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Abstract. The design and cryptanalysis are the both sides from which
we look at symmetric-key primitives. If a symmetric-key primitive is bro-
ken by a kind of cryptanalysis, it’s definitely insecure. If a designer claims
a symmetric-key primitive to be secure, one should demonstrate that the
primitive resists against all known attacks. Differential and linear crypt-
analysis are two of the most important kinds of cryptanalysis. To conduct
a successful differential (linear) cryptanalysis, a differential (linear) dis-
tinguisher with significant differential probability (linear correlation) is
needed.
We observe that, for some lightweight symmetric-key primitives, their
significant trails usually contain iterative trails. In this work, We propose
an automatic tool for searching iterative trails. We model the problem
of searching itrative trails as a problem of finding elementry ciucuits in a
graph. Based on the iterative trails found, we further propose a method
to estimate the probability (correlation) of a differential (linear hull).
We apply our methods to the 256-bit KNOT permutation, PRESENT,
GIFT-64 and RECTANGLE. Iterative trails are found and visualized. If
iterative trails are found, we show our method can efficiently find good
differentials and linear hulls. What’s more, the results imply that for the
primitives we test with bit permutations as their linear layers, the good
differentials and linear hulls are dominated by iterative trails.

Keywords: Differential Cryptanalysis · Linear Cryptanalysis · Auto-
matic Search Tools · Iterative Trails · Lightweight Cryptography

1 Introduction

Differential cryptanalysis (DC) [6, 7] and linear cryptanalysis (LC) [17, 18] are
two of the most powerful attacks against modern block ciphers. In 1990, Bi-
ham and Shamir introduced differential cryptanalysis and successfully attacked
the full-round DES[7]. In 1991, they improved the attack with 247 chosen plain-
texts[7]. In 1993, Matsui introduced linear cryptanalysis and succeeded in break-
ing DES with 247 known plaintexts[17]. In 1994, Matsui improved the data com-
plexity to 243[18]. Cryptanalysis also drives the design of ciphers in return. In
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2001, Rijmen and Daemon proposed the wide trail design strategy[12], providing
provable security against DC and LC for AES winner Rijndael[11]. With increas-
ing number of symmetric cryptographic primitives emerging, every well-designed
block cipher must resist against DC and LC in the first place. To conduct the
differential or linear attack, an adversary expects to find exploitable differential
or linear distinguishers. Usually, the probability of the best differential trail and
the correlation (or bias) of the best linear trail are respectively used as the in-
dices to the resistance against DC and LC. The two main kinds of the automatic
search tools for the best differential and linear trails are dedicated tree search
algorithms [19, 21, 1, 8] and mathematical-solver-based methods [20, 23, 24, 29].
In this article, we focus on the dedicated search algorithms.

In 1994, Matsui proposed a branch-and-bound depth-first tree search algo-
rithm for searching the best differential or linear trail of DES[19]. In 1995, Moriai
et al. introduced the concept of search pattern to reduce unnecessary search can-
didates, which improves the performance of searching the best trail of FEAL[21].
In 1997, Aoki et al. further improved the performance by using a pre-search
for impossible search patterns[1]. In 2014, Bao et al. proposed new strategies
including starting from the narrowest point, concretizing and grouping search
patterns and trailing in minimal changes order, achieving significant efficiency
improvement on NOEKEON and Spongent[8]. Dobraunig et al. [9] proposed a
stack-based depth-first search algorithm characterizing in guessing sbox by sbox
or bit by bit instead of round by round in Matsui’s algorithm. Hall-Andersen et
al. [14] modeled the trail search problem as a graph problem and managed to
obtain results on clustering effect for many ciphers.

Besides automatically searching the best differential or linear trail, iterative
trails are used to construct long-round significant trails in order to efficiently ob-
tain exploitable trails for cryptanalysis. Iterative trails refer to trails that have
the same input and output difference (or mask) and thus they can concatenate
to themselves. Biham and Shamir used iterative differential characteristics to
cryptanalyze DES with an arbitrary number of rounds[6, 7]. Knudsen examined
the 2 iterative characteristics found in [6, 7] and found additional 3 iterative
characteristics for DES[16]. Wang et al. found a 4-round iterative differential
characteristic for PRESENT by which a 14-round significant differential char-
acteristic is constructed[26].

