
When HEAAN Meets FV: a New Somewhat
Homomorphic Encryption with Reduced

Memory Overhead

Hao Chen1, Ilia Iliashenko2, and Kim Laine3

1 Facebook, Cambridge, USA
sxxach@gmail.com

2 imec-COSIC, Dept. Electrical Engineering, KU Leuven, Belgium
ilia@esat.kuleuven.be

3 Microsoft Research, Redmond, USA
kim.laine@microsoft.com

Abstract. We demonstrate how to reduce the memory overhead of
somewhat homomorphic encryption (SHE) while computing on numeri-
cal data. We design a hybrid SHE scheme that exploits the packing algo-
rithm of the HEAAN scheme and the variant of the FV scheme by Bootland
et al. The ciphertext size of the resulting scheme is 3-18 times smaller
than in HEAAN to compute polynomial functions of depth 4 while pack-
ing a small number of data values. Furthermore, our scheme has smaller
ciphertexts even with larger packing capacities (256-2048 values).

1 Introduction

Homomorphic encryption (HE) [21] is a family of encryption schemes that al-
low computation on encrypted messages without decryption. Several types of
such schemes have been proposed in the last 40 years, including partially ho-
momorphic encryption (e.g. [22,15,11,19]), which can perform either addition
or multiplication, somewhat homomorphic encryption (SHE), which supports
functions of a limited multiplicative depth, and fully homomorphic encryption
(FHE) [14] capable to compute any function on encrypted data.

Despite their universality, SHE/FHE schemes have a significant disadvan-
tage in practice. In particular, they introduce a huge memory overhead per en-
crypted bit value, which makes even simple arithmetic operations on numerical
data impractically slow. To mitigate this overhead various encoding algorithms
have been proposed that exploit the structure of typical plaintext spaces used
in SHE/FHE [7,10,6,2,4,3]. They deviate from bit-wise encryption to so-called
‘word-wise’ encryption where one (or even several) data values can be encrypted
per ciphertext. Unfortunately, these algorithms perform correctly only if the
ciphertext modulus grows exponentially with the depth of the circuit.

A more efficient approach was proposed by Cheon et al. [5], who introduced
a new type of HE schemes, called approximate HE (AHE). The crucial idea
is to allow an additional error while performing homomorphic operations. For

example, multiplication of two encrypted plaintexts ct1 = Encrypt(pt1) and
ct2 = Encrypt(pt2) results in another ciphertext ct3, which is decrypted to
Decrypt(ct3) = pt1 · pt2 + e where e is a so-called ‘noise’. The size of e defines
the approximation ‘closeness’ between decrypted and expected results.

AHE is suitable for handling non-integer data types such as real, rational or
complex numbers. Computation on such numerical types in computer systems
is inherently prone to numerical errors. Thus, the results of such computation
are only correct up to a certain precision. Approximation errors introduced by
AHE can be treated as a part of these numerical errors.

The drawback of the first AHE scheme from [5], called HEAAN, is that its
ciphertext size should be set quite large to be able to compute even simple poly-
nomial functions with a decent precision. This problem is mitigated by packing,
which is an encoding technique that allows to encrypt several data values into one
ciphertext. In addition, computations on these packed values can be performed
in the Single-Instruction Multiple-Data (SIMD) manner.

The packing method of HEAAN permits thousands of data values to be en-
crypted into a single ciphertext, thus significantly reducing the amortized ci-
phertext expansion per data value. However, various applications do not require
such a large packing capacity and assume modest computational resources, es-
pecially in the use cases where embedded devices are used [12,16,18].

For example, such a device can collect data about vital organs (e.g. heart,
blood pressure) and constantly sends it to a special service that runs a private
prediction model of a heart attack in a privacy-preserving manner. Each message
from the device contains a smaller amount of values (dozens, maybe a hundred
of measurements) in comparison to the dimension of plaintexts in FHE schemes
(thousands). In addition, each message should be as small as possible to fit
constraints of the device, but at the same time it should be large enough to let
the service perform homomorphic computations of certain depth.

To reduce ciphertext size, one can resort to so-called ‘high-precision’ SHE
schemes [4,3] that trade packing capacity for additional homomorphic opera-
tions. Thus, relatively deep computations can be performed with modest en-
cryption parameters of these schemes. The known high-precision SHE schemes
are variants the FV scheme [13]. FV is not AHE, but its encryption function is
very similar to the one of HEAAN. Furthermore, the variant of FV by Bootland et
al. [3] supports complex-number arithmetic as HEAAN.

Our contribution. In this work, we design a new SHE scheme that can perform
computations on numerical data with smaller ciphertexts than in HEAAN.

The core idea is to exploit the recent variant of the FV scheme [13] due
to Bootland et al. [3], where the integer plaintext modulus is replaced by a
polynomial Xm + b for some m and b. The plaintext space of this scheme is
Z[X]/(Xn + 1, Xm + b), which is isomorphic to the ring of cyclotomic integers
Z[ζ2m]/(bn/m + 1) if n and m are powers of 2 and b is an mth power modulo
bn/m + 1. This FV variant natively supports homomorphic computation on large
cyclotomic integers Z[ζ2m] with small encryption parameters.

2

We combine this scheme with the HEAAN packing algorithm, which maps
complex-valued vectors into cyclotomic integers. More precisely, it encodes ele-
ments of Cm/2 into the aforementioned ring Z[ζ2m], which can be easily embed-
ded into Z[ζ2m]/(bn/m + 1), the plaintext space of Bootland’s variant of FV.

As a result we obtain a hybrid SHE scheme which follows the following dia-
gram

Cm/2 HEAAN packing−−−−−−−−→ Z[ζ2m]/(bn/m + 1)
FV encryption−−−−−−−−→ R2

q = (Z[X]/(Xn + 1))
2
,

where R2
q is the ciphertext space. This hybrid leverages the advantages of both

schemes: the small memory overhead of Bootland’s FV variant and the large
packing capacity of HEAAN. Furthermore, since our technique only changes the
way how the plaintext space of Bootland’s scheme is used, the security analysis
of our hybrid scheme is exactly the same as for the FV scheme.

We describe a family of arithmetic circuits where our scheme have a smaller
memory and running time overhead than HEAAN. In addition, we illustrate the
difference between these schemes by computing several important analytic func-
tions.

2 Preliminaries

For any a ∈ N, we denote the set of integers {1, . . . , a} by [a]. Vectors and
matrices are denoted by boldface lower- and upper-case letters, respectively.
Vectors are written in column form.

