary outputs a bit b′, which is the output of the experiment.
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A.3 Pseudorandom Generators

Definition 2 (Psedudorandom Generators). A deterministic function PRG : {0, 1}λ → {0, 1}p(λ) is called a
pseudorandom generator (PRG) if:

1. (efficiency): PRG can be computed in polynomial time

2. (expansion): p(λ) > λ

3.
{
x← {0, 1}λ : PRG(x)

}
≈c
{
Up(λ)

}
, where Up(λ) is the uniform distribution over p(λ) bits.

A.4 Message Authentication Code

We define unconditional message authentication code (MAC) scheme as presented in [IKP10].

Definition 3 (Unconditional Message Authentication Codes). An unconditional ε-secure message authentication
code (MAC) scheme consists of a pair of deterministic algorithms MAC(k,m) and Verify(k,m, tag) and corre-
sponding domains K,M. It satisfies:

Correctness. For any k ∈ K,m ∈M and tag← MAC(k,m), we have Verify(k,m, tag) = 1.

Integrity. For any m ∈M, for any (possibly unbounded) algorithm A,

Prk←$K
[
tag← MAC(k,m),A(m, tag) = ((m′, tag′) 6= (m, tag))|Verify(k,m, tag) = 1

]
≤ ε

Appendix B Detailed Complexity Calculation

We compute the complexity of the main components of the protocols prsented in the technical sections. Unless
otherwise specified, the below calculations correspond to the total communication complexity of the corresponding
protocol.

Let the total number of parties by n, and s be the size of the circuit implementing the function F the parties are
computing. Correspondingly, let W (n, s) be the total computational work of a (potentially large round) protocol
computing the function. We use the Õ notation where convenient to avoid notational clutter. We compute the
compiler of [ACGJ18, ABT18, ABT19] to have complexity O(nτλW (n, s)) where τ ≥ 2. For W (n, s) we
instantiate the above compilers with protocols that have the following total computational work (a) Õ(s + nd)
in the semi-honest setting [DIK10] where d is the depth of the circuit; and (b) Õ(s + nd + n2) in the malicious
setting [GIP15].

B.1 Protocol in the Client-Server Model

As discussed in the technical sections, the number of servers are denoted by n and the number of clients by n.

Complexity Computing Faug: This functionality is only computed by the servers. As a first step note that the
functionality Faug adds additional components to the circuit computing F , namely to collect secret shares and
check the MAC tags. For the semi-honest setting, there is no need to perform MAC checks, thus the resulting size
of the circuits are:

semi-honest: |cktFaug | = s+ nn

malicious: |cktFaug | = s+ n2nλ
Faug is computed by running special MPC Πaug with n servers resulting in the following complexities:

semi-honest: Õ(nτλW (n, s+ nn))

malicious: Õ(nτλW (n, s+ n2nλ))
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Complexity Computing Fhelp: This functionality is computed by a protocol that is run by all parties, and is for
the servers to get labels corresponding to the masked input of the client. In fact, there are n · n instances of the
protocol that are computed. Below, we compute the complexity of a single instance of the protocol. It should be
noted that this functionality can be represented as a polynomial of degree 2 over the inputs. The size of the circuit
corresponding to a single instance of Fhelp is determined by the size of the client’s inputs which again are different
in the two case:

semi-honest: |cktFhelp
| = n · λ

malicious: |cktFhelp
| = nλ+ n · (nλ2) = O(n2λ2)

The corresponding costs for all n · n instances are presented below.
semi-honest: For the semi-honest case, this can be computed by simply running the protocol present in [IK00]

for computing degree 2 polynomials, which results in a n2 multiplicative overhead giving a total of nn ·
(n2nλ) = O(n2nn2λ).

malicious: For the malicious setting, we use the compiler from [ACGJ18, ABT19] to give us a total of n · n ·
Õ(nτλW (n,n2λ2 + nλ)). Instantiating the underlying compiler with [DIK10, GIP15], for the circuit of
depth 214 we have W (n,n2λ2 +nλ) = Õ(n2λ2 +nλ+n2)15. Giving a total of n ·n · Õ(nτλÕ(n2λ2 +
nλ+ n2)) = Õ(nτn3nλ3 + nnnτ+2λ).

Since the main goal is to compute the complexity of the protocol in the plain model, there is no need to compute
the total complexity of this protocol but this can be obtained by simply adding the above computed complexities.