Our Contribution

1. We propose a new automatic search tool for iterative trails applying to per-
mutations or block ciphers based on S-boxes. By restricting the number of
active S-boxes of a difference or mask value, we model 1-round differentials
or linear hulls as a graph. Using an algorithm finding all elementary circuits
[15], we find all iterative trails. The found iterative trails can be described
and visualized through a subgraph. Further using the subgraph, we propose
an algorithm to estimate the probabilities of differentials and correlations of
linear hulls.
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2. For PRESENT, GIFT-64 and RECTANGLE, the results of EDP and ELP
are not better but close to the results in [14]. However our method costs
much less time. What’s more, the results implies that the good differentials
and linear hulls are dominated by iterative trails for these ciphers.

3. The inner permutations of KNOT, which is an NIST LWC round 2 candidate,
are inheritors of RECTANGLE. For 256-bit KNOT permutation, we can find
good differentials up to 52 rounds and good linear hulls up to 51 rounds, the
number of rounds increasing by 4 rounds and 6 rounds respectively compared
to the result obtained by only considering single trails.

Organization The paper is organized as follows. Section 2 introduces concepts
and notations. Section 3 gives the method modelling the problem of searching for
iterative trails to a graph problem and the algorithm estimating the probability
(correlation) of differentials (linear hulls). Section 4 shows experimental results.
In Section 5, we conlude our work.

2 Preliminary

2.1 Differential Trails, Differentials and Truncated Differentials
Let β be an iterative Boolean transformation from Fn

2 to Fn
2 :

β = ρ(r) ◦ ρ(r−1) ◦ · · · ◦ ρ(2) ◦ ρ(1).

A diffrential trail Q over β consists of a sequence of r + 1 differences:

Q = (q(0), q(1), q(2), · · · , q(r−1), q(r)).

The probability of a differential step (q(i−1), q(i)) is defined as:

Probρ(i)

(q(i−1), q(i)) = Probx[ρ
(i)(x)⊕ ρ(i)(x⊕ q(i−1)) = q(i)]

= 2−n ×#{x ∈ Fn
2 |ρ(i)(x)⊕ ρ(i)(x⊕ q(i−1)) = q(i)}

Assuming the independence of the differential steps, the probability of Q is:

Probβ(Q) =
∏
i

Probρ(i)

(q(i−1), q(i)).

A differential of β is composed of r-round differential trails with the same initial
and final differences. The probability of a differential (a, b) is the sum of the
probabilities of all these differential trails:

Probβ(a, b) =
∑

q(0)=a,q(r)=b

Probβ(Q).

Let λ be a linear function corresponding to an n × l binary matrix M . The
probabilities of truncated differentials of λ ◦ β are given by:

Probλ◦β(a, b) =
∑

ω|b=Mω

Probλ◦β(a, ω).
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2.2 Linear Trails and Linear Hulls

A linear trail U over β consists of a sequence of r + 1 masks:

U = (u(0), u(1), u(2), · · · , u(r−1), u(r)).

The correlation of a linear step (u(i−1), u(i)) is defined as:

Corρ
(i)

(u(i−1), u(i)) = 2× (Probx[u
(i−1) · x = u(i) · ρ(i)(x)]− 1

2
)

= 2−n+1 ×#{x ∈ Fn
2 |u(i−1) · x = u(i) · ρ(i)(x)} − 1.

The correlation of U is:

Corβ(U) =
∏
i

Cor(u(i−1), u(i)).

A linear hull of β is composed of r-round linear trails with the same initial and
final masks. The correlation of a linear hull (a, b) is the sum of the correlations
of all these linear trails:

Corβ(a, b) =
∑

u(0)=a,u(r)=b

Cor(U).

