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Abstract. Grover search algorithm can be used to find the n-bit se-
cret key at the speed of

√
n, which is the most effective quantum attack

method for block ciphers. In order to apply the Grover search algorithm,
the target block cipher should be implemented in quantum circuits. Many
recent research works optimized the expensive substitute layer to evalu-
ate the need for quantum resources of AES block ciphers. Research on the
implementation of quantum circuits for lightweight block ciphers such as
SIMON, SPECK, HIGHT, CHAM, LEA, and Gimli, an active research
field, is also gradually taking place. In this paper, we present optimized
implementations of GIFT block ciphers for quantum computers. To the
best of our knowledge, this is the first implementation of GIFT in quan-
tum circuits. Finally, we estimate quantum resources for applying the
Grover algorithm to the our optimized GIFT quantum circuit.
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1 Introduction

As the Internet of Things (IoT) technology advances, numerous wearable de-
vices and smart devices are gradually spreading through people’s lives [1]. A lot
of data is being exchanged and processed between these IoT devices, from simple
sensor data to sensitive personal data. To protect these sensitive data, we need to
properly secure the data exchange process. To achieve the security, cryptographic
algorithms must be applied to the data. However, applying the cryptographic
algorithm requires resources including memory and computational power. Since
most of the IoT devices have low computing power and low memory usage, there
are not enough resources to apply the traditional cryptographic algorithms for
conventional computers.

Lightweight cryptography has been actively studied to resolve this hard condi-
tion [2]. Unlike classical cryptography, the lightweight cryptography is designed
for low-end devices. Most lightweight cryptography focuses on efficient use of
resources to operate on resource-constrained devices.

In CHES’07, a family of lightweight block ciphers PRESENT with Substitution-
Permutation-Network(SPN) structure was introduced [3]. In 2013, National Se-
curity Agency(NSA) developed lightweight block ciphers including SPECK and
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SIMON for the low-end devices [4]. SIMON is optimized for performance in hard-
ware implementations, while SPECK is optimized for software implementations.
In CHES’15, combining the advantages of SIMON and SPECK, a new family
of lightweight block ciphers SIMECK was introduced [5]. In 2017, a new family
of lightweight block ciphers GIFT that improved PRESENT in terms of safety
and performance was proposed [6].

In the field of symmetric key, the impact of quantum computers and Grover’s
algorithm reduces the security level with n-bit secret key to O(2n/2) [7]. Applying
the Grover search algorithm to block ciphers is the way to evaluate the security
of block ciphers against attacks by quantum computers. Since the development
of quantum computer is rudimentary step, finding the optimal quantum resource
for target algorithm is one of the most important issue.

In order to estimate the quantum resources, a number of block cipher imple-
mentations have been investigated [8–11]. Grassl et al. estimated the quantum
resource required for AES block cipher to apply the Grover search algorithm [8].
Afterward, Langenberg et al. and Jaques et al. found more optimal substitute
layer design in quantum circuit than Grassl et al [9, 10]. Recently, the research on
lightweight block ciphers is also gradually taking place. Anand et al. estimated
the quantum resources required for SIMON block ciphers to apply the Grover
search algorithm and Jang et al. estimated the quantum resources required for
the SPECK block cipher [11, 12]. In [?], Schlieper estimated quantum resources
required for Gimli block cipher. In [13], the quantum resource estimation on
Korean block ciphers including HIGHT, LEA, and CHAM were presented.

By comparing the quantum implementations of SIMON optimized for hard-
ware and SPECK optimized for software [11, 12], we confirmed that the hardware
optimized operations are well optimized for quantum computers.

In this paper, we optimize the quantum circuits for lightweight block ciphers
GIFT, which improved PRESENT. We implemented a hardware-friendly Substi-
tution as a quantum circuit for GIFT. A lot of qubits could be saved compared
to the software-friendly Substitution. In addition, AddRoundKey was optimized
for quantum circuit. Finally, we estimate the resources for applying Grover’s
algorithm to GIFT.

1.1 Contribution

– First GIFT block cipher implementation on quantum gates To the
best of our knowledge, this is the first implementation of GIFT block ci-
pher in quantum circuits. Required quantum resources for Grover search
algorithm on GIFT block cipher is firstly presented.

