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Abstract

Randomness is typically thought to be essential for zero knowledge protocols. Following this in-
tuition, Goldreich and Oren (Journal of Cryptology 94) proved that auxiliary-input zero knowledge
cannot be achieved with a deterministic prover. On the other hand, positive results are only known in
the honest-veri�er se�ing, or when the prover is given at least a restricted source of entropy.

We prove that removing (or just bounding) the veri�er’s auxiliary input, deterministic-prover zero
knowledge becomes feasible:

– Assuming non-interactive witness-indistinguishable proofs and subexponential indistinguisha-
bility obfuscation and one-way functions, we construct deterministic-prover zero-knowledge ar-
guments for NP ∩ coNP against veri�ers with bounded non-uniform auxiliary input.

– Assuming also keyless hash functions that are collision-resistant against bounded-auxiliary-input
quasipolynomial-time a�ackers, we construct similar arguments for all of NP.

Together with the result of Goldreich and Oren, this characterizes when deterministic-prover zero
knowledge is feasible. We also demonstrate the necessity of strong assumptions, by showing that
deterministic prover zero knowledge arguments for a given language imply witness encryption for
that language. We further prove that such arguments can always be collapsed to two messages and
be made laconic. �ese implications rely on a more general connection with the notion of predictable
arguments by Faonio, Nielsen, and Venturi (PKC 17).
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1 Introduction

Goldwasser, Micali, and Racko� [GMR89] founded the concept of zero-knowledge proofs on two main el-
ements: interaction and randomness. While both interaction and veri�er randomness are known to be es-
sential for zero knowledge, the answer as to whether the prover must also be randomized is not as de�nite.
Goldreich and Oren [GO94] showed that prover randomness is essential in order to achieve auxiliary-input
zero-knowledge for non-trivial languages. According to this notion, motivated by composition [GK96], any-
thing that a veri�er can learn from the proof, on top of the auxiliary information z it already possesses,
can be e�ciently simulated given the same auxiliary information z.

So when is deterministic-prover zero knowledge possible? So far, deterministic prover zero knowledge
have only been shown to exist in the honest-veri�er se�ing. Here Faonio, Nielsen, and Venturi [FNV17]
proved that any NP language L that has a witness encryption scheme [GGSW13], also has a deterministic-
prover honest-veri�er (perfect) zero-knowledge argument, or proof, if the language L has a hash proof
system [CS02]. A similar result was recently shown by Dahari and Lindell [DL20]. In the same work, Dahari
and Lindell also show a statistically sound honest-veri�er zero knowledge protocol with an unbounded
honest prover for all of NP assuming doubly-enhanced injective one-way functions. In the malicious
veri�er se�ing, they give a protocol satisfying a non-standard distributional notion of zero knowledge. In
their de�nition, the prover has access to a pair of witnesses sampled from a distribution, which satisfy a
certain entropy guarantee.
Whether zero knowledge with a truly deterministic prover is possible considering any meaningful form
of malicious veri�ers remains unknown.

1.1 �is Work

We prove that deterministic-prover zero knowledge for non-trivial languages is feasible for the class of
malicious veri�ers with bounded auxiliary input.

�eorem 1 (Informal). Assuming non-interactive witness-indistinguishable proofs and subexponentially-
secure indistinguishability obfuscation and one-way functions, there exist two-message deterministic-prover
arguments for NP ∩ coNP that are zero-knowledge against bounded-auxiliary-input veri�ers.1

�eorem 2 (Informal). Assuming also keyless hash functions that are collision-resistant against bounded-
auxiliary-input quasipolynomial-time a�ackers, there exist similar arguments for all of NP.

By zero knowledge against bounded-auxiliary-input veri�ers we formally mean that for any polyno-
mial bound b, there exists a corresponding deterministic-prover argument that is zero knowledge against
(malicious) veri�ers with non-uniform auxiliary input of size at most b. �is, in particular, includes the
class of uniform veri�ers, considered in the original zero-knowledge de�nition of [GMR89]. We stress that
the running time of the veri�er may be an arbitrary polynomial, potentially larger than b. Also, indistin-
guishability of simulated and real proofs holds against non-uniform distinguishers of arbitrary polynomial
size. Same goes for soundness, which holds against non-uniform provers of arbitrary polynomial size.

Together with the impossibility result of Goldreich and Oren for unbounded auxiliary input, the above
results give a complete picture of when exactly deterministic-prover zero knowledge is feasible. We note

1Indistinguishability obfuscation implies non-interactive witness indistinguishable proofs, but with a randomized veri�er
[BP15], which is insu�cient for our purpose. �e veri�er can be derandomized under a worst-case Nisan-Wigderson [NW94]
type derandomization assumption [BV17]. Non-interactive witness indistinguishable proofs with a deterministic veri�er are also
known from standard assumptions on bilinear maps [GOS06].
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that two-message zero knowledge against unbounded auxiliary input is by itself known to be impossible.
Our result indeed circumvents this impossibility (for bounded auxiliary input), but this was already known
(with a randomized prover) [BCPR14].

On the Necessity of Strong Assumptions and Predictable Arguments. To demonstrate the feasi-
bility of deterministic-prover zero knowledge, we rely on hardness assumptions that are arguably strong.
We show that this is inherent. Speci�cally, we show that deterministic prover zero-knowledge arguments
for NP imply witness encryption for NP, which at this point is only known based on strong assumptions,
such as indistinguishability obfuscation.

�e implication to witness encryption, in fact, follows from a more general implication to predictable
arguments. Predictable arguments, introduced by Faonio, Nielsen, and Venturi [FNV17], are arguments
where the honest veri�er’s (private) random coins e�ciently determine a unique accepting transcript —
in order to convince the veri�er, the prover must be consistent with this transcript throughout the entire
protocol. We prove that any deterministic-prover zero-knowledge argument against bounded-auxiliary-
input veri�ers can be turned into a predictable argument. �e transformation, in fact, preserves the honest
prover algorithm, and in particular also zero knowledge.

�eorem 3 (Informal). Any deterministic-prover zero-knowledge argument against bounded-auxiliary-input
veri�ers can be made predictable.

We also give a transformation that only requires honest-veri�er zero knowledge and works provided
that the argument is expressive enough (e.g., for allNP or even justNP∩coNP). �e fact that deterministic-
prover zero knowledge arguments imply witness encryption, then follows from [FNV17] where predictable
arguments are shown to imply witness encryption.

Corollary 1 (of Predictability). Any deterministic-prover zero-knowledge argument against bounded-auxiliary-
input veri�ers for a language L implies a witness encryption scheme for L.

We use additional known results regarding predictable arguments [FNV17] to deduce similar results
for deterministic-prover zero knowledge:

Corollary 2 (of Predictability). Any deterministic-prover zero-knowledge argument against bounded-auxiliary-
input veri�ers can be reduced to two messages and made laconic.

Here by laconic [GVW01, FNV17] we mean that the prover sends a single bit and the soundness error
is negligibly close to 1/2; or more generally, the prover sends ` bit in order to obtain a soundness error
negligibly close to 2−`.

Non-Black-Box Zero-Knowledge Simulation. �e zero-knowledge simulator in our constructed ar-
guments makes non-black-box use of the veri�er’s code. �is is known to be inherent — black-box simula-
tion is impossible in the se�ing of two (or even three) message zero knowledge against bounded-auxiliary-
input veri�ers [GK96, BCPR14].

1.2 Technical Overview

We now give an overview of the main ideas and techniques behind our results.
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�eDeterministic-Prover Zero-Knowledge Protocol. Our starting point is the protocol against hon-
est veri�ers based on witness encryption [FNV17]. In their protocol, the veri�er simply sends a witness
encryption of a random message u with respect to the statement x ∈ L to be proven, and expects to get
u back from the prover. Witness encryption guarantees that a prover that has a corresponding witness w,
can obtain u and convince the veri�er. However, if the statement is false, namely x /∈ L, u is hidden, and
soundness is guaranteed.

