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Abstract. We present Poppins, a direct construction of a zero-knowledge
argument system for general computation that features an Oλ(n) time
prover and an Oλ(1) time verifier (after a single Oλ(n) public setup)
for computations of size n. Our scheme utilizes a universal linear-size
structured reference string (SRS) that allows a single trusted setup to
be used across all computation instances of a bounded size. Concretely,
for computations of size n, our prover’s cost is dominated by 35 multi-
exponentiations of size n and our verifier’s cost is dominated by 34
pairings. To achieve the stated asymptotics, we first construct a nearly-
optimal zkSNARK with a logarithmic verifier in the random oracle model.
We then show how to achieve a constant-time verifier using (single-layer)
proof composition. Along the way we design (1) a new polynomial com-
mitment scheme for evaluation-based representations of polynomials,
(2) an asymptotically optimal inner-product argument system, (3) an
asymptotically optimal multi-Hadamard-product argument system, and
(4) a new constraint system for NP that is particularly well-suited for
our bundle of techniques.

1 Introduction

Verifiable computation [39] allows a weak client to outsource a computation and
efficiently verify that the returned result is correct. Many recent verifiable com-
putation schemes provide an orthogonal zero-knowledge guarantee, in which the
server running the computation can provide a private input to the computation,
and still prove correct execution without revealing any information about the
input. Such powerful integrity and privacy guarantees have enabled an exciting
class of applications, including anonymous credentials [34], verifiable storage out-
sourcing [4], blockchain applications [52, 60], verifiable database operation [71],
and voting [72].

As shown by Goldwasser et al. [43], this class of interaction can be modeled
as a zero-knowledge argument system. A zero-knowledge argument system is an
interactive protocol in which a prover proves a “computational statement” (e.g.
“Program P outputs y, on public input x and secret input s”) to a verifier. Many
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classical results address how to model and realize such an interaction [3, 5, 7].
These results however are not designed to be practical for the majority of in-
teresting applications, which demand good concrete costs in addition to a sub-
linear verifier with respect to the size of the original statement (succinctness)
and non-interactivity. Modern performance-oriented argument systems that tar-
get these requirements and support a broad class of computational statements
(such as NP) are typically dubbed zero-knowledge succinct non-interactive argu-
ments of knowledge (zkSNARK) [14]. Generally these sorts of argument systems
are achieved by putting together the following pieces: (1) a constraint system to
represent computational statements as low-level algebraic constraints, (2) math-
ematical representations (e.g. polynomials) to encode constraints and purported
satisfying assignments, (3) efficient algebraic tests (e.g. polynomial equality test-
ing) to check that the encoded assignment satisfies the prescribed algebraic con-
straints, and (4) cryptographic machinery to prove in zero-knowledge that the
prescribed algebraic tests are satisfied.

Many performance-oriented zero-knowledge argument systems have proposed
various bundles of techniques to address each of the listed pieces [2,23,28,58,62,
68]. However, all proposals make some combination of the following undesirable
compromises: (1) a per-circuit trusted setup (which is especially problematic in
settings such as the blockchain where there is no clear authority); (2) a super-
linear prover and/or a (super)-logarithmic verifier which hurts practical efficiency
and may defeat the purpose of outsourcing computation; (3) a restricted class
of computations (such as circuits with repeated structure).

In contrast, our system makes none of these compromises — Instead, by de-
veloping new techniques and extending techniques from several previous strands
of work, we achieve an efficient zkSNARK for general computation.

1.1 Our Results

We present Poppins, a time-optimal zkSNARK for general computation that
features an Oλ(n) time prover and an Oλ(1) verifier (after a single Oλ(n) public
setup) for computations of size n. As Lee et al. [53] and Bootle et al. [20] point
out, the precise definition of “time-optimal” can vary. We adopt convention, and
measure runtime in terms of the number of field and group operations performed
[23, 28, 58, 62]. As such, we ensure that the prover performs a linear number
of field/group operations, and that the verifier performs a constant number of
field/group operations with respect to computation size n. We show how our
asymptotics compare to other popular zkSNARK systems in table 1.

Our argument system utilizes a universal linear-size structured reference
string (SRS) (i.e., a single trusted setup can be used across all computation
instances of a bounded size). In terms of concrete costs, our prover is roughly
2− 3× more expensive than existing universal zkSNARKs such as Spartan [62],
Marlin [28], and Plonk [38]. In the algebraic group model [37], for computations
of size n, the prover’s cost is dominated by 35 multi-exponentiations of size n,
the verifier’s cost is dominated by 34 pairings, and the total communication cost
is estimated to be 93 group elements.
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Our core argument is constructed by modifying argument systems for linear
algebraic statements (e.g., inner-product, Hadamard-product, polynomial eval-
uation) to match our desired asymptotics before composing them to create a
argument system for general computation. In particular, existing argument sys-
tems typically feature either a non-constant-time verifier or a super-linear prover.
To achieve a linear-time prover, we design new techniques to avoid super-linear
operations (such as polynomial interpolation). Later, to achieve a constant-time
verifier, we outsource the verifier’s non-constant-time work using a generic ar-
gument system. We give a high level overview of our core contributions leading
to an argument system with optimal asymptotics:

(i) Polynomial Commitments for Evaluation-Based Representations: A poly-
nomial commitment scheme allows a prover to commit to a polynomial and
later verifiably evaluate it at a challenge point. We propose a new poly-
nomial commitment scheme based on that of Zhang et al. [71] specifically
tailored for evaluation-based representations of polynomials. This allows
us to avoid expensive interpolation operations typically found in argument
systems that rely on polynomial-based representations.

(ii) Extended Inner-Product Argument: An inner-product argument allows a
prover to commit to two vectors and later verifiably evaluate their inner-
product. We extend the inner-product argument presented by Bünz et
al. [26] to operate over commitments to evaluation-based representations
of polynomials. Additionally, we modify this argument system to support
zero-knowledge.

(iii) Asymptotically Optimal Multi-Hadamard-Product Argument: A multi-Hadamard-
product argument allows a prover to commit to a list of vectors and
later verifiably evaluate the Hadamard product of these vectors. Bayer [6]
presents a multi-Hadamard argument that features a linear-time prover
and verifier. We show how to compose Bayer’s argument with our modified
inner-product argument to achieve a constant-time verifier.

(iv) A New Constraint System to Characterize NP: We design a new constraint
system to capture NP that allows us to piece together the previous argu-
ment systems in a novel way. We refer to the relation defining our constraint
system as RACS. We show how to encode RACS statements into polynomial
representations that can be checked using the techniques described above.

Putting together the listed pieces, we achieve a public-coin argument with a
logarithmic number of rounds in the standard model using just a structured refer-
ence string. This argument can be made non-interactive with a logarithmic-time
verifier in the random oracle model. To outsource the verifier’s non-constant-time
work, we must heuristically instantiate the random oracle with a cryptographic
hash function before representing the verifier’s checks as a circuit [12, 21, 29, 30,
53]. Part of the difficulty of outsourcing in our setting is that we must ensure that
the outsourced circuit is small enough to preserve a concretely efficient prover.
We carefully construct our suite of techniques to ensure that the verifier only
has to outsource a small portion of its checks.
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Scheme Setup Prover Verifier Proof Size Model

zkSTARK [8] public n polylog n log2 n log2 n uniform circuits
Ligero [2] public n log n n n arithmetic circuits

Aurora [10] public n log n n log2 n R1CS
Hyrax [68] public d(g + c log c) + w d log g +

√
w

√
n arithmetic circuits

Virgo [70] public n+ n log n d log n+ log2 n d log n+ log2 n uniform circuits
SpartanSQRT [62] public n

√
n

√
n R1CS

Bulletproofs [23] public n n log n arithmetic circuits
Plonk [38] private∗∗ n log n 1 1 arithmetic circuits
SuperSonic [25] private∗∗ n log n log n log n arithmetic circuits
Marlin [28] private∗∗ n log n log n 1 R1CS
Libra [69] private∗∗ n d log n d log n uniform circuits

SpartanKZG [62] private∗∗ n log2 n log n R1CS
GGPR-based [58] private n log n x 1 arithmetic circuits
PoppinsRO private∗∗ n log n log n RACS

Poppins private∗ n x 1 RACS

Table 1: Asymptotic costs of various zero-knowledge proof systems in terms of field and group
operations. n denotes the number of constraints. d denotes the circuit depth. x denotes the size
of the circuit inputs and outputs. w denotes the size of the provers private input. c denotes the
number of repeating identical subcircuits. g denotes the width of the circuit. private∗ denotes a
universal setup. private∗∗ denotes a universal and updatable trusted setup. R1CS is an algebraic
constraint system based on Quadratic Arithmetic Programs [40].We note that the total number of
constraints can vary based on computational model. PoppinsRO represents our argument system
before instantiating the random oracle.

1.2 Related Work

zkSNARKs for a Limited Class of Computation: In an effort to create practical
systems, Goldwasser et al. [42] describe an interactive argument system (over
layered arithmetic circuits), which consists of proving statements about each
layer of the circuit using the sum-check protocol proposed by Lund et al. [55].
Following works [31, 66, 68] refines this approach by considering uniform cir-
cuits (i.e., descriptions of the circuit are asymptotically smaller than the circuit
itself). Recent works additionally achieve zero-knowledge [68], and an asymptot-
ically linear prover [69, 70]. Unfortunately, systems in this line rely on layered,
uniform circuits, in order to achieve a logarithmic verifier, limiting the class of
computations which can be efficiently encoded.

zkSNARKs with a Trusted Setup: In a parallel vein, Gennaro et al. [40] achieve
a constant-time verifier and a nearly linear prover for general computations by
making use of a per-instance trusted setup. Core to their work is a new constraint
system, Quadratic Arithmetic Programs, which inspires the constraint system
designed in this work. Parno et al. optimize Gennaro et al.’s [40] protocol to
produce a highly optimized implementation, Pinocchio [58]. A large line of work
optimizes Pinocchio in various settings [32, 33, 36, 47, 60]. Systems in this line
require a per-circuit structured reference string (SRS) generated privately by
a trusted party, which can be problematic in practice [60]. Additionally, for
computations of size n, these systems require Oλ(n log n) field operations which
adds a non-trivial overhead in practice [58].
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Efforts To Remove a Trusted Setup: Practical issues with private setup proce-
dures have caused a recent surge in argument systems without a trusted setup,
(i.e. transparent zkSNARKs). Using only the discrete logarithm assumption,
Groth [46] proposes an argument system for statements in NP, by combining
zero-knowledge argument systems for linear-algebraic operations such as matrix
product, Hadamard product, and inner-product. This system is implemented by
Bootle et al. [19] and later refined by Bünz et al. [23]. Systems in this line require
the verifier perform linear work in the size of the original computation making
them useful only for their zero-knowledge properties, not for outsourcing.

Aurora [10] and zkSTARKs [8] achieve a transparent setup by building upon a
line of work initiated by Ben-Sasson et al. [11]. The soundness for both of these
systems relies on non-standard assumptions related to Reed-Solomon Codes.
Unfortunately, both Aurora and zkSTARKs also feature a linear verifier and a
nearly linear prover. zkSTARKs achieves a polylogarithmic verifier when con-
sidering uniform circuits, but relies on a computational model which can add
significant overhead in practice [67].

Ishai et al. construct transparent zero-knowledge argument systems using
secure multi-party computation as a fundamental building block [50]. Several
works refine this approach [27,41]; however all of these works feature a linear-time
verifier. Ames et al. [2] show how to achieve a sublinear verifier by amortizing
over multiple instances of the same verification circuit.

Recently, Setty proposed Spartan [62], the first direct construction for a trans-
parent zkSNARK with sublinear verifier without any assumptions about the cir-
cuit structure. In more detail, Spartan reduces matrix encodings of arithmetic
circuits to a sum-check instance over sparse multivariate polynomials which are
verifiably evaluated in zero-knowledge by using the argument system proposed
by Wahby et al [68]. Unfortunately for computations of size n, Spartan’s verifier
still runs in time Oλ(

√
n).

Universal Trusted Setups as an Alternate Solution: The preceding discussion
of transparent zkSNARKs indicates that it is unclear how to achieve an asymp-
totically optimal verifier without the use of a trusted setup. Two recent works,
Sonic [56] and Marlin [28], take a middle-ground approach and study the setting
where a private trusted setup is performed only once, and the resulting SRS
can be reused across all circuits that respect a certain size bound (i.e., a uni-
versal trusted setup). For computations of size n, Sonic achieves an Oλ(n log n)
prover and a constant time verifier, and Marlin achieves an Oλ(n log n) prover
and an Oλ(log n) verifier (although Marlin is considerably cheaper in practice).
Another recent work, Plonk, achieves the same asymptotics as Sonic, but with
significantly better concrete costs by utilizing an improved permutation argu-
ment [38]. Setty describes a variant of Spartan that utilizes a universal trusted
setup to achieve an Oλ(log2 n) verifier. Encouraged by these results, we also
adopt this setting in our work.

Optimal Asymptotics via Recursive Composition: A zkSNARK supports recur-
sive composition if the verifier’s execution can be expressed as another com-
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putation instance to be proved, thus allowing the prover to write proofs about
proofs. Valiant [65] shows how to take any succinct argument system that sup-
ports recursive composition and achieve a linear time prover and a (practically)
constant-time verifier. Roughly, Valiant’s prover breaks down a large circuit into
many small circuits and writes a proof of correct execution for each before “fold-
ing” all of these proofs into a single (constant-sized) proof using a tree-like
structure. Both Bitansky et al. [15] and Ben-Sasson et al. [12] refine this trans-
formation. Bitansky et al.’s transformation can be applied to two recent recursive
proof systems, Halo [21] and Fractal [29] (and following generalizations [18,24])
to achieve time-optimal zkSNARKs. Unfortunately, recursive composition ap-
plied in this manner incurs quite expensive overheads in practice. In contrast,
our work achieves an optimal zkSNARK with significantly reduced overhead via
a direct construction.

2 Technical Overview

Argument Sys-
tem for RACS (§5)

Inner-Product
Argument (§4.3)

Polynomial Evaluation
Argument (§4.2)

×8
×4 after optimizations

×3
×1 after optimizations

Multi-Hadamard-
Product

Argument (§4.5)

Inner-Product
Argument (§4.3)

Fig. 1: Overview of the techniques involved to construct our argument system for general com-
putation. We achieve concrete optimizations by batching and instantiating in the Algebraic Group
Model [37]. More details are provided in supplementary section F.