Let n be a positive power of 2. LetK be a cyclotomic number field constructed
by adjoining a primitive complex 2n-th root of unity to the field of rational
numbers. We denote this root of unity by ζ2n, so K = Q(ζ2n). The ring of
integers of K, denoted by R, is isomorphic to Z[X]/(Xn + 1).

For any a ∈ K its coefficient vector (a0, . . . , an−1) in the power basis is
denoted by a. The infinity norm of a is equal to |a|∞ = |a|∞ = maxn−1i=0 |ai|.
The product of any a, b ∈ K satisfies the following bound |ab|∞ ≤ n · |a|∞ · |b|∞,
see [9] for more details.

Let Ra be the quotient of R modulo an ideal (a). If a is a natural number,
we take representatives of Z/aZ from the half-open interval [−a/2, a/2).

The semantic security of encryption schemes presented in this paper is based
on the RLWE problem introduced in [17].

Definition 1 (RLWE problem). Let q > 2 be an integer. Let s ∈ Rq be a
random secret element, a, a′, b′ ∈ Rq be uniformly random elements and e ∈ Rq
be a random element sampled from some known distribution over Rq. The RLWE
problem is to distinguish between (a, b = as+ e) and (a′, b′).

The hardness of the RLWE problem implies that the above pair (a, b) is pseu-
dorandom. Thus, it can be exploited as a random mask in encryption and key
generation (see more details in [17]).

3

3 HEAAN packing method

In this section, we describe the HEAAN method for packing complex-valued vectors
as presented in [5]. This packing method exploits the canonical embedding of
cyclotomic fields.

Let K ′ = Q (ζ2m), where m is a power of two and m divides n. Clearly, K ′ is
a subfield of K. We denote the ring of integers of K ′ by R′. Since [K ′ : Q] = m,
there exist m field homomorphisms σ′i : K ′ → C with i ∈ [m] that fix every
element of Q. In particular, each σ′i is a complex embedding that maps ζ2m to
ζ2i−12m . These are the only field homomorphisms from K ′ to C.

Let H ′ be a vector subspace of Cm such that H ′ = {(x1, . . . , xm)
ᵀ

: xm−j+1 =
x̂j ,∀j ∈ [m/2]}. This space is equipped with a projection map π : H ′ → Cm/2
that discards either of complex conjugate components. Conversely, the inverse
map π−1 appends a vector from Cm/2 with the conjugates of its coordinates in
the order compliant with H ′.

The canonical embedding of K ′ is the map σ′ : K ′ → H ′ defined as σ′(a) =
(σ′1(a), . . . , σ′m(a)). By analogy, we can define the canonical embedding of K
denoted by σ, which endows K with the canonical norm via ‖a‖can = |σ(a)|∞
for any a ∈ K. Since n is a power of two, |a|∞ ≤ ‖a‖

can
as shown in [9].

In addition, ‖ab‖can ≤ ‖a‖can ‖b‖can for any a, b ∈ K.

Let a = (a0, a1, . . . , am−1) be the coefficient vector of a ∈ K ′ in the power
basis of K ′. Then, the canonical embedding σ′ transforms a into

Σ ·

 a0
...

am−1

 =

σ′1(a)
...

σ′m(a)

where Σ = (ζ

j(2i+1)
2m)i,j is a Vandermonde matrix. Since Σ is nonsingular, the in-

verse of the canonical embedding is correctly defined by Σ−1 =
(

1
mζ
−i(2j+1)
2m

)
i,j

.

Thus, the composition map σ′−1 ◦ π−1 encodes vectors from Cm/2 into K ′.

To finish packing, elements of K ′ should end up in the ring of cyclotomic
integers R′. This can be done using discretization to the lattice σ′(R′), which
boils down to coefficient-wise rounding with relation to the power basis of R′

over Z. However, this rounding introduces an error that might damage significant
bits of input values. To eliminate this error, an input vector is scaled up by some
value ∆. To summarize, the complete packing pipeline consists of the following
map chain

• Pack(∆) : Cm/2 ·∆−→ Cm/2 π−1

−−→ H ′
σ′−1

−−−→ K ′
b·e−−→ R′.

The unpacking algorithm is the inverse map of Pack without the rounding step,
namely

• Unpack(∆′) : R′
σ′−→ H ′

π−→ Cm/2 ·∆
′−1

−−−−→ Cm/2.

4

The size of ∆ is defined by the input precision p and the input dimension m
according to the following lemma.

Lemma 1. Given an input vector z ∈ Cm/2 and a positive integer p, the vector
z′ = Unpack(∆, Pack(∆, z)) satisfies |z− z′|∞ < 1

p , if ∆ > pm
2 .

Proof. Let u ∈ H ′ be the output of the first two steps of the Pack algorithm,
namely u = π−1(∆ · z). Then, the final output a ∈ R′ can be represented in
matrix notation as

a =
⌊
Σ−1 · u

⌉
= Σ−1 · u + e

with |e|∞ ≤ 1/2. Computing Unpack(∆, a), we obtain

z′ =
1

∆
π (Σa) =

1

∆
π(u + Σe) = z +

1

∆
π(Σe) .

Hence, the difference between the input z and its packed approximation z′ sat-
isfies the following bound

|z− z′|∞ = max
i∈[m/2]

∣∣∣∣∣∣ 1

∆

m−1∑
j=0

ej · ζj(2i−1)2m

∣∣∣∣∣∣ ≤ m

2∆
,

which immediately leads to the desired lower bound on ∆.

4 FV scheme with a polynomial plaintext modulus

In this section we describe the variant of the FV scheme given by Bootland et al.
in [3], which is based on the work of Chen et al. [4]. The main difference of this
variant from the original FV scheme [13] consists in switching from an integer
plaintext modulus t to a polynomial Xm + b.

Let q be an integer. The ciphertext space is defined as Rq = R/(q). Take
an integer b such that 2 ≤ |b| � q. Let m be a positive integer dividing n. The
quotient ring RXm+b = R/(Xm+ b) serves as the plaintext space. We define the
encryption scaling factor ∆b as follows

∆b =

⌊
q

Xm + b
mod (Xn + 1)

⌉
=

− q

bn/m + 1

n/m∑
i=1

(−b)i−1 ·Xn−im

 .
Let χe be the error distribution onR, which is a coefficient-wise discrete Gaussian
distribution with respect to the power basis. The standard deviation of χe is σ.
The key distribution χk generates uniformly random elements of R with ternary
coefficients (again, with respect to the power basis). We also set an integer w > 1
and call it the decomposition base. Let ` = blogw qc.

Given this set-up, the basic FV scheme with polynomial plaintext modulus is
defined as follows.

