
Privacy-preserving greater-than integer
comparison without binary decomposition

in the malicious model?

Sigurd Eskeland

Norwegian Computing Center
Postboks 114 Blindern

0314 Oslo, Norway
sigurd.eskeland@nr.no

Abstract. Common for the overwhelming majority of privacy-preserving
greater-than integer comparison schemes is that cryptographic compu-
tations are conducted in a bitwise manner. To ensure secrecy, each bit
must be encoded in such a way that nothing is revealed to the opposite
party. The most noted disadvantage is that the computational and com-
munication cost of bitwise encoding is at best linear to the number of
bits. Also, many proposed schemes have complex designs that may be
difficult to implement.

Carlton et al. [2] proposed in 2018 an interesting scheme that avoids
bitwise decomposition and works on whole integers. A variant was pro-
posed by Bourse et al. [1] in 2019. Despite that the stated adversarial
model of these schemes is honest-but-curious users, we show that they
are vulnerable to malicious users. Inspired by the two mentioned papers,
we propose a novel comparison scheme, which is resistant to malicious
users.

1 Introduction

The idea of the Millionaires’ Problem [6] is to facilitate two millionaires, who do
not trust each other and who do not want to reveal their worth to each other,
to find out who is the richest. Although such tasks could trivially be solved by a
trusted third party who decides which party has the greatest value, the goal is
to replace the trusted party with a privacy-preserving protocol. In other words,
it is the ability to conduct privacy-preserving greater-than integer comparisons
(PPGTC) without a trusted third party.

PPGTC may be used as a subprotocol for conducting privacy-preserving
computations on encrypted data sets. Practical applications are auctions with

? This is a preprint of a paper presented at SECRYPT 2020 (DOI:
10.5220/0009822403400348).

private biddings, voting systems, privacy-preserving database retrieval and data-
mining, privacy-preserving statistical analysis, genetic matching, face recogni-
tion, privacy-preserving set intersection computation, etc.

Privacy-preserving integer comparison is an active research field that is based
on techniques such as homomorphic encryption, garbled circuits, oblivious trans-
fer, and secret sharing. Authors generally tend to claim some improvement over
some other scheme in particular with regard to efficiency, but the actual effi-
ciency may not be readily comparable (for example, due to methods are very
different) nor available in many papers. Common for the overwhelming majority
of privacy-preserving greater-than integer comparison schemes is that crypto-
graphic computations are conducted in a bitwise manner. To ensure secrecy,
each bit of the private inputs must be encoded in such a way that nothing is
revealed to the opposite party. Bitwise cryptographic processing results in high
computational and communication costs that is proportional to data input sizes.
Also, many proposed schemes have complex designs that may be difficult to im-
plement.

Carlton et al. [2] proposed in 2018 a PPGTC scheme that works on whole
integers and that does not require bitwise coding or encryption. Inspired by [4,
5], it makes use of a special RSA modulus. Blinding is conducted to protect
the input values. At the end of the protocol, a plaintext equality test (PET)
subprotocol determines the outcome of the comparison, which imposes an addi-
tional performance cost. Bourse et al. [1] proposed a slightly modified two-pass
PPGTC protocol that avoids the PET subprotocol, and whose function is simply
replaced by a control value that is sent to party A in the last pass. By means of
this value, party A determines the outcome of the comparison.

A disadvantage of the Bourse scheme compared to the Carlton scheme is a
significantly smaller upper bound of private inputs and a composite modulus,
whose size exceeds those recommended for RSA, even at small input bounds.

The stated adversarial model of the Carlton and Bourse schemes is honest-
but-curious users, i.e., participants that do not deviate from protocol specifi-
cation concerning how messages are computed. The overall motivation for us-
ing privacy-preserving protocols has to do with lack of trust, where privacy-
preserving methods allow individuals who do not trust each other to conduct
computations without disclosing their private inputs. The assumption of honest-
but-curious users is therefore somewhat a contradiction to the assumption that
users do not trust each other.