The RACS Constraint System: We start by designing a novel linear algebraic
constraint system, RACS, that, unlike previous constraint systems, is carefully
designed to only utilize asymptotically optimal argument systems. Formally,
RACS is modeled as a relation that consists of a public statement (represented as
matrices) and a private witness (represented as a vector). In an argument system
for RACS, the prover shows — in zero-knowledge — that it knows a witness that
satisfies the constraints encoded in the statement. We show how to encode both
the statement and witness of anRACS instance as polynomials (as part of a single
linear-time public setup). To check that the prover’s witness polynomial satisfies
the given statement polynomials with respect to relation RACS, the verifier is
tasked with checking that evaluations of a witness-dependent polynomial over a
specified set of points sum to 0.
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Argument System Overview: The prior check can be viewed as a sum-check
instance [55], and indeed several recent systems have tackled similiar checks using
a generic sum-check protocol [28, 62, 68]. However existing sum-check protocols
do not meet our desired asymptotic goals: They either induce a super-linear
prover [28] or a non-constant verifier [69].

In contrast, RACS is designed to avoid sumcheck protocols: We show how the
task of checking an RACS instance can be reduced to the task of checking (1)
polynomial equality and (2) a specalized sum of the following form:

σ =
∑
h∈H

A(h) ·B(h) (1)

for some predefined set of points H, claimed sum σ, and polynomials A(X), and
B(X). Here we make a novel observation that the right-hand side of Equation 1
can be evaluated by taking an inner-product over evaluation representations of
polynomials A and B, thus avoiding sumchecks entirely. This realization mo-
tivates us to represent polynomials using their evaluation-based representation
rather than a coefficient-based representation.

Thus, the verifier can efficiently check Equation 1 by using an argument sys-
tem for inner-product (Construction 4). Unfortunately, the fastest existing inner-
product argument [26] still features a logarithmic-time verifier, which seems to
indicate that we’ve gained no advantage over sumcheck protocols. However, we
show that the inner-product verifier is particularly well-suited to cheaply out-
source its logarithmic work using (single-layer) proof composition.

As for the polynomial equality check, we show how the verifier can reduce
this task to another another (simpler) sum-check instance using the Schwartz-
Zippel Lemma [61]. The verifier repeats this interaction over several rounds to
reduce the original statement to checking the Hadamard-product over vectors
generated during the interaction. Thus, in the final round, the verifier engages
in an Hadamard-product argument over multiple vectors, which in turn relies
on another inner-product argument (Construction 5). We summarize the key
components of our construction in Figure 1.

Utilizing Polynomial Commitments: We note that we cannot achieve a sublinear
verifier if the prover directly sends the aforementioned polynomials, which are
linear in the size of the RACS instance. Instead the prover sends commitments
to these polynomials (Construction 1), and later engages in arguments regard-
ing these commitments to convince the verifier that its checks would pass (a
technique popularized by several recent works [28, 62, 68, 70, 71]). Traditionally
polynomial commitments, as defined by Kate et al. [51], refer to both the scheme
to commit to a vector representing a polynomial and the argument system to
evaluate polynomials “under” these commitments. However, in our setting we
utilize the same commitment value in multiple contexts: Specifically we treat
such commitments as vector commitments when involved in inner product argu-
ments, and as polynomial commitments when involved in polynomial-evaluation
arguments. To maintain a cleaner presentation we separate the schemes to com-
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mit to a vector representing a polynomial (Construction 1) and the argument
system to evaluate committed polynomials (Construction 2).

Throughout the argument, the prover is required to evaluate polynomials
(represented as vectors of evaluations) “under” its commitments at challenge
points. Our polynomial-evaluation argument modifies that of Zhang et al. [71]
which in turn is based on the scheme by Papamanthou et al. [57], both of which
achieve anOλ(n) prover and anOλ(1) verifier for degree n univariate polynomials
represented as coefficients. In order to efficiently evaluate univariate polynomials
based on their evaluation representations, we design a structured key which
utilizes the Lagrange basis (Definition 7).

Instantiating the Random Oracle: We prove our arguments for polynomial evalu-
ation, inner-product, and multi-Hadamard product in the random oracle model.
As a result, we achieve an argument for RACS with a logarithmic-time verifier in
the random oracle model. In order to achieve a constant-time verifier, we out-
source the verifier’s logarithmic work using another general-purpose argument
system. Because it is impossible to prove relativized statements (i.e. statements
about circuits that query random oracles), we must heuristically instantiate the
random oracle with a cryptographic hash function, thus leaving the random ora-
cle model. We stress that this instantiation step is taken by all existing systems
that utilize any form of proof composition starting with Valiant’s incremen-
tal verifiable computation [65] and following generalizations [12, 15, 30]. Several
recent general proof systems must also instantiate the random oracle in this
fashion [21,29,53].

Preserving a Universal/Updatable SRS and Non-Interactivity: Several of the
listed techniques require a structured reference string to be generated during a
trusted setup phase. We ensure that these setup procedures are not instance de-
pendent, which allows the overall argument system to maintain a universal SRS.
Groth et al. [49] show that an SRS defined over the monomial basis is updat-
able, implying that our SRS, defined over the Lagrange basis, is also updatable.
Specifically, updating parties can take a linear combination of the Lagrange basis
terms to retrieve the monomial basis terms, perform an update generically, and
convert back to the Lagrange basis. When we instantiate the random oracle and
outsource the verifiers non-constant work, we must make use of a non-updatable
CRS. This means that while we achieve updatability for our argument system
with a logarithmic verifier, we do not achieve updatability for a constant time
verifier. We additionally ensure that all the components used in our argument
system for general computation are public-coin (the verifier only sends random
challenges) thus ensuring that it can be made non-interactive using the Fiat-
Shamir transform [35].

2.1 Roadmap

In Section 3 we define argument systems, present several algebraic preliminaries,
and define our cryptographic assumptions. In Section 4 we define and provide
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constructions for vector commitments (§4.1), polynomial-evaluation arguments
(§4.2), inner-product arguments (§4.3), and multi-Hadamard arguments (§4.5).
In Section 5 we define the RACS constraint system and our argument system
for RACS. In Section 6 we describe proof-composition techniques to achieve a
constant-time verifier.

3 Preliminaries

3.1 Argument System

An argument system is a protocol in which a prover proves a “computational
statement” to a verifier. Formally we capture a computational statement as a
ternary relation. For relation R, given public parameters pp, we call w a witness
for a statement u if (pp, w, u) ∈ R. In this section we define argument systems
and their desired properties. We adapt the following notation and definitions
from both Chiesa et al. [28] and Bünz et al. [23].

Definition 1 (Interactive Argument System). Let R ⊂ {0, 1}∗ ×{0, 1}∗ ×
{0, 1}∗ be a polynomial-time-decidable ternary relation. An argument system for
relation R is a tuple of three probabilistic polynomial-time interactive algorithms
(G,P,V), denoted the generator, prover, and verifier respectively, with the fol-
lowing structure

– G(λ,N)→ pp: Takes as input security parameter λ and the size bound N ∈ N.
Outputs public parameters pp.

– P(pp, u, w): Takes as input public parameters pp, statement u, and witness
w. Interactively proves that (pp, u, w) ∈ R.

– V(pp, u)→ 0/1: Takes as input public parameters pp and statement u. Out-
puts 0 for reject and 1 for accept.

Let tr ← 〈P(pp, u, w),V(pp, u)〉 denote the transcript tr produced by P and V
on their specified inputs. Let 〈P(pp, u, w),V(pp, u)〉 = 0/1 denote the verifier’s
output at the end of the interaction. For relation R, (G,P,V) satisfies perfect
completeness if for any statement u and witness w

Pr

[
(pp, u, w) ∈ R,
〈P(pp, u, w),V(pp, u)〉 = 1

∣∣∣∣pp← G(λ,N)

]
= 1

and satisfies soundness if for any non-satisfiable statement u (i.e. there exists
no w such that (pp, u, w) ∈ R.) and PPT adversary P∗

Pr
[
〈P∗(pp, u),V(pp, u)〉 = 1

∣∣pp← G(λ,N)
]

= negl(λ).

Definition 2 (Knowledge-Soundness [71]). Informally, knowledge sound-
ness captures the notion that if the verifier is convinced of a specified statement,
then the prover must possess the corresponding witness. Formally, an argument
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system for relation R, (G,P,P), satisfies knowledge-soundness if for any prob-
abilistic polynomial time prover P∗ there exists a probabilistic polynomial time
extractor E such for all inputs u

Pr

[
〈P∗(pp, u, ρ),V(pp, u)〉 = 1,
(pp, u, w) 6∈ R

∣∣∣∣pp← G(λ,N),
w ← E(pp, u, ρ)

]
= negl(λ)

where ρ denotes the input randomness for P∗.

Definition 3 ((Special Honest-Verifier) Zero-Knowledge). Informally, (Spe-
cial Honest-Verifier) Zero-Knowledge captures the property that an (honest) ver-
ifier gains no additional information after viewing a proof of correct execution.
Formally, an interactive argument system (G,P,V) satisfies zero-knowledge for
relation R if there exists a PPT simulator S such that for any PPT adversary
V∗, pair of interactive adversaries A1,A2, and auxiliary input z∣∣∣∣∣∣∣∣∣∣∣∣

Pr

 (pp, u, w) ∈ R,
A2(tr) = 1

∣∣∣∣∣∣
pp← G(λ,N),
(u,w, st)← A1(pp, z),
tr← 〈P(pp, u, w),V∗(pp, u; st)〉

−
Pr

 (pp, u, w) ∈ R,
A2(tr) = 1

∣∣∣∣∣∣
(pp, trap)← S(λ,N),
(u,w)← A1(pp, z),
tr← S(pp, trap, u)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

(G,P,V) satisfies special honest-verifier zero-knowledge if V∗ is constrained to
be the honest verifier.

Definition 4 (Public Coin). An argument system (G,P,V) is called public
coin if all the messages sent from V to P are chosen uniformly at random and
independently of the prover’s messages.

3.2 Algebraic Preliminaries

The RACS relation involves statements and witnesses represented as a set of
polynomials over a field F. RACS efficiently encodes conditions that dictate a
valid statement-witness polynomial pair using vanishing polynomials, and the
formal derivative of vanishing polynomials. We borrow both notation and several
of the following definitions from Chiesa et al. [28].

Notation 1 (Vectors and Matrices). Throughout this work we denote vec-
tors and matrices using a bold font (i.e. v and M). For matrix M we let M [i, j]
denote the entry at row i and column j. We let vi denote element i of vec-
tor v. We define vectors by their individual components using parenthesis (i.e.
v = (v1, v2, . . . , vn)). We denote vector w appended to vector v as (v,w). We
define v · w to be the inner-product and v ◦ w to be the Hadamard product.
For vectors g and x of the same length, let gx =

∏
i g
xi
i . We let [n] denote the

vector (1, 2, . . . , n) and let [m,n] denote the vector (m,m+ 1, . . . , n). Similiarly
we let {vi}i∈[n] denote the vector (v1, v2, . . . , vn).
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Notation 2 (Evaluation-Based Polynomial Representation). Through-
out our work, we represent various degree n polynomials as vectors of n + 1
evaluations over a predefined set of points rather than as vectors of coefficients.
For a polynomial p we let p denote its evaluation-based vector representation.
We treat p as a vector or a polynomial representation interchangably depending
on context. For notational conciseness, we let p(x) denote the evaluation p(x).
Similiarly for indeterminate X, we let p(X) denote polynomial p(X).

Definition 5 (Vanishing Polynomial [28]). Consider a finite field F and a
subset S ⊆ F. Let vS denote the unique, non-zero, monic, polynomial of degree
|S| that is zero at every point on S. If S is a multiplicative subgroup, then
vS(X) = X |S| − 1, which can be computed in O(log |S|) field operations.

Definition 6 (Formal Derivative of the Vanishing Polynomial [9, 28]).
Given a finite field F and a subset S ⊆ F, we define the polynomial

uS(X,Y ) =
vS(X)− vS(Y )

X − Y
,

where X,Y ∈ F. Note that uS is a bivariate polynomial with degree |S| − 1 in
each variable, because X − Y divides vS(X)− vS(Y ).

If S is a multiplicative subgroup, we can compute uS(X,Y ) as follows: If
X 6= Y then the term (vS(X)− vS(Y ))/(X−Y ) can be computed directly. If, on
the other hand, X = Y , then Chiesa et al. [28] show that uS(X,X) = |S|X |S|−1.
This property suggests that for all X,Y ∈ S, uS(X,Y ) 6= 0 when X = Y and
uS(X,Y ) = 0 otherwise.

Lemma 1 (Polynomial Decomposition [57]). Consider degree d polynomial
p(X) and arbitrary evaluation point u ∈ F. Then there exists degree d− 1 poly-
nomial q(X) such that

p(X)− p(u)

X − u
= q(X)

Definition 7 (Lagrange Basis). For evaluation points x1, . . . , xk the Lagrange
basis is defined as `(x) = 〈`0(x), . . . , `k(x)〉> where

`j(x) :=
∏

0≤m≤k,m 6=j

x− xm
xj − xm

.

Suppose a polynomial P of degree k is defined by points (x0, y0), . . . , (xk, yk)
Then

P (x) =

k∑
j=0

yj`j(x).
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3.3 Cryptographic Assumptions

In order to achieve zero-knowledge we require additional cryptographic machin-
ery overlayed on top of the core interaction. We define our cryptographic as-
sumptions below.

Assumption 1 (Discrete Logarithm Relation [23]). Consider group G.
The discrete logarithm assumptoin holds for G if for all PPT adversaries A and
for all n ≥ 2

Pr

[
∃ ai 6= 0,∏n
i=1 g

ai
i = 1

∣∣∣∣∣g1, . . . , gn
$← G,

a1, . . . , an ∈ Zp ← A(G, g1, . . . , gn)

]
= negl(λ).

Assumption 2 (n-Strong Diffie-Hellman (n-SDH)). Consider group G of
prime order p = O(2λ) and let F = Z∗p. The n-SDH assumption [17] holds for G
if for all PPT adversaries A

Pr

 c 6= −s,C = g
1
s+c

∣∣∣∣∣∣∣∣∣
g

$← G,
s

$← F,
σ = (G, g, gs, . . . , gsn),
(c, C)← A(σ)

 = negl(λ).

