
Constant-time verification for
cut-and-choose-based signatures

Robert Ransom
rransom.8774@gmail.com

September 27, 2020

Abstract

In most post-quantum signature protocols, the verification procedure
leaks information about which signature is being verified, and/or which
public key is being used to verify the signature, to timing and other side-
channel attacks. In some applications, this information leak is a breach
of user privacy or system security.

One class of signature protocols, based on the parallel composition of
many runs of one or more interactive cut-and-choose protocols, can be
modified to enable constant-time verification at low cost by fixing the
multiset of challenges which will be chosen at the cut-and-choose step
and randomizing only their order based on the hash of the input message.
As a side benefit, this technique naturally makes the size and structure
of signatures a fixed system parameter, even if the underlying cut-and-
choose protocol has different response sizes for each possible challenge at
the cut-and-choose step.

When applied to a 5-pass “q2” interactive protocol, this technique
requires essentially no extra rounds due to how fixed-weight binary vec-
tors interact with the Kales–Zaverucha structural attack. Alternatively,
when the data which must be transmitted for one of the two possible
challenge values is significantly shorter than the other, or can be made
so using standard and/or specialized compression techniques, a longer,
lower-weight challenge vector can be used to obtain shorter signatures
at the cost of more rounds of the underlying interactive protocol, with
a much shallower computation-vs.-size tradeoff than the precomputation
tree approach used in Picnic2, MUDFISH, and SUSHSYFISH.

As an example, these techniques reduce MQDSS signatures to under
15 kB and PKP-DSS signatures to under 14 kB with NIST Category 1
security against both secret key recovery and signature forgery. Further
improvements in design and parameters allow PKP-DSS signatures under
10 kB with a security level and performance acceptable for almost all
interactive authentication.

The asymptotic ROM proof of security published with MQDSS re-
mains applicable to the optimized system, but the QROM proofs by Don
et al. turn out to be invalid even for unmodified MQDSS.

1

1 Introduction
Most of the public-key cryptographic protocols in use today rely, directly or
indirectly, on the difficulty of computing discrete logarithms in cyclic groups. If
a device capable of solving the discrete logarithm problem, such as a quantum
computer capable of performing Shor’s algorithm on an input of non-trivial size,
is built, then all of these cryptographic protocols will be broken. Post-quantum
cryptography aims to develop public-key protocols which would not be broken
by such an advance.

Symmetric cryptography, key generation, and public-key encryption, decryp-
tion, encapsulation, and decapsulation are generally expected to resist leakage
of the secret information they process to side-channel attacks. Specifically, any
information leaked to an attacker must be independent of the secret key and any
plaintext or MAC being processed. For software implementations, the overall
time is almost always leaked; in many cases (e.g. virtualized server hosting),
the memory access pattern and execution path are leaked to an attacker as
well, even if they do not affect the overall time enough to be observed over the
network.

For signature schemes, the focus for timing and other side-channel attacks
and defenses has been on the signing procedure, because that operation uses
a secret key. Signature verification involves only one or more public keys and
signatures; since public keys have “public” in their name and signatures are
not obviously secret, designers and implementors generally assume that it is
acceptable to disclose the inputs to verification to an attacker. This assumption
is not always justified.

As a general example, in any privacy-enhancing technology system which
attempts to conceal the signer of a message, or which of a set of known signed
messages is being verified, from parties which can observe its delivery across
a network to the recipient, signature verification obviously must run in time
independent of its inputs.

More commonly used systems may also require certificates and signatures
that can be parsed and verified in constant time. For example, the SSH protocol
places the client authentication protocol, including the client’s username, within
an encrypted connection, and also allows the use of certificates for client authen-
tication. SSH explicitly aims to protect the user’s identity from eavesdropping.
Corporate or government VPN servers which must use client certificates for
authentication are similar to SSH.

The Encrypted Server Name Indication extension deployed for TLS has sim-
ilar secrecy goals for the server’s hostname and certificate; it explicitly intends
to conceal which of several hostnames the client is attempting to access from
network eavesdroppers. The signature contained in a certificate is intended for
long-term use, and leaking information about a long-term signature at least
partially defeats the surrounding protocol’s secrecy objectives.

Where client identity information is made available to a network observer,
this can leak not only the identities and locations of specific users, but also
information such as the policy for certificate lifetime, and how many different

2

security compartments each user has certificates to obtain access to. These facts
may aid an outsider in gaining access or targeting attacks against personnel.

It should be noted that the protocol verification systems used to prove net-
work protocols such as TLS and SSH “secure” do not account for the fact that
verifying a signature leaks a moderate-entropy identifier of the signature to the
attacker. Since signature protocols which do have this leakage are likely to
be put into use, verification models must be updated to account for signature
disclosure where it is not explicitly prevented.

For most signature schemes currently in use, the timing leakage from verifi-
cation is small, generally within the level of timing variation that unscrupulous
implementors have tried to pass off as “constant-time”, and similar to or less
than the timing variation caused by other parts of the surrounding system.
Even in the contexts where this timing leakage could be a problem, the attacker
usually cannot obtain enough samples to be worthwhile as an attack. However,
most signature schemes based on cut-and-choose protocols have much larger
variation in verification time, and are likely to leak a nearly unique identifier
of the signature to an attacker with access to timing information alone from
a single verification operation. The cut-and-choose-based signature protocols
which do not have large variation in verification time do not consider constant-
time verification to be a design goal, and thus do not have truly constant-time
implementations.

Fortunately, the most significant change needed to enable constant-time veri-
fication of signatures based on cut-and-choose protocols naturally enables a large
decrease in signature size, which is the main performance concern for those sig-
nature protocols.

2 Background
This section summarizes the standard definitions and some of the relevant his-
tory of related prior work.

The definitions below focus on the core intuitive part of each concept, and
are stated in informal terms such as “efficient” algorithms applied to any input,
rather than the usual approach of adding formalistic details such as “key rela-
tions” or the class of algorithm that produced an input, then giving informal
proofs. The reason for this is that none of those details have resulted in seri-
ous errors in proofs. The cause of broken proofs is a failure to understand the
intuitive core of a concept correctly.

In addition, the explicit statement of a “set of guesses” and a success predi-
cate for a 3-pass protocol appears to be new material, and this concept is needed
in section 3.2 below to evaluate the security level of protocols with fixed-weight
challenge vectors at the cut-and-choose step.

3

2.1 Identification protocols
In an identification protocol, the prover knows a secret key, the verifier knows
the corresponding public key, and the prover wishes to prove knowledge of the
secret key to the verifier without disclosing any information about it beyond the
public key. It is always assumed that computing the secret key from the public
key is infeasible.

This paper will only consider identification protocols which are “public coin”:
roughly, the verifier’s messages are sampled directly from the uniform distribu-
tion on some set of possible challenges. In a public coin protocol, the prover
may be assumed to send the first message.

Most post-quantum identification protocols are based on the “cut-and-choose”
principle: The prover generates a randomly blinded instance of the hard prob-
lem relating its secret key to its public key, cuts the solution to the blinded
instance and its relation to the original problem into a few pieces, and commits
to each piece; then the verifier chooses which piece or pieces it wants the prover
to open. The amount of data sent in the response may vary depending on the
verifier’s challenge; the computations to verify the response usually vary. Addi-
tionally, the number of possible challenges is small, so to achieve a useful level
of security, the prover and verifier must perform the protocol many times. This
paper will focus on cut-and-choose identification protocols and the theoretical
and practical techniques used with them.

The security properties expected of an identification protocol are defined
in terms of the set and distribution of “transcripts” of protocol runs. In an
identification protocol with 2n + 1 communication passes, the transcript is of
the form (c1, h1, . . . , cn, hn, r), where ci ∈ Ci and r ∈ R are sent by the prover
and hi ∈ Hi are sent by the verifier. The messages ci serve as commitments;
the hi are challenges; and r is the final response. If the verifier participating
in a transcript would have accepted the protocol run as valid, the transcript is
said to be successful.

(Note that this follows the presentation in [DFM20, §5] and differs from
the standard presentation of the 5-pass protocol structure, in which the second
commitment step is instead described as an extra response.)

Identification protocols are traditionally proved to have three properties:

• “Perfect correctness”: When the prover follows the protocol honestly, an
honest verifier will always accept the interaction as valid.

• “Honest-verifier zero knowledge”, or “HVZK”: There exists an efficient
“simulator” algorithm which generates fake transcripts, without knowl-
edge of the secret key, that are indistinguishable from transcripts of a
valid interaction between an honest prover and an honest verifier.

• “Soundness”: A cheating prover which does not know the secret key can-
not cause an honest verifier to accept an interaction with it as valid with
probability greater than some ε < 1. This probability is called the “sound-
ness error”.

4

There are minor variations in the details and the names used, but the concepts
above are essentially the standard ones.

When an identification protocol is to be used as the basis for another proto-
col, such as a signature scheme, any proof of security for the surrounding proto-
col requires the identification protocol to have another property, some form of
“special soundness”: There exists an efficient “extractor” algorithm which can
extract either the secret key or a break of one of the identification protocol’s
other underlying security assumptions from any set of successful transcripts sat-
isfying some condition. Exactly what that condition is depends on what kind
of special soundness is being proved.

Every correct proof of soundness for a cut-and-choose identification protocol,
with soundness error ε, has three steps:

• First, the proof repeatedly rewinds a hypothetical cheating prover algo-
rithm to the point before it receives each challenge, to obtain one transcript
for each of the #(H1 × · · · × Hn) possible sequences of challenges. The
set of these transcripts and their prefixes forms a tree; every transcript
shares the same initial commitment c1, and each subsequent commitment
is a function of the sequence of challenges preceding it.
Let N denote the size of this set of transcripts. Not all of these tran-
scripts are valid; the cheating prover algorithm is permitted to fail for
some sequences of challenges.

• Then, to obtain a contradiction, the proof assumes that the cheating
prover algorithm succeeds with probability greater than ε. The pigeonhole
principle is used to show that, if more than εN out of the set of N tran-
scripts collected in the first step are valid, then there is a subset of valid
transcripts having some pattern of challenges and commitments required
for the next step.

• Finally, the protocol is proved to have some form of special soundness, and
that the valid transcripts collected are sufficient to recover the secret key
or a break of some other security property (usually the binding property
of a generic string commitment protocol).
The statement of the theorem then discards every piece of information
contained in the proof except the soundness error ε. Anyone who wants
to write a proof of security relying on the protocol’s special soundness is
left to either repeat the relevant part of the proof, or assert the required
form of special soundness and handwave away its proof.

Every major proof error that I have encountered in writing this
paper is a result, either directly or indirectly, of the tradition of
proving identification protocols to be sound with some numerical
soundness error, rather than explicitly stating the form of special

soundness which they provide.

5

For 3-pass identification protocols, where transcripts are of the form (c, h, r) ∈
C × H × R, proofs of the HVZK property also contain more information than
the standard definition would suggest:

• The HVZK simulator can be split into two algorithms, one which generates
the commitment c and some state information st, and one which takes
(h, st) as input and computes the appropriate r, if possible. The second
algorithm is deterministic.