Contribution. In this paper, we show that Carlton and Bourse schemes are in-
secure with regard to malicious users, i.e., participants whose message computa-
tions deviate from the protocol specification. In particular, the attacks presented
in this paper are undetectable, which underlines that the honest-but-curious ad-
versarial assumption is arguable insufficient. We propose a novel PPGTC scheme
that seeks to mitigate the mentioned schemes’ insecurities w.r.t. malicious users.
It has only two rounds, and the upper plaintext bounds are favorably comparable
with the Carlton scheme.

Outline. Section 2 provides necessary preliminaries and presents the basic
idea of the comparison mechanisms used by the mentioned Carlton and Bourse
schemes, and the one proposed in this paper. Section 3 outlines the Bourse
scheme. Attacks on this scheme is presented in Section 4. The Carlton scheme
and an attack are presented in Section 5. In Section 6 our novel PPGTC scheme
is presented.

2 Preliminaries

The main feature of the PPGTC schemes proposed by Carlton et al. [2] and
Bourse et al. [1] is the ability to compare entire integers, as opposed to bitwise
operation on encrypted bits. This is achieved by special cyclic subgroups realized
by making use of the following parameters:

– a and d, where 0 < a ≤ d and d/a denotes the upper bound ofmA,mB ≤ d/a.
Note that a does not exist in the Carlton scheme, where solely d denotes the
upper bound of private inputs.

– Let n = pq, where p and q are primes and

p = pd0pspt + 1 and q = pd0qsqt + 1 if p0 = 2
p = 2pd0pspt + 1 and q = 2pd0qsqt + 1 if p0 is a small odd prime

and ps, qs, pt, qt are distinct primes. See Section 2.1 for details on how to set
the sizes of these primes.

– b̄ denotes an upper public bound of psqs.
– g is a generator of a cyclic subgroup G ⊂ Z∗n of order pd0 in both Z∗p and Z∗q .
– h is a generator of a cyclic subgroup H ⊂ Z∗n of order psqs, and of order ps

in Z∗p and qs in Z∗q .
– c is a long-term private key that is used by party A, where

c = psqs

(
1

psqs
mod pd0

)
(1)

The public key is {n, a, d, p0, g, h, b̄}, and the private key of party A is {p, q, c}.
The core idea behind the Carlton scheme [2] is that the element

gp
d+mA−mB
0 mod n (2)

where 0 ≤ mA,mB ≤ d, can be used to compare two integers mA and mB , due
to whether multiples of the exponential factors p0 exceed pd0 or not, so that

gp
d+mA−mB
0

{
6= 1 if mA < mB

= 1 if mA ≥ mB

This construction is almost identical in the Bourse scheme [1], which has an
additional public parameter a, where integer comparison is conducted according
to

gp
d+a·(mA−mB)

0 mod n (3)

where 0 ≤ mA,mB ≤ d/a.

2.1 Prime sizes

The upper plaintext bound m̂ and the chosen security level λ determine prime
sizes. Primes ps and qs have to be greater than 256 bits in order to thwart
Coron’s attack [3] that factors the RSA modulus.

Let ` denote the size of p and q; s denote the size of ps and qs, which should be
s ≤ 256; and t denote the size of pt and qt. The upper plaintext bound sets d = m̂
in the Carlton scheme and d = a · m̂ in the Bourse scheme. If log2(pd0) + s > `
then let t = 0 and pt = qt = 1. Otherwise, let t = ` − log2(pd0) − s. The latter
applies only for the cases where m̂ is small, and pt and qt are needed to increase
the sizes of p and q so that the security level of n agrees with λ.

3 The Bourse scheme

The Bourse scheme [1] is summarized in Figure 1. Parties A and B individually
generate the ephemeral random secret integers (r1, r2, u, v4), where (u, v) are
not divisible by p0. In the first pass, party A generates the random r1 and blinds
mA by computing

C = gp
a·mA
0 hr1 mod n

Subsequently in the second pass, party B randomly generates (r2, u, v), and
blinds mB in the responding computation:

D = Cu·p
d−a·mB
0 gvhr2 mod n

and the control value D′ = f(gv), where f is a secure hash function. Finally,
party A computes

C ′ = Dc = (Cu·p
d−a·mB
0 gvhr2)c

=
(
(gp

a·mA
0 hr1)u·p

d−a·mB
0 gvhr2

)c
= (gp

a·mA
0)u·p

d−a·mB
0 gv

= gu·p
d+a·(mA−mB)

0 gv

(4)

Due to the private key c, each factor of base h is eliminated, so that C ′ ∈ G.