While honest veri�ers are easy to simulate in this scheme, it is not clear how to simulate malicious
veri�ers. For this purpose, we aim to add to the protocol a trapdoor way of obtaining u. A simulator that
has the code of the veri�er should be able to extract the message u. In contrast, a malicious prover who
doesn’t have the code (speci�cally, the veri�er’s randomness) should still fail to �nd u when x /∈ L.

Explainable Veri�ers. To explain the idea behind the protocol in its simplest form, let us start by as-
suming that the �rst message v sent by veri�er to the prover is always explainable [BKP19]. �at is, there
exist honest veri�er coins r that explain this message as an honest veri�er message v = V(x; r). �e di�er-
ence between this se�ing and the honest veri�er se�ing is that the explaining coins r may be distributed
arbitrarily and also computationally hard to �nd.

Our basic idea is for the veri�er to send the prover yet another witness encryption of u where the
witness is basically the malicious veri�er code V∗. Our realization of this idea is inspired by Barak’s uniform
simulation technique [Bar01]. Let b be the given bound on the description size of the veri�er including
its (bounded) auxiliary input hardwired. �en, the honest veri�er samples a long random string R ←
{0, 1}b+2λ. �en in addition to the witness encryption of u under the statement x ∈ L, it sends a witness
encryption of u under the statement:

“�ere exists a program Π of size b+ λ (namely short) that outputs R.”

To argue that the protocol remains sound, we note that except with negligible probability 2−λ over
the choice of r, such a short program does not exist. In this case, witness encryption will guarantee that u
remains hidden and soundness is preserved. Furthermore, a simulator in possession of the b-size code V∗

of the malicious veri�er can now use it to simulate. Speci�cally, let ` be the amount of coins r∗ used by
V∗, then the simulator will sample r∗ using a pseudorandom generator that stretches a seed s∗ of length
≈ λ to a pseudorandom r∗ of length `. Looking at the string R that V∗(x; r∗) outputs, the simulator now
possesses a size-(b+ λ) program Π that computes R — the code of V∗ with the seed s∗ hardwired. �is in
turn leads to valid simulation.

Witness Encryption for Unbounded NP Relations and IO. One thing to notice about the la�er
protocol is that in fact the existence of program Π that outputs R is not an NP statement, unless we
restrict the running time of Π to some speci�c polynomial. However, while the non-uniform description
size (equivalently, auxiliary input size) of the malicious veri�er V∗ is a-priori bounded, its running time is
not bounded by any speci�c polynomial.

Accordingly, we need a strong notion of witness encryption for unbounded non-deterministic rela-
tions. Speci�cally, encryption under a statement x should take time polynomial in |x| (and the security
parameter), and not depend on the time required to verify a witness for x. In contrast, decrypting with a
witnessw should take time proportional to the time required to verifyw. Such witness encryption schemes
directly follow from known indistinguishability obfuscation (IO) schemes for Turing Machines, which are
in turn constructed from subexponentially-secure IO for circuits [KLW15, BCG+18, GS18].
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Malicious Veri�ers. Having constructed a protocol against explainable veri�ers, we use compilers from
the literature to turn it into a protocol against arbitrary veri�ers. �ese compilers use non-interactive
witness-indistinguishable proofs (NIWIs) in order to enforce explainable behavior on the veri�er’s side.
Being non-interactive verifying, these proofs require no randomness from the honest zero-knowledge
prover.

�e �rst such compiler [BKP19] works forNP∩coNP and requires no additional hardness assumptions.
�e second compiler is taken from [BP04] (where it was used in a di�erent context) and relies in addition
on keyless hash functions that are collision resistant against a�ackers with bounded auxiliary input and
quasipolynomial running time, as well as subexponentially secure commitments (which in turn follow from
subexponentially secure IO and one-way functions). In the body, we reanalyze these compilers to show
that they can be used to enforce robust explainability, which roughly means that the veri�er’s messages
are almost always explainable on any e�ciently samplable distribution on its coins, a property required
for our simulation strategy. See more details in Section 3.

From Deterministic-Prover Zero Knowledge to Predictable Arguments. We now explain how
deterministic-prover zero knowledge implies predictable arguments, which in turn imply witness encryp-
tion (as well as the additional properties stated in Corollary 2). We start with an oversimpli�ed transfor-
mation that captures the main idea, but does not fully work, and then explain how to augment it. �is
oversimpli�ed transformation, in fact, starts from deterministic-prover honest-veri�er zero knowledge.

Let (P,V) be our argument, and let Sim be the honest-veri�er simulator. We consider a new veri�er
V′ that works as follows. It applies the simulator Sim(x) to obtain simulated randomness r̃ for the honest
veri�er along with simulated prover messages p̃1, . . . , p̃k. �e veri�er V′ then certi�es that the prover
messages lead to an accepting transcript with respect to the veri�er coins r. If they do not lead to an ac-
cepting transcript, V′ automatically rejects; otherwise, it interacts with the prover, and rejects the moment
it receives a message pi 6= p̃i. �e described protocol is predictable by construction. Also, since we do not
change the honest prover, it is zero knowledge against the same class of veri�ers as the original protocol.
We now turn to argue that the protocol is complete and sound.

To see that the protocol has almost perfect completeness, consider a distinguisher that has the witness
w hardwired. Given a transcript p1, . . . , pk and veri�er coins r, it can perfectly emulate a conversation
between the deterministic prover P(x,w) and honest veri�er V(x; r) and check whether the produced
prover messages are consistent with the input transcript p1, . . . , pk, and that the transcript is accepting.
We deduce that with overwhelming probability the simulator produces simulated messages p̃1, . . . , p̃k,
and randomness r, such that the honest prover would produce the same messages, and the transcript will
be accepting. To see soundness, notice that if the simulated coins r are pseudorandom and the simulated
prover messages p̃1, . . . , p̃k are accepting, then by the soundness of the original protocol (P,V), it should
be hard for an e�cient prover to produce messages consistent with p̃1, . . . , p̃k (or with any accepting
transcript).

Above, when proving soundness we actually made the implicit assumption that the honest veri�er
simulator Sim(x) produces pseudorandom veri�er coins, even when given a no instance x /∈ L. Indeed,
with respect to random, or pseudorandom, coins, we can argue that it is hard to �nd accepting transcripts.
While this is a natural property, it does not follow directly from honest veri�er zero knowledge. To cir-
cumvent this di�culty, we slightly augment the above transformation, while relying on zero-knowledge
against (not necessarily honest) bounded-auxiliary-input veri�ers.

Speci�cally, the veri�er V′ uses a pseudorandom generator to sample coins r for the honest veri�er
V, using a short seed s. It then applies the same procedure as above, except that it runs the simulator

5



Sim(Vs, x) for the deterministic veri�er Vs that �rst derives the coins r from the seed s, and then applies V.
By choosing an appropriate pseudorandom generator, we can guarantee that the non-uniform description
of Vs is short enough. �is transformation guarantees that the simulated coins are pseudorandom, even
for a no instance, and allows the above proof to go through. �e necessity of zero-knowledge to hold even
for veri�ers that are not necessarily honest comes from the fact that our description of Vs deviates from the
honest veri�er strategy. We give another construction of predictable arguments from deterministic-prover
arguments that are only honest-veri�er zero knowledge, provided that the arguments supports expressive
enough languages. See Section A for details.

A Word on Two-Message Laconic Arguments. As stated in Corollary 2, we use the implication to
predictable arguments to also derive that any deterministic-prover zero knowledge argument for bounded-
auxiliary-input veri�ers can be made two message and laconic. �is corollary is obtained by applying as is
general transformations on predictable arguments [FNV17]. �e only thing we need to prove is that these
transformations preserve zero knowledge. �e only hurdle here is that the mentioned transformations
involve parallel repetition for the sake of soundness ampli�cation. We observe that (unlike many-round
zero knowledge) two-message zero knowledge against bounded-auxiliary-input veri�ers is closed under
parallel repetition.

OnDeterministic Prover Zero-KnowledgeProofs. While our results (in conjunction with prior works)
provide a complete picture of deterministic zero-knowledge arguments, our results do not have any bearing
on deterministic zero-knowledge proofs, where soundness is required to hold against unbounded provers.
Completing the picture for proofs remains an interesting open problem.