A key-alternating cipher β′ consists of key-independent round transformations
ρ(i) and simple key addition by means of XOR denoted as σ[k]:

β′ = σ[k(r)] ◦ ρ(r) ◦ σ[k(r−1)] ◦ · · · ◦ σ[k(1)] ◦ ρ(1) ◦ σ[k(0)].

For a key-alternating cipher, The amplitude of the correlation of a linear trail is
independent of the round keys:

Corβ
′
(U) = (−1)u

(0)·k(0) ∏
i

(−1)u
(i)·k(i)

Corρ
(i)

(u(i−1), u(i)).

= (−1)U ·K · (−1)dU

∣∣∣∣∏
i

Corρ
(i)

(u(i−1), u(i))

∣∣∣∣
= (−1)dU⊕U ·K

∣∣∣Corβ
′
(U)

∣∣∣,
where K = (k(0), k(1), k(2), · · · , k(r−1), k(r)), dU = 1 if

∏
i

Corρ
(i)

(u(i−1), u(i)) < 0

and dU = 0 otherwise. The correlation of a linear hull (a, b) for a key-alternating
cipher is:

Corβ
′
(a, b) =

∑
u(0)=a,u(r)=b

(−1)dU⊕U ·K |Corβ
′
(U)|.

We denote the square of a correlation by correlation potential. The average
correlation potential between an input and an output mask is the sum of the
correlation potentials of all linear trails between the input and output masks:

ExpK [(Corβ
′
(a, b))2] =

∑
u(0)=a,u(r)=b

(Corβ
′
(U))2.
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2.3 EDP and ELP

The differential probabilities and linear correlations of a cipher EK both de-
pend on the specific key used K. In the case of differential cryptanalysis, EDP
(expected differential probability) is defined as:

EDP(a, b) = ExpK [ProbEK (a, b)].

It is often assumed that

ProbEK (a, b) ≈ EDP(a, b)

for most keys. In the case of linear cryptanalysis, ELP (expected linear potential)
is defined as:

ELP(a, b) = ExpK [(CorEK (a, b))2]

=
∑

u(0)=a,u(r)=b

(CorEK (U))2.

If the cipher is a key-alternating one, EK = σ[k(r)] ◦ ρ(r) ◦ σ[k(r−1)] ◦ · · · ◦
σ[k(1)] ◦ ρ(1) ◦ σ[k(0)].. Let E be ρ(r) ◦ · · · ◦ ρ(1) without key addition, then we
define:

ELP(a, b) =
( ∑

u(0)=a,u(r)=b

CorE(U)
)2

.

2.4 Concepts in Graph Theory

A directed graph G(V,E) consists of a nonempty and finite set of vertices V and
a set E of ordered pairs of distinct vertices called edges. We denote a directed
edge from a vertex u ∈ V to a vertex v ∈ V by u → v. For a weighted graph,
each edge u → v has a length, denoted as l(u → v). A path pu,v is a sequence of
vertices (u = v1, v2, · · · , vk−1, v = vk) such that vi → vi+1 ∈ E. The length of
the path is

l(pu,v) = k − 1,

the weight of the path is

w(pu,v) =

k−1∏
i=1

l(vi → vi+1).

The set of all paths pu,v is called the hull of (u, v). The hull is denoted as hu,v

and its weight is defined as:

w(hu,v) =
∑

w(pu,v),

i.e. the sum of the lengths of all the path contained in the hull. A circuit is a
path in which the first and last vertices are identical. A circuit is elementary
if no vertex but the first and last appears twice. Two elementary circuits are
distinct if one is not a cyclic permutation of the other.
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3 Searching for Iterative Trails and Estimation of
Differentials and Linear Hulls

3.1 Definition of Iterative Trails

Definition 1 (Iterative Trails). A differential or linear trail (v(0), · · · , v(r))
is iterative if v(0) = v(r).

Definition 2 (Elementry Iterative Trails). An iterative differential or linear
trail (v(0), · · · , v(r) = v(0)) is elementry if v(i) ̸= v(j),∀i, j ∈ [0, r − 1].

