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Abstract. Somewhat Homomorphic Encryption (SHE) allows arbitrary
computation with finite multiplicative depths to be performed on en-
crypted data, but its overhead is high due to memory transfer incurred
by large ciphertexts. Recent research has recognized the shortcomings
of general-purpose computing for high-performance SHE, and has begun
to pioneer the use of hardware-based SHE acceleration with hardware
including FPGAs, GPUs, and Compute-Enabled RAM (CE-RAM). CE-
RAM is well-suited for SHE, as it is not limited by the separation be-
tween memory and processing that bottlenecks other hardware. Further,
CE-RAM does not move data between different processing elements. Re-
cent research has shown the high effectiveness of CE-RAM for SHE as
compared to highly-optimized CPU and FPGA implementations. How-
ever, algorithmic optimization for the implementation on CE-RAM is
underexplored. In this work, we examine the effect of existing algorith-
mic optimizations upon a CE-RAM implementation of the B/FV scheme
[19], and further introduce novel optimization techniques for the Full
RNS Variant of B/FV [6]. Our experiments show speedups of up to 784x
for homomorphic multiplication, 143x for decryption, and 330x for en-
cryption against a CPU implementation. We also compare our approach
to similar work in CE-RAM, FPGA, and GPU acceleration, and note
general improvement over existing work. In particular, for homomorphic
multiplication we see speedups of 506.5x against CE-RAM [34], 66.85x
against FPGA [36], and 30.8x against GPU [3] as compared to existing
work in hardware acceleration of B/FV.

Somewhat Homomorphic Encryption B/FV Scheme Full-RNS Variant
Compute-Enabled RAM

*Typos in Algorithms 5 and 6 were present in previous preprints and the original
camera-ready version for SAC 2020. Corrected May 16, 2021.
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1 Introduction

Fully homomorphic encryption (FHE), first presented by Gentry [20], allows
arbitrary number of additions and multiplications on ciphertexts. It has wide
applications in settings where data privacy is paramount, but the bootstrapping
procedure required to allow an arbitrary number of operations on ciphertexts is
highly complex and computationally intensive. Therefore, most active research
including this work focuses on improving the efficiency of the underlying Some-
what Homomorphic Encryption (SHE) scheme [10, 36, 34, 6, 35], in which a ci-
phertext can be operated on arbitrarily up to a certain multiplicative depth.
Even without the bootstrapping procedure, SHE schemes lead to high overhead
in performing homomorphic operations with ciphertexts due to the large size of
the ciphertexts.

Recent research recognizes limitations of traditional general-purpose computing
in high-performance realizations of SHE [36, 35]. This is due to highly inten-
sive computation involving large amounts of data transfer. Research efforts have
thus turned towards special hardware paradigms for accelerating SHE, including
Application-Specific Integrated Circuits (ASICs) [29, 41], Field-Programmable
Gate Arrays (FPGAs) [30, 35, 36, 24], and GPUs [3]. Each of these paradigms
has their own strengths and limitations, such as data transfer, memory avail-
ability, word size, and cost. While using FPGAs to accelerate SHE has been
highly successful, FPGAs are ultimately limited by data transfer (both within
the FPGA, and to/from other parts of the system), limits on the amount of
on-chip memory, and limited word size. In much previous research, data transfer
has been of great significance, with much effort in design and implementation
devoted to mitigating the latency of data transfer. The root cause of this need is
the inherent separation and bottlenecks between processing and memory present
in traditional computing architectures as well as in specialized solutions such as
ASICs, FPGAs, and GPUs. Computing paradigms such as Near-Memory Pro-
cessing (NMP) and Compute-Enabled RAM (CE-RAM) seek to overcome this
by reducing or removing the separation of processing and memory. This ap-
proach ameliorates the latency induced by data transfer. In addition, CE-RAM
also enables a high degree of parallelism by allowing simultaneous operations on
data within the same bank of CE-RAM without significant extra overhead. Ex-
isting work has shown the efficacy and potential of applying CE-RAM to modern
ring-based SHE schemes [34]. Even without the common algorithmic optimiza-
tions such as the Number-Theoretic Transform (NTT) and Residue Number
System (RNS), utilizing CE-RAM showed speedup as compared to both a CPU
environment and related existing work which incorporated the algorithmic opti-
mizations. This showed the viability of using CE-RAM as a hardware accelerator
for SHE, and both actual and potential speedups over existing accelerators.

However, algorithmic optimization in the CE-RAM environment is severely un-
derexplored. The efficacy of NTT and RNS has not been explored in CE-RAM,
and the algorithmic study of the impact of CE-RAM’s support of arbitrary word
sizes is unprecedented. In this paper, we present the algorithmic optimization
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of the SHE implementations with CE-RAM, by applying NTT, RNS, and our
novel optimization. We study the Full RNS Variant of Bajard et al. [6] that op-
timizes the B/FV homomorphic encryption scheme [19], implementing essential
SHE operations. There exists another RNS variant of the B/FV scheme formu-
lated by Halevi et al., based on floating-point operations [21], but we choose to
study the integer-only variant of Bajard et al. because there is no computational
disadvantage to one full-RNS variant over the other [7] and the integer-only vari-
ant of Bajard et al. is easier to implement in CE-RAM, as it does not require
floating-point computations.

In this work, we realize the RNS and NTT optimizations for the B/FV scheme,
along with new optimizations in the CE-RAM implementation. We performed
extensive experiments with comparisons to a CPU implementation and a pre-
vious CE-RAM implementation. This is the first such work implementing these
advanced algorithmic optimizations working within CE-RAM and its limitations.
While a myriad of other work applying these optimizations exists [36, 35, 10], our
work differs in that CE-RAM is only friendly to a small class of parameters. The
results indicate speedups of up to 784.2x for homomorphic multiplication, com-
pared against a state-of-the-art software library run on a server-grade computer.
To the best of our knowledge, this is the best speedup in the literature. Our
optimized CE-RAM implementation outperforms other hardware accelerators
of B/FV with speedups in homomorphic multiplication of up to 506.5x against
existing a CE-RAM implementation, 66.85x against an FPGA implementation,
and 30.8x against a GPU implementation.

Summary of contributions: (1) For the first time, we apply RNS and NTT
to the polynomial operations accelerated by CE-RAM and show that such algo-
rithmic optimizations improve homomorphic multiplication by up to 506.5x as
compared to an existing CE-RAM implementation. (2) We propose novel algo-
rithmic optimization with new RNS base choices friendly to CE-RAM that allow
quicker calculation of modular reduction and some modular multiplications in
CE-RAM. This yields additional speedups of approximately up to 1.5x for ho-
momorphic multiplication and 2.9x for encryption/decryption. (3) We present
how to continue to support the full-RNS designs and NTT under the new RNS
base, overcoming the challenges presented by the limitations of current CE-RAM
capabilities.