3.1 Security assumptions

The security of the first round of both the Carlton and Bourse schemes relies on
the small RSA subgroup decision assumption. The following definition is from
the Bourse paper [1]:

Definition 1 (The small RSA subgroup decision assumption) This assump-
tion holds if given an RSA quintuple (u, p0, d, n, g)1, the distributions x and

xp
d
0ptqt are computationally indistinguishable, where x = r2 mod n is a uniformly

random quadratic residue.

1 The generator h is not included in the original security assumption definition, al-
though it is part of the public key.

Party A Party B

Private key c

r1 ∈ {1 . . . b̄} r2 ∈ {1 . . . b̄}
u ∈ {1 . . . pa0}, u - p0
v ∈ {1 . . . pa0}, v - p0

C = gp
a·mA
0 hr1

C−−−−−−−−−−−−−−−−−−−→

D = Cu·pd−a·mB
0 gv hr2

D′ = f(gv)
D,D′←−−−−−−−−−−−−−−−−−−−

C′ = Dc

If D′ = f(C′)
Then mA ≥ mB

Else mA < mB .

Fig. 1. The Bourse et al. comparison scheme

This assumption states that it is hard to distinguish elements in H ⊂ Z∗n of
order psqs (generated by h) from a random quadratic residue in Z∗n. In other
words, it holds if it is not possible to determine if an integer belongs to H or not.
It applies solely to C in the first round as a measure for whether the subgroup
order of the masking factor hr1 ∈ H achieves necessary security.

The security of the second round relies on statistically indistinguishable uni-
form distributions in a subgroup of order pa0 , which is considerably smaller than
that of H. In the second round, party B generates three secret random secret
integers (r2, u, v) and sends (D,D′) to party A, who computes C ′. Given C ′,

party A can guess either gu·p
d+a·(mA−mB)

0 or gv, where the correctness of each
guess is verified w.r.t. D′.

3.2 Security parameter considerations

The integers (p0, a) determine the security level λ of D in Round 2 and d:

pa0 = 2λ where a = λ
log 2

log p0
(5)

and d = a·m̂. In agreement with Eq. 3, the input values (mA,mB) define sub-
groups G′ ⊆ G of variable order if mA < mB .

|G′| = p
d−a·(mA−mB)
0 ≥ 2λ

The smallest subgroup G′ is produced by mA−mB = −1, where p
d+a·(mA−mB)
0 =

pd−a0 . For this case, the effective range of the random integer u is 0 < u < pa0 ,

cf. Eq. 5. Assuming that pa0 is big enough, the Bourse scheme is secure w.r.t.
honest-but-curious users. Section 4 discusses how a malicious user can reduce
this range to make it searchable.

The private input upper bound m̂ is confined by the RSA modulus size.
Table 1 shows integer sizes as a function of λ and m̂, where ` denotes the size
of p and q. It assumes that p0 = 2 and s = 256 bits, cf. Section 2.1. NIST
recommends that the RSA modulus should be 2048 bits for a λ = 112 bits
security level, and 3072 bits for λ = 128 bits security.2 The moduli lengths
given in the table exceed the RSA recommendations, meaning that (pt, qt) are
not needed. The foremost downside is the limitation of low upper bounds on

Table 1. Parameter sizes for the Bourse scheme, where p0 = 2.

λ m̂ a d ` |n|

112 10 112 1120 1376 2752
112 50 112 5600 5856 11712
112 100 112 11200 11456 22912
128 10 128 1280 1536 3072
128 50 128 6400 6656 13312
128 100 128 12800 13056 26112

private inputs, which, as in the example, causes a very large composite n that
significantly exceeds that which is recommended for RSA.