5

• KeyGen(1n): Let s ← χk and e, e0, . . . e` ← χe. Generate uniformly random
a, a0, . . . , a` ∈ Rq and compute bi =

[
−(ai · s+ ei) + wi · s2

]
q
. Output

– the secret key sk = s,

– the public key pk =
(

[−(a · s+ e)]q , a
)

,

– the evaluation key rlk = {(bi, ai)}`i=0.
• Encrypt(pk,msg ∈ RXm+b): Sample u← χk and e0, e1 ← χe. Set p0 = pk[0]

and p1 = pk[1]. Output ct = (c0, c1), where

c0 = [∆b ·msg + p0 · u+ e0]q , c1 = [p1 · u+ e1]q

• Decrypt(sk, ct): Return

msg′ =

⌊
Xm + b

q
[c0 + c1 · s]q

⌉
mod (Xm + b) .

As shown in [17], this encryption scheme is semantically secure assuming the
hardness of the RLWE problem.

4.1 Homomorphic operations

It is easy to adapt the homomorphic operations of FV to the new plaintext
modulus as shown below.

• Add(ct0, ct1): Return ctAdd =
(

[ct0[0] + ct1[0]]q , [ct0[1] + ct1[1]]q

)
.

• BasicMul(ct0, ct1): Return ctBasicMul = (c0, c1, c2), where

c0 =

[⌊
Xm + b

q
· ct0[0] · ct1[0]

⌉]
q

, c2 =

[⌊
Xm + b

q
· ct0[1] · ct1[1]

⌉]
q

,

c1 =

[⌊
Xm + b

q
· (ct0[0] · ct1[1] + ct0[1] · ct1[0])

⌉]
q

.

• Relin(ctBasicMul, rlk): Writing ctBasicMul = (c0, c1, c2), expand c2 in base w

such that c2 =
∑`
i=0 c2,i · wi with |c2,i|∞ ≤ w/2. Compute

c′0 = c0 +
∑̀
i=0

rlk[i][0] · c2,i, c′1 = c1 +
∑̀
i=0

rlk[i][1] · c2,i

and output cRelin = (c′0, c
′
1).

• Mul(ct0, ct1, rlk): Return cMul = (c′0, c
′
1) = Relin(BasicMul(ct0, ct1), rlk) .

4.2 Ciphertext size

In this section we describe the memory overhead of FV with a polynomial plain-
text modulus.

6

The memory overhead is defined by two encryption parameters: the cipher-
text modulus q and the ring dimension n. Furthermore, the same parameters
and the standard deviation σ determine the security level of an HE scheme. In
practice, n and σ are usually fixed whereas q is chosen according to the desired
security level and homomorphic operations to be performed. If no appropriate q
is found, then this search is repeated for a larger n.

The security level of the parameter triple (q, n, σ) can be computed via the
LWE-estimator of Albrecht et al. [1]. To find q that guarantees decryption cor-
rectness for the output of a given homomorphic circuit, one can use the following
heuristic analysis with fixed n and σ.

The decryption correctness is closely related to the size of the ciphertext
invariant noise. The invariant noise of a ciphertext ct = (c0, c1) encrypting a
plaintext msg ∈ RXm+b is an element v ∈ K with the smallest canonical norm
such that

Xm + b

q
· [c0 + c1 · s]q = msg + v + g · (Xm + b)

for some g ∈ R. It is easy to see that Decrypt returns msg if |v|∞ < 1/2, i.e. the
rounding step removes v. Since |v|∞ ≤ ‖v‖

can
, one can switch to the heuristic

analysis of the canonical norm to show that ‖v‖can < 1/2.

Fresh noise heuristic [3]. Let ct be a fresh ciphertext ct = Encrypt(pk,msg),
then the invariant noise v of ct is bounded with very high probability by

‖v‖can ≤ b+ 1

q

(
‖msg‖can · n

√
3n+ 2σ

√
12n2 + 9n

)
. (1)

Since the right-hand side should be smaller than 1/2, the minimal ciphertext
modulus supporting the decryption correctness should satisfy q ∈ Ω

(
b2n
√
n
)
.

Homomorphic arithmetic operations increase the invariant noise. It can be
easily seen that homomorphic addition results in an additive noise growth,
whereas homomorphic multiplication induces a linear growth as shown below.

Multiplication noise heuristic [3]. Let ct(msg, v) be a ciphertext encrypting
message msg ∈ RXm+b with invariant noise v. Given two ciphertexts ct1 =
ct(msg1, v1) and ct1 = ct(msg2, v2), the function Mul(ct1, ct2, rlk) outputs a
ciphertext ctMul = ct(msg1 ·msg2, vMul) with

‖vMul‖can ≤ (b+ 1)
√

3n+ 2n2 (‖v1‖can + ‖v2‖can) + 3 ‖v1‖can ‖v2‖can

+
b+ 1

q

√
3n+ 2n2 + 4n3/3 +

b+ 1

q
σnw

√
3(`+ 1)

(2)

with very high probability. Let vLMul be an invariant noise after L multiplicative
levels. If L = 0, then it follows from (1) and the additive noise growth after
homomorphic addition that

∥∥v0Mul∥∥can ∈ O
(
b2n
√
n/q
)
. Computing

∥∥v1Mul∥∥can,
one can notice that the first term of the right-hand side in (2) is dominant and

7

thus
∥∥v1Mul∥∥can ∈ O

(
bnv0Mul

)
, or

∥∥v1Mul∥∥can ∈ O
(
b3n2
√
n/q
)
. By induction, we

obtain ∥∥vLMul∥∥can ∈ O(bL+2nL+1
√
n

q

)
.

Given that
∥∥vLMul∥∥can should be less than 1/2 to guarantee the decryption cor-

rectness, the ciphertext modulus should satisfy

q ∈ Ω
(
bL+2nL+1

√
n
)
. (3)

5 Encoding of packed values into FV

To employ the HEAAN packing method in the FV scheme, we need to map elements
of R′ to the plaintext ring RXm+b. For this purpose, we resort to the encoding
algorithm of Bootland et al. [3], which maps cyclotomic integers from R′ =
Z[ζ2m] to the plaintext space RXm+b isomorphic to Z[X]/(Xn + 1, Xm + b).
A similar technique was given by Chen et al. [4] for the plaintext modulus X+b.