Assumption 3 (n-Bilinear Strong Diffie-Hellman (n-BSDH)). Consider
two groups G and GT of prime order p = O(2λ) such that there exists a symmet-
ric bilinear pairing e : G×G→ GT. Let F = Z∗p. The n-BSDH assumption [44]
holds for (G,GT) if for all PPT adversaries A

Pr

 c 6= −s,C = e(g, g)
1
s+c

∣∣∣∣∣∣∣∣∣
g

$← G,
s

$← F,
σ = ((F,G,GT, e), g, g

s, . . . , gs
n

),
(c, C)← A(σ)

 = negl(λ).

Assumption 4 (n-EPKE for a Linearly Independent Basis). Consider a
linearly independent basis of polynomials of degree up to n: p0(X), . . . , pn(X).
Consider two groups G and GT of prime order p = O(2λ) such that there exists
a symmetric bilinear pairing e : G × G → GT. Let F = Z∗p. The n-Extended
Power Knowledge of Exponent holds for (G,GT) if for any PPT adversary A
there exists a PPT extractor E such that

Pr


e(A, gα) = e(A′, g),
A =

(∏n
i=0 g

pi(s)·ai
)
· gt·b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(F,G,GT, e)← G(λ),

α, s, t
$← F, g $← G,

u = (g, gp0(s), . . . , gpn(s), gt),
v = (gα, gαp0(s), . . . , gαpn(s), gαt),
σ = ((F, H,G,GT, e),u,v),
(A,A′)← A(λ, σ, z; ρ),
(a0, . . . , an, b)← E(λ, σ, z; ρ)


= 1−negl(λ)
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for any benign auxiliary input z ∈ {0, 1}poly(λ), and randomness ρ. In this setting
we consider input z benign if it is generated independently of α. We prove that
our variant of the n-EPKE assumption is equivalent to that of of Zhang et al. [71]
in supplementary section D.1

Remark 1 (Benign Auxiliary Distributions). Boyle et al. [22] and Bitan-
sky et al. [16] show the impossibility of knowledge assumptions with arbitrary
auxiliary inputs. To circumvent this issue, we must assume that each of our
subprotocols relying on the q-EPKE assumption only receive benign auxiliary
inputs. The precise definition of benign inputs can be found in Assumption 4.
When composing subprotocols we are careful not to introduce any new terms
that could break this requirement. Thus when using our final argument system
as a subroutine in larger protocols, knowledge-soundness holds so long as the
auxiliarly input is sampled benignly.

4 Auxiliary Argument Systems

In this section we define and construct extractible vector commitments (§4.1), an
argument system for polynomial evaluation (§4.2), an argument system for inner-
product (§4.3), and an argument system for inner-product over the Lagrange
basis (§4.4). While we present the Lagrange basis, we stress that our auxiliary
constructions and corresponding proofs work with any basis by Assumption 4.
For notational simplicity our constructions utilize symmetric (type 1) bilinear
pairings; however, our constructions can be easily modified to handle asymmetric
(type 2) bilinear pairings.

4.1 Extractible Vector Commitments

Definition 8 (Vector Commitments). 1 A vector commitment scheme over
Fn has the following structure

– G(λ, n)→ pp: Takes input security parameter λ size bound n. Outputs public
parameters pp.

– com(pp;v; r) → c. Takes input public parameters pp, vector v ∈ Fn and
randomness r. Outputs commitment c.

– checkcom(pp; c) → {0, 1}. Takes input public parameters pp, and commit-
ment c. Outputs 1 is c is well-formed, 0 otherwise.

A vector commitment scheme (G, com) over Fn, with randomness space R, is
said to be computationally binding if for any PPT adversary A

Pr

[
com(v0; r0) = com(v1; r1),
v0 6= v1

∣∣∣∣pp← G(λ, n),
v0,v1, r0, r1 ← A(pp)

]
= negl(λ)

1 We elect not to define commitment opening procedures as we do not use it through-
out this work
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and is said to be unconditionally hiding if for any adversary A

Pr

[
b = b′

∣∣∣∣∣pp← G(λ, n), (v0,v1) ∈ Fn ← A(pp),

b
$← {0, 1}, r $← R, c← com(vb; r), b′ ← A(pp, c)

]
=

1

2

Definition 9 (Extractibility). We call a vector commitment scheme extractible
if for any probabilistic polynomial time adversary A, there exists a probabilistic
polynomial time extractor E such that

Pr

 checkcom(pp; c) = 1,
c 6= com(pp; v; r)

∣∣∣∣∣∣
pp← G(λ, n),
c← A(pp, z; ρ),
(v, r)← E(pp, z; ρ)

 = negl(λ)

for any benign auxiliary input z ∈ {0, 1}poly(λ), and randomness ρ.

Definition 10 (Additively Homomorphic Commitment Scheme). Con-
sider a vector commitment scheme (G, com) over Fn, with abelian groups (C,+C),
(R,+R) for the commitment space, and randomness space respectively. The com-
mitment scheme is said to be homomorphic if for all v1,v2 ∈ Fn and r1, r2 ∈ R,
we have

com(v1; r1) +C com(v2; r2) = com(v1 + v2; r1 +R r2).

Construction 1 (Structured Polynomial Commitments). We design a
scheme to commit to a vector of evaluations representing a polynomial. Similiar
to Tomescu et al. [64] we commit to evaluation-based representations of poly-
nomials by utilizing the Lagrange basis as a part of the structured reference
string. Using ideas from Zhang et al. [71] (and Chiesa et al. [28]), we achieve
extractibility by enforcing that the prover provides an auxiliary “shifted” com-
mitment, which ensures that the commitments were formed by using a linear
combination of terms in the SRS. We define generator G, com, and checkcom as
follows for vectors over Znp :

Generator(λ, n)→ pp:

1. Generate two groups G and GT of prime order p (with p ≥ 2λ) such that
there exists a symmetric bilinear pairing e : G×G→ GT where the (n− 1)-
SDH and (n− 1)-EPKE assumptions hold.

2. Let H ⊆ F be such that |H| = n and let `1, . . . , `n be the Lagrange basis
basis over evaluation points H.

3. Randomly sample generator g ∈ G and α, s
$← F.

4. Compute commitment keys u = (g`1(s), . . . , g`n(s)) and v = (gα`1(s), . . . , gα`n(s)).

5. Sample h
$← G and output public parameters pp = (G, H,u,v, g, gα, h, hα).

com(pp;p ∈ Fn, r ∈ F)→ P ∈ Gn: Interpret p as a vector of polynomial evalua-

tions over H. Output P = (gp(s) · hr, gα·p(s) · hα·r).

checkcom(pp;P ∈ G2)→ {0, 1}: Parse P as (P1, P2) and check e(P1, g
α) = e(P2, g).
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Lemma 2 (Structured Polynomial Commitments). Construction 1 is
a homomorphic vector commitment scheme that satisfies unconditional hiding,
computational binding, and extractibility. For polynomials defined by n evalua-
tion points, the generator takes time Oλ(n), com takes time Oλ(n), and checkcom
takes time Oλ(1).

Proof. Informally, hiding follows from the blinding terms, binding follows from
the (n − 1)-SDH assumption, and extractibility holds from the (n − 1)-EPKE
assumption. The generator can compute `1(s), . . . , `1(s) in time Oλ(n) using the
Barycentric representation [13]. Formally, we prove Lemma 2 in supplementary
section D.2.

4.2 An Argument System for Polynomial Evaluation

In our argument system for general computation, to prove desired properties
about the committed witness and subsequent messages (all represented as poly-
nomials), the prover is required to evaluate these polynomials (represented as
vectors of evaluations) at challenge points. We modify the polynomial commit-
ment scheme by Zhang et al. [71], which in turn is based on the scheme by
Papamanthou et al. [57]. To efficiently evaluate polynomials based on their eval-
uation representations, we create a structured key which utilizes the Lagrange
basis.

Definition 11 (Polynomial Evaluation Relation). Consider group G of or-
der q and let F = Zq. The polynomial evaluation relation (RPOLY), with respect
to vector commitment scheme com, defined over subset H ⊆ F consists of com-
mitments P ∈ G2, Y ∈ G, evaluation point u, and evaluation result y. A vec-
tor p and scalar y satisfies an RPOLY instance if p(u) = y, Y = com(y), and
P = com(p).

Construction 2 (Argument System for Polynomial Evaluation). We de-
fine an argument system for polynomial evaluation (Definition 11) with respect
to the structured polynomial commitment scheme (Definition 1)

Generator(λ, n)→ pp:

1. Run the generator for structured polynomial commitments (Construction 1)
and output its result.

2. Additionally sample β
$← F and output scalar commitment key cky =

(g, h, gβ , hβ)

〈Prover,Verifier〉:
The prover and verifier are provided with statement (P ∈ G2, Y ∈ G2, u ∈ F).
The prover is additionally provided with witness p ∈ Fn, y, rp, ry ∈ F. The prover
is tasked with proving that Y = (gy ·hry , gα ·hαry ), P = (gp(s) ·hrp , gαp(s) ·hαrp),
and that y = p(u).
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1. Using Lemma 1, the prover computes evaluations of polynomial q over H

where q(X) = (p(X) − y)/(X − u). Next the prover samples rq
$← F and

commits to q, and the randomness:

Q = com(q; rq) = (gq(s) · hrq , gαq(s) · hαrq )
R = (grp−ry−rq(s−u), gα·(rp−ry−rq(s−u))).

2. The verifier parses commitments P,Q,R, Y as (P1, P2), (Q1, Q2), (R1, R2)
and (Y1, Y2) respectively and checks that they are well formed using check-
com. Next the verifier checks that the prover was able to compute a valid

commitment to q: e(P1/Y1, g)
?
= e(Q1, g

s−u)e(R1, h).

Theorem 1 (Polynomial Evaluation Argument). Construction 2 satisfies
completeness, knowledge soundness, and perfect zero-knowledge. For polynomi-
als defined over n evaluations, the polynomial evaluation argument features an
Oλ(n) generator, Oλ(n) prover, and an Oλ(1) verifier.

Proof. We prove Theorem 1 in supplementary section D.3.

4.3 An Argument System for Inner-Product

We utilize the argument system for generalized inner-product from Bünz et
al. [26], specifically instantiated with the Pedersen-like vector commitment scheme
and modified to support zero-knowledge. In Section 4.4, we extend this argument
system to handle evaluation based polynomial commitments (Construction 1).
Later in Section 6 we show how to achieve a constant-time verifier using proof
composition.

Definition 12 (The Inner-Product Relation [26]). Consider group G of
order p and let F = Zp. The inner-product relation (RIP), characterized by com-
mitment scheme com, consists of hiding and binding commitments A,B,C ∈ G,
and scalar r ∈ F\{0}. Vectors a, b ∈ Fn and scalar c ∈ F satisfy an RIP instance
if c = a′ · b, where {a′i = ai · ri}n−1

i=0 , and A, B and C are commitments to a, b,
and c respectively.

Construction 3 (Argument System for Inner-Product [26]). An argu-
ment system for the inner-product relation allows a prover to show that for
commitments A,B,C ∈ G and scalar r ∈ F\{0} they know a, b ∈ Fn and scalar
c ∈ F such that A, B, and C are commitments to a, b, and c respectively, and
that c = (a ◦ r) · b where r = (r0, r1, . . . , rn−1).

Bünz et al. [26] present a generalized inner-product argument which allows a
prover to prove the inner-product relation over any binding commitment scheme
that is doubly homomorphic (i.e. homomorphic in both the message space and
the key space). They additionally show how to achieve an Oλ(log n) verifier by
utilizing a structured reference string and polynomial commitments. We derive
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an argument system for RIP by applying the following commitment scheme to
the generalized inner-product argument:

com(ck;a, b, c; ra, rb, rc) = (wa · hra ,wb · hrb , gc · hrc), (2)

where the commitment key ck = (w, (g, h)) is created by the generator as de-
scribed below. We further modify the generalized inner-product argument to be
zero-knowledge using standard techniques.

Generator(λ, n)→ pp:

1. Generate two groups G and GT of prime order p (with p ≥ 2λ) such that
there exists a symmetric bilinear pairing e : G×G→ GT where the (n− 1)-
SDH, and the (n− 1)-EPKE assumptions hold.

2. Sample generator g
$← G, secret s

$← F and define commitment key w =
(g, gs, . . . , gs

n−1

).

3. Sample h
$← G and output public parameters pp = (e,w, h).

〈Prover,Verifier〉:
Both the prover and verifier are provided the statement consisting of commit-
ments A, B, and C and scalar r. The prover is additionally provided witness
(a, b, c, ra, rb, rc)

1. Initially the prover computes r = (r0, r1, . . . , rn−1), rescales the commitment

key v = wr−1

, and rescales the corresponding witness vector a← a ◦ r.
2. When n ≥ 2, the prover defines a1 and a2 to be the first and second half

of vector a (similarly for b, v, and w). Next the prover samples randomness

rLa, rRa, rLb, rRb, rLc, rRc
$← F and sets

AL = hrLa · va2
1 BL = hrLb ·wb1

2 CL = hrLc · ga2·b1

AR = hrRa · va1
2 BR = hrRb ·wb2

1 CR = hrRc · ga1·b2

and sends these values to the verifier.
3. The verifier samples x

$← F and sends x to the prover.
4. The prover and verifier each set

A′ = AxL ·A ·Ax
−1

R B′ = BxL ·B ·Bx
−1

R C ′ = CxL · C · Cx
−1

R

5. The prover additionally folds the commitment keys

v′ = v1 ◦ vx
−1

2 w′ = w1 ◦wx
2,

folds the witness vectors and associated randomness

a′ = a2 · x+ a1 b′ = b2 · x−1 + b1

r′a = rLa · x+ ra + rRa · x−1 r′b = rLb · x+ rb + rRb · x−1,

and folds the claimed product and associated randomness

c′ = (a2 · b1) · x+ c+ (a1 · b2) · x−1 r′c = rLc · x+ rc + rRc · x−1.
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6. Next if n ≥ 2 the prover and verifier recurse back to step 2 with state-
ment (A′, B′, C ′), witness (a′, b′, c′, r′a, r

′
b, r
′
c) and commitment keys (v′,w′).

Otherwise the prover and verifier continue to step 7.
7. In the final round when n = 1, the prover sends the final commitment keys
v, w ∈ G. The prover first proves to the verifier that (v, w) have been com-
puted correctly (subprotocol below). Next the prover proves that the product
relation holds for commitments A′, B′, C ′ with respect to commitment keys
v, w (subprotocol below).