4 Malicious user attacks

The Bourse scheme assume honest-but-curious users that do not deviate from
the protocol. A user that is motivated to disclose the private input of another
user may be inclined to deviate from the protocol for this purpose. In this section
we show that the Bourse scheme is insecure with regard to dishonest users, in
particular party A. The consequence is that party A may obtain the private
input of party B, who will not know that a privacy breach has occurred. Note
that the following attacks do not apply to the Carlton scheme, presented in
Section 5, due to using a PET subprotocol.

4.1 Fixed value attack

This attack pertains to the initial computation conducted by party A. In Round 1,

party A selects k = a− 1, and sends C = gp
k
0hr1 to party B. In Round 2, party

B computes and returns (D,D′) to party A, who lastly computes

C ′ = gu·p
k
0 ·p

d−a·mB
0 gv = gu·p

a−1+d−a·mB
0 gv

2 http://www.keylength.com

Consider the following cases:

Case 1. If mB = 0 then C ′ = gu·p
a−1+d
0 gv = gv.

Case 2. If mB = 1 then C ′ = gu·p
a−1+d−a
0 gv = gu

′·pd−1
0 gv, where 0 < u′ < p0 is

trivial to find.
Case 3. If mB > 1 then

C ′ = gu·p
a−1+d−a·mB
0 gv = gu

′·pd−a·(mB−1)−1

0 gv

where the range 0 < u′ < p
a·(mB−1)+1
0 is too large, thus mB is protected.

The two first cases are trivial for party A to identify by checking w.r.t. the hash
value D′. For the third case, assuming that pa0 is big enough, it would not be
possible for party A to recover gv and then mB .

4.2 Selected value attack

The previous attack can be generalized for any preselected value of mB , meaning
if party A computes C w.r.t. a specific value m′B , it will give him or her assurance
whether this is the value submitted by party B in Round 2.

In Round 1, party A selects k = am′B − 1, and sends C = gp
k
0hr1 to party B.

Lastly, party A obtains

C ′ ≡ (gp
k
0)u·p

d−a·mB
0 gv ≡ gu

′·(pa·m
′
B−1+d−a·mB

0)gv ≡ gu
′·pd−a·(mB−m′B)−1

0 gv

Consider the following cases:

Case 1. If m′B > mB then C ′ = gv.

Case 2. If mB = m′B then C ′ = gu·p
d−1
0 gv = gu

′·pd−1
0 gv, where 0 < u′ < p0 is

trivial to find.

Case 3. If m′B < mB then C ′ = gu
′p

d−a·(mB−m′B)−1

0 gv, where the range 0 <

u′ < p
a·(mB−m′B)+1
0 is too large, thus mB is protected.

As was for the fixed value attack, the two first cases are trivial for party A to
identify. For the third case, assuming that pa0 is big enough, it would not be
possible for party A to recover mB .

4.3 Public keys with tiny hidden subgroups

A common assumption in public key cryptography is that users generate their
own key pairs and then exchange public keys. In the Bourse scheme, Party A is
the holder of the private key, and would provide the key pair. A malicious party A
could generate a spurious public key (n, g, h, p0, a, d) with a significantly smaller
subgroup than specified in order to obtain private inputs by small brute-force
searches.

The following describes how public keys with tiny subgroups can be computed
for the Bourse scheme:

– (p0, a, d) are selected in accordance with Section 2.
– Select a prime p′ that is close to d, i.e., p′ & d, so that the small prime p0 is

a generator (i.e., primitive root) to p′.
– Let n = pq be the product of two primes, where p = 2p′pspt + 1 and q =

2p′qsqt + 1, and (ps, pt, qs, qt) are generated in accordance with Section 2.
– g and h are generated in accordance with Section 2.

g will now generate a tiny subgroup G′ confined by p′, so that |G′| = p′−1. Due
to the following modular equivalence, it holds that

C ′ = gu·p
d+a·(mA−mB)

0 gv ≡ gu
′·pd+a·(mA−mB)

0 gv
′

(mod n)

where 0 < u′, v′ < p′, cf. Eq. 4. Accordingly, D′ = f(gv) = f(gv
′
).