• There exists a set G of possible guesses, and the first algorithm in the
HVZK simulator takes g ∈ G as input.

• There exists a predicate S : G×H → Bool indicating whether a challenge
h ∈ H can be successfully answered by a simulator state (c, st) with a
given guess g ∈ G. Whenever S(g, h) is true, the second algorithm in the
simulator outputs an r for which (c, h, r) is a successful transcript.
(This is not quite an equivalence; the simulator may be able to compute a
successful transcript even if ¬S(g, h), by accidentally guessing the secret
key. However, this happens with negligible probability, and most “proofs”
completely ignore low-probability events of this sort.)

• It is traditional to show that the soundness error ε proved for any identifi-
cation protocol is “tight”, i.e. that the HVZK simulator can succeed with
probability ε. For 3-pass protocols, the special soundness is also tight with
respect to this notion of guesses: The extractor algorithm can extract a
break of the protocol from a set of successful transcripts {(c, hi, ri)}i∈I

(indexed for convenience) with the same commitment value c whenever
there is no guess g such that {hi|i ∈ I} ⊆ {h|S(g, h)}.

Some examples of 3-pass interactive cut-and-choose protocols:

• the Fiat–Shamir identification protocol [FS87, §2], in which H = {0, 1}k
for some k, G = H, and S(g, h) if and only if g = h. (This protocol
assumes that integer factorization is hard.)

• Blum’s proof of knowledge of a Hamiltonian cycle [Blu87], in which H =
{iso, cycle}, G = H, and S(g, h) if and only if g = h.

• Stern’s proof of knowledge of a fixed-weight codeword [Ste94b, §1][Ste96a,
§2.1][Ste96b, fig. 1], in which H = {0, 1, 2}, G = {0, 1, 2}, and S(g, h) if
and only if g ̸= h.

• Stern’s 3-pass proof of knowledge of a solution to a constrained linear
equations problem instance [Ste94a, §3][Ste96c, fig. 1], in which H =
{0, 1, 2}, G = {0, 1, 2}, and S(g, h) if and only if g ̸= h.

• Pointcheval’s 3-pass HVZK proof of knowledge of a solution to a permuted
perceptrons problem instance [Poi95, §7.1], in which H = {0, 1, 2, 3}, G =
{0, 1, 2, 3}, and S(g, h) if and only if g ̸= h.

6

• Sakumoto–Shirai–Hiwatari 3-pass proof of knowledge of a solution to a
multivariate quadratic problem instance [SSH11, §3][SSH13, fig. 4][SSH15,
fig. 4], in which H = {0, 1, 2}, G = {0, 1, 2}, and S(g, h) if and only if
g ̸= h.

To achieve a useful level of security, these protocols are run many times;
signature schemes require that the repetition be in parallel. The set of guesses
for the parallel composition of r instances of an identification protocol is Grep :=∏r

i=1 G, and Srep(g,h) if and only if S(gi, hi) for every i, regardless of how the
vector of challenges is sampled. When each challenge in the vector is sampled
independently, the soundness error for the parallel composition is given by the
standard formula εrep = εr.

2.2 5-pass identification protocols
The canonical 5-pass interactive identification protocol has two commitment
steps and two challenge steps; transcripts are of the form (c1, h1, c2, h2, r) ∈
C1 ×H1 × C2 ×H2 ×R.

For most 5-pass protocols, a fake prover can choose c1 such that successful
transcripts for any (h1, h2) ∈ H1 ×H2 can be generated without the use of the
secret key. (If this is not the case, then the second commitment pass c2 can
be omitted.) The constraint which makes these protocols useful is that for any
fixed choice of c1, there is only a small set of possible values of h1 for which the
fake prover can generate one c2 for which all values of h2 can be successfully
answered.

Unfortunately, this means that the HVZK and special soundness properties
in the 5-pass case are not easily expressed in terms of a set of guesses as they
are in the 3-pass case. However, the concept of a set of guesses remains useful
in evaluating the security of signature schemes based on these protocols, as
discussed in section 3.2 below.

The most useful 5-pass protocols are “q2 protocols”, defined in [CHR+16,
§4.2, Definition 4.5]: they have #(H1) = q for some q and #(H2) = 2. For
simplicity, this paper will assume H2 = {0, 1}.

The most useful type of special soundness for 5-pass protocols is the exis-
tence of a “q2-extractor”. Three definitions of q2-extractor have appeared in the
literature, two of which do not correctly express the intended concept. This pa-
per will use a simplified statement of the correct definition stated in [BFK+19a,
§2.3, Definition 6]: a q2-extractor is a fast algorithm which recovers either the
secret key or a break of the binding property of a commitment protocol from
any set of four transcripts of the form

{(c1, h(1)
1 , c

(1)
2 , 0, r(1a)),

(c1, h
(1)
1 , c

(1)
2 , 1, r(1b)),

(c1, h
(2)
1 , c

(2)
2 , 0, r(2a)),

(c1, h
(2)
1 , c

(2)
2 , 1, r(2b))}

7

with h
(1)
1 ̸= h

(2)
1 . The other definitions will be discussed in section 4.1 below.

Some examples of 5-pass interactive cut-and-choose protocols:

• Shamir’s proof of knowledge of a solution to a permuted kernel problem
instance [Sha90a][Sha90b], a q2 protocol where q is the number of elements
of a finite ring R. Has a q2-extractor if and only if R is a field.

• Stern’s proof of knowledge of a simplex code of dimension v [Ste94b,
§5][Ste96a, §4.2][Ste96b, fig. 2], a q2 protocol where q = 2v.

• Stern’s 5-pass proof of knowledge of a solution to a constrained linear
equations problem instance [Ste94a, §4][Ste96c, fig. 2], a q2 protocol where
q is the number of elements of a finite field.

• Pointcheval’s 5-pass HVZK proof of knowledge of a solution to a permuted
perceptrons problem instance [Poi95, §7.3], not a q2 protocol.

• Pointcheval’s 5-pass “light” proof of knowledge of a solution to a permuted
perceptrons problem instance [Poi95, §7.5], a q2 protocol where q is the
number of non-zero elements of a finite field. No HVZK simulator known.

• Sakumoto–Shirai–Hiwatari 5-pass proof of knowledge of a solution to a
multivariate quadratic problem instance [SSH11, §4][SSH13, fig. 12][SSH15,
fig. 12], a q2 protocol where q is the number of elements of a finite field.

2.3 The Fiat–Shamir transform
One of the defining properties of a zero-knowledge interactive protocol is that,
if the verifier is honest in choosing the challenges independent of the prover’s
commitments, then nothing at all is proved to any party which did not par-
ticipate in the protocol. Most currently deployed protocols instead require a
non-interactive proof of knowledge and/or signature protocol.

The Fiat–Shamir transform [FS87, §3][SF88, columns 5–6] converts an HVZK
interactive proof protocol into a non-interactive proof protocol, by having the
prover simulate a dishonest verifier which computes each challenge as a hash
of the preceding commitments and challenges and an optional message. It was
initially proposed for use with the 3-pass Fiat–Shamir identification protocol,
which allows a single round of the basic protocol to have as high a security level
as desired.

Interactive cut-and-choose protocols, on the other hand, must be run mul-
tiple times to reach a useful security level. In an interactive use, this can be
done either serially or in parallel. In a signature protocol, serial composition
does not increase security, as a forger can tweak each commitment one at a time
until its corresponding challenge can be answered. Thus, signatures based on
cut-and-choose protocols always use the parallel composition.

The original publications of the Fiat–Shamir transform, which proposed its
use with an identification scheme for which G = H and S is the equality pred-
icate, stated that a forger can expect to succeed in #(H) operations, and this

8

is consistent with experience. More generally, if S(g, h) occurs with probability
p when h is sampled from the distribution induced by the hash function, then
forgery is as difficult as preimage search on an input set of 1/p elements.

The Fiat–Shamir transform for 3-pass protocols was later proved secure in
the Random Oracle Model using the “forking lemma” [PS00]; unfortunately,
this strategy results in proofs which are too loose to be quantitatively useful
for the range of parameters which provides good security in practice. Thus,
even though proofs of security are expected for this class of construction, they
are generally disregarded for the purpose of choosing parameters to be used in
practice.

Shamir mentioned in his original PKP publications [Sha90a][Sha90b] that
the 5-pass PKP-based identification protocol could be turned into a non-interactive
signature scheme using the Fiat–Shamir transform. “However, PKP-based sig-
natures are much longer than Fiat–Shamir signatures, and their practical signif-
icance is unclear.” At the time, high-end telephone modems ran at 9600 baud,
and Shor’s algorithm had not been published. The patents covering the PKP-
based and related post-quantum identification protocols ([Sha90b][Ste96b][Ste96c])
expired much later than those covering Diffie–Hellman, RSA, and Schnorr signa-
tures; when those protocols did become available for use, their advantages over
RSA and ECC were not significant enough compared to their disadvantages for
users to consider switching to them.

The first serious proposal that 5-pass identification protocols should actually
be used as the basis for signatures was the submission of MQDSS [CHR+],
based on the SSH 5-pass MQ-based protocol [SSH11, §4][SSH13, fig. 12][SSH15,
fig. 12], to NIST’s Post-Quantum Cryptography project. The MQDSS authors
published a proof of security in the ROM for the Fiat–Shamir transform for
5-pass q2 protocols; as is usual, it was too loose to be quantitatively useful, so
the number of parallel runs of the identification protocol used in MQDSS (in
version 1.1) was chosen such that the identification protocol would provide the
intended security level, as would be appropriate for a signature scheme based
on a 3-pass protocol.

Two years later, Kales and Zaverucha, two of the submitters of a competing
pair of signature schemes, discovered that the same type of iterative guessing
attack which precludes the use of the Fiat–Shamir transform on the serial com-
position of interactive protocols can be applied to a portion of the first challenge
vector in a signature scheme based on the parallel composition of 5-pass iden-
tification protocols [KZ19][KZ20]. Their attack spends about half of the time
available to it guessing the first challenge for as many parallel runs as possi-
ble, then spends the rest of its time guessing the second challenge for all other
parallel runs. This attack is what determines the minimum number of parallel
runs to achieve a target security level in a signature system based on a 5-pass
protocol.

Quantitatively, for a q2 protocol with each challenge sampled independently
from the uniform distribution, the probability of guessing the first challenge in
at least N out of r parallel runs is

∑r
i=N

(
1
q

)−i(
q−1
q

)r−i(
r
i

)
, and the proba-

9

bility of guessing the second challenge in all of the remaining runs is 2−(r−N).
Each of these tasks is roughly a preimage search problem, and the attack scales
accordingly. When the probability of success at each of these steps is so small
that it is not expected to be feasible (given the target security level), the amount
of work to achieve an event of probability p can be approximated as 1/p; this
gives the condition specified in [CHR+20, §8] subject to which r is minimized.
(For lower signature security levels, where it is expected that an attacker could
come close to performing enough operations to forge a signature within the time
period that it would be accepted, the probability of success as a function of the
number of hash compression function evaluations should be considered.)

