
Post-Quantum Multi-Party Computation

Amit Agarwal∗ James Bartusek† Vipul Goyal‡

Dakshita Khurana§ Giulio Malavolta¶

Abstract

We initiate the study of multi-party computation for classical functionalities (in the plain model) with
security against malicious polynomial-time quantum adversaries. We observe that existing techniques
readily give a polynomial-round protocol, but our main result is a construction of constant-round post-
quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning
with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption.
Along the way, we develop the following cryptographic primitives that may be of independent interest:

• A spooky encryption scheme for relations computable by quantum circuits, from the quantum hard-
ness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-
homomorphic encryption scheme with classical keys.

• Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky en-
cryption for relations computable by quantum circuits.
To enable this, we develop a new straight-line non-black-box simulation technique against parallel
verifiers that does not clone the adversary’s state. This forms the heart of our technical contribution
and may also be relevant to the classical setting.

• A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial
quantum hardness of LWE.

∗UIUC. amita2@illinois.edu
†UC Berkeley. bartusek.james@gmail.com
‡CMU. vipul@cmu.edu
§UIUC. dakshita@illinois.com
¶Max Planck Institute for Security and Privacy. giulio.malavolta@hotmail.it

amita2@illinois.edu
bartusek.james@gmail.com
vipul@cmu.edu
dakshita@illinois.com
giulio.malavolta@hotmail.it

Contents

1 Introduction 1
1.1 Our Results . 1

2 Technical Overview 3
2.1 Background . 3
2.2 A New Parallel No-Cloning Non-Black-Box Simulation Technique 5
2.3 Quantum AFS-Spooky Encryption . 9
2.4 Post-Quantum Non-malleable Commitments . 12
2.5 Putting Things Together . 14
2.6 Related Work . 14

3 Preliminaries 15
3.1 Quantum Computation . 16
3.2 Notation for Interactive Protocols . 17
3.3 Witness Indistinguishability . 18
3.4 Sigma Protocol for NP . 18
3.5 Non-Interactive Commitment . 19
3.6 Compute and Compare Obfuscation . 19
3.7 Function-Hiding Secure Function Evaluation . 19
3.8 Quantum Rewinding Lemma . 21

4 Quantum Multi-Key Fully-Homomorphic Encryption 21
4.1 Learning with Errors and Lattice Trapdoors . 21
4.2 Definition . 22
4.3 Background . 24
4.4 Construction . 25
4.5 Quantum Spooky Encryption . 27

5 Quantum-Secure Multi-Committer Extractable Commitment 30
5.1 Definition . 31
5.2 Construction . 32
5.3 Hiding . 32
5.4 Extractability . 34

6 Quantum-Secure Multi-Verifier Zero-Knowledge 38
6.1 Definition . 39
6.2 Construction . 40
6.3 Soundness . 41
6.4 Zero-Knowledge . 41

7 Quantum-Secure Non-Malleable Commitments 45
7.1 Definition . 45
7.2 Non-Malleable Commitments for Small Tags . 46

7.2.1 Construction . 47
7.2.2 Analysis . 48

7.3 Tag Amplification . 56
7.3.1 Construction . 56
7.3.2 Analysis. 56

2

8 Quantum-Secure Multi-Party Coin-Flipping 57
8.1 Definition . 58
8.2 Construction . 58
8.3 Security . 59

9 Quantum-Secure Multi-Party Computation 65
9.1 Definition . 65
9.2 Construction . 66

10 Acknowledgments 66

A Simple Polynomial-Round Extractable Commitments 73

B An explicit quantum attack against a classically-secure ZK protocol 74

C Tag Amplification: Remaining Analysis 74

D Multi-Committer Extractable Commitments against Arbitrary Distinguishers 80

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a joint function of their inputs,
revealing only the output of the function while keeping their inputs private. General secure MPC, initiated
in works such as [Yao86, GMW87, BGW88, CCD88], has played a central role in modern theoretical cryp-
tography. The last few years have seen tremendous research optimizing MPC in various ways, enabling
a plethora of practical applications that include joint computations on distributed medical data, privacy-
preserving machine learning, e-voting, distributed key management, among others. The looming threat of
quantum computers naturally motivates the problem of constructing protocols with provable security against
quantum adversaries.

After Watrous’ breakthrough work on zero-knowledge against quantum adversaries [Wat09], the works
of [DL09, LN11, HSS11] considered variants of quantum-secure computation protocols, in the two-party set-
ting. Very recently, Bitansky and Shmueli [BS20] obtained the first constant-round classical zero-knowledge
arguments with security against quantum adversaries. Their techniques (and those of [AP20] in a concur-
rent work) are based on the recent non-black-box simulation technique of [BKP19], who constructed two-
message classically-secure weak zero-knowledge in the plain model. Unfortunately, it is unclear whether
these protocols compose under parallel repetition. As a result, they become largely inapplicable to the
constant-round multi-party setting.

There has also been substantial effort in constructing protocols for securely computing quantum cir-
cuits [DNS10, DNS12, DGJ+20] (see Section 2.6 for further discussion). But to the best of our knowledge,
generic multi-party computation protocols with classical communication and security against quantum
adversaries have only been studied in models with trusted pre-processing or setup. To make things even
worse, [DGJ+20] construct a maliciously-secure multi-party protocol for computing quantum ciruits, as-
suming the existence of maliciously-secure post-quantum classical MPC. This means that the only available
implementations of such a building block require trusted pre-processing or a common reference string.

Post-Quantum MPC. In this work we initiate the study of MPC protocols that allow classical parties to
securely compute general classical functionalities, and where security is guaranteed against malicious quan-
tum adversaries. Our focus is on MPC in the plain model, with a dishonest majority: Fully classical partici-
pants interact with each other with no access to trusted/pre-processed parameters or a common reference
string. Multi-party protocols achieving security in this natural setting do not seem to have been previ-
ously analyzed in any number of rounds. We stress that the challenges of proving post-quantum security
of MPC protocols stretch far beyond the appropriate instantiations of the cryptographic building blocks
(e.g. avoiding factoring or discrete logarithm-based cryptosystems): in fact, it is possible to devise proto-
cols [AP20, ARU14] based on entirely post-quantum assumptions that are secure against classical adver-
saries but completely insecure against quantum adversaries.

Because quantum information behaves very differently from classical information, designing post-quantum
protocols often requires new techniques to achieve provable security. As an example, a common strategy to
prove classical security of MPC protocols is to define a simulator that can extract the inputs of the corrupted
parties by “rewinding” them, i.e. taking a snapshot of the state of the adversary and splitting the protocol
execution into multiple branches. However, when the adversary is a quantum machine, this technique
becomes largely inapplicable since the no-cloning theorem (one of the fundamental principles of quantum
mechanics) prevents us from creating two copies of an arbitrary quantum state. One of our key contribu-
tions is a new parallel no-cloning non-black-box simulation technique that extends the work of [BS20], to achieve
security against multiple parallel quantum verifiers.

1.1 Our Results

We begin by summarizing our main result: Classical multi-party computation with security against quan-
tum circuits in the plain model. Here, parties communicate classically via authenticated point-to-point
channels as well as broadcast channels, where everyone can send messages in the same round. In each
round, all parties simultaneously exchange messages. The network is assumed to be synchronous with

1

rushing adversaries, i.e. adversaries may generate their messages for any round after observing the mes-
sages of all honest parties in that round, but before observing the messages of honest parties in the next
round. The (quantum) adversary may corrupt upto all but one of the participants. In this model, we obtain
the following main result.

Theorem 1.1 (Informal). Assuming mildly super-polynomial quantum hardness of LWE and AFS-spooky encryp-
tion for relations computable by polynomial-size quantum circuits, there exists a constant-round classical MPC pro-
tocol (in the plain model) maliciously secure against quantum polynomial-time adversaries.

In more detail, our protocol is secure against any adversary A = {Aλ, ρλ}λ, where each Aλ is the (clas-
sical) description of a polynomial-size quantum circuit and ρλ is some (possibly inefficiently computable)
non-uniform quantum advice. Beyond being interesting in its own right, our plain-model protocol may
serve as a useful stepping stone to obtaining interesting protocols for securely computing quantum circuits
in the plain model, as evidenced by the work of [DGJ+20]. This protocol is constructed in Sections 8 and 9.

By “mildly” super-polynomial quantum hardness of LWE, we mean to assume that there exists a con-
stant c ∈ N, such that for large enough security parameter λ ∈ N, no quantum polynomial time algorithm
can distinguish LWE samples from uniform with advantage better than negl(λilog(c,λ)), where ilog(c, λ) de-
notes the c-times iterated logarithm log log · · ·c times(λ). We note that this is weaker than assuming the
quasi-polynomial quantum hardness of LWE, i.e. the assumption that quantum polynomial-time adver-
saries cannot distinguish LWE samples from uniform with advantage better than 2−(log λ)c for some con-
stant c > 1.

A key technical ingredient in our work is an additive function sharing (AFS) spooky encryption scheme
[DHRW16] for relations computable by quantum circuits. An AFS-spooky encryption scheme has a publicly-
computable algorithm that, on input a set of ciphertexts Enc(pk1,m1), . . . ,Enc(pkn,mn) encrypted under
independently sampled public keys and a (possibly quantum) circuit C, computes a new set of ciphertexts

Enc(pk1, y1), . . . ,Enc(pkn, yn) s.t.
n⊕
i=1

yi = C(m1, . . . ,mn).

In Section 4 we show how to construct AFS-spooky encryption for relations computable by quantum cir-
cuits, under an LWE-based circular security assumption. We refer the reader to Section 4.4 for the exact
circular security assumption we need, which is similar to the one used in [Mah18]. As a corollary, this
immediately yields the first multi-key fully-homomorphic encryption [LTV12] for quantum circuits with
classical key generation and classical encryption of classical messages.

Theorem 1.2 (Informal). Under an appropriate LWE-based circular security assumption, there exists an AFS-
spooky encryption scheme for relations computable by polynomial-size quantum circuits with classical key generation
and classical encryption of classical messages.

Our most important technical contribution is a construction of constant-round zero-knowledge argu-
ments against parallel quantum verifiers, and constant-round extractable commitments against parallel
quantum committers. Here, we develop a novel parallel no-cloning non-black-box simulation technique. This
uses as a starting point the recently introduced no-cloning technique of [BS20, AP20], which in turns builds
on the classical non-black-box technique of Bitansky, Khurana and Paneth [BKP19].

We point out that we do not obtain protocols that compose under unbounded parallel repetition. Instead
we build a bounded variant in the multi-party setting (that we also refer to as multi-verifier zero-knowledge
and multi-committer extractable commitments) that suffices for our application to constant round MPC.
Our technique makes crucial use of AFS-spooky encryption for relations computable by classical circuits.
Parallel extractable commitments and zero-knowledge are formally constructed and analyzed in Sections 5
and 6, respectively.

Theorem 1.3 (Informal). Assuming the quantum polynomial hardness of LWE and the existence of AFS-spooky
encryption for relations computable by polynomial-size quantum circuits, there exists:

2

• A constant-round classical argument for NP that is computational-zero-knowledge against parallel quantum
polynomial-size verifiers.

• A constant-round classical commitment that is extractable against parallel quantum polynomial-size commit-
ters.

In addition, we initiate the study of post-quantum non-malleable commitments. Specifically, we con-
struct and rely on constant-round post-quantum non-malleable commitments based on the super-polynomial
hardness assumption described above. The formal construction and analysis can be found in Section 7.

Theorem 1.4 (Informal). Assuming the mildly super-polynomial quantum hardness of LWE and the existence of
fully-homomorphic encryption for quantum circuits, there exists a constant-round non-malleable commitment scheme
secure against quantum polynomial-size adversaries.

We also obtain quantum-secure non-malleable commitments in O(ilog(c, λ)) rounds for any constant
c ∈ N based on any (polynomially) quantum-secure extractable commitment. In particular, plugging in
these commitments instead of our constant round non-malleable commitments gives an O(ilog(c, λ)) round
quantum-secure MPC from any quantum AFS-spooky encryption scheme.

2 Technical Overview

2.1 Background

Our starting point is any constant-round post-quantum maliciously-secure MPC protocol in the (programmable)
common random string (CRS) model. A long line of work has studied constant-round MPC in the CRS
model [CLOS02, IPS08, AJL+12, MW16, BL18a, GS18], and these protocols can all be instantiated with
primitives that are plausibly quantum-secure. One method of arguing that the resulting protocol is post-
quantum secure is to demonstrate that (i) the simulator does not rewind or clone the adversary’s state, and
(ii) the reductions to the underlying quantum-secure primitives used to establish indistinguishability of the
real and simulated world do not rewind or clone the adversary’s state. As a concrete example, since the
simulators and reductions in [GS18] are non-rewinding and non-cloning, implicit in their work is the theo-
rem that any two-message post-quantum maliciously-secure oblivious transfer (OT) in the CRS model with
a straight-line simulator implies a two-round post-quantum maliciously-secure MPC protocol in the CRS
model. Such an OT is known for example from the quantum hardness of learning with errors [PVW08].

Thus, a natural approach to achieving post-quantum MPC in the plain model is to then securely imple-
ment a multi-party functionality that generates the aforementioned CRS. Specifically, we would like a set of
n parties to jointly execute a coin-flipping protocol. Such a protocol outputs a uniformly random string that
may then be used to implement a post-quantum MPC protocol in the CRS model. The programmability
requirement on the CRS roughly translates to ensuring that for any quantum adversary, there exists a sim-
ulator that on input a random string s, can force the output of the coin-flipping protocol to be equal to s. A
protocol satisfying this property is often referred to as a fully-simulatable multi-party coin-flipping protocol.

Post-Quantum Multi-Party Coin-Flipping. Existing constant-round protocols [Wee10, Goy11] for multi-
party coin-flipping against classical adversaries make use of the following template. Each participant first
commits to a uniformly random string using an appropriate perfectly binding commitment.1 In a later
phase, all participants reveal the values they committed to, without actually revealing the randomness
used for commitment. Additionally, each participant proves (in zero-knowledge) to every other participant
that they opened to the same value that they originally committed to. If all zero-knowledge arguments
verify, the protocol output is computed as the sum of the openings of all participants.

But not every classically secure zero-knowledge argument based on post-quantum assumptions is post-
quantum secure. Building on prior work [AP20], in Appendix B, we outline a ZK argument that is classi-
cally secure, and is based entirely on post-quantum assumptions (LWE), but is not post-quantum secure.

1We actually require this commitment to also satisfy a property called non-malleability, which we discuss later in this section.

3

To highlight challenges in constructing constant-round protocols, we elaborate on the template dis-
cussed above and outline a simple polynomial-round coin tossing protocol. Readers familiar with this
template for multi-party coin-tossing may skip a page.

A Simple Protocol in Polynomially Many Rounds. In order to motivate the challenges involved in con-
structing a post-quantum constant-round multiparty coin tossing protocol, we first outline a simple protocol
that requires polynomially many rounds, and follows from ideas in existing work. Our starting point is
the polynomial-round post-quantum zero-knowledge protocol due to Watrous [Wat09]. Ideas developed
in [BS20] almost immediately convert this to a post-quantum extractable commitment, assuming polyno-
mial hardness of LWE (or, more generally, any post-quantum oblivious transfer). For completeness, we
outline how this is done in Appendix A.

Next, it is possible to use the resulting post-quantum secure extractable commitment to obtain post-
quantum multi-party fully-simulatable coin flipping, that admits a straight-line simulator in the dishonest
majority setting. The protocol requires rounds that grow linearly with the number of parties and polyno-
mially with the security parameter, and is described in Figure 1. At a very high level, the protocol requires
each party to sample uniform randomness. Then each party sequentially commits (via an extractable com-
mitment) to the randomness it sampled. In the next step, all parties broadcast their randomness in the
clear, together with (sequential) zero-knowledge proofs by each party that the broadcasted randomness is
consistent with the randomness that was previously committed.

n-Party Coin tossing

Common input: 1λ, 1n.

1. For each i ∈ [n], party Pi samples ri ← {0, 1}λ.

2. Sequentially, for every i ∈ [n], j ∈ [n] \ {i} parties Pi, Pj execute a post-quantum extractable
commitment where Pi commits to ri and Pj is the receiver.

3. Pi broadcasts ri.

4. For every i ∈ [n], j ∈ [n] \ {i} parties Pi, Pj sequentially execute a post-quantum ZK protocol
where Pi is the prover and Pj is the verifier. Pi proves to Pj (in zero-knowledge) that the value
committed via the extractable commitment (in Step 2) is consistent with the value broadcasted
(in Step 3).

5. If all the proofs where Pi is verifier are accepting, Pi outputs
⊕n

i=1 ri.

Figure 1: Multiparty Coin Tossing

Recall that the simulator Sim of any coin-flipping protocol obtains a uniformly random string r∗ from
the ideal functionality, and must force this value as the output. We will briefly describe the construction of
Sim for the case where A controls n− 1 parties and Sim plays the role of the only honest party P1 (the same
technique can be easily extended to the case where A controls any arbitrary subset of parties). To do so,
The Sim for the protocol in Figure 1 samples ri uniformly at random on behalf of each honest party Pi, and
commits to ri in Step 2 following honest sender strategy. At the same time, Sim runs Ext to (sequentially)
extract the value committed by every corrupted party in Step 2. This allows the simulator to compute⊕

i∈M ri, where M denotes the set of corrupted parties. In Step 3, the simulator broadcasts values r′i on
behalf of honest parties such that

⊕
i∈[n]\M r

′
i =

⊕
i∈M ri ⊕ r∗. Finally, it invokes the simulator of the ZK

protocol to produce proofs on behalf of honest parties. It is easy to see that the output would indeed end
up being the intended output r∗.

Notice that replacing Watrous’ polynomial-round ZK protocol with the constant-round ZK of [BS20,
AP20] only decreases the rounds to linear in the number of parties. To decrease the number of rounds to

4

constant, it is clear that one would need to find a way to execute the commitment sessions (Step 2) and
ZK sessions (Step 4) in parallel. While the recent work of Bitansky and Shmueli [BS20] builds constant-
round post-quantum zero-knowledge, their protocol and its guarantees turn out to be insufficient for the
parallel setting. In this setting, a single prover would typically need to interact in parallel with (n − 1)
different verifiers, a subset or all of which may be adversarial. It should be possible for a simulator to
simultaneously simulate the view of multiple parallel verifiers. In addition, the argument should continue
to satisfy soundness, even if a subset of verifiers colludes with a (cheating) prover.

Post-Quantum Parallel Zero-Knowledge. We overcome this barrier by building the first constant-round
zero-knowledge argument secure against parallel quantum verifiers from quantum polynomial hardness of
an LWE-based circular security assumption. This improves upon the work of [BS20, AP20] who provided
arguments with provable security only against a single quantum verifier. Very roughly, the approach
in [BS20, AP20] relies on a modification of the [BKP19] homomorphic trapdoors paradigm. We do not
assume familiarity with the details of this protocol or paradigm, and will in fact discuss a (variant of) this
in the next subsection. For now, we simply point out that in this paradigm, the verifier generates an initial
FHE ciphertext and public key, as well as some additional information to enable simulation. The simulator
homomorphically evaluates the verifier’s (quantum) circuit over the initial FHE ciphertext and then uses the
result of this evaluation to recover secrets that will enable simulation.

However, when a prover interacts with several verifiers at once, each verifier will generate its own FHE
ciphertexts. In a nutshell, in the parallel setting the simulator can no longer perform individual homomor-
phic evaluations corresponding to each verifier, due to no-cloning. To address this issue, we develop a novel
parallel no-cloning simulation strategy. This is our key technical contribution: we develop a novel tech-
nique that enables the simulator to peel away secret keys of this FHE scheme layer-by-layer. An overview of
this technique can be found in Section 2.2.

Our technique also relies on a strong variant of quantum fully-homomorphic encryption that allows for
homomorphic operations under multiple keys at once. The encryption scheme that we use is a quantum
generalization of the notion of additive function sharing (AFS) spooky encryption [DHRW16]. As a contribu-
tion of independent interest, we build the first AFS-spooky encryption (that also implies multi-key FHE) for
quantum circuits from a circular variant of the LWE assumption. We give an overview of our construction
in Section 2.3.

Post-Quantum Non-malleable Commitments. Our construction of zero-knowledge against parallel quan-
tum verifiers gives rise to a coin-flipping protocol that is secure as long as at least one participant is honest,
and all committed strings are independent of each other. However, ensuring such independence is not
straightforward, even in the classical setting. In fact, upon seeing an honest party’s commitment string c, a
malicious, rushing adversary may be able to produce a string c′ that commits to a related message. This is
known as a malleability attack, and can be prevented by relying on non-malleable commitments. In this work,
we devise the first post-quantum non-malleable commitments based on slightly superpolynomial hardness
of LWE. An overview of our construction can be found in Section 2.4.

Finally, we discuss how to combine all these primitives to build our desired coin-tossing protocol, and
a few additional subtleties that come up in the process, in Section 2.5.

2.2 A New Parallel No-Cloning Non-Black-Box Simulation Technique

In the following we give a high-level overview of our constant-round zero-knowledge protocol secure
against parallel quantum verifiers. In favor of a simpler exposition, we first describe a parallel extractable
commitment protocol. A parallel extractable commitment is a commitment where a single receiver interacts
in parallel with multiple committers, each committing to its own independent message. The main chal-
lenge in this setting is to simulate the view of an adversary corrupting several of these committers, while
simultaneously recovering all committed messages. Once we build a parallel extractable commiment, ob-
taining a parallel zero-knowledge protocol becomes a simple exercise (that we discuss towards the end of
this overview).

5

Throughout the following overview we only consider adversaries that are (i) non-aborting, i.e. they never
interrupt the execution of the protocol, and (ii) explainable, i.e. their messages always lie in the support
of honestly generated messages, though they can select their random coins and inputs arbitrarily. We
further simplify our overview by only considering (iii) classical adversaries, while being mindful to avoid
any kind of state cloning during extraction. In the end of this overview we discuss how to remove these
simplications.

Cryptographic Building Blocks. Before delving into the description of our protocol, we introduce the tech-
nical tools needed for our construction. A fully-homomorphic encryption (FHE) scheme [Gen09] allows
one to compute any function (in its circuit representation) over some encrypted message Enc(pk,m), with-
out the need to decrypt it first. We say that an FHE is multi-key [LTV12] if it supports the homomorphic
evaluation of circuits even over messages encrypted under independently sampled public keys:

{Enc(pki,mi)}i∈[n]
Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−→ Enc((pk1, . . . , pkn), C(m1, . . . ,mn)).

Clearly, decrypting the resulting ciphertext should require the knowledge of all of the corresponding secret
keys (sk1, . . . , skn). Other than semantic security, we require that the scheme is compact, in the sense that
the size of the evaluated ciphertext is proportional to |C(m1, . . . ,mn)| (and possibly the number of parties
n) but does not otherwise depend on the size of C.

The second tool that we use is compute and compare obfuscation [WZ17, GKW17]. A compute and
compare program CC[f, u, z] program is defined by a function f , a lock value u, and an output z. On
input a string x, the program returns z if and only if f(x) = u. The obfuscator Obf is guaranteed to return
an obfuscated program C̃C that is indistinguishable from a program that rejects any input, as long as u
has sufficient entropy conditioned on f and z. Finally, we use a conditional disclosure of secret (CDS)2

scheme. Recall that this is an interactive protocol parametrized by an NP relationR where both the sender
and the recevier share a statement x and in addition, the sender has a secret message m. At the end of the
interaction, the receiver obtains m if and only if it knows a valid witness w such thatR(x,w) = 1.

A Strawman Solution. We now describe a naive extension of the [BS20, AP20] approach to the parallel
setting (where a receiver interacts with multiple committers), and highlight its pitfalls. We do not assume
familiarity with [BS20, AP20].

To commit to messages (m1, . . . ,mn), the committers and the receiver engage in the following protocol.

• Each committer samples a key pair of a multi-key FHE scheme (pki, ski), a uniform trapdoor tdi, and
a uniform lock value lki, and sends to the receiver:

1. A commitment ci = Com(tdi).

2. An FHE encryption Enc(pki, tdi).

3. An obfuscation C̃Ci of the program CC[Dec(ski, ·), lki, (ski,mi)].

• The receiver engages each committer in a (parallel) execution of a CDS protocol where the i’th com-
mitter sends lki if the receiver correctly guesses a valid pre-image of ci.

At a high level, the fact that the protocol hides the message mi is ensured by the following argument.
Since the receiver cannot invert ci, it cannot guess tdi and therefore the CDS protocol will return 0. This in
turn means that the lock lki is hidden from the receiver, and consequently that the obfuscated program is
indistinguishable from a null program. This is, of course, an informal explanation, and we refer the reader
to [BKP19, BS20, AP20] for a formal security analysis.

We now turn to the description of the extractor. The high-level strategy is the following: Upon receiving
the first message from all committers, the extractor uses the FHE encryption Enc(pki, tdi) and the code of

2In the body of the paper we actually resort to a slightly stronger tool, namely a secure function evaluation protocol with statistical
circuit privacy.

6

the adversary to run the CDS protocol homomorphically (on input tdi) to recover an FHE encryption of lki.
Then the extractor feeds it as an input to the obfuscated program C̃Ci, which returns (ski,mi).

Unfortunately this approach has a major limitation: It implicitly assumes that each corrupted party is
a local algorithm. In other words, we are assuming that the adversary consists of individual subroutines
(one per corrupted party), which may not necessarily be the case. As an example, if the adversary were
to somehow implement a strategy where corrupted machines do not respond until all receiver messages
have been delivered, then the above homomorphic evaluation would get stuck and return no output. It is
also worth mentioning that what makes the problem challenging is our inability to clone the state of the
adversary. If we were allowed to clone its state, then we could extract messages one by one, by running a
separate thread under each FHE key.

Multi-Key Evaluation. A natural solution to circumvent the above issue is to rely on multi-key FHE evalu-
ation. Using this additional property, the extractor can turn the ciphertexts Enc(pk1, td1), . . . ,Enc(pkn, tdn)
into a single encryption

Enc((pk1, . . . , pkn), (td1, . . . , tdn))

under the hood of all public keys (pk1, . . . , pkn). Given this information, the extractor can homomorphically
evaluate all instances of the CDS protocol at once, using the code of the adversary, no matter how intricate.
This procedure allows the extractor to obtain the encryption of each lock value Enc((pk1, . . . , pkn), lki). In
the single committer setting, we could then feed this into the corresponding obfuscated program and call it
a day.

However, in the parallel setting, even given multi-key FHE, it is unclear how to proceed. If the compute
and compare program C̃Ci tried to decrypt such a ciphertext, it would obtain (at best) an encryption under
the remaining public keys. Glossing over the fact that the structure of single-key and multi-key ciphertexts
might be incompatible, it is unlikely that

Dec(ski,Enc((pk1, . . . , pkn), lki)) = lki

which is what we would need to trigger the compute and compare program. The general problem here is
that each compute and compare program cannot encode information about other secret keys, thus making
it infeasible to decrypt multi-key ciphertexts. One approach to resolve this issue would be to ask all com-
mitters to jointly obfuscate a compute and compare program that encodes all secret keys at once. However,
this seems to require a general-purpose MPC protocol, which is what we are trying to build in the first
place. Therefore, we outline a different approah by imagining a special kind of multi-key fully homomor-
phic encryption scheme.

A spooky encryption3 scheme [DHRW16] is an FHE scheme that supports a special spooky evaluation
algorithm, that generates no-signaling correlations among independently encrypted messages. We will
restrict attention to a sub-class of no-signaling relations called additive function sharing (AFS) relations, and
we will call the scheme AFS-spooky. More concretely, on input a circuit C and n independently generated
ciphertexts (under independently generated public keys), the algorithm Spooky.Eval produces

{Enc(pki,mi)}i∈[n]
Spooky.Eval((pk1,...,pkn),C,·)−−−−−−−−−−−−−−−−−−→ {Enc(pki, yi)}i∈[n] s.t.

n⊕
i=1

yi = C(m1, . . . ,mn).

It is not hard to see that AFS-spooky encryption is a special case of multi-key FHE where multi-key cipher-
texts have the following structure

Enc((pk1, . . . , pkn),m) = {Enc(pki, yi)}i∈[n] s.t.
n⊕
i=1

yi = m.

This additional structure is going to be our main leverage for constructing an efficient extractor.

3As a historical remark, while the name is inspired by Einstein’s quote “spooky action at a distance” referring to entangled
quantum states, the concept of spooky encryption (as defined in [DHRW16]) is entirely classical.

7

The Extractor. Going back to our extractor, our next technical insight is to look for a mechanism to peel away
encryption layers one by one from an AFS-spooky (multi-key) ciphertext. Our extractor will achieve this
via careful homomorphic evaluation of the independently generated programs (C̃C1, . . . , C̃Cn), as described
below.

• First, homomorphically execute the code of the adversary using the AFS-spooky scheme to obtain

ct1 = Enc((pk1, . . . , pkn), lk1), . . . , ctn = Enc((pk1, . . . , pkn), lkn),

as described above.

• Parse ctn as a collection of individual ciphertexts

Enc((pk1, . . . , pkn), lkn) = {Enc(pki, yi)}i∈[n] = {Enc(pki, yi)}i∈[n−1] ∪ {Enc(pkn, yn)}︸ ︷︷ ︸
c̃tn

.

Note that we can interpret the first n − 1 elements as an AFS-spooky ciphertext encrypted under
(pk1, . . . , pkn−1) :

c̃t = {Enc(pki, yi)}i∈[n−1] = Enc

((
pk1, . . . , pkn−1

)
,

n−1⊕
i=1

yi

)
= Enc

((
pk1, . . . , pkn−1

)
, ỹ
)

where ỹ =
n−1⊕
i=1

yi.

• Let Γ be the following function

Γ(ζ) : Spooky.Eval(pkn, ζ ⊕ ·, c̃tn)

which homomorphically computes the XOR of ζ with the plaintext of c̃tn. Compute the following
nested AFS-spooky correlation

ĉt = Spooky.Eval((pk1, . . . , pkn−1),Γ, c̃t)

= Enc
((
pk1, . . . , pkn−1

)
,Spooky.Eval(pkn, ỹ ⊕ ·, c̃tn)

)
(1)

= Enc

((
pk1, . . . , pkn−1

)
,Enc

(
pkn,

n⊕
i=1

yi

))
(2)

= Enc
((
pk1, . . . , pkn−1

)
,Enc (pkn, lkn)

)
(3)

by interpreting c̃tn as a single key ciphertext. Here (1) follows by substituting Γ, and (2) follows by
correctness of the AFS-spooky evaluation.

• Run the obfuscated compute and compare program homomorphically to obtain an encryption of skn
and mn under (pk1, . . . , pkn−1)

Spooky.Eval
(

(pk1, . . . , pkn−1), C̃Cn, ĉt
)

= Enc
((

pk1, . . . , pkn−1

)
, C̃Cn (Enc (pkn, lkn))

)
= Enc

((
pk1, . . . , pkn−1

)
, (skn,mn)

)
.

• Using the encryption of skn under (pk1, . . . , pkn−1), update the initial ciphertexts (ct1, . . . , ctn−1) by
homomorphically decrypting their last component and adding the resulting string. This allows the
extractor to obtain

Enc((pk1, . . . , pkn−1), lk1), . . . ,Enc((pk1, . . . , pkn−1), lkn−1).

8

• Recursively apply the procedure described above until Enc(pk1, lk1) is recovered, then feed this ci-
phertext as an input to C̃C1 to obtain (sk1,m1) in the clear. Iteratively recover (sk2, . . . , skn) by de-
crypting the corresponding ciphertexts. At this point the extractor knows all secret keys and can
decrypt the transcript of the interaction together with the committed messages.

To summarize, this extractor will isolate single-key ciphertexts (albeit in a nested form) by relying on AFS-
spooky encryption. These ciphertexts by design will be compatible with compute and compare programs.
In turn, evaluating the program under the encryption allows us to escape from the newly introduced layer.
Repeating this procedure recursively eventually leads to a complete recovery of the plaintexts.

We stress that, although the extraction algorithm repeats the nesting operation n times, the additional
encryption layer introduced in each iteration is immediately peeled off by executing the obfuscated com-
pute and compare program. Thus the above procedure runs in (strict) polynomial time for any polynomial
number of parties n.

Parallel Zero Knowledge. The above outline is deliberately simplified and ignores some subtle issues that
arise during the analysis of the protocol. As an example, we need to ensure that the adversary is not able
to maul the commitment of the trapdoor into a CDS encryption to be used in the CDS protocol. This issue
also arose in [BS20], and we follow their approach of using non-uniformity in a reduction to the semantic
security of the quantum FHE scheme. [BS20] also present the technical tools needed to lift the protocol to
the setting of malicious and possibly aborting adversaries (as opposed to explainable), and we roughly
follow their approach. However, it is worth pointing out that [BS20] directly construct a zero-knowledge
argument, without first constructing and analyzing a stand-alone extractable commitment. Since we use a
parallel extractable commitment as a building block in the our coin-flipping protocol, we analyze the above
as a stand-alone commitment, which requires a few modifications to the protocol and proof techniques.
More discussion about this can be found in Section 5.

Now, we describe how to obtain parallel zero-knowledge (i.e. zero-knowledge against multiple veri-
fiers) from parallel extractable commitments. This is accomplished in a routine manner by enhancing a
standard Σ protocol with a stage where each verifier commits to its Σ protocol challenge using a parallel
extractable commitment. Using the extractor, the simulator can obtain the challenges ahead of time and can
therefore simulate the rest of the transcript, without the need to perform state cloning.

It remains to argue that our extraction strategy does not break down in the presence of quantum adver-
saries. Observe that the only step that involves the execution of a quantum circuit is the AFS-spooky eval-
uation of the CDS protocol, under the hood of (pk1, . . . , pkn). Assuming that we can construct AFS-spooky
encryption for relations computable by quantum circuits (which we show in Section 2.3), the remainder of
the extraction algorithm only depends on the encryptions of (lk1, . . . , lkn), which are classical strings. Once
the extractor recovers all the secret keys, it can decrypt the (possibly quantum) state of the adversary result-
ing from the homomorphic evaluation of the CDS, and resume the protocol execution, without the need to
clone the adversary’s state.