Following the Bourse protocol, the malicious party A interacts with the hon-
est party B. In Round 1, party A sends C = ghr1 to party B. Party A can then
easily find the low-entropy v′ w.r.t. checking D′ = f(gv

′
). Knowing v′, party A

finds 0 ≤ x ≤ p′ w.r.t.
D′ = gxgv

′

where x = u′ · pd−a·mB
0 .

This attack is prevented by validating g and n by checking that gp
d
0 ≡ 1

(mod n) holds.

5 The Carlton scheme

The Carlton scheme is shown in Fig. 2. The public key (n, p0, d, g, h) and private
key c is generated in agreement with Section 2. It uses a plaintext equality test
in the end. Parties A and B individually generate the ephemeral random secret
integers (r1, r2, s), where s is not divisible by p0. Note that in their paper [2], p0
is denoted as b, and c as x.

The correctness of C ′ is given by

C ′ = Dc =
(
Cp

d−mB
0 gshr2

)c
=
(
(gp

mA
0 hr1)p

d−mB
0 gshr2

)c
= (gp

mA
0)p

d−mB
0 gs = gp

d+mA−mB
0 gs

where similar to Eq. 4, the factors of base h are eliminated due to the exponent c.
The security of Round 1 is based on the small RSA subgroup decision assumption,
cf. Definition 1. The security of Round 2 is based on the secrecy of gs. Note that
the Carlton scheme is more favorable than the Bourse scheme w.r.t. considerably
larger upper bounds on private inputs, as seen in Table 2.

5.1 Known subgroup attacks

Similar to the Bourse scheme, the Carlton scheme assumes honest-but-curious
users. From the perspective of malicious users, the attacks presented in Section 4

Party A Party B

Private key c

r1 ∈ {1 . . . b̄} r2 ∈ {1 . . . b̄}
s ∈ {1 . . . pd0 − 1}, s - p0

C = gp
mA
0 hr1

C−−−−−−−−−−−−−−−−−−−→

D = Cp
d−mB
0 gs hr2

D←−−−−−−−−−−−−−−−−−−−
gw = Dc

w = logg(gw)
PET(w, s)←−−−−−−−−−−−−−−−−−−→

If w = s
Then mA ≥ mB

Else mA < mB .

Fig. 2. The Carlton et al. comparison scheme

Table 2. Parameter sizes for the Carlton scheme and our scheme, p0 = 2.

λ m̂ d ` |n|

112 100 100 1024 2048
112 1000 1000 1256 2512
112 5000 5000 5256 10512
128 100 100 1536 3072
128 1000 1000 1536 3072
128 5000 5000 5256 10512

do not apply to the Carlton scheme due to the way that the final integer com-
parison is conducted. But as we show next, the Carlton scheme is nevertheless
not secure with regard to malicious users.

The computation of the integer D in the Carlton scheme is similar to that of

the Bourse scheme, except for that in the Bourse scheme the factor Cu·p
d−a·mB
0

of D is “randomized” by u over a larger subgroup, whose minimum size is de-
termined by pa0 . The lack of this feature in the Carlton scheme can be exploited
by party A.

Since party A is the holder of the private key, we assume that party A knows
the composition of the RSA modulus. Knowing subgroup orders does not make
this party malicious as long as he acts in agreement to the protocol. There may
be several variant attacks, where a party knows subgroup orders. One variant is
as follows:

Let pt, qt > 1, and select a generator k that produces a high order group
greater than G, H, of order of for example, psqspsp

d
0, in which k = αqt and α is

a generator to Zp and Zq.
Party A sends to C = kr to party B, where r is a random number — thereby

deviating from how the protocol specifies this computation. Party B has no
way to determine this, and computes D according to protocol. Finally, Party A
computes

Dpd0 ·ps·qs =
(
(αqt·r)p

d−mB
0 gshr2

)pd0 ·ps·qs = kr·p
2·d−mB
0 ·ps·qs

eliminating the factors of base g and h. Knowing beforehand kr·ps·qs , party A
then easily recovers mB .