2 Preliminaries

2.1 Notations

For x ∈ R, bxe, bxc indicate rounding to the nearest integer and rounding down
respectively. Also, we use plain lowercase letters (e.g., x, y) to denote scalar val-
ues and bold lowercase letters (e.g., x,y) to denote polynomials. The division-
with-rounding (DWR) operation is applied to polynomials as DWRca,b(x) =
([bab · xie]c). We use R to denote a quotient ring of polynomials in the form
Z[x]/ΦM (x), where Φ(x) is the M th cyclotomic polynomial with M being a
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power of 2, i.e., its degree N which is M/2. Rt is the ring Zt[x]/Φ(x), with
coefficients in the set Zt = [−t2 ,

t
2 ) ∩ Z. |x|t is the ordinary modular reduction

defined as |x|t = x − bxt ct, and [x]t is the centered modular reduction defined
as [x]t = x − bxt et. For x ∈ R, we use [x]t to denote an element in Rt which is
obtained by applying the centered modular reduction to individual coefficients
componentwise. Temporarily, a division may be applied to x ∈ R which is per-
formed to every coefficient componentwise. Such a polynomial in Q[x]/Φ(x) is
immediately mapped to Rt by applying the rounding function to every coeffi-
cient.

2.2 The Original B/FV Scheme [19]

Suppose we have t > 1 (plaintext modulus) and q > t (ciphertext modulus). The
B/FV scheme operates on plaintexts in Rt and ciphertexts in R2

q . The secret
key s is a randomly chosen element of R with coefficients from a distribution
bounded in magnitude by 1 (denoted as 1-bounded distribution). The public key
is (p0,p1) = ([as + e]q,a), where a is chosen uniformly at random from Rq and
e is also chosen from a 1-bounded distribution. Denote ∆ = b qt c.
Encryption: To encrypt m ∈ Rt, first randomly sample e1, e2 from a 1-bounded
distribution and u uniformly from Rq. Then compute (c0, c1) =
([∆m + p0u + e1]q, [p1u + e2]q).

Homomorphic Addition/Subtraction: Given ciphertexts (c0, c1), (c′0, c
′
1),

homomorphic addition is calculated by computing (c0
+, c1

+) = ([c0+c′0]q, [c1+
c′1]q). Subtraction proceeds similarly.

Decryption: To decrypt (c0, c1) under a key s, compute m = [b tq [c0 + c1 · s]qe]t.
Homomorphic Multiplication: Given ciphertexts c = (c0, c1), c′ = (c′0, c

′
1),

homomorphic multiplication is computed by first finding d0 = [b t·c0·c′0
q e]q, d1 =

[b t·c0·c′1+c1·c′0
q e]q, d2 = [b t·c1·c′1

q e]q. Then using precomputed relinearization keys

rlk0, rlk1 (tuples of T pairs of elements of Rq), write d2 in base T with d2
(i) as

its ith digit, and return (d′0 = [d0+
∑
i rlk[i][0]d2

(i)]q,d
′
1 = [d1+

∑
i rlk[i][1]d2

(i)]q)

2.3 The Full-RNS Variant of the B/FV Scheme

RNS: In the B/FV scheme, operations take place on polynomials with large
coefficients in Zq. By the Chinese Remainder Theorem (CRT), if q is a product
of k pairwise coprime numbers qi, Zq is isomorphic to the product of the rings
{Zqi}i. A number in Zq can then be represented by a k-tuple of numbers in
{Zqi}i, which is denoted as RNS form. The ith component of an integer x’s RNS
form is |x|qi (or [x]qi in a centered representation). Because of the isomorphism
addition and multiplication on numbers in Zq can be performed by performing
addition/multiplication componentwise on the RNS form. If each modulus qi is
small enough to fit into a computer word (e.g., 64 bits), then individual opera-
tions in an the RNS form become single-precision operations. Also, operations
on numbers in RNS form can be parallelized, as each component is independent.
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Algorithm 1 Full RNS B/FV Decryption

1: procedure DECRNS((c0, c1), s)
2: x← c0 + (c1 · s)
3: s(t) ← | − FastBConv(|γtx|q, Q, {t}) · |q−1|t|t,
4: s(γ) ← | − FastBConv(|γtx|q, Q, {γ}) · |q−1|γ |γ
5: return [(s(t) − [s(γ)]γ) · |γ−1|t]t.
6: end procedure

Full-RNS Variant: A Full-RNS variant of an SHE scheme refers to a variant
where all operations are performed on the RNS form extended to the poly-
nomial rings throughout the entire homomorphic evaluation. Namely, parallel
polynomial operations in smaller subrings {Rqi}i are performed instead of an
operation in the large ring Rq without reconstructing the polynomials in Rq.
This leads to enhanced performance [6, 21]. Unlike algorithms only involving ad-
dition, subtraction, and multiplication (e.g., homomorphic addition), decryption
and homomorphic multiplication require operations not easily performed in RNS
form (e.g. division and rounding). The full-RNS variant thus focuses on these
algorithms. Let Q = {q0, q1, · · · , qk} and B = {b0, b1, · · · , b`} be sets of numbers
each relatively coprime with every other element of Q∪B, called RNS bases. Let
q be the product of the elements of Q. Fast Base Conversion, or FastBConv, is
defined by

FastBConv(x,Q,B) =
{ k∑
i=1

|xi ·
qi
q
|qi ·

q

qi
mod bi

∣∣bi ∈ B} (1)

The FastBConv quickly and approximately converts a number x in RNS form
with base Q to one with base B, and it is applied coefficientwise to polynomials.
This is used for the operations other than additions and multiplications. It is
faster than full CRT reconstruction mainly because the intermediate modular
reduction by Q is skipped. As a consequence, the result in base B will be off by
some multiple of q, which can be corrected with various efficient methods.

Decryption: The full-RNS variant’s decryption is described in Algorithm 1,
using a number γ coprime to t (though this is not strictly necessary).

Homomorphic Multiplication: The full-RNS variant’s homomorphic mul-
tiplication (sans relinearization) is described in Algorithm 2, which gives us
(c̃0, c̃1, c̃2) in base Q. In this algorithm, we temporarily extend ciphertexts us-
ing FastBConv from base Q to Bsk = B ∪ {msk}, to hold the result of a
polynomial tensor where coefficients may be as large as nq2. The next step is
relinearization that reduces this ciphertext back to 2 elements. Suppose we are
given (c̃0, c̃1, c̃2) as from Algorithm 2. Let rlkRNS [0], rlkRNS [1] be the relin-
earization keys (precomputed tuples of polynomials in Rq). Define DRNS(c̃2) =
(|c̃2 q1q |q1 , |c̃2

q2
q |q2 , · · · , |c̃2

qk
q |qk). We then perform relinearization by computing:

([c̃0 + 〈DRNS(c̃2), rlkRNS [0]〉]q, [c̃1 + 〈DRNS(c̃2), rlkRNS [1]〉]q).
This full-RNS variant of Bajard et al. [6] shows a large practical speedup in run-
time (up to 20 times faster for decryption, and 4 times faster for multiplication),
due in part to faster individual operations on RNS components.
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Algorithm 2 Full RNS B/FV Homomorphic Multiplication