2.3 Quantum AFS-Spooky Encryption

We now turn to the construction of AFS-spooky encryption for relations computable by quantum circuits.
The main technical contribution of this section is a construction of multi-key fully-homomorphic encryption
for quantum circuits with classical key generation and classical encryption of classical messages. Such
schemes were already known in the single-key setting, due to [Mah18, Bra18].

Background. At a very high level, these single-key schemes follow a paradigm introduced by Broadbent
and Jeffery [BJ15], which makes use of the quantum one-time pad (QOTP). The QOTP is a method of
perfectly encrypting arbitrary quantum states with a key that consists of only classical bits. [BJ15] suggest
to encrypt a quantum state with a quantum one-time pad (QOTP), and then encrypt the classical bits that
comprise the QOTP using a classical fully-homomorphic encryption scheme. One can then apply quantum
gates to the encrypted quantum state, and update the classical encryption of the one-time pad appropriately.
A key feature of this encryption procedure is that while an encryption of a quantum state necessarily must

9

be a quantum state, an encryption of classical information does not necessarily have to include a quantum
state. Indeed, one can simply give a classical one-time pad encryption of the data, along with a classical
fully-homomorphic encryption of the pad.

However, the original schemes presented by Broadbent and Jeffery [BJ15] and subsequent work [DSS16]
based on their paradigm left much to be desired. In particular, they required even a classical encryptor to
supply quantum “gadgets” encoding their secret key. These gadgets were then used to evaluate a particular
non-Clifford gate over encrypted data.4 The main innovation in the work of [Mah18] was to remove the
need for quantum gadgets, instead showing how to evaluate an appropriate non-Clifford gate using just
classical information supplied by the encryptor.

Encrypted CNOT Operation. In more detail, evaluating a non-Clifford gate on a ciphertext (ct, |φ〉), where
ct is an FHE encryption of a QOTP key and |φ〉 is a quantum state encrypted under the QOTP key, involves
an operation (referred to as encrypted CNOT) that somehow must “teleport” the bits encrypted in ct into the
state |φ〉. [Mah18] gave a method for doing this, as long as the ciphertext ct is encrypted under a scheme with
some particular properties. Roughly, the scheme must support a “natural” XOR homomorphic operation, it
must be circuit private with respect to this homomorphism, and perhaps most stringently, there must exist
some trapdoor that can be used to recover the message and the randomness used to produce any ciphertext.

[Mah18] observed that the dual-Regev encryption scheme [GPV08] (with large enough modulus-to-
noise ratio) does in fact satisfy these properties, as long as one generates the public key matrix A along
with a trapdoor. However, recall that ct was supposed to be encrypted under a fully-homomorphic en-
cryption scheme. [Mah18] resolves this by observing that ciphertexts encrypted under the dual variant of
the [GSW13] fully-homomorphic encryption scheme actually already contain a dual-Regev ciphertext. In
particular, a dual-GSW ciphertext encrypting a bit µ is a matrix M = AS + E + µG, where G is the gad-
get matrix. The final column of M is As + e + µ[0, . . . , 0, q/2]>, which is exactly a dual-Regev ciphertext
encrypting µ under public key A. Note that, crucially, if the dual-GSW public key A is drawn with a trap-
door, then this trapdoor also functions as a trapdoor for the dual-Regev ciphertext. Thus, an evaulator can
indeed perform the encrypted CNOT operation on any ciphertext (ct, |φ〉), by first extracting a dual-Regev
ciphertext ct′ from ct and then proceeding.

Challenges in the Multi-Key Setting. Now, it is natural to ask whether this approach readily extends to
the multi-key setting. Namely, does there exist a multi-key FHE scheme where any (multi-key) ciphertext
contains within it a dual-Regev ciphertext with a corresponding trapdoor? Unfortunately, this appears to be
much less straightforward than in the single-key setting, for the following reason. Observe that (dual)
GSW homomorphic operations over ciphertexts Mi = ASi+Ei+µiG always maintain the same A matrix,
while updating Si, Ei, and µi. Thus, a trapdoor for A naturally functions as a trapdoor for the dual-
Regev ciphertext that consitutes the last column of Mi. However, LWE-based multi-key FHE schemes
from the literature [CM15, MW16, PS16, BHP17] include a ciphertext expansion procedure, which allows an
evaluator, given public keys pk1, . . . , pkn, and a ciphertext ct encrypted under some pki, to convert ct into
a ciphertext ĉt encrypted under all keys pk1, . . . , pkn. Now, even if these public keys are indeed matrices
A1, . . . ,An drawn with trapdoors τ1, . . . , τn, it is unclear how to combine τ1, . . . , τn to produce a trapdoor
τ̂ for the “expanded” ciphertext. Indeed, the expanded ciphertext generally can no longer be written as
some AS + E + µG, since the expansion procedure constructs a highly structured matrix that includes
components from the ciphertexts ct1, . . . , ctn, as well as auxiliary encryptions of the randomness used to
produce the ciphertexts (see e.g. [MW16]).

A Solution Based on Key-Switching. Thus, we take a different approach. Rather than attempting to tweak
known ciphertext expansion procedures to also support “trapdoor expansion”, we rely on the notion of
key-switching, which is a method of taking a ciphertext encrypted under one scheme and converting it
into a ciphertext encrypted under another scheme. The observation, roughly, is that we do not need to
explicitly maintain a trapdoor for the multi-key FHE scheme, as long as it is possible to convert a multi-key
FHE ciphertext into a dual-Regev ciphertext that does explicitly have a trapdoor. In fact, we will consider a

4We also remark here that [Goy18] presented a multi-key scheme based on this paradigm, but with the same drawbacks. Note that
compactness and classical encryption are crucial in our setting, as per the discussion in the previous section.

10

natural multi-key generalization of dual-Regev, as described below. Key switching is possible as long as the
second scheme has sufficient homomorphic properties, namely, it can support homomorphic evaluation of
the decryption circuit of the first scheme.

Fortunately, the dual-Regev scheme is already linearly homomorphic, and many known classical multi-
key FHE schemes [CM15, MW16, PS16, BHP17] support nearly linear decryption, which means that decrypt-
ing a ciphertext simply consists of applying a linear function (derived from the secret key) and then round-
ing. Thus, as long as the evaluator has the secret key of the multi-key FHE ciphertext encrypted under
a dual-Regev public key with a trapdoor, they can first key-switch the multi-key FHE ciphertext ct into a
dual-Regev ciphertext ct′, and then proceed with the encrypted CNOT operation.

It remains to show how an evaluator may have access to such a dual-Regev encryption. Since we are
still in the multi-key setting, we will need a ciphertext and corresponding trapdoor expansion procedure
for dual-Regev. However, we show that such a procedure is much easier to come by when the scheme
only needs to support linear homomorphism (as is the case for the dual-Regev scheme) rather than full
homomorphism. Each party can draw its own dual-Regev public key Ai along with a trapdoor τi, and
encrypt its multi-key FHE secret key under Ai to produce a ciphertext cti. The evaluator can then treat
the block-diagonal matrix Â = diag(A1, . . . ,An) as an “expanded” public key.5 Now, the message and
randomness used to generate a ciphertext encrypted under Â may be recovered by applying τ1 to the first
set of entries of the ciphertext, applying τ2 to the second set of entries and so on. This observation, combined
with an appropriate expansion procedure for the ciphertexts cti, allows an evaluator to convert any multi-
key FHE ciphertext into a multi-key dual-Regev ciphertext with trapdoor. Given a classical multi-key FHE
scheme with nearly linear decryption, this suffices to build multi-key quantum FHE with classical key
generation and encryption.

Distributed Setup. We showed above how to convert any classical multi-key FHE scheme into a quantum
multi-key FHE scheme, as long as the classical scheme has nearly linear decryption. However, most LWE-
based classical multi-key FHE schemes operate in the common random string (CRS) model, which assumes
that all parties have access to a common source of randomness, generated by a trusted party. Thinking
back to our application to parallel extractable commitments, it is clear that this will not suffice, since we
have no CRS a priori, and a receiver that generates a CRS maliciously may be able to break hiding of the
scheme. Thus, we rely on the multi-key FHE scheme of [BHP17], where instead of assuming a CRS, the
parties participate in a distributed setup procedure. In particular, each party (and in our application, each
committer) generates some public parameters ppi, which are then combined publicly to produce a single
set of public parameters pp, which can be used by anyone to generate their own public key / secret key
pair.

This form of distributed setup indeed suffices to prove the hiding of our parallel commitment, so it
remains to show that our approach, combined with [BHP17], yields a quantum multi-key FHE scheme with
distributed setup. First, the [BHP17] scheme does indeed enjoy nearly linear decryption, so plugging it into
our compiler described above gives a functional quantum multi-key FHE scheme. Next, we need to confirm
that our compiler does not destroy the distributed setup property. This follows since each party draws its
own dual-Regev public key with trapdoor without relying on any CRS, or even any public parameters.

Quantum AFS-Spooky Encryption. Finally, we show, via another application of key-switching, how to
construct a quantum AFS-spooky encryption scheme (with distributed setup). Recall that we only require
“spooky” interactions to hold over classical ciphertexts. That is, for any quantum circuit C with classical
outputs, given ciphertexts ct1, . . . , ctn encrypting |φ1〉, . . . , |φn〉 respectively under public keys pk1, . . . , pkn,

an evaluator can produce ciphertexts ct′1, . . . , ct
′
n where ct′i encrypts yi under pki, and such that

n⊕
i=1

yi =

C(|φ1〉, . . . , |φn〉).
Now, using our quantum multi-key FHE scheme, it is possible to compute a single (multi-key) cipher-

text ĉt that encrypts C(|φ1〉, . . . , |φn〉) under all public keys pk1, . . . , pkn. Then, if each party additionally
drew a key pair (pk′i, sk

′
i) for a classical AFS-spooky encryption scheme, and released c̃t1, . . . , c̃tn, where

5Actually this expansion should be done slightly more carefully, see Section 4.4 for details.

11

c̃ti = Enc(pk′i, ski) encrypts the i-th party’s quantum multi-key FHE secret key under their AFS-spooky
encryption public key, then the evaluator can homomorphically evaluate the quantum multi-key FHE de-
cryption circuit (which is classical for classical ciphertexts) with ĉt hardcoded, where ĉt is the multi-key
ciphertext defined at the beginning of this paragraph. This circuit on input c̃t1, . . . , c̃tn produces the de-
sired output ct′1, . . . , ct

′
n. Finally, note that the classical AFS-spooky encryption scheme must also have

distributed setup, and we show (see Section 4.5) that one can derive a distributed-setup AFS-spooky en-
cryption scheme from [BHP17] using standard techniques [DHRW16].

2.4 Post-Quantum Non-malleable Commitments

In this section, we describe how to obtain constant-round post-quantum non-malleable commitments under
the assumption that there exists a natural number c > 0 such that quantum polynomial-time adversaries
cannot distinguish LWE samples from uniform with advantage better than λ−ilog(c,λ), where ilog(c, λ) =
log log · · ·c times log(λ) and λ denotes the security parameter.

We will focus on perfectly binding and computationally hiding constant-round interactive commit-
ments. Loosely speaking, a commitment scheme is said to be non-malleable if no adversary (also called
a man-in-the-middle), when participating as a receiver in an execution of an honest commitment Com(m),
can at the same time generate a commitment Com(m′), such that the message m′ is related to the original
message m. This is equivalent (assuming the existence of one-way functions with security against quan-
tum adversaries) to a tag-based notion where the commit algorithm obtains as an additional input a tag
in {0, 1}λ, and the adversary is restricted to using a tag, or identity, that is different from the tag used to
generate its input commitment. We will rely on tag-based definitions throughout this paper. We will also
only focus on the sychronous setting, where the commitments proceed in rounds, and the man-in-the-middle
sends its own message for a specific round before obtaining an honest party’s message for the next round.

Before describing our ideas, we briefly discuss existing work on classically-secure non-malleable com-
mitments. Unfortunately, existing constructions of constant-round non-malleable commitments against
classical adversaries from standard polynomial hardness assumptions [Bar02, PR05, PR08, LPV08, PPV08,
LP09, Wee10, PW10, LP11, Goy11, GLOV12, GRRV14, GPR16, COSV16, COSV17, Khu17, GR19] either rely
on rewinding, or use Barak’s non-black-box simulation technique, both of which require the reduction to
perform state cloning. As such, known techniques fail to prove quantum security of these constructions.

We now discuss our techniques for constructing post-quantum non-malleable commitments. Just like
several classical approaches, we will proceed in two steps.

• We will obtain simple “base” commitment schemes for very small tag/identity spaces from slightly
superpolynomial hardness assumptions.

• Then assuming polynomial hardness of LWE against quantum adversaries, and making use of constant-
round post-quantum zero-knowledge arguments, we will convert non-malleable commitments for a
small tag space into commitments for a larger tag space, while only incurring a constant round over-
head.

For the base schemes, there are known classical constructions [PW10] that assume hardness of LWE
against 2λ

δ

-size adversaries, where λ denotes the security parameter and 0 < δ < 1 is a constant. We
observe that these constructions can be proven secure in the quantum setting, resulting in schemes that are
suitable for tag spaces of O(log log λ) tags.

Tag Amplification. Since an MPC protocol could be executed among up to poly(λ) parties where poly(·)
is an arbitrary polynomial, we end up requiring non-malleable commitments suitable for tag spaces of
poly(λ). This is obtained by combining classical tools for amplifying tag spaces [DDN91] with constant
round post-quantum zero-knowledge protocols. Our tag amplification protocol, on input a scheme with
tag space 2t, outputs a scheme with tag space 2t, for any t ≤ poly(λ). This follows mostly along the lines of
existing classical protocols, and as such we do not discuss the protocol in detail here. Our protocol can be
found in Section 7.3.

12

Base Schemes from λ−ilog(c,λ) Hardness. Returning to the question of constructing appropriate base schemes,
we also improve the assumption from 2λ

δ

-quantum hardness of LWE (that follows based on [PW10]) to the
mildly superpolynomial hardness assumption discussed at the beginning of this subsection. Recall that we
will only need to assume that there exists an (explicit) natural number c > 0 such that quantum polynomial
time adversaries cannot distinguish LWE samples from uniform with advantage better than negl(λilog(c,λ))
where ilog(c, λ) = log log · · ·c times log(λ). Our base scheme will only be suitable for identities in ilog(c+1, λ),
where c > 0 is a natural number, independent of λ. We will then repeatedly apply the tag amplification
process referred to above to boost the tag space to 2λ, by adding only a constant number of rounds.

To build our base scheme, we take inspiration from the classically secure non-malleable commitments
of Khurana and Sahai [KS17]. However, beyond considering quantum as opposed to classical adversaries,
our protocol and analysis will have the following notable differences from [KS17]:

• The work of [KS17] relies on sub-exponential hardness (i.e. 2λ
δ

security), which is stronger than the
type of superpolynomial hardness we assume. This is primarily because [KS17] were restricted to two
rounds, but we can improve parameters while allowing for a larger constant number of rounds.

• [KS17] build a reduction that rewinds an adversary to the beginning of the protocol, and executes the
adversary several times, repeatedly sampling the adversary’s initial state. This may be undesirable
in the quantum setting.6 On the other hand, we have a simpler fully straight-line reduction that only
needs to run the adversary once.

Specifically, following [KS17], we will establish an erasure channel between the committer and receiver
that transmits the committed message to the receiver with probability ε. To ensure that the commitment
satisifies hiding, ε is chosen to be a value that is negligible in λ. At the same time, the exact value of ε is
determined by the identity (tag) of the committer. Recall that tag ∈ [1, ilog(c + 1, λ)]. We will set ε = η−tag

where η = λilog(c+1,λ) is a superpolynomial function of λ.
Next, for simplicity, we restrict ourselves to a case where the adversary’s tag (which we denote by tag′)

is smaller than that of the honest party (which we denote by tag). In this case, the adversary’s committed
message is transmitted with probability ε′ = η−tag

′
, whereas the honest committer’s message is transmitted

with probability only ε = η−tag, which is smaller than ε′.
We set this up so that the transcript of an execution transmits the adversary’s message with probability

ε′ (over the randomness of the honest receiver), and on the other hand, an honestly committed message
will remain hidden except with probability ε < ε′ (over the randomness of the honest committer). This
gap in the probability of extraction will help us argue non-malleability, using a proof strategy that bears
resemblance to the proof technique in [BL18b] (who relied on stronger assumptions to achieve such a gap
in the non-interactive setting).

We point out one subtlety in our proof that does not appear in [BL18b]. We must rule out a man-
in-the-middle adversary that on the one hand, does not commit to a related message if its message was
successfully transmitted, but on the other hand, can succesfully perform a mauling attack if its message
was not transmitted. To rule out such an adversary, just like [KS17], we will design our erasure channel
so that the adversary cannot distinguish transcripts where his committed message was transmitted from
those where it wasn’t.

Finally, our erasure channel can be cryptographically established in a manner similar to prior work [KS17,
KKS18, BFJ+20] via an indistinguishability-based variant of two-party secure function evaluation, that can
be based on quantum hardness of LWE. Specifically, we would like to ensure that the SFE error is (signifi-
cantly) smaller than the transmission probabilities of our erasure channels: therefore, we will set parameters
so that SFE error is λ−ilog(c,λ). We refer the reader to Section 7 for additional details about our construction.

On Super-Constant Rounds from Polynomial Hardness. We also observe that for any t(λ) ≤ poly(λ), non-
malleable commitments for tag space of size t(λ) can be obtained inO(t(λ)) rounds based on any extractable
commitment using ideas from [DDN91, CR87], where only one party speaks in every round. These admit

6In particular this state may not always be efficiently sampleable, in which case it would be difficult to build an efficient reduction.

13

a straight-line reduction, and can be observed to be quantum-secure. As such, based on quantum poly-
nomial hardness of LWE and quantum FHE, we can obtain a base protocol for O(log log . . .c times log λ) tags
requiring O(log log . . .c times log λ) rounds, for any constant c ∈ N. Applying our tag-amplification compiler
to this base protocol makes it possible to increase the tag space to 2λ while only adding a constant number
of rounds. Therefore, this technique gives O(log log . . .c times log λ) round non-malleable commitments for
exponentially large tags from quantum polynomial hardness. It also yields constant round non-malleable
commitments for a constant number of tags from polynomial hardness.

2.5 Putting Things Together

Finally, we show how to combine the primitives described above to obtain a constant-round coin-flipping
protocol that supports straight-line simulation. As we saw above, in the setting of multi-verifier zero-
knowledge, simultanesouly simulating the view of multiple parties without rewinding can be quite chal-
lenging, so a careful protocol and proof is needed.

Recall the outline presented at the beginning of this section, where each party first commits to a uni-
formly random string, then broadcasts the committed message, and finally proves in ZK that the message
broadcasted is equal to the previously committed message. If all proofs verify, then the common output
is the XOR of all broadcasted strings. Recall also that the coin-tossing protocol should be fully-simulatable.
This means that a simulator should be able to force the common output to be a particular uniformly drawn
string given to it as input.

It turns out that in order to somehow force a particular output, the simulator should be able to simul-
taneously extract in advance all the messages that adversarial parties committed to. In particular, we require
commitments where a simulator can extract from multiple committers committing in parallel. Here, we
will rely on our parallel extractable commitment described above. Note that we will also need to simulate
the subsequent zero-knowledge arguments given by the malicious parties in parallel, and thus we instanti-
ate these with our parallel zero-knowledge argument described above. However, an issue remains. What if
an adversary could somehow maul an honest party’s commitment to a related message and then broadcast
that commitment as their own? This could bias the final outcome away from uniformly random.

Thus, we need to introduce some form of non-malleability into the protocol. Indeed, we will add an-
other step at the beginning where each party commits to its message ci and some randomness ri using
our post-quantum many-to-one non-malleable commitment.7 Each party will then commit to ci again with
our extractable commitment, using randomness ri. Finally, each party proves in zero-knowledge that the
previous commitments were consistent.

This protocol can be proven to be fully simulatable. Intuitively, even though the simulator changes
the behavior of honest players in order to extract from the adversary’s commitments and then later force
the appropriate output, the initial non-malleable commitments given by the adversary must not change in
a meaningful way, due the the guarantee of non-malleablity. However, additional subtleties arise in the
proof of security. In particular, during the hybrids the simulator will first have to simulate the honest party
zero-knowledge arguments, before changing the honest party commitments in earlier stages. However,
when changing an honest party’s commitment, we need to rely on non-malleability to ensure that the
malicious party commitments will not also change in a non-trivial way. Here, we use a proof technique that
essentially invokes soundess of the adversary’s zero-knowledge arguments at an earlier hybrid but allows
us to nevertheless rely on non-malleable commitments to enforce that the adversary behaves consistently
in all future hybrids. More discussion and a formal analysis can be found in Section 8.

2.6 Related Work

Classical secure multi-party computation was introduced and shown to be achievable in the two-party set-
ting by [Yao82] and in the multi-party setting by [GMW87]. Since these seminal works, there has been

7Above we described a construction of one-to-one non-malleable commitment, though a hybrid argument [LPV08] shows that
one-to-one implies many-to-one.

14

considerable interest in reducing the round complexity of classical protocols. In the setting of malicious
security against a disjonest majority, [Lin03] gave the first constant-round protocol for two-party computa-
tion, and [KOS03] gave the first constant-round protocol for multi-party computation. Since then, there has
been a long line of work improving on the exact round complexity and assumptions necessary for classical
multi-party computation (see e.g. [Pas04, GMPP16]).

Post-quantum classical protocols. The above works generally focus on security against classical polynomial-
time adversaries. Another line of work, most relevant to the present work, has considered the more general
goal of proving the security of classical protocols against arbitrary quantum polynomial-time adversaries.

This study was initiated by van de Graaf [VDG98], who observed that the useful rewinding technique
often used to prove zero-knowledge in the classical setting may be problematic in the quantum setting. In a
breakthrough work, Watrous [Wat09] showed that several well-known classical zero-knowledge protocols
are in fact zero-knowledge against quantum verifiers, via a careful rewinding argument. However, these
protocols require a polynomial number of rounds to achieve negligible security against quantum attackers.
Later, Unruh [Unr12] developed a more powerful rewinding technique that suffices to construct classi-
cal zero-knowledge proofs of knowledge secure against quantum adversaries, though still in a polynomial
number of rounds. In a recent work, [BS20] managed to construct a constant-round post-quantum zero-
knowledge protocol, under assumptions similar to those required to obtain classical fully-homomorphic
encryption. In another recent work, [AP20] constructed a constant-round protocol that is zero-knowledge
against quantum verifiers under the quantum LWE assumption, though soundness holds against only clas-
sical provers.

There has also been some work on the more general question of post-quantum secure computation. In
particular, [DL09] used the techniques developed in [Wat09] to build a two-party coin-flipping protocol,
and [LN11, HSS11] constructed general two-party computation secure against quantum adversaries, in a
polynomial number of rounds. More recently, [BS20] gave a constant-round two-party coin-flipping proto-
col, with full simulation of one party. However, prior to this work, nothing was known in the most general
setting of post-quantum multi-party computation (in the plain model).

Finally, as mentioned at the beginning of Section 2.1, there exist post-quantum classical protocols in the
literature, as long as some form of trusted setup is available.

Quantum protocols. Yet another line of work focuses on protocols for securely computing quantum circuits.
General multi-party quantum computation was shown to be achievable in the information-theoretic setting
(with honest majority) in the works of [CGS02, BCG+06]. In the computational setting, [DNS10] gave a
two-party protocol secure against a quantum analogue of semi-honest adversaries, and [DNS12] extended
security of two-party quantum computation to the malicious setting. In a recent work [DGJ+20] constructed
a maliciously secure multi-party protocol for computing quantum ciruits, assuming the existence of a ma-
liciously secure post-quantum classical MPC protocol. We remark that all of the above protocols operate in
a polynomial number of rounds.

3 Preliminaries

Various parts of this section are taken nearly verbatim from [BS20]. All algorithms of cryptographic func-
tionalities in this work are implicitly efficient and classical (i.e. require no quantum computation or a
quantum communication channel), unless noted otherwise. We rely on the standard notions of classical
Turing machines and Boolean circuits:

• We say that a Turing machine (or algorithm) is PPT if it is probabilistic and runs in polynomial time.

• We sometimes think about PPT Turing machines as polynomial-size uniform families of circuits (as
these are equivalent models). A polynomial-size circuit family C is a sequence of circuits C =
{Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1) and has λO(1) input and output bits. We
say that the family is uniform if there exists a polynomial-time deterministic Turing machine M that
on input 1λ outputs Cλ.

15

• For a PPT Turing machine (algorithm) M , we denote by M(x; r) the output of M on input x and
random coins r. For such an algorithm, and any input x, we may write m ∈ M(x) to denote the fact
that m is in the support of M(x; ·).

Miscellaneous notation.

• For a distribution D that may explicitly take its random coins r as input, we denote by x ← D the
process of sampling from D, and denote by x := D(r) the fixed outcome x that results from sampling
from D with random coins r.

• We denote by Uλ the uniform distribution over {0, 1}λ.

• Given an NP language L with associated relation RL, and an instance x, we let RL(x) denote the set
{w : RL(x,w) = 1}.

• For some natural number c and security parameter λ, we use ilog(c, λ) to denote log log · · · log︸ ︷︷ ︸
c times

(λ).

• We will use ∆(X ,Y) to denote the statistical distance between two distributions X and Y .

3.1 Quantum Computation

We use standard notions from quantum computation.

• We say that a Turing machine (or algorithm) is QPT if it is quantum and runs in polynomial time.

• We sometimes think about QPT Turing machines as polynomial-size uniform families of quantum
circuits (as these are equivalent models). We call a polynomial-size quantum circuit familiy C =
{Cλ}λ∈N uniform if there exists a polynomial-time deterministic Turing machine M that on input 1λ

outputs Cλ.

• Classical communication channels in the quantum setting are identical to classical communication
channels in the classical setting, except that when a set of qubits is sent through a classical communi-
cation channel, then the qubits are automatically measured in the standard basis, and the measured
(now classical-state) qubits are then sent through the channel.

• A quantum interactive algorithm (in a 2-party setting) has input divided into two registers and output
divided into two registers. For the input qubits, one register is for an input message from the other
party, and a second register is for a potential inner state the machine holds. For the output, one
register is for the message to be sent to the other party, and another register is for a potential inner
state for the machine to keep to itself.

Quantum Adversarial Model. We would like to consider security definitions that not only achieve quan-
tum security, but are also composable and can be used modularly inside other protocols. For this we think
by default of security against polynomial-size quantum adversaries with non-uniform polynomial-size
quantum advice (i.e. an arbitrary quantum mixed state that is not necessarily efficiently generatable).

An adversary will be usually denoted by A∗ = {A∗λ, ρλ}λ∈N, where {A∗λ}λ∈N is a polynomial-size non-
uniform sequence of quantum circuits, and {ρλ}λ∈N is some polynomial-size sequence of mixed quantum
states. All adversaries are implicitly unrestricted in their behaviour (i.e. they are fully malicious and can
arbitrarily deviate from protocols). We conclude with notions regarding indistinguishability in the quantum
setting.

• A function f : N→ [0, 1] is:

– negligible if for every constant c ∈ N there exists N ∈ N such that for all n > N , f(n) < n−c.

16

– noticeable if there exists c ∈ N, N ∈ N s.t. for every n ≥ N , f(n) ≥ n−c.

• A quantum random variable is simply a random variable that can have values that are quantum states.
That is, a quantum random variable induces a probability distribution over a (possibly infinite) set of
quantum states. Such quantum random variables can also be thought of as a mixed quantum state,
which is simply a distribution over quantum states.

• For two quantum random variables X and Y , quantum distinguisher D with quantum mixed state ρ
as auxiliary input, and µ ∈ [0, 1], we write X ≈D(ρ),µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

• Two ensembles of quantum random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are said to be compu-
tationally indistinguishable, denoted by X ≈c Y , if for every polynomial-size non-uniform quantum
distinguisher with quantum advice D = {Dλ, ρλ}λ∈N, there exists a negligible function µ such that
for all λ ∈ N,

Xλ ≈Dλ(ρλ),µ(λ) Yλ.

• The trace distance between two quantum distributions X,Y , denoted by TD(X,Y), is a generaliza-
tion of statistical distance to the quantum setting and represents the maximal distinguishing advan-
tage between two quantum distributions by an unbounded quantum algorithm. We thus say that
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are statistically indistinguishable (and write X ≈s Y), if for every
unbounded non-uniform quantum distinguisher D = {Dλ}λ∈N, there exists a negligible function µ
such that for all λ ∈ N, TD(Xλ, Yλ) ≤ µ(λ).

3.2 Notation for Interactive Protocols

Throughout, we will be considering interactive protocols, generally defined by a set of classical interac-
tive Turing machines {Mi}i∈[n]. We denote by τ ← 〈{Mi(yi)}i∈[n]〉(x) the public transcript of their inter-
action on common input x, where each Mi has private input yi. More precisely, τ consists of the mes-
sages sent between the {Mi}i∈[n], and is a random variable over the random coins of each Mi. We let
VIEWMj (〈{Mi(yi)}i∈[n]〉(x)) denote the view of some party Mj that results from this interaction, which
consists of the portion of the transcript τ that includes messages sent by or received by Mj , along with
Mj ’s private state st at the end of the interaction. If Mj is a quantum machine, then st may be a quan-
tum state. If Mj is defined to have some specific output at the end of the interaction, we denote this by
OUTMj (〈{Mi(yi)}i∈[n]〉(x)).

Definition 3.1 (Explainable Transcript). Let {Mi}i∈[n] be a (classical) interactive protocol, and consider some
subset of participants {Mi}i∈I . We say that a transcript τ consisting of messages sent by and received by {Mi}i∈I is
explainable with respect to set I if there exists some {M∗i }i/∈I , inputs {yi}i∈I and random coins {ri}i∈I such that τ
is consistent with the transcript of an execution 〈{M∗i }i/∈I , {Mi(yi; ri)}i∈I〉.

Handling Abort and Misbehaviour. We set a general convention to handle publicly checkable misbehavior
by parties in any interactive protocol.

• For security parameter λ, for each message in the protocol, it will be known (publicly) based on λ,
what is the length of each message (or upper and lower bounds on that length). If a party sends a
message in an incorrect length, the receiving party fixes it locally and trivially; if the message is too
long, it cuts the message in a suitable place, and if it’s too short then pads with zeros.

• Whenever a party aborts, all other parties ends communication and output ⊥.

17

3.3 Witness Indistinguishability

We use classical constant-round proof systems for NP (where both honest prover and verifier are classi-
cal efficient algorithms) that are witness-indistinguishable against quantum verifiers. That is, transcripts
generated by the prover for two witnesses to the same instance are indistinguishable to quantum attackers.

Definition 3.2 (WI Proof System for NP). A witness-indistinguishable proof system for a language L ∈ NP is
a pair (P,V) of classical PPT interactive Turing machines. P and V interact on common input 1λ and x, and P
additionally takes a private input w. At the end of the interaction, V outputs a bit indicating whether it accepts or
rejects. The proof system should satisfy the following properties.

1. Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr[OUTV〈P(w),V〉(1λ, x) = 1] = 1.

2. Statistical Soundness: For any non-uniform unbounded prover P∗ = {P∗λ}λ∈N, there exists a negligible
function µ(·) such that for any security parameter λ ∈ N and any x ∈ {0, 1}λ \ L,

Pr[OUTV〈P∗λ,V〉(1λ, x) = 1] = µ(λ).

3. Witness Indistinguishability: For every non-uniform quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ∈N,
for any two sequences of witnesses {wλ}λ∈N, {vλ}λ∈N s.t. for every λ ∈ N, wλ and vλ are both witnesses for
the same xλ ∈ L ∩ {0, 1}λ, we have,

{VIEWV∗λ
〈P(wλ), V ∗λ (ρλ)〉(1λ, x)}λ∈N ≈c {VIEWV∗λ

〈P(vλ), V ∗λ (ρλ)〉(1λ, x)}λ∈N.

3.4 Sigma Protocol for NP

Definition 3.3 (Sigma Protocol for NP). A sigma protocol for an NP relation R is a pair (P = (P1,P2),V =
(V1,V2)) of classical PPT Turing machines with the following syntax. Given an instance x and witness w, P1(x,w)
outputs a string α and a prover state st. V1(1|x|) is public-coin, and outputs a uniformly random string β. Next,
P2(x,w, st, α, β) outputs a string γ and finally, V2(x, α, β, γ) either accepts or rejects. The proof system should
satisfy the following properties.

1. Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr[OUTV〈P(w),V〉(x) = 1] = 1.

2. Statistical Soundness: For any non-uniform unbounded prover P∗ = {P∗λ}λ∈N, there exists a negligible
function µ(·) such that for any λ ∈ N and any x ∈ {0, 1}λ \ L,

Pr[OUTV〈P∗λ,V〉(x) = 1] ≤ µ(λ).

3. Special Zero-Knowledge: There exists a PPT simulator Sim such that for any {xλ, wλ}λ∈N where |xλ| = λ
and (xλ, wλ) ∈ R, and {βλ}λ∈N where |βλ| = λ,

{(α, γ) | (α, st)← P1(xλ, wλ), γ ← P2(xλ, wλ, st, α, βλ)}λ∈N ≈c {(α, γ)← Sim(xλ, βλ)}λ∈N.

Observe that due to the prover’s first message being generated independently of the verifier’s message, this
implies that for any {xλ, wλ}λ∈N where |xλ| = λ and (xλ, wλ) ∈ R,

{α← P1(xλ, wλ)}λ∈N ≈c {α | (α, γ)← Sim(xλ, 0
λ)}λ∈N.

We refer to this as First-Message Indistinguishability.

Sigma protocols are known to follow from classical zero-knowledge proof systems such as the (parallel
repetition) of the 3-coloring protocol [GMW91], which is in turn based on non-interactive perfectly-binding
and computationally hiding commitments.

18

3.5 Non-Interactive Commitment

Definition 3.4 (Quantum-secure Non-interactive Commitment). A non-interactive commitment is defined by a
PPT algorithm Com that takes as input security parameter 1λ and x ∈ {0, 1}∗, and outputs a commitment c. The
commitment algorithm satisfies:

1. Perfect Binding: For any x, x′ ∈ {0, 1}∗ of the same length, if c ∈ Com(1λ, x), c ∈ Com(1λ, x′), then x = x′.

2. Quantum Computational Hiding: For any pair of poly(λ)-length strings x0 = {x0,λ}λ∈N, x1 = {x1,λ}λ∈N,
we have,

{Com(1λ, x0,λ)}λ∈N ≈c {Com(1λ, x1,λ)}λ∈N.