6 A novel privacy-preserving greater-than comparison
scheme

In this section we present a novel privacy-preserving greater-than integer com-
parison protocol. Inspired by the two previous schemes [2, 1], our scheme uses a
cyclic subgroup of a power order pd0. Similar to [2], two integers m1 and m2 are
compared in a privacy-preserving manner in agreement with Eq. 2, which avoids
the restricted bounds on private inputs of the Bourse scheme.

6.1 Construction

The proposed scheme requires the following parameters:

– n = pq, where p and q are large primes, and

p = pd0p1 + 1 and q = pd0q1 + 1 if p0 = 2
p = 2pd0p1 + 1 and q = 2pd0q1 + 1 if p0 is a small odd prime

where ps and qs are distinct primes.
– d denotes the upper bound of the private inputs: 0 ≤ mA,mB < d.
– b̄ denotes an upper public bound of psqs.
– α is a generator to Zp and Zq.
– A private key g = α2psqs mod n generating elements in G of order pd0.

Public parameters are {n, d, p0, b̄}. The private key g is held by Alice. We there-
fore assume that Alice issues the public key and knows the construction of n.

The proposed scheme is summarized in Figure 3. In Round 1, Bob shares

x = αp
mB
0 αr1 and β = αp

d
0r2αp

d−mB
0 r1r2

with Alice. In Round 2, Alice should check that x 6=1 and x 6=α. Alice computes
and sends

y = gr4p
mA
0 xr3 = gr4p

mA
0 αp

mB
0 r3αr1r3

Alice Bob

Private key g

r3 ∈ {1 . . . b̄} r1 ∈ {1 . . . b̄}
r4 ∈ {1 . . . d}, r4 - p0 r2 ∈ {1 . . . b̄}, r2 - p0

x = αp
mB
0 αr1

β = αpd0r2αp
d−mB
0 r1r2

x, β←−−−−−−−−−−−−−−−−−−−
y = gr4p

mA
0 xr3

γ = f(βr3)
y, γ−−−−−−−−−−−−−−−−−−−→

w = yr2p
d−mB
0

If f(w) = γ
Then mA ≥ mB

Else mA < mB .

Fig. 3. The proposed secure comparison protocol

and
γ = f(βr3) = f((αp

d
0r2+p

d−mB
0 r1r2)r3) = f(αp

d
0r2r3+p

d−mB
0 r1r2r3) (6)

to Bob, where f is a secure hash function. Finally, Bob computes

w = yr2p
d−mB
0 = (gr4p

mA
0 αp

mB
0 r3αr1r3)r2p

d−mB
0

= gr2r4p
d+mA−mB
0 αp

d
0r2r3αp

d−mB
0 r1r2r3

= gr2r4p
d+mA−mB
0 (αp

d
0r2αp

d−mB
0 r1r2)r3

= gr2r4p
d+mA−mB
0 βr3

(7)

and checks whether
f(w)

?
= γ

There are two outcomes:

– f(w) = γ because w = βr3 and mA ≥ mB .
– f(w) 6= γ because w 6= βr3 and mA < mB with an overwhelming probability.

Note that the secret ephemeral integers (r2, r4) should not be divisible by p0 to
avoid reduction of the order of the elements based on g.

6.2 Security parameter considerations

The bounds of private inputs is confined by the RSA modulus size. As mentioned,
RSA modulus recommendations are 2048 bits for a λ = 112 bits security level,
and 3072 bits for λ = 128 bits security. Table 2 shows parameter sizes as a
function of security level λ and maximum input bound m̂, where ` denotes the
size of p and q.

7 Security analysis

The security relies on indistinguishability of random distributions, except for
when it comes to a malicious user, who submits a computation that deviates
from the protocol specification. This is a reasonable scenario, as such deviating
computations cannot be detected by the opponent, which again underlines that
the honest-but-curious adversarial assumption is an insufficient assumption.