Let â ∈ Z/(bn/m+ 1)Z be the representative of an integer a modulo bn/m+ 1

in the symmetric interval
[
−(bn/m + 1)/2, (bn/m + 1)/2

)
. Assume that b̂ = α̂m

for some α. This assumption might seem too strong for the reader but there
exist special forms of b such that α̂ is efficiently computable; we discuss them
later in this section. Since b is co-prime to bn/m+1, there exist the multiplicative
inverse of α̂, denoted β̂. This implies that βX is a primitive 2m-th root of unity
in RXm+b, namely (β̂X)m = α̂−mXm = b̂−1Xm = −1. Therefore, the map

ζ2m 7→ β̂X induces the following ring homomorphism

Z[ζ2m]→ RXm+b :

m−1∑
i=0

aiζ
i
2m 7→

m−1∑
i=0

âiβ̂
iXi . (4)

This map outputs polynomials of degree less than m with coefficients exponential
in b. Such large coefficients drastically increase the invariant noise as you can see
in (1). Therefore, the next step is to switch to another representative modulo
Xm + b by spreading this polynomial across the power range 1, X, . . . ,Xn−1

while making the plaintext coefficients smaller. It can be done by computing the
balanced b-ary expansion of each coefficient and then mapping powers of b to
corresponding powers of −Xm. The result is then lifted to R = Z[X]/(Xn + 1)
and fed to the FV scheme.

The homomorphism (4) is surjective with kernel
(
bn/m + 1

)
. Therefore, it

induces an isomorphism between cyclotomic integers from Z[ζ2m]/
(
bn/m + 1

)
and RXm+b; thus, the encoding and the decoding maps are well defined. To
decode an element c ∈ RXm+b, we first compute c′ = c mod (Xm + b) and then
map X to α̂ · ζ2m, which results in

c′ =

m−1∑
i=0

ĉ′iX
i 7→

m−1∑
i=0

ĉ′iα̂
iζi2m .

8

As a result, the homomorphism defined by (4) serves as an encoding map from
cyclotomic integers to the plaintext space RXm+b. Using this map together with
the Pack function from Section 3, we can encrypt m/2 complex numbers into
FV without using previously known packing techniques based on the Chinese
Remainder Theorem [24].

The advantage of this encoding technique is that the unused part of the
plaintext space coming from the large dimension n is transformed into a larger
integral modulus, reflected in the exponent n/m. However, the encoding algo-
rithm of HEAAN, where ζ2m is mapped to Xn/m, is not surjective as plaintexts
belong to an m-dimensional subspace of the plaintext space. Thus, a large part
of the plaintext space remains unused.

5.1 Choice of b.

As mentioned earlier, the encoding algorithm assumes that b is an m-th power
residue modulo bn/m + 1. Moreover, its m-th root α is efficiently computable.
When m is a positive power of 2, finding α is at least as hard as finding a square
root of b. Since factoring bn/m+1 and extracting square roots modulo bn/m+1 are
computationally equivalent [20], an efficient algorithm for computing α implies
the existence of an efficient factoring algorithm for generalized Fermat numbers

of the form b2
k

+ 1. Unfortunately, no efficient prime factorization algorithm for
these numbers is found.

There exists a specific b whose m-th roots are efficiently computable. In par-
ticular, if b = 2m/2 then α must be congruent to the square root of 2 modulo
bn/m + 1 = 2n/2 + 1. In this case, it is easy to verify that α = 2n/8

(
2n/4 − 1

)
.

Unfortunately, such b is exponential in m, so invariant noise grows exponentially
faster as the number of packing slots increases. Therefore, fewer homomorphic
operations are affordable when the packing capacity increases.

Another interesting choice of b is when b < 2m/2 and bn/m + 1 becomes a
generalized Fermat prime. Thus, α can be efficiently computed by the Tonelli-
Shanks algorithm [23]. Note that in this case b must be even, or b = 2kc for some
k > 0 and odd c. It follows from [3, Lemma 1] that if b is an m-th power residue,
then 2n divides bn/m = 2kn/mcn/m. As a result, n should divide 2kn/m−1. Since
n is a power of two, we obtain that log2 n ≤ kn/m − 1. Given this constraint
and the fact that n/m is at most 216 in practice, we can find numerous suitable
bases b of generalized Fermat primes, see Table 6 in Appendix A.

To be decoded correctly, a cyclotomic integer a from Z[ζ2m] should have an
infinity norm bounded as follows

|a|∞ <
bn/m + 1

2
. (5)

Let ai ∈ Z[ζ2m] be output values of Pack(zi) for complex vectors zi ∈ Cm/2
with |zi|∞ ≤ B for some B. According to Section 3, the infinity norm of ai

9

represented in the power basis of Z[ζ2m] is bounded by

|ai|∞ =

∣∣∣∣⌊∆m ·Σ−1zi
⌉∣∣∣∣
∞
≤ ∆B +

1

2
. (6)

It follows from Lemma 1 that the packing scale ∆ must be at least pm
2 + ε

for small ε > 0 to pack zi with precision p. Hence, the infinity norm of ai
has the following upper bound |ai|∞ ≤ V =

(
pm
2 + ε

)
· B + 1

2 . For any ai, aj
it holds |aiaj |∞ ≤ mV 2. It follows by induction that after L multiplicative

levels the infinity norm increases up to m2L−1V 2L . From the decoding require-

ment (5) we obtain that m2L−1V 2L must be smaller than bn/m+1
2 , which leads to

b ∈ Ω
(
m

m
n (2L+1−1) · (pB)

m
n ·2

L
)
. Substituting this estimation into (3), we can

see how the ciphertext modulus depends on the ring dimension n, the packing
capacity m, the input precision p, the input bound B and the circuit depth L,
namely

q ∈ Ω
(
m

m
n (2L+1−1)(L+2) · (pB)

m
n 2L(L+2) · nL+1

√
n
)
. (7)

6 Asymptotic comparison with HEAAN

We start the comparison of our scheme with HEAAN by estimating how large
should be the ciphertext modulus in this scheme to support correct evaluation
of given circuits. Let us first describe the HEAAN scheme as defined in [5].

Let qL > · · · > q` > · · · > q0 be a ladder of ciphertext moduli. Take a
large integer P ' qL. Let h be a positive integer. The key distribution χk draws
random elements from R with ternary coefficients and Hamming weight h.

The basic encryption functions of HEAAN are the following:

• KeyGen(1n): Let s← χk and e, e′ ← χe. Sample uniformly random a ∈ RqL
and a′ ∈ RP ·qL . Output
– the secret key sk = s,

– the public key pk =
(

[−a · s+ e]qL , a
)

,

– the evaluation key rlk =
([
−a′ · s+ e′ + P · s2

]
P ·qL

, a′
)

.