Instantiations. Non-interactive commitments with quantum hiding are known based on various standard
assumptions, including LWE [GHKW17].

3.6 Compute and Compare Obfuscation

We start by defining the class of compute and compare circuits.

Definition 3.5 (Compute and compare). Let f : {0, 1}n → {0, 1}λ be a circuit, and let u ∈ {0, 1}λ and z ∈
{0, 1}∗ be two strings. Then CC[f, u, z](x) is a circuit that returns z if f(x) = u, and 0 otherwise.

We now define compute and compare (CC) obfuscators with perfect correctness. In what follows Obf is
a PPT algorithm that takes as input a CC circuit CC[f, u, z] and outputs a new circuit C̃C. (We assume that
the CC circuit CC[f, u, z] is given in some canonical description from which f , u, and z can be read.)

Definition 3.6 (CC obfuscator). An algorithm Obf is a compute and compare obfuscator if it satisfies:

1. Perfect correctness: For any circuit f : {0, 1}n → {0, 1}λ, u ∈ {0, 1}λ, z ∈ {0, 1}∗,

Pr
[
∀x ∈ {0, 1}n : C̃C(x) = CC[f, u, z](x)

∣∣∣ C̃C← Obf(CC[f, u, z])
]

= 1 .

2. Simulation: There exists a PPT simulator Sim such that for any polynomial-size quantum circuit family
f = {fλ}λ∈N and polynomial-length output string z = {zλ}λ∈N,

{C̃C|u← Uλ, C̃C← Obf(CC[fλ, u, zλ])}λ∈N ≈c {Sim(1|fλ|, 1|zλ|, 1λ}λ∈N.

Instantiations. Compute and compare obfuscators with almost perfect correctness are constructed in
[GKW17, WZ17] based on quantum LWE, and recently with perfect correctness in [GKVW19] based on
quantum LWE.

3.7 Function-Hiding Secure Function Evaluation

We define secure function evaluation protocols with statistical circuit privacy and quantum input privacy.

Definition 3.7 (2-Message Function Hiding SFE). A two-message secure function evaluation protocol (SFE.Gen,SFE.Enc,SFE.Eval,SFE.Dec)
has the following syntax:

• dk← SFE.Gen(1λ) : a probabilistic algorithm that takes a security parameter 1λ and outputs a secret key dk.

• ct← SFE.Enc(dk, x) : a probabilistic algorithm that takes a string x ∈ {0, 1}∗ and outputs a ciphertext ct.

• ĉt ← SFE.Eval(C, ct) : a probabilistic algorithm that takes a classical circuit C and ciphertext ct and outputs
an evaluated ciphertext ĉt.

19

• x̂ = SFE.Dec(dk, ĉt) : a deterministic algorithm that takes a ciphertext ĉt and outputs a string x̂.

For any polynomial-size family of classical circuits C = {Cλ}λ∈N the scheme satisfies:

• Perfect Correctness: For any λ ∈ N, x ∈ {0, 1}∗ and circuit C ∈ Cλ,

Pr[SFE.Decdk(ĉt) = C(x)|dk← SFE.Gen(1λ), ct← SFE.Encdk(x), ĉt← SFE.Eval(C, ct)] = 1

• Quantum Input Privacy: For polynomial `(λ) and polynomial-size quantum adversary A∗ = {A∗λ, ρλ}λ∈N,
there exists a negligible function µ(·) such that for every two length `(λ) messages {x0,λ}λ∈N, {x0,λ}λ∈N for
every λ ∈ N:

Pr[A∗λ(ct) = b|dk← SFE.Gen(1λ), ct← SFE.Encdk(x)] ≤ 1

2
+ µ(λ)

• Statistical Circuit Privacy: There exist unbounded algorithms, probabilistic Sim and deterministic Ext such
that for every x ∈ {0, 1}∗, ct ∈ SFE.Enc(x), the extractor outputs Ext(ct) = x and:

{SFE.Eval(C, ct∗)} λ∈N,C∈Cλ,
ct∗∈{0,1}poly(λ)

≈s {Sim(C(Ext(ct∗; 1λ)); 1λ)} λ∈N,C∈Cλ,
ct∗∈{0,1}poly(λ)

Specifically, there exists a constant c > 0 such that for large enough λ, the statistical distance between the two
distributions is at most 2−λ

c

.

We will use the following claim in our analysis. This follows directly from the statistical circuit privacy
property.

Claim 3.1 (Evaluations of Agreeing Circuits are Statistically Close). Let ct∗ = {ct∗λ}λ∈N be any (possibly non-
ciphertext) poly(λ) length string and let C0 = {C0,λ}λ∈N, C1 = {C1,λ}λ∈N be two families of circuits such that for
all λ ∈ N, C0,λ and C1,λ have identical truth tables. Then

{SFE.Eval(C0, ct
∗)}λ∈N,C0∈C0,λ ≈s {SFE.Eval(C1, ct

∗)}λ∈N,C1∈C1,λ

Specifically, there exists a constant c > 0 such that for large enough λ, the statistical distance between the two
distributions is at most 2−λ

c

.

Secure function evaluation schemes satisfying Definition 3.7 for functions in NC1 are known based on
quantum hardness of LWE [BD18b].

We also define a superpolynomially secure variant of 2-message function hiding SFE where the quantum
input privacy property restricts adversaries to having smaller than inverse superpolynomial advantage, for
a small superpolynomial function.

Definition 3.8 (2-Message Function Hiding SFE). A two-message SFE protocol with superpolynomial security
is identical to the definition in Definition 3.7, except that it modifies the quantum input privacy requirement as
follows: There exists a constant c > 0 such that for polynomial `(λ) and polynomial-size quantum adversary A∗ =
{A∗λ, ρλ}λ∈N, there exists a negligible function µ(·) such that for every two length `(λ) messages {x0,λ}λ∈N, {x0,λ}λ∈N
for every λ ∈ N:

Pr[A∗λ(ct) = b|dk← SFE.Gen(1λ), ct← SFE.Encdk(x)] ≤ 1

2
+ µ(λilog(c,λ))

Secure function evaluation schemes satisfying Definition 3.8 for functions in NC1 can be based on quan-
tum slightly superpolynomial hardness of LWE [BD18b]. Specifically, we assume that QPT distinguishers
have advantage at most negl(λilog(c,λ)) in distinguishing LWE samples from uniformly random matrices.

20

3.8 Quantum Rewinding Lemma

We will make use of the following lemma from [Wat09] and re-worded in [BS20].

Lemma 3.1. There is a quantum algorithm R that gets as input:

• A general quantum circuit Q with n input qubits that outputs a classical bit b and an additional m qubits.

• An n-qubit state |ψ〉.

• A number t ∈ N.

R executes in time t · poly(|Q|) and outputs a distribution over m-qubit states Dψ := R(Q, |ψ〉, t) with the following
guarantees.

For an n-qubit state |ψ〉, denote by Qψ the conditional distribution of the output distribution Q(|ψ〉), conditioned
on b = 0, and denote by p(ψ) the probability that b = 0. If there exist p0, q ∈ (0, 1), ε ∈ (0, 1

2) such that:

• Amplification executes for enough time: t ≥ log(1/ε)
4·p0(1−p0) ,

• There is some minimal probability that b = 0 : For every n-qubit state |ψ〉, p0 ≤ p(ψ),

• p(ψ) is input-independent, up to ε distance: For every n-qubit state |ψ〉, |p(ψ)− q| < ε, and

• q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state |ψ〉,

TD (Qψ, Dψ) ≤ 4
√
ε

log(1/ε)

p0(1− p0)
.

4 Quantum Multi-Key Fully-Homomorphic Encryption

4.1 Learning with Errors and Lattice Trapdoors

The (decisional) learning with errors problem (LWE), introduced by [Reg05], is parameterized by a mod-
ulus q, positive integers n,m, and an error distribution χ. It asks to distinguish between the distributions
(A,As + e mod q) and (A,u), where A is uniformly random in Zm×nq , s is uniformly random in Znq , u is
uniformly random in Zmq , and e is chosen from χm. As shown in [Reg05, PRS17], for any sufficiently large
modulus q, the LWE problem where χ is a discrete Gaussian distribution with parameter σ = αq ≥ 2

√
n

(i.e. the distribution over Z where the probability of x is proportional to e−π(|x|/σ)2), is at least as hard as
approximating the shortest independent vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst
case dimension n lattices. One can truncate the discrete Gaussian distribution to have support only over
integers bounded in absolute value by σ · ω(

√
log(λ)) while only introducing a negligible difference. Thus,

we will use the fact that χ may be a B-bounded distribution, for some value B.
We will make use of the notion of a lattice trapdoor, defined in the following theorem [MP12].

Theorem 4.1 ([Ajt99, MP12]). There is an efficient randomized algorithm GenTrap(1n, 1m, q) that, given any inte-
gers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs a matrix A ∈ Zm×nq and a trapdoor τA such that
the distribution of A is negligibly (in n) far from the uniform distribution. Moreover, there is an efficient deterministic
algorithm Invert that on input A, τA, and As + e, where s is arbitrary in Znq and ||e|| ≤ q/(O(n log q)), returns s
and e with overwhelming probability over (A, τA)← GenTrap(1n, 1m, q).

In fact, we’ll need a slightly stronger version of the above statement. In particular, we will actually need
the correctness of Invert to hold perfectly rather than statistically over the randomness of GenTrap. This can
be arranged by slightly tweaking the GenTrap procedure.

21

Lemma 4.1. There exist algorithms GenTrap and Invert as described in Theorem 4.1 where Invert returns s, e with
probability 1.

Proof. (Sketch) Call a matrix-trapdoor pair (A, τA) “functional” if A is full rank (rank n) mod q, τA is an
m × m matrix such that τA · A = 0 mod q,8 each entry of τA is “small enough”, and τA is full rank over
the rationals. Such a functional matrix-trapdoor pair may be used to invert any vector v = As + e, for
small enough e, as follows. Left multiply v by τA over Zq , and then left multiply the result by τ−1

A over
the rationals, which recovers e. Then subtract e from v and recover s by linear algebra. Now observe that
the four conditions for (A, τA) to be functional are all efficiently checkable. Thus, the modified GenTrap
algorithm can operate as follows. Sample (A, τA) as before, then check if it is functional, and if not replace
(A, τA) with some fixed functional pair. Since GenTrap only outputs a non-functional pair with negligible
probability, this modification maintains the requirement that the distribution of A is negligibly close to
uniform.

4.2 Definition

Definition 4.1 (Quantum Multi-Key Fully-Homomorphic Encryption (QMFHE)). A quantum multi-key fully-
homomorphic encryption scheme is given by six algorithms (QMFHE.KeyGen, QMFHE.Enc, QMFHE.QEnc, QMFHE.Eval,
QMFHE.Dec, QMFHE.QDec) with the following syntax.

• (pk, sk)← QMFHE(1λ) : A PPT algorithm that given a security parameter, samples a classical public key and
a classical secret key.

• c← QMFHE.Enc(pk, b) : A PPT algorithm that takes as input a bit b and outputs a classical ciphertext.

• |φ〉 ← QMFHE.QEnc(pk, |ψ〉) : A QPT algorithm that takes as input a qubit |ψ〉 and outputs a ciphertext
represented in qubits.

• ĉ, |φ̂〉 ← QMFHE.Eval((pk1, . . . , pkn), C, (|φ1〉, . . . , |φn〉)): A QPT algorithm that takes as input

1. A set of n public keys.

2. A general quantum circuit with `1 + · · · + `n input qubits and `′ output qubits, out of which m are
measured.

3. A set of n ciphertexts where |φi〉 encrypts an `i-qubit state under public key pki. Some of the `i ciphertexts
are possibly classical ciphertexts (generated by the classical encryption algorithm) encrypting classical bits.

The evaluation algorithm outputs a classical ciphertext ĉ encrypting m bits (under keys pk1, . . . , pkn), plus a
quantum ciphertext |φ̂〉 encrypting an (`′ −m)-qubit quantum state (under keys pk1, . . . , pkn).

• b← QMFHE.Dec((sk1, . . . , skn), c): A PPT algorithm that takes as input a set of n secret keys and a classical
ciphertext c and outputs a bit.

• |ψ〉 ← QMFHE.QDec((sk1, . . . , skn), |φ〉): A QPT algorithm that takes as input a set of n secret keys and a
quantum ciphertext |φ〉 and outputs a qubit.

The scheme satisfies the following.

1. Quantum Semantic Security: The encryption algorithm maintains quantum semantic security.

2. Compactness: There exists a polynomial poly(·) s.t. for every quantum circuit C with `′ output qubits and an
encryption of an input for C, the output size of the evaluation algorithm is poly(λ, `′), where λ is the security
parameter of the scheme.

8The trapdoor generation procedure presented in [MP12] actually results in an “inhomogeneous” trapdoor, where it holds that
τA ·A = G, for the gadget matrix G. However, one can derive a trapdoor satisfying τA ·A = 0 from an inhomogeneous trapdoor.

22

3. Classicality-Preserving Quantum Homomorphism: Let C = {Cλ}λ∈N be a polynomial-size quantum
circuit, where Cλ has `1(λ) + · · · + `n(λ) input qubits and `′(λ) output qubits, of which m(λ) are mea-
sured. Let |φ1〉, . . . , |φn〉 = {|φ1〉λ, . . . , |φn〉λ}λ∈N be an input state for C, let (pk1, sk1), . . . , (pkn, skn) =
{(pk1, sk1)λ, . . . , (pkn, skn)λ}λ∈N be pairs of public and secret keys (∀i ∈ [n], λ ∈ N, (pki, ski)λ ∈ QMFHE.KeyGen(1λ))
and let r1, . . . , rn = {(r1)λ, . . . , (rn)λ}λ∈N be n random strings for the encryption algorithm. Then there exists
a negligible function µ(·) such that for all λ ∈ N,

TD(ρ0,λ, ρ1,λ) ≤ µ(λ),

where ρ0, ρ1 are quantum distributions defined as follows:

• ρ0,λ: For each i ∈ [n], encrypt each classical bit of |φi〉 with QMFHE.Enc(pki, ·) and the rest with
QMFHE.QEnc(pki, ·) (using randomness ri). Execute QMFHE.Eval((pk1, . . . , pkn), C, ·) on the n en-
cryptions to get ĉ, |φ̂〉, where ĉ is a classical ciphertext encrypting m(λ) bits. Then output
QMFHE.Dec((sk1, . . . , skn), ĉ),QMFHE.QDec((sk1, . . . , skn), |φ̂〉).

• ρ1,λ: Output C(|φ1, . . . , φn〉).

Known classical LWE-based constructions of multi-key fully-homomorphic encryption [CM15, MW16,
PS16, BHP17] do not quite satisfy the above syntax.9 Instead, they relax the syntax to allow for some notion
of setup. In this work, we will be interested in the notion of distributed setup which was achieved in the
classical setting by [BHP17].

Definition 4.2 (QMFHE with Distributed Setup). A QMFHE scheme QMFHE has distributed setup if it includes
the following algorithm.

• QMFHE.Setup(1λ, 1n, i): A PPT algorithm that takes as input the security parameter, a number of parties, and
an index i ∈ [n], and outputs a string ppi.

We then define the public parameters of the scheme pp = (pp1, . . . , ppn) and assume that all other algorithms take pp
as input.

Remark 4.1. This notion of distributed setup gives rise to a stronger notion of semantic security, which
considers rushing adveraries that may generate {ppj}j 6=i maliciously, possibly depending on ppi. More
formally, in the security game the adversary first picks n and an i ∈ [n] and sends these to its challenger. The
challenger then runs ppi ← QMFHE.Setup(1λ, 1n, i), and returns ppi to the adversary. Then, the adversary
generates {ppj}j∈[n]\{i} arbitrarily and sends these to its challenger. Finally, the challenger draws a public
key secret key pair based on {ppi}i∈[n], and the semantic security game continues are usual. This notion of
semantic security was achieved in the classical setting by [BHP17].

In this work, we also consider a more stringent requirement on the operation of the QMFHE.Dec algo-
rithm, which we call nearly linear decryption of classical ciphertexts. Essentially, this states that decrypting a
classical ciphertext c encrypted under keys sk1, . . . , skn amounts to computing a linear function Lc (defined
by c) on the concatenated secret keys [sk1 | . . . | skn] modulo some integer q, and then rounding.

Definition 4.3 (QMFHE with Nearly Linear Decryption of Classical Ciphertexts). A QMFHE scheme QMFHE
has nearly linear decryption of classical ciphertexts if the QMFHE.Dec algorithm operates as follows.

• QMFHE.Dec((sk1, . . . , skn), c): There is an efficiently computable linear function Lc (determined by c) and an
(even) integer q such that the decryption prodecure computes

Lc(sk1, . . . , skn) = b · q/2 + e mod q

(where e < q/4) and returns b ∈ {0, 1}. Equivalenty, we can define linear functions L(1)
c , . . . ,L(n)

c such that
the decryption procedure computes ∑

i∈[n]

L(i)
c (ski) = b · q/2 + e mod q.

9Though there are NTRU-based constructions that do [LTV12, AJJM20].

23

Finally, we remark that we do not consider an additional security property often found in classical
constructions of multi-key FHE, which roughly stipulates that partial decryptions of other parties may be
simulated. This property is most relevant when considering the direct application of multi-key FHE to
MPC, but we will not need it in this work.

4.3 Background

We follow the template given by [Mah18] for constructing a quantum fully-homormorphic encryption
scheme. [Mah18] essentially showed that a classical fully-homomorphic scheme FHE can be converted into
a quantum fully-homomorphic scheme, as long as it has a few additional properties, necessary for comput-
ing the so-called encrypted CNOT operation (properties 2-4 in Definition 4.4).

Unfortunately, no known fully-homomorphic schemes immediatedly satisfy these properties. How-
ever, [Mah18] observed that the dual Regev (non-fully-homomorphic) encryption scheme of [GPV08] does
satisfy these properties, and moreover, and that there exists a fully-homomorphic encryption scheme FHE
(the dual version of [GSW13]) with an efficient procedure for converting an FHE ciphertext into a dual
Regev ciphertext encrypting the same message. In fact, the conversion procedure presented in [Mah18]
simply consists of taking the last column of the FHE ciphertext. This suffices to give a quantum fully-
homomorphic encryption scheme, since before every encrypted CNOT operation, the evaluator can con-
vert any FHE ciphertext needed during the operation into a dual Regev ciphertext, and then proceed. The
fourth property below is needed in order to convert an evaluated dual Regev ciphertext back into an FHE
ciphertext upon completion of the encrypted CNOT operation.10

This motivated the definition of a quantum-capable fully-homomorphic encryption scheme given in [Mah18].
Such a scheme admits an efficient procedure that converts ciphertexts into ciphertexts of an alternate
encryption scheme AHE that satisfies the properties necessary to carry out the encrypted CNOT opera-
tion. [Mah18] showed that any such FHE scheme gives rise to an FHE scheme that can additionally encrypt
quantum states and evaluate quantum circuits. Below we give the analogous definition for multi-key fully-
homomorphic encryption, and follow with a sketch of the analogous conversion from quantum-capable
multi-key fully-homomorphic encryption to quantum multi-key fully-homomorphic encryption.

Definition 4.4 (Quantum-Capable Multi-Key Fully-Homomorphic Encryption Scheme). Let MFHE be a clas-
sical multi-key fully-homomorphic encryption scheme. MFHE is quantum-capable if i) its KeyGen procedure outputs
a public key pk, secret key sk, and “trapdoor” τ , and ii) there exists an alternate encryption scheme AHE such that the
following properties holds.

1. There exists an algorithm MFHE.Convert that takes as input a set of public keys pk1, . . . , pkt and a ciphertext
c encrypted under pk1, . . . , pkt, and outputs an encryption ĉ under AHE with public keys pk1, . . . , pkt, where
c and ĉ encrypt the same value.

2. There exists an invertible operation ⊕H (which may depend on pk1, . . . , pkt) on AHE ciphertexts such that, for
all x0, x1, a ∈ {0, 1}, AHE.Enc((pk1, . . . , pkt), x0)⊕H a ·AHE.Enc((pk1, . . . , pkt), x1) is an AHE encryption
of x0 ⊕ a · x1 under pk1, . . . , pkt.

3. There exists a distribution D (which may depend on pk1, . . . , pkt) such that for all ciphertexts c that can arise
during homomorphic evaluation,11

{AHE.Enc((pk1, . . . , pkt), x; r) | (x, r)← D}
≈s{AHE.Enc((pk1, . . . , pkt), x; r)⊕H c | (x, r)← D},

and there is an efficient procedure for generating the superposition
∑
x,r

√
D(x, r)|x, r〉.

10For technical reasons, the randomness in the dual Regev ciphertext must also be recovered, which motivates the need for a trapdoor
rather than merely a secret key.

11This set will consist of all ciphertexts with noise below some fixed bound.

24

4. There exists an efficient function f such that for any c = AHE.Enc((pk1, . . . , pkt), x; r), f((τ1, . . . , τt), c) =
(x, r).

From quantum-capability to multi-key quantum FHE. We now sketch, following [Mah18]’s approach in
the single-key setting, how a quantum-capable multi-key FHE scheme gives rise to a full-fledged quan-
tum multi-key FHE scheme. The following description makes use of the quantum one-time pad (QOTP),
which is a method of perfectly encrypting arbitrary quantum states |φ〉 using classical bits k. We refer the
reader to [Mah18] for details about how the QOTP is constructed and proven secure. We do not present
details about how individual quantum gates are evaluated, or the inner workings of the encrypted CNOT
operation, electing instead to present a high-level picture. Again we refer the reader to [Mah18] for all of
these details. The following assumes a quantum-capable multi-key FHE scheme QCMFHE, and describes a
quantum multi-key FHE scheme QMFHE.

• Key generation. This procedure generates (pk′, sk′, τ)← QCMFHE.KeyGen(1λ), computes a ciphertext
ct(τ) ← QCMFHE.Enc(pk′, τ), and sets the public key of QMFHE to pk := (pk′, ct(τ)) and the secret key
to sk := sk′.

• Encryption. To encrypt a quantum state |φ〉, sample a random QOTP key k and release the ciphertext
ct = (QCMFHE.Enc(pk′, k),QOTP(k, |φ〉)). To encrypt a classical string m, sample a classical one-time
pad key k and release ct = (QCMFHE.Enc(pk′, k), k ⊕m).

• Homomorphic evaluation. This operation takes as input t public keys {pki = (pk′i, ct
(τ)
i)}i∈[t] and t

ciphertexts {cti = (ci, |c〉i)}i∈[t]. It first expands each ci into a multi-key ciphertext c′i encrypted under
all public keys pk′1, . . . , pk

′
t, and gathers all components into a quantum multi-key ciphertext (ĉ, |ĉ〉) =

((c′1, . . . , c
′
t), (|c〉1, . . . , |c〉t)). It also expands and concatenates the ciphertexts {ct(τ)

i }i∈[t] to produce an

evaluation key ĉt
(τ) that encrypts the trapdoors (τ1, . . . , τt) under all public keys pk′1, . . . , pk

′
t. Next, it

applies a quantum circuit gate by gate on the ciphertext, as follows.

– If the gate is of a particular type, namely, it is a Clifford operator, then homomorphically evalu-
ating the gate can be done via a parallel procedure, where a classical circuit is applied homomor-
phically over ĉ to produce ĉ′, and a quantum circuit is applied directly to |c〉 to produce |ĉ′〉.

– Any universal gate set for quantum computation must contain at least one non-Clifford operator,
and [Mah18] includes the Toffoli gate. [Mah18] gives a procedure for homomorphically applying
the Toffoli gate that involves parallel operations as above along with an encrypted CNOT oper-
ation, which requires the following manipulation. First, QCMFHE.Convert is run on ĉ to produce
an AHE ciphertext d̂. This ciphertext is used to define a quantum circuit that is applied to |c〉 to
produce |c′〉 along with a (measured) AHE ciphertext d̂′. Finally, the function f (defined in prop-
erty 4 of Definition 4.4), with ciphertext d̂′ hard-coded, is applied homomorphically over ĉt(τ) to
produce a classical ciphertext c′ encrypting the message and randomness from d̂′.

• Decryption. Given a ciphertext (ĉ, |ĉ〉) encrypting a qubit under pk1, . . . , pkt, and corresponding
QCMFHE secret keys sk′1, . . . , sk

′
t, this operation runs QCMFHE.Dec.((sk′1, . . . , sk

′
t), ĉ) to produce a key

k, and then uses k to decrypt the one-time padded state |ĉ〉. The same procedure works if |ĉ〉 was
instead a classical string k ⊕m.

4.4 Construction

Existing classical multi-key fully-homorphic encryption schemes [LTV12, CM15, MW16, PS16, BHP17, AJJM20]
in the literature do not appear to admit a simple conversion procedure necessary for quantum-capability,
such as the one enjoyed by dual-GSW in the single-key setting. However, we show that indeed there ex-
ists a general conversion procedure that works for any multi-key fully-homomorphic encryption scheme

25

with nearly linear decryption (see Definition 4.3). This method is essentially key-switching (see for exam-
ple [BV11, BDGM19]), and relies on the existence of a multi-key linearly-homomorphic encryption scheme.
This multi-key linearly homomorphic scheme is an extension of dual Regev encryption, and is implicit in
the construction that follows.

Let MFHE be a classical multi-key fully-homomorphic encryption scheme with nearly linear decryp-
tion. Consider the following scheme QCMFHE, which is identical to MFHE except that it has a different
KeyGen algorithm and it additionally supports a Convert algorithm. Let q be an even k-bit modulus, let
g = (1, 2, . . . , 2k), and for y ∈ Zq , let g−1(y) ∈ {0, 1}k be the binary expansion of y, i.e. it holds that
g> · g−1(y) = y.

• QCMFHE.KeyGen(1λ):

1. Compute (MFHE.pk,MFHE.sk)← MFHE.KeyGen(1λ), where MFHE.sk ∈ Z`q and ` = poly(λ).
2. Let n,m be positive integers and χ be a B-bounded error distribution, where n,m,B = poly(λ).

3. Draw (B, τ)← GenTrap(1n, 1m, q), b← Znq , and set A =

(
B
b>

)
.

4. Parse MFHE.sk ∈ Z`q as µ1, . . . , µ` ∈ Zq , and for each i ∈ [`], compute the following.

(a) Draw S← Zn×kq and E← χ(m+1)×k.
(b) Set Ci := A · S + E + µi · g> · um+1, where um+1 is the (m+ 1)-dimensional vector with all

0s except the final coordinate is 1.
5. Output pk := (MFHE.pk,C1, . . . ,C`), sk := MFHE.sk, and τ .

• QCMFHE.Convert((pk1, . . . , pkt), c): Let the linear function Lc determined by c consist of coefficients
a1,1, . . . , a1,`, . . . , at,1, . . . , at,`. Parse each pki to obtain Ci,1, . . . ,Ci,` and define Ĉi,j as follows. Let
C̄i,j be the first m rows of Ci,j and ci,j be the last row. Then Ĉi,j ∈ Z(m`+1)×k

q is the matrix with
0s everywhere except that the (i − 1)m + 1, . . . , im rows are set to C̄i,j and the last row is set to ci,j .
Output ∑

i∈[t],j∈[`]

Ĉi,j · g−1(ai,j).

We assume that the parameters of MFHE are instantiated in a particular way, namely, the modulus q is
set such that for any well-formed ciphertext c (encrypted under a set of t public keys) that may arise during
homomorphic evaluation, Lc(sk1, . . . , skt) = q/2 + e mod q, where q ≥ ω(poly(λ)) · |e|. Recall that the linear
function Lc is guaranteed to exist by the nearly linear decryption property.

Theorem 4.2. Assuming the existence of a multi-key fully-homomorphic encryption scheme MFHE with nearly
linear decryption and a particular circular security property, there exists a quantum multi-key fully-homomorphic
encryption scheme QMFHE. Moreover, QMFHE satisfies the following properties.

1. The QMFHE.Setup algorithm is equivalent to MFHE.Setup.

2. If MFHE is perfectly correct, then QMFHE satisfies Classicality-Preserving Quantum Homomorphism.

Proof. QMFHE is obtained by first applying the construction described in Section 4.4 to MFHE to obtain
QCMFHE, followed by the construction sketched in Section 4.3.

First, we argue that QCMFHE is indeed quantum-capable. Consider the output of the QCMFHE.Convert
algorithm. It is straightforward to verify that if c is a well-formed encryption under public keys pk1, . . . , pkt

of the bit µ, where each pki may be parsed as
(
Bi

b>i

)
, then the resulting vector may be written as

B1

. . .
Bt

b>1 . . . b>t

 · s∗ + e∗ +
q

2

0
...
0
µ

 ,

26

for some s∗ ∈ Ztnq , e∗ ∈ Z(m+1)`. This is exactly an encryption of µ under the dual Regev scheme with
public key

B1

. . .
Bt

b>1 . . . b>t

 .

Thus the AHE scheme we use in Definition 4.4 is identical to the scheme used in [Mah18]. This shows
that QCMFHE satisfies the first requirement in Definition 4.4, and the fact that it satisfies also the second
requirement is immediate.

To confirm that QCMFHE satisfies the third requirement, we take a closer look at e∗. The distribution
D used by [Mah18] samples µ and s uniformly at random, and e from a discrete Guassian distribution
with “large enough” parameter B′. This requirement will hold if B′ is super-polynomially larger than the
entries of e∗ (see Lemma 3.3 and Section 5.3 of [Mah18] for more details). Note that the modulus q is super-
polynomially larger than each entry of e∗, by the assumption on parameters of MFHE. Indeed, all but the
last entry are bounded by ` · k · B = poly(λ), and the last entry is bounded by t · ` · k · B plus the error
that results from the nearly linear decryption, which is super-polynomially smaller than q. This allows us
to define B′ to be large enough such that the third requirement will hold.

To confirm that QCMFHE satisfies the fouth requirement, note that s∗ may be written as a concatenation
of t n-dimensional vectors, and that the i’th such vector may be recovered by using τi, by Lemma 4.1. This
process also recovers all but the last entry of e∗. The last entry of e∗ may then be recovered by subtracting
the public key times s∗ and rounding the last element of the resulting vector.

The above shows that QCMFHE is quantum-capable according to Definition 4.4. Next, we discuss se-
curity of the scheme QMFHE obtained by applying the construction sketched in Section 4.3. Observe that
QMFHE.KeyGen outputs a public key that contains a MFHE public key, a dual Regev public key, an encryp-
tion of the MFHE secret key under the dual Regev public key, and an encryption of the dual Regev trapdoor
under the MFHE secret key. Since QMFHE encryption involves encrypting a QOTP key under MFHE and
using that key to perfectly hide the message, it follows that security of QMFHE reduces to the security of
MFHE in the presence of the particular two-cycle of keys described above (which at the very least relies on
LWE to ensure security of dual Regev). Thus, as stated in the theorem, security follows from a particular
circular security property of MFHE.12

It remains to argue that the two extra properties promised by the theorem statement hold. First, note
that the constructions given in Section 4.4 and Section 4.3 do not alter any MFHE.Setup algorithm that
may exist. Next, the second property boils down to showing that for every choice of random coins used
in QMFHE.KeyGen, homomorphic evaluation of quantum (or classical) circuits will be statistically correct.
Perfect correctness of any Clifford operation follows directly from perfect correctness of MFHE. Statistical
correctness of the encrypted CNOT operation follows from properties 2 and 3 of Definition 4.4 (this analysis
can be found in [Mah18]), plus the perfect correctness of property 4, which is ensured by using the variant
of the GenTrap algorithm promised by Lemma 4.1.

4.5 Quantum Spooky Encryption

We define the notion of spooky encryption for (classical) relations computable by quantum circuits, gener-
alizing the purely classical notion from [DHRW16]. In favor of a simpler exposition we present the additive
function sharing (AFS) variant of the notion, but we note that considering more general relations (in the
same spirit as [DHRW16]) is also possible.

Definition 4.5 (Quantum AFS-Spooky Encryption). A quantum AFS-spooky encryption scheme is given by six
algorithms (Spooky.KeyGen, Spooky.Enc, Spooky.QEnc, Spooky.Eval, Spooky.Dec, Spooky.QDec) with the same
syntax as the corresponding QMFHE algorithms defined in Definition 4.1, except for the following differences.

12This property is similar to the one needed by [Mah18] in the single-key setting, in the sense that encryption of a dual Regev
trapdoor is part of the circular security requirement.

27

• b ← QMFHE.Dec(sk, c): A PPT algorithm that takes as input a secret key and a classical ciphertext c and
outputs a bit. (This algorithm takes only one secret key, as opposed to n secret keys in QMFHE.)

• ĉ1, . . . , ĉn, |φ̂〉 ← Spooky.Eval((pk1, . . . , pkn), C, (|φ1〉, . . . , |φn〉)): A QPT algorithm that takes as input

1. A set of n public keys.

2. A general quantum circuit with `1 + · · · + `n input qubits and `′ output qubits, out of which m are
measured.

3. A set of n ciphertexts where |φi〉 encrypts an `i-qubit state under pki. Some of the `i ciphertexts are
possibly classical ciphertexts (generated by the classical encryption algorithm) encrypting classical bits.

The evaluation algorithm outputs n classical ciphertexts (ĉ1, . . . , ĉn) each encrypting m bits under the cor-
responding pki, plus a quantum ciphertext |φ̂〉 encrypting an (`′ − m)-qubit quantum state (under keys
pk1, . . . , pkn). (This algorithm outputs n classical ciphertexts, as opposed to one in QMFHE.)

The scheme satisfies the same properties of quantum semantic security and compactness as defined in Definition 4.1.
In the following we present the notion of correctness for quantum AFS-spooky encryption.