2.4 Choosing an identification protocol
MQDSS [CHR+16][CHR+] is based on the 5-pass identification protocol pub-
lished in 2011 by Sakumoto, Shirai, and Hiwatari [SSH11, §4]. They claimed
two main practical advantages for their MQ-based identification protocols over
the prior art [SSH11, §5.2]:

• Their protocols do not require secret random permutations.
At the time, applying secret random permutations on most mainstream
processors without leaking information to side-channel attacks would have
had a high performance or software development cost. However, the Clas-
sic McEliece [BCL+19] and NTRU Prime [BCLvV18][BCLvV19a] submis-
sions to the NIST PQC project included a reasonably fast constant-time
sorting routine, and used it to sample and apply secret random permuta-
tions. This sorting routine has been extracted into a library [Ber] and ex-
tensively optimized for AMD64 processors, and theoretical bounds on the
divergence from uniformity of the distributions from which these submis-
sions sample fixed-weight vectors and permutations have been published
[Ber18].
As a result of this work, the need for secret random permutations is no
longer a serious obstacle, and indeed if signature verification is to be per-
formed in constant time, the sorting routine is required regardless of the
underlying identification protocol.

• Their protocols have lower communication cost than any of the prior
HVZK identification protocols which they evaluated, including slightly
lower communication than Shamir’s PKP-based protocol [Sha90a][Sha90b],
when used for interactive identification.
However, the difficulty of the MQ problem decreases significantly as field
size increases, while PKP can easily reach 128-bit or higher security levels
over fields of size 251 and larger. When a q2 protocol is to be converted
to a signature scheme, the Kales–Zaverucha attack [KZ19][KZ20] makes
increasing the field size q more important to limiting signature size than
decreasing the communication cost per identification protocol run.

10

The main technical disadvantage of the Sakumoto–Shirai–Hiwatari MQ-
based protocols is that they require a much larger system parameter, and thus
have a much greater computation cost than the older protocols. As a result,
the existing PKP-DSS software is faster than MQDSS when a vector unit is not
available [BFK+19b, §5.5][Beu19b], in addition to achieving shorter signatures.

In addition, the Sakumoto–Shirai–Hiwatari identification protocols are cov-
ered by active U.S. patents [SSH13][SSH15], and the patent holder intends to
collect royalties on the use of MQDSS [SRC+17]. Even if MQDSS were com-
petitive with PKP-based signatures on technical grounds, these patents would
prevent the general public from adopting it for practical use.

Accordingly, this paper will use PKP-DSS and Shamir’s 1989 PKP-based
protocol as its main example for performance comparison. However, the theo-
retical discussions will focus on MQDSS, as that is the protocol for which the
claimed proofs of security were written.

2.5 Sampling challenges from non-uniform distributions
The general approach of constraining the weight of challenge vectors for the pur-
pose of improving one or more performance measurements has been discovered
multiple times:

• Sampling a binary vector of challenges with constrained weight was pro-
posed in the original Fiat–Shamir paper and patent. [FS87, §2.4] and
[SF88, column 4, lines 47 to 69] starts with the example of k = 5 chal-
lenge bits per round, sampled uniformly and independently, and t = 4
protocol rounds, for a 2−20 probability of impersonation. Each 1 bit in
the challenge vector corresponds to a modular multiplication by one of the
prover’s secret square roots.
“Even better performance can be obtained by increasing k to 18 (a 1152
byte ROM). If we use eij vectors with at most three 1’s in them, we have a
choice of 988 possible vectors in each iteration.” Here the benefit of using
a challenge vector with constrained weight was that it allowed an improve-
ment in the soundness of each round while decreasing the computational
cost. The reduction in number of rounds to reach a given security level
also achieved a reduction in communication cost. [SF88] goes on to state,
“This is the preferred mode of the invention vis-a-vis identification.”

• Leichtle proposed the use of rejection sampling of a challenge vector to
transform a signature protocol with variable signature length into one with
fixed signature length [Lei18, §7.1.8], and applied it to a signature protocol
based on Stern’s 3-pass 2/3 proof of knowledge of a fixed-weight codeword.
The paper then reduces the problem of simulating a transcript of the
parallel composition of the identification protocol with limited maximum
signature length to simulating a transcript with unrestricted signature
length, and cites a general proof of security to show that this proves that
his fixed-length transformation does not reduce security.

11

Leichtle’s rejection sampling transform leaves the absolute expected num-
ber of random oracle calls needed to forge a signature unchanged, but
increases the expected number of random oracle calls by the honest signer
to generate a signature. Thus, this transform reduces the ratio of costs
between forgery and honest signing.

• Conceptually, the identification protocol used in the Picnic2 signature
scheme [KKW18] performs two cut-and-choose steps; the first selects one
of a set of “preprocessing phases” to use in an MPC protocol, and discloses
the random seeds from which the others were computed so that the verifier
can check that they were computed honestly. As usual, this protocol has
a non-trivial soundness error for any practical set of parameters, so it
must be repeated many times in parallel. However, the first step of this
simplified protocol requires too large an overhead in both computation and
communication to be useful, even with standard compression techniques;
when m preprocessing phases are generated and sent, the soundness error
is at least 1/m per protocol run.
In the actual (potentially useful in practice) Picnic2 signature scheme and
identification protocol, the cut-and-choose of the preprocessing phases is
shared over the overall protocol, and which of these are to be used for
the second step of the identification protocol are chosen by a fixed-weight
vector [KKW18, §2.3, “Beating parallel repetition”].
In Picnic2, the purpose of sampling a vector of challenges from a non-
uniform distribution is specifically to reduce the size of the signature;
it spends considerable extra computation time for that purpose. The
second step of the underlying identification protocol in Picnic2 runs in
time proportional to n to achieve a soundness error of 1/n per run, and
so does the verification procedure for each of the preprocessing phases
which is not chosen for use in the second protocol step. The overall ef-
fect is an exponential cost tradeoff of computation for reduced size, as in
SPHINCS+[ABD+19].
Additionally, in Picnic2, each run of the second step of the identifica-
tion protocol varies in size and runs a different verification procedure for
each challenge; that property, combined with the use of a “seed tree” to
compress the first step, results in variable-length signatures which do not
permit constant-time verification.

• The MUDFISH/SUSHSYFISH paper [Beu20] generalizes the overall strat-
egy of Picnic2 to the class of identification protocols based on a single-use
“trusted setup string”, of which the “preprocessing phase” of the KKW
MPC protocol is one example. As in Picnic2, the transform used to elim-
inate the need for trusted setup strings from an identification protocol
uses a fixed-weight challenge vector [Beu20, §7, “Beating parallel repeti-
tion”] and results in an exponential speed-vs.-size tradeoff; unlike Picnic2,
the transform specified in the final version of the paper does not use a

12

seed tree, so the first step of the signature scheme does not guarantee
variable-size signatures or variable-time verification.
MUDFISH and SUSHSYFISH then apply that setup-elimination trans-
form to two new identification protocols based on the MQ and inhomoge-
neous PKP problems. Since constant-time verification was not a design
goal, their implementations [Beu19a] do not achieve it, and some of the
low-level details of SUSHSYFISH as implemented appear to be incompati-
ble with efficient constant-time verification. However, the overall protocols
could potentially support constant-time verification, and the timing leaks
from the current implementation are probably not much worse than the
pre-quantum signature verification routines currently deployed.

The goal of constant-time verification appears to be new, as is trying to
achieve it in the 5-pass case with reasonable performance (i.e. no exponential
tradeoff).

3 Changes to enable constant-time verification
Traditionally, every challenge in an identification protocol is sampled indepen-
dently from the uniform distribution. Allowing constant-time verification re-
quires sampling the vector of cut-and-choose challenges from a distribution with
a fixed multiset of vector elements. This obviously reduces the size of the set
from which the vectors are sampled.

In addition, all vectors of challenges must be sampled in constant time,
and this will usually introduce a non-uniformity into the resulting distributions.
Both changes must be taken into account when choosing parameters for the
resulting signature protocol to reach a target security level.

3.1 Sampling the first challenge round in constant time
In most of the published q2 protocols, q is the order of a finite field over which the
protocol operates. Since the CPUs most widely used as benchmarking platforms
for performance evaluation include fast SIMD operations for integer multipli-
cation, but not for multiplication in small binary fields, most implementations
choose q to be a prime number rather than a power of 2. This raises the issue of
how to convert the sequence of bits produced by a hash function into a sequence
of challenges in Fq. The standard options for this are:

• rejection sampling of vector elements, from an unbounded stream of XOF
output. Not constant-time. Used in MQDSS for sampling of all vectors
mod q = 31, including the sequence of first challenges.

• rejection sampling of vector elements, from a XOF output of bounded
length. Can be made to run in constant time, by sorting. Has non-
zero probability of failing outright. Used in PKP-DSS for sampling of all
vectors mod q (value depends on parameter set), including the sequence
of first challenges.

13

• reduction of chunks of bitstream mod q, from a XOF output of fixed
length. Can easily be made to run in constant time, using code which will
already be required for field operations in Fq. No possibility of failure,
but the outputs in Fq will be non-uniform.

• division of b-bit chunks of bitstream by 2b/q. Faster than computing
a remainder when q is much smaller than 2b. Used in NTRU Prime to
sample a vector from {0, 1, 2}n [Ber18, §2.4]. Has the same amount of non-
uniformity as reduction mod q, and when Fq is used as a field, requires
additional code not used for any other purpose.

Some non-uniformity is acceptable for the vector of challenges, so reduction
mod q is the best constant-time challenge sampling option for signature schemes
based on q2 protocols. Quantitatively, when reducing a b-bit value mod q,
there are at most Pmax =

⌈
2b/q

⌉
preimages [Ber18, Theorem 2.2] and at least

Pmin =
⌊
2b/q

⌋
preimages; the probabilities of sampling field elements are either

pmax = Pmax/2
b or pmin = Pmin/2

b. Given these probabilities, in the Kales-
Zaverucha attack, the probability of guessing the first challenge in at least N
out of r parallel runs is at most

∑r
i=N p−i

max(1−pmin)
r−i
(
r
i

)
. This non-uniformity

is taken into account below.

3.2 Fixed-multiset challenge vectors
Sampling challenge vectors for the cut-and-choose step of a signature protocol
to have a fixed multiset of elements in random order obviously decreases the size
of the challenge space for a given number of parallel runs compared to sampling
each vector element uniformly at random. The question is, by how much?

Let FWV(r0, r1) denote the set of fixed-weight vectors of length r0 + r1 and
weight r1. Let FWV(r0, r1, r2) denote the set of vectors in {0, 1, 2}r0+r1+r2

with r0 occurrences of 0, r1 occurrences of 1, and r2 occurrences of 2; note that
#(FWV(r0, r1, r2)) = #(FWV(r0 + r1, r2) × FWV(r0, r1)). Let wtx(v) and
wtY (v) denote the number of elements of the vector v equal to x or contained
in the set Y , respectively.

For the random-order challenge vectors, δ will denote the divergence bound
from [Ber18, §3, §4, §5] for sampling by sorting. All numerical examples will
assume that the number of random bits b is chosen such that the sort operates
on 32-bit values; for binary vectors, this means b = 31. Note that δ is a function
of the number of parallel runs r as well as b.