B.2 Protocol in the Plain Model

Let’s compute the total complexity of the protocol in the plain model. Recall that in this setting multiple first round
instances of each protocol are computed since parties are unaware of their roles in the protocol.

Communication complexity computingFmOT: The protocol computing this functionality is run by all the parties
for the servers to send across the labels corresponding to the PRG seed. As in the previous subsection, the circuit
sizes of the functionalities are presented below. But unlike the previous section, the circuit size remains the same
for both semi-honest and malicious: |cktFmOT

| = nλ2 + λ. There are n2 instance of ΠmOT that are run.
The corresponding complexities for each is now calculated identically as in the previous section and we provide

only the result below (skipping intermediate steps):
semi-honest: n2λ(nλ2 + λ) = O(n2nλ3)

malicious: nτλÕ(nλ2 + λ+ n2) = Õ(nτnλ3 + nτ+2λ)
Each client (resp. server) computes n (resp. n) first round ΠmOT messages for each instance of ΠmOT since
they don’t know their own role in the protocol. Therefore, the total number of first round messages computed
by all parties: n(nn2) + n(nn2) = n2n2 + n4. Correspondingly, the total cost for all ΠmOT messages is
(n2n2 + n4) · (cost of 1 instance of ΠmOT) which is calculated for the two cases below:

semi-honest: (n2n2 + n4) ·O(n2nλ3) = O(n2n3n2λ3 + n2n5λ3)

malicious: (n2n2 + n4) · Õ(nτnλ3 + nτ+2λ)

Communication complexity computing fc-s: In addition to the ΠmOT, the primary work is in computing the
client server protocol Πc-s. In this case too servers and clients compute multiple copies of the protocol messages.
But unlike the ΠmOT, the computation and communication is not symmetric across the roles of the parties, i.e.
clients are servers have different cost. The costs for clients and servers are computed below:

clients: This comes from the clients running only the helper functionality Πhelp in the client-server setting. Each
client computes n messages for each instance giving n · (total cost of client messages in Πhelp), which is
calculated for each case below

14Only compute a circuit of degree 2
15Ignoring logarithmic factors in n
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semi-honest: n ·O(n2nn2λ3) = O(n2nn3λ3)

malicious: n · Õ(nτ−1n3n2λ3 + nn2nτ+1λ)

servers: This comes from the servers running both the helper functionality Πhelp and Πfaug in the client-server set-
ting. Each server computes n messages for each instance giving n · (total cost of server messages in Πhelp +
total cost of server messages in Πfaug)

semi-honest: n · Õ(n3nnλ3 + nτWλ) = Õ(n4nnλ3 + nτ+1Wλ)

malicious: n · (Õ(nτ−1n4nλ3 + n2nnτ+1λ) + nτWλ)

Since the costs are dominated by the first round message, the total communication costs are provided below by
summing up the above costs, setting n ≈ n, n = k = log2(n) and finally using the Õ notation

semi-honest: The work is W (k, s+ kn),

O(n2n3n2λ3 + n2n5λ3) +O(n2nn3λ3) + Õ(n4nnλ3 + nτ+1Wλ)

= Õ(n2k5λ3 + n4k3λ3 + k2n4λ3 + k4n2λ3 + kτ+1W (k, s+ kn)λ)

= Õ(W (k, s+ kn)kτ+1λ+ n4k3λ3)

= Õ((W (k, s+ kn)kτ−2 + n4λ2)k3λ)

= Õ(W (log2(n), s+ n log2(n)) + n4)

For most known instantiations for W , this results in Õ(W (log2(n), s) + n4)

malicious: The work is W (k, s+ k2nλ),

(n2n2 + n4) · Õ(nτnλ3 + nτ+2λ) + n · Õ(nτ−1n3n2λ3 + nn2nτ+1λ)

+ n · (Õ(nτ−1n4nλ3 + n2nnτ+1λ) + nτWλ)

= Õ(nτ+4k2λ+ nτ+2k3λ3 + nτ+4kλ) + Õ(nτk5λ3 + nτ+2k3λ) + kτ+1λW (k, s+ k2nλ)

= Õ(W (k, s+ k2nλ)kτ+1λ+ nτ+4k2λ+ nτ+2k3λ3)

= Õ(W (log2(n), s+ n log4(n)λ) + nτ+4)

As before, for most known instantiations for W , this results in Õ(W (log2(n), s) + nτ+4).
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