In the final round the verifier must check that the commitment keys v and w
have been computed correctly. We continue to follow the general approach pre-
sented by Bünz et al. [26]. Suppose there were a total of ` rounds. Let x0, . . . , x`−1

denote the randomness sent by the verifier in each round. We first define

fv(X) =

`−1∏
j=0

(
x−1

(`−j) + (r−1X)2j
)

fw(X) =

`−1∏
j=0

(
x(`−1−j) +X2j

)
.

When w and v are computed correctly we have that v = gfv(s) and w =
gfw(s) [26, Proposition B.1]. Given this observation, the verifier checks the com-
mitment keys by engaging in the following procedure:

Subprotocol to check (v, w):

1. In the setup phase the generator additionally samples σ
$← F and outputs

keys t = (gα, gαs, . . . , gαs
n−1

)
2. The prover begins the subprotocol by sending claimed evaluations v, w ∈ G

along with terms v′ = gαfv(s), and w′ = gαfw(s).

3. The verifier responds with challenge z
$← F and computes Yv = gfv(z), and

Yw = gfw(z).
4. Note that (v, v′) and (w,w′) can be treated as extractible polynomial com-

mitments with respect to the standard monomial basis rather than the La-
grange basis (Construction 2). We note that in this setting our polynomial
evaluation argument can be viewed as a simplified version of that of Zhang et
al. [71]. To check the validity of v, the prover and verifier treat V = (v, v′) as
a polynomial commitment and engage in an extractible polynomial evalua-
tion argument over the statement (V, Yv, z) and the provided SRS. Note that
the verifier does not need to check the validity of commitment Yv. Similiarly,
to check the validity of w, the prover and verifier treat W = (w,w′) as a
polynomial commitment and engage in an extractible polynomial evaluation
argument over the statement (W,Yw, z) and the provided SRS.

Additionally, given commitments A = vahra , B = wbhrb , and C = gchrc the
verifier must check a · b = c. We cannot use a textbook product argument due to
the fact that A, B and C are committed to under different keys. To handle this
setting, we use a simplified variant of a product argument presented by Bünz et
al. [23]. For completeness we present this protocol in supplementary section A.
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Theorem 2 (Inner-Product Argument). Construction 3 is an argument
system for RIP that satisfies completeness, knowledge-soundness, and honest-
verifier zero-knowledge. For vectors of size n construction 3 features an Oλ(n)
generator, Oλ(n) prover, and an Oλ(log n) verifier.

Proof. We prove Theorem 2 in supplementary section D.4.

4.4 Extending the Inner-Product Argument for the Lagrange Basis

Construction 4 (Argument System for Inner-Product for the Lagrange

Basis). For generator g ∈ G and random s
$← F recall from Construction 3 that

the commitment key has the form w = (g, gs
1

, . . . , gs
n−1

). Construction 3 allows
a prover to prove that for vectors a, b ∈ Fn and c ∈ F that a · b = c specifically
when the commitments to a, b, are of the form

A = wa · hra B = wb · hrb

However, as we show in section 5, we are particularly interested in proving
the inner-product of vectors “under” evaluation-based polynomial commitments

(Construction 1). In more detail, for random g ∈ G and t
$← F, and for subset

H ⊆ F, consider the vector l = (g`0(t), g`2(t), . . . , g`n−1(t)), where `1, . . . , `n are
the lagrange basis over evaluation points H (Definition 7). We would like to
prove that a · b = c where the commitments to a and b are

A′ = la · hr
′
a B′ = lb · hr

′
b

for randomness r′a, r
′
b. While it is unclear how to directly reason about A′, and

B′ under construction 3, we can use an approach presented by Parno et al. [58]
to check that A′ and A (similiarly B′ and B) commit to the same vector.

Generator(λ, n)→ pp:

1. Generate two groups G and GT of prime order p (with p ≥ 2λ) such that
there exists a symmetric bilinear pairing e : G×G→ GT where the (n− 1)-
SDH, and (n− 1)-EPKE assumptions hold.

2. Run the generator for the inner-product argument system (Construction 3).
In particular, randomly sample generator g ∈ G and s ∈ F and define inner-
product commitment keys over powers of s: w = (g, gs, . . . , gs

n−1

).

3. Pick randomness commitment key h
$← G.

4. Run the generator for polynomial commitments (Construction 1): In par-

ticular, pick random t, α
$← F and create polynomial commitment keys

l = (g`0(t), g`1(t), . . . , g`n−1(t)), and l′ = (gα`0(t), gα`1(t), . . . , gα`n−1(t)).

5. Pick binding randomness γ
$← F and create binding keys

t = (w ◦ l)γ = (gγ(s0+`0(t)), gγ(s1+`1(t)), . . . , gγ(sn−1+`n−1(t)))
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6. Output public parameters pp = (e,w, l, l′, t, (g, h), (gα, hα), (gγ , hγ)).

〈Prover,Verifier〉:
The prover and verifier are provided with the statement consisting of com-
mitments A′, B′, C and scalar r. The prover is additionally provided witness
(a, b, c, r′a, r

′
b, rc).

1. If computed correctly A′ and B′ are commitments to a and b respectively
under the Lagrange-basis commitment key. That is A′ = (la · hr′a , l′a · hαr′a)

and B′ = (lb ·hr′b , l′b ·hαr′b). The prover samples ra, rb
$← F and sends to the

verifier commitments A,B ∈ G, where A is the claimed commitment to a
under inner-product commitment key w, and B is the claimed commitment
to b under inner-commitment key w. That is A = wa ·hra and B = wb ·hrb .

2. To prove that A′ and A commit to the same vectors (similiarly B′ and B),
the prover commits to a and b under the binding keys: A′′ = ta · hγ·(ra+r′a),
and B′′ = tb · hγ·(rb+r′b).

3. The verifier first checks that commitments A′ and B′ are well formed. Next
the verifier checks e(A′′, g)

?
= e(A ·A′1, gγ) and e(B′′, g)

?
= e(B ·B′1, gγ).

4. If the verifier’s check passes, both the prover and verifier engage in an inner-
product argument (Construction 3) over statement (A,B,C, r) and witness
(a, b, c, ra, rb, rc).

Theorem 3 (Inner-Product Argument for the Lagrange Basis). Con-
struction 4 is an argument system for RIP that satisfies completeness, knowledge-
soundness, and honest-verifier zero-knowledge. For vectors of size n construc-
tion 4 features an Oλ(n) generator, Oλ(n) prover, and an Oλ(log n) verifier.

Proof. Completeness follows by observation and the completeness of the under-
lying inner-product argument. Informally, knowledge soundness follows from the
(n − 1)-EPKE assumption. Zero-knowledge follows due to the blinding terms.
We formally prove Theorem 3 in supplementary section D.5.

4.5 An Argument System for Multi-Hadamard Product

In the final round for our argument system for general computation (Section 5),
we require an argument system for a multi-Hadamard product. We achieve a
system with our desired asymptotics by composing the multi-Hadamard product
argument system presented by Bayer [6] with our argument system for inner-
product (Construction 4).

Definition 13 (The Multi-Hadamard Relation). Consider group G of or-
der p and let F = Zp. The multi-Hadamard relation (RMHADM) defined over
vector size n, and instance size m consists of m commitments A1, . . . , Am, and
commitment B. Vectors a1, . . . ,am and vector b satisfy the multi-Hadamard
relation if Ai = com(ai) for all i ∈ [m], B = com(b), and b = a1 ◦a2 ◦ . . . ◦am.
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Construction 5 (Multi-Hadamard-Product Argument — Sketch). Our
construction composes the multi-Hadamard product argument system presented
by Bayer [6] with the argument system for inner-product (Construction 4). At
a high level, Bayer’s argument uses random linear combinations to reduce the
original multi-Hadamard-product check into checking that

A = com(a, r) B = com(b, s) D = com((a ◦ y) · b, t)

for commitments A,B,D, vectors a, b,y, and associated randomness r, s, t gen-
erated during interaction. Our argument is identical to the one presented by
Bayer [6] with the exception that in the final round of Bayer’s original argument
the prover directly sends a, r, b, s and t for the verifier to check. In our vari-
ant the verifier instead outsources this final check using an argument system for
inner-product. For completeness we reproduce Bayer’s multi-Hadamard-product
argument in supplementary section B, however we stress that the details are not
important for understanding our argument system for general computation.

Theorem 4. Construction 5 is an argument system for RMHADM that satisfies
completeness, knowledge-soundness, and honest-verifier zero-knowledge. For m
vectors of size n, Construction 5 features an Oλ(n) generator, Oλ(nm2) prover,
and an Oλ(log n+m) verifier.

Proof. We formally prove Theorem 4 in supplementary section B.

5 Poppins: An Argument System for RACS

We start by defining a new constraint system for NP, RACS, that is carefully
designed to work with our suite of techniques. Next, we build an interactive
argument system for RACS. We first show how to encode an RACS instance as
a sum-check instance. The verifier reduces the sum-check instance to checking
an inner-product and polynomial equality, which in turn can be reduced into
checking another (simpler) sum-check instance. The verifier repeats this inter-
action over several rounds to reduce the original statement into checking the
Hadamard-product over vectors generated during interaction.

Definition 14 (Algebraic Constraint Satisfiability Relation). The Alge-
braic Constraint Satisfiability Relation (RACS) defined over field F, instance size
n, witness size m, and constraint size l consists of matrices M1, . . . ,M l in
Fn×n, and vector x ∈ Fn−m. A witness w ∈ Fm satisfies an RACS instance if

0 = (x,w)Mi(x,w)> ∀i ∈ {1, . . . , l}.

We consider an RACS instance sparse if there are O(n) non-zero elements in all
matrices M1, . . . ,Ml. We prove in supplementary section C that any relation in
NP can be reduced to a sparse RACS instance.
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Construction 6 (Argument System for Algebraic Constraint Satisfia-
bility). Consider a sparse RACS instance of size n with witness of size m and
constraints indexed by subset H ⊆ F. Let this instance be defined by matrices
M i ∈ Fn×n for i ∈ H and input vector x. Let subset K ⊆ F index the non-zero
entries in all |H|matrices {M i}i∈H . For notational simplicity let N = (1, . . . , n).
Suppose a prover would like to prove in zero-knowledge that it possesses a vector
w such that

0 = (x,w)Mi(x,w)> ∀i ∈ H. (3)

Precomputation Phase: In the one-time precomputation phase, both the prover
and verifier encode an RACS statement as a collection of polynomials. In prac-
tice these polynomials only need to be computed and committed to once by
a trusted party and can be reused across different input vectors x. While the
prover must hold on to the full polynomials, the verifier only has to hold on to
the corresponding (constant-sized) commitments.

In order to efficiently check an RACS instance using standard algebraic tech-
niques, both the prover and verifier encode matrices M i for i ∈ H as polynomi-
als: For k ∈ K let polynomial A(k) : K → H return the particular matrix that
k is associated with. Similiarly, let B(k) : K → N return the particular row that
k is associated with and let C(k) : K → N return the particular column that k
is associated with. Finally, let V(k) : K → F return the value associated with
index k. 2 Next, the prover and verifier compute commitments to polynomials
A, B, C, and V. We stress that these polynomials are represented as vectors of
evaluations throughout the argument and therefore do not need to be interpo-
lated. As shown by Chiesa et al. [28], polynomials A,B,C,V allow us to encode
matrices Ma for a ∈ H as follows

Ma[b, c] =
∑
k∈K

uH(a,A(k)) · uN (b,B(k)) · uN (c,C(k)) · V(k).

Recall that bivariate polynomial uH(X,Y ) : H × H → F returns non-zero if
X = Y and 0 otherwise (Definition 6), and can be efficiently computed when
H is a multiplicative subgroup. For this reason index sets H, and N should
be multiplicative subgroups for efficiency purposes. We also recognize that each
variable has a single associated constraint in practice (i.e. |H| = |N |). This
allows us to use the same subgroup to index both variables and constraints. For
notational simplicity we define polynomial P (k, a, b, c) as follows:

P (k, a, b, c) := uH(a,A(k)) · uN (b,B(k)) · uN (c,C(k)) · V(k).

At the end of the precomputation phase the prover holds on to polynomials
A,B,C,V and the verifier holds on to the corresponding commitments.

2 More precisely polynomial V must account for the non-zero values of uH(a, a) for
a ∈ H and uN (b, b) for b ∈ N . These non-zero values can be computed once globally
by the generator.
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Argument Phase: Let z be the evaluation-based polynomial encoding for vector
(x,w) (i.e. z(i) = (x,w)i for all i ∈ N) Given the polynomial encodings, we
first define

Q(a) :=
∑
b∈N

∑
c∈N

∑
k∈K

P (k, a, b, c)z(b)z(c)

and observe that equation 3 is true if and only if

0 = Q(a) ∀a ∈ H (4)

From the setup phase, the prover and verifier both have access to commit-
ments to A,B,C,V, vH , vN , vK , and v[n−m] represented as vectors of evalua-
tions. The prover additionally has access to the underlying evaluation vectors
for polynomials A,B,C,V generated during the setup phase, and vH , vN , vK ,
and v[n−m] computed once globally by the generator. To begin the argument
the prover sends extractible and hiding evaluation-based commitment to poly-
nomial z. Before checking equation 4 the verifier needs to check that x has been
correctly encoded in the prover’s commitment. To assist the verifier with this
check, the prover additionally sends a commitment to evaluations of “shifted”
witness polynomial ( [28]), w′ such that for all i ∈ [n−m+ 1, n]

w′(i) =
wi − xi
v[n−m](i)

where v[n−m] is the vanishing polynomial for the range [n−m]. We observe that
if the prover correctly computes w′, we have

z(X) = w′(X)v[n−m](X) + x(X) (5)

Additionally, equation 5 ensures that z(h) = x(h) for h ∈ [n−m], thus ensuring
that x has been embedded correctly. Thus the verifier can check that z agrees
with w′ and x by accepting negligible soundness error, picking random τ ∈ F,
and checking

z(τ) = w′(τ)v[n−m](τ) + x(τ)

In particular the verifier uses a polynomial evaluation argument to obtain com-
mitments to z(τ), w′(τ), and v[n−m](τ), and then uses a standard product argu-
ment to check that the appropriate relationship holds.

To check equation 4, we first observe that polynomial P (k, a, b, c) is degree
|H| − 1 in a, which implies that Q(a) is degree |H| − 1 in a. Therefore, to check
equation 4, it suffices to check that Q is the zero polynomial. To do so, the

verifier accepts negligible soundness error, picks random α
$← F, and checks

0 = Q(α).