3.2 Modelling 1-round Differentials and Linear Hulls Using Graph

In a directed graph, each vertex can be associated with a difference or mask value.
Given the round transformation F of an iterative block cipher or permutation
E , a weighted directed graph GF = (VF , EF ) can be generated to describe the
1-round differentials or linear hulls of F . GF has 2n vertices representing the
elements of Fn

2 . GF contains all edges u → v for u, v ∈ Fn
2 of which weight is not

zero. In the case of differential cryptanalysis, the weight of an edge is defined as:

w(u → v) = ProbF (u, v).

In the case of linear cryptanalysis, if E is a block cipher, the weight of an edge
is defined as:

w(u → v) = (CorF (u, v))2;

else if E is a permutation, the weight is defined as:

w(u → v) = CorF (u, v).

3.3 Searching for Iterative Trails

According to the definition of circuits and iterative trails, the elementry iterative
trails of E can be viewed as elementry circuits in GF . Applying Johnson’s algo-
rithm in [15], we can list all the elementry circuits in GF . However, if VF = Fn

2 ,
the size of VF is 2n which is too large. In order to limit the size of VF , we set
a parameter max_asn which is defined as the maximum active S-boxes that a
vertex can has. That is, given an SPN round transformation F and the param-
eter max_asn, GF,max_asn = (VF,max_asn, EF,max_asn) is a subgraph of GF .
The set of vertices is given by

VF,max_asn = {u|Asn(u) ≤ max_asn and u ∈ VF }

where Asn(·) is a function returns the number of active S-boxes of its input.
The set EF,max_asn of weighted edges between any two vertices in VF,max_asn

is given according to the method in the last subsection.
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Applying Johnson’s algorithm to GF,max_asn, we can obtain a set of elemen-
try circuits

{puv|u = v and v(i) ̸= v(j),∀i, j ∈ [0, r − 1]},
in which each element represent an elementry iterative trails for F .

We extract every vertex that lies in at least one elementry circuit and denote
the set of vertices as V IT

F,max_asn. V IT
F,max_asn is a subset of VF,max_asn and it

forms a subgraph GIT
F,max_asn = (V IT

F,max_asn, E
IT
F,max_asn) of GF,max_asn.

3.4 Finding Differential Trails and Linear Trails

For any trail based on iterative trails, it can be treated as three parts: the
extension backward, the iterative trail and the extension forward. The 14-round
differential trail of PRESENT found in [26] is shown in Table 1. It is constructed
by concatenating a 4-round iterative trail to itself two times and extending both
forward and backward by 1 round. Thus the subtrail from round 0 to round 1 is
the extension backward part, the one from round 1 to round 13 is the iterative
trail part and the one from round 13 to round 14 is the extension forward part.
In the following, we try to compute the largest probability a trail of such type
can has based on GIT

F,max_asn.

Table 1. A 14-round differential trail of PRESENT

Round Diffference Prob.
0 x2 = 7, x14 = 7
1 x0 = 4, x3 = 4 2−4

2 x0 = 9, x8 = 9 2−4

3 x8 = 1, x10 = 1 2−4

4 x2 = 5, x14 = 5 2−4

5 x0 = 4, x3 = 4 2−6

6 x0 = 9, x8 = 9 2−4

7 x8 = 1, x10 = 1 2−4

8 x2 = 5, x14 = 5 2−4

9 x0 = 4, x3 = 4 2−6

10 x0 = 9, x8 = 9 2−4

11 x8 = 1, x10 = 1 2−4

12 x2 = 5, x14 = 5 2−4

13 x0 = 4, x3 = 4 2−6

14 x0 = 9, x8 = 9 2−4

Let BF
u,i be the largest probability (correlation) that an i-round differential

(linear) trail starting from u can has, u ∈ V IT
F,max_asn. Let BF−1

u,i be the largest
probability (correlation) that an i-round differential (linear) trail ending with
u can has, u ∈ V IT

F,max_asn. Given parameters rF and rF
−1 which represent

the number of rounds to be extended forward and backward, we can obtain
BF

u,i, i ∈ [0, rF ] and BF−1

u,j , j ∈ [0, rF
−1

] for each u ∈ V IT
F,max_asn using Matsui’s
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branch-and-bound depth-first search algorithm. Based on iterative trails, the
largest probability (correlation) Br that a single r-round trail can has is

Br = max
pu,v∈EIT

F,max_asn

r1+l(pu,v)+r2=r

0≤r1≤rF
−1

,0≤r2≤rF

BF−1

u,r1 × w(pu,v)×BF
v,r2 .