• Encrypt(pk,msg ∈ RqL): Sample u ← χk and e0, e1 ← χe. Set p0 = pk[0],
p1 = pk[1] and output ct = (c0, c1) where

c0 = [msg + p0 · u+ e0]qL , c1 = [p1 · u+ e1]qL .

• Decrypt(sk, ct): Return msg′ = [c0 + c1 · s]qL .

To encode a cyclotomic integer a ∈ Z[ζ2m] with |a|∞ < qL/2, we embed
a to RqL using the map ζ2m 7→ Xn/m and the reduction modulo qL. Notice
that the decryption algorithm outputs msg′ = msg + e′ with a noisy compo-
nent e′ = e0 + e1s + ue. Therefore, to encrypt a complex vector z ∈ Cm/2
with the input precision p in HEAAN, the packing scale ∆ must be larger than

10

in Lemma 1 to compensate a precision loss induced by this noise. Let z′ =
Unpack(Decrypt(Encrypt(Pack(z)))), then, following the reasoning of Lemma 1,
we obtain

|z− z′|∞ = max
i

∣∣∣∣∣ 1

∆

m−1∑
k=0

(ek + e′k) · ζik2m

∣∣∣∣∣ ≤ m

2∆
+
mr

∆

where |e′|∞ ≤ r ∈ O(n). To have |z− z′|∞ < 1/p, the packing scale ∆ must
then satisfy the following bound

∆ > mp

(
1

2
+ r

)
, (8)

which results in ∆ ∈ Ω(mpn).

6.1 Homomorphic operations

In HEAAN, homomorphic operations can output ciphertexts with a smaller cipher-
text modulus in comparison to their input. Therefore, ciphertext moduli of input
ciphertexts lie between q0 and qL. Below we assume that ciphertexts ct1 and
ct2 are given modulo q`. The basic homomorphic operations such as addition
and multiplication are defined as follows.

• Add(ct0, ct1): Return ctAdd =
(

[ct0[0] + ct1[0]]q` , [ct0[1] + ct1[1]]q`

)
.

• BasicMul(ct0, ct1): Return ctBasicMul = (c0, c1, c2) where

c0 = [ct0[0] · ct1[0]]q` , c1 = [ct0[0] · ct1[1] + ct0[1] · ct1[0]]q` ,

c2 = [ct0[1] · ct1[1]]q` .

• Relin(ctBasicMul, rlk): Output cRelin = (c′0, c
′
1) where

c′0 =
[
c0 +

⌊
P−1 · c2 · rlk[0]

⌉]
q`
, c′1 =

[
c1 +

⌊
P−1 · c2 · rlk[1]

⌉]
q`

• Mul(ct0, ct1, rlk): Return ctMul = (c′0, c
′
1) = Relin(BasicMul(ct0, ct1), rlk).

In addition, HEAAN has a special function called rescaling, which imitates round-
ing. Rescaling discards least significant bits of a given ciphertext and reduces
the ciphertext modulus.

• Rescale(ct, `, `′): Output ctRescale =
(⌊

q`′
q`
c0

⌉
,
⌊
q`′
q`
c1

⌉)
∈ R2

q`′
.

Note that if the input ciphertext ct encrypts a plaintext msg, then ctRescale
is a valid encryption of (q`′/q`) · msg. Hence, rescaling can help to control the
coefficient size of plaintexts, especially after multiplication. Let ct0 and ct1 be
ciphertexts of two complex vectors z1 and z2 packed with scale ∆. The product
of these ciphertexts is an encryption of the Hadamard product z = z1� z2 with
scale ∆2. If q`/q`′ ' ∆, then Rescale(ct) outputs a ciphertext, which again
encrypts z but with packing scale ∆. As a result, the unpacking scale ∆′ in
HEAAN can be equal to ∆ for any circuit, whereas in our scheme the depth of a
circuit should be known to set ∆′ to a correct power of ∆.

11

6.2 Ciphertext size

Let msgi be plaintext messages encoding complex vectors zi ∈ Cm/2 with |zi|∞ ≤
B for some B. To be decrypted and then decoded correctly, a plaintext should
have an infinity norm smaller than q0/2. As in Section 4, we switch to the
canonical norm in order to analyze how plaintexts approach this bound. The
canonical norm of each msgi is bounded by |∆zi|∞+ ‖e‖can = ∆B+m/2 where
e is the rounding error. Let V = ∆B +m/2.

Assume that q`/q`−1 ' ∆ for any ` ∈ [L]. After multiplication and rescal-
ing we obtain a ciphertext encrypting a plaintext msg such that ‖msg‖can ≤
(V+‖Ee‖can)2

∆ + ‖Er‖can where Ee is the encryption noise and Er is the noise
introduced by Relin and Rescale. Since ‖Ee‖can , ‖Er‖can ∈ O(n) according
to [5, Lemmas 1-3], it follows from (8) that ‖msg‖can ∈ O(∆B2). Hence, af-
ter L multiplicative levels the canonical norm of a resulting plaintext satisfies

‖msg‖can ∈ O
(
∆B2L

)
. As ‖msg‖can should be smaller than q0/2, we obtain

that q0 ∈ Ω
(
∆B2L

)
. Since rescaling decreases the ciphertext modulus L times

to reach q0, the initial ciphertext modulus should be set to qL ' q0 ·∆L. Thus,

qL ∈ Ω
(
∆L+1B2L

)
and (8) yields qL ∈ Ω

(
mL+1 · pL+1 ·B2L · nL+1

)
. Com-

paring the above estimation with its analog for our scheme, we can see that if
m
n = 1

2L+1 , then (7) turns into q ∈ Ω
(
m(L+2)(1− 1

2L+1) · (pB)
L+2
2 · nL+1

√
n
)
. It

implies that when B > (m
√
n)

1/2L−1

, our scheme requires a smaller ciphertext
modulus. More specifically, our approach results in a smaller memory overhead
in comparison to HEAAN in the following cases:

– in shallow circuits with large ratios between the packing capacity and the
dimension of R, namely m/n ≤ 1/4;

– in deep circuits with a small packing capacity, i.e. m = n/2L+1.

7 Practical comparison with HEAAN

In this section we demonstrate the efficiency of our scheme in comparison to
the HEAAN scheme. In particular, we homomorphically computed the functions
presented in [5, Section 5] including power functions, the exponential function
and the logistic regression function. In addition, we performed experiments with
the sine function.