– Optimized operations for GIFT block cipher in quantum circuits
Optimizing the number of qubits is one of the most important require-
ments when implementing a quantum circuit. Quantum circuit implemen-
tations often allocate additional qubits. However, by taking advantage of
the hardware-friendly substitution operation, we did not allocate any qubits
except for the initial key qubits and the plaintext qubits.
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– In-depth analysis of quantum resource estimation for lightweight
block ciphers The proposed GIFT implementation is analyzed in terms
of qubits, Toffoli gate, CNOT gate, X gate, and circuit depth to show the
detailed quantum resource estimation. Finally, we estimate the resources for
applying Grover’s algorithm to GIFT.

2 Related Work

2.1 GIFT

A family of lightweight block ciphers GIFT with SPN structure consists of
two ciphers, including GIFT-64/128 and GIFT-128/128. GIFT-64/128 uses 64-
bit plaintext, 128-bit initial key and consists of 28 rounds. GIFT-128/128 uses
128-bit plaintext, 128-bit initial key and consists of 40 rounds. Round of GIFT
consists of three steps, including Substitution, Permutation, and AddRoundKey.
The Sbox is applied first. The n-bit plaintext is divided into 4-bit and applied to
each Sbox(n = 64, 128). GIFT-64/128 and GIFT-128/128 use the same invertible
4-bit Sbox. The action of Sbox is shown in Table 1.

Table 1. GIFT Sbox.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sbox(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

GIFT-64 and GIFT-128 use different bit permutation. Details of the GIFT-64
bit permutation are shown in Table 2. The bit permutation P64(i) changes the
bit position of the input i to P64(i). We omitted the details of the GIFT-128
permutation and these are described in [6].

Table 2. GIFT-64 bit permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 17 34 51 48 1 18 35 23 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

AddRoundKey consists of the following two processes. First, An n/2-bit of
the round key is extracted and added to n-bit ciphertext bn−1, bn−2...b0. Second,
the round constant C is added.
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For GIFT-64, two 16-bit words are extracted from the key value k = k7, ..., k0
and used as RK = U ||V = u15...u0||v15...v0(U = k1, V = k0). U and V are
XORed to b4i+1 and b4i of the ciphertext.

b4i+1 ←− b4i+1 ⊕ ui, b4i ←− b4i ⊕ vi, i = 0, ..., 15 (1)

For GIFT-128, four 16-bit words are extracted and used as RK = U ||V =
u31...u0||v31...v0 (U = k5||k4, V = k1||k0).

b4i+2 ←− b4i+2 ⊕ ui, b4i+1 ←− b4i+1 ⊕ vi, i = 0, ..., 31 (2)

After the round key is used, the key state is updated as follows to generate
the next round key. Notation ≫ means an i-bit right rotation within a 16-bit
word.

k7||k6||...||k1||k0 ←− k1 ≫ 2||k0 ≫ 12||...||k3||k2, (3)

GIFT-64 and GIFT-128 use the same round constant C. A single bit 1 and
round constant C = c5c4c3c2c1c0 are XORed into the ciphertext as follows.

Table 3. Round constant C

Rounds Constants

1 ∼ 16 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33 27 0E

17 ∼ 32 1D 3A 35 2B 16 2C 18 30 21 02 05 0B 17 2E 1C 38

33 ∼ 48 31 23 06 0D 1B 36 2D 1A 34 29 12 24 08 11 22 04

bn−1 ←− bn−1 ⊕ 1,
b23 ←− b23 ⊕ c5, b19 ←− b19 ⊕ c4, b15 ←− b15 ⊕ c3,
b11 ←− b11 ⊕ c2, b7 ←− b7 ⊕ c1, b3 ←− b3 ⊕ c0.

(4)

2.2 Quantum Implementations and Algorithms

Quantum Gates Quantum computers have several gates that can emulate the
classical gates. Two most representative gates are CNOT and Toffoli gates. The
CNOT gate performs a NOT gate operation on the second qubit when the first
input qubit of the two input qubits is set as one. This gate performs the same
role as the addition operation on the binary field. The circuit configuration is
shown on the left side of Figure 1. The Toffoli gate takes three qubits as input.
When the first and second qubits are set to one, the gate performs a NOT gate
operation on the last qubit. This serves as an AND operation on the binary field.
The circuit configuration for Toffoli gate is shown on the right side of Figure 1.
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Fig. 1. CNOT(left) and Toffoli(right) gate.

The OR operation can be implemented by utilizing the Toffoli gate and the X
gate. However, after the OR operation, the values of the input qubits a and b are
inverted due to the X gate, so if the values of a and b before the operation are
needed, a reversible operation that performs the X gates after the Toffoli gate is
required. The non-reversible OR quantum circuit is shown in Figure 2.