To obtain Br, instead of traversing all pu,v, we use dynamic programming. See
Algorithm 1.

3.5 Finding Differentials and Linear Hulls

Let wF
u,v,i be the probability (correlation) of the i-round differential (linear hull)

(u, v) where u ∈ V IT
F,max_asn. Let wF−1

u,v,i be the probability (correlation) of the
i-round differential (linear hull) (v, u) where u ∈ V IT

F,max_asn. Given parame-
ters rF , rF

−1 which represent the maximum number of rounds to be extended
forward and backward and parameters wF , wF−1 which heuristically bounds the
probability (correlation) of the extension subtrails. To compute wF

u,v,i and wF−1

u,v,i,
We collect as many extension subtrails as possible using Matsui’s branch-and-
bound depth-first algorithm. Note that during traversing extension subtrails, we
abandon any subtrail that contains any value in V IT

F,max_asn to avoid duplicate
trails in the next step.

In a graph, a hull hu,v is the set of all paths from u to v. Here, we define a
hull hu,v,r as the set of all paths pu,v with l(pu,v) = r. Then its weight is

w(hu,v,r) =
∑

l(pu,v)=r

w(pu,v).

w(hu,v,r) can be computed using dynamic programming.
Based on iterative trails, the largest probability (correlation) BCr that a

r-round differential (linear hull) can has is

BCr = max
x,y∈Fn

2

u,v∈V IT
F,max_asn

r1+r2+r3=r

0≤r1≤rF
−1

,0≤r3≤rF

wF−1

x,u,r1 × w(hu,v,r2)× wF
v,y,r3 .

See Algorithm 2.

4 Experiments

4.1 Experiments on Searching for Iterative Trails

We apply our method in Section 3.3 to PRESENT, GIFT-64, RECTANGLE,
256-bit KNOT permutation and ASCON permutation. The results on iterative
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Algorithm 1 Compute Br

Require: r, parameters rF ≤ r, rF
−1

≤ r, the round function F , GIT
F,max_asn

Ensure: Br

1: procedure ComputeB
2: /*Phase 1: Compute BF and BF−1*/
3: for each u ∈ V IT

F,max_asn do
4: BF

u,0 ← 1, BF−1

u,0 ← 1
5: end for
6: for each u ∈ V IT

F,max_asn and i← 1 : rF do
7: BW ← BF

u,i−1 ×max
a,b

ProbF (a, b)

8: while not Search(u, i, 0, F,BW ) do
9: BW ← BW × 2−1

10: end while
11: Bf

u,i ← BW
12: end for
13: for each u ∈ V IT

F,max_asn and i← 1 : rF
−1 do

14: BW ← BF−1

u,i−1 ×max
a,b

ProbF−1

(a, b)

15: while not Search(u, i, 0, F−1, BW ) do
16: BW ← BW × 2−1

17: end while
18: BF−1

u,i ← BW
19: end for
20: /*Phase 2: Computation using dynamic programming*/
21: for each u ∈ V IT

F,max_asn and i ∈ [0, rF ] do
22: BF

u,i ← Bf
u,i

23: end for
24: for each u ∈ V IT

F,max_asn and i← (rF + 1) : r do
25: BF

u,i ← max
v∈V IT

F,max_asn

w(u→ v)×BF
v,i−1

26: end for
27: /*Phase 3: Compute Br*/
28: Br ← max

i+j=r

u∈V IT
F,max_asn

BF−1

u,i ×BF
u,j

29: end procedure
30: function Search(u, j, w, rf,BW )
31: found← false
32: for each v such that Probrf (u, v) ≥ BW ÷ w ÷ j ×max

a,b
Probrf (a, b) do

33: w′ ← w × Probrf (u, v)
34: if j = 0 then
35: if w′ >= BW then
36: BW ← w′, found← true
37: end if
38: else
39: found← found or Search(v, j − 1, w′, rf, BW )
40: end if
41: end for
42: return found
43: end function
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Algorithm 2 Compute BCr