We implemented our scheme and two versions of HEAAN in SageMath [25].
The implementation script can be found at https://github.com/iliailia/

heaan-vs-fv-sage. One version of HEAAN corresponds to the original scheme
given in [5] with sparse secret keys and the relinearization method described in
Section 6.1. While these features can speed up computations, they introduce a
larger memory overhead than in our scheme as larger encryption parameters are
needed to support the same security level. To perform a fair comparison with
our scheme, we implemented a second variant of HEAAN, denoted HEAAN∗, without

12

https://github.com/iliailia/heaan-vs-fv-sage
https://github.com/iliailia/heaan-vs-fv-sage

sparse secret keys and with the same relinearization method (see Section 4.1) as
in our scheme.

For all the implemented schemes we found minimal encryption parameters
that support both correct computation of the above functions and a security
level of at least 128 bits. To achieve this security level we set the parameters of
the original HEAAN scheme according to the recent recommendations for sparse-
secret RLWE [8]. Namely, we set the sparsity parameter h = 128. The standard
deviation σ of the error distribution χe is set to 3.19.

7.1 Non-polynomial functions: logistic regression, sine and
exponential function

#slots 1 2 22 23 24 25 26 27 28 29

Our scheme
Size, KB 94 97 104 228 238 238 238 244 334 704
Time, sec 6.04 6.75 6.21 13.52 12.92 12.76 12.80 12.99 18.16 38.81

HEAAN

Size, KB 448 464 476 492 512 528 548 568 584 604
Time, sec 18.22 18.18 17.61 17.97 18.76 18.97 18.24 18.09 18.28 18.89

HEAAN∗

Size, KB 274 284 292 302 312 322 332 342 352 362
Time, sec 14.48 14.45 14.28 14.46 14.52 16.98 18.07 18.14 18.00 18.24

Table 1. The ciphertext size and the running time to compute the logistic function in
the interval [−2.1, 2.1].

#slots 1 2 22 23 24 25 26 27 28 29 210 211

Our scheme
Size, KB 94 97 104 228 238 238 238 264 380 796 1292 2680
Time, sec 5.85 6.52 6.25 12.34 13.22 12.83 12.70 14.63 18.75 43.48 73.84 155.66

HEAAN

Size, KB 564 580 600 620 640 660 680 1400 1440 1480 1520 1560
Time, sec 18.14 18.13 18.25 18.55 19.67 19.58 19.56 40.21 40.40 44.57 47.20 50.27

HEAAN∗

Size, KB 310 320 330 340 350 360 370 380 390 400 410 420
Time, sec 14.52 16.79 16.93 17.07 17.62 17.58 16.80 17.23 17.49 19.20 19.89 21.74

Table 2. The ciphertext size and the running time to compute the sine in the interval
[−π, π].

As in [5], we approximate the logistic function 1/(1 + e−x) and the sine with
Maclaurin series of degree 9. The exponential function ex is evaluated via its

13

#slots 1 2 22 23 24 25 26 27 28 29 210

Our scheme
Size, KB 87 89 95 105 105 105 107 224 310 652 1044
Time, sec 6.42 6.00 5.83 6.92 6.85 6.68 7.07 14.73 18.23 43.88 68.05

HEAAN

Size, KB 480 500 520 540 560 580 600 620 640 660 680
Time, sec 19.63 20.02 20.20 20.30 20.25 20.41 20.53 20.76 21.50 21.87 23.74

HEAAN∗

Size, KB 290 300 310 320 330 340 350 360 370 380 390
Time, sec 15.57 15.43 15.66 18.22 18.64 18.67 18.74 18.78 18.65 19.71 20.76

Table 3. The ciphertext size and the running time to compute ex in the interval
[−2.3, 2.3].

Maclaurin series of degree 8. These approximations are accurate up to 7 bits
of binary precision in [−2.1, 2.1] for the logistic regression, [−π, π] for the sine
function and [−2.3, 2.3] for the exponential function.

We conducted experiments with encryption and packing parameters that
support homomorphic evaluation of the above series within 7 bits of binary
precision. More detailed description of these parameters is given in Appendix B.
The results of our experiments are presented in Tables 1-2. In particular, our
scheme needs 4-6 times and around 3 times less memory than HEAAN and HEAAN∗,
respectively, to perform computations on a small number of data slots. This
advantage is declining with an increasing number of slots as predicted by the
theoretical estimations of Section 6. Starting from only 512-2048 packing slots
both versions of HEAAN need less memory than our scheme.

7.2 Power functions

#slots 1 2 22 23 24 25 26 27 28 29 210 211 212

Our scheme
Size, KB 24 24.5 25.5 25.5 25.5 25.5 26 54 66 102 212 360 740
Time, sec 0.22 0.20 0.19 0.19 0.19 0.19 0.20 0.44 0.62 0.80 1.71 2.57 4.93

HEAAN

Size, KB 388 396 404 412 420 428 436 444 452 460 468 476 484
Time, sec 1.47 1.41 1.39 1.47 1.47 1.48 1.42 1.49 1.47 1.50 1.58 1.68 1.98

HEAAN∗

Size, KB 97 99 101 103 105 107 109 222 226 230 234 238 242
Time, sec 0.60 0.61 0.61 0.61 0.61 0.60 0.61 1.33 1.32 1.35 1.43 1.60 1.79

Table 4. The ciphertext size and the running time to compute x2 in the interval
(−215, 215).

14

#slots 1 2 22 23 24 25 26 27 28 29 210

Our scheme
Size, KB 95 98 105 230 242 242 260 360 756 1176 2496
Time, sec 2.88 3.08 3.13 6.53 6.37 6.56 7.70 8.88 19.15 33.42 70.72

HEAAN

Size, KB 1672 1712 1752 1792 1832 1872 1912 1952 1992 2032 2072
Time, sec 20.76 20.38 20.57 20.70 20.45 20.96 21.02 21.91 22.06 23.56 23.70

HEAAN∗

Size, KB 408 418 428 876 896 916 936 956 976 996 1016
Time, sec 8.42 8.43 8.66 18.45 18.98 19.73 19.53 20.29 20.95 20.33 22.46

Table 5. The ciphertext size and the running time to compute x16 in the interval
[−2.1, 2.1].

We also computed two simple polynomial functions x16 and x2 with input
values taken from [−2.1, 2.1] and (−215, 215), respectively. As for non-linear func-
tions we aim to achieve 7 bits of binary precision for output values.

As seen in Tables 5 and 4, our scheme with a small number of slots requires
around 18 and 4 times less memory than HEAAN and HEAAN∗, respectively. How-
ever, the memory overhead of our method grows exponentially with the number
of slots. The maximal number of slots where our scheme still outperforms HEAAN
is 512 for x16 and 2048 for x2. Comparing with HEAAN∗, these numbers are 256
for x16 and 1024 for x2.