2 De�nitions

In this work, we will consider PPT machines with both, bounded and unbounded non-uniform auxiliary
input. For simplicity of notation, rather than considering explicit auxiliary input in our de�nitions, we con-
sider two basic notions of non-uniformity. �e corresponding zero knowledge de�nition will in particular
capture the auxiliary input se�ing. See Remark 1.

1. non-uniform PPT: this is the standard notion of non-uniform PPT machines. Formally, a non-
uniform PPTM = {Mλ}λ is a family of probabilistic Turing machines (one for each λ), where there
exists a polynomial poly, such that the description size |Mλ| and the running time of Mλ are bounded
by poly(λ).

2. b-non-uniform PPT: �ese are PPT machines with non-uniform description of size b(λ) and arbi-
trary polynomial running time (possibly larger than b(λ)). Formally, a b-non-uniform PPT M =
{Mλ}λ is a family of probabilistic Turing machines (one for each λ), where |Mλ| ≤ b(λ) and there
exists a polynomial poly, such that the running time of Mλ is bounded by poly(λ).

In both of the above, we o�en omit from Mλ the subscript λwhen it is clear from the context. If we simply
say a PPT machine, we mean a uniform one.

�roughout this work, we will talk about computational indistinguishability with respect to non-
uniform distinguishers.
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De�nition 1 (Computational Indistinguishability). Two ensembles X = {Xα}α∈S and Y = {Yα}α∈S are
said to be computationally indistinguishable, denoted byX ≈c Y , if for every non-uniform PPT distinguisher
D, every polynomial p, all su�ciently large λ and every α ∈ {0, 1}poly(λ) ∩ S∣∣∣Pr

[
D(1λ, Xα) = 1

]
− Pr

[
D(1λ, Yα) = 1

] ∣∣∣ < 1

p(λ)
,

where the probability are taken over the samples of Xα, Yα and coin tosses of D.

We shall sometimes �nd it convenient to talk about the stronger notion of statistical indistinguishabil-
ity, de�ned below.

De�nition 2 (Statistical Indistinguishability). Two ensembles X = {Xα}α∈S and Y = {Yα}α∈S are said
to be statistically indistinguishable, denoted byX ≈s Y , if for every polynomial p, all su�ciently large λ and
every α ∈ {0, 1}poly(λ) ∩ S

∆(Xα, Yα) <
1

p(λ)
,

where ∆(Xα, Yα) corresponds to the statistical distance between Xα and Yα.

2.1 Deterministic-Prover Zero Knowledge Against Bounded-Auxiliary-Input Veri�ers

We de�ne the notion of deterministic-prover zero-knowledge arguments against veri�ers with bounded
auxiliary-input (DPZK). We shall denote by OutA〈A(a), B(b)〉 the output of party A on execution of the
protocol betweenAwith input a, andB with input b. By ViewA〈A(a), B(b)〉, we denote the view of party
A consisting of the protocol transcript along with its random tape.

De�nition 3. An interactive protocol (P,V) between a deterministic polynomial time prover P and PPT
veri�er V, for a language L is a deterministic prover b-bounded-auxiliary-input zero knowledge argument if
the following holds.

Completeness: For every x ∈ L,

Pr[OutV〈P(x,w),V(x)〉 = 1] = 1 .

Soundness: For any non-uniform PPT P∗, there exists a negligible function negl(·) such that for all λ ∈ N
and x ∈ {0, 1}λ \ L,

Pr[OutV〈P∗,V(x)〉 = 1] ≤ negl(λ) .

Zero Knowledge: �ere exists a PPT simulator Sim, such that for every b-non-uniform PPT veri�er V∗ of
running time at most t(λ),{

ViewV∗〈P(x,w),V∗〉
}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c
{
Sim(V∗, 1t, x)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

Remark 1 (Universal Simulation). In the above de�nition, there exists one universal simulator Sim that gets
the code of the veri�er as input. We note that this de�nition is known [GO94] to imply the alternative de�nition
of (bounded) auxiliary-input zero knowledge that requires that any for any t-timeV∗ there is a PPT simulator
SimV∗ such that given (bounded) auxiliary input z, SimV∗(x, z, 1

t) simulates V∗(z).

7



2.2 Indistinguishability Obfuscation (IO)

We now give a de�nition of indistinguishability obfuscator for Turing Machines, which can be constructed
from indistinguishability obfuscators for circuits [KLW15, BCG+18, GS18].

De�nition 4 (Indistinguishability Obfuscator for Turing Machines). A succinct indistinguishability obfus-
cator for Turing machines consists of a PPT machine iOM that works as follows:

– iOM takes as input the security parameter 1λ, the Turing machine M to obfuscate, an input length n,
and time bound t.

– iOM outputs a Turing machine M̃ which is an obfuscation of M corresponding to input length n and
time bound t. M̃ takes as input x ∈ {0, 1}n.

�e scheme should satisfy the following requirements:

Correctness For all λ ∈ N, for all M ∈ Mλ, for all inputs x ∈ {0, 1}n, time bounds t′ such that t′ ≤ t, let
y be the output of M(x) a�er at most t steps, then

Pr
[
M̃← iOM(1λ, 1n, 1log t,M) : M̃(x) = y

]
= 1 .

Security It holds that{
iOM(1λ, 1n, 1log t,M0)

}
λ,t,n,
M0,M1

≈c
{
iOM(1λ, 1n, 1log t,M1)

}
λ,t,n,
M0,M1

,

where λ ∈ N, n ≤ t ≤ 2λ, and M0,M1 are any pair of machines of the same size such that for any
input x ∈ {0, 1}n both halt a�er the same number of steps with the same output.

E�ciency and Succinctness We require that the running time of iOM and the length of its output, namely
the obfuscated machine M̃, is poly(|M|, log t, n, λ). We also require that the running time t̃x of M̃(x)
is poly(tx, |M|, n, λ), where tx is the running time ofM(x).

2.3 Witness Encryption

�e following de�nition of witness encryption is taken from [GGSW13].

De�nition 5. A witness encryption scheme for an NP language L, with corresponding witness relation RL,
consists of the following two polynomial-time algorithms:

Encryption. �e probabilistic algorithmWE.Enc(1λ, x,m) takes as input a security parameter 1λ, a string
x ∈ {0, 1}∗, and a messagem ∈ {0, 1}. It outputs a ciphertext ct.

Decryption. �e algorithm WE.Dec(ct, w) takes as input a ciphertext ct, a string w ∈ {0, 1}∗. It outputs
either a messagem ∈ {0, 1}.

�e above algorithms satisfy the following conditions:

– Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any (x,w) ∈ RL, we have
that

Pr
[
ct←WE.Enc(1λ, x,m) : WE.Dec(ct, w) = m

]
= 1 .
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– Security. For any non-uniform PPTadversary A, there exists a negligible function negl(·) such that
for any λ ∈ N, and any x /∈ L, we have that{

WE.Enc(1λ, x, 0)
}
λ∈N,x/∈L

≈c
{
WE.Enc(1λ, x, 1)

}
λ∈N,x/∈L

.

We note that the above scheme can be extended to encrypt strings, rather than just bits, by encrypting
each bit independently. Witness encryption for all ofNP can be constructed from IO for circuits [GGSW13].

2.4 Non-interactive Witness Indistinguishability (NIWI)

De�nition 6 ([BOV03]). Anon-interactive witness-indistinguishable proof systemNIWI = (NIWI.Prov,NIWI.Ver)
for an NP relation RL consists of two polynomial-time algorithms:

– a probabilistic prover NIWI.Prov(x,w, 1λ) that given an instance x, witnessw, and security parameter
1λ, produces a proof π.

– a deterministic veri�er NIWI.Ver(x, π) that veri�es the proof.

We make the following requirements:

Completeness for every λ ∈ N, (x,w) ∈ RL,

Pr
[
π ← NIWI.Prov(x,w, 1λ) : NIWI.Ver(x, π) = 1

]
= 1

Soundness for every x /∈ L and π ∈ {0, 1}∗,

NIWI.Ver(x, π) = 0 .