1: procedure MULTRNS(c = (c0, c1), c′ = (c′0, c
′
1))

2: Use FastBConv to convert c, c′ from Q to Bsk∪{m̃}. (We now have c, c′ in Q∪Bsk∪{m̃}.)
3: Reduce extra multiples of q in the Bsk∪m̃-representation using Small Montgomery Reduction

[8]. (The intermediate results are now in Q ∪ Bsk.)
4: Compute the polynomial products (c̃0, c̃1, c̃2) = (c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1) and scale

by t (in Q ∪ Bsk).
5: Do a fast floor (using FastBConv) from Q ∪ Bsk to Bsk. (This is an approximation of the

DWR operation.)
6: Perform a Shenoy and Kumaresan-like reduction from Bsk to Q [37].
7: return (c̃0, c̃1, c̃2) (in base Q)
8: end procedure

2.4 NTT

Naive polynomial multiplication is a O(N2) algorithm. Applying the NTT (Ap-
pendix C) to polynomials results in transformed polynomials, where coefficient-
wise multiplication in the new domain corresponds to polynomial multiplication
in the original domain. Thus polynomial multiplication can be performed in
O(N · log(N)) by transforming polynomials, performing coefficientwise multi-
plication, and applying the inverse NTT. This is commonly used to expedite
polynomial multiplications [10, 36, 30].

2.5 Compute-Enabled RAM

Compute Enabled RAM (CE-RAM) refers to SRAM storage units with inte-
grated processing elements. The most notable features of CE-RAM are the lack
of separation between memory and processing and the massive potential for par-
allel processing that this allows. In this work, we consider CE-RAM as a SRAM
bank at the level of L3 cache. CE-RAM can then be used as coprocessing hard-
ware, performing intensive computations in the CPU’s stead, and transferring
its data to/from DRAM through the standard memory hierarchy. In the previ-
ous work of Reis et al. [34], CE-RAM (referred to as CiM in their paper, but
we choose the term CE-RAM to avoid confusion with the analog In-memory
Computing) has been utilized as a coprocessing unit, and used to accelerate
homomorphic operations of the B/FV scheme. This approach, without algorith-
mic optimizations of RNS and NTT, is reported to have a significant speedup.
Against a CPU implementation with RNS and NTT, a speedup of up to 5.8x for
homomorphic multiplication is reported. This work was a first pioneering effort
in applying CE-RAM to SHE, and faced several limitations, including a limited
choice of ciphertext modulus (only powers of two) and a lack of algorithmic
optimizations. Unfortunately, due to the lack of algorithmic optimization, the
speedup drops to 1.5x when N = 214 and the ciphertext modulus size |q| is 438
bits [34], which is the largest parameter set among the existing work that we
compare against.
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3 Novel Optimizations Using Special Moduli

In this section, we discuss choices of RNS bases that are well suited for imple-
menting the Full RNS Variant of the B/FV scheme in CE-RAM [19, 6].

3.1 NTT Implementation with CE-RAM

In this work, the NTT algorithm is mapped into a sequence of micro-operations
(micro-ops) that can be executed with the CE-RAM hardware described in [34].

The NTT algorithm, shown in Algorithm 7 in Appendix C, takes two inputs: (i)
the polynomial coefficients in bit-reverse order, and (ii) the constant Y ′, which
relates to pre-computed twiddle factors of NTT. The polynomial coefficients are
initially stored in CE-RAM arrays in a natural manner, therefore the first step
for CE-RAM execution of NTT is to implement the bit-reverse (or permutation)
step. A sequence of N MOVE micro-ops (enabled by the CE-RAM’s in-place
move buffers, and coordinated by CE-RAM’s controller) is used to permute the
positions of the coefficients stored in memory. Once the coefficients are in bit-
reverse order, execution of the procedure NTTp(a) can be initiated.

The NTT procedure consists of 3 nested loops. The outermost loop is exe-
cuted log(N) times with CE-RAM, and it corresponds to NTT stages (i.e., stage
1, 2, ..., log(N)). Each NTT stage has a number of groups in it, whose execution
is controlled by the second (butterfly) loop in Algorithm 7. Inside the butterfly
loop, pre-computed twiddle factors are stored in the CE-RAM arrays with paral-
lel WRITE micro-ops. Finally, the NTT core consists of modular multiplication
between coefficients and the twiddle constants, followed by a subtraction and an
addition. In CE-RAM, operations in the NTT core map to MODMULT, SUB,
and ADD micro-ops. N micro-ops of each type should be performed (one for
each coefficient of the polynomial). Note that CE-RAM can merge the “Butter-
fly” and “NTT Core” loops, and parallelize the execution of the N micro-ops of
each category with the N sets of customized peripherals in a CE-RAM bank.

3.2 Choosing Special Moduli for Optimization

Note that the precise form of the ciphertext modulus q (e.g., whether q is prime,
a product of coprime numbers, or a prime power) does not impact the security
of the scheme because the RLWE problem is difficult for arbitrary q [19, 6, 25].
Even before the advent of ring-based SHE, extensive research has been done
in the domain of hardware-based RNS systems in searching for moduli that
allow for efficient modular reduction and computations [40]. In this work, we
present novel optimizations by leveraging existing studies on special moduli,
which are specialized for the word sizes of CE-RAM that can be larger than
common fixed-size word sizes (e.g., 64 bits). We first find moduli that allow
algorithmic optimizations that are especially useful for CE-RAM. In CE-RAM,
multiplication is not a basic operation; it is constructed through shifting and
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addition [34]. We thus consider optimizations that obviate multiplications and
replace them with simpler operations. Our strategy is to 1) choose moduli that
allow efficient modular reductions, which can accelerate modular polynomial
arithmetic as well as the NTT, and 2) choose moduli that allow additional SHE-
specific algorithmic optimizations. W investigate two moduli sets for these goals.

Balanced 3-moduli Set: The first set of moduli we consider is the well-studied
set S1 = {q0, q1, q2} = {2g − 1, 2g, 2g + 1} [40]. This set has the advantage
of being balanced, i.e., all elements are equal-sized, and admits easy modular
reductions (shown in Section 3.3), which can be simplified further within the
specific application of SHE. The main disadvantage is that the set is limited to 3
elements, limiting its range and scalability. The set is also limited to representing
numbers of approximately 3g bits, however with CE-RAM we can choose g to be
larger than 64 bits, making this less of a concern. This is mitigated in the CE-
RAM because there is no limit in the word size. Further, these moduli produce
forms of | qiq |qi that admit extremely efficient computation of the x·| qiq |qi , allowing
optimization of FastBConv as shown in Section 3.4.

Mersenne/Fermat-like Coprimes: Sets of the form S2 = {2m − 1, 2m +

1, 22m+1, · · · 22f−1m+1, 22fm+1} form a set of coprime moduli [32]. This set of
moduli has certain advantages: first, its inverses | qiq |qi are powers of two, allowing
the multiplications in FastBConv to become bitshifts. Second, all moduli in the
set are one separated from a power of two, allowing efficient modular reduction
by Algorithms 3 and 4. These combined show that modular multiplication by
| qiq |qi in FastBConv can be done efficiently with circular bitshifting (Ch. 9, Thm.