8 Conclusion

While the HEAAN scheme has achieved significant success in recent years, espe-
cially in privacy-preserving machine learning applications, in many cases com-
putations are not as highly parallelizable as would be optimal for the HEAAN

scheme. In this work we have demonstrated how in these cases an approach
generalizing that of Bootland et al. and Chen et al. can yield significant perfor-
mance improvements in terms of encryption parameter sizes and subsequently
in ciphertext sizes. This can be particularly important when using homomorphic
encryption in low-latency applications, where communication complexity quickly
becomes a bottleneck.

Acknowledgements. The second author started this work while being an in-
tern at Microsoft Research. He is also supported by a Junior Postdoctoral Fel-
lowship from the Research Foundation – Flanders (FWO) and by CyberSecurity
Research Flanders with reference number VR20192203.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

15

2. Bonte, C., Bootland, C., Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.:
Faster homomorphic function evaluation using non-integral base encoding. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 579–600. Springer,
Heidelberg (Sep 2017)

3. Bootland, C., Castryck, W., Iliashenko, I., Vercauteren, F.: Efficiently process-
ing complex-valued data in homomorphic encryption. Special Issue of Journal of
Mathematical Cryptology: Mathcrypt 2018 (to be published)

4. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 116–136.
Springer, Heidelberg (Apr 2018)

5. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Heidelberg (Dec 2017)

6. Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of discrete
fourier transforms. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 517–529.
Springer, Heidelberg (Apr 2017)

7. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic in SHE
schemes. In: Avanzi, R., Heys, H.M. (eds.) SAC 2016. LNCS, vol. 10532, pp. 401–
422. Springer, Heidelberg (Aug 2016)

8. Curtis, B.R., Player, R.: On the feasibility and impact of standardising sparse-
secret LWE parameter sets for homomorphic encryption. In: WAHC’19. ACM Press
(2019)

9. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012)

10. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Manual for using homomorphic encryption for bioinformatics. Proceedings of
the IEEE 105(3), 552–567 (2017)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

12. Erkin, Z., Troncoso-Pastoriza, J.R., Lagendijk, R.L., Pérez-González, F.: Privacy-
preserving data aggregation in smart metering systems: An overview. IEEE Signal
Processing Magazine 30(2), 75–86 (2013)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/2012/
144

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

15. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC. pp. 365–377. ACM
Press (May 1982)

16. Kocabas, O., Soyata, T., Couderc, J.P., Aktas, M., Xia, J., Huang, M.: Assessment
of cloud-based health monitoring using homomorphic encryption. In: 2013 IEEE
31st International Conference on Computer Design (ICCD). pp. 443–446. IEEE
(2013)

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (May / Jun 2010)

18. Malina, L., Hajny, J., Fujdiak, R., Hosek, J.: On perspective of security and privacy-
preserving solutions in the internet of things. Computer Networks 102, 83–95
(2016)

16

http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999)

20. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Tech. rep., Massachusetts Inst of Tech Cambridge Lab for Computer
Science (1979)

21. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of secure computation 4(11), 169–180 (1978)

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (1978)

23. Shanks, D.: Five number-theoretic algorithms. In: Proceedings of the Second Man-
itoba Conference on Numerical Mathematics (1973)

24. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptography 71(1), 57–81 (Apr 2014)

25. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.9) (2019), https://www.sagemath.org

17

A Examples of b

As shown in Section 5, the plaintext space parameter b must be an mth power
residue modulo bn/m + 1 and its m root must be efficiently computable to allow
the HEAAN encoding of complex numbers. Here we present a collection of these
parameters for given practical choices of the ring dimension n and the packing
capacity m.

n

m 211 212 213 214 215 216

2 2 2 2 2 2 2
(1024) (2048) (4096) (8192) (16384) (32768)

22 4 4 4 4 4 4
(1024) (2048) (4096) (8192) (16384) (32768)

23 16 16 16 16 16 16
(1024) (2048) (4096) (8192) (16384) (32768)

24 120 256 46 256 150 256
(884) (2048) (2828) (8192) (14804) (32768)

25 274 120 278 46 824 150
(518) (884) (2078) (2828) (9918) (14804)

26 884 274 120 278 46 824
(313) (518) (884) (2078) (2828) (9918)

27 984 884 274 120 278 46
(159) (313) (518) (884) (2078) (2828)

28 1028 984 884 274 120 278
(80) (159) (313) (518) (884) (2078)

29 9872 1028 984 884 274 120
(53) (80) (159) (313) (518) (884)

210 9600 9872 1028 984 884 274
(26) (53) (80) (159) (313) (518)

211 215 9600 9872 1028 984 884
(16) (26) (53) (80) (159) (313)

212 x 215 9600 9872 1028 984
(16) (26) (53) (80) (159)

Table 6. Examples of b such that b is an m-th power residue modulo bn/m + 1 for

practical choices of m and n. Numbers in parentheses are equal to
⌊
log2(bn/m + 1)

⌋
,

which is the maximal coefficient size of HEAAN encodings. For each b we precomputed its
m-th root using several calls of the Tonelli-Shanks algorithm (square root mod prime)
in SageMath.

B Results of experiments

The following tables present the detailed encoding and encryption parameters
used in the experiments conducted in Section 7. This data is the full version of

18

Tables 1-5 from Section 7. In all the tables, ∆ denotes the packing scale, n is the
dimension of the cyclotomic ring R and b is the constant term of the plaintext
modulus. The total running time is averaged over 10 runs.

#slots 1 2 22 23 24(*) 25(*) 26 27 28 29

Our scheme

∆ 216 217 218 219 220 221 222 223 224 225

n 212 212 212 213 213 213 213 213 213 214

log q 94 97 104 114 119 119 119 122 167 176
b 2 4 16 46 102 102 102 156 3.3e4 5.1e4
Size, KB 94 97 104 228 238 238 238 244 334 704
Time, sec 6.04 6.75 6.21 13.52 12.92 12.76 12.80 12.99 18.16 38.81

HEAAN

∆ 221 222 223 224 225 226 227 228 229 230

n 214 214 214 214 214 214 214 214 214 214

log qL 112 116 119 123 128 132 137 142 146 151
Size, KB 448 464 476 492 512 528 548 568 584 604
Time, sec 18.22 18.18 17.61 17.97 18.76 18.97 18.24 18.09 18.28 18.89

HEAAN∗

∆ 227 228 229 230 231 232 233 234 235 236

n 213 213 213 213 213 213 213 213 213 213

log qL 137 142 146 151 156 161 166 171 176 181
Size, KB 274 284 292 302 312 322 332 342 352 362
Time, sec 14.48 14.45 14.28 14.46 14.52 16.98 18.07 18.14 18.00 18.24

Table 7. Encryption parameters to compute the logistic function in the interval
[−2.1, 2.1]. The (*) symbol indicates that the maximal number of slots supported by
the plaintext space is 26 for our scheme.