Witness Indistinguishability It holds that{
NIWI.Prov(x,w0, 1

λ)
}
λ,x,
w0,w1

≈c
{
NIWI.Prov(x,w1, 1

λ)
}
λ,x,
w0,w1

,

where λ ∈ N, x ∈ {0, 1}λ, w0, w1 ∈ RL(x).

2.5 Collision Resistance against Bounded Non-uniform Adversaries

We describe here the notion of keyless collision resistance against quasi-polynomial b-non-uniform adver-
saries, extending the de�nition in [BP04].

Syntax. A keyless collision resistance hash function is associated with an input function `(λ) > λ and
a polynomial time algorithm H such that H(1λ, X) is a deterministic algorithm that takes as input an
X ∈ {0, 1}`(λ) and outputs a hash Y ∈ {0, 1}λ.

De�nition 7. We say that H is collision-resistant against quasi-polynomial adversaries if for any b-non-
uniform probabilistic 2poly(log λ)-time A, there exists a negligible function negl, such that for any λ ∈ N,

Pr
[
(x1, x2)← A(1λ) : x1 6= x2,H(1λ, x1) = H(1λ, x2)

]
≤ negl(λ) .
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2.6 Non-interactive Commitment Schemes

We de�ne below bit commitment schemes

De�nition 8 (Non-interactive Bit Commitment Schemes). A polynomial time computable function: Com :
{0, 1} × {0, 1}λ 7→ {0, 1}`(λ) is a bit commitment if it satis�es the properties below:

Binding: For any r, r′ ∈ {0, 1}λ, b, b′ ∈ {0, 1}, if Com(b; r) = Com(b′; r′) then b = b′.

Computational Hiding: �e following holds:{
Com(0) : r←$ {0, 1}λ

}
≈c
{
Com(1; r) : r←$ {0, 1}λ

}
.

where computational indistinguishability is with respect to arbitrary non-uniform PPT distinguisher.

We note that the above scheme can be extended to commit to strings, rather than just bits, by commi�ing
to each bit independently. Looking ahead, we require that the underlying string that is commi�ed can be
extracted in quasi-polynomial time. Such commitments can be constructed from subexponentiall-secure
injective one-way functions (which in turn can be constructed from subexponential IO and one-way func-
tions).

2.7 Explainable Veri�ers

We de�ne here the a variant of the notion of explainable veri�ers [BKP19] called robustly-explainable
veri�ers. Roughly speaking, explainable veri�ers are ones whose messages almost always lie in the support
of the honest veri�er messages (or are abort). Robustly-explainable veri�ers are such where this occurs
when they use random coins sampled from an arbitrary e�cient sampler (and not necessarily the uniform
distribution).

De�nition 9 (Explainable Message). Let 〈P,V〉 be a two-message protocol. We say that a given messagem
is explainable with respect to x, if there exist honest veri�er coins r such thatm ∈ {V (x; r),⊥}.

De�nition 10 (Robustly-Explainable Veri�er). Let 〈P,V〉 be a protocol. A b-non-uniform PPT veri�er V∗

using `(λ) random coins is robustly-explainable if for anyPPT samplerR on `(λ) bits, there exists a negligible
negl(λ) such that for any λ ∈ N and x ∈ λ,

Pr
[
r ← R(1λ),m = V∗(x; r) : m is explainable

]
≥ 1− negl(λ) .

2.8 Pseudorandom Generators

De�nition 11 (Psedudorandom Generators). A deterministic function PRG : {0, 1}λ → {0, 1}p(λ) is called
a pseudorandom generator (PRG) if:

1. (e�ciency): PRG can be computed in polynomial time,

2. (expansion): p(λ) > λ,

3.
{
x← {0, 1}λ : PRG(x)

}
≈c
{
Up(λ)

}
, where Up(λ) is the uniform distribution over p(λ) bits.
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3 A Deterministic-Prover Zero-Knowledge Protocol

In this section we present our deterministic prover zero knowledge (DPZK) protocol. As explained in the
introduction, we start by describing the protocol for robustly-explainable veri�ers. We then show how to
compile this protocol to one that is secure against malicious veri�ers.

3.1 DPZK for Robustly-Explainable Veri�ers

We use the following components for the deterministic prover zero knowledge (DPZK) protocol for an NP
language L against b-non-uniform explainable veri�ers.

– A witness encryption scheme (WE.Enc,WE.Dec) for language L.

– An indistinguishability obfuscation (IO) scheme iOM for Turing Machines (TM).

Additionally, we will use the machine described below that outputs the hardcoded secret u given as input
the description of a “short” Turing machine that outputs a hardcoded public value R.

Machine: Prog

Hardcoded: R, u
Input: M ∈ {0, 1}ρ(λ)

if M outputs R
output u

else
output ⊥

In what follows, let ρ(λ) = b(λ) + λ + ω(1), `(λ) = ρ(λ) + λ. �e protocol is described in Figure 1. We
prove the properties of the protocol below.

Completeness. Completeness follows from the correctness of witness encryption.

Soundness. We now prove that the above protocol is sound against computationally bounded provers.

Proposition 1. Assuming security of the indistinguishability obfuscation scheme and the witness encryption
scheme, the protocol is sound.

Proof. We consider a sequence of hybrids transitioning from the real protocol to an ideal protocol where
the probability that the prover convinces the veri�er of accepting is clearly negligible.

Hyb0: �is is the real protocol.

Hyb1: In this hybrid, we modify the program Prog to Prog′ that always output ⊥.
By our choice of parameters and a union bound, the probability that there exists a machine M ∈
{0, 1}ρ that outputs R is at most 2ρ−` = 2−λ. �erefore, except with negligible probability Prog
and Prog′ are functionally equivalent. �e indistinguishability of Hyb1 and Hyb0 then follows from
the indistinguishability of the IO scheme.
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Protocol: DPZK for robustly-explainable veri�ers

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Veri�er V computes the �rst message as

(a) R←$ {0, 1}`(λ)

(b) t := λlog λ

(c) u←$ {0, 1}λ

(d) P̃rog← iOM
(
1λ, 1ρ, 1log t,Prog [R, u]

)
(e) ct←WE.Enc(u, x)

send (R, ct, P̃rog) to the prover P.

2. Prover P computes the second message as

(a) ũ := WE.Dec(ct, x, w)

send ũ to the veri�er V.

3. Veri�er V performs the check

(a) if ũ = u, accept. Else, reject.

Figure 1: Deterministic prover zero-knowledge for robustly-explainable veri�ers.

Hyb2: In this hybrid, we additionally change the ciphertext ct of the witness encryption scheme to be the
encryption of 0.
Sincex /∈ L, the indistinguishability betweenHyb2 andHyb1 follows from the security of the witness
encryption scheme.

It is le� to observe that in Hyb2 the prover obtains no information about u, and thus convinces the
veri�er with probability at most 2−λ.

Zero Knowledge. We prove

Proposition 2. Assuming the existence of pseudorandom generators, the protocol is zero knowledge against
b-non-uniform veri�ers.
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Proof. We describe the simulation strategy below. In what follows V∗ is a b-non-uniform malicious veri�er
of polynomial running time at most t(λ). Additionally, let k be the amount of random coins r∗ used by
V∗. �e simulator Sim will use a PRG PRG : {0, 1}λ 7→ {0, 1}k.

Sim(V∗, 1t, x):

1. Construct veri�er V∗s that has the seed s hardwired. V∗s computes PRG(s) and uses it as random
coins for V∗. Additionally, V∗s truncates V∗’s output to R.

2. Initialize V∗ with random coins PRG(s).

3. Given P̃rog from V∗, use the description of V∗s as input to P̃rog and obtain u.

4. u is then used as the simulated prover message, along with veri�er randomness PRG(s).

First, consider an execution between the prover and augmented veri�er 〈P(x,w),V∗s〉, and let v and p
denote the veri�er and prover messages in such an execution. �en by pseudorandomness of PRG,

ViewV∗〈P(x,w),V∗〉 ≈c p,PRG(s) .