• Correctness of Spooky Evaluation: Let C = {Cλ}λ∈N be a polynomial-size quantum circuit, where Cλ
has `1(λ)+ · · ·+`n(λ) input qubits and `′(λ) output qubits, of whichm(λ) are measured. Let |φ1〉, . . . , |φn〉 =
{|φ1〉λ, . . . , |φn〉λ}λ∈N be an input state forC, let (pk1, sk1), . . . , (pkn, skn) = {(pk1, sk1)λ, . . . , (pkn, skn)λ}λ∈N
be pairs of public and secret keys (∀i ∈ [n], λ ∈ N, (pki, ski)λ ∈ Spooky.KeyGen(1λ)) and let r1, . . . , rn =
{(r1)λ, . . . , (rn)λ}λ∈N be n random strings for the encryption algorithm. Then there exists a negligible function
µ(·) such that for all λ ∈ N,

TD(ρ0,λ, ρ1,λ) ≤ µ(λ),

where ρ0, ρ1 are quantum distributions defined as follows:

– ρ0,λ: For each i ∈ [n], encrypt each classical bit of |φi〉 with Spooky.Enc(pki, ·) and the rest with
Spooky.QEnc(pki, ·) (using randomness ri). Execute Spooky.Eval((pk1, . . . , pkn), C, ·) on the n en-
cryptions to get (ĉ1, . . . , ĉn), |φ̂〉, where (ĉ1, . . . , ĉn) are classical ciphertexts each encrypting m(λ) bits.
Then output

n⊕
i=1

Spooky.Dec(ski, ĉi),Spooky.QDec((sk1, . . . , skn), |φ̂〉).

– ρ1,λ: Output C(|φ1, . . . , φn〉).

(Classical) AFS-Spooky Encryption with Distributed Setup. As a stepping stone towards the main result
of this section, we show how to construct spooky encryption for classical relations with a distributed setup.
More precisely, assuming the hardness of the LWE problem, we show an instantiation of spooky encryption
for any polynomial-size (classical) circuit where the parties jointly compute the public parameters of the
system via a local algorithm Spooky.Setup (with the same syntax as Definition 4.2). This stands in contrast
with the scheme of [DHRW16], where the common reference string is assumed to be sampled by a trusted
party. Before describing the construction, we recall a useful lemma (rephrased) from [DHRW16].

Lemma 4.2 ([DHRW16]). Let Spooky be an AFS-spooky encryption scheme that supports (i) single key additive
homomorphism and (ii) two-key spooky multiplication. Then the same scheme supports the AFS-spooky evaluation of
all polynomial-size (classical) circuits.

It follows that it suffices to construct a spooky encryption that supports a single multiplication over an
arbitrary pair of keys. We do this by showing that the scheme from [BHP17] supports two-key spooky
multiplication. This follows from the fact that the decryption circuit is identical to that of [CM15, MW16],
which was shown to support two-key spooky multiplication in [DHRW16]. For completness, we recall the
modified algorithms in the following.

28

• Spooky.Enc(pk,m): Same as MFHE.Enc but append an extra δ = 0 to the resulting ciphertext.

• Spooky.Dec(sk, c): Let Lc be the linear function defined by c, compute

v = Lc(sk) + δ mod q

and return 0 if |v| < q/4 and 1 otherwise.

• Spooky.Eval((pk1, pk2), C, (c1, c2)): Compute

ĉ← MFHE.Eval
(

(pk1, pk2),
∏
, (c1, c2)

)
and let L(1)

ĉ and L(2)
ĉ be the linear functions defined by the resulting ĉ. Sample a uniform δ from Zq

and return (L(1)
ĉ , δ) and (L(2)

ĉ ,−δ).

As discussed above, the scheme is quantum semantically secure assuming the hardness of the LWE prob-
lem. Correctness follows, for the same choice of parameters of [BHP17], by an invocation of the following
lemma.

Lemma 4.3 ([DHRW16]). Fix a modulus q ∈ Z, a bit b ∈ {0, 1} and a value v ∈ Zq such that v = q/2 · b + e
mod q, for some |e| < q/4. Sample v1 and v2 uniformly at random from Zq constrained on the fact that v1 + v2 = v
mod q, and let bi = 0 if |vi| < q/4 and bi = 1 otherwise. Then

Pr[b1 ⊕ b2 = b] > 1− 2(|e|+ 1)/q

over the random choice of v1 and v2.

Quantum AFS-Spooky Encryption with Distributed Setup. Finally, we show how to combine a clas-
sical AFS-spooky encryption scheme Spooky (with distributed setup) with a quantum multi-key fully-
homomorphic encryption QMFHE (with distributed setup) to obtain a quantum AFS-spooky encryption
scheme QSpooky. Since both of the building blocks have a distributed setup, then so does the resulting
encryption scheme. The scheme is described below.

• QSpooky.Setup(1λ): Compute pp← QMFHE.Setup(1λ) and p̃p← Spooky.Setup(1λ) and return (pp, p̃p).

• QSpooky.KeyGen(1λ, pp): Sample

(pk′, sk′)← QMFHE.KeyGen(1λ, pp) and (p̃k, s̃k)← Spooky.KeyGen(1λ, p̃p)

and compute c̃ ← Spooky.Enc(p̃k, sk′). Return pk := (pk′, p̃k, c̃) as the public key and sk := (sk′, s̃k) as
the secret key.

• QSpooky.Enc(pk,m): Return QMFHE.Enc(pk′,m).

• QSpooky.QEnc(pk, |ψ〉): Return QMFHE.QEnc(pk′, |ψ〉).

• QSpooky.Eval((pk1, . . . , pkn), C, (|φ1〉, . . . , |φn〉)): Compute

(ĉ, |φ̂〉)← QMFHE.Eval((pk′1, . . . , pk
′
n), C, (|φ1〉, . . . , |φn〉))

and let (c̃1, . . . , c̃n) be the corresponding element of each public key. Compute

(ĉ1, . . . , ĉn)← Spooky.Eval((p̃k1, . . . , p̃kn),QMFHE.Dec(·, ĉ), (c̃1, . . . , c̃n))

and return (ĉ1, . . . , ĉn, |φ〉).

29

• QSpooky.Dec(sk, c): Return Spooky.Dec(s̃k, c).

• QSpooky.QDec((sk1, . . . , skn), |φ〉): Return QMFHE.QDec((sk′1, . . . , sk
′
n), |φ〉).

The following theorem establishes our claim.

Theorem 4.3. Assuming that QMFHE is a quantum multi-key fully-homomorhic encryption scheme and that Spooky
is a classical AFS-spooky encryption, QSpooky is a quantum AFS-spooky encryption scheme.13

Proof. Assuming quantum semantic security of Spooky, the changes in the key generation algorithm do
not affect the security of the scheme. Then quantum semantic security follows from an invocation of the
quantum semantic security of QMFHE. Correctness of spooky evaluation follows from the classicality-
preserving homomorphism of QMFHE and from the correctness of classical spooky evaluation of Spooky.

5 Quantum-Secure Multi-Committer Extractable Commitment

In this section, we follow the outline presented in Section 2.2 to construct a commitment scheme that allows
for simultaneous extraction from multiple parallel committers. The protocol is somewhat more involved
than the high-level description given earlier, so we briefly highlight the differences.

First, the committer is instructed to (non-interactively) commit to its message and trapdoor at the very
beginning of the protocol. We use these commitments to take advantage of non-uniformity in the reduc-
tions betwen hybrids in the extractability proof. In particular, hybrids that come before the step where the
simulator goes “under the hood” of the FHE may still need access to the trapdoor and commitment, and
this can be given to any reduction via non-uniform advice consisting of each committer’s first message and
corresponding openings.

Next, the CDS described earlier is replaced with a function-hiding secure function evaluation (SFE) pro-
tocol. In order to rule out the malleability attack mentioned in Section 2.2, where a malicious receiver mauls
the AFS-spooky encryption of the committer’s trapdoor into an SFE encryption of the trapdoor, we do the
following. The first message sent by the receiver to each committer Ci will actually be a commitment to
some key ki of a generic secret-key encryption scheme. After Ci sends its AFS-spooky encryption cipher-
text and compute and compare obfuscation, the receiver prepares and sends a secret-key encryption of an
arbitrary message. Then, the receiver’s input to the SFE consists of the opening to its earlier commitment
ki, and the SFE checks if the secret-key encryption sent by the receiver is actually an encryption of the com-
mitter’s trapdoor under secret key ki. If so, it returns the lock and otherwise it returns⊥. This setup ensures
that a malicious receiver cannot maul the AFS-spooky encryption of the committer’s trapdoor, for the fol-
lowing reason. If it could, then a non-uniform reduction to the semantic security of AFS-spooky encryption
may obtain the receiver’s committed ki as advice and decrypt the receiver’s secret-key encryption to obtain
the trapdoor. Of course, this assumes the receiver actually acted explainably in sending a valid commitment
at the beginning of the protocol, and this is ensured by the opening check performed under the SFE. We
note that this mechanism is somewhat different than what was presented in [BS20], as they directly build
a zero-knowledge argument (i.e. without first constructing a stand-alone extractable commitment) and are
able to take advantage of witness indistinguishability to enforce explainable behavior.

Compliant Distinguishers. Finally, we discuss the issue of committer explainability. Recall from the high-
level overview that a simulator is able to extract from a committer by homomorphically evaluating its code
on an AFS-spooky encryption ciphertext generated by the committer. Thus, if the committer acts arbitrarily
maliciously and does not return a well-formed ciphertext, the extraction may completely fail. Again, [BS20]
address this issue by only analyzing their commitment within the context of a larger zero-knowledge argu-
ment protocol, and having the verifier prove to the prover using a witness indistinguishable proof that it
performed the commitment explainably.

13In fact, we also need the quantum spooky encryption scheme to be multi-hop, which follows if the classical AFS-spooky scheme
is multi-hop (which is satisfied by [DHRW16]).

30

Thus, without adding zero-knowledge and performing [GK96]-style analysis to handle non-explainable
and aborting committers, we will only obtain extractability against explainable committers. However, since
we will be using this protocol inside larger protocols where participants are not assumed to be acting ex-
plainably, restricting the class of committers we consider in our definition is problematic. We instead con-
sider arbitrary committers but restrict the class of distinguishers (who are supposed to decide whether they
received the view of a committer interacting in the real protocol or the view of a committer interacting
with the extractor) to those that always output 0 on input a non-explainable transcript. In other words, any
advantage these distinguishers may have must be coming from their behavior on input explainable views.
Even though checking whether a particular view is explainable or not is not efficient, it turns out that
this definition lends itself quite nicely to composition, since one can use witness indistinguishability/zero-
knowledge to construct provably compliant distinguishers between hybrids for the larger protocols.

For completeness, and because post-quantum multi-committer extractable commitments may be of in-
dependent interest, we also show in Appendix D how to add zero-knowledge within the extractable com-
mitment protocol itself to obtain security against arbitrary committers.

5.1 Definition

Definition 5.1 (Quantum-Secure Multi-Committer Extractable Commitment). A quantum-secure multi-committer
extractable commitment scheme is a pair (C,R) of classical PPT interactive Turing machines. In the commit phase, R
interacts with n copies {Ci}i∈[n] of C (who do not interact with each other) on common input 1λ and 1n, with each
Ci additionally taking a private input mi ∈ {0, 1}∗. This produces a transcript τ , which may be parsed as a set of
n transcripts {τi}i∈[n], one for each set of messages exchanged between R and Ci. In the decommitment phase, each
Ci outputs mi along with its random coins ri, and R on input (1λ, τi,mi, ri) either accepts or rejects. The scheme
should satisfy the following properties.

• Perfect Correctness: For any λ, n ∈ N, i ∈ [n],

Pr[R(1λ, τi,mi, ri) = 1 | {τi}i∈[n] ← 〈R,C1(m1; r1), . . . ,Cn(mn; rn)〉(1λ, 1n)] = 1.

• Perfect Binding: For any λ ∈ N and string τ ∈ {0, 1}∗, there does not exist (m, r) and (m′, r′) withm 6= m′

such that R(1λ, τ,m, r) = R(1λ, τ,m′, r′) = 1.

• Quantum Computational Hiding: For any non-uniform quantum polynomial-size receiver R∗ = {R∗λ, ρλ}λ∈N,
any polynomial `(·), and any sequence of sets of strings {m(0)

λ,1, . . . ,m
(0)
λ,n}λ,n∈N, {m(1)

λ,1, . . . ,m
(1)
λ,n}λ,n∈N where

each |m(b)
λ,i| = `(λ),

{VIEWR∗λ
(〈R∗λ(ρλ),C1(m

(0)
λ,1), . . . ,Cn(m

(0)
λ,n)〉(1λ, 1n))}λ,n∈N

≈c{VIEWR∗λ
(〈R∗λ(ρλ),C1(m

(1)
λ,1), . . . ,Cn(m

(1)
λ,n)〉(1λ, 1n))}λ,n∈N.

The extractability property will require the following two definitions. First, for any adversary C∗ = {C∗λ, ρλ}λ∈N
representing a subset I ⊆ [n] of n committers, any honest party messages {mi}i/∈I , and any security parameter
λ ∈ N, define VIEWmsg

C∗λ
(〈R,C∗λ(ρλ), {Ci(mi)}i/∈I〉(1λ, 1n)) to consist of the following.

1. The view of C∗λ on interaction with the honest receiver R and set {Ci(mi)}i/∈I of honest parties; this view
includes a set of transcripts {τi}i∈I and a state st.

2. A set of strings {mi}i∈I , where each mi is defined relative to τi as follows. If there exists m′i, ri such that
R(1λ, τi,m

′
i, ri) = 1, then mi = m′i, otherwise, mi = ⊥.

Next, we consider distinguishers D = {Dλ, σλ}λ∈N that take as input a sample ({τi}i∈I , st, {mi}i∈I) from the
distribution just described. We say that D is compliant if whenever {τi}i∈I is not an explainable transcript with
respect to the set I , D outputs 0 with overwhelming probability (over the randomness of D).

31

• Multi-Committer Extractability: There exists a quantum expected-polynomial-time extractor Ext such that
for any compliant non-uniform polynomial-size quantum distinguisher D = {Dλ, σλ}λ∈N, there exists a
negligible function µ(·), such that for all adversaries C∗ = {C∗λ, ρλ}λ∈N representing a subset of n commit-
ters, namely, {Ci}i∈I for some set I ⊆ [n], the following holds for all polynomial-size sequences of inputs
{{mi,λ}i/∈I}λ∈N and λ ∈ N.∣∣Pr[Dλ(VIEWmsg

C∗λ
(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1]

− Pr[Dλ(Ext(1λ, 1n, I,C∗λ, ρλ), σλ) = 1]
∣∣ ≤ µ(λ).

Remark 5.1. Observe that the above definition of quantum computational hiding does not consider poten-
tially malicious committers that interact in the protocol to try to gain information about commitments made
by other committers. This is without loss of generality, since all communication occurs between R and some
Ci. In particular, no messages are sent between any Ci and Cj .

5.2 Construction

Ingredients: All of the following are assumed to be quantum-secure.

• A non-interactive perfectly-binding commitment Com.

• A secret-key encryption scheme (Enc,Dec).14

• A compute-and-compare obfuscator Obf.

• A quantum AFS-spooky encryption scheme with distributed setup (Spooky.Setup,Spooky.KeyGen, Spooky.Enc,
Spooky.QEnc, Spooky.Eval, Spooky.Dec, Spooky.QDec).

• A two-message function-hiding secure function evaluation scheme (SFE.Gen,SFE.Enc,SFE.Eval,SFE.Dec).

5.3 Hiding

Perfect correctness and perfect binding are immediate, so we move to quantum computational hiding.

Lemma 5.1. Protocol 2 is quantum computational hiding.

Proof. Fix any non-uniform quantum polynomial-size receiver R∗ = {R∗λ, ρλ}λ∈N, a polynomial `(·), and
two sequences of sets {m(0)

λ,1, . . . ,m
(0)
λ,n}λ,n∈N, {m(1)

λ,1, . . . ,m
(1)
λ,n}λ,n∈N where each |m(b)

λ,i| = `(λ). Consider the
following sequence of hybrids for each i ∈ [n], where each alters the view of R∗ in its interaction with Ci.
The lemma follows immediately once we show that for all i ∈ [n], Hi,0 ≈c Hi,6.

• Hi,0: {VIEWR∗λ(〈R∗λ,Ci(m
(0)
λ,i)〉)(1λ, 1n)}λ∈N.

• Hi,1: Same as Hi,0 except that in Step 1, c(msg)
i and c

(td)
i are commitments to 0.

• Hi,2: Same as Hi,1 except that in Step 7, Ci computes SFE.Eval on the circuit C⊥ that always outputs
⊥.

• Hi,3: Same as Hi,2 except that in Step 5, the compute-and-compare obfuscation is simulated: C̃C ←
SimCC(1|Spooky.Dec(ski,·)|, 1|ski|+|`(λ)|, 1λ).

• Hi,4: Same as Hi,3 except that in Step 5, the compute-and-compare obfuscation is performed honestly
with respect to message m(1)

λ,i .

14We use the syntax that for key k, a ciphertext of message m is computed as ct← Enc(k,m) and decrypted as m := Dec(k, ct).

32

Protocol 2

Common input: 1λ, 1n.

Ci’s additional input: A string mi.

1. Each Ci computes tdi ← Uλ and sends c(msg)
i ← Com(1λ,mi), c(td)

i ← Com(1λ, tdi) to R.

2. For each i ∈ [n], R computes ki, ri ← Uλ and sends c(key)
i := Com(1λ, ki; ri) to Ci.

3. Each Ci computes and sends ppi ← Spooky.Setup(1λ) to R.

4. R defines pp := {ppi}i∈[n], and sends pp to each Ci. Each Ci checks that the ppi it received matches
the ppi it sent in Step 3, and if not, it aborts.

5. Each Ci computes

• lki ← Uλ,

• (pki, ski)← Spooky.KeyGen(1λ, pp),

• cti ← Spooky.Enc(pki, tdi),

• and C̃Ci ← Obf (CC[Spooky.Dec(ski, ·), lki, (ski,mi)]),

and sends (pki, cti, C̃Ci) to R.

6. For each i ∈ [n], R computes ct
(td)
i ← Enc(ki, 0

λ), dki ← SFE.Gen(1λ), and ct
(SFE)
i ←

SFE.Enc(dki, (ki, ri)) and sends (ct
(td)
i , ct

(SFE)
i) to Ci.

7. Define the circuit C[c
(key)
i , ct

(td)
i , tdi, lki](·) to take as input (ki, ri), check if c(key)

i opens to ki with
opening ri and if tdi = Dec(ki, c

(td)
i), and if so output lki, and otherwise output ⊥. Each Ci

computes and sends ĉt
(SFE)
i ← SFE.Eval(C[c

(key)
i , ct

(td)
i , tdi, lki], ct

(SFE)
i).

Figure 2: A constant-round quantum-secure multi-committer extractable commitment.

• Hi,5: Same as Hi,4 except that in Step 7, the SFE.Eval is performed honestly.

• Hi,6: Same as Hi,5 except that in Step 1, c(msg)
i is a commitment to m(1)

λ,i and c
(td)
i is a commitment to

tdi. Note that is this exactly {VIEWR∗λ(〈R∗λ,Ci(m
(1)
λ,i)〉)(1λ, 1n)}λ∈N.

Now we argue indistinguishability between each hybrid.

• Hi,0 ≈c Hi,1: This follows directly from the quantum computational hiding of Com.

• Hi,1 ≈s Hi,2: We consider two cases. First, conditioned on Ci aborting in Step 4, the hybrids are
trivially indistinguishable. Next, conditioned on Ci not aborting in Step 4, we show below that with
overwhelming probability (over the randomness of Ci and R), the circuit C[c

(key)
i , ct

(td)
i , tdi, lki] is func-

tionally equivalent to C⊥. Given this, the indistinguishability of hybrids Hi,1 and Hi,2 follows directly
from the circuit privacy of SFE.

Assuming that the circuits are not functionally equivalent with noticeable probability, we construct a
non-uniform A = {Aλ, ρAλ}λ∈N that breaks the distributed-setup quantum semantic security of Spooky
(see Definition 4.2). In the security game, A interacts with a challenger to generate pp := {ppi}i∈[n] for

33

n parties. Then, the challenger draws a public key pki based on pp, a random tdi ← Uλ, and outputs
an encryption cti of tdi under pki. A wins if it returns tdi, which would clearly break semantic security.

Now, we describe the distribution ρAλ that A receives as non-uniform advice (this distribution will
ultimately be fixed to the advice state that gives A the best advantage). It will be generated as follows.

1. Run R∗λ on ρλ, and feed to R∗λ the first messages {c(msg)
i , c

(td)
i }i∈[n] it expects from {Ci}i∈[n] (which

are commitments to 0).

2. Continue running R∗λ until it outputs its set of messages {c(key)
i }i∈[n].

3. Output the inner state of R∗λ, the messages exchanged so far, and the following. For c(key)
i , check

(inefficiently) if it is a commitment to some ki and if so, output ki.

Finally, we describe A. Aλ receives from its challenger the i’th public parameters ppi. It then runs
R∗λ on the state it received as advice and ppi. R∗λ returns pp = {ppj}j∈[n], where by assumption pp
includes the same ppi that it took as input. Aλ then forwards {ppj}j∈[n]\{i} to its challenger, who
returns with a public key pki and a ciphertext cti. At this point, Aλ generates {(pkj , ctj , C̃Cj)}j∈[n]\{i}

honestly and for party i, fixes (pki, cti) along with C̃Ci ← SimCC(1|Spooky.Dec(ski,·)|, 1|ski|+|`(λ)|, 1λ). It
then continues to run R∗λ on input all of these tuples.

When R∗λ returns ct
(td)
i , Aλ checks if it received some ki as part of its non-uniform advice, and if so,

it decrypts ct
(td)
i using key ki to recover a message tdi. It returns tdi to the challenger, who then

determines if Aλ succeeded.

Note that, by the simulation security of compute-and-compare obfuscation, the probability that Aλ
succeeds in this game is negligibly close to the probability it succeeds if it gave R∗λ an honest compute-
and-compare obfuscation C̃Ci. This follows because the lock value lki is completely independent of
R∗λ’s view through Step 6. Finally, the probability that Aλ succeeds in returning td is at least the
probability that c(key)

i is a well-formed commitment to ki and ct
(td)
i is an encryption of td under key

ki, which is exactly the probability that the circuits described above are not functionally equivalent.
Thus Aλ has non-negligible advantage in this game, a contradiction.

• Hi,2 ≈c Hi,3: This follows directly from the simulation security of compute-and-compare obfusca-
tion, since at this point, the lock value lki is independent of the rest of the distribution.

• Hi,3 ≈c Hi,4: Same argument as Hi,2 ≈c Hi,3.

• Hi,4 ≈c Hi,5: Same argument as Hi,1 ≈c Hi,2.

• Hi,5 ≈c Hi,6: Same argument as Hi,0 ≈c Hi,1.

5.4 Extractability

Lemma 5.2. Protocol 2 is multi-committer extractable.

Proof. In the following we describe the extractor. For notational convenience we assume that the set of
corrupted parties I is of size |I| = ` and we assume without loss of generality that I = [`].

Ext(1λ, 1n, I,C∗λ, ρλ):

1. Set ρλ to be the inner state of C∗λ. Begin running C∗λ until it outputs {c(msg)
i , c

(td)
i }i∈I .

2. Compute the commitments {c(key)
i }i∈I as specified in the protocol.

34

3. Receive {ppi}i∈I from C∗λ, draw ppi ← Spooky.Setup(1λ) for each i /∈ I , and send |I| copies of pp :=
{ppi}i∈[n] to C∗λ.

4. Receive {pki, cti, C̃Ci}i∈I .

5. Let |φ〉 be the inner state of C∗λ at this point, compute ct|φ〉 ← Spooky.QEnc(pk1, |φ〉).

6. For each i ∈ I , compute c̃t
(td)
i ← Spooky.Eval(pki,Enc(ki, ·), cti) and c̃t

(SFE)
i ← Spooky.Enc(pki, ct

(SFE)
i)

where ct
(SFE)
i is computed as specified in the protocol.

7. Let C∗Final be the quantum circuit (derived from the adversary) that, on input the ciphertexts {ct(td)
i , ct

(SFE)
i }i∈I

and the quantum state of the adversary, computes the messages of the corrupted parties (correspond-
ing to Step 7 of the protocol) and the updated quantum state of the adversary. Compute the following
spooky evaluation procedure:

(c̄t1, . . . , c̄t`, ĉt|φ〉)← Spooky.Eval((pk1, . . . , pk`),C
∗
Final, (ct|φ〉, {c̃t

(td)
i , c̃t

(SFE)
i }i∈I))

where each c̄ti = (c̄t
(1)
i , . . . , c̄t

(`)
i) are classical ciphertexts encrypted under pk1, . . . , pk`.

8. For all i ∈ I compute

(ĉt
(1)
i , . . . , ĉt

(`)
i)← Spooky.Eval

(pk1, . . . , pk`),SFE.Dec

dki,
⊕̀
j=1

·

 , c̄ti

 .

9. For all i ∈ [`] define CNest,i to be the classical circuit that, on input a set of strings {yj}j∈[i−1], a public
key pk, and a ciphertext ct, computes

ct′ ← Spooky.Eval(pk, y1 ⊕ · · · ⊕ yj ⊕ ·, ct).

The circuit returns C̃Ci(ct
′).

10. For all i ∈ [`, . . . , 2] compute iteratively

(c̃tsk,i, c̃tm,i)← Spooky.Eval((pk1, . . . , pki−1),CNest,i(·, pki, ĉt
(i)
i), (ĉt

(1)
i , . . . , ĉt

(i−1)
i))

and for all j ∈ [i− 1] update the variables

(ĉt
(1)
j , . . . , ĉt

(i−1)
j)← Spooky.Eval((pk1, . . . , pki−1),CRec,i[ĉt

(i)
j], (ĉt

(1)
j , . . . , ĉt

(i−1)
j , c̃tsk,i))

where CRec,i[ĉt
(i)
j] is the circuit that takes as input 2i − 2 strings (z1, . . . , zi−1) and (s1, . . . , si−1) and

computes
i−1⊕
k=1

zk ⊕ Spooky.Dec

(
i−1⊕
k=1

sk, ĉt
(i)
j

)
.

11. At the end of the iteration compute (sk1,m1)← C̃C1(ĉt
(1)
1), then for all i ∈ [2, . . . , `] compute

ski ←
i−1⊕
k=1

Spooky.Dec(skk, c̃t
(k)
sk,i)

and

mi ←
i−1⊕
k=1

Spooky.Dec(skk, c̃t
(k)
m,i).

35

12. Use the extracted keys (sk1, . . . , sk`) to decrypt the state of the adversary from ĉt|φ〉 and the ciphertexts

(ĉt
(SFE)
1 , . . . , ĉt

(SFE)
`) from the ciphertexts (c̄t1, . . . , c̄t`) as defined in Step 7 of the extractor. Return the

transcript together with the state and the extracted messages (m1, . . . ,m`).

We are now going to show that the transcript output by the extractor is computationally indistinguishable
(with respect to compliant distinguishers) from that resulting from the real execution of the protocol. We
do this by defining a sequence of hybrid distributions (for all i ∈ I) where we modify the interaction with
the i-th corrupted party. In some of the following hybrids, the simulator inefficiently extracts the messages
mi and the trapdoors tdi from the messages (c

(msg)
i , c

(td)
i) of the corrupted parties. Note that this implies

that each distribution is not necessarily computable in polynomial time. However, these hybrids should be
thought of as mental experiments, which are going to be helpful in arguing about the indistinguishability
of the simulator (which instead runs in strict quantum polynomial time).

• H0: {VIEWmsg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)}λ∈N. Recall that this distribution includes the mes-
sages {mi}i∈I committed by the transcript (if they exist).

• Hi,1: Same as H0 except that ct(SFE)
i is computed as SFE.Enc(dki, (0λ, 0λ)).

• Hi,2: Same as Hi,1 except that c(key)
i is computed as a commiment to 0λ.

• Hi,3: Same as Hi,2 except that ct(td)
i is computed as Enc(ki, tdi), where tdi is extracted (inefficiently)

from c
(td)
i .

• Hi,4: Same as Hi,3 except that c(key)
i is computed as a commitment to ki, as specified in the protocol.

• Hi,5: Same as Hi,4 except that ct(SFE)
i is computed as SFE.Enc(dki, (ki, ri)), as specified in the protocol.

We then define the last hybrid below. Note that the distribution induced by this hybrid is computable in
(quantum) polynomial time.

• H6: This is the output of the extractor as described above.

Now we argue indistinguishability between each hybrid. All reductions for distinguishers between hybrids
below may receive the state of C∗ after Step 1 along with the corresponding committed values {mi, tdi}i∈I (if
they exist) as non-uniform advice. Also, we only consider distinguishers that succeed with non-negligible
probability, even conditioned on the event that the transcript received is explainable, i.e., each message lies
in the support of the corresponding algorithm. This is because we consider only distinguishers that are
compliant, i.e., they output 0 with overwhelming probability if the transcript is not explainable.

• H0 ≈c Hi,1: This follows from the quantum input privacy of the SFE protocol. The reduction takes the
transcript of the protocol after executing Step 1 (including the state of the adversary and the messages
{mi}i∈I) as non-uniform advice and continues to run the protocol honestly through Step 5. It then sets
(0, 0) and (ki, ri) as the challenge messages for SFE. In Step 6, the reduction sets ct

(SFE)
i = ct∗, where

ct∗ is the challenge ciphertext. The rest of the protocol proceeds without changes. The reduction
returns whatever the distinguisher returns.

Clearly if ct∗ = SFE.Enc(dki, (0, 0)), then the distribution is identical to Hi,2. On the other hand if
ct∗ = SFE.Enc(dki, (ki, ri)), then the distribution induced by the reduction is identical to Hi,1. This
implies that the two hybrids are computationally indistinguishable.

• Hi,1 ≈c Hi,2: This follows from an invocation of the (non-uniform) quantum computational hiding
of the commitment scheme.

• Hi,2 ≈c Hi,3: This follows from a (non-uniform) reduction to the quantum semantic security of the
secret-key encryption scheme, where tdi (together with the transcript so far and the messages {mi}i∈I)
is given as non-uniform advice to the reduction.

36

• Hi,3 ≈c Hi,4: Same argument as Hi,1 ≈c Hi,2.

• Hi,4 ≈c Hi,5: Same argument as H0 ≈c Hi,1.

• Hi,5 ≈s H6: We are going to argue that, conditioned on the event that the messages of the corrupted
parties are explainable, the two hybrids are identical, except if an error in the evaluation (and conse-
quently in the decryption) of the AFS-spooky encryption scheme occurs. Once that is estabilshed, sta-
tistical indistinguishability follows from the correctness of the AFS-spooky encryption scheme (which
holds for all choices of the random coins used in the setup, key generation, and encryption algorithms).
To substantiate this claim, recall that

(ĉt|φ〉, c̄t1, . . . , c̄t`)← Spooky.Eval((pk1, . . . , pk`),C
∗
Final, (ct|φ〉, {c̃t

(td)
i , c̃t

(SFE)
i }i∈I))

where

c̃t
(SFE)
i = Spooky.Enc(pki, ct

(SFE)
i)

= Spooky.Enc(pki,SFE.Enc(dki, (ki, ri)))

and

c̃t
(td)
i = Spooky.Eval(pki,Enc(ki, ·), cti)

= Spooky.Eval(pki,Enc(ki, ·),Spooky.Enc(pki, tdi))
= Spooky.Enc(pki,Enc(ki, tdi)).

Therefore, by definition of C∗Final we have that for all i ∈ [`] and j ∈ [`]

c̄t
(j)
i = Spooky.Enc(pkj , x

(j)
i)

such that

⊕̀
j=1

x
(j)
i = ĉt

(SFE)
i = SFE.Eval(C[c

(key)
i , ct

(td)
i , tdi, lki], ct

(SFE)
i).

Recall that

(ĉt
(1)
i , . . . , ĉt

(`)
i) = Spooky.Eval

(pk1, . . . , pk`),SFE.Dec

dki,
⊕̀
j=1

·

 , c̄ti

and therefore for all i ∈ [`] and j ∈ [`] we have that ĉt

(j)
i = Spooky.Enc(pkj , y

(j)
i) such that

⊕̀
j=1

y
(j)
i = SFE.Dec

dki,
⊕̀
j=1

x
(j)
i

= SFE.Dec

(
dki,SFE.Eval(C[c

(key)
i , ct

(td)
i , tdi, lki], ct

(SFE)
i)

)
= lki

by the perfect correctness of the SFE protocol. Now recall that

(c̃tsk,`, c̃tm,`) = Spooky.Eval((pk1, . . . , pk`−1),CNest,`(·, pk`, ĉt
(`)
`), (ĉt

(1)
` , . . . , ĉt

(`−1)
`))

37

which implies that the two ciphertexts encode the output of the obfuscated program C̃C`(ct
′
`) where

ct′` = Spooky.Eval(pk`, y
(1)
` ⊕ · · · ⊕ y

(`−1)
` ⊕ ·, ĉt(`)`)

= Spooky.Enc(pk`, y
(1)
` ⊕ · · · ⊕ y

(`)
`)

= Spooky.Enc(pk`, lk`).

By the perfect correctness of the compute-and-compare obfuscation, the two variables (c̃tsk,`, c̃tm,`) are
AFS-spooky encryptions of (sk`,m`), under (pk1, . . . , pk`). This implies that the variables (ĉt1, . . . , ĉt`−1)
are correctly updated to

ĉti = (ĉt
(1)
i , . . . , ĉt

(`−1)
i)

= Spooky.Eval((pk1, . . . , pk`−1),CRec,`[ĉt
(`)
i], (ĉt

(1)
i , . . . , ĉt

(`−1)
i , c̃tsk,`))

where ĉt
(j)
i = Spooky.Enc(pkj , ỹ

(j)
i) such that

`−1⊕
j=1

ỹ
(j)
i =

`−1⊕
k=1

zk ⊕ Spooky.Dec

(
`−1⊕
k=1

sk, ĉt
(`)
i

)

=

`−1⊕
k=1

y
(k)
i ⊕ Spooky.Dec

(
sk`, ĉt

(`)
i

)
= y

(1)
i ⊕ · · · ⊕ y

(`)
i

= lki.

by the definition of CRec,`[ĉt
(`)
i]. Recursively applying the above procedure, we obtain that

C̃C1(ĉt1) = C̃C1(Spooky.Enc(pk1, lk1))

= (sk1,m1)

by the perfect correctness of the compute-and-compare obfuscation. It follows that the extractor suc-
cessfully recomputes sk1, which allows it to iteratively recover (sk2, . . . , sk`) from (c̃tsk,2, . . . , c̃tsk,`).
Consequently, the decrypted transcript, the (possibly quantum) state of the adversary, and the mes-
sages (m1, . . . ,m`) are distributed identically as in the previous hybrid, conditioned on the fact that
no error occurs during the evaluation algorithm.