Hid, Gid, and Sid will refer to the corresponding sets for the cut-and-choose
challenge step of each single run of the underlying identification protocol. Note
that the definition allows G to have extra elements which never succeed; this
will be used below.

The simplest case to analyze is that where the underlying protocol has Hid =
{0, 1}; then Gid = Hid and Sid is the equality predicate. Let r denote the
number of parallel runs of the underlying protocol. Previously, the set of possible
challenge vectors would have been Hr

id of size 2r, sampled from the uniform

14

distribution, so the probability of forging a signature would have been (2r)−1.
With challenges sampled from FWV(r0, r1) with a divergence from uniformity of
at most δ, the number of possible challenge vectors is

(
r0+r1
r1

)
, and the probability

of guessing a challenge vector correctly is δ
(
r0+r1
r1

)−1. As a numerical example,
for r = 128 and r0 = r1 = 64, the probability of guessing the challenge vector
is slightly less than 2−124; to reach the 128-bit preimage security level with
|r0 − r1| ≤ 1, r must be increased to 132.

The next simplest case, and the most important one given the identifica-
tion protocols which it applies to, is the second challenge pass of a q2 protocol.
Assume that the Kales–Zaverucha attack has guessed the first challenge cor-
rectly for N of the r parallel runs, let r0 and r1 be fixed system parameters
such that r = r0 + r1, and let H, G, and S refer to the second challenge pass.
Without loss of generality, assume that the N runs guessed by the K–Z attack
are at the end of the vector. Then H = FWV(r0, r1), but G = {0, 1}r−N and
S(g, h) ⇐⇒ (∀r−N

i=0 gi = hi), ignoring the last N elements of h. Now different
guesses g ∈ G have widely varying probabilities of success; out of

(
r
r1

)
elements

of H sampled with divergence δ from uniformity, S(g, h) for
(

N
r1−wt1(g)

)
values of

h. The overall time to break a set of parameters, again using the approximation
that an event of probability p is achieved in 1/p operations, is thus:

r
min
N=0

(r∑
i=N

p−i
max(1− pmin)

r−i

(
r

i

))−1

+ δ
r1

max
w=0

((
r
r1

)(
N

r1−w

))

Empirically, at the Category 1 security level, switching from independent,
uniform challenges to fixed-weight vectors does not increase the required number
of identification protocol runs at all. When the second commitment pass and
response for one of the challenge values is reduced to one random seed per
protocol run, and the number of runs is increased to optimize for signature size,
the weight of the challenge with larger response in the challenge vector is about
r/3.

In the case of 3-pass identification protocols with soundness error 2/3, Gid =
Hid = {0, 1, 2} and Sid(g, h) ⇐⇒ g ̸= h. Then H = FWV(r0, r1, r2), G =
{0, 1, 2}r, and S(g, h) ⇐⇒ (∀ri=0gi ̸= hi). For any chosen g ∈ G, h ∈ H, let
wi,j denote the number of indices k where gk = i and hk = j. Then

∑2
j=0 wi,j =

wti(g) and
∑2

i=0 wi,j = rj , and g will succeed if and only if wi,i = 0 for all i.
For a fixed g and fixed, valid wi,j with wi,i = 0, there are(

wt0(g)

w0,1

)(
wt1(g)

w1,0

)(
wt2(g)

w2,0

)
corresponding values of h. To determine the number of challenges for which a
guess g succeeds, one sums over all possible arrays wi,j (three small-integer de-
grees of freedom); to determine the security level of a parameter set (r0, r1, r2),
one calculates the probability of a guess g most likely to succeed (two small-
integer degrees of freedom, wt0(g) and wt1(g)), accounting for sampling diver-
gence. Optimizing for size requires a search over further degrees of freedom.

15

This calculation is simple enough to describe using elementary combinatorial
methods, but will be unreasonably slow to evaluate without further optimization
or the use of analytic techniques. This effort is unlikely to be worthwhile for
general-purpose signature use, as an optimal parameter set for the ε = 2/3
structure must have almost equal quantities of the two challenges which are
answered with larger responses.

Pointcheval’s 3-pass identification protocol based on the permuted percep-
trons problem, with soundness error 3/4, can be handled analogously to the
protocols with soundness error 2/3, and his 5-pass zero-knowledge protocol com-
bines puncturing due to the Kales–Zaverucha attack with the 2/3 case. As in
the case of 3-pass protocols with 2/3 soundness error, these protocols are un-
likely to be competitive as identification or signature protocols, so there is no
reason to go into further detail.

4 Effect on provable security
To support constant-time verification of a general q2-protocol-based signature,
both challenge vectors must be sampled from non-uniform distributions, whereas
the proofs of security claimed to apply to such protocols have assumed that the
Fiat–Shamir random oracles will sample each challenge independently and uni-
formly. As discussed below, the “proofs of security” which are possible for this
class of protocol are of no, or even negative, practical value, but the cryptog-
raphy community expects them, regardless of whether the proofs are correct or
the statements allegedly proved are useful. Additionally, the MQDSS authors
explicitly requested a proof of security for these changes.

Adapting the MQDSS proofs of security to handle fixed-weight challenge
vectors was made more difficult by the fact that no one has written a completely
correct proof of security of any kind for the original MQDSS.

The original random oracle model (ROM) proof of security in [CHR+16,
§4.3] and [CHR+, §A] has a minor error in the statement of its “forking lemma”
[CHR+16, §4.3, Lemma 4.10][CHR+, §A.1, Lemma A.2] but takes essentially the
correct steps and contains enough information in the proof to invoke a (correctly
defined) q2-extractor.

However, the quantum random oracle model (QROM) proofs of security in
[DFM20] are entirely inapplicable to MQDSS.

4.1 Errors in prior MQDSS “proofs of security”
Incorrect definitions of the q2-extractor concept: The concept of q2-
extractor was introduced in [CHR+16] to abstract away the underlying interac-
tive protocol from their proof of security for the surrounding signature proto-
col. The MQDSS authors published (essentially) two different definitions of the
concept; the final version of the PKP-DSS paper [BFK+19a, §2.3, Definition 6]
specifies a third definition.

16

The important difference between the various definitions of q2-extractor is
the pattern which a set of transcripts must follow to permit a break of the
identification protocol to be extracted:

• The first definition of q2-extractor, in the original MQDSS paper [CHR+16,
§4.2, Definition 4.6], specified a sequence of four transcripts of the form
“trans(i) = (com, ch

(i)
1 , resp

(i)
1 , ch

(i)
2 , resp

(i)
2), i ∈ {1, 2, 3, 4}, with

ch
(1)
1 = ch

(2)
1 ̸= ch

(3)
1 = ch

(4)
1 ,

ch
(1)
2 = ch

(3)
2 ̸= ch

(2)
2 = ch

(4)
2 ,

valid with respect to pk”.
This definition fails on the protocol side: Because it does not place any
restrictions on the message resp

(i)
1 sent in the second commitment pass,

there is no q2-extractor according to this definition for the SSH MQ-based
5-pass protocol. Kales and Zaverucha provided an efficient algorithm that
can produce a set of four successful transcripts of this form as part of their
structural attack on the 5-pass Fiat–Shamir transform [KZ20, §3.2, p. 10].

• The second definition of q2-extractor appears in two trivially different
versions, a post-quantum definition in the SOFIA paper [CHR+17b, §2,
Definition 2.9], by the same authors as MQDSS, and a definition limited
to classical algorithms in all versions of the MQDSS NIST submission
document [CHR+, §1.2.2, Definition 1.13]. This pair of definitions specifies
a sequence of “four valid transcripts with respect to pk:

trans(1) = (com, ch1, resp1, ch2, resp2), trans
(3) = (com, ch′1, resp

′
1, ch2, resp2),

trans(2) = (com, ch1, resp1, ch
′
2, resp

′
2), trans

(4) = (com, ch′1, resp
′
1, ch

′
2, resp

′
2)

where ch1 ̸= ch′1 and ch2 ̸= ch′2”.
In MQDSS, this definition fails on the signature security reduction side:
There is no reason, without looking at protocol details which this def-
inition is meant to abstract away, that there should be only one valid
response resp2 for each of the two possible values of ch2. Further, when
the signature scheme is optimized to omit the second commitment value
from signatures and recompute it from the final response, the resulting
identification protocol may not satisfy this condition on responses.

• The third definition of q2-extractor appears in the final version of the
PKP-DSS paper [BFK+19a, §2.3, Definition 6]. This version specifies a
sequence of “four transcripts (com, c(i), rsp

(i)
1 , b(i), rsp

(i)
2) for i from 1 to 4,

such that
c(1) = c(2) ̸= c(3) = c(4)

rsp
(1)
1 = rsp

(2)
1 rsp

(3)
1 = rsp

(4)
1

b(1) = b(3) ̸= b(2) = b(4)”.

17

This definition correctly captures the concept; it holds for the protocols
used in MQDSS and PKP-DSS (over finite fields), and it can be used by
a correct security reduction in the ROM for a signature scheme.
When the second challenge is sampled from {0, 1}, the definition given
above in section 2.2 is equivalent and easier to read.

A further fact should be noted here. The MQDSS authors did point out
in the SOFIA paper [CHR+17b, §2, p. 7, above Definition 2.9] that they were
giving a different definition of q2-extractor than the original paper specified:
“In the following we give a post-quantum version of q2-Extractor that fixes two
slight technical shortcomings of the definition in [CHR+16]. On the one hand,
we add the algorithm that actually generates the transcripts to the definition,
on the other hand we use the notion of key relation to capture what kind of
secret key the extractor returns.”

The SOFIA paper did not mention the change in the set of transcripts re-
quired for extraction, nor did the MQDSS specifications. Their authors clearly
knew that (part of) that change was needed to allow correct proofs, but they
have never explicitly stated that fact. By silently revising their definition with-
out ever explicitly stating a correction, they led Don et al. to rely on their
previous, incorrect, definition of q2-extractor in [DFM20, §A, Definition 26].

No proof of soundness against a quantum adversary: Two different
proofs of soundness-like properties for the Sakumoto–Shirai–Hiwatari 5-pass
identification protocol have appeared:

• A sketch of a proof in [SSH11, §4, Theorem 5] that the protocol is “argu-
ment of knowledge” for the key relation, i.e. sound against computationally
bounded attackers, with knowledge error 1

2 + 1
2q . The sketch shows a q2-

extractor (under the correct definition) for the identification protocol, but
does not show how this pattern of challenges is obtained from the attack
algorithm.

• A proof in [CHR+16, §3, Theorem 3.1] that the protocol is sound against
computationally bounded attackers, with soundness error 1

2 + 1
2q . This

proof explicitly rewinds the attack algorithm. It then shows a q2-extractor
(under the correct definition), though it adds the unnecessary condition
that both of the values t1 and e1 sent in the second commitment pass
differ when the challenges differ (not true if r0 = 0).

Since they rely on rewinding, either explicitly or in a gap in the proof sketch,
they are not currently believed to hold for quantum algorithms. Accordingly,
[DFM20, §5.2, Corollary 13] is not applicable to MQDSS.