Next, by the fact that V∗ is robustly explainable, we know that except with negligible probability, v =

(R, ct, P̃rog) is explainable; namely, has the structure prescribed by the honest veri�er algorithm. Noting
that V∗s is a program of length b+ λ+O(1) < ρ(λ) and running time at most t(λ) that outputs R. By the
fact that v is explainable, P̃rog(V∗s) = WE.Dec(ct, x, w). It follows that

p,PRG(s) ≈s Sim(V∗, 1t, x) ,

and overall
ViewV∗〈P(x,w),V∗〉 ≈c Sim(V∗, 1t, x) ,

as required.

3.2 From Explainable to Malicious Veri�ers

In this section we give generic compilers going from robust-explainable to malicious veri�ers. �ese com-
pilers were constructed in [BKP19] where they were used to enforce explainability and in [BP04] where
they were used in a di�erent context. We prove that these compilers, in fact, enforce robust explainability.
�e statements, and correspondingly the underlying assumptions, change based on whether we want a
DPZK for NP ∩ coNP, or for all of NP. We discuss the two cases separately.

3.2.1 DPZK for NP ∩ coNP

We consider languages L ∈ NP∩ coNP, which in turn means that in addition to relation RL, there is also
a NP-relation RL to certify that a statement x /∈ L.
We use the following primitives in our construction:

– A two-message deterministic-prover zero-knowledge (DPZK) protocol (eP, eV) secure against robustly-
explainable veri�ers. Let the veri�er and prover messages be denoted by v and p, respectively.
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– A non-interactive witness indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver) for the language

LNIWI =
{

(v, x)
∣∣∣ ∃(r, w̄) s.t. v = eV(x; r) OR RL(x, w̄) = 1

}
,

namely, either the veri�er’s message is explainable, or the statement is not in the language. Hence-
forth, we shall refer to the second half of the ‘OR’ statement, that the statement is not in the language,
to be the trapdoor statement.

�e protocol is presented in Figure 2.

Protocol: (P,V) for L ∈ NP ∩ coNP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Veri�er V computes the �rst message as

(a) r←$ {0, 1}p(n)

(b) v := eV(x; r)

(c) xNIWI := (v, x)

(d) wNIWI := (r,⊥)

(e) wi← NIWI.Prov(xNIWI, wNIWI)

send (v,wi) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (v, x)

(b) if NIWI.Ver(x̃NIWI,wi) 6= 1, output ⊥.
(c) p := eP(x,w, v).

send p to the veri�er V.

3. Veri�er V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Figure 2: Deterministic-prover zero knowledge for L ∈ NP ∩ coNP.
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Completeness. Completeness follows directly from the completeness of the underlying protocol and
the NIWI proof.

Zero Knowledge. We show how any b-non-uniform malicious veri�er V∗ for the above protocol can be
converted to a robustly-explainable b+O(1)-non-uniform veri�er against the original protocol.

Claim 1. �ere exist an e�cient simulator S and a veri�er eV∗ such that

1. eV∗ is a robustly explainable veri�er against 〈eP, eV〉.

2. eV∗ is (b+O(1))-non-uniform and e�ciently constructable from eV∗.

3. For every x ∈ L,
ViewV∗〈P(x,w),V∗〉 ≡ S(VieweV∗〈eP(x,w), eV∗〉) .

Proof. We construct S, eV∗.

eV∗:

1. Emulates V∗ and obtains (v,wi).

2. If wi is not a valid proof for the statement (v, x), send eP the message ⊥.

3. Else, send eP v, and get p.

4. Complete emulation of V∗ with message p.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of eV∗,

2. as well as the received prover message p (possibly ⊥).

�e third property asserted in the claim follows by construction of S, eV∗ and the fact that the prover P
checks on its own whether the veri�er’s proof is accepting. It is le� to see that eV∗ is robustly explainable,
(b + O(1))-non-uniform, and e�ciently constructable from V∗. Robust explainability follows directly by
the (unconditional) soundness of the NIWI — eV∗ either outputs an explainable message or⊥. (b+O(1))-
non-uniformity and e�cient construction follow from the fact that V∗ is b-non-uniform and eV∗ uses it as
a black box and described by the four code lines above.

Claim 1 directly gives rise to a zero knowledge Sim for the protocol (P,V). In what follows, let eSim
be the simulator of the underlying DPZK protocol against robustly-explainable veri�ers.

Sim(V∗, 1t, x):

1. Construct the explainable veri�er eV∗.

2. Output S(eSim(eV∗, 1t, x).

�e validity of the simulator Sim follows directly from that of eSim and Claim 1.

15



Soundness. For soundness, we show that any cheating prover P∗ breaking the soundness of the above
protocol, can be converted into a prover eP∗ that breaks the soundness of the underlying protocol. eP∗
will have the witness w̄ for x /∈ L hardwired.

eP∗:

1. Obtain message v from eV.

2. Use w̄ as the witness to compute the NIWI proof wi.

3. Emulate P∗ with (v,wi) and obtain p.

4. Send p to the veri�er eV.

First note that since L ∈ NP ∩ coNP, the statement x /∈ L has a witness w̄ as required. �e only
di�erence in the views of P∗ and its emulated version in eP∗ is in the NIWI proof. From the witness indis-
tinguishability of the NIWI, P∗’s success probability does not change by more than a negligible amount.

3.2.2 DPZK for all of NP

As mentioned to in the introduction, for the case of NP, we require stronger primitives. Speci�cally, we
use the following primitives for our construction:

– A two round deterministic prover zero knowledge (DPZK) protocol (eP, eV) secure against robustly-
explainable veri�ers. Let the veri�er and prover messages be denoted by v and p, respectively.

– A non-interactive commitment scheme Com with perfect binding and computational hiding. Ad-
ditionally, as mentioned earlier, we require that the plaintext underlying a commitment can be
extracted in quasi-polynomial time. Such commitments can be constructed from subexponentiall-
secure injective one-way functions (which in turn can be constructed from subexponential IO and
one-way functions).

– A keyless collision-resistant hash functionH secure against (b+O(1))-non-uniform quasi-polynomial
time adversaries.

– A non-interactive witness-indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver) for the language

LNIWI =
{

(v, x, c)
∣∣∣ ∃(r, rCom, x1, x2) s.t. v = eV(x; r) OR(

c = Com((x1, x2); rCom) ∧ x1 6= x2 ∧ H(1λ, x1) = H(1λ, x2)
)}

,

namely, either the veri�er’s message is explainable, or the commitment sent by the veri�er contains
a collision in H. As before, we shall refer to the second half of the ‘OR’ statement as the trapdoor
statement.

�e protocol is presented in Figure 3.

Completeness. Follows directly from the completeness of the underlying protocol and the NIWI.
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Protocol: (P,V) for L ∈ NP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Veri�er V compute the �rst message as

(a) r←$ {0, 1}p(n)

(b) c := Com(0; rCom)

(c) v := eV(x; r)

(d) xNIWI := (x, v, c,H)

(e) wNIWI := (r,⊥,⊥)

(f) wi← NIWI.Prov(xNIWI, wNIWI).

send (v,wi, c) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (x, v, c,H)

(b) if NIWI.Ver(x̃NIWI,wi) 6= 1, output ⊥.
(c) p := eP(x,w, v).

send p to the veri�er V.

3. Veri�er V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Figure 3: Deterministic prover zero-knowledge for L ∈ NP.

Zero Knowledge. For zero knowledge, we follow the same strategy as in the previous subsection and
show how any b-non-uniform veri�erV∗ for the above protocol can be converted into a robustly-explainable
(b+O(1))-non-uniform veri�er against the original protocol.

We argue that Claim 1 also holds for this protocol with the exact same S and eV∗. �e only di�erence
is in the proof of robust explainability of the veri�er eV∗, which is based on complexity leveraging.