9.2.12 [15]). We include relevant lemmas and proofs in the appendix. However,
this set is unbalanced, which leads to relative performance disadvantages as
shown in the experiments.

3.3 Optimizing Modular Reduction

The moduli in both S1 and S2 are powers of two, or unit distance from powers
of two. Modular reduction with these moduli can be performed efficiently. In
the case of q1 of S1, the modulus is a power of two, and reduction is a sim-
ple mask. In the other cases, we can extend well-known formulae for efficient
modular reduction [15]. In the context of Full-RNS variants of SHE, we per-
form modular arithmetic by reducing after each operation, and arguments to be
reduced are less than the square of the modulus. This obviates the need for iter-
ation or multiplication in modular reduction, so that only simple bit operations
and linear-complexity arithmetic are required. This leads us to the optimized
Algorithms 3 and 4, which can be used for the moduli in S1 and S2. These are
applied in all operations in RNS base Q (including NTT).

3.4 Optimizing FastBConv

In the frequently used operation FastBConv, terms of the form |x · qiq |qi are
computed. When using the moduli of S1, computing this can be done extremely
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Algorithm 3 Fast Modular Reduction - Mersenne (optimized)

1: procedure FMR−1(x, 2g − 1) . Returns x mod 2g − 1 for x ∈ [0, (2g − 1)2)
2: y ← x >> g
3: x← x&(2g − 1)
4: x← x+ y
5: if x ≥ 2g − 1 then
6: x← x− (2g − 1)
7: end if
8: return x
9: end procedure

Algorithm 4 Fast Modular Reduction - Fermat-like (optimized)

1: procedure FMR+1(x, 2g + 1) . Returns x mod 2g + 1 for x ∈ [0, (2g + 1)2)
2: y ← x >> g
3: x← x&(2g − 1)
4: if x ≥ y then
5: x← x− y
6: else
7: x← ((2g + 1)− y) + x
8: end if
9: return x
10: end procedure

efficiently, with only simple bit-wise operations as shown in Theorems 1 and 2
and Lemma 2 (proofs of nontrivial lemmas and theorems are in the appendix.).

Lemma 1. For the moduli of S1, | q0q |q0 = 2g−1, | q1q |q1 = 2g − 1, and | q2q |q2 =

2g−1 + 1.

Theorem 1. For the moduli of S1 with x ∈ [0, q0), |x · q0q |q0 is x
2 when x is even

and 2g − 1 + x−1
2 when x is odd.

|x · q0q |q0 can be computed efficiently as (x>>1) + ((x&1) << (g-1)).

Lemma 2. For the moduli of S1 with x ∈ [0, q1), |x · q1q |q1 ≡ −x mod 2g.

|x · q1q |q1 can be computed efficiently as ((1 << g) - x) & ((1 << g) - 1).

Theorem 2. For the moduli of S1 with x ∈ [0, q2), |x · q2q |q2 is x
2 when x is even

and 2g−1 + x+1
2 when x is odd.

|x · q2q |q2 can be computed efficiently as ((x+1)>>1) + ((x&1) << (g-1)).

For the moduli of S2, the terms | qiq |qi are powers of two, turning the multiplica-
tion into shifting, and the modular reductions can again use Algorithms 3 and 4.
Alternately, and more efficiently, we can utilize circular bitshifting to perform
multiplication and reduction in a single operation, as shown in Algorithms 5
and 6. These optimizations are most useful in systems such as CE-RAM where
it is most advantageous to replace multiplications with simple bitwise operations.
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Algorithm 5 Fast Modular Shifting - Mersenne
1: procedure FMS−1(x, y, 2g − 1) . Returns x · 2y mod 2g +−
2: hi← x >> (g − y)
3: lo← (x << y)&((1 << g)− 1)
4: return lo|hi
5: end procedure

Algorithm 6 Fast Modular Shifting - Fermat-like
1: procedure FMS+1(x, y, 2g + 1) . Returns x · 2y mod 2g + 1
2: hi← x >> (g − y)
3: lo← (x << y)&((1 << g)− 1)
4: if lo ≥ hi then
5: return lo− hi
6: else
7: return ((1 << g) + 1)− hi+ lo
8: end if
9: end procedure

3.5 Extended Base

The optimizations presented in Sections 3.3 and 3.4 are only applicable to op-
erations within base Q. Using more moduli, as when operating in the extended
base B (as described in Section 2.3), presents a challenge - coprime moduli close
to a power of two offset by at most one (allowing efficient modular reduction)
are already exhausted. We thus choose prime moduli bi = 2g + c with |c| < g,
where 2g + 1 is the largest modulus in whichever of S1 or S2 being used for
Q. This is done so that the largest element of Q and the elements of B are of
the same size (number of bits), so that the complexity of multiplication does
not increase beyond what is already determined by Q. We further require bi ≡ 1
mod 2N , to allow for efficient computation of the parameters needed for the NTT
(as discussed in Section 3.6). No special optimizations such as in Sections 3.3
and 3.4 are available, so Barrett reduction [9] is utilized for modular reduction
for components outside of base Q. Barrett reduction is commonly utilized in
other similar research [35, 10]. The moduli msk, m̃ can be chosen as described in
[6].

3.6 Finding NTT Parameters

We first discuss applying the NTT for moduli of the form 2g+1, 2g−1. NTT with
moduli of 2g + 1 are known in the literature [1] and are called Fermat Number
Transforms (FNT). The twiddle factors will be chosen as 2 or the quadratic
residue of 2, in which case they will be the primitive 2gth (resp. 4gth) root of
unity. Then when M | 2g (resp. 4g), 22g/M is the M th root of unity. Similarly,
the NTT for 2g − 1 (called Mersenne Number Transform MNT) is described in
[33], with twiddle factors being 2. In the scenario of RLWE-based homomorphic
encryption, M = 2N . For moduli of the form 2g, we are considering a finite field
GF (2). NTT twiddle factors over finite fields are largely known. Since ϕ(2g) =
2g−1, we find the primitive root of unity and raise it to 2g−1/M to find the M th

root of unity.
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Table 1. Parameter Cases

Case Moduli Using Our Novel Optimization?

Case A {2146 − 1, 2146, 2146 + 1} No
Case B {2146 − 1, 2146, 2146 + 1} Yes
Case C {2220 + 1, 2110 + 1, 2110 − 1} Yes

As noted in Section 3.5, we can choose moduli in the extended base B to be
NTT-friendly; with bi ≡ 1 mod 2N a 2N th primitive root of unity is easily
found, which allows efficient computation of NTT parameters (namely the twid-
dle factors Y in Algorithm 7) [35, 27]. The moduli m̃ and msk can be chosen
similarly.