5-pass identification protocols do not have computationally unique
responses: Don et al. prove the security of the multi-round Fiat–Shamir trans-
form under the assumption that the interactive protocol has “computationally
unique responses” [DFM20, §7.1, Definition 22]: “if given a partial transcript
(x, a1, c1, . . . ai, ci) it is computationally hard to find two accepting conversa-
tions that both extend the partial transcript but differ in (at least) ai+1 (here

18

we consider z to be equal to an+1)”. (In their notation, the first item in a tran-
script is the public key x, the commitment rounds are denoted ai instead of this
paper’s ci, and the challenge rounds are denoted ci instead of hi.)

As with the original definition of q2-extractor, the attack algorithm by Kales
and Zaverucha constructs a counterexample for the runs for which it fails to
guess the first challenge correctly. This time, two transcripts are sufficient to
prove that the definition does not apply to the protocol.

The essential step of the proof of [DFM20, §7.1, Theorem 23] is a use of this
“computationally unique responses” property. Thus, that theorem cannot be
applied to MQDSS as the first paragraph of the section implies.

QROM proof of security uses wrong version of q2-extractor: Don et
al. give a separate sketch of a proof of security for q2-extractable identification
schemes in [DFM20, §A]. The definition they rely on is the original, flawed,
definition of q2-extractor from [CHR+16, §4.2, Definition 4.6], which does not
constrain the second commitment round. They then rely on this error in the
definition by assuming that they can obtain the set of transcripts to be pro-
vided to the q2-extractor by rerunning the attack algorithm four times from the
beginning, rather than rewinding it.

It is not clear from that paper exactly what the proof is, but as with com-
putationally unique responses, an incorrect step this fundamental is likely to
break the proof.

4.2 Probability of q2-extraction
To permit constant-time verification of q2-based signatures, three changes are
made to the distributions from which challenges are sampled:

• Each element of the first challenge vector is sampled i.i.d. from a slightly
non-uniform distribution Ω1, by reducing a b-bit value modulo q. What
is important is the maximum probability over Ω2

1 of sampling the same
challenge value twice. Let pmax :=

⌈
2b/q

⌉
be the probability of the most

likely challenge; then p2max is the probability that extraction fails in any
position due to the first challenge pass.
In an asymptotic proof, if q increases as a function of the security level, b
must increase as well.

• The second challenge vector is sampled from a non-uniform distribution,
by sorting. Let δ be the divergence bound for fixed-weight binary vectors
from [Ber18, §3].
Note that, in that paper’s notation, δ is a function of both b+ 1 (the size
of words being sorted) and n (the vector length). In an asymptotic proof,
n increases as a function of the security level, so b must increase as well.

• The second challenge vector is sampled as a whole, not i.i.d. element-wise.
This requires some combinatorics.

19

The following will use the notation [1 . . n] from [FS09] for the “integer in-
terval” from 1 to n. In addition, this section will use [1 . . n]w to denote the set
of all w-element subsets of the integer interval [1 . . n].

As a first step, consider the overlap between (positions of ones in) fixed-
weight vectors, or equivalently intersections between pairs of sets sampled from
Ω := [1 . . n]w1

× [1 . . n]w2
.

For any given k-element set I ∈ [1 . . n]k, there are
(

n−k
(w1−k)+(w2−k)

)(
(w1−k)+(w2−k)

(w1−k)

)
pairs (S1, S2) ∈ Ω such that S1∩S2 = I. Since there are

(
n
k

)
elements of [1 . . n]k,

the probability that a pair sampled uniformly from Ω has intersection of size k
is

p∩(n,w1,w2)(k) :=

(
n
k

)(
n−k

(w1−k)+(w2−k)

)(
(w1−k)+(w2−k)

(w1−k)

)(
n
w1

)(
n
w2

) .

It may be verified experimentally that the sum over all k is equal to 1.
Where the positions of ones in two fixed-weight vectors do not overlap, they

mark differences between the vectors. The number of positions where two fixed-
weight vectors of weights w1 and w2 and overlapping in k positions differ can
be obtained as (w1−k)+ (w2−k), or 2(w−k) if w = w1 = w2. Let p△(n,w)(k

′)
denote the probability that two vectors of equal weight w have k′ differences.

The probability that q2-extraction will be permitted by the vectors of second
challenges in exactly k positions is then

p2(k) :=

r∑
d1=0

(
r∑

d2=0

(
p∩(r,d1,d2)(k) p△(r,r1)(d1) p△(r,r1)(d2)

))
,

and given each k, the probability that extraction fails due to the first chal-
lenge for all of those k runs is at most p2kmax. The overall upper bound on the
probability that q2-extraction will fail is the weighted average

pfail ≤ δ

n∑
k=0

(
p2kmax p2(k)

)
.

The MQDSS spec states [CHR+20, §A, Lemma A.3, p. 78] that the proba-
bility that extraction fails with uniform, i.i.d. challenges is

(
3q+1
4q

)r
. Using the

MQDSS version 2.1 parameter set for Category 1 [CHR+20, §8.1], with q = 31
and r = 184, as an example, the extraction failure probability is about 2−73.5,
whereas a size-optimized parameter set with r = 200 and r1 = 70 results in an
extraction failure probability of about 2−70.0.

For comparison, the additional parameter set proposed in the MQDSS spec
over F64 at the same security level has q = 64 and r = 171 [CHR+20, §8.2], and
its extraction failure probability is about 2−69.7.

An asymptotic proof requires more advanced techniques. The rest of this
subsection will use further terminology from [FS09].

There are two approaches, one longer but potentially easier to check for
mistakes, and one direct method.

The longer approach can be sketched as follows:

20

• Prove the asymptotic mean and standard deviation of the distribution
of overlaps between two fixed-weight vectors, using the exponential MGF
exp(z(1+uv1v2+v1+v2)) in which v1 and v2 mark w1 and w2, and u marks
the number of overlaps. Also prove that the distribution is concentrated.
Empirically, for vectors of length n and equal weight λn, the mean overlap
is λ2n.

• If the asymptotic mean is only proved for equal weights, prove that in-
creasing the weight of either vector increases the number of overlaps, and
vice versa.

• Prove asymptotic upper and lower bounds on some fraction of the proba-
bility mass, e.g. 1/2.

• Use the upper and lower bounds to prove a lower bound on the number
of extractable runs, for e.g. (1/2)3 of possible signatures.

• Multiply by p2kmax and δ.

The shorter approach uses the exponential MGF

F(z) := exp(z((1 + v1)(1 + v2)(1 + v3)(1 + v4) + (u− 1)(v1 + v2)(v3 + v4))),

where u marks extractable runs, to solve the whole problem at once. Obtain an
asymptotic approximation for f(u) := [zr][vr11][vr12][vr13][vr14]F(z) and the PGF
p(u) := f(u)

f(1) , then evaluate at u = p2max to obtain the asymptotic probability of
extraction failure.

Both problems should be solvable using a generalization of the large powers
method covered in [FS09, § VIII. 8.] to the multivariate case.

Since asymptotic proofs of security say nothing of practical value, and the
preceding subsection provides overwhelming evidence that no one will ever read
or verify the proofs, I will leave the details to the theoreticians.

4.3 Comments on provable security
• The Kales–Zaverucha attack is sufficient to show that reductionist proofs

of security for signature schemes based on the probability of extraction
success or failure can never be useful for parameter selection in practice.
The probability of extraction failure varies wildly for parameter sets with
the same security level and different values of q in the range used by
MQDSS.

• Public coin identification protocols are not known to be sound in a quan-
tum world at all. Attacking a signature scheme requires solving a set of
equations involving a hash function, and this set of equations remains the
same with and without the assumption of quantum computing.

21

• [DFM20, §5.2, Remark 14] claims to show that the Fiat–Shamir trans-
form applied to the sequential composition of cut-and-choose protocols
should be expected to have a non-trivial provable security bound. This
construction was implicitly known to be broken back to [FS87] and [Sch96,
§5.1],
In general, the field of cryptography has done a terrible job of teaching
its fundamentals to the current generation. The material in the following
section shows further examples of this.

5 Generic optimization considerations
Given that some applications require signature protocols based on 5-pass q2
identification protocols to choose the second challenge vector to have fixed
weight, the natural next step is to take advantage of the side benefit that the
signature will have fixed size even if the underlying identification protocol has
differing communication costs depending on the cut-and-choose challenge h2.

In particular, for one of the two cut-and-choose challenges, the total commu-
nication cost per run can be reduced to one random seed and one commitment;
then, the challenge vector’s length and weight can be optimized together to
minimize signature size for a given security level. (The value which would be
sent in the clear during the second commitment pass is recomputed from the
random seed.)

Many of the considerations in optimizing these signature protocols are inde-
pendent of the details of the identification protocol they are based on. These
were lessons learned in the 1990s, which have since been all but forgotten.
Most—not all—have since been rediscovered in the context of the Picnic NIST
submission [CDG+20].

Domain separation: When a cryptographic protocol uses more than one
random oracle or hash function, or uses a single hash in more than one way, it is
standard practice to map the set of inputs for each use into a separate domain,
usually by including some context tag value in the input to the underlying hash
function. Some examples of the consequences of failing to separate the domains
properly in the context of KEMs are shown in [BDG20], along with quotations
from a small part of the extensive prior art on this topic.

Preventing multi-target preimage search: It has long been known that
generic preimage search circuits can find a secret preimage of one of 2k outputs of
a single function in about 1/2k of the time needed to find a preimage for a single
output. ([Ber05] describes two of the applicable parallel algorithms.) There are
two standard ways to defend against this: either use inputs long enough that the
target security level will be achieved even if the attacker obtains many function
outputs, or add a nonce which is collision-resistant at the target security level.
Where the key length is limited, as in signature compression, adding a nonce
(shared over the whole signature) is the preferred choice.

22

Salting and collision-resilience for message hashes: Another stan-
dard practice for Fiat–Shamir signatures is to prefix an unpredictable salt to
the message before hashing it, so that a party who supplies a message to be
signed cannot precompute two messages with colliding hashes. For Fiat–Shamir
signatures based on a single run of a non-cut-and-choose identification protocol,
this salt can be the commitment value; since changing the commitment would
invalidate the response, this is sufficient to provide collision-resilience as well.

Where the commitment is a sequence of hashes, this approach is not suffi-
cient; in this case, collision-resilience can only be obtained by including the salt
with the message hash in every use within the signature scheme.

Collision-resilience for commitment hashes: It is also beneficial to
protect the commitment hashes in a cut-and-choose-based signature protocol
against precomputed collision attacks. In this case, the relying party for collision-
resilience is the verifier, so the verifier must be certain that the salt could not
have been predicted. To ensure this property, first, the signature scheme must
include the message hash in the commitment inputs, rather than a salt freely
chosen by the attacker. Second, the application must include some string which
the verifier knows was unpredictable into the message to be signed.

For example, the salt in Picnic2’s commitment inputs [st20, §7.1, p. 23] is
provided directly in the signature, so it adds no extra security.