By definition this requires the verifier check

0 =
∑
b∈N

∑
c∈N

∑
k∈K

P (k, α, b, c)z(b)z(c). (6)
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The verifier can rewrite equation 6 as

0 =
∑
b∈N

z(b)
∑
c∈N

∑
k∈K

P (k, α, b, c)z(c). (7)

In order to assist the verifier in checking equation 7 the prover can (efficiently [28])
compute and commit to evaluations of degree |N | − 1 polynomial

P1(X) =
∑
c∈N

∑
k∈K

P (k, α,X, c)z(c). (8)

We describe the prover’s specific technique for computing P1 in supplementary
section E. The verifier is now tasked with checking

0 =
∑
b∈N

z(b)P1(b) (9)

and checking that equation 8 holds. Because both z and P1 are represented and
committed to using their evaluation vectors, we know that the right-hand side
of equation 9 is precisely the inner-product of the evaluation vectors. Therefore
the verifier can use a proof of inner-product to check equation 9. What remains
is for the verifier to check that equation 8 holds.

To do so, the verifier accepts negligible soundness error, picks random β
$← F,

and reduces the task of checking equation 8 to the task of checking

P1(β) =
∑
c∈N

∑
k∈K

P (k, α, β, c)z(c). (10)

The verifier can rewrite equation 10 as

P1(β) =
∑
c∈N

z(c)
∑
k∈K

P (k, α, β, c). (11)

In order to assist the verifier in checking equation 11 the prover can efficiently
compute and commit to evaluations of degree |N | − 1 polynomial

P2(X) =
∑
k∈K

P (k, α, β,X). (12)

The verifier is now tasked with checking

P1(β) =
∑
c∈N

z(c)P2(c) (13)

and checking that equation 12 holds. The verifier can evaluate P1(β) using a
polynomial evaluation argument. Then, as observed earlier, the verifier can check
equation 13 by checking the inner-product of the evaluation vectors of z and P2.
What remains is for the verifier to check equation 12 holds.
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To do so, the verifier accepts negligible soundness error, picks random γ
$← F,

and reduces the task of checking equation 12 to the task of checking

P2(γ) =
∑
k∈K

P (k, α, β, γ). (14)

While the degree of P in k is (|H|+ |N |) · |K|, the prover can efficiently compute
and commit to evaluations of degree |K| − 1 polynomial P3 such that

P3(k) = P (k, α, β, γ) ∀k ∈ K. (15)

The verifier is now tasked with checking

P2(γ) =
∑
k∈K

P3(k) (16)

and checking that equation 15 holds. The verifier can evaluate P2(γ) using a
polynomial evaluation argument. Then the verifier can check equation 16 by
checking the dot product of the evaluation vectors P3 and 1 = (1, 1, . . . , 1). To
check equation 15, we observe due to Chiesa et al. [28] that

P (k, α, β, γ) = uH(α,A(k)) · uN (β,B(k)) · uN (γ,C(k)) · V(k)

=
(vH(α)− vH(A(k)) · (vN (β)− vN (B(k))) · (vN (γ)− vN (C(k))) · V(k)

(α− A(k))(β − B(k))(γ − C(k))

=
vH(α)vN (β)vN (γ)V(k)

(α− A(k))(β − B(k))(γ − C(k))

where the last equality holds because polynomials A,B,C map elements of K to
H and N . Therefore, the verifier can check equation 15 by checking

P3(k)(α− A(k))(β − B(k))(γ − C(k)) = vH(α)vN (β)vN (γ)V(k) ∀k ∈ K. (17)

The prover and verifier can efficiently compute commitments to A′(k) = α−A(k),
B′(k) = β − B(k), and C′(k) = γ − C(k). The verifier can invoke a polynomial
evaluation argument to evaluate vH(α), vN (β), vN (γ), and the prover and verifier
can compute the commitment to V′(k) = vH(α)vN (β)vN (γ)V(k). Equation 17
can be rewritten as

P3(k)A′(k)B′(k)C′(k) = V′(k) ∀k ∈ K. (18)

The verifier can then check equation 18 using a proof of multi-Hadamard-product
(construction 5).

Theorem 5. Construction 6 is an argument system for RACS that satisfies com-
pleteness, knowledge-soundness, and honest-verifier zero-knowledge. Addition-
ally, for a sparse size n RACS instance with input vector size x, Construction 6
features an Oλ(n) generator, Oλ(n) prover and an Oλ(log n+ x) verifier.

Proof. We formally prove Theorem 5 in supplementary section D.6. Intuitively,
the stated asymptotic properties hold because the prover only makes use of
linear-time sub-arguments. We provide more details on how the prover can com-
pute polynomials P1, P2, and P3 efficiently in supplementary section E.
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6 Achieving a Constant-Time Verifier

Construction 7 (A Constant-Time Verifier). The verifier’s work for Con-
struction 6 is nearly constant-time, with the exception of the verifier’s logarithmic-
time work for the inner-product arguments (Construction 3). We achieve a
constant-time verifier by outsourcing it’s logarithmic work represented as a cir-
cuit using an argument system for general computation with a constant-time
verifier and a quasi-linear prover (e.g. Pinocchio [58]).

To preserve the desired asymptotic goals, we must ensure that the outsourced
circuit is sub-linear and has a constant sized verifier input. In addition we must
ensure that the circuit representing the verifiers work is concretely small. These
constraints make it difficult to generically apply verification outsourcing to ex-
isting systems with a linear prover, which would involve either outsourcing a
logarithmic number of pairings or O(

√
n) group operations [62,63].

Our solution is to design a hybrid verifier that can perform all of its pair-
ing checks locally, and only outsource a logarithmic number of group operations
which are significantly cheaper than pairings. In particular, recall that the veri-
fier’s logarithmic work can be broken down into three distinct tasks: (1) Sample
randomness x for a logarithmic number of rounds. (2) Compute commitments
A′, B′, C ′ over a logarithmic number of rounds. (3) During the subprotocol to
check the v and w terms, compute fv(z) and fw(z) for some challenge point z.
To ensure that the verifier’s input to the verification circuit is constant-sized, we
instantiate the random oracle with an algebraic hash function [1, 45], and have
the circuit simulate the verifier’s randomness via the Fiat-Shamir heuristic [35]:

O(log2 n) Circuit to Outsource Verifier’s Inner-Product Checks:

1. Let ` = log n denote the total number rounds in the inner-product argument.
The verifier’s input consists of commitments A,B,C ∈ G which represent
the statement for the inner-product argument. The prover’s input consists
of all logarithmic number of commitments ALi, ARi, BLi, BRi, CLi, CRi ∈ G
terms for i ∈ {0, . . . , `−1} generated in each recursive round, and the terms
(v, v′), (w,w′) generated in the final round. Initially set A0 = A, B0 = B,
and C0 = C.

2. For i ∈ {0, . . . , `−1} compute randomness xi = hash(ALi, ARi, BLi, BRi, CLi, CRi)
and compute the resulting commitments

Ai+1 = AxiLi ·Ai ·A
x−1
i

Ri , Bi+1 = BxiLi ·Bi ·B
x−1
i

Ri , Ci+1 = CxiLi · Ci · C
x−1
i

Ri .

3. Compute the verifier’s final challenge, z = hash(A`, B`, C`, (v, v
′), (w,w′))

4. Compute fv(z) and fw(z) as defined in Construction 3 in a logarithmic
number of exponentiations, and output A`, B`, C`, fv(z), fw(z).
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Supplementary Materials

A An Argument System for Simple Product

Construction 8 (Argument System for Simple Product). Both the prover
and verifier are provided with commitment keys v, w, g, h, and commitments
A,B,C. The prover is additionally provided witness a, b, c, ra, rb, rc. An argu-
ment system for simple product allows a prover to show that

A = vahra

B = wbhrb

C = gchrc

and that a · b = c. We present a simplified variant of a protocol presented by
Bunz et al. [23]:

Subprotocol to check product:
Both the prover and verifier are provided with commitment keys v, w, g, h, and
commitmentsA,B,C. The prover is additionally provided witness a, b, c, ra, rb, rc.

1. The prover samples blinding terms sa, sb
$← F, and randomness ρ

$← F and
a commitment to the randomness S = vsa ·wsb · hρ. Additionally the prover

samples randomness τ1, τ2
$← F and computes commitments to the error

terms

T1 = gsab+asb · hτ1

T2 = gsasb · hτ2 .

Finally the prover sends S, T1, T2 to the verifier.

2. The verifier responds with challenge z
$← F.

3. The prover computes

a′ = a+ sa · z
b′ = b+ sb · zc′ = a′ · b′

Additionally the prover computes aggregated randomness terms

τ = τ2 · z2 + τ1 · z + rc µ = (ra + rb) + ρ · z.

The prover sends τ, µ, a′, b′, c′.
4. The verifier first checks that c′ agrees with C:

gc
′
hτ

?
= C · T z1 · T z

2

2 .
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Next the verifier checks that a′ and b′ agree with A and B:

A ·B · Sz ?
= va

′
wb
′
· hµ.

Finally the verifier checks that the product relation holds:

c′
?
= a′ · b′

B An Argument System for Multi-Hadamard Product

Construction 9 (Argument System for Multi-Hadamard Product).
Consider group G of order p and let F = Zp. An argument system for the multi-
Hadamard production relation defined over vector size n, and instance size m,
allows a prover to show that for commitments A1, . . . , Am and commitment B,
it knows vectors a1, . . . ,am and vector b such that

Ai = com(ai)

for all i ∈ [m],

B = com(b),

and b = a1 ◦ a2 ◦ . . . ◦ am. Our construction composes the multi-Hadamard
product argument system presented by Bayer [6] with the argument system for
inner-product (Construction 4):

〈Prover,Verifier〉:
The prover and verifier are provided with the statement consisting of a list of
commitments A, and commitment B. The prover is additionally provided wit-
ness ({ai}i∈[m], {ri}i∈[m], b, s).

1. Initially the prover computes

b1 = a1, b2 = a1 ◦ a2, . . . , bm−1 = a1 ◦ · · · ◦ am−1, bm = b.

Now it is sufficient for the prover to show that for i ∈ [m− 1]

bi+1 = ai+1 ◦ bi (19)

so long as b1 = a1 and bm = b. Next the prover samples s2, . . . , sm−1
$← F

and sets

B2 = com(b2; s2), . . . , Bm−1 = com(bm−1; sm−1).

The prover (and verifier) ensure that b1 = a1 and bm = b by setting B1 = A1

and Bm = B. Finally the prover sends B2, . . . , Bm−1.

2. The verifier samples and sends challenges x, y
$← F
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3. The prover can use randomness x to simplify the argument by taking a ran-
dom linear combination of the vectors: In particular, the prover can demon-
strate that equation 19 holds with high probability by showing∑

i∈[m−1]

xibi+1 =
∑

i∈[m−1]

ai+1 ◦ (xibi). (20)

To do so, the prover first computes vectors and associated randomness

di = xibi ti = xisi ∀i ∈ [m− 1]

and

d =
∑

i∈[m−1]

xibi+1 t =
∑

i∈[m−1]

xisi+1

4. Next, both the prover and verifier compute the corresponding commitments
Di = Bx

i

i for all i ∈ [m] and D =
∏
i∈[m−1]B

xi

i+1

5. Now equation 20 can be rewritten as

d =
∑

i∈[m−1]

ai+1 ◦ di (21)

To check that equation 21 holds with high probability, the verifier can engage
in a zero argument (below) to check that

0 =
∑

i∈[m−1]

(ai+1 ◦ y) · di − (1 ◦ y) · d.

where y = (y, y1, . . . , yn). In particular, the prover and verifier can first
compute

C−1 = com(−1; 0)

and set the statement to be (A2, . . . , Am, C−1), (D1, . . . , Dm−1, D).

The prover and verifier complete the multi-Hadamard product argument by
engaging in an argument for the zero relation [6]. The zero relation (RZERO) de-
fined over vector size n, and instance size m consists of commitments A1, . . . , Am
and commitments B0, . . . , Bm−1, and scalar y ∈ F. Vectors a1, . . . ,am and
b0, . . . , bm−1 satisfy the zero relation if

0 =
∑
i∈[m]

(ai ◦ y) · bi−1

where y = (y, y2, . . . , ym), and Ai = com(ai) and Bi−1 = com(bi−1) for all
i ∈ [m].

Using random linear combinations, Bayer’s argument for the zero relation
reduces checking the original relation to checking that

A = com(a, r) (22)
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B = com(b, s) (23)

D = com((a ◦ y) · b, t) (24)

for commitments A,B,D, vectors a, b,y and associated randomness r, s, t gen-
erated during interaction. Our argument for the zero-relation is identical to the
one presented by Bayer [6] with the exception that in the final round of Bayer’s
original argument the prover directly sends a, r, b, s and t for the verifier to
check. In our variant the verifier instead outsources this final check using an
argument system for inner-product:

〈Prover,Verifier〉: The prover and verifier are provided with the statement con-
sisting of lists of commitments A,B and scalar y. The prover is additionally
provided with witness ({ai}i∈[m], {ri}i∈[m], {bi−1}i∈[m], {si−1}i∈[m]).

1. The prover starts the argument by sampling blinding vectors a0, bm
$← Fn

and associated randomness r0 and sm. For k ∈ {0, . . . , 2m}, the prover com-
putes

dk =
∑

0≤i,j≤m
j=(m−k)+i

(ai ◦ y) · bj

where y = (y, y2, . . . , yn). Next the prover samples randomness t0, . . . , t2m+1
$←

F and computes commitments

D0 = com(d0; t0), . . . , D2m = com(d2m; t2m).

Finally the prover sends A0, Bm and D0, . . . , D2m to the verifier.

2. The verifier responds with challenge x
$← F.

3. Using x the prover computes a random linear combination of the witness
vectors:

a =

m∑
i=0

xiai r =

m∑
i=0

xiri

b =

m∑
i=0

xibi s =

m∑
i=0

xisi

d =

2m∑
i=0

xidi t =

2m∑
i=0

xiti.

4. Both the prover and the verifier compute the statement commitments

A =

m∏
i=0

Ax
i

i B =

m∏
i=0

Bx
i

i D =

2m∏
i=0

Dxi

i

5. The verifier checks that Dm+1 = com(0; 0).
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6. Finally both the prover and verifier engage in an inner-product argument to
convince the verifier that

d = (a ◦ y) · b

Lemma 3. Construction 9 is an argument system for RMHADM that satisfies
knowledge soundness.