4 Experimental Evaluation

Our optimizations do not change the overall asymptotic complexity of the RNS
variant, for the same reason that the variant does not improve the asymptotic
complexity [6]. However, they greatly improve the practical efficiency of the CE-
RAM implementations, which is shown with our extensive experimental evalua-
tion. We implement primitive operations (modular polynomial arithmetic, NTT,
coefficientwise multiplication, and our optimized procedures) in CE-RAM and
use those measurements to derive the runtime of relevant homomorphic oper-
ations: homomorphic multiplication, addition, and subtraction, along with en-
cryption and decryption. These are compared to a software implementation of
B/FV, as well as different research works in hardware acceleration of SHE. Re-
linearization is considered to be a part of multiplication (i.e., each relinearization
is run on a ciphertext with two components, and each multiplication has relin-
earization as a subroutine). As homomorphic multiplication is the most intensive
operation, it is the operation we refer to most when evaluating our work and
comparing it to other research.

4.1 CE-RAM Environment and Parameters

We chose a polynomial modulus degree of N = 214 and ciphertext modulus size
|q| of at least 438. This choice of parameters provides 128 bits of security [5],
matching or exceeding the security afforded by parameters chosen by Roy et al
[36], Reis et al. [34], Al Badawi et al. [3], and HEAX [35]. These parameters
also yield a scheme with multiplicative depth of at least 10. We choose the sets
Sbalanced = {2146−1, 2146, 2146+1} and Sunbalanced = {2220+1, 2110+1, 2110−1}
(i.e., Mersenne/Fermat-like coprimes), and use these sets as the modulus set q.
Additional coprime moduli (e.g. the elements of the extended base B) are chosen
to be numbers slightly larger than the largest modulus in a set, as discussed in
Section 3.5. We consider cases A and B to be using Sbalanced and case C to use
Sunbalanced, with cases B and C additionally utilizing our novel optimizations
presented in Section 3 (Table 1).
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CE-RAM is evaluated following the same methodology reported by Reis et al.
[34], i.e., with circuit-level simulations of a CE-RAM bank based on multiple
1KB CE Static Random-Access Memory Cells (SRAM) arrays. The circuit sim-
ulation tools employed are Cadence Encounter (for the CE-RAM controller cir-
cuits) [18], and Synopsys HSPICE (for the RAM array and compute-enabled
peripherals) [38]. Circuits are based on the 14nm BSIM-CMG FinFET model
[17]. Each CE-RAM array has 8 rows and 1024 columns, consisting of SRAM
cells and customized memory peripherals. In our evaluation, we employ a 16 MB
CE-RAM, which is built of 16,384 arrays of 8×1024 size (a tiled architecture).
CE-RAM performs its operations at the bitline level, which means that the co-
efficients of 2 polynomials need to be column-aligned for computing in-memory
polynomial operations. This condition is ensured by an appropriate mapping of
the polynomials to the CE-RAM arrays, i.e., polynomials are always entirely
mapped to the same row index across the 16,384 arrays. Through this mapping,
two polynomial primitives are performed simultaneously (at the same clock cy-
cle). Because this mapping holds up to 512 bits for coefficients in each row, we
can use the spare space to hold coefficients modulo msk and m̃, avoiding a need
for an extra row during calculations with operands in the base Q ∪Bsk ∪ m̃.

Using circuit simulations, we measure the time for executing each CE-RAM
instruction. We then proceed with the mapping of each homomorphic operation
into a sequence of CE-RAM instructions. Based on the time measured for each
instruction and the mapping of the homomorphic operation to the instructions,
we compute the overall time of homomorphic operations in CE-RAM.

We also consider the impact of data transfer in reporting our results, and when
comparing to other work, as appropriate. The DDR4 specification gives a peak
data transfer rate of 25,600 MB/s, which gives 70µs seconds per ciphertext trans-
fer from DRAM to CE-RAM (referred to hereafter as the specified data transfer
rate) In practice, the overhead from data transfer can be significantly less, due
to pipelining and interleaving of execution and data transfer. Based on experi-
ments run in our CPU environments, we estimate 21.2µs seconds per ciphertext
(referred to hereafter as the actual data transfer rate) transfer from DRAM
to CE-RAM. This figure was derived by observing the time difference between
operating upon ciphertexts that were/were not resident in cache memory.

4.2 Comparison to CE-RAM Implementation of B/FV

We define the speedup of case X against case Y as Run time in case Y
Run time in case X .

Full-RNS Variant: To examine the speedup from applying the full-RNS design,
we compare our current work with that of Reis et al. [34], as that work used
CE-RAM (referred to as CiM) for B/FV but implemented the textbook scheme
without the use of any RNS variant. The results for homomorphic multiplication
are shown in Table 2. The speedup was found using the actual data transfer time,
though the speedup was nearly identical to two decimal places when the specified
data transfer time was used. We note that in [34], the ciphertext modulus was
chosen to be a power of two, enabling extremely efficient modular reduction with
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Table 2. Speedup of Full-RNS CE-RAM (wo/ NTT) vs. Existing CE-RAM (wo/
RNS,NTT) [34]

Case Hom. Mult.
Case A 1.28×
Case B 1.90x
Case C 1.12×

Table 3. Speedup of CE-RAM with NTT v.s. CE-RAM without NTT (w/ Full-RNS
in both cases)

Case Operation Hom. Mult. Decrypt Encrypt
Case A Speedup wo/ transfer 396.90x 236.37x 1525.53x

Imp. w/ actual transfer 292.56x 127.91x 554.11x
Imp. w/ spec. transfer 182.22x 82.69x 224.86x

Case B Speedup w/o transfer 412.59x 315.47x 1085.19x
Imp. w/ actual transfer 265.90x 73.75x 162.63x
Imp. w/ spec. transfer 146.28x 38.89x 55.60x

Case C Speedup wo/ transfer 449.68x 338.39x 1100.51x
Imp. w/ actual transfer 332.32x 109.45x 249.14x
Imp. w/ spec. transfer 207.53x 60.77x 90.09x

a simple bitmask. Considering this, we conclude that applying RNS alone does
not bring much improvement, due to the efficient CE-RAM parameter choices
of previous work and the variable word size of CE-RAM.

NTT: To examine the speedup we get from applying NTT to CE-RAM, we
evaluated variants of encryption, decryption and homomorphic multiplication
with and without NTT-based polynomial multiplication. These results are shown
in Table 3. From this, we see that applying NTT brings a speedup of two orders
of magnitude for homomorphic multiplication. Of the optimizations we bring
to CE-RAM, NTT is the most effective; this is expected, as the runtime of
decryption and homomorphic multiplication in the RNS variant is dominated
by polynomial multiplication, which NTT optimizes.

Novel Optimizations: To find the efficacy of our novel optimizations, we exam-
ine the speedup for Cases B and C against Case A (Table 4). We note a modest
speedup for homomorphic multiplication with Case B, and a larger speedup
for other operations. Data transfer dominates the latency in homomorphic ad-
dition/subtraction, so the speedup is only notable without data transfer. We
conclude the Case B with optimized balanced set is the most effective.