Note that the attacks fixed and selected value attacks in Sections 4.1 and 4.2
do not apply to our scheme, since they assume that the generator g is public.
The known subgroup attack in Section 5.1 does not apply directly to our scheme,
but reduced subgroups are addressed in Section 7.2. The tiny hidden subgroups
attack in Section 4.3 is addressed in this analysis.

The following security assumption applies for malicious users, as shown in
this section:

Definition 2 (The private RSA subgroup problem) Given the RSA mod-

ulus n and an integer R = αp
d
0r1gr2 , this computational problem is the difficulty

of computing Rc = gr2 under the assumption that g and c (defined in Eq. 1) are
not known, and where g generates the subgroup G.

This problem hinges on the difficulty of factorizing n. Note that the small RSA
subgroup decision assumption does not apply to our scheme, as there is no sub-
group H. In line with the previous discussions, the following security analysis
considers the two adversarial models separately.

7.1 Security w.r.t. honest-but-curious users

In this section, we prove that the proposed protocol preserve the confidentiality
of private inputs against honest-but-curious adversaries in the standard model.

Lemma 1 (Privacy of Bob). The secrecy of mB is preserved assuming an
honest-but-curious opponent.

Proof. In Round 1, Alice receives (x, β), whose exponents carry the private in-
put mB .

– x: Given that r1 of the blinding factor αr1 of x is a uniform random value, x
is indistinguishable from αz, where z is a uniform random value. The secrecy
of αp

mB
0 is therefore preserved.

– β: Given that both factors of β, i.e., αp
d
0r2 and αp

d−mB
0 r1r2 , have random

exponents render them indistinguishable from αz, where z is also a uniform

random value. The secrecy of αp
d−mB
0 r1r2 is therefore preserved.

Since (x, β) are indistinguishable from random integers in Z∗n, the secrecy of mB

is therefore preserved. �

Note that (x, β) have the common exponents (r1, r2, p
mB
0), which may yield

a corresponding correlation. This is accounted for in the analysis in Section 7.2.

Lemma 2 (Privacy of Alice). The secrecy of mA is preserved assuming an
honest-but-curious opponent.

Proof. Let mB = 0 to potentially extract mA for the whole range of [1 . . . d]. In

Round 2, Bob receives (y, γ). Regarding y, the factor gA = gr4p
mA
0 is blinded

by xr3 .
Honest-but-curious users implies that α is the actual element used to compute

x, according to protocol, so that xr3 ∈ B ⊂ Z∗n, where |B| = b̄. The security
hinges on the secrecy of r3:

– Brute-force attack: Given (β, γ), then r3 can be found by checking f(βr3)
?
=

γ, cf. Eq. 6. Since b̄ = |psqs| is very large, it is computationally infeasible to
brute-force r3. The secrecy of gA and thus mA is preserved.

– Pre-image attack: Bob computes

w = yr2p
d−mB
0 = gr2r4p

d+mA−mB
0 βr3

cf. Eq. 7, where gr2r4p
d+mA−mB
0 , which contains the private input mA, is

blinded by βr3 . The blinding factor can be disclosed by computing the in-
verse f−1(γ) = βr3 . This is equivalent to breaking the pre-image resistance
property of the hash function f . Assuming the one-way function f is secure,
this is computationally infeasible.

Given the above, the secrecy of mB is preserved against an honest-but-curious
adversary. �

7.2 Security w.r.t. malicious users

Since Alice is the holder of the private key, we can assume that Alice computes
the key pair and therefore knows the composition of the RSA modulus. Since
Bob is the initiator of the protocol, Alice cannot cheat Bob by sending him
spurious protocol messages. This confines the adversarial scenarios to:

1. Alice submits a spurious public key (α′, n′) to Bob.
2. Bob diverges from the protocol at computing (x, β).

Alice could share a spurious RSA modulus n′ with Bob, cf. Section 4.3.
Alternatively, the attack in Section 5.1 utilizes the subgroup G of order pd0 of
the genuine RSA modulus. However, this subgroup may be too large for brute-
forcing.