Proof. By Bayer [6, Theorem 20] the core multi-Hadamard argument is knowl-
edge sound so long as the underlying zero-argument is knowledge sound. 3 We
prove the knowledge soundness of our variant of the zero-argument using the
knowledge soundness property of Bayer’s original zero-argument [6, Theorem
21] and the knowledge soundness property of the underlying inner-product ar-
gument.

In particular, given arbitrary prover P∗ we must construct an extractor E
such that for arbitrary statement consisting of vectors of commitments A, B,
and scalar y, if

〈P∗(A,B, y; ρ),V(A,B, y)〉 = 1

Then E(A,B, y; ρ) produces a witness consisting of lists of vectors {ai}i∈[m],
{bi−1}i∈[m], and associated lists of randomness {ri}i∈[m], and {si−1}i∈[m] such
that

Ai = com(ai, ri) ∀i ∈ [m], (25)

Bi−1 = com(bi, si) ∀i ∈ [m], (26)

0 =
∑
i∈[m]

(ai ◦ y) · bi−1 (27)

with probability 1−negl(λ) Using P∗ we construct a malicious prover for Bayer’s
zero-argument P∗Z which succeeds in convincing the corresponding verifier VZ
with the same probability. E can then use P∗Z to extract a valid witness. In more
detail, P∗Z behaves exactly like P∗ with the exception of the final round. In the
final round P∗ engages in an inner product argument with V over the statement
(A,B,D, y). If P∗ succeeds, by the knowledge soundness of the inner product
argument P∗Z can extract a, r, b, s, t such that equations 22, 23, 24 hold. Thus in
the final round P∗Z can respond with these extracted terms to successfully con-
vince V∗Z that it holds a valid witness to the statement for Bayer’s zero-argument.
Then by the knowledge-soundness of Bayer’s zero-argument, there exists an ex-
tractor EZ that can extract lists of vectors {ai}i∈[m], {bi−1}i∈[m], and associated
lists of randomness {ri}i∈[m], and {si−1}i∈[m] such that equations 25, 26, 27 hold
with probability 1− negl(λ). Thus E can use EZ to extract a valid witness with
probability 1− negl(λ).

3 More precisely, Bayer’s constructions are proven to be generalized special sound [6].
By the forking lemma [23], this implies witness-extended emulation [48, 54] which
trivially implies our notion of knowledge soundness.
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Lemma 4. Construction 9 is an argument system for RMHADM that is honest-
verifier zero-knowledge

Proof. This follows by the honest-verifier zero-knowledge property of the multi-
Hadamard-product argument by Bayer [6, Theorem 20] and the honest-verifier
zero-knowledge property of the inner-product argument for the Lagrange basis
(Lemma 15).

Lemma 5 (Efficiency). For m vectors of size n, Construction 9 features an
Oλ(n) generator, Oλ(nm2) prover, and an Oλ(log n+m) verifier.

Proof. This follows by the properties discussed by Bayer and the asymptotics
of the inner-product argument system (Construction 4). We provide more detail
for the dominating concrete costs:

– Generator: The generator’s cost consists of creating the structured refer-
ence string for the commitment scheme. When instantiated with our polyno-
mial commitment scheme, the generators work is dominated by two multi-
exponentiations of size n which can be done in O(n/ log n) exponentiations
by Pippenger’s algorithm [59].

– Prover: To compute b1, . . . , bm the prover will need to compute nm field
multiplications. To compute B2, . . . , Bm−1 the prover will need to compute
m multi-exponentiations of size n. To compute di for i ∈ [m− 1] and d the
prover will need to compute 2nm field multiplications. In the zero argument,
to compute dk for i ∈ {0, . . . , 2m} the prover will need to compute (m+1)2 ·
n field multiplications. To compute D0, . . . , D2m the prover will need to
compute 4m exponentiations. To compute a and b the prover will need to
compute 2mn field multiplications. Finally the prover engages in an inner-
product argument over a, and b which by Lemma 13 can be done in O(n)
time.

– Verifier: In the main argument, to compute Di for i ∈ [m] the verifier will
need to compute m exponentiations. In the zero argument, to compute A,B
and D the verifier will need to compute 4m exponentiations total. Finally
the verifier engages in an inner-product argument over commitments A,B
and D which by Lemma 13 can be done in O(log n) time.

C Reducing Arithmetic Circuit Satisfiability to Algebraic
Constraint Satisfiability

Definition 15 (Arithmetic Circuit Satisfiability Relation). The Arith-
metic Circuit Satisfiability Relation (RCSAT) defined over field F, input size m,
witness size q, output size p, and constraint size n, consists of arithmetic circuit
C : Fm+q → Fp consisting of n gates, and vectors x ∈ Fm, y ∈ Fp. A witness
w ∈ Fq satisfies an RCSAT instance if C(x,w) = y
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Lemma 6. Any arithmetic circuit satisfiability instance over a circuit C with n
gates can be reduced to a sparse RACS instance of size n+ 1 (Definition 14).

Proof. Consider arithmetic circuit C with n canonically ordered gates, with pub-
lic input vector x′, output vector y′, and witness vector w′. We create an RACS

as follows:

1. Let x = (1,x′,y′).

2. Including w′, let w be a canonically vector of all the computed gate values
in C.

3. Create (n+ 1)× (n+ 1) matrices Mi for i ∈ [n] instantiated with zeros.

4. For each gate i let j and k be the indices of its left and right input gates. If
gate i is a multiplication gate set Mi[j, k] = 1 and Mi[i, 1] = −1. Otherwise,
if gate i is an addition gate set Mi[j, 1] = 1, Mi[k, 1] = 1, and Mi[i, 1] = −1

5. Let the RACS instance be ({Mi}i∈n,x;w)

Intuitively each matrix Mi captures the constraint of gate i. In more detail,
letting z = (x,w), we observe that if i is a multiplication gate

zMiz
> = zj · zk + (zi · −1).

Similiarly if i is an addition gate

zMiz
> = zj · 1 + zk · 1 + (zi · −1)

Thus w satisfies the constructed RACS instance if and only if it satisfies the
provided arithmetic circuit satisfiability instance. By design, each matrix is of
size (n + 1) × (n + 1) therefore the resulting RACS size is (n + 1). Additionally
there are a total of n matrices and each matrix Mi contains either 2 non-zero
values if i is a multiplication gate, or 3 non-zero values if i is an addition gate.
Therefore there are a total of O(n) non-zero values in all n matrices, implying
that the constructed RACS instance is sparse.

D Deferred Proofs

D.1 Justification of Assumption 4 (n-EPKE for a Linearly
Independent Basis)

We reproduce the n-EPKE assumption from Zhang et al. below. Next we show
that our variant, the n-EPKE assumption for the linear basis (Assumption 4) is
equivalent to that of Zhang et al.

Assumption 5 (n-Extended Power Knowledge of Exponent (n-EPKE) [71]).
Consider two groups G and GT of prime order p = O(2λ) such that there exists
a symmetric bilinear pairing e : G × G → GT. Let F = Z∗p. The n-Extended
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Power Knowledge of Exponent holds for (G,GT) if for any PPT adversary A
there exists a PPT extractor E such that

Pr


e(A, gα) = e(A′, g),

A =
(∏n

i=0 g
si·ai

)
· gt·b

∣∣∣∣∣∣∣∣∣∣∣∣

α, s, t
$← F, g $← G,

u = (g, gs, . . . , gs
n

, gt),
v = (gα, gαs, . . . , gαs

n

, gαt),
σ = ((F,G,GT, e),u,v),
(A,A′)← A(λ, σ, z; ρ),
(a0, . . . , an, b)← E(λ, σ, z; ρ)

 = 1− negl(λ)

for any benign auxiliary input z ∈ {0, 1}poly(λ), and randomness ρ. In this setting
we consider input z benign if it is generated independently of α.

Proof. Suppose we have adversary A that outputs (A,A′) such that e(A, gα) =
e(A′, g). To show Assumption 4 is equivalent to Assumption 5, we must a con-
struct a PPT extractor E that outputs a0, . . . , an, b such that

A =
( n∏
i=0

gpi(s)·ai
)
· gt·b

with probability 1− negl(λ). In particular, E initially computes vectors

u′ = (g, gs, . . . , gs
n

, gt)

v′ = (gα, gαs, . . . , gαs
n

, gαt).

This can be done efficiently because the monomials X0, . . . , Xn are spanned by
polynomials p0(X), . . . , pn(X) due to their linear independence, and therefore
the terms s0, . . . , sn are a linear combination of the terms p0(s), . . . , pn(s). By
the n-EPKE assumption (Assumption 5), there exists PPT extractor E ′ that on
input ((F,G,GT , e),u′,v′) outputs a′0, . . . , a

′
n, b such that

A =
( n∏
i=0

gs
i·a′i
)
· gt·b

with probability 1− negl(λ). By interpreting a′0, . . . , a
′
n as coefficients of degree

n polynomial a, we have that

A = ga(s)gtb

Once again, by the linear independence of polynomials p0(X), . . . , pn(X), degree
n polynomial a(X) can be represented as a linear combination of p0(X), . . . , pn(X).
Let this linear combination be a0, . . . , an. This means that

a(s) = a0p0(s) + . . .+ anpn(s)

and therefore

A = ga0p0(s)+...+anpn(s)gtb.

Thus, E can return a0, . . . , an, b.
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D.2 Proof of Lemma 2 (Structured Polynomial Commitments)

Proof. We prove the desired properties of our structured polynomial commit-
ment scheme:

Homomorphic: Construction 1 is homomorphic because

com(p; rp) · com(p; rp) = (gp(s) · hrp , gαp(s) · hαrp) · (gq(s) · hrq , gαq(s) · hαrq )
= (gp(s)+q(s) · hrp+rq , gα(p(s)+q(s)) · hα(rp+rq))

= com(p + q; rp + rq)

Unconditional Hiding: To prove unconditional hiding we observe that arbi-

trary P1 is indistinguishable from a random element R
$← G due to the hr term.

Because P2 = (P1)α, we have that (P1, P2) is indistinguishable from (R,Rα).

Extractibility: Extractibility follows directly from the (n−1)-EPKE assumption
and assumption 4.

Computational Binding: To prove computational binding, suppose there ex-
ists an adversary A that outputs two vectors of polynomial evaluations p and q
and associated randomness rp and rq such that p 6= q but

com(p; rp) = com(q; rq).

with non-negligible probability δ.
Then we can construct adversary B that breaks the (n− 1)-SDH assumption

with non-negligible probability: Suppose B is provided challenge (g, gσ, . . . , gσ
n−1

).

B begins by picking random bit b
$← {0, 1} and proceeds as follows:

– If b = 0: Let h = gσ. Sample secret s
$← F and generate the rest of the

structured reference string accordingly.
– If b = 1: Use terms (g, gσ, . . . , gσ

n−1

) to efficiently compute commitment
keys

u = (g`1(σ), . . . , g`n(σ))

v = (gα`1(σ), . . . , gα`n(σ))

Note that this implicitly sets s = σ. Generate the rest of the structured
reference string accordingly.

B runs A with this reference string, receives (p, q, rp, rq), and aborts if p = q.
Because com(p; rp) = com(q; rq), we have

gp(s)+λrp = gq(s)+λrq (28)

We now have one of two cases: Either p(s) 6= q(s) or p(s) = q(s). We consider
both cases.
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– Suppose p(s) 6= q(s): If b = 0, we have that gσ = h by design. Because
p(s) 6= q(s) by equation 28, we have that rp 6= rq. Thus B can compute

σ =
q(s)− p(s)

rp − rq

and output (0, e(g, g)
1
σ ) breaking the (n− 1)-SDH assumption.

– Suppose p(s) = q(s): If b = 1, we have s = σ by design. Now consider the
polynomial

T (X) = p(X)− q(X).

Because p(s) = q(s), we have that σ = s is a root of T . Additionally, T is
not the zero polynomial by assumption that p 6= q. Thus B can solve for the
roots of T and find σ that agrees with the provided challenge. B can then
output (0, e(g, g)

1
σ ) breaking the (n− 1)-SDH assumption.

We now analyze B’s success probability. Let δ be the probability that A
successfully outputs (p, q, rp, rq) such that com(p; rp) = com(q; rq) but p 6= q.
Let δ = δ1 + δ2 where δ1 is the probability that A wins with p(s) 6= q(s) and δ2
is the probability that A wins with p(s) = q(s). B succeeds when p(s) 6= q(s)
and b = 0, or when p(s) = q(s) and b = 1. For randomly chosen b, Pr[b = 0] =
Pr[b = 1] = 1/2. Therefore the probability that B succeeds is δ1/2 + δ2/2 = δ/2.
Therefore if δ is a non-negligible probability, then A succeeds in breaking the
(n− 1)-SDH assumption with non-negligible probability.

Lemma 7 (Efficiency). For polynomials defined by n evaluation points, the
generator takes time Oλ(n), com takes time Oλ(n), checkcom takes time Oλ(1).

Proof. G can compute `1(s), . . . , `n(s) in Oλ(n) time using the Barycentric rep-
resentation. Specifically G can first compute the Barycentric weights of polyno-
mials `1, . . . , `n in time Oλ(n) by strategically selecting evaluation points [58].
Next G can use the approach described by Berrut et al [13] to compute evalu-
ations `1(s), . . . , `n(s) in linear time given the Barycentric weights. Next G can
compute u and v using two multi-exponentiations of size n which can be done in
Oλ(n/ log n) exponentiations by Pippenger’s algorithm [59]. com requires com-
puting P1 and P2 which can be done using a multi-exponentiation of size n for
each. checkcom requires two pairings which can be done in Oλ(1) time.

D.3 Proof of Theorem 1 (Polynomial Evaluation Argument)

Lemma 8. Construction 2 satisfies knowledge soundness.

Proof. Given an arbitrary PPT prover P∗, we must construct PPT extractor E
such that for an arbitrary statement (P ∈ G2, Y ∈ G, u ∈ F), if

〈P∗(P, Y, u; ρ),V(P, Y, u)〉 = 1
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then E(P, Y, u; ρ) produces a witness (p ∈ Fn, y ∈ F, rp, ry ∈ F) such that

P = com(p; rp)

Y = com(y; ry)

y = p(u).