4.3 Comparison to CPU Implementation of B/FV

The software library used for our CPU experiments is the highly optimized
Microsoft SEAL homomorphic encryption library [10]. SEAL applies the full-
RNS variant and NTT to B/FV. Our tests on CPU are written in C++.

For rigorous testing against a wide range of ordinary CPU environments, we
evaluate our CE-RAM approach against three different computers (Table 5).
We chose these computers to represent a server used in cloud computing (CPU-
Server, used for comparison with other research), a research workstation (CPU-
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Table 4. Speedup of CE-RAM with Novel Optimizations v.s. CE-RAM without Novel
Optimizations (not including NTT)

Case Hom. Mult. Decrypt Encrypt Hom. Add. Hom. Sub.
Case B, no data trans. 1.49x 2.91x 4.56x 37.08x 35.15x

Case B, actual data trans. 1.49x 2.89x 4.55x 1.01x 1.01
Case B, spec. data trans. 1.49x 2.86x 4.52x 1.00x 1.00
Case C, no data trans. 0.87x 1.72x 2.71x 33.94x 32.32x

Case C, actual data trans. 0.87x 1.72x 2.70x 1.01x 1.01x
Case C, spec. data trans. 0.87x 1.71x 2.69x 1.00x 1.00x

* Overhead of Hom. Mult. dominates the overhead of Hom. Add./Sub. by two orders of magnitude.

Table 5. CPU Environment Specifications

Data CPU-Server CPU-Workstation CPU-Laptop
CPU AMD EPYC 7451, 2.3 GHz Intel i7, 3.4 GHz Intel i5, 2.30GHz

Level 1 Cache Size 64KB(i)/32KB(d) 32KB(i)/32 KB(d) 32KB(i)/32 KB(d)
Level 2 Cache Size 512KB 256KB 256KB
Level 3 Cache Size 8MB 8MB 3MB

Memory Size 128GB 8GB 8GB
OS Red Hat Red Hat Ubuntu 18.04 LTS

Sole user? No Yes Yes

Workstation), and an ordinary user’s computer (CPU-Laptop). Our CPU ex-
periments use the standard parameters of N = 214, |q| = 438, but with moduli
limited to computer-supported word size (64 bits). Table 6 shows the speedup
that CE-RAM enjoys compared to our CPU environments, using our actually
measured data transfer time. Most notably, for homomorphic multiplication, we
see speedups of two orders of magnitude. Table 7 shows the number of opera-
tions per second that can be computed with CE-RAM using different estimates
for data transfer. These are more useful for comparison with related research.

In all three cases we tested, a significant speedup over the CPU environment
is seen. For homomorphic multiplication, we see a speedup of two orders of
magnitude (up to 784x faster against CPU-Server). The use of algorithmic op-
timizations (Case B) shows additional speedup as compared to Case A (no
additional optimizations). This is much more pronounced in encryption and
decryption, though homomorphic multiplication/addition/subtraction still see
some speedup from these optimizations. Encryption and decryption show a more
modest speedup, though they still improve upon the CPU environments by two
orders of magnitude.

The unbalanced moduli set (Case C) does bring some speedups over a balanced
set without optimizations (Case A) - for every operation besides homomorphic
multiplication, computation time with the unbalanced set improved upon the
balanced set without optimizations. However, for homomorphic multiplication
the unbalanced set was slower than the balanced set, regardless of whether opti-
mizations were enabled. This is likely due to multiplication’s complexity, which
increases quadratically with the number of bits in the operands, so that the
runtime of parallel operations is now dominated by the size of the largest RNS
component. We conclude that despite its interesting mathematical properties,
the unbalanced set is less useful for implementing RNS variants in CE-RAM.
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Table 6. Speedup of CE-RAM vs. CPU cases (actual data trans.)

Environment Case Hom. Mult. Hom. Add Hom. Sub. Decrypt Encrypt
CPU-Server Case A 579.9x 5.1x 5.2x 75.8x 225.0x

Case B 784.2x 5.1x 5.3x 143.9x 330.3x
Case C 575.6x 5.1x 5.3x 122.1x 290.2x

CPU-Laptop Case A 577.5x 5.7x 5.9xx 78.1x 216.3x
Case B 781.0x 5.8x 5.9x 148.3x 317.5x
Case C 573.2x 5.8x 5.9x 125.9x 279.0x

CPU-Workstation Case A 406.8x 3.6x 3.8x 52.3x 151.5x
Case B 550.1x 3.6x 3.9x 99.2x 222.4x
Case C 403.7x 3.6x 3.9x 84.2x 195.4x

Table 7. Operations per second with CE-RAM

Data Transfer Case Hom. Mult. Hom. Add Hom. Sub. Decrypt Encrypt
Actual Case A 4150 15568 15567 8558 12734

Case B 5611 15740 15740 16248 18694
Case C 4118 15739 15739 13789 16426

Specified Case A 2579 4727 4740 4658 5671
Case B 3078 4756 4756 6275 6609
Case C 2567 4756 4756 5871 6301

Computation Only Case A 5635 1383126 1381215 13421 27636
Case B 8719 51282051 48543689 52074 89685
Case C 5577 46948357 44642857 33138 53946

4.4 Considering Throughput with Projection

To consider the effects of more parallelism and interleaving and examine possible
throughput, assuming two 16MB banks of CE-RAM allows maximum utilization
of data transfer between DRAM and SRAM without failing to write back results
as soon as they are available (note that the actual data transfer time is about
one-eighth the time to compute a B/FV homomorphic multiplication in Case
B). Now considering total end-to-end throughput, this approximately doubles
the homomorphic multiplications per second CE-RAM can achieve to 11222 in
Case B with actual data transfer. While further increasing the number of SRAM
banks could further improve throughput, this would require increasing the total
SRAM size beyond 32MB, as well as more sophisticated logic for handling the
pipelining. One can also implement the architecture of CE-RAM at the main
memory (i.e., DRAM).

4.5 Comparison to Other Hardware Accelerators of B/FV

CE-RAM: Beyond simply improving on a CPU environment, our work also
shows speedups over existing work applying CE-RAM to the B/FV scheme [34],
as shown in Table 8. With Case B, we see a speedup of up to 506.5x for homomor-
phic multiplication as compared to the existing CE-RAM implementation. As
noted in Section 4.2, we only analyze the homomorphic multiplication because
it dominates additive operations.

FPGA: The work of Roy et al. [36] constructs an FPGA coprocessor for the
B/FV scheme. The closest set of parameters used by Roy et al. was N = 213,

15



Table 8. Speedup of Hom. Mult., Ours vs. Existing [34] CE-RAM

Case spec. data trans. actual data trans.
Case A 232.8x 374.6x
Case B 277.8x 506.5x
Case C 231.7x 371.8x

Table 9. Speedup of Hom. Mult. against Roy et al.[36]

Actual data trans. Spec. data trans. Computation only
66.85x 36.6x 103.48x

|q| = 360. We compare our CE-RAM runtime for Case B against Roy et al.’s
estimated runtime for homomorphic multiplication in Table 9, and speedups of
an order of magnitude (66.85x using the actual data transfer rate) are observed.
We note that these are even more impressive when noting that our evaluation
uses larger parameters, providing a higher security level.