6 Quantum-Secure Multi-Verifier Zero-Knowledge

In this section, we use standard techniques to derive a multi-verifier zero-knowledge protocol from our
multi-committer extractable commitment. We follow the approach given in [GK96] to upgrade a commit-
challenge-response Σ protocol to a full-fledged zero-knowledge protocol in constant rounds. In particular,
the (multiple) verifiers will each commit to their challenge before the Σ protocol is executed, using our
multi-committer extractable commitment scheme. A simulator will then be able to extract the challenge
from all verifiers simultaneously and proceed to simulate each Σ protocol.

As in [BS20], a couple of subtleties arise in the proof. First, the extractable commitment guarantee does
not hold against arbitrary malicious verifiers, as captured by our notion of simulation indistinguishability
against compliant distinguishers. Thus, we have the verifier attach a witness indistinguishable proof (WI)
that it acted explainably during the commitment phase, and indeed committed to the challenge that is

38

sent during the Σ protocol. However, in the proof of soundness, the verifier’s initial commitment must be
switched to a commitment to 0, since the reduction will receive the Σ protocol challenge from its challenger.
This requires the verifier to prove a different statement under the WI, which must only be possible when
interacting with a cheating prover. Details can be found in the description of Protocol 3.

Simulation Strategy. Following [BS20], we construct a zero-knowledge simulator that makes use of two
non-rewinding sub-routines. Given an arbitrary malicious (multi-)verifier V∗, we consider the following
two distributions. First, consider the real distribution over the final state of V∗ on interaction with the hon-
est prover, except that any time V∗ aborts, the distribution outputs only a ⊥ symbol. We refer to this as
RealNoAbort⊥(V∗). Next, consider the real distribution except that any time V∗ does not abort, the distribu-
tion outputs only a ⊥ symbol. We refer to this as RealAbort⊥(V∗).

As a stepping stone towards proving zero-knowledge, we construct an entirely straight-line simulator
SimNoAbort⊥ such that SimNoAbort⊥(V∗) is indistiguishable from RealNoAbort⊥(V∗). By entirely straight-
line, we mean that not only does SimNoAbort⊥ not rewind V∗, it never even re-starts V∗ from the beginning.
Analogously, we also construct a simulator SimAbort⊥ such that SimAbort⊥(V∗) is indistiguishable from
RealAbort⊥(V∗), and SimAbort⊥ is entirely straight-line.

Now, we combine the above simulators into a straight-line simulator SimComb⊥ that succeeds with
probability negligibly close to 1/2. SimComb⊥ simply chooses uniformly at random whether to run SimNoAbort⊥
or SimAbort⊥ and outputs the resulting view if the sub-routine is successful and ⊥ otherwise. Finally, we
invoke the Watrous rewinding lemma to amplify the success probability of SimComb⊥, resulting in the final
simulator Sim.

We will actually make use of the sub-routines SimNoAbort⊥ and SimAbort⊥ explicitly in later sections,
where the entirely straight-line nature of these procedures will be useful. In particular, we use both sim-
ulators in constructing non-malleable commitments (Section 7) and just SimNoAbort⊥ in the coin-flipping
protocol in Section 8 (since we define an alternate/simpler abort generation procedure in that protocol).

6.1 Definition

Definition 6.1 (Quantum-Secure Multi-Verifier Zero-Knowledge Argument for NP). A quantum-secure multi-
verifier zero-knowledge argument for a language L ∈ NP is a pair (P,V) of classical PPT interactive Turing machines.
P interacts with n copies {Vi}i∈[n] of V (who do not interact with each other) on common input 1λ and 1n, with each
Vi additionally taking an input xi ∈ L, and P additionally taking inputs {xi, wi ∈ RL(xi)}i∈[n]. At the end of the
interaction, each Vi outputs a bit, indicating whether it accepts or rejects.

1. Perfect Completeness: For any λ, n ∈ N, i ∈ [n], x ∈ L ∩ {0, 1}λ, and w ∈ RL(x),

Pr[OUTVi〈P(x,w),Vi(x)〉(1λ, 1n) = 1] = 1.

2. Quantum Computational Soundness: For any non-uniform quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N,
there exists a negligible function µ(·) such that for all λ, n ∈ N, i ∈ [n], and any x ∈ {0, 1}λ \ L,

Pr[OUTVi〈P∗λ(ρλ),Vi(x)〉(1λ, 1n) = 1] ≤ µ(λ).

3. Quantum Computational Zero-Knowledge: There exists a quantum expected polynomial-time simulator
Sim such that for any non-uniform quantum polynomial-size adversary V∗ = {V∗λ, ρλ}λ∈N representing a
subset of n verifiers, namely, {Vi}i∈I for some set I ⊆ [n],

VIEWV∗λ

〈 P({xi, wi}i∈[n]),
V∗λ({xi}i∈I , ρλ),
{Vi(xi)}i/∈I

〉
(1λ, 1n)

λ,{xi}i∈[n],{wi}i∈[n]

≈c{Sim(1λ, 1n, I, {xi}i∈n,V∗λ, ρλ)}λ,{xi}i∈[n],{wi}i∈[n]
,

where λ ∈ N, xi ∈ L ∩ {0, 1}λ, wi ∈ RL(xi).

39

6.2 Construction

Ingredients: All of the following are assumed to be quantum-secure.

• A non-interactive perfectly-binding commitment Com.

• A multi-committer extractable commitment eCom = (eCom.C, eCom.R).

• A WI proof system WI = (WI.P,WI.V).

• A sigma protocol for NP Σ = (Σ.P,Σ.V).

Remark 6.1. Observe that since the sigma protocol Σ is public-coin, Protocol 3 is publicly-verifiable. That
is, any third party, upon observing the transcript of interaction between P and V, can deduce whether V
accepted or not. This fact will be used in Section 8.

Protocol 3

Common input: 1λ and 1n.

Vi’s additional input: xi ∈ L.

P’s additional input: {xi, wi ∈ RL(xi)}i∈[n].

1. For each i ∈ [n], P computes and sends ci ← Com(1λ, wi) to Vi.

2. Each Vi computes a challenge βi ← Σ.V1(1|xi|). Then, P and {Vi}i∈[n] interact, with P
taking the role of eCom.R and Vi taking the role of eCom.Ci(βi), to produce {τi}i∈[n] ←
〈eCom.R, {eCom.Ci(βi)}i∈[n]〉(1λ, 1n).

3. For each i ∈ [n], P computes (αi, sti)← Σ.P1(xi, wi) and sends αi to Vi.

4. Each Vi sends βi.

5. For each i ∈ [n], P and Vi interact (in parallel) with P taking the role of WI.V and Vi taking the
role of WI.P to give P a WI proof that

• τi is explainable, and opens to βi,

• OR, ci opens to a non-witness zi /∈ RL(xi).

6. For each i ∈ [n], P and Vi interact (in parallel) with P taking the role of WI.P and Vi taking the
role of WI.V to give Vi a WI proof that

• ci opens to some string zi,

• OR, xi ∈ L.

7. For each i ∈ [n], P computes and sends γi = Σ.P2(xi, wi, sti, αi, βi) to Vi.

8. Each Vi accepts if Σ.V2(xi, αi, βi, γi) = 1.

Figure 3: A constant-round quantum-secure multi-verifier zero-knowledge argument for L ∈ NP.

40

6.3 Soundness

Lemma 6.1. Protocol 3 has quantum computational soundness.

Proof. Assume towards contradication that there exists a non-uniform quantum polynomial-size prover
P∗ = {P∗λ, ρ∗λ}λ∈N that with noticeable probability, convinces Vi to accept on input instances {xλ}λ∈N where
|xλ| = λ and xλ /∈ L. Let V = Vi, and by averaging, we can assume that P∗λ sends a fixed first message
cλ to V. Furthermore, since P∗λ succeeds in convincing V to accept instances xλ /∈ L with noticeable prob-
ability, the statistical soundness of the WI in Step 6 of the protocol implies that cλ must be a well-formed
commitment, that is, cλ = Com(1λ, zλ; sλ) for some (zλ, sλ). Now, consider the following sequence of com-
putationally indistinguishable hybrid distributions.

• H0: {VIEWP∗〈P∗(ρλ),V〉(1λ, xλ)}λ∈N.

• H1: Same as H0 except that V uses (zλ, sλ) as the witness for the second part of the WI statement
given in Step 5 of the protocol. H0 ≈c H1 follows from the witness indistinguishability of WI, where
the reduction is given (zλ, sλ) as non-uniform advice.

• H2: Same as H1 except that in Step 2, V takes the role of eCom.C(0λ) rather than eCom.C(β). H1 ≈c H2

follows from the computational hiding of eCom.

Using P∗, we construct a cheating prover Σ.P∗ = {Σ.P∗λ,Σ.ρ∗λ}λ∈N for the sigma protocol. The non-
uniform advice Σ.ρ∗λ is generated as follows. Run P∗(ρ∗λ) until it outputs its first message cλ. Extract from
cλ the message zλ committed and the corresponding opening sλ and define the resulting advice to consist
of the state of P∗ at this point, along with (zλ, sλ).

Σ.P∗λ(Σ.ρ∗λ) :

1. Interact with P∗λ, taking the role of eCom.C(0λ).

2. Continue running P∗λ, obtaining the message α.

3. Send α to Σ.V, receive β, and send β to P∗λ.

4. Interact with P∗λ to give P∗λ a WI proof as in Step 5 of the protocol, using witness (zλ, sλ).

5. Interact with P∗λ to receive a WI proof from P∗λ as in Step 6 of the protocol.

6. Continue running P∗λ, obtaining the message γ, and send γ to Σ.V.

Now note that P∗λ’s view in this interaction is exactly H2. Thus, since P∗ succeeds in convincing V to
accept with noticeable probability, and H0 ≈c H2, it must be the case that Σ.V accepts with noticeable
probability, a contradiction.

6.4 Zero-Knowledge

Theorem 6.1. Protocol 3 is quantum computational zero-knowledge.

Proof. We begin by describing the two sub-routines SimNoAbort⊥ and SimAbort⊥ mentioned above. Then
we combine them into SimCombλ, which we use to derive the final simulator Sim.

SimNoAbort⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ):

1. Set ρλ to be the inner state of V∗λ. For each i ∈ I , compute and send ci ← Com(1λ, 0) to V∗λ.

41

2. Let V.eCom∗λ be the portion of V∗λ that interacts with P in Step 2 above. Note that its state at the
beginning of this interaction is ρλ, {ci}i∈I . Compute

({τi}i∈I , st, {β′i}i∈I)← eCom.Ext(1λ, 1n, I,V.eCom∗λ, (ρλ, {ci}i∈I)).

If eCom.Ext produced an abort transcript, then halt and return ⊥. Otherwise continue, setting st to be
the inner state of V∗λ.

3. For all i ∈ I , compute (αi, γi)← Σ.Sim(xi, β
′
i) and send αi to V∗λ.

4. V∗λ returns {βi}i∈I .

5. Take the role of the honest prover WI.P in the |I|WI proofs that V∗λ gives. If V∗λ fails to prove any of
the statements, then halt and output ⊥.

6. Give V∗λ a total of |I|WI proofs using the |I|witnesses that show {ci}i∈I are valid commitments. Then,
send {γi}i∈I to V∗λ.

7. Output the inner state of V∗λ.

SimAbort⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ):

1. Set ρλ to be the inner state of V∗λ.

2. Interact with V∗λ as the honest prover until the end of Step 6 of the protocol, with exactly 3 differences:

• The commitments ci in Step 1 are to 0 rather than wi.

• The messages αi sent in Step 3 are generated by the simulator of the sigma protocol, (αi, γi) ←
Σ.Sim(xi, 0

λ).

• In Step 6, the witnesses used for the WI proofs are for the first statement (that ci is a valid com-
mitment).

3. If at some point during the interaction V∗λ either aborts or fails in one of its WI proofs, halt and output
V∗λ’s inner state. Otherwise, output ⊥.

SimComb⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ): With probability 1/2, execute SimNoAbort⊥(1λ, 1n, I, {xi}i∈[n],V

∗
λ, ρλ)

and otherwise execute SimAbort⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ).

Sim(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ): Let SimComb⊥(·) := SimComb⊥(1λ, 1n, I, {xi}i∈[n],V

∗
λ, ·) be the circuit SimComb⊥

with all inputs hard-coded except for ρλ, and output R(SimComb⊥, ρλ, λ), where R is the algorithm from Lemma 3.1.

Next, we introduce some notation. For V∗ = {V∗λ, ρλ}λ∈N, let Real(V∗) denoteVIEWV∗λ

〈 P({xi, wi}i∈[n]),
V∗λ({xi}i∈I , ρλ),
{Vi(xi)}i/∈I

〉
(1λ, 1n)

λ,{xi}i∈[n],{wi}i∈[n]

for λ ∈ N, xi ∈ L ∩ {0, 1}λ, wi ∈ RL(xi), and let

• RealNoAbort⊥(V∗) be the distribution Real(V∗), except that whenever an abort occurs, the distribution
outputs ⊥, and

• RealAbort⊥(V∗) be the distribution Real(V∗), except that if an abort does not occur, the distribution
outputs ⊥.

42

We continue by proving two lemmas that will be useful on their own in later sections, and will also be
useful in proving the quantum computational zero-knowledge of ZK.

Lemma 6.2. For any V∗, RealNoAbort⊥(V∗) ≈c SimNoAbort⊥(V∗).

Proof. We prove this via a sequence of hybrids.

• H0: RealNoAbort⊥(V∗).

• H1: Same as H0 except that after Step 2, the values {β′i}i∈I committed by the transcripts {τi}i∈I are
inefficiently extracted, and after Step 4, if any β′i 6= βi, the hybrid aborts (outputs ⊥).

• H2: Same as H1 except that the transcript of the extractable commitment is simulated. In particular,
the hybrid computes

({τi}i∈I , st, {β′i}i∈I)← eCom.Ext(1λ, 1n, I,V.eCom∗λ, (ρλ, {ci}i∈I)),

and proceeds to run the verifier with inner state st.

• H3: Same as H2 except that the equality checks introduced in H1 are removed, and the sigma protocol
is simulated. In particular, for each i ∈ I , the hybrid computes (αi, γi)← Σ.Sim(xi, β

′
i).

• H4: Same as H3 except that each commitment for i ∈ I in the first message sent by the prover is
ci ← Com(1λ, 0).

• H5: Same as H4 except that the WI proofs given by the prover for i ∈ I are generated with witnesses
showing that ci is a valid commitment.

Observe that H5 is exactly SimNoAbort⊥(V∗). Now we show that each consecutive pair of hybrids is indis-
tiguishable.

• H0 ≈s H1: This follows from the statistical soundness of the WI proved in Step 5.

• H1 ≈c H2: Assume there exists a distinguisher D for H1 and H2 that succeeds with non-negligible
probability. We build a compliant15 distinguisher D′ that breaks the extractability property of eCom.

First, we fix a sequence of instance-witness pairs {{xi,λ, wi,λ}i∈I}λ∈N, and first messages {{ci,λ}i∈I}λ∈N
for which D succeeds with non-negligible probability. The witnesses {{wi,λ}i∈I}λ∈N will be given as
non-uniform advice to D′. Now, D′ will take as input either the real or the simulated view with respect
to committer {V.eCom∗λ, (ρλ, {ci,λ}i∈I)}λ∈N. This view includes the messages committed and the final
state of the committer, which is the state of V∗ after Step 2 of the protocol. D′ proceeds to simulate
the rest of the interaction between P and V∗, making use of the witnesses it received as non-uniform
advice during Steps 3 and 7, as well as the committed messages it received from its challenger to im-
plement the check introduced in H1. If V∗ aborts or fails to prove any of the WI statements in Step 5,
D′ outputs 0. Otherwise, it queries D with V∗’s final view and outputs what D′ outputs.

Observe that D′’s advantage is equivalent to D’s advantage. This follows becuase i) whenever D′

queries D with a transcript, it is a faithful execution of either H1 or H2, depending on whether eCom
was simulated or not, and ii) whenever D′ does not query D, it means that V∗ failed to prove one of its
WI statements, so D’s input would have been ⊥. Finally, D′ is compliant by the statistical soundness
of the WI.

• H2 ≈c H3: This follows from the special zero-knowledge property of Σ.

• H3 ≈c H4: This follows from the computational hiding of Com.

• H4 ≈c H5: This follows from the witness indistinguishability of WI.

15Recall that such a distinguisher is guaranteed to output 0 with overwhelming probability on input any non-explainable view.

43

Lemma 6.3. For any V∗, RealAbort⊥(V∗) ≈c SimAbort⊥(V∗).

Proof. We prove this via a sequence of hybrids.

• H0: RealAbort⊥(V∗). Note that if V∗ has not aborted at some point during Steps 1-6 of the protocol,
this distribution outputs ⊥.

• H1: Same as H0 except that in Step 3, for each i ∈ I , P sends αi where (αi, γi)← Sim(xi, 0
λ).

• H2: Same as H1 except that each commitment for i ∈ I in the first message sent by the prover is
ci ← Com(1λ, 0).

• H3: Same as H2 except that the WI proofs for i ∈ I given by the prover are generated with witnesses
showing that ci is a valid commitment.

Observe that H3 is exactly SimAbort⊥(V∗). Now we show that each consecutive pair of hybrids in indistin-
guishable.

• H0 ≈c H1: This follows from the first-message indistinguishability of Σ.

• H1 ≈c H2: This follows from the computational hiding of Com.

• H2 ≈c H3: This follows from the witness indistinguishability of WI.

To finish the proof of zero-knowledge, we introduce some more notation.

• Let PrAbortReal (V∗) be the probability that V∗ aborts in the real interaction with the honest prover.

• Let PrAbortSimNoAbort(V
∗) be the probability that V∗ aborts in SimNoAbort⊥ (i.e. the outcome is ⊥).

• Let PrAbortSimAbort(V
∗) be the probability that V∗ aborts in SimAbort⊥ (i.e. the outcome is not ⊥).

• Let SimNoAbort⊥(V∗) := {SimNoAbort⊥(1λ, n, I, {xi}i∈[n],V
∗
λ, ρλ)}λ,{xi}i∈[n],{wi}i∈[n]

.

• Let SimAbort⊥(V∗) := {SimAbort⊥(1λ, n, I, {xi}i∈[n],V
∗
λ, ρλ)}λ,{xi}i∈[n],{wi}i∈[n]

.

• Let SimComb⊥(V∗) := {SimComb⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ)}λ,{xi}i∈[n],{wi}i∈[n]

.

• Let Sim(V∗) := {Sim(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ)}λ,{xi}i∈[n],{wi}i∈[n]

.

• Let RealNoAbort(V∗) be the distribution Real(V∗) conditioned on there not being an abort.

• Let RealAbort(V∗) be the distribution Real(V∗) conditioned on there being an abort.

• Let SimNoAbort(V∗) be the distribution SimNoAbort⊥ conditioned on there not being an abort (i.e.
conditioned on the output not being ⊥).

• Let SimAbort(V∗) be the distribution SimAbort⊥ conditioned on there being an abort (i.e. conditioned
on the output not being ⊥).

• Let SimComb(V∗) be the distribution SimComb⊥ conditioned on the output not being ⊥.

44

Following [BS20], we show that Real(V∗) ≈c SimComb(V∗) via a sequence on hybrids. In particular, we
show that

Real(V∗)
(1)
≡ (1− PrAbortReal (V∗))RealNoAbort(V∗) + (PrAbortReal (V∗))RealAbort(V∗)

(2)
≈s(1− PrAbortSimNoAbort(V

∗))RealNoAbort(V∗) + (PrAbortSimAbort(V
∗))RealAbort(V∗)

(3)
≈c(1− PrAbortSimNoAbort(V

∗))SimNoAbort(V∗) + (PrAbortSimAbort(V
∗))RealAbort(V∗)

(4)
≈c(1− PrAbortSimNoAbort(V

∗))SimNoAbort(V∗) + (PrAbortSimAbort(V
∗))SimAbort(V∗)

(5)
≈sSimComb(V∗),

where

1. The equality (1) follows by definition.

2. The indistinguishability (2) follows as a corollary of Lemma 6.2 and Lemma 6.3. Indeed, RealNoAbort⊥(V∗) ≈c
SimNoAbort⊥(V∗) in particular implies that the difference in the probability that the verifier aborts in
the real interaction versus the simulated interaction is negligible, and likewise for RealAbort⊥(V∗) ≈c
SimAbort⊥(V∗).

3. The indistinguishability (3) follows as a corollary of Lemma 6.2. This can be seen by considering
two cases. First, if the probability that the verifier aborts in the real interaction is negligible, then
RealNoAbort(V∗) ≈c SimNoAbort(V∗) directly follows from Lemma 6.2, and the indistinguishability
follows. Otherwise, this probability is non-negligible, meaning that RealAbort(V∗) is efficiently sam-
pleable. Thus, a reduction to Lemma 6.2 can sample from the distribution RealAbort(V∗) whenever it
receives ⊥ from its challenger.16

4. The indistinguishability (4) follows as a corollary of Lemma 6.3 via a similar analysis as the last step.

5. The indistinguishability (5) follows from the definition of Sim(V∗) and the claim that the differ-
ence between PrAbortSimNoAbort and PrAbortSimAbort is negligible (which follows as a corollary of Lemma 6.2
and Lemma 6.3).

Finally, this implies that Real(V∗) ≈c Sim(V∗) by applying Lemma 3.1 for each (λ, {xi}i∈[n], {wi}i∈[n])

with the following parameters. Set Q := SimComb⊥ as defined in the description of Sim, and set ε :=

negl(λ) + 2−λ·
3
4 , p0 := 1/4, and q := 1/2, as described in [BS20, Proposition 3.5]. This completes the proof of

quantum computational zero-knowledge.

7 Quantum-Secure Non-Malleable Commitments

7.1 Definition

In this section, we define quantum-secure non-malleable commitments w.r.t. commitment. We consider the
synchronous setting where there is a quantum man-in-the-middle adversary MIM = {MIMλ, ρλ}λ∈N inter-
acting with a classical honest committer C with tag tagC (where C commits to value v) in the left session, and
interacting with classical honest receiver R in the right session. The MIM uses tag tagMIM in its interaction
withR. Prior to the interaction, the value v is given to C as local input.

16A more formal analysis of this can be found in [BS20, Proposition 3.4].

45

Then the commit phase is executed. After obtaining an honest left message in any round, the MIM sends
its own right message. And after obtaining an honest right message in any round, the MIM sends its own
left message. Let View-ValMIMλ〈C(v),MIM(ρλ),R〉(1λ, tagC , tagMIM) denote a random variable that describes
the value v′ committed by the MIM in the right session, jointly with the view of the MIM in the full (both left
and right sessions) experiment. If the tagC used by C in the left interaction is identical to the tagMIM used by
the MIM in the right interaction, then the value v′ committed to in the right interaction is defined to be ⊥. If
the MIM sends a message that causes an honest party to abort in either the left or the right execution, then
the value v′ committed to in the right interaction is also defined to be ⊥.

We will concern ourselves with computationally hiding and statistically binding commitments that ad-
ditionally satisfy the non-malleability property defined below.

Definition 7.1 (Quantum-Secure Non-Malleable Commitments with respect to Commitment). For any ` =
`(λ) and p = p(λ), a commitment scheme 〈C,R〉 is said to be quantum secure non-malleable with respect to commit-
ment for tags in [`] if for every v1, v2 ∈ {0, 1}2p(λ), for every quantum polynomial-size MIM = {MIMλ, ρλ}λ∈N and
every quantum polynomial-size distinguisher D = {Dλ, σλ}λ∈N, there exists a negligible function η(·) such that for
all large enough λ ∈ N, and for all tagC , tagMIM ∈ [`] where tagC 6= tagMIM, the following holds:∣∣∣Pr[Dλ

(
View-ValMIMλ〈C(v1),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
= 1]

− Pr[Dλ
(
View-ValMIMλ〈C(v2),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
= 1]

∣∣∣ = η(λ) (4)

We will also consider a more general setting where the MIM interacts with polynomially many com-
mitters in the left session, and a single honest receiver in the right session. For any polynomial n = n(λ)
number of left sessions, we will let View-ValMIMλ〈C({vi}i∈[n]),MIM(ρλ),R〉(1λ, tagC , tagMIM) denote a ran-
dom variable that describes the value v′ committed by the MIM in the right session, jointly with the view of
the MIM in the full (both left and right sessions) experiment.

Definition 7.2 (Many-one Quantum-Secure Non-Malleable Commitments with respect to Commitment).
For any ` = `(λ), p = p(λ) and n = n(λ), a commitment scheme 〈C,R〉 is said to be quantum secure many-
one non-malleable with respect to commitment for tags in [`] if for every pair of tuples ({v1

i }i∈[n]), ({v2
i }i∈[n]) ∈

{0, 1}2np(λ), for every quantum polynomial-size MIM = {MIMλ, ρλ}λ∈N and every quantum polynomial-size dis-
tinguisher D = {Dλ, σλ}λ∈N, there exists a negligible function η(·) such that for all large enough λ ∈ N, and for all
({tagCi }i∈[n]), tag

MIM where each tag is in [`] such that tagMIM 6∈ {tagCi }i∈[n], the following holds:∣∣∣Pr[Dλ
(
View-ValMIMλ〈C({v1

i }i∈[n]),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ
)

= 1]

− Pr[Dλ
(
View-ValMIMλ〈C({v2

i }i∈[n]),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ
)

= 1]
∣∣∣ = η(λ) (5)

7.2 Non-Malleable Commitments for Small Tags

First, we provide an overview of our scheme for tags in [N] where N = λilog(c+1,λ). We will assume non-
interactive perfectly binding commitments and two-message SFE which can be broken with advantage at
most negl(λilog(c,λ)) by polynomial size quantum circuits. Recall that as discussed in the technical overview,
we will have the committer and receiver establish an erasure channel via a two-party input-hiding SFE. This
channel will transmit the committer’s value with probability ε, depending on their tag. Here, we discuss
our construction in more detail.

The committer on input m ∈ {0, 1}p(λ) sends a perfectly binding, computationally hiding commitment
tom, denoted by Com(m). Next, the committer and receiver run an SFE execution, where the receiver input
is a uniformly random r1 and committer input is m along with uniformly random s1 that is of the same
length as r1, and m is transmitted to the receiver if and only if s1 = r1. The length of r1 and s1 is carefully
chosen so that the probability that they are equal is η−tag, where η = λilog(c+1,λ) is a small superpolynomial
value. Additionally, the SFE scheme is such that evaluations of agreeing circuits are (subexponentially)

46

statistically close. This essentially means that no matter how a malicious committer or receiver may behave,
the message m is revealed with probability close to η−tag (with an error of negl(ηtag)).

Now, let us consider a setting where the MIM uses tagMIM and honest committer uses tagC such that
tagMIM < tagC . In this case, the SFE statistically hides the committed message except with probability
roughly η−tagC , and on the other hand, the MIM’s message is revealed with probability roughly η−tagMIM ,
which is greater than η−tagC . Intuitively, this means that any MIM that tries to maul or copy the committed
message cannot succeed, at least in executions where the MIM’s value was revealed but the honest com-
mitter’s was not. We generalize this to all transcripts by relying on the fact that no MIM can actually tell
whether the MIM’s value was revealed, and therefore cannot behave any differently in transcripts where
extraction occured vs where it didn’t.

Formally, we will prove that the joint distribution V1 of the MIM’s view and committed value when the
honest commitment is to v1, is indistinguishable from the joint distribution V2 when the honest commitment
is to v2. This is done as follows.

• First, we use the input-hiding property of SFE to argue that any distinguisher D that distinguishes
V1 from V2, must also distinguish these distributions when restricted to executions where s1 = r1 in the
right execution where the MIM is the committer. We prove that if this is not the case, then D can be
used to guess the input r1 of the honest receiver in the right execution, contradicting the input-hiding
property of SFE.

• Once this is established, we restrict ourselves to transcripts where s1 = r1 in the right execution.

• We rely on our setting of parameters to ensure that the transcripts where s1 = r1 in the left execution
can only form a negligible fraction of all transcripts where s1 = r1 in the right execution.

• Roughly, this means that for an overwhelming fraction of transcripts where s1 = r1 in the right SFE
execution, the left SFE execution perfectly erases the honest committer’s message.

• As a result, any D that distinguishes between the distributions V1 and V2, also distinguishes between
these distributions when restricted to s1 = r1 in the right execution. We note that conditioned on
s1 = r1, the MIM’s message can be efficiently extracted, and therefore D can be used to carefully break
the (super-polynomial) hiding of the commitment Com.

This completes a sketch of our argument when tagMIM < tagC . In case tagMIM > tagC , this argument does not
go through, since the honest committer’s message is revealed with probability that is larger than the MIM’s
message. To deal with this situation, we append another sequential instance of SFE to our commitment,
where the probability of extraction varies as a function of 2N−tag, instead of as a function of tag. This means
that a committer with tagC will run two instances of SFE, one which transmits the committed message with
probability η−tagC , and another that transmits it with probability η2N−tagC . Now, for tagMIM 6= tagC , in
at least one of these sessions, the probability that the MIM’s message is revealed will be larger than the
probability that the committer’s message is revealed. Moreover, since all these probabilities of revealing
messages are negligible, the other session will not reveal the committer’s message except with negligible
probability, and therefore, we can switch to a hybrid where the other session never outputs the committer’s
message. Finally, since proving security against synchronous MIM adversaries suffices for our applications,
we only focus on formally proving synchronous security here, but we suspect that similar arguments would
suffice to prove security of our construction against non-synchronous adversaries.

7.2.1 Construction

Ingredients and notation: We will assume the existence of

• A non-interactive perfectly-binding quantum computationally hiding commitment scheme Com where
there exists a constant c1 > 0 s.t. no QPT adversary has advantage better than negl(λilog(c1,λ)) in the
hiding game.

47

• A two-message SFE satisfying Definition 3.8. This means that there exists a constant c2 > 0 s.t. no
QPT adversary has advantage better than negl(λilog(c2,λ)) in the quantum input privacy game.

• A quantum-secure zero-knowledge argument for NP (ZK.P,ZK.V). (We do not require multi-verifier
zero-knowledge for this section.)

Let c = max(c1, c2), η = λilog(c+1,λ), and N = ilog(c+ 1, λ). We describe the protocol for tags or identities in
[N] in Protocol 4. Also, define the language

L =

(

c, ct1, ct2, ct
′
1,

ct′2, tag, N

)
: ∃
(
m, r, s1, s2,
u1, u2

)
s.t.

|s1| = tag · (log η),
|s2| = (2N − tag) · (log η),
c = Com(1λ,m; r),
ct1 = SFE.Eval(CC[Id(·), s1, (m||r)], ct′1;u1),
ct2 = SFE.Eval(CC[Id(·), s2, (m||r)], ct′2;u2)

 .

where Id(·) denotes the identity function.

Protocol 4

Common Input: 1λ and a tag ∈ [N]. Set t1 = tag · (log η), and t2 = (2N − tag) · (log η).

C’s Input: A message m ∈ {0, 1}p(λ).

Commit Stage:

1. C samples r ← Uλ, and sends c1 = Com(1λ,m; r).

2. R samples dk1 ← SFE.Gen(1λ), r1 ← Ut1 , and sends ct1,R ← SFE.Encdk1(r1).

3. C samples s1 ← Ut1 , u1 ← Uλ and sends ct1 = SFE.Eval
(
CC[Id(·), s1, (m||r)], ct1,R;u1

)
and s1,

where Id(·) is the identity function.

4. R samples dk2 ← SFE.Gen(1λ), r2 ← Ut2 , and sends ct2,R ← SFE.Encdk2(r2).

5. C samples s2 ← Ut2 , u2 ← Uλ and sends ct2 ← SFE.Eval
(
CC[Id(·), s2, (m||r)], ct2,R;u2

)
and s2,

where Id(·) is the identity function.

6. C runs ZK.P(x,w) and R runs ZK.V(x) in an execution of ZK (with common input (1λ)) for lan-
guage L (defined above), where x = (c1, ct1, ct2, ct1,R, ct2,R, tag, N) and w = (m, r, s1, s2, u1, u2).

Figure 4: A constant round non-malleable commitment for tags in [N], where N = ilog(c+ 1, λ).

7.2.2 Analysis

In the reveal stage, the committer outputs (m, r) and the receiver accepts the decommitment if c1 =
Com(1λ,m; r). Perfect binding follows due to the perfect binding property of Com, and hiding follows
by non-malleability, which we formally prove below.

Lemma 7.1. Protocol 4 is a non-malleable commitment according to Definition 7.1 for tags in [N].

Proof. It suffices to show that for every v1, v2 ∈ {0, 1}2p(λ) and every QPT MIM = {MIMλ, ρλ} and D =
{Dλ, ρλ}, there exists a negligible function η(·) such that for large enough λ ∈ N, for all tagC , tagMIM ∈ [`]

48

where tagC 6= tagMIM, the following holds.∣∣∣Pr[Dλ
(
View-ValMIMλ〈C(v1),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
= 1]

− Pr[Dλ
(
View-ValMIMλ〈C(v2),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
= 1]

∣∣∣ = η(λ)

To that end, we define the distributions

{Hv1,σλ :=
(
View-ValMIMλ〈C(v1),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
}λ∈N,

{Hv2,σλ :=
(
View-ValMIMλ〈C(v2),MIMλ(ρλ),R〉(1λ, tagC , tagMIM), σλ

)
}λ∈N

We also define the following collections of random variables (each indexed by λ). Each is defined w.r.t.
a (fixed) adversary MIM = {MIMλ, ρλ}λ∈N, but we sometimes drop this adversary from notation for con-
venience. We will also sometimes condition on the MIM aborting in the left execution (where it acts as
receiver). By this, we will refer to an execution where the MIM sends a message that causes an honest party
to abort.

• Let PrAbortx be the probability that MIM aborts in Hx,σλ , where x ∈ {v1, v2}.

• Let HNo Abort
x,σλ

be the distribution Hx,σλ conditioned on there not being an abort.

• Let HAbort
x,σλ

be the distribution Hx,σλ conditioned on there being an abort. Note that by definition, in
this distribution, the value committed by the MIM is always set to ⊥.

The following distributions will not be used explicitly in the hybrids, but will be convenient to define
for the proof.