Given a successful P∗, we construct E that extracts a valid witness with proba-
bility 1− negl(λ):

Because the all verifier’s checks have passed, commitments P , Q, Y , and
R are well-formed. Therefore, by Lemma 2, E can extract evaluation vectors
p = (p1, . . . , pn), q = (q1, . . . , qn), y, and r = (r1, . . . , rn) along with associated
randomness rp, rq, ry, and rr such that

P1 = com(p; rp) = up · hrp = gp(s)hrp

Q1 = com(q; rq) = uq · hrq = gq(s)hrq

Y1 = com(y; ry) = gyhry

R1 = com(r; rr) = ur · hrr = gr(s)hrr

with probability 1−negl(λ). While the extractor has extracted all of the material
required to construct a witness (p, y, rp, ry), we must still show that p(u) = y.

Suppose, for contradiction, p(u) 6= y with non-negligible probability. Then
we can construct adversary A that uses P∗ and E to break the (n − 1)-BSDH

assumption. Suppose A is provided with challenge (g, gσ, . . . , gσ
n−1

). A picks a

random bit b
$← {0, 1} and proceeds as follows:

– If b = 0: Let h = gσ. Sample secret s
$← F and generate the rest of the

structured reference string accordingly.
– If b = 1: Use terms (g, gσ, . . . , gσ

n−1

) to efficiently compute commitment
keys

u = (g`1(σ), . . . , g`n(σ))

v = (gα`1(σ), . . . , gα`n(σ)).

Note that this implicitly sets s = σ. Generate the rest of the structured
reference string accordingly.

Next A runs P∗ and provided P∗ is successful, runs the extractor E described
above. If p(u) = y, abort. Otherwise, because the verifier’s final check has passed
we have

e(P1/Y, g) = e(Q1, g
s−u)e(R1, h).

Letting gt = h, for some unknown t, we have

e(g, g)p(s)+trp−(y+try) = e(g, g)(q(s)+trq)(s−u)+t(r(s)+trr). (29)
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Aggregating terms with respect to t, we get

e(g, g)(p(s)−y)+t(rp−y) = e(g, g)(q(s)(s−u))+t((r(s)+trr)+rq(s−u)). (30)

We now have one of two cases: Either p(s) − y 6= q(s)(s − u) or p(s) − y =
q(s)(s− u). We consider both cases.

– Suppose p(s)− y 6= q(s)(s− u): If b = 0, we have that t = σ by design. Now
consider the polynomial

T (X) = X((r(s) +Xrr) + rq(s− u)− (rp − y)) + (q(s)(s− u))− (p(s)− y))

By equation 30 we have that σ is a root of T . Additionally because p(s)−y 6=
q(s)(s − u) we have that T is not the zero polynomial. Thus A can solve
for the roots of T and find σ that agrees with the provided challenge. A can
then output (0, e(g, g)

1
σ ) breaking the (n− 1)-BSDH assumption.

– Suppose instead p(s) − y = q(s)(s − u): If b = 1, we have s = σ by design.
Now consider the polynomial

T (X) = (p(X)− y)− q(X)(X − u)

Because p(s)− y = q(s)(s− u), σ = s is a root of T . Additionally, T is not
the zero polynomial because then otherwise we would have

0 = T (u) = p(u)− y − q(u)(u− u) = p(u)− y

which contradicts the assumption that p(u) 6= y. Thus A can solve for the
roots of T and find σ that agrees with the provided challenge. A can then
output (0, e(g, g)

1
σ ) breaking the (n− 1)-BSDH assumption.

We now analyze A’s success probability. Let δ be the probability that P∗
successfully convinces the verifier but the extractor E outputs (p, y) such that
p(u) 6= y. Let δ = δ1 +δ2 where δ1 is the the probability P∗ wins with p(s)−y 6=
q(s)(s − u), and δ2 is the probability P∗ wins with p(s) − y = q(s)(s − u). A
succeeds when p(s)− y 6= q(s)(s− u) and b = 0, or when p(s)− y = q(s)(s− u)
and b = 1. For randomly chosen b, Pr[b = 0] = Pr[b = 1] = 1/2. Therefore
the probability that A succeeds is δ1/2 + δ2/2 = δ/2. Therefore if δ is a non-
negligible probability, then A succeeds in breaking the (n−1)-BSDH assumption
with non-negligible probability.

Lemma 9. Construction 2 is perfect zero-knowledge.

Proof. To prove perfect zero-knowledge we must construct a PPT simulator S
that can simulate a transcript indistinguishable from one generated by an honest
prover for any given statement with a valid witness. We construct S as follows:

Consider arbitrary statement with a valid witness consisting of polynomial
commitment P , commitment Y , and evaluation point u. We argue that S can
compute Q and R exactly as dictated by the protocol using only P , Y , u, and
the trapdoor:
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First, S generates the common reference string, and the associated trapdoor
(α, s, t) where gt = h.

Next, S samples r′q ← F and computes Q1 as follows:

Q1 = (P1/Y1)1/(s−u) · hr
′
q

= g
p(s)+trp−y−try

(s−u) +tr′q

= gq(s)+t(
rp−ry
s−u +r′q)

where the last equality holds because an honest prover computes q(s) = (p(s)−
y)/(s− u). We can set rq = (rp − ry)(s− u) + r′q and rewrite

Q1 = gq(s)+trq = gq(s)hrq .

We note that rq is indistinguishable from a random element in F in both the
real and ideal settings. S computes Q2 = Qα1 .

Next, S computes R1 as follows:

R1 = (P1/Y1/Q
(s−u)
1 )1/t

= g(1/t)(p(s)+trp)−(1/t)(y+try)−(1/t)(q(s)+trq)(s−u)

= g(1/t)(p(s)−y−q(s)(s−u))+(rp−ry−rq(s−u))

= grp−ry−rq(s−u)

where the last equality holds because p(s)− y − q(s)(s− u) = 0 due to the fact

that q(s) = p(s)−y
(s−u) . S computes R2 = Rα1 .

Thus, because Q and R satisfy identical relations in both the real and ideal
setting, an unbounded adversary cannot distinguish between real and ideal tran-
scripts.

Lemma 10 (Efficiency). For polynomials defined over n evaluations, the poly-
nomial evaluation argument features an Oλ(n) generator, Oλ(n) prover, and an
Oλ(1) verifier.

Proof. We break down the dominating costs for each of the components:

– Generator: G can compute `1(s), . . . , `n(s) in Oλ(n) time using reasoning
similiar to the proof for lemma 7.

– Prover: Because p represents a vector of polynomial evaluations, P can
compute the vector of polynomial evaluations q in Oλ(n) time. (Specifically
using O(n · poly(λ)) field operations). Additionally, using commitment keys
u and v, P can compute Q with two size n multi-exponentiations.

– Verifier: The verifier’s final check is dominated by computing three pairings
which can be done in Oλ(1) time.
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D.4 Proof of Theorem 2 (Inner-Product Argument)

Lemma 11. Construction 3 is an argument system for RIP (Definition 12) that
satisfies knowledge-soundness.

Proof. Construction 3 is derived by applying commitment scheme com (Equa-
tion 2) to the generalized inner-product argument presented by Bünz et al. [26].
To be compatible with the generalized inner-product argument we must show
that com is doubly homomorphic (i.e. is homomorphic in both the message space
and the key space) and binding. com is doubly homomorphic by observation.
Additionally com is binding by the q-SDH assumption and reasoning similiar
to Lemma 2. Therefore com is compatible with the generalized inner-product
argument presented by Bünz et al. [26]. Thus the main interaction has knowl-
edge soundness due Bünz et al. [26, Theorem 5.4] so long as the subprotocol to
convince the verifier that (v, w) are computed correctly is sound and the product
relation holds is knowledge sound.

The soundness of the (v, w) argument holds by the Schwartz-Zippel Lemma
and the soundness of the polynomial evaluation argument (Construction 2). In
particular we consider the case of v (the case for w is symmetric): The soundness

of the polynomial evaluation argument ensures that v is of the form v = g
f(α)
1

for some degree n− 1 polynomial f . Additionally the the polynomial evaluation
argument ensures that f(z) = fv(z). Because z is a random challenge provided
by the verifier, f = fv with probability 1 − negl(λ) by the Schwartz-Zippel
lemma [61].

The final product argument a simplified version of a product argument pre-
sented by Bünz et al. [23]. Thus the final argument is knowledge sound by an
argument similiar to Bünz et al. [23, Theorem 3].

Lemma 12. Construction 3 is an argument system for RIP that is honest-
verifier zero-knowledge.

Proof. To prove honest-verifier zero-knowledge we must construct simulator S
that can simulate a transcript indistinguishable from one generated by an honest
interaction for any given statement with a valid witness. We construct S as
follows:

Consider arbitrary statement with a valid witness consisting of commitments
A, B, C and scalar r. The simulator S sets a, b to be 0 and simulates an
interaction between an honest prover and honest verifier for the main argu-
ment. In each round in both the real and ideal setting, the prover’s messages
AL, AR, BL, BR, CL, CR are indistinguishable from random and independent of
each other due to the blinding terms.

Additionally the subprotocol for checking v and w is not witness dependent
so can be simulated by running the honest prover.

Thus, it suffices to show that the S can simulate the final proof-of-product
protocol with a statement consisting of commitments A,B,C and unknown

openings. S sets a = b = c = 0 and randomly samples ra, rb, rc
$← F. Next

S simulates the honest prover and verifier. However instead of computing S and
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T1 as dictated by the protocol, S uses the simulated challenge z to forge these
terms to satisfy the verifier’s checks:

S = (va
′
wb
′
hµ/A/B)

1
z

T1 = (gc
′
hτ/C/T z

2

2 )
1
z

Because τ1, τ2, ρ, z, sa, sb are randomly sampled this implies that the provers
message τ, µ, a′, b′, c′ is indistinguishable from random elements in F in both
the real and ideal settings. Additionally this implies that T2 is indistinguishable
from a random element in G in both the real and the ideal setting. Finally S and
T1 are uniquely fixed by elements which are indistinguishable from random in
both the real and the ideal setting. Therefore, an adversary cannot distinguish
between the real and ideal transcripts.

Lemma 13 (Efficiency). For vectors of size n, Construction 3 features an
Oλ(n) generator, Oλ(n) prover, and an Oλ(log n) verifier.

Proof. This follow by properties discussed in Bünz et al. [26]. We provide more
detail for the generalized inner-product argument instantiated with the Pedersen
commitment:

– Generator: G can compute w with a multi-exponentiation of size n which
can be done in Oλ(n/ log n) exponentiations by Pippenger’s algorithm [59].

– Prover: The prover can compute r and rescale a in Oλ(n) time. In each re-
cursive round the prover’s work is dominated by the cost of exponentiations.
In total to compute AL, AR, BL, BR,v

′,w′ in all rounds the prover incurs
6n exponentiations: 3n in the first round, 3n/2 in the second round, and so
on.

In the subprotocol to check (v, w), the prover can evaluate v′ and w′ using
two multi-exponentiations of size n.

Similiarly the prover can compute fv(z) and fw(z) in a logarithmic number
of multiplications. The prover can prove the validity of V and W using two
polynomial evaluation arguments which incurs Oλ(n) overhead (Lemma 10)

The subprotocol to check product requires Oλ(1) operations on the prover’s
end by observation.

– Verifier: To compute A′, B′, C ′ over all the rounds the verifier performs
6 log n exponentiations.

In the subprotocol to check (v, w), the verifier can compute fv(z) and fw(z)
in a logarithmic number of multiplications. Checking the two resulting poly-
nomial evaluation arguments incurs Oλ(1) overhead (Lemma 10)

By observation, the subprotocol to check product requires Oλ(1) operations
on the verifier’s end.

45



D.5 Proof of Theorem 3 (Inner-Product Argument for the Lagrange
Basis)

Lemma 14. Construction 4 is an argument system for RIP (Definition 12) that
satisfies knowledge-soundness.

Proof. Given arbitrary prover P∗ we must construct extractor E such that for
arbitrary statement consisting of commitments A′, B′, C and scalar r, if

〈P∗(A′, B′, C, r; ρ),V(A′, B′, C, r)〉 = 1

then E(A,B,C, r; ρ) produces a witness consisting of vectors a′, b′ and scalars
c, ra, rb, rc such that

A′ = com(a′, ra)

B′ = com(b′, rb)

C = com(c, rc)

and

c = (a′ ◦ r) · b′

where r = (r0, r1, . . . , rn−1). We construct E that extracts a valid witness with
probability 1− negl(λ) as follows:

By assumption, because the verifier accepts, we have that it accepts the
inner-product argument over commitments A,B,C (generated during interac-
tion) and r. By the knowledge soundness property of the inner-product argu-
ment (Lemma 11) E can extract the vectors “under” the commitments, namely
a, b and scalar c (along with associated randomness ra, rb, rc) such that

A = wa · hra (31)

B = wb · hrb (32)

C = gchrc (33)

and

c = (a ◦ r) · b

What remains to show is that construction 4 additionally enforces that

A′1 = la · hra

B′1 = lb · hrb

with probability 1−negl(λ). This implies that (a, b, c, ra, rb, rc) is a valid witness
to statement (A′, B′, c, r).

We focus on showing that A and A′ must commit to the same vector with
probability 1− negl(λ); the case for commitments B and B′ is symmetric. Sup-
pose, for contradiction, there exists adversary A that outputs commitments
(A,A′′) such that

e(A′′, g) = e(A ·A′1, gγ)
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but there exists no a such that

A = wa · hra

A′1 = la · hra

with non-negligible probability. Then we can construct adversary B that can
break the (n− 1)-SDH assumption. Suppose B has the following challenge

(g, gσ, . . . , gσ
n−1

).

Additionally, suppose B is provided the statement (A′, B′, C) as auxiliary input.
Because (A′, B′, C) are perfectly hiding commitments, they are independent of
s and thus are a valid input for the (n − 1)-SDH assumption. B initially picks

random b
$← {0, 1} and proceeds as follows:

– If b = 0: Let

w = (g, gσ, . . . , gσ
n−1

).

Note that this implicitly sets s = σ. Sample secret t
$← F and generate the

rest of the structured reference string accordingly.
– If b = 1: Use terms (g, gσ, . . . , gσ

n−1

) to efficiently compute commitment
keys

l = (g`0(σ), g`1(σ), . . . , g`n−1(σ))

l′ = (gα`0(σ), gα`1(σ), . . . , gα`n−1(σ))

Note that this implicitly sets t = s. Sample secret s
$← F and generate the

rest of the structured reference string accordingly. Note that l and l′ can be
computed efficiently by the reasoning in the proof for Assumption 4.