Require: r, parameters rF ≤ r, rF
−1

≤ r, parameters wbF , wbF
−1 , the round function

F , GIT
F,max_asn

Ensure: BCr

1: procedure ComputeBC
2: /*Phase 1: Compute wF and wF−1*/
3: for each u ∈ V IT

F,max_asn do
4: wF

u,u,0 ← 1, wb
u,u,0 ← 1

5: end for
6: for each u ∈ V IT

F,max_asn and i← 1 : rF do
7: Collect(u, u, rF , 1, F )
8: end for
9: for each u ∈ V IT

F,max_asn and i← 1 : rF
−1 do

10: Collect(u, u, rF−1

, 1, F−1)
11: end for
12: /*Phase 1: Compute w(hu,v,i) using dynamic programming*/
13: for each u, v ∈ V IT

F,max_asn do
14: w(hu,v,0)← 1
15: end for
16: for i← 1 : r do
17: for each u, v ∈ V IT

F,max_asn do
18: w(hu,v,i)←

∑
x

w(hu,x,i−1)× w(x→ v)

19: end for
20: end for
21: /*Phase 1: Compute BCr*/
22: for each possible first subscript index x of wF−1 do
23: for each possible second subscript index y of wF do
24: BCy,r ←

∑
r1+r2+r3=r

u,v∈V IT
F,max_asn

wF−1

x,u,r1 × w(hu,v,r2)× wF
v,y,r3

25: if BCy,r > BCr then
26: BCr ← BCy,r

27: end if
28: end for
29: end for
30: end procedure
31: procedure Collect(s, x, j, w, rf)
32: for each y such that Probrf (x, y) ≥ wbrf ÷ w ÷ (j ×max

a,b
Probrf (a, b)) do

33: w′ ← w + Probrf (x, y)
34: if wrf

s,y,rf−j exists then
35: wrf

s,y,rrf−j ← wrf

s,y,rr43−j
× w′

36: else
37: wrf

s,y,rrf−j ← w′

38: end if
39: if j ̸= 0 then
40: Collect(s, y, j − 1, w′, rf)
41: end if
42: end for
43: end procedure
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Table 2. Results on iterative trails

cryptanalysis cipher (F ) rs. max_asn |VF,max_asn| ≤ n |V IT
F,max_asn| #ecs. best w/l. time

differential (Prob.)

KNOT-perm-256 yes 2 8214 - 5 6 5.3 0.3s
PRESENT no 2 17256 10 225 463 4.5 2.1s

GIFT-64 no 2 19344 - 32 66 5 1.8s
RECTANGLE yes 2 1450 - 6 3 5 0.1s
ASCON-perm yes 3 3939 - 0 0 - 2.7h

linear (Cor.)

KNOT-perm-256 yes 2 8229 - 8 10 3 0.4s
PRESENT no 1 208 - 27 114223 2 3.6s

GIFT-64 no 2 21696 - 16 4 3 2.3s
RECTANGLE yes 2 1465 - 10 16 3 0.1s
ASCON-perm yes 3 336 - 0 0 - 4.0h

rs.: whether the cipher has the property of rotational symmetry
≤ n: the length of any elementary circuit is restricted to no more than n
#ecs.: number of elementary circuits
best w/l.: the smallest weight/length that an elementary circuit can has

trails are shown in Table 2. The visualizations of GIT
F,max_asn are shown in Ap-

pendix A.
We consider the smallest weight per length an elementary iterative trail can

has (best w/l. in Table 2) as an index describing the growth of iterative differen-
tial and linear propagations. We can see that PRESENT has both the weakest
growth of iterative differential and linear propagations. The weakest differential
iterative trail is exactly the one found by Wang et al.[26].