Implementing collision-resilience correctly for the commitment hashes is ben-
eficial in another way: If a collision search on the commitment hashes cannot
begin until the message is known, an interactive protocol in which the verifier
provides a nonce to be signed can accept a lower security level, allowing for
shorter signatures.

Omitting the commitment randomization string: The MQDSS team
asserted in version 2.0 of their specification that a commitment randomization
string is needed to prove that their signature scheme is “EU-CMA” [CHR+19,
Introduction, “New in Version 2.0”], adding 2k bits per protocol run at a preim-
age security level of k bits. This is not true; in fact, adding the randomization
strings strictly reduces security in practice.

• 2k bits is twice as long as could possibly be necessary at the k-bit security
level.

• Signatures are generated deterministically, as a function of the message
and a k-bit secret sk. Both the commitment opening and the random-
ization string are subject to a single preimage search on the same k-bit
string. (Though this is not useful, as it is easier to recover sk from SF.)

• The chain of properties they believe they need is “computationally hid-
ing commitments” =⇒ “computational HVZK” =⇒ “computational
EU-CMA”, and adding a randomization string would give them compu-
tationally hiding commitments.
Here it is simpler to show computational HVZK under the assumption
that the adversary does not know the secret key. Knowledge of the honest

23

prover’s openings for a single run is sufficient to recover the secret key,
and one opening is already disclosed; an attacker who can distinguish
whether the other commitment was honestly generated has queried the
random oracle on the value which the honest prover would have used.
(Theoreticians may wish to expand this sketch into a multi-page oracle
extraction proof.)

• Signatures are generated deterministically, so anyone who has the signer’s
secret key can distinguish the honest prover’s transcripts from simulated
transcripts. Apart from the fact that the identification protocol’s secret
key is a one-way function of the signer’s seed, this essentially rules out
HVZK against an attacker which knows the secret key.

• Including randomization strings in the commitment inputs enables generic
collision attacks on c0 and c1 separately which would otherwise have had
to maintain a functional relation between the openings to be useful.

6 Optimizing PKP-DSS
The basic Permuted Kernel Problem is, given parameters m, n, and q, a matrix
A ∈ Fm×n

q , and a vector v ∈ Fn
q , to find a permutation π such that A(vπ) = 0.

(The notation used here is from the PKP-DSS paper, which conforms to modern
sensibilities better than Shamir’s notation.)

Shamir’s original publication of the PKP-based identification protocol men-
tioned that “the homogeneous equations can be replaced by non-homogeneous
equations” [Sha90a, §3]. [Sha90b, column 5] states that “[t]he permutations π
and σ can be chosen from any publicly known subgroup”, explicitly describes
the non-homogeneous case and how it can be implemented as a special case
of subgroup homogeneous PKP, and mentions that, because m < n, the non-
homogeneous case allows a smaller public key.

PKP-DSS obtains the same key size benefit in a different way, at the cost
of imposing additional constraints on v. I prefer the simpler, older approach of
directly using the non-homogeneous case.

For the sake of simplicity and generality, this section will consider the sub-
group inhomogeneous PKP problem directly, where π ∈ G ≤ Sn and A(vπ) = t.

6.1 Permutation operations
For consistency with implementations which will use 0-based arrays, vector and
matrix indices will be considered to be 0-based here, and Sn will act on the set
of non-negative integers less than n.

Sorting {(π−1(i),vi, σ(i))}i results in {(i, (vπ)i, (σ ◦ π)(i))}i. Either v or σ
can be omitted, but a signer with memory to spare can benefit from operating
on both at once, which is possible for the parameter sets proposed below.

24

6.2 Revising the protocol
First, Shamir’s original PKP-based identification protocol, in the notation above:

Shamir’s PKP-based identification protocol

P(sk, pk) V(pk)
(σ, r)←$G× Fn

q

c0 ← H(σ,Ar)

c1 ← H(πσ, rσ)

(c0, c1)

α←$Fq

α

z← rσ + αvπσ

z

b←$ {0, 1}

b

if b = 0 then rsp← σ

if b = 1 then rsp← πσ

rsp

if b = 0 then return c0
?
= H(σ,A(zσ−1)− αt)

if b = 1 then return c1
?
= H(πσ, z− αvπσ)

PKP-DSS [BFK+19a, §3.2] compresses rsp to a random seed by generating
πσ and rσ from independent seeds, and constraining the public key further so
that σ can be recovered uniquely from (rσ, z).

To obtain smaller signatures, I generate (πσ, rσ) from a single seed; generate
the z values, hash them to obtain the second challenge pass vector, and send
the hash; and send either the seed or (z, σ) for each run.

Parameter sets below will replace b with 1 − b to maintain the convention
that the b = 1 case has longer proofs, as would be the case for an optimized
MQDSS.

6.3 Encoding of vectors and permutations
Recursive vector encoding algorithms based on trees of arbitrary depth have
been studied since 2008:

25

• Mihai Patrascu’s “Succincter” included a forest-based representation for a
vector of trits [Pat08, §2.1]. The payload may be considered to be stored at
leaf nodes; higher-level nodes contain only “spills” passed up from below.
The paper chooses parameters to obtain theoretically near-optimal size.

• Dodis, Patrascu, and Thorup developed a vector encoding stated for a
general element bound (uniform throughout the vector), based on a heap
[DPT10, §4.2]. The tree structure here is not quite balanced (three node
types at each level), and payload is stored at internal nodes, making it
more complex than the original and not a strict generalization.

• The NTRU Prime round 2 NIST submission included a vector encoding
[BCLvV19b, §3.1] which is structurally a generalization of the Succincter
trit vector, but with a few parameters fixed for implementation conve-
nience. Payload is stored at leaf nodes only, and when all vector positions
have the same upper bound, there is at most one unbalanced node at each
level, and the encoding routine can be vectorized.
The NTRU Prime round 2 vector encoder is already specified for vec-
tors with an arbitrary sequence of upper bounds; this functionality is not
used in NTRU Prime itself, but it enables further optimizations in this
cryptosystem.

There are two further obvious generalizations for the encoder used in NTRU
Prime:

• As specified, the encoder stores the root node of the encoding tree in the
output byte vector. The root node could instead be passed out as an in-
teger spill value ≤ 16384; when multiple vectors must be packed, this can
save space without complicating low-memory or vectorized implementa-
tions.

• Where public keys must be represented as human-transportable strings,
the encoder can output base 36 or base 37, or fill in an output vector of
elements with varying upper bounds, instead of encoding to a sequence of
bytes.

The encoding of permutations requires a tradeoff of computation vs. size.
The permutation array can be encoded as in memory, packing all permutation
vector elements with n as an upper bound, or the array can be squished down
in O(n2) operations to fit in about lg(n!) bits. My recommendation is to use
un-squished permutations for interactive-only parameter sets (below Category
1) and squished permutations for higher settings.

The reference implementation [Ran20b] uses a simpler, byte-oriented en-
coding for all hash function inputs, so signatures for different settings of the
permutation squishing and root merging options can be interconverted.

26

6.4 Choice of parameter sizes
Four different sets of parameter sizes, each containing one tuple of (q, n,m) for
each of the NIST security levels Category 1, Category 3, and Category 5, have
been published by the PKP-DSS authors:

• (379, 51, 16), (521, 70, 23), and (661, 90, 33) in the first two versions of
ePrint 2018/714 (20180801:194820 [FKMR+18a] and 20180928:145725 [FKMR+18b]).
They chose (q, n) such that “n ≈ O(

√
p)”, so that a random element of

Ker(A) could be sampled. (At this point, they were still using Shamir’s
homogeneous PKP protocol.)
On the other hand, they kept the modulus q as small as possible to defend
against a claimed 2001 attack algorithm by Joux and Jaulmes, in which
the total number of operations is inversely proportional to some power of
q.
All versions of ePrint 2018/714 state that m is chosen such that “n! ≈ pm”,
so that the average number of permutations which map any given vector
into Ker(A) can be expected to be approximately 1. However, this first
set of parameter sizes was chosen with much smaller values of m, so that
random vectors in Ker(A) could be sampled in a tolerable amount of time.

• (977, 61, 28), (1409, 87, 42), and (1889, 111, 55) in ePrint 2018/714 version
20181201:152523 [FKMR+18c], which also contained an early draft of the
security analysis later published as [KMRP19]. According to this analysis,
the Joux–Jaulmes attack is nowhere near as efficient as an earlier (1993)
algorithm by Patarin and Chauvaud, in which only one of the attack steps
takes time inversely proportional to a power of q.

• (251, 69, 41), (509, 94, 54), and (4093, 106, 47) in ePrint 2018/714 version
20190410:111616 [FKMR+19]. This version also changed the key genera-
tion method and key format to their new variant of inhomogeneous PKP.
The rationale stated for selection of these sizes was not updated until the
following version (20190925:113903) [BFK+19c], which states that they
evaluated the security levels of sizes with q constrained to be a prime
number close to a power of 2, then chose (q, n,m) to minimize signature
size (given the rest of their design).

• (997, 61, 28), (1409, 87, 42), and (1889, 111, 55), used for SUSHSYFISH in
all versions of ePrint 2019/490 [Beu20], and attributed to ePrint 2018/714
(no version number specified). 997 appears to be a typo of 977.

The known attacks on PKP appear to scale as a generalized birthday attack,
which would make them less feasible than collision attacks at the same nominal
RAM model attack cost. Accordingly, I consider (977, 61, 28) and (1409, 87, 42)
to either reach the Category 2 and Category 4 security levels or come close
enough that they should be used with those symmetric primitive sizes anyway.

In addition, I have chosen three more parameter sets for potential use:

27

• (797, 55, 25) for “Category 1A”, i.e. 160-bit preimage security and 256-bit
collision-resistant hashes.

• (977, 64, 30) for Category 2, with a low-cost added margin of security
against attacks on PKP.

• (1789, 111, 55) for Category 5, with slightly smaller signatures than the
1889 parameter set.

7 Optimized signature sizes
Optimized signature sizes for PKP-DSS are listed below. The “minimal?” col-
umn indicates whether the signature parameters have minimal size given the
values in the first six columns.

The signature security level “b112git” has 112-bit security against the preimage-
like forgery attack on the Fiat–Shamir transform, and 160-bit collision-resistant
hashes, as are currently used in the ubiquitous Git version control system. This
security level is likely to remain acceptable for interactive authentication longer
than Git’s SHA-1 hashes will.

q n m keysec sigsec squished? bytes r0 r1 minimal?
797 55 25 Cat. 1A b80 yes 6882 67 35 yes
797 55 25 Cat. 1A b80 no 7197 67 35 no
797 55 25 Cat. 1A b112git yes 9578 99 47 yes
797 55 25 Cat. 1A b112git no 10001 99 47 no
797 55 25 Cat. 1A Cat. 1 yes 12966 105 57 yes
797 55 25 Cat. 1A Cat. 1A yes 16190 127 73 yes
977 61 28 Cat. 1 Cat. 1 yes 13145 108 55 yes
977 61 28 Cat. 2 Cat. 1 yes 14009 108 55 yes
977 61 28 Cat. 2 Cat. 1A yes 17523 135 69 yes
977 61 28 Cat. 2 Cat. 2 yes 20956 158 84 yes
977 64 30 Cat. 2 Cat. 1 yes 14394 108 55 yes
977 64 30 Cat. 2 Cat. 1A yes 18006 135 69 yes
977 64 30 Cat. 2 Cat. 2 yes 21542 166 81 yes

1409 87 42 Cat. 4 Cat. 2 yes 26780 178 76 yes
1409 87 42 Cat. 4 Cat. 3 yes 30738 160 82 yes
1409 87 42 Cat. 4 Cat. 4 yes 40860 216 108 yes
1789 111 55 Cat. 5 Cat. 3 yes 34988 176 76 yes
1789 111 55 Cat. 5 Cat. 5 yes 51492 232 102 yes

The software used to generate these parameters is in [Ran20a].