• Let Hx,σλ,⊥ be the distribution Hx,σλ except whenever an abort occurs, the distribution outputs ⊥.

• Let HAbort
x,σλ,⊥ be the distribution Hx,σλ except whenever an abort does not occur, the distribution out-

puts ⊥.

We show that {Hv1,σλ}λ∈N ≈c {Hv2,σλ}λ∈N via a sequence of hybrids. In particular, we show that

Hv1,σλ
(1)
≡ (1− PrAbortv1)HNo Abort

v1,σλ
+ (PrAbortv1)HAbort

v1,σλ

(2)
≈s(1− PrAbortv2)HNo Abort

v1,σλ
+ (PrAbortv2)HAbort

v1,σλ

(3)
≈c(1− PrAbortv2)HNo Abort

v2,σλ
+ (PrAbortv2)HAbort

v1,σλ

(4)
≈c(1− PrAbortv2)HNo Abort

v2,σλ
+ (PrAbortv2)HAbort

v2,σλ

(5)
≡Hv2,σλ ,

where

1. The equalities (1) and (5) follow by definition.

2. The indistinguishability (2) follows as a corollary of Claim 7.1. Indeed, Hv1,σλ,⊥ ≈c Hv2,σλ,⊥ in
particular implies that the difference in the probability that the MIM aborts in both executions is neg-
ligible.

3. The indistinguishability (3) follows as a corollary of Claim 7.1. This can be seen by considering two
cases. First, if the probability that the MIM aborts in Hv1,σλ is negligible, then HNo Abort

v1,σλ
≈c HNo Abort

v2,σλ
directly follows from Claim 7.1, and the indistinguishability follows. Otherwise, this probability is
non-negligible, meaning that HAbort

v1,σλ
is efficiently sampleable. Thus, a reduction to Claim 7.1 can

sample from the distribution HAbort
v1,σλ

whenever it receives ⊥ from its challenger.17

17A more formal analysis of this can be found in [BS20, Lemma 3.2].

49

4. The indistinguishability (4) follows as a corollary of Claim 7.5 via a similar analysis as the last step.

Claim 7.1.
{Hv1,σλ,⊥}λ∈N ≈c {Hv2,σλ,⊥}λ∈N

Proof. We will prove this claim via the following sequence of hybrids. We set some notation before defining
these hybrids. We will set t1 = tagC · (log η) and t2 = (2N − tagC) · (log η). We also set t′1 = tagMIM · (log η)
and t′2 = (2N − tagMIM) · (log η). As a general rule, when refering to some protocol variable y in the left
execution, we will use the variable as is (and denote it by y), and in the right execution, we will denote this
variable by y′.

We let Hv1,σλ,⊥ = H0.

H1 : In this hybrid, the challenger executes the simulator Πzk.SimNoAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)18 for Πzk on

V∗λ, which denotes a wrapper around the portion of the MIM that participates in Step 6 of the protocol, and
an instance-advice distribution (xλ, σ

(xλ)
λ) defined as follows:

• Set the state of MIMλ to ρλ.

• Execute Steps 1-5 of the protocol the same way as in the experiment Hv1,σλ,⊥, and set (x,w,L) ac-
cording to Protocol 4 on behalf of C.

• Let σ(xλ)
λ denote the joint distribution of the protocol transcript, the state of the MIM at the end of Step

5, and the value v′ committed by the MIM in Step 1.

If there is an abort during sampling, then output ⊥. Otherwise, the output of this hybrid is the output of
Πzk.SimNoAbort⊥. By Lemma 6.2,

H0 ≈c H1.

H2 : This is identical to H1 except the following change.
In Step 3, C sends ct1 = SFE.Eval

(
CC[Id(·), s1, (0

p(λ)+λ)], ct1,R;u1

)
and s1. Here (xλ, σ

(xλ)
λ) and V∗λ are

defined identically to H1 except with the updated ct1 from Step 3, and the simulator Πzk.SimNoAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)

is executed. If there is an abort during sampling, then output ⊥. Otherwise, the output of this hybrid is the
output of Πzk.SimNoAbort⊥. We prove in Claim 7.2, that

H1 ≈s H2.

H3 : This is identical to H2 except the following change.
In Step 5, C sends ct2 = SFE.Eval

(
CC[Id(·), s2, (0

p(λ)+λ)], ct2,R;u2

)
and s2. Here (xλ, σ

(xλ)
λ) and V∗λ are

defined identically to H2 except with the updated ct2 from Step 5, and the simulator Πzk.SimNoAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)

is executed. If there is an abort during sampling, then output ⊥. Otherwise, the output of this hybrid is the
output of Πzk.SimNoAbort⊥. We prove in Claim 7.3, that

H2 ≈s H3.

H4 : This is identical to H3 except the following change.
In Step 1, C sets c1 = Com(1λ, 0; r). Here (xλ, σ

(xλ)
λ) and V∗λ are defined identically to H3 except with the

updated c1 from Step 1, and the simulator Πzk.SimNoAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ) is executed. If there is an abort

during sampling, then output ⊥. Otherwise, the output of this hybrid is the output of Πzk.SimNoAbort⊥.
We prove in Claim 7.4, that

H3 ≈c H4.

18Note that we drop the input I since there is only one verifier in this setting.

50

Claim 7.2.
∆(H1,H2) ≤ 2−t1 + negl(2t1)

Proof. Note that the output of SFE.Eval
(
CC[Id(·), s1, (m||r)], ct1,R;u1

)
is identical in both hybrids, unless

s1 = r1. Denote by H′1 the distribution that is identical to H1 except it outputs ⊥ when s1 = r1. Denote
by H′2 the distribution that is identical to H2 except it outputs ⊥ when s1 = r1. Now by statistical circuit
privacy, we have that there exists a constant c > 0 such that ∆(H′1,H

′
2) ≤ 2−λ

c

.
Finally, note that in each one of H1,H2,H′1,H

′
2,

Pr[s1 = r1] ≤ 2−t1 .

Thus we have,

∆(H1,H2) ≤ ∆(H′1,H
′
2) + 2 · Pr[s1 = r1] ≤ 2−t1 + 2 · 2−λ

c

≤ 2−t1 + negl(2t1)

where the last equation follows by our setting of t1.

Claim 7.3.
∆(H2,H3) ≤ 2−t2 + negl(2t2)

Proof. The proof follows nearly identically to that of Claim 7.2.

Claim 7.4.
H3 ≈c H4

Proof. Throughout this proof, we will use the notation Pr[E|H] to refer to the probability that event E occurs
in the output of distribution H.

Suppose
Pr[MIM aborts|H3] = 1− negl(λ).

Then by hiding of the commitment Com

Pr[MIM aborts|H4] = 1− negl(λ),

so both hybrids output ⊥ except with negligible probability, and are therefore computationally indistin-
guishable.

Thus for the rest of this proof, we will assume that there exists a polynomial p(·) such that:

Pr[MIM does not abort |H3] ≥ 1

p(λ)
.

By the hiding of the commitment Com,

Pr[MIM does not abort |H4] ≥ 1

p(λ)
− negl(λ).

For x ∈ [0, 4], we will denote by HNo Abort
x the distribution Hx conditioned on the MIM not aborting.

Recall that whenever the MIM aborts, the two hybrids output ⊥. Therefore, it suffices to prove that

HNo Abort
3 ≈c HNo Abort

4 .

Now, recall that the variables r′1, s′1, t′1 and so on refer to the right execution in each experiment. For
r′1 ← Ut′1 and s′1 sampled independently of r′1, we have that Pr[s′1 = r′1] = 2−t

′
1 . Then, by quantum input

51

privacy of SFE according to Definition 3.8, there exists a negligible function µ(·) such that for any x ∈ [0, 4],
r′1 ← Ut′1 and s′1 chosen by the MIM in Hx,

2−t
′
1 − µ(λilog(c,λ)) ≤ Pr[s′1 = r′1|H

No Abort
x] ≤ 2−t

′
1 + µ(λilog(c,λ)). (6)

Similarly, by quantum input privacy of SFE according to Definition 3.8, there exists a negligible function
µ′(·) such that for any x ∈ [0, 4], r′2 ← Ut′2 and s′2 output by the MIM in Hx,

2−t
′
2 − µ′(λilog(c,λ)) ≤ Pr[s′2 = r′2|H

No Abort
x] ≤ 2−t

′
2 + µ′(λilog(c,λ)) (7)

Soundness of the ZK argument, together with setting x = 0 in equations (6) and (7) implies that for i ∈ [2],

Pr
[
SFE.Decdk′i(ct

′
i)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (s′i = r′i)

∣∣∣HNo Abort
0

]
≥ (1− negl(λ)) ·

(
2−t

′
i − µ(λilog(c,λ))

)
. (8)

Note that for i ∈ [2], SFE.Decdk′i(ct
′
i)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)∧ (s′i = r′i) can be efficiently checked

by a challenger that samples dk′i and r′i.
Therefore, by combining Lemma 6.2 with equation (8), we have that for i ∈ [2],

Pr
[
SFE.Decdk′i(ct

′
i)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (s′i = r′i)

∣∣∣HNo Abort
1

]
≥ (1− negl(λ)− negl(λ)) ·

(
2−t

′
i − λilog(c,λ)

)
≥ (1− negl(λ)) ·

(
2−t

′
i − λilog(c,λ)

)
(9)

where the previous equation, for i ∈ [2], follows by considering a non-uniform reduction to Claim 6.2 that
fixes any transcript where SFE.Decdk′i(ct

′
i)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (r′i = s′i).

Next, we split our analysis into two cases. Depending on whether tagC is greater or smaller than tagMIM,
one of the two cases will always be true.

• Case 1: tagC > tagMIM. In this case, t1 = tagC · (log η), t′1 = tagMIM · (log η).

Now combining Claim 7.2 and equation (9) with i set to 1, implies:

Pr
[
SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (s′1 = r′1)

∣∣∣HNo Abort
2

]
≥ (1− negl(λ)) ·

(
2−t

′
1 − µ(λilog(c,λ))

)
− 2−t1 − negl(2t1) (10)

Next, we will carefully combine equation (10) with Claim 7.3. First, we note that the check SFE.Decdk′1(ct′1)→
(m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (r′1 = s′1) is performed before Step 5. Additionally, the only
difference between HNo Abort

2 and HNo Abort
3 is in Step 5. As a result, for every (fixed) prefix of the

transcript until Step 4, the distribution of Steps 5 and 6 generated according to HNo Abort
2 is at most

2−t2 + negl(2−t2)-far from their distribution generated according to HNo Abort
3 . This implies:

Pr
[
SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (s′1 = r′1)

∣∣∣HNo Abort
3

]
≥ (1− 2−t2 − negl(2t2)) ·

(
(1− negl(λ)) ·

(
2−t

′
1 − µ(λilog(c,λ))

)
− 2−t1 − negl(2t1)

)
≥ (1− negl(λ)− 2−t2 − negl(2t2)) ·

(
2−t

′
1 − µ(λilog(c,λ))

)
− 2−t1 + 2−t1−t2 − negl(2t1)

≥ (1− negl(λ)) ·
(

2−t
′
1 − µ(λilog(c,λ))

)
− 2−t1 − negl(2t1) (11)

52

Combining equation (11) with the negl(λilog(c,λ))- hiding of the commitment Com,

Pr
[
SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′) ∧ (s′1 = r′1)

∣∣∣HNo Abort
4

]
≥ (1− negl(λ)) ·

(
2−t

′
1 − µ(λilog(c,λ))

)
− 2−t1 − negl(2t1)− negl(λilog(c,λ)). (12)

Combining equations (11), (12) with equation (6), for x ∈ [3, 4],

Pr
[
SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)

∣∣∣(s′1 = r′1),HNo Abort
x

]
≥

(1− negl(λ)) ·
(

2−t
′
1 − µ(λilog(c,λ))

)
− 2−t1 − negl(2t1)− negl(λilog(c,λ))

2−t
′
1 + µ(λilog(c,λ))

≥ 1− negl(λ) (13)

where the last equation follows by recalling that 2−t
′
1 = η−tagMIM , 2−t1 = η−tagC and tagC ≥ (tagMIM+1),

which implies

2−t1 = η−tagC ≤ η−tagMIM−1 =
2−t

′
1

η

for η = λilog(c+1,λ).

Let us assume towards a contradiction that there exists a quantum polynomial size distinguisher D
and a polynomial poly such that for large enough λ ∈ N:

Pr[D = 1|HNo Abort
3]− Pr[D = 1|HNo Abort

4] ≥ 1

poly(λ)
. (14)

By quantum input privacy of the SFE scheme, for each x ∈ [3, 4],

|Pr[D = 1|(s′1 6= r′1),HNo Abort
x]− Pr[D = 1|(s′1 = r′1),HNo Abort

x]| = negl(λ)

which combined with equation (14) implies that there exists a polynomial q(·) such that

Pr[D = 1|(s′1 = r′1),HNo Abort
3]− Pr[D = 1|(s′1 = r′1),HNo Abort

4] ≥ 1

q(λ)
(15)

Equations (13) and (15) together imply that:

Pr[D = 1 ∧ SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)|(s′1 = r′1),HNo Abort
3]

− Pr[D = 1 ∧ SFE.Decdk′1(ct′1)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)|(s′1 = r′1),HNo Abort
4]

≥ 1

q(λ)
· (1− negl(λ)) ≥ 1

2q(λ)

This, combined with equation (6) gives a distinguisher that distinguishes Com(m) and Com(0) with
advantage at least 2−2t′1 , contradicting the hiding of Com as desired.

• Case 2: tagMIM > tagC . A similar analysis as in Case 1 implies that for any distinguisher D distin-
guishing HNo Abort

3 from HNo Abort
4 , there exists a polynomial q′(·) such that

Pr[D = 1 ∧ SFE.Decdk′2(ct′2)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)|(s′2 = r′2),HNo Abort
3]

− Pr[D = 1 ∧ SFE.Decdk′2(ct′2)→ (m′, r′) s.t. c′1 = Com(1λ,m′; r′)|(s′2 = r′2),HNo Abort
4]

≥ 1

q′(λ)

This, combined with equation (7) gives a distinguisher that distinguishes Com(m) and Com(0) with
advantage at least 2−2t′2 , contradicting the hiding of Com as desired.

53

Claim 7.1 follows by observing that in H4, we erased all information about either one of v1 or v2. There-
fore one can perform the above hybrids in reverse order, while arguing indistinguishability, until one ends
up with Hv2,σλ,⊥.

Claim 7.5.
{HAbort

v1,σλ,⊥}λ∈N ≈c {H
Abort
v2,σλ,⊥}λ∈N

Proof. Note that in this case, the value committed by the MIM is always ⊥. Therefore, proving indistin-
guishability of these distributions is significantly more straightforward than in Claim 7.1. The proof again
relies on a sequence of hybrid experiments, that we define below. Recall that when refering to some pro-
tocol variable y in the left execution, we will use the variable as is (and denote it by y), and in the right
execution, we will denote this variable by y′.

We let HAbort
v1,σλ,⊥ = H0.

H1 : In this hybrid, the challenger executes one run of the simulator Πzk.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)19

for Πzk on V∗λ, which denotes a wrapper around the portion of the MIM that participates in Step 6 of the
protocol, and an instance-advice distribution (xλ, σ

(xλ)
λ) defined as follows:

• Set the state of MIMλ to ρλ.

• Execute Steps 1-5 of the protocol the same way as in the experiment Hv1,σλ,⊥, and set (x,w,L) ac-
cording to Protocol 4 on behalf of C.

• Let σ(xλ)
λ denote the joint distribution of the protocol transcript, the state of the MIM at the end of Step

5, and the value v′ committed by the MIM in Step 1.

If there is an abort during sampling then output the transcript generated until the abort happens and the
state of the MIM. Otherwise, the output of the hybrid is the output of Πzk.SimAbort⊥(1λ, xλ,V

∗
λ, σ

(xλ)
λ). By

Lemma 6.3,
H0 ≈c H1.

H2 : This is identical to H1 except the following change.
In Step 3, C sends ct1 = SFE.Eval

(
CC[Id(·), s1, (0

p(λ)+λ)], ct1,R;u1

)
and s1. Here (xλ, σ

(xλ)
λ) and V∗λ are

defined identically to H1 except with the updated ct1 from Step 3, and the simulator Πzk.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)

is executed. If there is an abort during sampling then output the transcript generated until the abort hap-
pens and the state of the MIM. Otherwise, the output of the hybrid is the output of Πzk.SimAbort⊥(1λ, xλ,V

∗
λ, σ

(xλ)
λ).

We prove in Claim 7.6, that
H1 ≈s H2.

H3 : This is identical to H2 except the following change.
In Step 5, C sends ct2 = SFE.Eval

(
CC[Id(·), s2, (0

p(λ)+λ)], ct2,R;u2

)
and s2. Here (xλ, σ

(xλ)
λ) and V∗λ are

defined identically to H2 except with the updated ct2 from Step 5, and the simulator Πzk.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)

is executed. If there is an abort during sampling then output the transcript generated until the abort hap-
pens and the state of the MIM. Otherwise, the output of the hybrid is the output of Πzk.SimAbort⊥(1λ, xλ,V

∗
λ, σ

(xλ)
λ).

We prove in Claim 7.7, that
H2 ≈s H3.

H4 : This is identical to H3 except the following change.

19Note that we drop the input I since there is only one verifier in this setting.

54

In Step 1, C sets c1 = Com(1λ, 0; r). Here (xλ, σ
(xλ)
λ) and V∗λ are defined identically to H3 except with

the updated c1 from Step 1, and the simulator Πzk.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ) is executed. If there is an

abort during sampling then output the transcript generated until the abort happens and the state of the
MIM. Otherwise, the output of the hybrid is the output of Πzk.SimAbort⊥(1λ, xλ,V

∗
λ, σ

(xλ)
λ). We prove in

Claim 7.8, that
H3 ≈c H4.

Claim 7.6.
∆(H1,H2) ≤ 2−t1 + negl(2t1)

Proof. Note that the output of SFE.Eval
(
CC[Id(·), s1, (m||r)], ct1,R;u1

)
is identical in both hybrids, unless

s1 = r1. Denote by H′1 the distribution that is identical to H1 except it outputs ⊥ when s1 = r1. Denote
by H′2 the distribution that is identical to H2 except it outputs ⊥ when s1 = r1. Now by statistical circuit
privacy, we have that there exists a constant c > 0 such that ∆(H′1,H

′
2) ≤ 2−λ

c

.
Finally, note that in each one of H1,H2,H′1,H

′
2,

Pr[s1 = r1] ≤ 2−t1 .

Thus we have,

∆(H1,H2) ≤ ∆(H′1,H
′
2) + 2 · Pr[s1 = r1] ≤ 2−t1 + 2 · 2−λ

c

≤ 2−t1 + negl(2t1)

where the last equation follows by our setting of t1.

Claim 7.7.
∆(H2,H3) ≤ 2−t2 + negl(2t2)

Proof. The proof follows nearly identically to that of Claim 7.2.

Claim 7.8.
H3 ≈c H4

Proof. Recall that both hybrids only output transcripts, the value committed by the MIM, and the MIM’s
state when the MIM aborts at some point. Otherwise both hybrids output ⊥. As such, the value committed
by the MIM in every transcript in the distributions H3, and H4, is ⊥.

It remains to prove that the joint distribution of the transcript and state of the MIM in H3 is indistin-
guishable from H4, which follows immediately by the hiding of Com.

Claim 7.5 follows by observing that in H4, we erased all information about either one of v1 or v2. There-
fore one can perform the above hybrids in reverse order, while arguing indistinguishability, until one ends
up with HAbort

v2,σλ,⊥.

This concludes the proof of the lemma.

55

7.3 Tag Amplification

Beginning with quantum-secure non-malleable commitments that support tags in [t], we describe how to
obtain quantum-secure non-malleable commitments that support tags in [2t/2], for any t ≤ poly(λ). We will
apply this compiler recursively a constant number of times to our base construction to obtain a scheme for
tags in [2λ].

The protocol itself follows nearly identically along the lines of existing tag amplification compilers in
the literature [Wee10, PW10]. Each larger tag (in 2t/2) is encoded into a set Stag of t small tags, and this set
satisfies the following property. For each pair tag, tag′ ∈ 2t/2 where tag 6= tag′, there exists an element in
the set Stag′ that does not lie in the set Stag. Now the committer on input a messagem and tag tag, generates
t commitments, where the ith commitment commits via the underlying non-malleable commitment to the
the message m using as tag the ith member of the set Stag. The committer then proves to the receiver (in
zero-knowledge) that all the commitments were correctly generated according to protocol specifications.

Now, the property of the tag encoding scheme guarantees that the MIM will always end up using at least
one small tag that is different from all small tags used by the honest committer. As such, we can argue that
the value committed by the MIM using this differing tag is independent of the honest committer’s input.

We formally prove this via a hybrid argument, where we first rely on soundness of the ZK argument
to argue that we can “focus” solely on the values committed by the MIM using the differing tag. Next, we
simulate the ZK argument on behalf of the honest committer. Then we modify the values committed via all
the honest small tags, while arguing that the value committed by the MIM under the differing tag does not
change.

Finally, we point out an interesting feature of our amplification proof: we split the use of the ZK simu-
lator into two cases: one simulator that only outputs non-aborting views (and otherwise outputs ⊥), and a
separate one that only outputs aborting views (and otherwise outputs ⊥).

7.3.1 Construction

We describe our compiler that converts a tag-based non-malleable commitment scheme for tags in t(λ),
where t(λ) ≤ poly(λ), into one that supports tags in 2t/2, while adding only a constant number of rounds.
This is formalized in Protocol 5. We will let nmCom denote a non-malleable commitment for tags in t(λ),
and we denote the message length by p(λ).

Ingredients and notation: We will assume the existence of a quantum-secure zero-knowledge argument
for NP (ZK.P,ZK.V). (We do not require multi-verifier zero-knowledge for this section.)

7.3.2 Analysis.

In the reveal stage, the committer outputs (m, r1,C) and the receiver accepts the decommitment if this
produces is a valid decommitment of c1 according to nmCom. The perfect binding property of the scheme
in Protocol 5 follows directly from the perfect binding property of the underlying protocol nmCom. Hiding
follows from non-malleability, the proof of which is in Appendix C.

Lemma 7.2. Protocol 5 is a one-one non-malleable commitment according to Definition 7.1 for tags in [2t/2].

We also have the following lemma, that follows by a standard hybrid argument, due to [LPV08].

Lemma 7.3. Every quantum-secure non-malleable commitment satisfying Definition 7.1 also satisfies Definition 7.2.

We conclude this section with the following theorem, that can be obtained by applying the compiler
in Protocol 5 (c + 1) times to the base non-malleable commitment from Protocol 4, and then applying
Lemma 7.3.

Theorem 7.1. Assuming there exists a constant c ∈ N such that at all quantum polynomial size circuits have advan-
tage negl(λilog(c,λ)) in distinguishing LWE samples from uniform, and spooky encryption for relations computable by
quantum circuits, there exist quantum-secure constant round non-malleable commitments satisfying Definition 7.2.

56

Protocol 5

Common Input: Security parameter 1λ, tag ∈ [2t/2] represented as {tagi}i∈[t/2]. Here tagi = i||tag[i]

where tag[i] denotes the ith bit of tag.

C’s Input: A string m ∈ {0, 1}p(λ).

Commit Stage:

• Stage 1: In parallel, for all i ∈ [k], C runs nmCom.C(m; ri,C) and R runs R(ri,R) with common
input tagi. Let ci and φi denote the set of all messages generated by C and R respectively in the
ith parallel execution.

• Stage 2: C executes ZK.P(x,w,L) and R executes ZK.V(x,L) where:

– x = {ci}i∈[t/2], w =
(
m, {ri,C}i∈[t/2]

)
,

– L =
{
{bi}i∈[t/2]

∣∣∃(a, {si}i∈[t/2]

)
s.t. ∀i ∈ [t/2], nmCom.C(a, tagi, φi; si) = bi

}
– where nmCom.C(a, tagi, φi; si) denotes the transcript output by Ci on input receiver mes-

sages φi.

Figure 5: A constant round non-malleable commitment for tags in [2t/2].

Finally, we remark that a folklore technique [DDN91] where the committer and receiver participate
in rounds, sending ⊥ in every round, except for the committer sending ECom(m; r) in round i (where
i = tag) using a single-committer extractable commitment yields a one-to-one non-malleable commitment
for tag ∈ [N] in the synchronous setting, inO(N) rounds, for anyN ≤ poly(λ). SettingN = ilog(c, λ) for any
constant c ∈ N yields a protocol with O(ilog(c, λ)) rounds for ilog(c, λ) tags. Applying our tag amplification
compiler to this scheme (c+1) times, yields a non-malleable commitment for tags in 2λ against synchronous
adversaries, in O(ilog(c, λ)) rounds. The underlying extractable commitment can be instantiated using the
technique of [BS20] based on polynomial quantum hardness of LWE and polynomial hardness of QFHE.
This yields O(ilog(c, λ)) round post-quantum non-malleable commitments from polynomial hardness as-
sumptions.

8 Quantum-Secure Multi-Party Coin-Flipping

We now combine the primitives constructed in earlier sections to build a constant-round coin-flipping pro-
tocol secure against quantum polynomial-time adversaries. The protocol was described at a high level
in Section 2.5, and is given in full detail in Protocol 6. As explained in the overview, each party will first
commit to random strings ci, ri using a non-malleable commitment, then commit to ci using our parallel ex-
tractable commitment with randomness ri, and finally broadcast ci. The parties will output

⊕
i∈[n] ci as the

common output if all parties manage to prove in zero-knowledge that they behaved honestly throughout
the protocol.

Proof Strategy. Our simulator will be structurally similar to the zero-knowledge simulator described in Sec-
tion 6, in the sense that we build a simulator SimNoAbort⊥ specifically for non-aborting transcripts and a
simulator SimAbort⊥ specifically for aborting transcripts. The bulk of the work in SimNoAbort⊥ involves
sampling instances and an advice state (consisting of the adversary’s view through Step 5 of the protocol)
for the final part of the adversary, which in particular interacts with honest parties in order to verify their
zero-knowledge arguments in Step 6. These arguments are then simulated by (part of) the zero-knowledge
simulator ZK.SimNoAbort⊥, which takes as input the adversary and the sampled advice state.

57

However, as alluded to in Section 2.5, once this simulation is performed in the hybrids, it is no longer
possible to directly invoke the soundness of the adversary’s zero-knowledge arguments in Step 6, when
changing how SimNoAbort⊥ samples the advice state. Thus, we invoke soundness in the very first hybrid
to claim that the following “check” never fails, except with negligible probability.

The check fails if the Step 1-5 messages sent by at least one of the malicious parties are not explainable,
yet the honest parties do not abort. If this check fails, we simply append check-fail to the transcript. Now,
this check will continue to be computed in later hybrids, but we can claim that since (as we show) all
later hybrids are indistinguishable from the first hybrid, check-fail must also only appear with negligible
probability in these later hybrids. When it comes time to invoke the non-malleability of the honest party
commitments, we can use the fact that check-fail appears with negligible probability to show that a malicious
party cannot even change its extractable commitment based on the changing simulated view. If it could, then
since non-malleability implies that its previously sent non-malleable commitment couldn’t change, then it
must be the case that its messages are no longer explainable (since its two commitments are no longer
consistent). Thus, the check will fail and appear in the hybrid’s output, a contradiction. Of course, turning
this intuition into a formal proof requires much care, especially since this check is inefficient. Thus, we will
make liberal use of non-uniform fixing arguments.

We also remark that it would be most natural to rely on many-to-many non-malleable commitments in
this multi-party setting. However, we only have a post-quantum construction of one-one commitments
in Section 7. Thus, when invoking non-malleability, a reduction must isolate the commitment of a single
malicious party that would constitute a mauling attack. We again use both non-uniformity and the check-fail
condition here, showing that any mauling attack would cause check-fail to appear, and thus that there must
exist some malicious party for which the check fails over specifically its messages. The identity of this party
can then be given as non-uniform advice to a reduction.

8.1 Definition

Definition 8.1 (Quantum-Secure Fully-Simulatable Multi-Party Coin-Flipping). Let k = k(λ) be any fixed
polynomial. An fully-simulatable n-party k-coin-flipping protocol with quantum security is given by n classical
interactive Turing machines (P1, . . . , Pn) with joint input (1λ, 1n) and outputs ri ∈ {0, 1}k(λ) ∪ {⊥}.

Given a coin-flipping protocol and an adversary A∗ = {A∗λ, ρλ}λ∈N that corrupts a set of parties S ⊂ [n], let H
denote [n] \ S and define the random variable Real(A∗λ, ρλ) to consist of the outputs of honest parties {Pi}i∈H as well
as the view VIEWA∗λ

〈A∗λ(ρλ), {Pi}i∈H〉(1λ, 1n) of A∗λ after executing the protocol in the presence of A∗λ.
We require the following security property. Fix any S ⊂ [n]. There exists a quantum expected polynomial-time

simulator Sim, such that for any quantum polynomial-size adversary A∗ = {A∗λ, ρλ}λ∈N that participates in the
protocol, generating joint messages on behalf of all algorithms in S,

{Real(A∗λ, ρλ)}λ∈N ≈c {Sim(1λ, 1n, r,A∗λ, ρλ) | r ← Uk(λ)}λ∈N, (16)

where for the “protocol output” part of its simulation output, Sim(1λ, 1n, r,A∗λ, ρλ) is restricted to output either r|H|

or ⊥|H|.

8.2 Construction

Ingredients: All of the following are assumed to be quantum-secure.

• A many-to-one non-malleable commitment nmCom = (nmCom.C, nmCom.R).

• A multi-committer extractable commitment eCom = (eCom.C, eCom.R).

• A multi-verifier publicly-verifiable zero-knowledge argument for NP ZK = (ZK.P,ZK.V).

Languages. We define two NP languages L(eCom) and L(both). Let (x, y) := 〈nmCom.C(c; r), nmCom.Ry〉
denote the transcript of an execution of nmCom where the receiver messages are fixed to y and x is the set

58

of resulting committer messages. Similarly, let (x, y) := 〈eCom.C(c; r), eCom.Ry〉 denote the transcript of an
execution between some eCom.C and eCom.R (which may be part of a larger eCom transcript involving other
committers) where the receiver messages are fixed to y and x is the set of resulting committer messages.
Then L(eCom) and L(both) are defined as follows.

L(eCom) :=

{
(x, y)

∣∣∣∣ ∃(c, r) s.t. (x, y) := 〈eCom.C(c; r), eCom.Ry〉
}

L(both) :=

{
(x, y, x′, y′, c)

∣∣∣∣ ∃(r, s) s.t. (x, y) := 〈nmCom.C((c, r); s), nmCom.Ry〉,
(x′, y′) := 〈eCom.C(c; r), eCom.Ry′〉

}

Protocol 6

Common input: Security parameter 1λ and number of parties 1n.

1. For all i ∈ [n], Pi samples ci ← {0, 1}k(λ), {ri,j , si,j}j∈[n]\{i} ← {0, 1}2(n−1)λ.

2. For all i ∈ [n], j ∈ [n] \ {i}, Pi runs nmCom.C((ci, ri,j); si,j) with tag i and Pj runs nmCom.R to
produce (

α
(c)
i,j , α

(r)
i,j

)
← 〈nmCom.C((ci, ri,j); si,j), nmCom.R〉(1λ),

where α(c)
i,j denotes the committer messages sent by Pi and α

(r)
i,j denotes the receiver messages

sent by Pj .

3. For all j ∈ [n], Pj runs eCom.R and each Pi for i 6= j runs eCom.Ci(ci; ri,j) to produce({
β

(c)
i,j

}
i∈[n]\{j}

,
{
β

(r)
i,j

}
i∈[n]\{j}

)
← 〈{eCom.Ci(ci; ri,j)}i∈[n]\{j}, eCom.R〉(1λ, 1n−1)

where β(c)
i,j denotes the committer messages sent by Pi and β

(r)
i,j denotes the receiver messages

sent by Pj .

4. For all i ∈ [n], Pi runs ZK.P({xi,j , wi,j}j∈[n]\{i}) and each {Pj}j∈[n]\{i} runs ZK.Vj(xi,j) in an
execution of ZK with common input (1λ, 1n−1) for language L(eCom) (defined above), where
xi,j = (β

(c)
i,j , β

(r)
i,j) and wi,j = (ci, ri,j).

5. For all i ∈ [n], Pi broadcasts ci.

6. For all i ∈ [n], Pi runs ZK.P({xi,j , wi,j}j∈[n]\{i}) and each {Pj}j∈[n]\{i} runs ZK.Vj(xi,j) in an
execution of ZK with common input (1λ, 1n−1) for languageL(both) (defined above), where xi,j =

(α
(c)
i,j , α

(r)
i,j , β

(c)
i,j , β

(r)
i,j , ci) and wi,j = (ri,j , si,j).

7. For all i ∈ [n], Pi runs the ZK verification algorithm on all 2n(n − 1) proofs provided in Steps 4
and 6. If all proofs are accepting, Pi outputs

⊕
i∈[n] ci, and otherwise outputs ⊥.

Figure 6: A quantum-secure constant-round coin-flipping protocol.

8.3 Security

Theorem 8.1. For any n and polynomial k(λ), Protocol 6 is a quantum-secure fully-simulatable n-party k-coin-
flipping protocol.

59

Proof. Fix a number of parties n, a polynomial k = k(λ), and a set S ⊂ [n] of malicious parties. We construct
a simulator Sim that for every quantum polynomial-size adversary A∗ = {A∗λ, ρλ}λ∈N corrupting parties in
S, outputs a distribution

{Sim(1λ, 1n, r,A∗λ, ρλ) | r ← Uk(λ)}λ∈N
that satisfies the conditions of Definition 8.1. Similar to the proof of zero-knowledge in Section 6.4, the
simulator Sim will make use of two sub-routines, SimNoAbort⊥ and SimAbort⊥.

SimNoAbort⊥(1λ, 1n, r,A∗λ, ρλ):

1. Let i∗ denote the smallest index of a party in H. Define the machine V∗λ as follows. V∗λ will act on
behalf of verifiers {ZK.Vj}j∈S in the ZK session in Step 6 of Protocol 6 where party Pi∗ is the prover.
Thus, it consists of the portion of A∗λ that interacts during this step as well as the portion of the honest
parties H that interact in the n− 1 sessions where Pi∗ is not the prover.