Robust Explainability of eV∗. Fix some PPT samplerR for coins for eV∗ and assume toward contradiction
that with noticeable probability it outputs a message v that is not explainable when initialized with random
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coins sampled usingR. We show that there exists a (b+O(1))-non-uniform quasi-polynomial time a�acker
that �nds a collision in H. Recall the eV∗ only outputs a non-⊥ message provided that the emulated V∗

produces a valid NIWI. By the unconditional soundness of the NIWI, it follows that whenever eV∗ outputs
a non-explainable message, it must be that c is a valid commitment to a collision in H. �is collision is
then be extracted from the commitment in quasi-polynomial time. Note that the corresponding collision
�nder can be described by eV∗ and R, which have non-uniform description of size b+O(1).

Zero knowledge of (P,V) now follows from that of (eP, eV) and the existence of S and eV∗, exactly
as in the previous subsection.

Soundness. We show that any cheating prover P∗ breaking the soundness of the above protocol, can
be converted into a prover eP∗ that breaks the soundness of the underlying robustly-explainable protocol.
�e reduction is similar to that in the previous subsection with some required changed. eP∗ will have a
collision (x1, x2) as (part of the) witness for the trapdoor statement hardwired in its code.

eP∗:

1. Obtain message v from eV.

2. Compute c = Com(x1, x2; rCom).

3. Use (x1, x2, rCom) as the witness to compute the NIWI proof wi.

4. Emulate P∗ with (v,wi) and obtain p.

5. Send p to the veri�er eV.

�e di�erence in the views of P∗ and its emulated version in eP∗ is the commitment to (x1, x2) rather
than zero, and in the witness used for the NIWI proof. Using the hiding of the commitment (against non-
uniform PPT a�ackers) and the witness indistinguishability of the NIWI, P∗’s success probability does
not change by more than a negligible amount.

Remark 2. We emphasize that for soundness, we require that all the underlying primitives to are secure
against non-uniform adversaries since our soundness reduction is non-uniform.

4 Predictable Arguments and DPZK

In this section, we show that any deterministic-prover zero-knowledge (DPZK) argument against bounded-
non-uniform veri�er can be made predictable. �e notion of predictable arguments was introduced in
[FNV17], where it is in particular shown to imply witness encryption. In the next section, we address
additional properties of DPZK that follow from this connection.

We start by recalling the de�nition of predictable arguments (PA) [FNV17]. While they also address
predictable argument of knowledge, we restrict a�ention to predictable arguments that are only sound.

De�nition 12 (Predictable Argument). A ρ-round predictable argument is an argument speci�ed by a tuple
of algorithms (Chal,Resp) as described below:

1. �e veri�er PA.V samples
(
~c,~b
)
← Chal(1λ, x), where ~c := (c1, · · · , cρ) and~b := (b1, · · · , bρ).
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2. For all i ∈ [ρ] in increasing sequence:

(a) PA.V sends ci to the PA.P;

(b) �e prover PA.P computes ai := Resp(1λ, x, w, c1, · · · , ci) and sends ai to PA.V.
(c) PA.V checks if ai = bi, and returns 0 otherwise.

3. If all challenges are answered correctly, PA.V returns 1.

�e protocol is required to satisfy:

Correctness. �ere exists a negligible function negl(·) such that for all x ∈ L such that RL(x,w) = 1, we
have

Pr[OutPA.V〈PA.P(x,w),PA.V(x)〉 = 1] ≥ 1− negl(λ) .

Soundness. For any non-uniform PPT prover P∗, there exists a negligible function negl(·) such that for all
x /∈ L,

Pr[〈PA.P∗,PA.V(x)〉 = 1] ≤ negl(λ) .

A deterministic-prover zero-knowledge predictable argument (PA-DPZK) is a deterministic-prover
zero-knowledge argument that is also a predictable argument.

We prove the following:

�eorem 4. Let (P,V) be a deterministic-prover zero-knowledge argument for L against bounded-non-
uniform veri�ers. �ere exists a veri�er V′ such that (P,V′) is a predictable argument.

Note that since we do not change the honest proverP it follows that (P,V′) is also deterministic-prover
zero knowledge against the same class of veri�ers.

Relying on the following result by Faonio, Nielsen, and Venturi,

�eorem 5 ([FNV17]). If there exists a Predictable Argument (PA) for a language L, then there exists a
witness encryption scheme for L.

our theorem holds for all λΩ(1)-non-uniform veri�ers, and we deduce

Corollary 3. If there exists a deterministic-prover zero-knowledge argument forL against λΩ(1)-non-uniform
veri�ers, then there exists a witness encryption scheme for L.

We now proceed with the proof.

Proof of �eorem 4. Let (P,V) be a ρ-round DPZK argument for L against b-non-uniform veri�ers, for
b(λ) ≥ 2λ+ ω(1). Let PRG : {0, 1}λ → {0, 1}` be a pseudorandom generator, where `(λ) is the amount
of coins used by V. For a given seed s ∈ {0, 1}λ, we de�ne the deterministic veri�er Vs(x) that derives
coins r = PRG(s) for V then emulates V(x; r).

�e transformed veri�er V′ is presented in Figure 4.
First, note that the protocol satis�es the structural requirement of a predictable argument. We now move
to prove completeness and soundness with respect to the new veri�er V′.

19



�e New Veri�er V′

Input: x, security parameter 1λ

1. Sample s←$ {0, 1}λ and construct Vs.

2. Sample {p̃i}ρi=1 ← Sim(Vs, 1
t, x), where t is the running time of Vs.

3. Emulate an execution of Vs(x) with prover messages {p̃i}ρi=1; let {ṽi}ρi=1 be the resulting
veri�er messages.

4. If the veri�er Vs rejects in the above execution, reject.

5. Proceed interacting with the prover P: at each round i ∈ [ρ]:

– send vi(= ṽi) to P,
– if the prover answers with pi = p̃i, proceed to the next round,
– else, reject.

6. Accept.

Figure 4: �e Veri�er in the Predictable Protocol

Completeness. We show that (P,V′) is complete based on (a) the completeness of (P,V′); (b) zero
knowledge of (P,V′); and (c) pseudorandomness of PRG.

Fix any statement x ∈ L and corresponding prover witness w. We need to show that in an interaction
〈P(x,w),V′(x)〉, V′ rejects with negligible probability. First, by the completeness of (P,V) and the pseu-
dorandomness of PRG, an interaction 〈P(x,w),Vs(x))〉 is accepting except with negligible probability
over the choice of s. Noting that Vs(x) is b-non-uniform, we can invoke zero knowledge, to deduce that
the simulated prover messages {p̃i}ρi=1 make Vs accept with overwhelming probability over the choice of
s.

We next argue that the deterministic proverP(x,w) produces messages {pi = p̃i}ρi=1 with overwhelm-
ing probability (over the coins of Sim that sampled them). �is again follows from zero knowledge. Indeed,
we can consider a zero-knowledge distinguisher that has (x,w, s) hardwired, and given messages pi emu-
lates a conversation of the deterministicP(x,w) withVs(x), and outputs “real” if the corresponding prover
messages coincide with pi, or “simulated” otherwise. If the simulated messages p̃i are inconsistent with
the real prover messages pi, the distinguisher will tell them apart.

Soundness. We show that (P,V′) is sound based on (a) the pseudorandomness of PRG; and (b) the
soundness of (P,V).

First, note that by pseudorandomness the protocol (P,Vs) where s is chosen at random is also sound,
since otherwise a cheating prover can be directly used to distinguish real veri�er coins form pseudorandom
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ones. Next, note that any cheating prover against V′ directly implies a cheating prover against Vs (for a
random s) by construction. Indeed, V′ emulates Vs and accepts only when the prover is consistent with a
simulated strategy p̃i that convinces Vs.2 Soundness follows.

5 Round Reduction and Laconicity

Faonio, Nielsen, and Venturi [FNV17] proved that the round complexity of any predictable argument can be
collapsed to one (two messages overall) and that any predictable argument can be made laconic — namely,
the prover message is a single bit (or more generally ` bits to achieve soundness≈ 2−`). In this section, we
review their transformations and show that they preserve zero knowledge against bounded-non-uniform
veri�ers. As a corollary of this and the previous section, we deduce that any deterministic-prover zero
knowledge argument against bounded-non-uniform veri�ers can be collapsed to one round and made
laconic.