19

#slots 1 2 22 23 24(*) 25(*) 26 27 28 29 210 211

Our scheme

∆ 223 224 225 226 227 228 229 230 231 232 233 234

n 212 212 212 213 213 213 213 213 213 214 214 215

b 2 4 16 46 102 102 102 562 4.6e5 7.1e5 1.1e12 2.6e12
log q 94 97 104 114 119 119 119 132 190 199 323 335
Size, KB 94 97 104 228 238 238 238 264 380 796 1292 2680
Time, sec 5.85 6.52 6.25 12.34 13.22 12.83 12.70 14.63 18.75 43.48 73.84 155.66

HEAAN

∆ 227 228 229 230 231 232 233 234 235 236 237 238

n 214 214 214 214 214 214 214 215 215 215 215 215

log qL 141 145 150 155 160 165 170 175 180 185 190 195
Size, KB 564 580 600 620 640 660 680 1400 1440 1480 1520 1560
Time, sec 18.14 18.13 18.25 18.55 19.67 19.58 19.56 40.21 40.40 44.57 47.20 50.27

HEAAN∗

∆ 230 231 232 233 234 235 236 237 238 239 240 241

n 213 213 213 213 213 213 213 213 213 213 213 213

log qL 155 160 165 170 175 180 185 190 195 200 205 210
Size, KB 310 320 330 340 350 360 370 380 390 400 410 420
Time, sec 14.52 16.79 16.93 17.07 17.62 17.58 16.80 17.23 17.49 19.20 19.89 21.74

Table 8. Encryption parameters to compute the sine in the interval [−π, π]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 26 for our scheme.

20

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210

Our scheme

∆ 218 219 220 221 222 223 224 225 226 227 228

n 212 212 212 212 212 212 212 213 213 214 214

b 2 4 16 102 102 102 132 156 2.9e4 4.3e4 4.1e9
log q 87 89 95 105 105 105 107 112 155 163 261
Size, KB 87 89 95 105 105 105 107 224 310 652 1044
Time, sec 6.42 6.00 5.83 6.92 6.85 6.68 7.07 14.73 18.23 43.88 68.05

HEAAN

∆ 223 224 225 226 227 228 229 230 231 232 233

n 214 214 214 214 214 214 214 214 214 214 214

log qL 120 125 130 135 140 145 150 155 160 165 170
Size, KB 480 500 520 540 560 580 600 620 640 660 680
Time, sec 19.63 20.02 20.20 20.30 20.25 20.41 20.53 20.76 21.50 21.87 23.74

HEAAN∗

∆ 228 229 230 231 232 233 234 235 236 237 238

n 213 213 213 213 213 213 213 213 213 213 213

log qL 145 150 155 160 165 170 175 180 185 190 195
Size, KB 290 300 310 320 330 340 350 360 370 380 390
Time, sec 15.57 15.43 15.66 18.22 18.64 18.67 18.74 18.78 18.65 19.71 20.76

Table 9. Encryption parameters to compute ex in the interval [−2.3, 2.3]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

21

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210

Our scheme

∆ 225 226 228 229 230 231 232 233 234 235 236

n 212 212 212 213 213 213 213 213 214 214 215

b 2 4 16 46 120 120 412 1.4e5 1.9e5 3.8e10 1.5e11
log q 95 98 105 115 121 121 130 180 189 294 312
Size, KB 95 98 105 230 242 242 260 360 756 1176 2496
Time, sec 2.88 3.08 3.13 6.53 6.37 6.56 7.70 8.88 19.15 33.42 70.72

HEAAN

∆ 238 239 240 241 242 243 244 245 246 247 248

n 215 215 215 215 215 215 215 215 215 215 215

log qL 209 214 219 224 229 234 239 244 249 254 259
Size, KB 1672 1712 1752 1792 1832 1872 1912 1952 1992 2032 2072
Time, sec 20.76 20.38 20.57 20.70 20.45 20.96 21.02 21.91 22.06 23.56 23.70

HEAAN∗

∆ 237 238 239 240 241 242 243 244 245 246 247

n 213 213 213 214 214 214 214 214 214 214 214

log qL 204 209 214 219 224 229 234 239 244 249 254
Size, KB 408 418 428 876 896 916 936 956 976 996 1016
Time, sec 8.42 8.43 8.66 18.45 18.98 19.73 19.53 20.29 20.95 20.33 22.46

Table 10. Encryption parameters to compute x16 in the interval [−2.1, 2.1]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

22

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210 211 212

Our scheme

∆ 221 223 224 225 226 227 228 229 230 231 232 233 234

n 211 211 211 211 211 211 211 212 212 212 213 213 214

b 2 4 16 30 30 30 44 74 2.9e3 1.0e7 1.4e7 4.0e14 8.0e14
log q 48 49 51 51 51 51 52 54 66 102 106 180 185
Size, KB 24 24.5 25.5 25.5 25.5 25.5 26 54 66 102 212 360 740
Time, sec 0.22 0.20 0.19 0.19 0.19 0.19 0.20 0.44 0.62 0.80 1.71 2.57 4.93

HEAAN

∆ 233 234 235 236 237 238 239 240 241 242 243 244 245

n 214 214 214 214 214 214 214 214 214 214 214 214 214

log qL 97 99 101 103 105 107 109 111 113 115 117 119 121
Size, KB 388 396 404 412 420 428 436 444 452 460 468 476 484
Time, sec 1.47 1.41 1.39 1.47 1.47 1.48 1.42 1.49 1.47 1.50 1.58 1.68 1.98

HEAAN∗

∆ 233 234 235 236 237 238 239 240 241 242 243 244 245

n 212 212 212 212 212 212 212 213 213 213 213 213 213

log qL 97 99 101 103 105 107 109 111 113 115 117 119 121
Size, KB 97 99 101 103 105 107 109 222 226 230 234 238 242
Time, sec 0.60 0.61 0.61 0.61 0.61 0.60 0.61 1.33 1.32 1.35 1.43 1.60 1.79

Table 11. Encryption parameters to compute x2 in the interval (−215, 215). The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

23

	When HEAAN Meets FV: a New Somewhat Homomorphic Encryption with Reduced Memory Overhead