8 Further directions
The design above is sufficient to demonstrate the concept and provide a signa-
ture scheme efficient enough for practical use, but some further topics should

28

be studied:

• Investigate hash functions and/or tree hashing modes along the general
lines of Rumba20 [Ber07] which combine commutative operations with
hash calls. Determine whether there is any performance benefit to using
one of these modes to avoid fully sorting lists of hashes.

• Investigate the effect of using commitments short enough to permit N -
collision attacks [FS09, § II. 3.2. “Birthday paradox and coupon collector
problem”, p. 114–118][KN67] in a q2-based signature scheme, in particular
a q2 protocol in which one of the cut-and-choose challenges is compressed
to a random seed. I conjecture that this reduces the effective value of q
by only a factor of N .
If this is secure, evaluate whether there is any overall benefit to signature
size in reducing commitment sizes, and/or what values of q would justify
this tradeoff.

• Clarify the security analysis of PKP presented in [KMRP19]. Evaluate
the effect on difficulty of solving the IPKP problem as used here rather
than restricting to full-group homogeneous PKP.
An analysis should also consider the sizes of physically plausible machines
with sorting hardware and processing elements distributed throughout the
system’s memory.

• Evaluate the difficulty of solving the IPKP problem with some elements
of v repeated.

• Find parameters for a linear code such that both IPKP and permutation
equivalence are hard, if this is possible. Such a code would be potentially
useful to build a signature scheme with blinded public keys.

• Look for large-modulus attacks on PKP analogous to “overstretched” lat-
tice attacks. First, construct backdoored parameters (A,v) with q ≥ 2n+1

for which the secret key π can easily be recovered from w, to use as an
example. Then, study the extent to which these backdoors could be hid-
den, and conversely the probability that some random (A,v) can enable
these attacks.

• Evaluate the difficulty of PKP over characteristic-2 tower fields of sizes
256, 4096, and 65536. These fields will be tempting to hardware-oriented
designers, but will enable both the algebraic attacks which wrecked CTRU
[Vat08] and potentially SAT-based attacks due to the large number of
equations which can be obtained over F2. Someone should evaluate the
attacks before they can have a practical impact.

• The signature sizes achieved from the 5-pass PKP protocol by this paper
are slightly less than those achieved by the “Middle” parameter sets of
SUSHSYFISH in [Beu20], and will likely do so with much lower signing and

29

verification times. However, the SUSHSYFISH sizes include commitment
randomization strings which provide no practical benefit, and encode each
vector and permutation element by padding to a power of two.
The SUSHSYFISH approach should be re-evaluated using the same opti-
mization techniques applied here, and considering the full range of keypair
and signature security level options.

9 Acknowledgements
Ward Beullens provided helpful comments on an earlier draft, which led me to
take a closer look at [DFM20]. Sakumoto, Shirai, and Hiwatari patented their
MQ-based identification protocols [SSH13][SSH15], prompting me to research
prior art further and find a better protocol to use instead.

References
[ABD+19] Jean-Philippe Aumasson, Daniel J. Bernstein, Christoph Dobrau-

nig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, An-
dreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange,
Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, and Peter Schwabe.
SPHINCS+ [web page], 2019. http://sphincs.org/.

[BCL+19] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Mau-
rich, Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti,
Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer,
and Wen Wang. Classic McEliece: NIST submission [web page],
2019. https://classic.mceliece.org/nist.html.

[BCLvV18] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Christine van Vredendaal. NTRU Prime: reducing attack
surface at low cost. In Carlisle Adams and Jan Camenisch,
editors, Selected Areas in Cryptography—SAC 2017, 24th in-
ternational conference, Ottawa, ON, Canada, August 16–18,
2017, revised selected papers, volume 10719 of Lecture Notes
in Computer Science, pages 235–260. Springer, 2018. https:
//cr.yp.to/papers.html#ntruprime.

[BCLvV19a] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Christine van Vredendaal. NTRU Prime: NIST submission
[web page], 2019. https://ntruprime.cr.yp.to/nist.html.

[BCLvV19b] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja
Lange, and Christine van Vredendaal. NTRU Prime:
round 2, March 2019. https://ntruprime.cr.yp.to/nist/
ntruprime-20190330.pdf.

30

http://sphincs.org/
https://classic.mceliece.org/nist.html
https://cr.yp.to/papers.html#ntruprime
https://cr.yp.to/papers.html#ntruprime
https://ntruprime.cr.yp.to/nist.html
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf

[BDG20] Mihir Bellare, Hannah Davis, and Felix Günther. Separate Your
Domains: NIST PQC KEMs, Oracle Cloning and Read-Only In-
differentiability. Cryptology ePrint Archive, Report 2020/241,
2020. https://eprint.iacr.org/2020/241.

[Ber] Daniel J. Bernstein. djbsort. https://sorting.cr.yp.to/.

[Ber05] Daniel J. Bernstein. Understanding brute force. ECRYPT STVL
Workshop on Symmetric Key Encryption, 2005. https://cr.
yp.to/papers.html#bruteforce.

[Ber07] Daniel J. Bernstein. What output size resists collisions in a xor of
independent expansions? Workshop Record of ECRYPT Work-
shop on Hash Functions 2007, 2007. https://cr.yp.to/papers.
html#expandxor.

[Ber18] Daniel J. Bernstein. Divergence bounds for random fixed-weight
vectors obtained by sorting, April 2018. https://cr.yp.to/
papers.html#divergence.

[Beu19a] Ward Beullens. FISH. Public GitHub repository, 2019. https:
//github.com/WardBeullens/FISH.

[Beu19b] Ward Beullens. PKPDSS. Public GitHub repository, 2019.
https://github.com/WardBeullens/PKPDSS.

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and
fishy signature schemes. Cryptology ePrint Archive, Report
2019/490, version 20200221:084011, 2020. https://eprint.
iacr.org/2019/490/20200221:084011.

[BFK+19a] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles
Macario-Rat, Jacques Patarin, and Ludovic Perret. PKP-Based
Signature Scheme. Cryptology ePrint Archive, Report 2018/714,
version 20191028:100205, 2019. https://eprint.iacr.org/
2018/714/20191028:100205.

[BFK+19b] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles
Macario-Rat, Jacques Patarin, and Ludovic Perret. PKP-Based
Signature Scheme. Cryptology ePrint Archive, Report 2018/714,
2019. https://eprint.iacr.org/2018/714.

[BFK+19c] Ward Beullens, Jean-Charles Faugère, Eliane Koussa, Gilles
Macario-Rat, Jacques Patarin, and Ludovic Perret. PKP-Based
Signature Scheme. Cryptology ePrint Archive, Report 2018/714,
version 20190925:113903, 2019. https://eprint.iacr.org/
2018/714/20190925:113903.

31

https://eprint.iacr.org/2020/241
https://sorting.cr.yp.to/
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#bruteforce
https://cr.yp.to/papers.html#expandxor
https://cr.yp.to/papers.html#expandxor
https://cr.yp.to/papers.html#divergence
https://cr.yp.to/papers.html#divergence
https://github.com/WardBeullens/FISH
https://github.com/WardBeullens/FISH
https://github.com/WardBeullens/PKPDSS
https://eprint.iacr.org/2019/490/20200221:084011
https://eprint.iacr.org/2019/490/20200221:084011
https://eprint.iacr.org/2018/714/20191028:100205
https://eprint.iacr.org/2018/714/20191028:100205
https://eprint.iacr.org/2018/714
https://eprint.iacr.org/2018/714/20190925:113903
https://eprint.iacr.org/2018/714/20190925:113903

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim
it. In Proceedings of the International Congress of Mathemati-
cians, pages 1444–1451, 1987. https://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.469.9048.

[CDG+20] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, Xiao Wang, and Greg
Zaverucha. The Picnic Signature Scheme — Design Document
— Version 2.2, 2020. file spec/design-v2.2.pdf in https:
//github.com/Microsoft/Picnic.

[CHR+] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS specifications [all ver-
sions]. (see [CHR+17a], [CHR+19], or [CHR+20]).

[CHR+16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. From 5-pass MQ-based identi-
fication to MQ-based signatures. Cryptology ePrint Archive, Re-
port 2016/708, version 20161204:155428, 2016. https://eprint.
iacr.org/2016/708/20161204:155428.

[CHR+17a] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS specifications [version
1.0], November 2017. http://mqdss.org/files/mqdss.pdf.

[CHR+17b] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. SOFIA: MQ-based signatures
in the QROM. Cryptology ePrint Archive, Report 2017/680, ver-
sion 20170718:150037, 2017. https://eprint.iacr.org/2017/
680/20170718:150037.

[CHR+19] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS specifications [version
2.0], March 2019. http://mqdss.org/files/MQDSS_Ver2.pdf.

[CHR+20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS specifications [version
2.1], April 2020. http://mqdss.org/files/mqdssVer2point1.
pdf.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The Measure-
and-Reprogram Technique 2.0: Multi-Round Fiat-Shamir and
More. Cryptology ePrint Archive, Report 2020/282, version
20200727:092440, 2020. https://eprint.iacr.org/2020/282/
20200727:092440.

[DPT10] Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing
Base without Losing Space. In Proceedings of the Forty-Second

32

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.9048
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.9048
https://github.com/Microsoft/Picnic
https://github.com/Microsoft/Picnic
https://eprint.iacr.org/2016/708/20161204:155428
https://eprint.iacr.org/2016/708/20161204:155428
http://mqdss.org/files/mqdss.pdf
https://eprint.iacr.org/2017/680/20170718:150037
https://eprint.iacr.org/2017/680/20170718:150037
http://mqdss.org/files/MQDSS_Ver2.pdf
http://mqdss.org/files/mqdssVer2point1.pdf
http://mqdss.org/files/mqdssVer2point1.pdf
https://eprint.iacr.org/2020/282/20200727:092440
https://eprint.iacr.org/2020/282/20200727:092440

ACM Symposium on Theory of Computing, STOC ’10, page
593–602, New York, NY, USA, 2010. Association for Comput-
ing Machinery. https://cs.nyu.edu/~dodis/ps/prefix.pdf,
https://doi.org/10.1145/1806689.1806771.

[FKMR+18a] Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat,
Jacques Patarin, and Ludovic Perret. PKP-Based Signature
Scheme. Cryptology ePrint Archive, Report 2018/714, version
20180801:194820, 2018. https://eprint.iacr.org/2018/714/
20180801:194820.