We will next describe how a particular instance-advice distribution ({xj}j∈S, σ{xj}j∈S) is generated
for V∗λ. Generating this distribution will involve simulating Steps 1-5 of Protocol 6 for adversary A∗λ.
In particular, the advice state σ{xj}j∈S will include the transcript τ (5) of the entire simulated execution
through Step 5, the inner state ρ(5) of A∗λ at this point, as well as the witnesses {ri,j , si,j}i∈H\{i∗},j∈[n]\{i}
to be used by parties {Pi}i∈H\{i∗} in Step 6 of Protocol 6. The instances {xj}j∈S will be a subset of τ (5).
In particular, for each j ∈ S, xj will be set to (α

(c)
i∗,j , α

(r)
i∗,j , β

(c)
i∗,j , β

(r)
i∗,j , c

′
i∗), which are the messages ex-

changed by i∗ and j during Steps 2 and 3 when Pi∗ was acting as a committer, as well the value c′i∗
broadcast by Pi∗ in Step 5.

This instance-advice distribution is generated as follows.

(a) For each party {Pi}i∈H\{i∗}, sample ci, {ri,j , si,j}j∈[n]\{i} as in Step 1 of Protocol 6.

(b) Set ρ(1) := ρλ to be the inner state of A∗λ, and interact with A∗λ to run Step 2 of Protocol 6 honestly,
with the only difference being that party Pi∗ commits to (0k(λ), 0λ). Let ρ(2) be the resulting inner
state of A∗λ, and let {α(c)

i∗,j , α
(r)
i∗,j}j∈S be the messages sent between Pi∗ and S in commitments

where Pi∗ was the committer.

(c) Define the machine C∗λ as follows. C∗λ will act on behalf of committers {eCom.Cj}j∈S in the eCom
session in Step 3 of Protocol 6 where party Pi∗ is the receiver. Thus, it consists of the portion
of A∗λ that interacts during this step as well as the portion of the honest parties H that interact in
the n − 1 sessions where Pi∗ is not the receiver. The advice state σλ given to C∗λ will include the
transcript τ (2) of the execution so far, the inner state ρ(2) of A∗λ at this point, and the messages
and randomness {ci, ri,j}i∈H,j∈[n]\{i} to be used in the commitments by honest players in Step
3, where ci∗ = 0k(λ) and ri∗,j is uniformly and independently sampled from the rest of the
transcript. The view of C∗λ at the end of this interaction includes the updated execution transcript
τ (3) as well as the updated inner state ρ(3) of A∗λ.
Now, compute

({τj}j∈S, st, {c′j}j∈S)← eCom.Ext(1λ, 1n−1,S,C∗λ, σλ),

and parse ({τj}j∈S, st) to obtain τ (3) and ρ(3), where τ (3) in particular includes the messages
{β(c)

i∗,j , β
(r)
i∗,j}j∈S exchanged by Pi∗ and S in commitments where some party j ∈ S was the re-

ceiver. If eCom.Ext produced an abort transcript, then return ⊥, and otherwise continue, setting
ρ(3) to be the state of A∗λ.

(d) Interact with A∗λ to run Steps 4 and 5 of the protocol honestly, with the only difference being that
party Pi∗ broadcasts c′i∗ :=

⊕
j∈S c

′
j

⊕
j∈H\{i∗} cj ⊕ r in Step 5.

(e) If there exists j ∈ S such that the output cj of Pj in Step 5 is not equal to c′j , then return⊥. Other-
wise, let τ (5) denote the transcript so far and let ρ(5) denote the state of A∗λ at the end of Step 5. For
each j ∈ S set xj = (α

(c)
i∗,j , α

(r)
i∗,j , β

(c)
i∗,j , β

(r)
i∗,j , c

′
i∗), and set σ{xj}j∈S = (τ (5), ρ(5), {ri,j , si,j}i∈H\{i∗},j∈[n]\{i}).

60

2. Now, compute
VIEW← ZK.SimNoAbort⊥(1λ, 1n−1,S, {xj}j∈S,V∗λ, σ{xj}j∈S).

If the proofs (which are included in VIEW) output by A∗λ are accepting, then output VIEW, and other-
wise output ⊥.

SimAbort⊥(1λ, 1n, r,A∗λ, ρλ):

1. Set ρλ as the initial state of A∗λ. Execute Steps 1-6 with A∗λ using honest party strategy according to
Protocol 6 on behalf of parties {Pj}j∈H. If sampling this distribution leads to an abort at any point,
halt and return the view of A∗λ. Otherwise, return ⊥.

SimComb⊥(1λ, 1n, I,A∗λ, ρλ): With probability 1/2, execute SimNoAbort⊥(1λ, 1n, I, {xi}i∈[n],V
∗
λ, ρλ) and oth-

erwise execute SimAbort⊥(1λ, 1n, I,A∗λ, ρλ).

Sim(1λ, 1n, I,A∗λ, ρλ): Let SimComb⊥(·) := SimComb⊥(1λ, 1n, I,A∗λ, ·) be the circuit SimComb⊥with all inputs
hard-coded except for ρλ, and output R(SimComb⊥, ρλ, λ), where R is the algorithm from Lemma 3.1.

This concludes the description of the simulator. Before proceeding to the proof of indistinguishability,
we define the following collections of random variables (each indexed by λ). Each is defined with respect
to the adversary A∗ = {A∗λ, ρλ}λ∈N that we are considering. Throughout, whenever we say abort, we mean
that either one of the parties controlled by the adversary aborts, or it fails to prove one of its statements.

• Let SimNoAbort⊥(A∗) := {SimNoAbort⊥(1λ, 1n, r,A∗λ, ρλ)}λ∈N.

• Let SimAbort⊥(A∗) := {SimAbort⊥(1λ, 1n, r,A∗λ, ρλ)}λ∈N.

• Let SimComb⊥(A∗) := {SimComb⊥(1λ, 1n, r,A∗λ, ρλ)}λ∈N.

• Let Sim(V∗) := {Sim(1λ, 1n, r,A∗λ, ρλ)}λ∈N.

• Let RealNoAbort⊥(A∗) be the distribution Real(A∗), except that whenever an abort occurs, the distri-
bution outputs ⊥.

• Let RealAbort⊥(A∗) be the distribution Real(A∗), except that if an abort does not occur, the distribution
outputs ⊥.

• Let SimComb(A∗) be the distribution SimComb⊥ conditioned on the output not being ⊥.

Next, we prove the following claim.

Claim 8.1.
RealNoAbort⊥(A∗) ≈c SimNoAbort⊥(A∗)

Proof. This can be proved via the following sequence of hybrids.

• H0 : RealNoAbort⊥(A∗).

• H1 : This hybrid is the same as H0, except that it attaches check-fail to the output if the following
(inefficient check) on Steps 1-4 of the transcript, fails.

Let i∗ denote the smallest index in H. For j ∈ S, let yj := (α
(c)
j,i∗ , α

(r)
j,i∗ , β

(c)
j,i∗ , β

(r)
j,i∗ , cj) be the messages

exchanged between Pi∗ and Pj in Steps 2 and 3 when Pj was acting as the committer, along with the
message broadcast by Pj in Step 4. The check fails if there exists a j ∈ S such that yj /∈ L(both).

• H2 : Let V∗λ be the machine defined in the description of SimNoAbort⊥. Sample instance-advice dis-
tribution ({xj}j∈S, σ{xj}j∈S) as described below.

61

1. Execute Steps 1-4 of the protocol identically to H2. Let τ (4) denote the transcript generated so
far, let ρ(4) denote the state of A∗λ at the end of Step 4, and let {ri,j , si,j}i∈H\{i∗},j∈[n]\{i} be strings
drawn in Step 1 of the protocol.

2. If the check described in H2 fails, then attach check-fail to the transcript.

3. For j ∈ S, let xj := (α
(c)
i∗,j , α

(r)
i∗,j , β

(c)
i∗,j , β

(r)
i∗,j , c

′
i∗) be the messages exchanged between Pi∗ and Pj in

Steps 2 and 3 when Pi∗ was acting as the committer and Pj was acting as the receiver, along with
the message broadcast by Pi∗ in Step 4. Set σ{xj}j∈S = (τ (4), ρ(4), {ri,j , si,j}i∈H\{i∗},j∈[n]\{i}).

Now, compute
VIEW← ZK.SimNoAbort⊥(1λ, 1n−1,S,V∗λ, ({xj}j∈S, σ{xj}j∈S)).

If the proofs (which are included in VIEW) output by A∗λ are accepting, then output VIEW, and other-
wise output ⊥.

• H3 : Sample instance-advice distribution identically to H2, except that in Step 2, party Pi∗ commits
to (0k(λ), 0λ).

• H4 : Sample instance-advice distribution identically to H3, except that in Step 4, the ZK session where
Pi∗ is the prover is simulated.

• H5 : Sample instance-advice distribution identically to H4, except that in Step 3, for all j ∈ [n] \ {i∗},
party Pi∗ commits to 0k(λ).

• H6 : Sample instance-advice distribution identically to H5, except that in Step 4, the ZK session where
Pi∗ is the prover is performed honestly, with witnesses {(0k(λ), ri∗,j)}j∈S.

• H7 : Let C∗ = (C∗λ, σλ)λ∈N be the machine and corresponding non-uniform advice as defined in the
description of SimNoAbort⊥. Sample instance-advice distribution identically to H6, except that the
values committed by A∗ in interaction with Pi∗ are extracted as in the description of Sim. Additionally,
this hybrid outputs ⊥ if the values {cj}j∈S output by parties {Pj}j∈S in Step 5 do not match the
extracted {c′j}j∈S.

• H8 : This hybrid is the distribution SimNoAbort⊥(A∗). The only differences between H7 and H8 are
the check introduced in H1 is removed, and:

– In H7, the challenger generates Pi∗ ’s message in Step 4 by sampling uniformly random ci∗ .

– In H8, the challenger generates Pi∗ ’s message in Step 4 as ci∗ =
⊕

j∈S c
′
j

⊕
j∈H\{i∗} cj ⊕ r.

Now we show that each consecutive pair of hybrids is indistinguishable. We let BADi be the event that
in hybrid Hi, check-fail appears in the output distribution (meaning that the check introduced in H1 failed
AND there was no abort).

• H0 ≈s H1 : It suffices to show that Pr[BAD1] = negl(λ), which follows directly from the quantum
computational soundness of ZK.

• H1 ≈c H2 : This follows from Lemma 6.2.

• H2 ≈c H3 : We define distributions H′2 and H′3 that are identical to H2 and H3 respectively, except
that H′2 and H′3 do not perform the additional check described in H1, and as such, never attach
check-fail to the output.

To prove that H2 and H3 are computationally indistinguishable, it suffices to prove that H2 ≈c H′2,
H′2 ≈c H′3, and H′3 ≈c H3. The first indistinguishability follows from the fact that H2 ≈c H1

and Pr[BAD1] = negl(λ), which means that Pr[BAD2] = negl(λ). The second indistinguishability

62

follows directly from the hiding of nmCom (implied by Definition 7.1). In what follows, we show that
Pr[BAD3] = negl(λ), which implies that H′3 ≈c H3.

Let BAD3,j be the event that, in hybrid H3, yj /∈ L(both) (where yj was defined in H1) and yet the
hybrid did not abort. Now suppose that there exists a polynomial p(·) such that for large enough
λ ∈ N, Pr[BAD3] ≥ 1/p(λ). Assuming that n = poly(λ), this implies that there exists a polynomial p′(·)
such that for large enough λ ∈ N, there exists some j∗λ such that Pr[BAD3,j∗] ≥ 1/p′(λ).

We will use this to contradict many-to-one non-malleability of nmCom, by building a QPT man-in-
the-middle adversary MIM = {MIMλ, σλ}λ∈N that uses A∗ to contradict Definition 7.1.

MIMλ obtains as non-uniform advice i) the index j∗λ that maximizes Pr[BAD3,j∗] and ii) A∗λ’s advice
state ρλ. It simulates the first two steps of the coin-flipping protocol in the presence of A∗λ. During Step
2, it interacts with a challenger on the left committing to either (ci∗ , ri∗,j) for each j ∈ S, or to (0k(λ), 0λ)
for each j ∈ S, on behalf of Pi∗ . It forwards these to A∗λ on behalf of Pi∗ and uses the strategy in H2

to generate messages on behalf of all other honest parties. When A∗λ outputs committer messages
computed on behalf of Pj∗λ in its interaction with Pi∗ , MIMλ forwards these to a challenger on the
right, and in return obtains receiver messages on behalf of Pi∗ .

In other words, MIMλ’s interaction with its challengers generates either the random variable (defined
in Definition 7.1)

View-ValMIMλ〈{C(ci∗ , ri∗,j)}j∈S,MIMλ(ρλ),R〉(1λ, tagi∗ , tagj∗λ)

or the random variable

View-ValMIMλ〈{C(0k(λ), 0λ)}j∈S,MIMλ(ρλ),R〉(1λ, tagi∗ , tagj∗λ),

depending on which strings the challenger on the left is committing to.

We now show the existence of a quantum polynomial-time D = {Dλ}λ∈N that succeeds in distin-
guishing these distributions with non-negligible advantage, which contradicts the non-malleability
of nmCom as defined in Definition 7.1. The distribution received by Dλ includes the message (c∗, r∗)
committed by MIMλ in its interaction with Pi∗ on the right, along with the final view VIEW of MIMλ,
which includes A∗’s view after Step 2 of Protocol 6. It then simulates the remainder of the coin-flipping
protocol in the presence of A∗λ, with one difference. Instead of implementing the check introduced in
H1, it checks only that yj∗λ ∈ L

(both), using the message (c∗, r∗). If this check failed and there was no
abort, it outputs 1 and otherwise outputs 0.

Now observe that

Pr
[
Dλ(View-ValMIMλ〈{C(ci∗ , ri∗,j)}j∈S,MIMλ(ρλ),R〉(1λ, tagi∗ , tagj∗λ)) = 1

]
= Pr[BAD2,j∗λ

] ≤ Pr[BAD2] = negl(λ), and

Pr
[
Dλ(View-ValMIMλ〈{C(0k(λ), 0λ)}j∈S,MIMλ(ρλ),R〉(1λ, tagi∗ , tagj∗λ)) = 1

]
= Pr[BAD3,j∗λ

] ≥ 1/p′(λ),

which establishes that D has a non-negligible advantage, a contradiction.

• H3 ≈c H4 : This follows from the quantum zero-knowledge of ZK. The non-uniform advice given to
the malicious verifier derived from A∗ will include the transcript of the first two rounds of Protocol 6
executed with adversary A∗, along with the openings (if they exist) of the commitments made by
A∗ in Step 2. The final view of this verifier will also include these openings, allowing the reduction
to efficiently simulate the remainder of the protocol, in particular using these openings to efficiently
implement the check introduced in H1.

63

• H4 ≈c H5 : We consider a sequence of sub-hybrids H4,0, . . . ,H4,|S|. Associate the set S with the set
[1, |S|], and define H4,j so that in Step 3, Pi∗ commits to 0k(λ) when interacting with adversarial parties
Pk for k ≤ j and commits to ci∗ when interacting with adversarial parties Pk for k > j. Observe that
H4 = H4,0 and H5 = H4,|S|.
We now show that for any j ∈ [1,S], the indistinguishability H4,j−1 ≈c H4,j follows from the quan-
tum computational hiding of eCom. Indeed, define a receiver R∗ = (R∗λ, ρλ) that interacts with a
single committer committing to either ci∗ or 0k(λ) as follows. It takes as non-uniform advice ρλ the
transcript of the first two rounds of Protocol 6 executed with adversary A∗λ, along with the openings
(if they exist) of the commitments made by A∗λ in Step 2. It then simulates the remainder of the pro-
tocol, interacting with the challenger to implement Pi∗ ’s messages in Step 3 during the eCom session
when Pj is the receiver. Observe that R∗ can indeed efficiently simulate the entire protocol, in par-
ticular it can implement the check introduced in H1 since it has the openings to the commitments
given by A∗λ in Step 2. Any efficient distinguisher that distinguishes between H4,j−1 and H4,j with
non-negligible advantage immediately implies that R∗ distinguishes with non-negligible advantage,
breaking quantum computational hiding of eCom.

• H5 ≈c H6 : Same argument as H3 ≈c H4.

• H6 ≈c H7 : Assume that there exists a distinguisher D that can distinguish between the outputs of
these hybrids with non-negligible advantage. We build a compliant20 distinguisher D′ that breaks the
extractability property of eCom.
D′ will receive as non-uniform advice i) the transcript of the first two rounds of Protocol 6 executed
with adversary A∗, ii) the state of A∗ at this point, and iii) the openings (if they exist) of the com-
mitments made by each party in Step 2. Note that the non-uniform advice given to the committer
C∗ defined in the description of SimNoAbort⊥ is a strict subset of this advice. Now, D′ will forward
this subset (which consists of the state of A∗ and the commitment openings of parties {Pi}i∈H) to its
challenger, and receive either the real or simulated view with respect to committer C∗. It can then
efficiently generate the rest of the distribution using its non-uniform advice and the view it received
from the challenger, additionally returning an abort if the messages {c′i}i∈S it received as part of the
challenge distribution do not match the messages {c′i}i∈S broadcast in Step 5. If during Step 4, any of
the parties {Pi}i∈S fails to prove it ZK statement, D′ outputs 0. Otherwise, it queries D with the final
distribution and outputs what D outputs.
It remains to show that i) D′’s advantage is negligibly close to D’s advantage, and ii) D′ is compliant.
The first point requires two observations. First, whenever D′ does not query D, it means that A∗ failed
to prove one of it ZK statements, so D’s input would have been ⊥ anyway. Next, we need to show
that when D′ does query D with a transcript, it is a faithful execution of either H6 or H7, depending
on whether eCom was simulated or not. If eCom was simulated, the distribution is equivalent to H7.
If not, the distribution is equivalent to H6, except for the extra abort condition carried out by the
reduction. However, observe that the probability that the reduction produces an abort but H6 does
not is at most Pr[BAD6]. Since H6 ≈c H1, and Pr[BAD1] = negl(λ), this quantity is negligible. Now
it remains to argue that D′ is compliant, but this follows directly from the quantum computational
soundness of ZK.

• H7 ≈s H8: First, Pr[BAD7] = negl(λ), since H7 ≈c H1. Next, switching Pi∗ ’s message in Step 4 is
perfectly indistinguishable since r is uniformly random.

Now, note that RealAbort⊥(A∗) ≈c SimAbort⊥(A∗) follows by definition. Then, it follows identically to
the proof of Theorem 6.1 that Real(A∗) ≈c SimComb(A∗), and then by applying Lemma 3.1, that Real(A∗) ≈c
Sim(A∗).

20Recall that such a distinguisher is guaranteed to output 0 with overwhelming probability on input any non-explainable view.

64

9 Quantum-Secure Multi-Party Computation

9.1 Definition

We follow the standard real/ideal world paradigm for defining secure multi-party computation (MPC) as
in [Gol04], replacing classical adversaries with quantum adversaries.

Consider n parties P1, . . . , Pn with inputs x1, . . . , xn that wish to interact in a protocol Π to evaluate any
functionality f on their joint inputs. The security of protocol Π (with respect to a functionality f) is defined
by comparing the real-world execution of the protocol with an ideal-world evaluation of f by a trusted
party. Informally, it is required that for every quantum adversary A = {Aλ}λ∈N that corrupts some subset
of the parties I ⊂ [n] and participates in the real execution of the protocol, there exists an adversary Sim,
also referred to as a simulator, that can achieve the same effect in the ideal world. In fact, we provide a strictly
stronger definition that allows the adversary A some arbitrary non-uniform quantum advice {ρλ}λ∈N thay
may even depend on the inputs x1, . . . , xn.

We now formally describe the security definition, which only considers the case of fully malicious adver-
saries. Let ~x = (x1, . . . , xn) be the set of inputs.

The Real Execution. In the real execution, the n-party protocol Π for computing f is executed in the
presence of a quantum polynomial-time adversary A = {Aλ, ρλ}λ∈N, where A corrupts some set I ⊂ [n] of
the parties. The honest parties follow the instructions of Π, and A sends all messages of the protocol on
behalf of the corrupted parties following any arbitrary quantum polynomial-time strategy.

The interaction of (Aλ, ρλ) in the protocol Π defines a random variable REALΠ,A(λ, ~x, ρλ) whose value is
determined by the randomness of the adversary and the honest parties. This random variable contains the
output of the adversary (which may be an arbitrary function of its view and in particular may be a quantum
state) as well as the outputs of the honest parties.

The Ideal Execution. In the ideal execution, an ideal world adversary Sim interacts with a trusted party, as
follows.

• Send inputs to the trusted party: Each honest party sends its input to the trusted party. Each corrupt
party Pi, (controlled by Sim) may either send its input xi, or send some other input of the same length
to the trusted party. Let x′i denote the value sent by party Pi.

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn)

and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by having the adversary
send either an abort or continue message to the trusted party. In the latter case, the trusted party
sends to each honest party Pi its output value yi. In the former case, the trusted party sends the
special symbol ⊥ to each honest party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf,Sim(λ, ~x, ρλ). Having
defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 9.1. Let f be an n-party functionality, and Π be an n-party protocol. Protocol Π securely computes f
if for every quantum polynomial-time real-world adversary A = {Aλ}λ∈N corrupting a set of at most n − 1 players,
there exists a quantum polynomial-time ideal-world adversary Sim such that for any set of inputs ~x ∈ ({0, 1}∗)n and
any non-uniform quantum advice ρ = {ρλ}λ∈N,

{REALΠ,A(λ, ~x, ρλ)}λ∈N ≈c {IDEALf,Sim(λ, ~x, ρλ)}λ∈N.

65

9.2 Construction

Given the construction of quantum-secure multi-party coin-flipping from Section 8, it is straightforward to
achieve quantum-secure multi-party computation, due to the following lemma adapted from [KOS03]. For
completeness, we give a sketch of the proof.

Lemma 9.1. Given a quantum-secure multi-party coin-flipping protocol and a quantum-secure protocol Π for com-
puting f in the common random string (CRS) model with straight-line black-box simulation, the natural composition
of the two is a quantum-secure protocol for computing f with no setup assumptions.

Proof. (sketch) Consider any adversary (Aλ, ρλ) for the composed protocol. Aλ may be split into two parts:
A1 interacts in the coin-flipping protocol and produces a state st, which is passed to A2, who interacts in
Π. We now construct a simulator Sim for the composed protocol as follows. It begins by running the
straight-line black-box simulator SimΠ for Π until it outputs a CRS r (note that since SimΠ is straight-line,
this CRS-generation step is independent of the adversary and advice, and does not require a call to the ideal
functionality). At this point, Sim runs the simulator for the multi-party coin-flipping protocol on input r,
adversary A1, and non-uniform advice ρλ. This simulation produces a final state st. Finally, Sim completes
the execution of SimΠ on input A2(st) and outputs what SimΠ outputs.

10 Acknowledgments

Part of this work was done during a visit to the Simons Institute Berkeley for the “Lattices: Algorithms,
Complexity, and Cryptography” program.

This material is based on work supported in part by DARPA under Contract Nos. HR001120C0024 (for
AA and DK) and HR001120C0025 (for VG). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

The authors thank Zvika Brakerski and Rishab Goyal for insightful discussions. The authors are also
grateful to Daniel Wichs for pointing out the counterexample in Appendix B, which we included with his
permission.

References

[AJJM20] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multikey fhe in the
plain model. Cryptology ePrint Archive, Report 2020/180, 2020. https://eprint.iacr.
org/2020/180.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg,
Germany.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jirı́ Wiedermann, Peter
van Emde Boas, and Mogens Nielsen, editors, ICALP 99, volume 1644 of LNCS, pages 1–9,
Prague, Czech Republic, July 11–15, 1999. Springer, Heidelberg, Germany.

[AP20] Prabhanjan Ananth and Rolando L. La Placa. Secure quantum extraction protocols. Theory of
Cryptography Conference, TCC, 2020. https://eprint.iacr.org/2019/1323.

66

https://eprint.iacr.org/2020/180
https://eprint.iacr.org/2020/180
https://eprint.iacr.org/2019/1323

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th FOCS, pages 474–483, Philadelphia, PA,
USA, October 18–21, 2014. IEEE Computer Society Press.

[Bar02] Boaz Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the Shared
Random String Model. In FOCS 2002, pages 345–355, 2002.

[BCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam Smith.
Secure multiparty quantum computation with (only) a strict honest majority. In 47th FOCS,
pages 249–260, Berkeley, CA, USA, October 21–24, 2006. IEEE Computer Society Press.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas Vidick. A
cryptographic test of quantumness and certifiable randomness from a single quantum device.
In Mikkel Thorup, editor, 59th FOCS, pages 320–331, Paris, France, October 7–9, 2018. IEEE
Computer Society Press.

[BD18a] Zvika Brakerski and Nico Döttling. Two-message statistical sender-private OT from LWE. IACR
Cryptology ePrint Archive, 2018:530, 2018.

[BD18b] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 370–390, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC 2019, Part II, LNCS,
pages 407–437. Springer, Heidelberg, Germany, March 2019.

[BFJ+20] Saikrishna Badrinarayanan, Rex Fernando, Aayush Jain, Dakshita Khurana, and Amit Sahai.
Statistical ZAP arguments. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 642–667. Springer, 2020.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new
assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, volume 10626 of
Lecture Notes in Computer Science, pages 275–303. Springer, 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation
without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 645–677, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Ger-
many.

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of low T-
gate complexity. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 609–629, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-
box barrier. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1091–1102, 2019.

67

[BL18a] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

[BL18b] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable commitments.
In Theory of Cryptography Conference, TCC 2018, Goa, India, November 11-14, 2018, Proceedings,
2018.

[Bra18] Zvika Brakerski. Quantum FHE (almost) as secure as classical. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 67–95, Santa Bar-
bara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. STOC,
2020.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106, Palm Springs, CA,
USA, October 22–25, 2011. IEEE Computer Society Press.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, page 462, Santa Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.

[CGS02] Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quantum computa-
tion. In 34th ACM STOC, pages 643–652, Montréal, Québec, Canada, May 19–21, 2002. ACM
Press.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503, Montréal,
Québec, Canada, May 19–21, 2002. ACM Press.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning
with errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 630–656, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-
malleable commitments (and more) in 3 rounds. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in
Computer Science, pages 270–299. Springer, 2016.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round concur-
rent non-malleable commitments from one-way functions. In Annual International Cryptology
Conference, pages 127–157. Springer, 2017.

[CR87] Benny Chor and Michael Rabin. Achieving independence in logarithmic number of rounds.
pages 260–268, 01 1987.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography (Extended Ab-
stract). In STOC 1991, 1991.

[DGJ+20] Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz, and Christian Schaffner. Secure
multi-party quantum computation with a dishonest majority. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference

68

on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part III, volume 12107 of Lecture Notes in Computer Science, pages 729–758. Springer,
2020.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its
applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 93–122, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidel-
berg, Germany.

[DL09] Ivan Damgård and Carolin Lunemann. Quantum-secure coin-flipping and applications. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 52–69, Tokyo, Japan,
December 6–10, 2009. Springer, Heidelberg, Germany.

[DNS10] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Secure two-party quantum evaluation
of unitaries against specious adversaries. In Tal Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 685–706, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg,
Germany.

[DNS12] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively secure two-party evaluation
of any quantum operation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 794–811, Santa Barbara, CA, USA, August 19–23, 2012. Springer,
Heidelberg, Germany.

[DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homomorphic encryption
for polynomial-sized circuits. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 3–32, Santa Barbara, CA, USA, August 14–18, 2016.
Springer, Heidelberg, Germany.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach
to constructing and proving verifiable random functions. In Theory of Cryptography - 15th In-
ternational Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II,
pages 537–566, 2017.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof
systems for NP. Journal of Cryptology, 9(3):167–190, June 1996.

[GKVW19] Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters. On perfect
correctness in (lockable) obfuscation. Cryptology ePrint Archive, Report 2019/1010, 2019.
https://eprint.iacr.org/2019/1010.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans,
editor, 58th FOCS, pages 612–621, Berkeley, CA, USA, October 15–17, 2017. IEEE Computer
Society Press.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable
commitments: A black-box approach. In FOCS, 2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact
round complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 448–476, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany.

69

https://eprint.iacr.org/2019/1010

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729,
1991.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704, San Jose, CA, USA,
June 6–8, 2011. ACM Press.

[Goy18] Rishab Goyal. Quantum multi-key homomorphic encryption for polynomial-sized circuits.
Cryptology ePrint Archive, Report 2018/443, 2018. https://eprint.iacr.org/2018/
443.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In
STOC, pages 1128–1141, New York, NY, USA, 2016. ACM.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206, Victoria, BC, Canada, May 17–20, 2008. ACM Press.

[GR19] Vipul Goyal and Silas Richelson. Non-malleable commitments using goldreich-levin list de-
coding. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 686–699. IEEE Com-
puter Society, 2019.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach to non-
malleability. In FOCS 2014, pages 41–50, 2014.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from
minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 468–499, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[HSS11] Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic protocols in a quantum
world. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 411–428, Santa
Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg, Germany.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591,
Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial hardness. In
Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th International Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, volume 10678 of Lecture
Notes in Computer Science, pages 139–171. Springer, 2017.

70

https://eprint.iacr.org/2018/443
https://eprint.iacr.org/2018/443

[KKS18] Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Statistical witness indistinguishability
(and more) in two messages. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science, pages 34–65. Springer, 2018.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party computa-
tion with a dishonest majority. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 578–595, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two rounds.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 564–575. IEEE Computer Society, 2017.

[Lin03] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jour-
nal of Cryptology, 16(3):143–184, June 2003.

[LN11] Carolin Lunemann and Jesper Buus Nielsen. Fully simulatable quantum-secure coin-flipping
and applications. In Abderrahmane Nitaj and David Pointcheval, editors, AFRICACRYPT 11,
volume 6737 of LNCS, pages 21–40, Dakar, Senegal, July 5–7, 2011. Springer, Heidelberg, Ger-
many.

[LP09] Huijia Lin and Rafael Pass. Non-malleability Amplification. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC ’09, pages 189–198, 2009.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way
function. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 705–714, San
Jose, CA, USA, June 6–8, 2011. ACM Press.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent Non-
malleable Commitments from Any One-Way Function. In TCC 2008, pages 571–588, 2008.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and
Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234, New York, NY, USA, May 19–22,
2012. ACM Press.

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In Mikkel Thorup,
editor, 59th FOCS, pages 332–338, Paris, France, October 7–9, 2018. IEEE Computer Society
Press.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 735–763, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-
private FHE. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 536–553, 2014.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority.
In László Babai, editor, 36th ACM STOC, pages 232–241, Chicago, IL, USA, June 13–16, 2004.
ACM Press.

71

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive One-Way Functions and
Applications. In Advances in Cryptology — CRYPTO ’08, pages 57–74, 2008.

[PR05] Rafael Pass and Alon Rosen. Concurrent Non-Malleable Commitments. In Proceedings of the
46th Annual IEEE Symposium on Foundations of ComputerScience, FOCS ’05, pages 563–572, 2005.

[PR08] Rafael Pass and Alon Rosen. New and Improved Constructions of Nonmalleable Crypto-
graphic Protocols. SIAM J. Comput., 38(2):702–752, 2008.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE
for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
ACM STOC, pages 461–473, Montreal, QC, Canada, June 19–23, 2017. ACM Press.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–238, Beijing,
China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and compos-
able oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 638–655, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93, Baltimore, MA,
USA, May 22–24, 2005. ACM Press.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152, Cambridge, UK,
April 15–19, 2012. Springer, Heidelberg, Germany.

[VDG98] Jeroen Van De Graaf. Towards a Formal Definition of Security for Quantum Protocols. PhD thesis,
CAN, 1998. AAINQ35648.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–58, May
2009.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplifica-
tion. In 51st FOCS, pages 531–540, Las Vegas, NV, USA, October 23–26, 2010. IEEE Computer
Society Press.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In Chris Umans, editor, 58th FOCS, pages 600–611, Berkeley, CA, USA, October 15–17, 2017.
IEEE Computer Society Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE Computer Society Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, 1986.

72

A Simple Polynomial-Round Extractable Commitments

In what follows, we describe ideas in [BS20] that can be used to convert a post-quantum zero-knowledge
protocol to an extractable commitment scheme (assuming quantum hardness of LWE). Specifically, we start
with the (polynomial-round) zero-knowledge protocol in [Wat09] that can be based on any quantum one-
way function, and convert it into a (polynomial-round) extractable commitment scheme.

Let Com(α;β) denote a non-interactive perfectly binding, quantum-hiding commitment to classical
string α with randomness β. We also let CDS denote a two-party two-message conditional disclosure of
secrets protocol, where in the first message, the receiver outputs a statement x, an NP language L, and pur-
portedly commits to an NP witness for this statement. Next, the sender encodes a secret m in such a way
that the receiver can recover m if and only if it previously committed to an NP witness for x. The (informal)
security property is that the NP witness is hidden from a semi-honest sender, and the sender’s secret m is
hidden from a malicious receiver whenever x 6∈ L. It is well-known (eg., [OPP14, BGI+17]) that this can be
achieved by combining a specific type of two-message OT (called statistically sender-private OT, that can
itself be based on quantum hardness of LWE [BD18a]) with garbled circuits.

Given these components, a polynomial-round extractable commitment is described in Figure 7.

Extractable Commitments

Sender’s private input: A message m ∈ {0, 1}p(λ)

1. S sends cmtS ← Com(m; rS).

2. R sends cmtR ← Com(0λ; rR).

3. S and R interact with each other in a post-quantum ZK protocol for cmtR ∈ L where S acts as V
and R acts as P using rR as the witness where

L = {c : ∃y such that c = Com(0λ; y)}

4. If the proof verifies, S and R execute a post-quantum CDS protocol for cmtR ∈ L, where S is
CDS sender with secret m and R is CDS receiver with witness rR where

L = {c : ∃y such that c = Com(1λ; y)}

5. Finally, S and R execute post-quantum ZK where S acts as P and R acts as V. S proves that its
transcript until the end of Step 4 is consistent, i.e., there is a consistent message and random-
ness that generates the sender’s transcript until Step 4.