5.1 Round Reduction

We start by recalling the round-collapsing transformation from [FNV17]. In what follows, let (P′,V′) be
a ρ-round predictable argument, the following transformation provides a one round predictable argument
(P,V) with a large soundness error (to be dealt with later on). Roughly, the veri�er randomly chooses
a “cut-o�” point i∗ for the underlying protocol, and sends all the veri�er messages up to, and including,
the i∗-th round veri�er message to the prover. Being a predictable argument, the veri�er is able to do so
without requiring the corresponding intermediate prover messages. �e prover then iteratively computes
the response for each round of the underlying protocol and send over all the prover messages with the
veri�er accepting if and only if each prover messages corresponds to the predicted prover message.

In [FNV17], it is proven that this protocol has soundness error at most 1−ρ−1 +negl(λ). �e protocol
is then repeated ω(ρ log λ) times to achieve negligible soundness, using a parallel repetition theorem for
one round arguments [BIN97].

Proposition 3. �e round collapsing transformation preserves zero knowledge against b-non-uniform veri-
�ers.

Proof. We prove the proposition in two steps. First, we show that the transformation in Figure 5 pre-
serves zero-knowledge. �en we show that two-message zero-knowledge against bounded-non-uniform
adversaries is closed under parallel repetition.

To prove the �rst part, let V∗ be a b-non-uniform veri�er. We show the following claim.

Claim 2. �ere exist an e�cient simulator S and a veri�er V′∗ against 〈P′,V′〉 such that

1. V′∗ is (b+O(1))-non-uniform and e�ciently constructable from V∗.

2. For every x ∈ L,
ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉) .

2Here we implicitly rely on the fact that the simulator produces an accepting transcript for the deterministic veri�er Vs. �e
deterministic nature of the veri�er ensures that the simulator cannot manipulate the veri�er’s randomness and therefore must
produce an accepting transcript is consistent with V(·;PRG(s)).
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Protocol: One Round (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Veri�er V

(a) Samples i∗←$ [ρ],
(b) Samples (vi, bi)i∈[ρ]←$V(x).
(c) Sends v1, · · · , vi∗ to the prover P.

2. Prover P

(a) For each i ∈ [i∗], compute pi := P(x,w, {vj}j∈[i]).
(b) Send p1, · · · , pi∗ to the veri�er V.

3. Veri�er V accepts if and only if for all j ∈ [i∗], pj = bj .

Figure 5: Round collapsing transformation.

�is claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of (P,V) on V′∗ and
then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulates V∗ and obtains (v1, . . . , vi∗).

2. At each round i ∈ [i∗], forward vi to P′.

3. Abort a�er round i∗.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of V′∗),

2. as well as the received prover messages p1, . . . , pi∗ .

�e second property asserted in the claim follows by construction of S,V′∗ and the construction of P
from P′ in Figure 5. It is le� to see that V′∗ is (b + O(1))-non-uniform and e�ciently constructable from
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V∗. (b + O(1))-non-uniformity and e�cient construction follow from the fact that V∗ is b-non-uniform
and V′∗ uses it as a black box and described by the three code lines above.

We now prove that closure under parallel repetition.

Claim 3. For any two-message zero knowledge system (P,V) against b-non-uniform veri�ers and a any
polynomial `, the `-fold parallel repetition (P⊗`,V⊗`) is zero knowledge against (b−O(log λ))-non-uniform
veri�ers.

Proof. In what follows, let Sim be the simulator for the original argument (P,V), and let V∗⊗` be any
(b−λ−O(log λ))-non-uniform veri�er of polynomial running time t(λ). We now describe the simulator
Sim⊗` for (P⊗`,V⊗`). �e simulator will use a pseudorandom generator PRG : {0, 1}λ → {0, 1}k, where
k is the amount of coins used by V∗⊗`.

Sim⊗`(V
∗
⊗`, 1

t, x):

1. Sample a s←$ {0, 1}λ.

2. For each i ∈ [`]:

(a) Construct the deterministic veri�er V∗s,i that �rst derives coins PRG(s), uses them to emulate
V∗⊗`, obtains v1, . . . , v`, and outputs vi. Let t′ = t+ poly(λ) be a bound on its running time.

(b) Sample p̃i←$Sim(V∗s,i, 1
t′ , x).

3. Output p̃1, . . . , p̃`,PRG(s).

We now prove the validity of Sim⊗`. First, consider an execution between the prover P(x,w) and
veri�er V∗s = (V∗s,1, . . . ,V

∗
s,`), and let p1, . . . , p` denote the prover messages in such an execution. �en

by pseudorandomness of PRG,

ViewV∗⊗`
〈P(x,w),V∗⊗`〉 ≈c p1, . . . , p`,PRG(s) .

Noting that V∗s,i is a program of length at most b and running time at most t′(λ), we can invoke the
simulation guarantee (P,V). Speci�cally, we can deduce that

p1, . . . , p`,PRG(s) ≈c p̃1, . . . , p̃`,PRG(s) .

�is can be shown by a standard hybrid argument and follows from the fact that pi ≈c p̃i = Sim(V∗s,i, 1
t′ , x)

and that the distinguisher can have (x,w, s) hardwired in order to simulate any other pj or p̃i. Overall

ViewV∗⊗`
〈P(x,w),V∗⊗`〉 ≈c Sim⊗`(V∗⊗`, 1t, x) .

�is complete the proof of Proposition 3.
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5.2 Laconic Prover Messages

As in the previous section, we start by recalling the laconic prover transformation from [FNV17]. In what
follows, let (P′,V′) be a one round predictable argument, the following transformation provides a laconic
prover predictable argument (P,V) with a soundness error negligibly close to 1/2, where the prover sends
only a single bit. Roughly, the veri�er samples a su�ciently large random string γ and sends it to the prover
along with the veri�er message. �e prover responds with a single bit corresponding to the inner product
of γ and its own response to the veri�er message, with the veri�er accepting if only if the bit matches its
own computed inner product of γ with the predicted prover message.

Protocol: Laconic Prover (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Veri�er V

(a) Sample (v, b)←$V′(x).
(b) Sample γ←$ {0, 1}|b|.
(c) Send v, γ to the prover P.

2. Prover P

(a) Compute p := P′(x,w, v).
(b) Send q := 〈p, γ〉 to the veri�er V.

3. Veri�er V accepts if and only if q = 〈b, γ〉.

Figure 6: Laconic prover transformation.

In [FNV17], it is proven that this protocol has soundness error at most 1
2 +negl(λ). As we have seen in

the previous subsection (Claim 3), the soundness can be ampli�ed in a manner that preserves zero knowl-
edge. Speci�cally, ` repetitions yields a protocol with soundness error at most 2−` + negl(λ). �erefore,
we focus on proving that a single instance of the above transformation preserves zero knowledge.

Proposition 4. �e round collapsing transformation preserves zero knowledge against b-non-uniform veri-
�ers.

Proof. Let V∗ be a b-non-uniform veri�er. We show the following claim.

Claim 4. �ere exist an e�cient simulator S and a veri�er V′∗ against 〈P′,V′〉 such that
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1. V′∗ is (b+O(1))-non-uniform and e�ciently constructable from V∗.

2. For every x ∈ L,
ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉) .

�is claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of (P′,V′) on V′∗ and
then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulate V∗ and obtains (v, γ).

2. Forward v to P′.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness of V′∗),

2. as well as 〈p, γ〉, where p is the received prover message and γ is derived from the randomness of
V∗.

�e proof is similar to that of Claim 2 in the previous subsection. �e second property asserted in
the claim follows by construction of S,V′∗ and the construction of P from P′. It is le� to see that V′∗ is
(b + O(1))-non-uniform and e�ciently constructable from V∗. (b + O(1))-non-uniformity and e�cient
construction follow from the fact that V∗ is b-non-uniform and V′∗ uses it as a black box and described by
the two code lines above.