Now B runs A on the statement (A′, B′, C) and public parameters and re-
cieves commitments (A,A′′). Because the verifier accepts that commitment A′

is well-formed, by Lemma 2, E can extract vector a′ and scalar r′a such that

A′1 = la
′
· hr

′
a (34)

Next, we observe that in the case that b = 0, t = (w◦l)γ = {gUi(s)}i∈{0,...,n−1},
where

Ui(X) = γ(Xi + `i(t)).

Likewise, in the case that b = 1, t = {gVi(s)}i∈{0,...,n−1}, where

Vi(X) = γ(si + `i(X)).
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Both {Ui}i∈{0,...,n−1} and {Vi}i∈{0,...,n−1} define sets of linearly independent
polynomials. Therefore, in either case, because

e(A′′, g) = e(A ·A′1, gγ)

by Assumption 4 which extends the (n− 1)-EPKE assumption for linearly inde-
pendent polynomials, E can extract vector a′′ and scalar r′′a such that

A ·A′1 =

n−1∏
i=0

g(si+`i(t))a
′′
i · hr

′′
a (35)

Next observe that

r′′a = ra + r′a (36)

with probability 1−negl(λ) because otherwise we can construct adversary C that
can solve for µ such that gµ = h breaking the discrete log assumption with non-
negligible probability. In more detail, given discrete-logarithm challenge (g, h),
adversary C generates the SRS accordingly with known s and t. Then C runs A
and E to extract a,a′,a′′, ra, r

′
a, r
′′
a and by equations 31, 34, 35 solves for µ such

that h = gµ as follows:

µ =

∑n−1
i=0 s

iai + `i(t)a
′
i − (si + `i(t))a

′′
i

r′′a − (r′a + ra)

Returning to adversary B, by assumption, because a 6= a′, we must have
a 6= a′′ or a′ 6= a′′. We consider both cases:

– Suppose that a 6= a′′. If b 6= 0 then abort. Otherwise, by equations 31, 34, 35
we have

A =

n−1∏
i=0

gs
iai · hra

A′1 =

n−1∏
i=0

g`i(t)a
′
i · hr

′
a

A ·A′1 =

n−1∏
i=0

g(si+`i(t))a
′′
i · hr

′′
a .

Thus we have

n−1∏
i=0

gs
iai · hra ·

n−1∏
i=0

g`i(t)a
′
i · hr

′
a =

n−1∏
i=0

g(si+`i(t))a
′′
i · hr

′′
a

By equation 36 we have

n−1∏
i=0

gs
iai ·

n−1∏
i=0

g`i(t)a
′
i =

n−1∏
i=0

g(si+`i(t))a
′′
i (37)
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n−1∏
i=0

g(si+`i(t))a
′′
i −s

iai−`i(t)a′i = g0 (38)

Now consider polynomial

P (X) =

n−1∑
i=0

(Xi + `i(t))a
′′
i −Xiai − `i(t)a′i.

Because b = 0, we have that s = σ. Therefore by equation 38 we have that
P (σ) = 0 with probability 1 − negl(λ). Additionally, because a′′ 6= a, we
have that P is not the zero polynomial. Therefore E can solve efficiently for
σ by iterating through the roots of P until we find one that satisfies the
challenge.

– Suppose instead that a′ 6= a′′. If b 6= 1 then abort. Consider polynomial

Q(X) =

n−1∑
i=0

(si + `i(X))a′′i − siai − `i(X)a′i

By equations 31, 34, 35, and 36, and a similiar argument as in the previous
case, we have that Q(σ) = 0 with probability 1 − negl(λ). Additionally,
because a′′ 6= a′, we have that Q is not the zero polynomial. Therefore E
can solve for σ by iterating through the roots of Q until we find one that
satisfies the challenge.

Therefore either a = a′′ = a′ or B succeeds in breaking the (n − 1)-SDH as-
sumption with probability 1− negl(λ).

We now analyze the success probability of B. Let δ be the success probability
of A. From the above reasoning we have that δ = δ1 + δ2, where δ1 is the
probability that A succeeds with a 6= a′′, and δ2 is the probability that A
succeeds with a′ 6= a′′. B is successful when a 6= a′′ and b = 0, or when a′ 6= a′′

and b = 1. Thus, because Pr[b = 0] = Pr[b = 1] = 1/2, the probability that
B succeeds is δ1/2 + δ2/2 − negl(λ) = δ/2 − negl(λ). Therefore if δ is a non-
negligible probability, B succeeds in breaking the (n− 1)-SDH assumption with
non-negligible probability.

Lemma 15. Construction 4 is an argument system for RIP that is honest-
verifier zero-knowledge.

Proof. To prover honest-verifier zero-knowledge we must construct simulator
S that can simulate a transcript indistinguishable from one generated by an
honest interaction for any given statement with a valid witness. We construct S
as follows:

Consider arbitrary statement with a valid witness consisting of commitments
A′, B′, C and scalar r. First, S generates the common reference string and the
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associated trapdoor δ. Next, S sets a = b = 0 and computes commitments A
and B as dictated by the protocol. Next, S uses trapdoor δ to forge A′′ and B′′

such that the verifier’s checks pass:

A′′ := (A ·A′1)
1
δ

B′′ := (B ·B′1)
1
δ .

In the final round, S can simulate a transcript indistinguishable from honest
inner-product argument due to the honest-verifier zero-knowledge property of
the inner product argument (Lemma 12).

In both the real and ideal settings the terms A and B are indistinguishable
from random elements in G due to the blinding terms. Additionally, in both the
real and ideal setting, terms A′′ and B′′ are uniquely fixed by A, B, and the
statement under the same relation. Thus an adversary cannot use terms A′′ and
B′′ to distinguish between the real and ideal setting.

Lemma 16 (Efficiency). For vectors of size n construction 4 features an Oλ(n)
generator, Oλ(n) prover, and an Oλ(log n) verifier.

Proof. At a high level, construction 4 adds an Oλ(n) time overhead to the gener-
ator and prover and an Oλ(1) overhead to the verifier. Therefore by the asymp-
totics of construction 3 (Lemma 13), construction 4 achieves the stated asymp-
totics. In more detail:

– Generator: In addition to running the generator for the inner-product
argument, G needs to compute l, l′, t which can be done with 3 multi-
exponentiations of size n, which can be done in Oλ(n/ log n) exponentiations
by Pippenger’s algorithm [59].

– Prover: In addition to running the inner-product argument, which takes
Oλ(n) time, P can compute A,B,A′′, B′′ with 4 multi-exponentiations of
size n.

– Verifier: In addition to running the inner-product argument which takes
Oλ(log n) time, the verifier needs to perform 4 pairing operations which can
be done in Oλ(1) time.

D.6 Proof of Theorem 5 (Argument System for RACS)

Lemma 17 (Correctness). Construction 6 satisfies completeness and sound-
ness.

Proof. Completeness and soundness follow from the description of construction 6
and the correctness and soundness of the underlying protocols

Lemma 18 (Knowledge Soundness). Construction 6 satisfies knowledge sound-
ness.
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Proof. By the soundness of construction 6 (Lemma 17), an accepting verifier im-
plies a valid shifted witness w′ with negligible soundness error. By the extractibil-
ity of the polynomial commitment scheme (Construction 1), an extractor E can
extract w′ from the prover’s initial commitment, and return the reconstructed
witness w.

Lemma 19 (Zero Knowledge). Construction 6 satisfies honest-verifier zero-
knowledge

Proof. Intuitively, honest-verifier zero-knowledge holds because the prover only
sends perfectly hiding polynomial commitments to the verifier and engages in
honest-verifier zero-knowledge arguments regarding these commitments. We for-
mally argue honest-verifier zero-knowledge by constructing a simulator:

To prove honest-verifier zero-knowledge we must construct a simulator S that
can simulate a transcript indistinguishable from one generated by an honest
interaction for any given statement with a valid witness. We construct S as
follows:

Consider arbitrary RACS statement with a valid witness. S sets the witness
w to 0 and proceeds to run an interaction between an honest prover and verifier
as dictated by the protocol, with the following changes

– When S needs to simulate a polynomial evaluation argument, it runs the
simulator for the polynomial evaluation argument (Lemma 9).

– When S needs to simulate an inner-product argument, it runs the simulator
for the inner-product argument (Lemma 15).

– When S needs to simulate the multi-Hadamard-product argument, it runs
the simulator for the multi-Hadamard argument (Lemma 4)

By the hiding property of the polynomial commitment scheme (Lemma 2)
the honest prover’s commitments and the simulated commitments are indistin-
guishable. Next by lemma 9, lemma 15, and lemma 4 the simulator’s transcripts
for the polynomial evaluation, inner-product, and multi-Hadamard-product ar-
guments are indistinguishable from that of an honest interaction. This implies
that the simulator’s overall transcript is indistinguishable from that of an honest
interaction.

Lemma 20 (Efficiency). For a sparse size n RACS instance with input vec-
tor size x, Construction 6 features an Oλ(n) generator, Oλ(n) prover and an
Oλ(log n+ x) verifier.

Proof. The generator must run the generators for all the subarguments; this can
be done in Oλ(n) time by Lemma 2, and Theorems 1, 2, 3, and 4. Additionally
the generator must compute evaluations of auxiliary polynomials vH , vN , vK ,
v[n−m], uH , and uN , which can be computed in Oλ(n/ log n) exponentiations by
Pippenger’s algorithm [59] if the associated vanishing domains are multiplicative
subgroups (Definition 5).
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As claimed in Construction 6 the prover can efficiently compute polynomials
P1, P2, and P3 in linear time by constructing a lookup table, as discussed by
Chiesa et al. [28]. For completeness, we describe how to construct such a lookup
table for polynomial P1 in supplementary section E. For the remainder of the
argument the prover commits to evaluation-based representations of polynomials
w′, z, P1, P2, P3. By Lemma 2 this is dominated by 10 multi-exponentiations of
size Oλ(n) total. Next the prover engages in a polynomial-evaluation argument
to verifiably evaluate z(τ), w′(τ), v[n−m](τ), P1(β), P2(γ), vH(α), vN (β), and
vN (γ). By Theorem 1, this is dominated by 16 multi-exponentiations of size n
total. The prover engages in three inner-product arguments over vector pairs
(z, P1), (z, P2), and (1, P3). By Theorem 2 and Theorem 3, this is dominated
by 48 multi-exponentiations of size O(n) total. Finally, the prover engages in an
multi-Hadamard argument over vectors P3,A

′,B′,C′ and V′. By Theorem 4 and
Theorem 3 this is dominated by 20 multi-exponentiations of size n total.

The verifier computes x(τ) for some random τ
$← F, which takes linear time

in the size of the input vector. Next, the verifier checks 8 polynomial-evaluation
arguments. By Theorem 1, this can be one in Oλ(1) time. Next the verifier checks
3 inner-product arguments in the main interaction. By Theorem 2, this can
be done in Oλ(log n) time. Finally the verifier checks a single multi-Hadamard
argument. By Theorem 4 this can be done in Oλ(log n) time. We note that
the core multi-Hadamard argument features a constant-time verifier, with the
underlying inner-product argument incurring the logarithmic overhead.

E Using a Lookup Table to Efficiently Compute
Polynomials P1, P2, P3 in the Main Argument

As claimed in construction 6 polynomials P1, P2, and P3 can be efficiently com-
puted in linear time by constructing a lookup table as discussed by Chiesa et
al. [28]. We demonstrate how to compute this lookup table for in order to ef-
ficiently compute P1 (similiar strategies can be used for P2 and P3). We first
observe that by definition

P1(b) =
∑
c∈N

∑
k∈K

P (k, α, b, c)z(c).

Because uN (c,C(k)) is non-zero only when c = C(k) we have that

P1(b) =
∑
k∈K

P (k, α, b,C(k))z(C(k)).

Additionally, because uN (b,B(k)) is non-zero only when b = B(k) we have that

P1(b) =
∑

k s.t. b=B(k)

P (k, α, b,C(k))z(C(k)).

Thus, to compute P1(b) for all b ∈ N , the prover first precomputes uH(α, a) =
vH(α)/(α − a) for all a ∈ H. By design, the prover is provided evaluations of
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polynomials A,B,C and z. 4 Given the precomputed evaluations, the prover can
efficiently compute P1(b) for all b ∈ N as follows

1. Initially set P1(b) = 0 for all b ∈ N
2. For all k ∈ K compute

P (k, α,B(k),C(k))z(C(k))

in Oλ(1) time using the precomputations and add the resulting value to
P1(B(k)).

F Additional Concrete Optimizations

Construction 10 (Batched Inner Product). The zero argument presented
in construction 5 can be generalized to argue that the sum of inner-products of
vectors sums to arbitrary value σ. Multiple arguments for the inner-product can
be batched by taking random linear combinations of the vectors in question and
applying the zero argument. In our main argument system, this reduces the total
number of inner-product arguments from 3 to 1. Note that the multi-Hadamard
product argument still requires it’s own separate inner-product argument.

Construction 11 (Batched Polynomial Evaluation). As shown by Chiesa
et al. [28], multiple polynomial evaluation arguments over polynomials of the
same degree over the same evaluation point can be batched by taking random
linear combinations of the polynomials and evaluations in question. In our sys-
tem, the sub-argument to check that (u, v) were computed correctly as part of
the inner-product argument (Construction 3) requires two polynomial evaluation
arguments that matches this criteria. Therefore in each inner product argument
batching enables a single polynomial evaluation argument instead of two.

Construction 12 (Cheaper Polynomial Commitments in the Algebraic
Group Model). When proven secure in the Algebraic Group Model [37] in
contrast to the plain model, we can modify our polynomial evaluation argument
such that commitment and evaluation only costs a single multi-exponentiation
of size n using techniques similiar to Chiesa et al. [28].

Remark 2 (Resulting Cost Breakdown). In supplementary section F, we
detail additional minor concrete optimizations. Applying these optimizations,
the prover’s total cost breaks down as follows: 5 multi-exponentiations of size
n (n-MEXP) for polynomial commitments, 4 n-MEXPs for polynomial evalua-
tions, 15 n-MEXPs for the multi-Hadamard-product argument, and 11 n-MEXPs
for the inner-product arguments. This puts the prover’s total dominating cost
at 35 n-MEXPs. The verifier’s total dominating costs are 34 pairings.

4 We implicitly assume the prover is provided evaluations uN (b, b) for all b ∈ N . This
can be computed once globally by the generator in Oλ(n/ logn) exponentiations if
N is a multiplicative subgroup.
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