GPU: Al Badawi et al.’s GPU acceleration of B/FV [2] demonstrates the ef-
ficacy of applying the parallelism of GPUs to RNS variants of B/FV. Of the
parameters they use, the closest ones to ours are N = 213, |q| = 360. All three
parameter/optimization cases we tested showed a speedup against the GPU-
based acceleration (Table 10), even though our work used a larger and more
demanding set of parameters, with a higher level of security. For homomorphic
multiplication, we see speedups of up to 30.8x with Case B.

5 Related Work

Other works in hardware acceleration of homomorphic encryption consider their
hardware as part of a cloud computing system, where clients can outsource en-
crypted computations to a server that will utilize the hardware to more efficiently
carry out the client’s desired calculations [35, 36]. Consequently, these works
mainly consider homomorphic computations, leaving encryption and decryption
to the client. Our work considers more generally the impact that CE-RAM can
have on the entire scheme, following the more versatile scenario of [3].

Other hardware solutions for efficient SHE have two types of data transfer that
leads to latency. Data must be moved from the ordinary memory hierarchy (i.e.
from DRAM) to the special hardware, and once resident in the accelerator it
must be moved between storage and processing elements. In contrast, CE-RAM
can be directly integrated into a computer’s ordinary memory hierarchy as a L3
cache, allowing data to be moved with the ordinary mechanisms for data transfer
between the CPU and main memory. Once the data has been moved into CE-
RAM, it is instantly available for computation without the need to move data to
processing elements. CE-RAM also has the advantage of user-chosen word size.
Other implementations (e.g., FPGAs, GPUs, ASICs, and CPUs) have word sizes
that are either set or not easily configurable. In contrast, CE-RAM can easily
choose word size as convenient for the application.
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Table 10. Speedup of CE-RAM against B/FV-GPU [2]

Case Hom. Mult. Hom. Add Decrypt Encrypt
Case A 19.9x 4.1x 2.0x 29.9x
Case B 30.8x 153.8x 7.9x 96.9x
Case C 19.7x 140.8x 5.0x 58.3x

CE-RAM: Our work is the closest to the line of research seeded by Reis et
al. [34], which was the first work pioneering the use of CE-RAM for the accel-
eration of SHE. We improve upon this work by implementing RNS and NTT
optimizations, and choosing RNS moduli systems that allow novel optimizations
especially friendly to CE-RAM systems. These optimizations give us an order of
magnitude of speedup. We also consider actual data transfer times found in our
evaluation, and present all essential functions of the B/FV scheme instead of ho-
momorphic operations only. We further consider a higher level of parallelization
(beyond simply within polynomials and RNS representations) by expanding our
system to use a 16MB bank, which allows two simultaneous operations.

FPGA: The next most similar work to ours is that of Roy et al. [36], which uses
an FPGA as a coprocessor for the more intensive portions of the B/FV encryp-
tion scheme. Their work involved careful pipelining and utilized RNS and NTT
to accelerate polynomial arithmetic. They report a speedup of 13x as compared
to a CPU implementation using an Intel i5 at 1.8GHz. Existing work in using
CE-RAM has already been shown to improve upon the work of Roy et al., even
without RNS or NTT optimizations [34].

HEAX [35] is another FPGA-based coprocessor architecture designed to accel-
erate the CKKS scheme [11], and it is the current state-of-the-art hardware
accelerator. CKKS is similar to but substantially different from B/FV, as the
ciphertext moduli in CKKS change with homomorphic multiplications. Despite
this difference, we compare our optimized CE-RAM against HEAX since it is
the state-of-the-art hardware accelerator with greatest speedups. HEAX reports
speedups of two orders of magnitude, as compared to a CPU implementation
using Microsoft SEAL. The scenario HEAX considers is multiple CPU-side pro-
cesses interleaving data transfer to/from the external FPGA, while we consider
only a single process using the standard memory hierarchy to transfer data
to/from CE-RAM. (This is partially due to the still nascent software tooling
available for CE-RAM). One of the main difficulties the HEAX architecture
faces is the limited on-chip memory available to the FPGA, forcing the FPGA
to rely on off-chip memory. This induces extra cost and latency, though intelli-
gent parallelism mitigates much of this. HEAX reports speedups of up to two
orders of magnitude against a CPU implementation running on an Intel Xeon at
1.8GHz. The parameter set we consider is the same as the most intensive set of
HEAX. When compared to a CPU implementation, HEAX achieved a speedup
of 174.4x for homomorphic multiplication, which is on the same order of mag-
nitude as our speedups of 748.2x against CPU (with actual data transfer time;
our speedup is 430.1x with the specified transfer time). We can conclude that
our work brings a similar or slightly better speedup to HEAX, even without any
pipelining of data transfer implemented in CE-RAM. Assuming the concurrent
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operation of two 16MB CE-RAM banks as discussed in Section 4.4, for homo-
morphic multiplication we may observe a 6.38x speedup using this CE-RAM
system as compared to HEAX in theory. For a further comparison to HEAX, we
estimated the runtime of CKKS multiplication implemented in CE-RAM. We
note that our system design and parameter choices are not optimized for CKKS
due to the aforementioned difference. Further, we do not consider the pipelining
and interleaving of execution utilized by HEAX, and only consider the end-to-
end runtime of a single operation with data transfer to and from CE-RAM. With
this consideration, we see a speedup of CE-RAM’s CKKS homomorphic mult.
of 6.82x (17841 ops/s) without data transfer, 3.19x (8363 ops/s) with the actual
data transfer rate, and 1.44x (3755 ops/s) with the specified data transfer rate.
Similarly, assuming two 16MB CE-RAM banks (Section 4.4), these speedups
may be doubled in theory.

FPGAs have also been utilized as general-purpose cryptographic coprocessors
for polynomial ring operations, and as coprocessors specifically designed for ac-
celeration of the YASHE scheme (closely related to B/FV, but proven insecure
[4]) [31]. There also exist FPGA-based accelerators of NTRU-based SHE schemes
by applying RNS and NTT for polynomial operations. Ozturk et al. construct
a FPGA-based accelerator for polynomial arithmetic intended for use in accel-
erating the LTV scheme [30, 28]. Against a CPU implementation, they report
speedups of 102x for multiplication and 195x for relinearization. This is in the
same order of magnitude with our speedups of 550x as reported in Table 6. Be-
sides being used for scheme-specific operations, FPGAs have also been used to
accelerate polynomial and integer arithmetic [12, 23] in ways that are generally
useful for SHE, and for other applications. Another work [24] using FPGAs with
CKKS attempts to decrease the amount of storage needed for NTT operations
by computing twiddle factors on-the-fly, saving over 99.8% of the memory that
would normally be used to store these. The lessened need for data transfer from
this innovation resulted in a 118x speedup against a (less optimized) CPU im-
plementation, and 28x against a similar work using FPGAs. One FPGA-based
accelerator for homomorphic multiplication in the LTV scheme [14, 28] reported
an speedup of 4.42x against a CPU implementation, with the polynomial degree
214 (but only 80 bits of security) and a full API and Linux driver.