�is completes the proof of Proposition 4.
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A Predictable Arguments from Honest-Veri�er ZK

In Section 4, we showed how to transform any deterministic-prover zero-knowledge (DPZK) protocol into
one that is also a predictable argument (PA). In this section, we show that if we start with a weaker notion
of deterministic-prover honest veri�er zero-knowledge (DP-HVZK) 3 and the existence of an appropriate
hard language, we can transform the DP-HVZK protocol into a predictable argument. One caveat of this
transformation is that the languages of the DP-HVZK and PA in our transformation will be related, but
not identical. As long as the DP-HVZK we start from is for an expressive enough class of languages (e.g.
for NP ∩ coNP), we will get a PA for the same class.

De�nition 13 (Hard-on-Average Language). A language L is hard-on-average if there exist two PPT sam-
plers YL, NL where the support of the �rst is L and of the second is {0, 1}∗ \ L such that{

x : x← YL(1λ)
}
λ∈N
≈c
{
x : x← NL(1λ)

}
λ∈N

.

We establish the following theorem.

�eorem 6. If there exists a deterministic-prover honest-veri�er zero-knowledge argument (DP-HVZK) for
L ∨ Lhard, where Lhard is a hard-on-average language, then there exists a predictable argument (PA) for L.

By the fact that both NP and NP ∩ coNP are closed under OR, we deduce the following corollaries.

Corollary 4. Assuming DP-HVZK for all of NP and hard-on-average languages in NP, there is a witness
encryption scheme for all of NP.

Corollary 5. Assuming DP-HVZK for all ofNP∩coNP and hard-on-average languages inNP∩coNP, there
is a witness encryption scheme for all of NP ∩ coNP.

We note that hard-on-average languages in NP are known to follow from one-way functions, and
hard-on-average languages in NP ∩ coNP are known to follow from one-way permutations.

We now proceed with the proof.

Proof of �eorem 6. To build a predictable argument for L, we use the following primitives:

– A hard language Lhard given by samplers (YLhard , NLhard).

– A ρ-round DP-HVZK protocol 〈P′,V′〉 for the language LOR de�ned below, where the veri�er V′
sends messages vi in round i, and the prover P′ sends message pi in round i. We denote by Sim′ the
corresponding honest-veri�er simulator. �e language LOR is de�ned below,

LOR =
{

(x, x̃)
∣∣∣ ∃(w, w̃) s.t. RL(x,w) = 1 OR RLhard(x̃, w̃) = 1

}
,

namely, either the statement x is in L, or x̃ is in Lhard.
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Protocol: PA (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

Veri�er V computes

1. x̃← YLhard(1
λ)

2. x′ := (x, x̃).

3.
(
{(vi, p̃i)}ρi=1 , r̃

)
← Sim′(x′).

sends x̃ to the prover P in the �rst message.

In each round i ∈ [ρ],

1. Veri�er V sends vi to the prover P.

2. Prover P computes

(a) x′ := (x, x̃)

(b) w′ := (w,⊥)

(c) pi := P′(x′, w′, {vj}ij=1)

sends pi to the veri�er V.

3. If for any i ∈ [ρ], pi 6= p̃i, V rejects.

If veri�er V has not rejected in all rounds, accept.

Figure 7: Transforming DP-HVZK to PA

�e transformation is presented in Figure 7.
Before we proceed with the completeness and soundness, we note that the protocol structure follows that
of a predictable argument.

Completeness. We show that (P,V) is complete based on the honest veri�er zero-knowledge property
of (P′,V′).

Fix any x ∈ L and the corresponding witness w, a yes-instance x̃ ∈ Lhard, and let x′ = (x, x̃). Let
p̃1, . . . , p̃ρ denote the messages and r̃ denote the veri�er randomness simulated by Sim′(x′). We argue that
the deterministic prover P(x,w) produces messages {pi = p̃i}ρi=1 with overwhelming probability (over
the coins of Sim′). �is follows from zero knowledge. Consider a distinguisher that has (x,w) hardwired,

3Only zero-knowledge against honestly behaving veri�ers.
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and given messages pi and veri�er randomness r̃ emulates a conversation of the deterministic P′(x,w)
with V′(x; r̃), and outputs “real” if the corresponding prover messages coincide with pi, or “simulated”
otherwise. If the simulated messages p̃i are inconsistent with the real prover messages pi, the distinguisher
will tell them apart.

Soundness. We show that (P,V) is sound based on the completeness, soundness and zero knowledge
of (P′,V′), as well as the hardness of Lhard.

Fix any x /∈ L and cheating prover P∗. We prove that P∗ fails to convince V(x) of accepting, except
with negligible probability. We consider several hybrid experiments transitioning from a real interaction
to an ideal interaction. We will show that when moving from one hybrid to the next the prover’s chance
of convincing the veri�er does not decrease by more than a negligible amount. �en we will show that
the chance that V(x) is convinced the �nal (ideal interaction) hybrid is negligible.

Hyb0: �is is a real interaction between P∗ and V(x).

Hyb1: In this hybrid, once V samples a simulated transcript p̃1, . . . , p̃ρ, r̃ ←$ Sim(x′), it emulates an ex-
ecution of V′(x′; r̃) with the simulated prover messages and checks whether it is accepting. If it is
not, V rejects immediately.
We argue that the probability that P∗ convinces V(x) to accept in this hybrid is negligibly close to
that in Hyb0. For this purpose, we argue that with overwhelming probability Sim(x′) samples an ac-
cepting transcript. �is is shown based on completeness and zero knowledge of (P′,V′). Speci�cally,
recall that V(x) samples x̃ ∈ Lhard and thus x′ = (x, x̃) ∈ LOR. By the completeness of (P′,V′),
in an interaction between V′(x′) and P′(x′, w′) where w′ = (⊥, w̃) and w̃ is a witness for x̃, the
prover convince V′ with overwhelming probability. It then follows from zero knowledge of (P′,V′)
that Sim(x′) also generates an accepting transcript with overwhelming probability; otherwise, we
can non-uniformly �x x̃, w̃ and construct a distinguisher that violates zero knowledge.

Hyb2: In this hybrid, the veri�er V does not insist that the prover P∗ is consistent with the simulated
messages p̃1, . . . , p̃ρ. Instead, it emulates V′(x′; r̃), and accepts if the messages sent by P∗ convince
V′.
�e probability that V accepts in this hybrid is at least as large as the probability it accepts in Hyb1.
Indeed, any execution that would have been accepted in the previous hybrid Hyb1 is in particular
an execution in which V′(x′; r̃) is convinced and thus is also accepted in the current Hyb2.

Hyb3: In this hybrid, the veri�er V does not check that the simulated p̃1, . . . , p̃ρ, r̃ make V′(x′; r̃) accept.
(In particular, the simulated prover messages p̃1, . . . , p̃ρ are ignored altogether, and only the simu-
lated coins r̃ are used).
�e probability that V(x) accepts in this hybrid is at least as large as the probability it accepts in the
previous hybrid, as we have only removed a veri�er test.

Hyb4: In this hybrid, instead of sampling simulated coins r̃ using Sim′(x′), V samples truly random coins
r.
�e probability that V(x) accepts in this hybrids is negligibly close to that in the previous hybrid.
�is follows from zero knowledge of (P′,V′). Indeed, since x′ ∈ LOR, the simulated honest veri�er
coins r̃ are pseudorandom.
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Hyb5: In this hybrid, V(x) samples a no-instance x̃ ← NLhard instead of a yes-instance. By the indistin-
guishability of YLhard and NLhard , the probability that P∗ convinces V(x) to accept in this hybrid is
negligibly close to that in Hyb4.

We now argue that the probability that P∗ convinces V(x) to accept in Hyb5 is negligible. Note that
in Hyb5 it holds that both x /∈ L and x̃ /∈ Lhard and thus x′ = (x, x̃) /∈ LOR. For P∗ to convince V(x)
of accepting in Hyb5, it must convince V′(x′; r) of accepting, when V′ uses truly random coins. By the
soundness of (P′,V′) this occurs with negligible probability. Soundness follows.
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