By means of the private key g, Alice controls the pertaining small subgroup
order G′, by which it is computationally feasible to search for the corresponding
exponent ê, given the modular equivalence ĝê ≡ αe (mod n′), where ê = e mod
p′ and p′ = |G′|.

Lemma 3 (Privacy of Bob). The secrecy of mB is preserved given a spurious
RSA modulus with a tiny hidden subgroup order G′.

Proof. Let n′ be a spurious RSA modulus having a tiny hidden subgroup G′.
W.r.t. (x, β), suppose that Alice obtains the exponents (a, b) of the equivalences
x ≡ ga (mod n′) and β ≡ gb (mod n′). Then (a, b) form the following equation
system:

a = pmB
0 + r′1 mod p′

b = pd0r
′
2 + pd−mB

0 r′1r
′
2 mod p′

Since the number of unknowns exceed the number of equations, the equation
system is underdefined. mB can therefore not be determined. The secrecy of mB

is preserved given a spurious RSA modulus. �

A malicious user Bob may submit any integer to Alice, and use the response
(y, γ) and n to figure out her private input. Bob would succeed if he is able to

correctly guess the blinding factor xr3 or gr4p
mA
0 , although Bob does not know g.

Lemma 4 (Privacy of Alice). The secrecy of mA is preserved assuming a
malicious opponent.

Proof. This lemma is invalided by the following attack: A malicious Bob reduces

the group order by pd0 of x by submitting x = αp
d
0r1 to Alice, who returns

y = gr4p
mA
0 xr3 = gr4p

mA
0 αp

d
0r1r3

in agreement with the protocol. (Note that Alice must check that x 6= 1, since

otherwise this would expose gr4p
mA
0 .)

Bob computes yc = gr4p
mA
0 , where c is defined in Eq. 1, eliminating the

blinding factor αp
d
0r1r3 . Bob finds mA by checking (gr4p

mA
0)p

i
0

?
= 1 for 0 < i < d.

Alternatively, Bob could correctly guess r4,mA, whereof the search space of
0 < r4 < pd0 may or may not be feasible, and then compute αr4p

mA
0 psqs , whose

correctness is verified by means of γ.
Both approaches require solving the private RSA subgroup problem (cf. Def. 2).

This is solvable provided that the RSA modulus can be factorized. If the RSA
modulus is properly composed, this would be computationally infeasible. The
secrecy of mA is therefore preserved. �

8 Conclusion

Common for the overwhelming majority of privacy-preserving greater-than in-
teger comparison schemes is that cryptographic computations are conducted in
a bitwise manner. Recently, Carlton et al. [2] and Bourse et al. [1] proposed
privacy-preserving integer comparison schemes that work on whole integers in
contrast to bitwise decomposition and encoding of the private inputs.

In this paper, we have presented the mentioned comparison schemes, and
shown that they are vulnerable to malicious users. Inspired by the two men-
tioned papers, we have proposed a novel privacy-preserving greater-than integer
comparison scheme, which is resistant to malicious users.

References

1. Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved secure integer com-
parison via homomorphic encryption. Cryptology ePrint Archive, Report 2019/427,
2019. https://eprint.iacr.org/2019/427.

2. Rhys Carlton, Aleksander Essex, and Krzysztof Kapulkin. Threshold properties of
prime power subgroups with application to secure integer comparisons. Cryptology
ePrint Archive, Report 2018/224, 2018. https://eprint.iacr.org/2018/224.

3. Jean-Sebastien Coron, Antoine Joux, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Cryptanalysis of the rsa subgroup assumption from tcc 2005. Cryptology
ePrint Archive, Report 2010/650, 2010. https://eprint.iacr.org/2010/650.

4. Ivan Bjerre Damg̊ard, Martin Geisler, and Mikkel Krøigaard. Homomorphic en-
cryption and secure comparison. International Journal of Applied Cryptography,
(1):22–31, 02 2008.

5. Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard. A correction to ”efficient and
secure comparison for on-line auctions”. IACR Cryptology ePrint Archive, 2008:321,
01 2008.

6. Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164,
Washington, DC, USA, 1982. IEEE Computer Society.