4.2 Experiments on Finding Differential Trails and Linear Trails

We apply our method in Section 3.4 and 3.5 to PRESENT, GIFT-64, RECT-
ANGLE and 256-bit KNOT permutation. The algorithm is run on an Intel Core
i7-6700 CPU at 3.40GHz with 16GB RAM. The results for differential crypt-
analysis are shown in Table 3. The results for linear cryptanalysis are shown
in Table 4. Results for PRESENT, RECTANGLE and GIFT-64 are not better
than but close to results in [14], which implies that iterative trails dominate the
good differentials and linear hulls of these ciphers. However our method costs
much less time. The 256-bit KNOT permutation is used in NIST LWC round
2 candidate KNOT [28], which is a inheritor of RECTANGLE having a larger
number of rounds and a larger block size. For the 256-bit KNOT permutation,
we are able to find good differentials up to 52 rounds and good linear hulls up
to 51 rounds.

Table 3. Results for differential cryptanalysis

cipher rounds rF , rF−1 Prob Time rF , wF , rF
−1

, wF−1 EDP Time
PRESENT 14 3,3 62 <1s 3,13,3,13 54.9879 425.15s
PRESENT 17 - - - 3,13,3,13 62.6897 498.513s

RECTANGLE 13 6,6 56 1.2s 6,25,6,25 55.6601 12007.5s
GIFT-64 13 3,3 62 <1s 3,13,3,13 60.415 32.365s

KNOT-perm-256 48 3,3 252 <1s 3,13,3,13 232.591 19.536s
KNOT-perm-256 52 3,3 274 <1s 3,13,3,13 251.831 20.407s
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Table 4. Results for linear cryptanalysis

cipher rounds rF , rF−1 Cor2 Time rF , wF , rF
−1

, wF−1 ELP Time
PRESENT 17 3,3 64 <1s 3,8,3,8 45.6582 <1s
PRESENT 23 3,3 92 <1s 3,8,3,8 61.1404 <1s
PRESENT 24 3,3 96 <1s 3,8,3,8 63.7519 <1s

RECTANGLE 13 5,5 62 <1s 5,20,5,20 59.6377 337.195s
GIFT-64 12 3,3 64 <1s 3,13,3,13 64 <1s

KNOT-perm-256 45 3,3 256 <1s 3,7,3,7 222 100.892s
KNOT-perm-256 51 3,3 292 <1s 3,7,3,7 252 111.763s

5 Conclusion

In this work, we propose a new automatic tool to search for iterative trails
for symmetric-key primitives based on S-boxes. We visualize the graph repre-
sentation of iterative trails hoping to provide additional insignts. Based on the
iterative trails, we efficiently estimate the probabilities of differentials and cor-
relations of linear hulls. The results show that for ciphers with bit permutations
we conduct experiments on, the good differentials and linear hulls are dominated
by iterative trails.

We have conducted an initial study on ASCON permutation. For its com-
paratively strong diffusion layer, iterative trails are difficult to be found.

A question raised for designers is that, whether a cipher with bit permutation
as its linear layer can have no iterative trails.

In the extension phase of Algorithm 2, the bounds wF , wF−1 set in the col-
lection procedure is heuristic. One can loose the bounds to obtain more accurate
results but costing more time and memory. One can also heuristically alter the
way how the bounds restrict trails. What’s more, Our methods are also expected
to be appliable for lightweight Feistel ciphers by regarding two Feistel rounds as
one round. We leave these for future work.
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A Visualization of GIT
F,max_asn

Fig. 1. the differential iterative structure of KNOT-permutation-256
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Fig. 2. the linear iterative structure of KNOT-permutation-256

Fig. 3. the differential iterative structure of RECTANGLE
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Fig. 4. the linear iterative structure of RECTANGLE
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Fig. 5. the differential iterative structure of GIFT
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Fig. 6. the linear iterative structure of GIFT