[FKMR+18b] Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat,
Jacques Patarin, and Ludovic Perret. PKP-Based Signature
Scheme. Cryptology ePrint Archive, Report 2018/714, version
20180928:145725, 2018. https://eprint.iacr.org/2018/714/
20180928:145725.

[FKMR+18c] Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat,
Jacques Patarin, and Ludovic Perret. PKP-Based Signature
Scheme. Cryptology ePrint Archive, Report 2018/714, version
20181201:152523, 2018. https://eprint.iacr.org/2018/714/
20181201:152523.

[FKMR+19] Jean-Charles Faugère, Eliane Koussa, Gilles Macario-Rat,
Jacques Patarin, and Ludovic Perret. PKP-Based Signature
Scheme. Cryptology ePrint Archive, Report 2018/714, version
20190410:111616, 2019. https://eprint.iacr.org/2018/714/
20190410:111616.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems. In An-
drew M. Odlyzko, editor, Advances in Cryptology — CRYPTO
’86 Proceedings, volume 263 of Lecture Notes in Computer Sci-
ence, pages 186–194. Springer, 1987. https://link.springer.
com/chapter/10.1007%2F3-540-47721-7_12.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics.
Cambridge University Press, 2009. https://ac.cs.princeton.
edu/home/AC.pdf.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures. Cryptology ePrint Archive, Report
2018/475, 2018. https://eprint.iacr.org/2018/475.

[KMRP19] Eliane Koussa, Gilles Macario-Rat, and Jacques Patarin. On the
complexity of the Permuted Kernel Problem. Cryptology ePrint
Archive, Report 2019/412, 2019. https://eprint.iacr.org/
2019/412.

33

https://cs.nyu.edu/~dodis/ps/prefix.pdf
https://doi.org/10.1145/1806689.1806771
https://eprint.iacr.org/2018/714/20180801:194820
https://eprint.iacr.org/2018/714/20180801:194820
https://eprint.iacr.org/2018/714/20180928:145725
https://eprint.iacr.org/2018/714/20180928:145725
https://eprint.iacr.org/2018/714/20181201:152523
https://eprint.iacr.org/2018/714/20181201:152523
https://eprint.iacr.org/2018/714/20190410:111616
https://eprint.iacr.org/2018/714/20190410:111616
https://link.springer.com/chapter/10.1007%2F3-540-47721-7_12
https://link.springer.com/chapter/10.1007%2F3-540-47721-7_12
https://ac.cs.princeton.edu/home/AC.pdf
https://ac.cs.princeton.edu/home/AC.pdf
https://eprint.iacr.org/2018/475
https://eprint.iacr.org/2019/412
https://eprint.iacr.org/2019/412

[KN67] M. S. Klamkin and D. J. Newman. Extensions of the birth-
day surprise. Journal of Combinatorial Theory, 3:279–282,
1967. https://www.sciencedirect.com/science/article/
pii/S0021980067800759.

[KZ19] Daniel Kales and Greg Zaverucha. Forgery Attacks on
MQDSSv2.0. NIST PQC Round 2 official comment,
August 2019. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-2/
official-comments/MQDSS-round2-official-comment.pdf.

[KZ20] Daniel Kales and Greg Zaverucha. An Attack on Some Signature
Schemes Constructed From Five-Pass Identification Schemes.
Cryptology ePrint Archive, Report 2020/837, 2020. https:
//eprint.iacr.org/2020/837.

[Lei18] D. F. Leichtle. Post-quantum signatures from identifi-
cation schemes. Master’s thesis, Universität Stuttgart,
Oct 2018. https://research.tue.nl/en/studentTheses/
post-quantum-signatures-from-identification-schemes.

[Pat08] Mihai Patrascu. Succincter. In 2008 IEEE 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
305–313, Los Alamitos, CA, USA, Oct 2008. IEEE Computer
Society.

[Poi95] David Pointcheval. A New Identification Scheme Based on the
Perceptrons Problem. In Advances in Cryptology — Proceed-
ings of EUROCRYPT ’95, volume 921 of Lecture Notes in Com-
puter Science, pages 319–328, 1995. http://www.di.ens.fr/
~pointche/Documents/Papers/1995_eurocrypt.pdf, http://
dx.doi.org/10.1007/3-540-49264-X_26.

[PS00] David Pointcheval and Jacques Stern. Security Arguments for
Digital Signatures and Blind Signatures. Journal of Cryp-
tology, 13(3):361–396, June 2000. https://link.springer.
com/article/10.1007/s001450010003, https://www.di.ens.
fr/~stern/data/St75.pdf.

[Ran20a] Robert Ransom. mqdss-parameters. Public Git repository, 2020.
https://gitlab.com/rransom/mqdss-parameters.

[Ran20b] Robert Ransom. pkpsig-python-ref-impl. Public Git
repository, 2020. https://gitlab.com/rransom/
pkpsig-python-ref-impl.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc.,
second edition, 1996.

34

https://www.sciencedirect.com/science/article/pii/S0021980067800759
https://www.sciencedirect.com/science/article/pii/S0021980067800759
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://eprint.iacr.org/2020/837
https://eprint.iacr.org/2020/837
https://research.tue.nl/en/studentTheses/post-quantum-signatures-from-identification-schemes
https://research.tue.nl/en/studentTheses/post-quantum-signatures-from-identification-schemes
http://www.di.ens.fr/~pointche/Documents/Papers/1995_eurocrypt.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/1995_eurocrypt.pdf
http://dx.doi.org/10.1007/3-540-49264-X_26
http://dx.doi.org/10.1007/3-540-49264-X_26
https://link.springer.com/article/10.1007/s001450010003
https://link.springer.com/article/10.1007/s001450010003
https://www.di.ens.fr/~stern/data/St75.pdf
https://www.di.ens.fr/~stern/data/St75.pdf
https://gitlab.com/rransom/mqdss-parameters
https://gitlab.com/rransom/pkpsig-python-ref-impl
https://gitlab.com/rransom/pkpsig-python-ref-impl

[SF88] Adi Shamir and Amos Fiat. US 4,748,668 A — method, appa-
ratus, and article for identification and signature. U.S. patent,
May 1988. Expired 2006-07-09.

[Sha90a] Adi Shamir. An Efficient Identification Scheme Based on Per-
muted Kernels (extended abstract). In Gilles Brassard, edi-
tor, Advances in Cryptology — CRYPTO ’89 Proceedings, vol-
ume 435 of Lecture Notes in Computer Science, pages 606–
609. Springer, 1990. https://link.springer.com/chapter/
10.1007/0-387-34805-0_54.

[Sha90b] Adi Shamir. US 4,932,056 A — method and apparatus for user
identification based on permuted kernels. U.S. patent, June 1990.
Expired 2009-03-16.

[SRC+17] Simona Samardjiska, Joost Rijneveld, Ming-Shing Chen,
Andreas Hülsing, Peter Schwabe, and Tomonori Okuwaki.
Intellectual property statements for MQDSS, round 1,
November 2017. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/
ip-statements/MQDSS-Statements.pdf.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-
Key Identification Schemes Based on Multivariate Quadratic
Polynomials. In Advances in Cryptology — CRYPTO 2011 —
31st Annual Cryptology Conference, volume 6841 of Lecture Notes
in Computer Science, page 703. Springer, 2011. https://www.
iacr.org/archive/crypto2011/68410703/68410703.pdf.

[SSH13] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. US
8,522,033 B2 — authentication device, authentication method,
program, and signature generation device. U.S. patent, August
2013. Active.

[SSH15] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. US
8,959,355 B2 — authentication device, authentication method,
program, and signature generation device. U.S. patent, February
2015. Active.

[st20] Picnic NIST submission team. The Picnic Signature Algorithm
— Specification — Version 3.0, 2020. file spec/spec-v3.0.pdf
in https://github.com/Microsoft/Picnic.

[Ste94a] Jacques Stern. Designing Identification Schemes with Keys
of Short Size. In Yvo G. Desmedt, editor, Advances in
Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 164–173. Springer, 1994. https://
www.di.ens.fr/users/stern/data/St51.pdf, https://link.
springer.com/chapter/10.1007/3-540-48658-5_18.

35

https://link.springer.com/chapter/10.1007/0-387-34805-0_54
https://link.springer.com/chapter/10.1007/0-387-34805-0_54
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/ip-statements/MQDSS-Statements.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/ip-statements/MQDSS-Statements.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/ip-statements/MQDSS-Statements.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://github.com/Microsoft/Picnic
https://www.di.ens.fr/users/stern/data/St51.pdf
https://www.di.ens.fr/users/stern/data/St51.pdf
https://link.springer.com/chapter/10.1007/3-540-48658-5_18
https://link.springer.com/chapter/10.1007/3-540-48658-5_18

[Ste94b] Jacques Stern. A new identification scheme based on syn-
drome decoding. In Douglas R. Stinson, editor, Advances in
Cryptology — CRYPTO ’93, volume 773 of Lecture Notes in
Computer Science, pages 13–21. Springer, 1994. https://
www.di.ens.fr/users/stern/data/St47.pdf, https://link.
springer.com/chapter/10.1007/3-540-48329-2_2.

[Ste96a] Jacques Stern. A new paradigm for public key identification.
IEEE Transactions on Information Theory, 42(6):1757–1768,
1996. https://www.di.ens.fr/users/stern/data/St55b.pdf,
https://ieeexplore.ieee.org/document/556672.

[Ste96b] Jacques Stern. US 5,483,597 A — authentication process for at
least one identification device using a verification device and a de-
vice embodying the process. U.S. patent, January 1996. Expired
2013-12-30.

[Ste96c] Jacques Stern. US 5,581,615 A — scheme for authentication of
at least one prover by a verifier. U.S. patent, December 1996.
Expired 2014-12-30.

[Vat08] Nitin Vats. Algebraic Cryptanalysis of CTRU Cryptosystem. In
Xiaodong Hu and Jie Wang, editors, Computing and Combina-
torics, pages 235–244, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

36

https://www.di.ens.fr/users/stern/data/St47.pdf
https://www.di.ens.fr/users/stern/data/St47.pdf
https://link.springer.com/chapter/10.1007/3-540-48329-2_2
https://link.springer.com/chapter/10.1007/3-540-48329-2_2
https://www.di.ens.fr/users/stern/data/St55b.pdf
https://ieeexplore.ieee.org/document/556672

	Introduction
	Background
	Identification protocols
	5-pass identification protocols
	The Fiat–Shamir transform
	Choosing an identification protocol
	Sampling challenges from non-uniform distributions

	Changes to enable constant-time verification
	Sampling the first challenge round in constant time
	Fixed-multiset challenge vectors

	Effect on provable security
	Errors in prior MQDSS “proofs of security”
	Probability of q2-extraction
	Comments on provable security

	Generic optimization considerations
	Optimizing PKP-DSS
	Permutation operations
	Revising the protocol
	Encoding of vectors and permutations
	Choice of parameter sizes

	Optimized signature sizes
	Further directions
	Acknowledgements