GPU: Al Badawi et al. implemented the Full RNS Variant of B/FV on a GPU
using CUDA. Much of the innovation in their work comes from choosing the
memory layout of polynomial representations and using parallelism to mitigate
data transfer. The GPU implementation reports speedups of up to 13.18x for
homomorphic multiplication as compared to Microsoft SEAL run on an Intel
Xeon operating at 2.4GHz. Like our work, all essential SHE operations of the
B/FV scheme can be run on the accelerator, making this work useful for more
general use cases besides cloud-outsourced homomorphic encryption. In contrast,
both HEAX and Roy et al. only consider a coprocessor architecture, where the
most intensive operations are performed by the FPGA.
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ASIC: There has also been some work in using ASICs for SHE [16], but ASICs
are not easily reconfigurable, and are thus not as widely used in research despite
their great efficiency.

CPU: There exist several high-performance software implementations of ho-
momorphic encryption schemes for use on ordinary CPUs. These libraries in-
clude HELib implementing BGV [22], Microsoft SEAL [10] implementing B/FV
and CKKS, FV-NFLib and PALISADE implementing the B/FV [26, 13] (with
PALISADE implementing the floating-point RNS variant of B/FV [21]). While
software implementations of homomorphic encryption are becoming mature,
hardware acceleration generally outperforms general-purpose computing for ho-
momorphic encryption. GPUs, FPGAs, and CPUs are further limited by hard
bounds on machine word size, e.g. 64 bits for modern processors, 27 bits for
HEAX (two words are used to store numbers, giving 54 bits), 30 bits for Roy
et al. CE-RAM is not limited by a strict upper bound on word size, though it
still faces the universal issue of larger numbers requiring asymptotically more
computation.

RNS: Special RNS systems are well-studied in electrical engineering for their
applications to parallel processing [40]. Many of these systems are not practical
for use in CE-RAM due to their complexity, being originally conceived of in
the context of FPGAs or other specialized hardware. However, we are able to
observe and use some ideas from these works. In particular, we note that moduli
near a power of two are amenable to the CE-RAM environment.

6 Conclusion

In this paper, we applied algorithmic optimizations to further accelerate the
B/FV SHE scheme in CE-RAM. The optimizations we applied include the
NTT, the full RNS variant, and new optimizations for modular reduction and
FastBConv. We evaluate the effects of applying these optimizations, and com-
pare the benefits of our work with a CPU-based software implementation, as
well as with other relevant research efforts. For homomorphic multiplication of
B/FV, our approach achieves speedups of up to 784.2x against a CPU server,
506.5x against previous work in CE-RAM [34], 66.85x against an FPGA accel-
eration [36], and 30.8x against a GPU implementation [3]. Compared to both
GPUs and FPGAs, CE-RAM systems are currently at a nascent state with much
room of improvement. Nevertheless, CE-RAM SHE realizations show a greater
benefit as compared to GPUs and FPGAs.
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A Proofs for Novel Optimizations

In this section, we present proofs of correctness for our novel RNS optimizations.

A.1 Proof of Theorem 1

Proof. If x is even, then x = 2y, and x ·2g−1 = (2y)2g−1 = 2gy ≡ y mod 2g−1.
If x is odd, then x = 2y+ 1, and x2g−1 = (2y+ 1)2g−1 = y2g + 2g−1 ≡ 2g−1 + y
mod (2g − 1). ut

A.2 Proof of Lemma 2

Proof. x(2g − 1) = x · 2g − x ≡ −x mod 2g. ut

A.3 Proof of Theorem 2

Proof. If x is even, then x = 2y, and x(2g−1 + 1) = (2y)(2g−1 + 1) = 2gy+ 2y ≡
−y + 2y ≡ y mod 2g + 1. If x is odd, then x = 2y + 1, and x(2g−1 + 1) =
(2y + 1)(2g−1 + 1) = y2g + 2y + 2g−1 + 1 ≡ −y + 2y + 2g−1 + 1 ≡ y + 2g−1 + 1
mod 2g − 1. ut

B Proofs for Fermat-like Coprimes

Let the terms qi be elements of S2 = {2m−1, 2m+1, 22m+1, 24m+1, · · · 22f−1m+

1, 22fm + 1}, as in Section 3.2. Then the following results hold [32]:

Lemma 3. For qi ∈ S2 with q0 = 2m − 1, | q0q |q0 = 2m−(k−1).

Proof. Note that q
q0

= (2m + 1)(22m)(24m) · · · (22fm). Because 2m is equal to

1 modulo q0, each of the f + 1 terms in this product is equal to two. Thus
| qq0 |q0 = |2f+1|q0 . The inverse of this is | q0q |q0 = 2m−(f+1) = 2m−(k−1). ut

Lemma 4. For qi = 22im + 1, i ∈ [1, k], | qiq |qi is 22i−1m−(f−i+2).

Proof. Note that q
qi

= (22im − 1)(22i+1m + 1)(22i+2m + 1) · · · (22fm + 1). We see

that |(22im−1)|qi = |(−1)−1|qi = |−2|qi . For the remaining terms 22jm+1 (for

j ∈ [i+1, f ]), we have |22jm+1|qi = |(22i−1m)2j−(i−1)

+1|qi = |(−1)2j−(i−2)

+1|qi .
Because j > i, this is equal to |1+1|qi = 2. Combining these, we see that | qqi |qi =

|(−2)2f−(i−1)|qi = | − 2f−i+2|qi . Then the inverse term | qiq |qi is 22i−1m−(f−i+2).
ut

In both of these terms, the exponent of two should always be positive; if this is
not the case then too many moduli have been chosen for too small a dynamic
range [39].
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C NTT Algorithm

Algorithm 7 gives the algorithm of the Number-Theoretic Transform.

Algorithm 7 Number-Theoretic Transform (NTT) (From [36]).

Input: a ∈ Zn
p (p ≡ 1 mod 2n), Y ∈ Zn

p (CE-RAM stores powers of ψ in bit-reverse
order, and Y ′ = bY · 2w/pe).
Output: ã← NTTp(a) in bit-reverse order.

1: procedure NTTp(a)
2: for (m = 1; m < n; m = 2m) do
3: for (i = 0; i < m; i+ +) do . Butterfly Loop

4: for (j = i·n
m

; j < (2i+1)n
2m

; j + +) do . NTT Core
5: v ←MultRed(aj+ n

m
, ym+i, p)

6: aj+ n
m
← aj − v (mod p)

7: aj ← aj + v (mod p)
8: end for
9: end for

10: end for
11: ã← a
12: end procedure
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