Figure 7: Extractable Commitments

At a high level, the commitment is hiding because any cheating receiver that completes Step 3 will,
by the soundness of the ZK protocol, have committed to 0λ in Step 2. By the perfect binding property of
the commitment, this means that the statement of the CDS protocol, in Step 4, is false. Therefore, because
the indistinguishability-based security of CDS (as discussed above), the committer’s message m remains
hidden from a QPT receiver.

The commitment is extractable against quantum committers (which also implies binding), because of
the following argument: Consider extractor Ext that in Step 2 generates cmtR as Com(1λ; rR) instead of
committing to 0λ. Next, Ext runs ZK.Sim to simulate the proof in Step 3. After this point, Ext uses rR as
witness in Step 4, which enables it to successfully retrieve m from CDS.

73

B An explicit quantum attack against a classically-secure ZK protocol

In this section, we will present the construction of ZK protocol for which the zero knowledge property
holds against classical verifiers, however, there exists an explicit attack w.r.t a malicious quantum verifier.
This example is inspired by the recent construction of quantum extraction schemes for NP relations[AP20]
where the setting is as follows: The sender S and the receiver R hold an NP instance x. Additionally, S
holds a witness w for the instance x. The desired property is the following: i) Extractability: For any QPT
malicious S, there exists a QPT extractor that can extract a valid witness w′ for x, ii) Zero-Knowledge: For
any PPT maliciousR, there exists a PPT simulator which can simulate the view ofRwithout having access
to w.

The extraction scheme presented in [AP20] makes use of the “test of quantumness” protocol [BCM+18]
as a key ingredient which, as the name suggests, is used to attest whether the prover is a quantum machine
or a classical one. The authors leverage this test to construct a quantum extraction protocol (i.e it admits
a quantum extractor) secure against classical receivers which is referred to as to as cQEXT. We note that
the quantum extractor construction presented in [AP20] is straight-line i.e. it does not perform any kind of
quantum rewinding [Wat09, Unr12] on S. Also, the extractor makes only black-box use of the malicious S
i.e. it does not make any use of the circuit representation of a malicious S. As we will see shortly, these
two properties will be crucial in the construction of our counterexample. Our counterexample involves a
classical prover P(x,w) interacting with a classical verifier V(x) in the following manner:

1. P and V engage in a cQEXT protocol where P acts a cQEXT sender using (x,w) and V acts as a cQEXT
receiver using x.

2. P(x,w) and V(x) engage in a standard classical zero knowledge proof protocol which is post-quantum
secure.

3. V outputs 1 if the proof in Step 2 is accepting. Otherwise, it outputs 0.

The soundness of the above protocol follows from the soundness of the ZK protocol in Step 2. Also,
zero-knowledge property of the above protocol w.r.t classical verifiers follows from the zero-knowledge
property of the cQEXT protocol in Step 1 and ZK protocol in Step 2. However, the protocol is not zero-
knowledge against a malicious QPT verifier V∗ for the following simple reason: V∗ can simply execute the
extractor algorithm for the cQEXT protocol in Step 1 and therefore retrieve the witness w completely. The
reason it will be able to do so without any issue is because the cQEXT extractor is black-box and straight-
line. Hence, a malicious QPT verifier, which does not have any rewinding ability or access to the code of
prover, can still execute the extractor algorithm seamlessly.

C Tag Amplification: Remaining Analysis

Here, we prove Lemma 7.2.
Let tag ∈ [2t/2] denote the tag used by the committer in the left session and tag′ ∈ [2t/2] be the tag used

by the MIM in the right session. Observe that, two sets of decomposed tags {tagi}i∈[t/2] and {tag′i}i∈[t/2],
derived from two distinct tags, tag and tag′, are such that ∃α ∈ [t/2] s.t. ∀i ∈ [t/2] : tag′α 6= tagi

For any values u (respectively v) committed to by C in the left session, denote by u′ (respectively v′) the
value committed to by the MIM in the right session. Additionally, let ui (resp, vi) denote the value commit-
ted to by C in the ith parallel execution of nmCom as part of the left commitment and let u′i (resp, v′i) denote
the value committed to by MIM in the ith parallel execution of nmCom as part of the right commitment.
The soundness of ZK ensures that when the proof verifies:

Pr[u′ 6= u′α] = negl(λ) and Pr[v′ 6= v′α] = negl(λ) (17)

where the probability is over the randomness of honest verifier, and α denotes the first index in the real
(resp., simulated) experiments such that for every i ∈ [t/2], tag′α 6= tagi. Whenever the proof does not

74

verify, the commitment is not ‘valid’ and u′ (resp. v′) = ⊥.

Next, recall that in the real world, VIEWMIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′) denotes the joint distribu-
tion of the view of MIM along with the value u′ committed to in the right session when the left committer
obtains input u. Similarly, VIEWMIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′) denotes the joint distribution of the
view of MIM along with the value v′ committed to in the right session when the right committer obtains
input v.

By Equation (17), whenever the MIM’s proof verifies, v′ can be replaced by v′α in the distribution VIEWMIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′)
to yield a statistically indistinguishable distribution VIEW′MIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′). Similarly, u′

can be replaced by u′α in the distribution VIEWMIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′) to yield a statistically
indistinguishable distribution VIEW′MIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′).

It suffices to prove that:

{VIEW′MIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′)}λ∈N ≈c VIEW′MIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′) (18)

To that end, we define the following collections of random variables (each indexed by λ). Each is defined
with respect to the adversary MIM = {MIMλ, ρλ}λ∈N that we consider. Throughout, when we say abort, we
mean that MIM∗ aborts before Step 2, or that the MIM fails to provide an accepting proof.

• Let PrAbortu (MIM) be the probability that MIM aborts in VIEW′MIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′).

• Let PrAbortv (MIM) be the probability that MIM aborts in VIEW′MIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′).

• Let VIEWu(MIM) := {VIEW′MIMλ〈C(u),MIM(ρλ),R〉(1λ, tag, tag′)}λ∈N.

• Let VIEWv(MIM) := {VIEW′MIMλ〈C(v),MIM(ρλ),R〉(1λ, tag, tag′)}λ∈N.

• Let VIEWNo Abort
u (MIM) be the distribution VIEWu(MIM) conditioned on there not being an abort.

• Let VIEWAbort
u (MIM) be the distribution VIEWu(MIM) conditioned on there being an abort.

• Let VIEWNo Abort
v (MIM) be the distribution VIEWv(MIM) conditioned on there not being an abort.

• Let VIEWAbort
v (MIM) be the distribution VIEWv(MIM) conditioned on there being an abort.

The following distributions will not be used explicitly in the hybrids, but will be convenient to define
for the proof.

• Let VIEWv,⊥(MIM) be the distribution VIEWv(MIM), except that whenever an abort occurs, the distri-
bution outputs ⊥.

• Let VIEWAbort
v,⊥ (MIM) be the distribution VIEWv(MIM), except that if an abort does not occur, the distri-

bution outputs ⊥.

• Let VIEWu,⊥(MIM) be the distribution VIEWu(MIM), except that whenever an abort occurs, the distri-
bution outputs ⊥.

• Let VIEWAbort
u,⊥ (MIM) be the distribution VIEWu(MIM), except that if an abort does not occur, the distri-

bution outputs ⊥.

75

We show that VIEWu(MIM) ≈c VIEWv(MIM) via a sequence on hybrids. In particular, we prove:

VIEWv(MIM)
(1)
≡ (1− PrAbortv (MIM))VIEWNo Abort

v (MIM) + (PrAbortv (MIM))VIEWAbort
v (MIM)

(2)
≈s(1− PrAbortu (MIM))VIEWNo Abort

v (MIM) + (PrAbortu (MIM))VIEWAbort
v (MIM)

(3)
≈c(1− PrAbortu (MIM))VIEWNo Abort

u (MIM) + (PrAbortu (MIM))VIEWAbort
v (MIM)

(4)
≈c(1− PrAbortu (MIM))VIEWNo Abort

u (MIM) + (PrAbortu (MIM))VIEWAbort
u (MIM)

(5)
≡VIEWu(MIM),

where

1. The equalities (1) and (5) follow by definition.

2. The indistinguishability (2) follows as a corollary of Claim C.1. Indeed, VIEWu,⊥(MIM) ≈c VIEWv,⊥(MIM)
in particular implies that the difference in the probability that the MIM aborts in the real interaction
versus the simulated interaction is negligible.

3. The indistinguishability (3) follows as a corollary of Claim C.1. This can be seen by considering
two cases. First, if the probability that the MIM aborts in the real interaction is negligible, then
VIEWNo Abort

v (MIM) ≈c VIEWNo Abort
u (MIM) directly follows from Claim C.1, and the indistinguishabil-

ity follows. Otherwise, this probability is non-negligible, meaning that VIEWAbort
v (MIM) is efficiently

sampleable. Thus, a reduction to Claim C.1 can sample from the distribution VIEWAbort
v (MIM) when-

ever it receives ⊥ from its challenger.21

4. The indistinguishability (4) follows as a corollary of Claim C.3 via a similar analysis as the last step.

Claim C.1.
VIEWu,⊥(MIM) ≈c VIEWv,⊥(MIM)

Proof. We prove this via a sequence of hybrids. We use Hk to denote the joint distribution of MIM’s view
(consisting of commitment and proof transcripts along with MIM’s state) and the value that MIM commits
to in the right session of Hybrid k, using tag tag′α, where α denotes the smallest index such that tag′α 6= tagi
for every i ∈ [t/2].

H1: In this hybrid, the challenger executes the simulator ZK.Sim(1λ, xλ,V
∗
λ, σ

(xλ)
λ) on V∗λ, which denotes a

wrapper around the portion of the MIM that participates in Stage 2 of the protocol, and an instance-advice
distribution (xλ, σ

(xλ)
λ) defined as follows:

• Set the state of MIMλ to be ρλ.

• Execute Stages 0 and 1 of the protocol the same way as in the experiment VIEWu,⊥(MIM), and set
x,w,L according to Protocol 5 on behalf of C.

• Let σ(xλ)
λ denote the joint distribution of the protocol transcript, the state of the MIM at the end of

Stage 1, and the value v′α committed by the MIM with tag tag′α.

If there is an abort during sampling, or ZK.Sim causes V∗λ to abort (this includes the MIM failing to provide
an accepting proof), then output ⊥. By Claim 6.2,

VIEWu,⊥(MIM) ≈c H1

21A more formal analysis of this can be found in [BS20, Lemma 3.2].

76

H2: In this hybrid, the challenger behaves identically to H1, except when generating (xλ, σ
(xλ)
λ), it replaces

the commitment to u with a commitment to v in the first parallel repetition, with tag1, of nmCom (while
executing all other parallel repetitions the same way as H1). If there is an abort during sampling, or ZK.Sim
causes V∗λ to abort, then output ⊥.

We prove in Claim C.2 that by one-to-one non-malleability of nmCom, for every u, v ∈ {0, 1}p(λ),

H1 ≈c H2

Hi for i ∈ [3, (t/2 + 1)]: In this hybrid, the challenger behaves identically to Hi−1, except when generating
(xλ, σ

(xλ)
λ), it replaces the commitment to u with a commitment to v in the (i− 1)th parallel repetition, with

tag tagi−1, of nmCom (while executing all other parallel repetitions the same way as Hi−1). If there is an
abort during sampling, or ZK.Sim causes V∗ to abort, then output ⊥.

We prove in Claim C.2 that by one-to-one non-malleability of nmCom, for every u, v ∈ {0, 1}p(λ) and
every i ∈ [3, t/2 + 1],

Hi−1 ≈c Hi

Finally, by claim 6.2, we have that

H(t/2+1) ≈c VIEWu,⊥(MIM)

Next, we state and prove Claim C.2.

Claim C.2. For all u, v ∈ {0, 1}p(λ) and all i ∈ [2, t/2 + 1],

Hi ≈c Hi−1 (19)

Proof. Suppose Claim C.2 is false. Then there exists values (u, v), some i ∈ [2, t/2 + 1] and a polynomial
poly(·) such that for infinitely many λ ∈ N,

|Pr[MIM(Hi) = 1]− Pr[MIM(Hi−1) = 1]| ≥ 1

poly(λ)
(20)

We will demonstrate an adversary MIMβ that contradicts the non-malleability of nmCom according to Defi-
nition 7.1, i.e. we will show that for infinitely many λ ∈ N,∣∣∣Pr[MIMβ

(
VIEWMIMβλ

〈C(v),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1]

− Pr[MIMβ
(
VIEWMIMβλ

〈C(u),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1]
∣∣∣ ≥ 1

poly(λ)
(21)

where the two distributions MIMβ
(
VIEWMIMβλ

〈C(v),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1 and

MIMβ
(
VIEWMIMβλ

〈C(u),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1 correspond to honest commitments to v and u

respectively, for the small-tag commitment scheme.

MIMβ is defined as follows:

1. Obtain input values v, u, and begin an interaction with a challenger for nmCom.

2. Emulate the role of honest committer and honest receiver in an interaction with MIM executing Pro-
tocol 5. In more detail, in the role of a committer in a left session, participate in a session of Protocol 5
with MIM as receiver. At the same time, play the role of the receiver in a right session with MIM as
committer. Recall that Protocol 5 contains k repetitions of nmCom and ZK.

3. In the left session, embed the challenger’s messages in the (i − 1)th instance of nmCom, and forward
the response of MIM corresponding to the (i − 1)th instance to the challenger. Execute remaining
instances according to the strategy in Hi−1.

77

4. In the right session, forward the message obtained from MIM in the αth instance of nmCom to the chal-
lenger, and embed the challenger’s response for that round as receiver message in the αth instance.
Use honest receiver strategy for all other instances of nmCom in the right session.

5. Obtain value v′α from the challenger of the non-malleable commitment (representing the value in the
commitment sent by MIMβ to the challenger on the right).

6. Use the transcript, the obtained value v′α and the state of MIM to define the instance-advice sample,
and then execute ZK.Sim(1λ, xλ,V

∗
λ, σ

(xλ)
λ).

7. If an abort occurs at any point, output ⊥.

We now analyze the probability that MIMβ successfully contradicts Definition 7.1. To this end, we note
that:

Pr[MIMβ
(
VIEWMIMβλ

〈C(u),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1] = Pr[MIM(Hi−1) = 1] (22)

Pr[MIMβ
(
VIEWMIMβλ

〈C(v),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1] = Pr[MIM(Hi) = 1] (23)

Therefore, for infinitely many λ ∈ N,∣∣∣Pr[MIMβ
(
VIEWMIMβλ

〈C(u),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1]

−Pr[MIMβ
(
VIEWMIMβλ

〈C(v),MIMβ(ρλ),R〉(1λ, tagi−1, tag
′
α)
)

= 1]
∣∣∣ =∣∣∣Pr[MIM(Hi−1) = 1]− Pr[MIM(Hi) = 1]

∣∣∣ ≥ 1

poly(λ)

which is a contradiction, as desired.

This completes the proof of Claim C.1.

Claim C.3.
VIEWAbort

u,⊥ (MIM) ≈c VIEWAbort
v,⊥ (MIM)

Proof. We prove this via a sequence of hybrids. We use Hk to denote the joint distribution of the MIM’s
view (consisting of commitment and proof transcripts along with the MIM’s state) in Hybrid k.

H1 : In this hybrid, the challenger executes one iteration of the simulator ZK.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ)

on V∗λ, where V∗λ denotes the portion of the MIM that participates in Stage 2 of the protocol, and an instance-
advice distribution (xλ, σ

(xλ)
λ) defined as follows:

• Set the state of MIMλ to be ρλ.

• Execute Stage 1 of the protocol the same way as in the experiment real(MIM), and set x,w,L according
to Protocol 5 on behalf of C.

• If an abort occurs, output the transcript and state of the MIM until the abort.

• Otherwise, let σ(xλ)
λ denote the joint distribution of the protocol transcript and the state of the MIM at

the end of Stage 1.

If ZK.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ) outputs a non-aborting transcript and state, output ⊥, otherwise return

the output of ZK.SimAbort⊥(1λ, xλ,V
∗
λ, σ

(xλ)
λ). By Claim 6.3,

VIEWAbort
u,⊥ (MIM) ≈c H1

78

H2: In this hybrid, the challenger behaves identically to H1, except when generating (xλ, σ
(xλ)
λ), it replaces

the commitment to u with a commitment to v in the first parallel repetition, with tag1, of nmCom (while
executing all other parallel repetitions the same way as H1). If a non-aborting transcript is produced, then
output ⊥.

We prove in Claim C.4 that by hiding of nmCom, for every u, v ∈ {0, 1}p(λ),

H1 ≈c H2

Hi for i ∈ [3, (t/2 + 1)]: In this hybrid, the challenger behaves identically to Hi−1, except when generating
(xλ, σ

(xλ)
λ), it replaces the commitment to u with a commitment to v in the (i − 1)th parallel repetition,

with tag tagi−1, of nmCom (while executing all other parallel repetitions the same way as Hi−1). If a non-
aborting transcript is produced, then output ⊥. We prove in Claim C.4 that by hiding of nmCom, for every
u, v ∈ {0, 1}p(λ) and every i ∈ [3, t/2 + 1],

Hi−1 ≈c Hi

Finally, by claim 6.3, we have that

H(t/2+1) ≈c VIEWv,⊥(MIM)

Next, we state and prove Claim C.4.

Claim C.4. For every u, v ∈ {0, 1}p(λ) and all i ∈ [2, t/2 + 1],

Hi ≈c Hi−1

Proof. Suppose Claim C.4 is false. Then there exist u, v ∈ {0, 1}p(λ), some i ∈ [2, t/2+1], a PPT distinguisher
D and a polynomial poly(·) such that for infinitely many λ ∈ N,

|Pr[D(Hi) = 1]− Pr[D(Hi−1) = 1]| ≥ 1

poly(λ)
(24)

We will demonstrate a receiver that contradicts the hiding property of nmCom, i.e. we will show that there
exists R∗ such that for infinitely many λ ∈ N,

|Pr[R∗(nmCom〈C(u),R∗〉) = 1]− Pr[R∗(nmCom〈C(v),R∗〉) = 1]| ≥ 1

poly(λ)
(25)

R∗ obtains input u, v, and begins an interaction with a challenger for the hiding of nmCom. It then emulates
the role of honest committer and honest receiver in an interaction with MIM, executing Protocol 5. In
the left session, it embeds the challenger’s messages in the (i − 1)th instance of nmCom, and forwards
the response of MIM corresponding to the (i − 1)th instance to the challenger. It executes the remaining
instances in the left session, and all instances of the right session according to the strategy in Hi−1. Next, it
uses the transcript and state of the MIM to define the instance-advice sample, and executes one iteration of
ZK.SimAbort⊥(1λ, xλ,V

∗
λ, σ

(xλ)
λ).

If an abort occurs at some point, then R∗ runs D(τ, st) where τ and st denote the transcript and the state
of the adversary until the point in the protocol where the abort occurs. If no abort occurs throughout the
protocol, then R∗ outputs 0.

We now analyze the probability that R∗ successfully contradicts Definition 7.1. Here, we note that:

Pr[R∗(nmCom〈C(u),R∗〉) = 1] = Pr[D(Hi−1) = 1] and,

Pr[R∗(nmCom〈C(v),R∗〉) = 1] = Pr[D(Hi) = 1]

Therefore, for infinitely many λ ∈ N,∣∣∣Pr[R∗(nmCom〈C(u),R∗〉) = 1]− Pr[R∗(nmCom〈C(v),R∗〉) = 1]
∣∣∣

=
∣∣∣Pr[D(Hi−1) = 1]− Pr[D(Hi) = 1]

∣∣∣ ≥ 1

poly(λ)

which is a contradiction, as desired. This completes the proof of Claim C.4.

79

This completes the proof of Claim C.3.

Together, these claims complete the proof of Lemma 7.2.

D Multi-Committer Extractable Commitments against Arbitrary Dis-
tinguishers

Recall that in the setting of multi-committer extractable commitments 5.1, we only considered computa-
tional indistinguishability against any compliant non-uniform polynomial-size quantum distinguisher D.
We will now demonstrate how to upgrade any multi-committer extractable commitment secure against
any compliant non-uniform polynomial-size quantum distinguisher to one which is secure against against
any arbitrary non-uniform polynomial-size quantum distinguisher. The resulting commitment admits an
extractor that makes use of the Quantum Rewinding lemma 3.1 to successfully generate both explainable
and non-explainable transcripts.

Construction. Let eCom denote any multi committter extractable commitment protocol which admits an
extractor Ext. Consider a modified version of the protocol eCom′which is identical to eCom except that at the
very end, each of the committers {Ci}i∈[n] sends a constant-round ZK argument to the receiver attesting to
the fact that the committer messages were explainable. If the verification check passes for all the arguments,
the receiver accepts all the commitments. Otherwise it rejects all the commitments, and the committed value
is set to ⊥. We denote this by Reject.

Analysis. Assuming eCom admits an extractor Ext which satisfies the extractability property against com-
pliant distinguishers, we will construct an extractor Ext′ for eCom′ which satisifies the extractability prop-
erty against arbitrary distinguishers. The extractor Ext′ consists of a randomized extractor Extcomb will
consist of two sub-extractors, namely Extr and Extnr. The purpose of Extr is to simulate a transcript which
generates a Reject whereas the purpose of Extnr is to simulate a transcript which does not generate a Reject.

At a high level, Extcomb will randomly call one of the two sub-extractors and try to produce a transcript
which is indistinguishable from the real view. Looking ahead, this will result in the Extcomb outputting a
quantum state OUT that is indistinguishable from the real verifier output conditioned on OUT 6= Fail. Fur-
thermore, OUT 6= Fail will occur with probability negligibly close to 1/2 (due to random choice of executing
either Extr or Extnr and the computational indistinguishability of the view generated by Extr and Extnr). In
other words, Extcomb is going to succeed in extraction only with probability (negligibly close to) 1/2. Once
we have this, we can apply Watrous’ quantum rewinding lemma 3.1 to amplify the success probability from
≈ 1/2 to ≈ 1.

We will now show the construction of Extnr,Extr,Extcomb and finally Ext′.

Extnr(1
λ, 1n, I,C∗λ, ρ):

1. Execute the extractor Ext(1λ, 1n, I, C∗λ, ρλ) on the adversary C∗λ (which controls a subset I of commit-
ters).

2. Participate as a honest verifier in |I| ZK argument sessions with C∗λ where C∗λ sends messages on
behalf of the prover.

3. Execute the verification algorithm on all |I| argument transcripts. If verification check passes for all
|I| arguments, then accept all the commitments. Otherwise, say Reject occurs.

4. If Reject occurs, discard all information saved so far and output Fail. Otherwise output C∗λ’s inner
state and the extracted value.

80

Extr(1
λ, 1n, I,C∗λ, ρ):

1. Interact with C∗λ as an honest receiver of eCom′. If the verification check fails for some ZK argument
transcript, count it as a Reject.

2. If Reject does not occur, discard all information saved so far and output Fail. Otherwise output C∗λ’s
inner state, the transcript and ⊥ as the extracted value.

Extcomb(1
λ, 1n, I,C∗λ, ρ): Sample b $←− {r, nr} and execute Extb.

Ext′(1λ, 1n, I,C∗λ, ρ):

1. Generate the circuit Extcomb,C∗λ
which is the circuit implementation of Extcomb with hardwired input

C∗λ, that is, the only input to Extcomb,C∗λ
is the quantum state ρ.

2. Let R be the algorithm from Lemma 3.1. The output of the extractor is R(Extcomb,C∗λ
, ρ, λ)

The following claim is similar to the definition of multi-committer extractability stated in Section 5.1 but
generalized to handle arbitrary distinguishers (instead of just compliant ones).

Claim D.1. For any arbitrary non-uniform polynomial-size quantum distinguisher D′ = {D′λ, σλ}λ∈N, there exists
a negligible function µ(·), such that for all adversaries C∗ = {C∗λ, ρλ}λ∈N representing a subset of n committers,
namely, {Ci}i∈I for some set I ⊆ [n], the following holds for all polynomial-size sequences of inputs {{mi,λ}i/∈I}λ∈N
and λ ∈ N. ∣∣Pr[D′λ(VIEW′

msg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1]

− Pr[D′λ(Ext′(1λ, 1n, I,C∗λ, ρλ), σλ) = 1]
∣∣ ≤ µ(λ).

Here VIEW′msg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi)}i/∈I〉(1λ, 1n)) is defined to consist of the following:

• The view of C∗λ on eCom′ interaction with the honest receiver R and set {Ci(mi)}i/∈I of honest parties;
this view includes a set of transcripts {τi}i∈I and a state st.

• A set of strings {mi}i∈I , where each mi is defined relative to τi as follows. If there exists m′i, ri such
that R(1λ, τi,m

′
i, ri) = 1, then mi = m′i, otherwise, mi = ⊥.

We will prove the above claim in several steps:

1. Simulating non Reject interactions using Extnr

2. Simulating Reject interations using Extr

3. Applying Watrous rewinding lemma on the combined extractor Extcomb

First, we introduce some notation:

• Let Extr,⊥ be the same distribution as Extr(1
λ, 1n, I,C∗λ, ρλ) except that whenever a Reject does not

occur, the distribution output is ⊥

• Let Extnr,⊥ be the same distribution as Extnr(1
λ, 1n, I,C∗λ, ρλ) except that whenever a Reject occurs,

the distribution output is ⊥

• Let VIEW′r,⊥ be the same distribution as VIEW′msg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)) except that when-
ever a Reject does not occur, the distribution output is ⊥

• Let VIEW′nr,⊥ be the same distribution as VIEW′msg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)) except that when-
ever a Reject occurs, the distribution output is ⊥

81

We use τ ′ to denote the input to the distinguisher D′ where τ ′ can either be Ext{r,nr},⊥ or VIEW′{r,nr},⊥.

Claim D.2. For any arbitrary non-uniform polynomial-size quantum distinguisher D′ = {D′λ, σλ}λ∈N, there exists
a negligible function µ(·), such that for all adversaries C∗ = {C∗λ, ρλ}λ∈N representing a subset of n committers,
namely, {Ci}i∈I for some set I ⊆ [n], the following holds for all polynomial-size sequences of inputs {{mi,λ}i/∈I}λ∈N
and λ ∈ N. ∣∣Pr[D′λ(VIEW′nr,⊥, σλ) = 1]− Pr[D′λ(Extnr,⊥, σλ) = 1]

∣∣ ≤ µ(λ).

Proof. Conditioned on the event that Reject happens, both distributions (VIEW′nr,⊥ and Extnr,⊥) output ⊥
by definition. Therefore, in such a case, these two distributions will be prefectly indistinguishable.
Conditioned on the event that Reject does not happen, we can say that τ ′ is explainable with overwhelm-
ing probability. This holds due to the soundness of ZK. Having said that, we now prove that D′ cannot
distinguish between real and simulated τ ′.

Suppose there exists an arbitrary non-uniform polynomial-size quantum distinguisher D′ = {D′λ, σλ}λ∈N,
a polynomial function poly(·), C∗ = {C∗λ, ρλ}λ∈N representing a subset of n committers, namely, {Ci}i∈I
for some set I ⊆ [n], s.t. the following holds for inifintely many polynomial-size sequence of input
{{mi,λ}i/∈I}λ∈N and λ ∈ N.∣∣Pr[D′λ(VIEW′nr,⊥, σλ) = 1|¬Reject]− Pr[D′λ(Extnr,⊥, σλ) = 1|¬Reject]

∣∣ ≥ 1/poly(λ).

We can use D′ to build a compliant distinguisher D which contradicts the multi-committer extractability
of eCom as per Definition 5.1. D first obtains a eCom transcript τ (and adversary’s state) as a challenge. It
then interacts as an honest verifier with C∗λ in |I| ZK argument sessions where C∗λ proves that τ is explain-
able. D then verifies the ZK argument and outputs 0 if the argument rejects. Otherwise, it forwards the entire
transcript along with C∗λ’s internal state and the value inside commitment to D′. If D′ returns 1, D returns
1. Otherwise D returns 0.

Note that since non-explainable transcripts that are not rejected occur with negligible probability (due
to soundness of ZK), the probability that D outputs 1 on receiving a non-explainable transcript is negligible.
Therefore, D is a compliant distinguisher. Moreover, the following holds:

Pr[Dλ(VIEWmsg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1] = Pr[D′λ(VIEW′nr,⊥, σλ) = 1|¬Reject] and

Pr[Dλ(Ext(1λ, 1n, I,C∗λ, ρλ), σλ) = 1] = Pr[D′λ(Extnr,⊥, σλ) = 1|¬Reject]

Therefore, ∣∣Pr[Dλ(VIEWmsg
C∗λ

(〈R,C∗λ(ρλ), {Ci(mi,λ)}i/∈I〉(1λ, 1n)), σλ) = 1]

− Pr[Dλ(Ext(1λ, 1n, I,C∗λ, ρλ), σλ) = 1]
∣∣ ≥ 1/poly(λ).

which gives a contradiction.

Claim D.3. For any arbitrary non-uniform polynomial-size quantum distinguisher D′ = {D′λ, σλ}λ∈N, there exists
a negligible function µ(·), such that for all adversaries C∗ = {C∗λ, ρλ}λ∈N representing a subset of n committers,
namely, {Ci}i∈I for some set I ⊆ [n], the following holds for all polynomial-size sequences of inputs {{mi,λ}i/∈I}λ∈N
and λ ∈ N. ∣∣Pr[D′λ(VIEW′r,⊥, σλ) = 1]− Pr[D′λ(Extr,⊥, σλ) = 1]

∣∣ ≤ µ(λ).

Proof. Conditioned on the event that Reject does not happen, both distributions (VIEW′r,⊥andExtr,⊥) output
⊥ by definition. Therefore, in such a case, these two distributions will be prefectly indistinguishable.
Conditioned on the event that Reject happens, the distribution produced by Extr is identical to the distri-
bution produced by an honest reveiver. This holds due to the construction of Extr

To complete our proof, we will introduce some additional notation:

82

1. Let PrRejectVIEW′ be the probability that a Reject happens in VIEW′

2. Let PrRejectExtr
be the probability that a Reject happens in Extr

3. Let PrRejectExtnr
be the probability that a Reject happens in Extnr

Following [BS20], we now show that VIEW′ = Extcomb via a sequence on hybrids. In particular, we show
that:

VIEW′
(1)
≡ (VIEW′|Reject)PrRejectVIEW′ + (VIEW′|NoReject)(1− PrRejectVIEW′)

(2)
≈c(VIEW

′|Reject)PrRejectExtr
+ (VIEW′|NoReject)(1− PrRejectExtnr

)

(3)
≈c(VIEW

′|Reject)PrRejectExtr
+ (Extnr|NoReject)(1− PrRejectExtnr

)

(4)
≈c(Extr|Reject)PrRejectExtr

+ (Extnr|NoReject)(1− PrRejectExtnr
)

(5)
≈sExtcomb

where

1. The equality (1) follows by definition.

2. The indistinguishability (2) follows as Corollary of Claim D.3 and Claim D.2. Indeed, VIEW′r,⊥ ≈c
Extr,⊥ in particular implies that the difference in probability that Reject happens in the real interaction
versus the simulated interaction is negligible, and likewise for VIEW′nr,⊥ ≈c Extnr,⊥.

3. The indistinguishability (3) follows as a corollary of Claim D.2. This can be seen by considering
two cases. First, if the probability that Reject happens in the real interaction is negligible, then
VIEW′|NoReject ≈c Extnr|NoReject directly follows from Claim D.2, and the indistinguishability fol-
lows. Otherwise, this probability is non-negligible, meaning that VIEW′|Reject is efficiently sam-
pleable. Thus, a reduction to D.2 can sample from the distribution VIEW′|Reject whenever it receives
⊥ from the challenger.

4. The indistinguishability (4) follows as a corollary of Claim D.3 via a similar analysis as the last step.

5. The indistinguishability (5) follows from the definition of Extcomb

Also, by an analysis similar to [BS20] Corollary 3.1, 3.2, we can say that the sucess probability of Extcomb

is negligibly close to 1/2 and therefore the success probability of Extcomb is input-oblivious.
Now we can apply the Quantum rewinding lemma 3.1 to amplify the success probability from ≈ 1/2

to ≈ 1 following an analysis similar to [BS20]. Consider the quantum circuit Extcomb,C∗ which is the circuit
implementation of Extcomb with hardwired input C∗λ, that is, the only input to Extcomb,C∗λ

is the quantum
state ρ. By denoting the success probability for input ρ by p(ρ) and setting ε := negl(λ) + 2−λ·

3
4 , p0 := 1/4,

and q := 1/2, we can satisfy all the conditions for Quantum Rewinding Lemma 3.1.
This implies that trace distace between R(Extcomb,C∗ , ρ, λ) and Extcomb is bounded by a negligible func-

tion. Therefore, our final extractor Ext′(1λ, 1n, I,C∗λ, ρ) = R(Extcomb,C∗λ
, ρ, λ) completes the extraction suc-

cessfully with probability negligibly close to 1.

83

	Introduction
	Our Results

	Technical Overview
	Background
	A New Parallel No-Cloning Non-Black-Box Simulation Technique
	Quantum AFS-Spooky Encryption
	Post-Quantum Non-malleable Commitments
	Putting Things Together
	Related Work

	Preliminaries
	Quantum Computation
	Notation for Interactive Protocols
	Witness Indistinguishability
	Sigma Protocol for NP
	Non-Interactive Commitment
	Compute and Compare Obfuscation
	Function-Hiding Secure Function Evaluation
	Quantum Rewinding Lemma

	Quantum Multi-Key Fully-Homomorphic Encryption
	Learning with Errors and Lattice Trapdoors
	Definition
	Background
	Construction
	Quantum Spooky Encryption

	Quantum-Secure Multi-Committer Extractable Commitment
	Definition
	Construction
	Hiding
	Extractability

	Quantum-Secure Multi-Verifier Zero-Knowledge
	Definition
	Construction
	Soundness
	Zero-Knowledge

	Quantum-Secure Non-Malleable Commitments
	Definition
	Non-Malleable Commitments for Small Tags
	Construction
	Analysis

	Tag Amplification
	Construction
	Analysis.

	Quantum-Secure Multi-Party Coin-Flipping
	Definition
	Construction
	Security

	Quantum-Secure Multi-Party Computation
	Definition
	Construction

	Acknowledgments
	Simple Polynomial-Round Extractable Commitments
	An explicit quantum attack against a classically-secure ZK protocol
	Tag Amplification: Remaining Analysis
	Multi-Committer Extractable Commitments against Arbitrary Distinguishers