X

X

X ||

Fig. 2. OR quantum circuit.

Grover Search Algorithm The Grover search algorithm is a quantum algo-
rithm that finds specific data for n unsorted data. The classic method requires
O(2n) searches in brute force attack. However, this can be found within O(2n/2)
times with Grover search algorithm. Grover search algorithm consists of an oracle
function and a diffusion operator, as shown in the Figure 3.
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Diffusion operator

Fig. 3. Grover search algorithm.
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The oracle function f(x) returns 1 if input x is the solution to the search.
Otherwise, it returns 0. When f(x) = 1, the sign of the state x is flipped. It
then proceeds to the diffusion operator step, which increases the amplitude of
the solution. The searching step is as follows: First, the average amplitude is
calculated for all data. Second, the difference between the amplitude and the
average amplitude of each data is calculated. If the answer to find in the 2-bit
input is 10, the status after these two steps is as shown in the Figure 4.

|00 |01 |10 |11

average

Fig. 4. Condition after oracle of Grover algorithm.

After performing the oracle function, the amplitude of the solution has a
different sign from other amplitudes. The difference from the average ampli-
tude increases and the difference between the non-answer amplitudes decreases.
Grover search algorithm increases the amplitude probability of the solution by
repeating the oracle function and diffusion operators. The status after diffusion
operations is given in Figure 5.

|00 |01 |10 |11

amplitude : 1

Fig. 5. Condition after diffusion of Grover algorithm.

3 Proposed Method

In the proposed GIFT−n/128 quantum circuit, a total of (128+n)-qubits were
used with n-qubits for n-bit plaintext and 128-qubits for 128-bit key. We opti-
mized without additional qubits.

In classical computers, the output value of Sbox can be matched according
to the input value. However, the previous method is impossible in quantum
computers where multiple values exist simultaneously. Therefore, the operation
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that derives the output of Sbox must be implemented as a quantum circuit.
In [6], the authors implemented two types of GIFT Sbox. One is a software-
friendly implementation, and the other is a hardware-friendly implementation.
The detailed process for these is in Algorithm 1, 2.

Algorithm 1 Software-friendly implementation of GIFT Sbox

Input: x = x[3], x[2], x[1], x[0]
1: x[1] = x[1] XOR (x[0] AND x[2])
2: t = x[0] XOR (x[1] AND x[3])
3: x[2] = x[2] XOR (t OR x[1])
4: x[0] = x[3] XOR x[2]
5: x[1] = x[1] XOR x[3]
6: x[0] = NOT x[0]
7: x[2] = x[2] XOR (t AND x[1])
8: x[3] = t
9: return x = x[3], x[2], x[1], x[0]

In Algorithm 1, which is a software-friendly Sbox operation, the input bits
entering the operation and the output bit becoming the result are sometimes
different (e.g. x[0] = x[3] XOR x[2]). In quantum computers, unlike classical
computers, qubits cannot be overwritten or initialized to zero. If Algorithm 1
is designed as a quantum circuit, additional qubits must be used. However, in
the hardware-friendly Sbox of Algorithm 2, the input bits entering the operation
and the output bit resulting are always the same. Therefore, we implemented
Algorithm 2 as a quantum circuit. As a result, it was possible to optimize im-
plementation without additional qubits. The optimized quantum circuit imple-
mentation for Algorithm 2 is shown in Algorithm 3.

Algorithm 2 Hardware-friendly implementation of GIFT Sbox

Input: x = x[3], x[2], x[1], x[0]
1: x[1] = x[1] XNOR (x[0] NAND x[2])
2: x[0] = x[0] XNOR (x[1] NAND x[3])
3: x[2] = x[2] XNOR (x[0] NOR x[1])
4: x[3] = x[3] XNOR x[2]
5: x[1] = x[1] XNOR x[3]
6: x[2] = x[2] XNOR (x[0] NAND x[1])
7: return x = x[0], x[2], x[1], x[3]

Lines 1, 2, 3, and 6 of Algorithm 2 perform NOT operation twice, so the NOT
operation is negligible. In Algorithm 3, the order of the input qubits and return
qubits is changed. This can be done by performing a Swap gate on x[0] and x[3].
However, this can be solved by relabeling the qubits without using the Swap
gate. Therefore, the Swap gate that changes the position of the qubit is not
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Algorithm 3 Quantum circuit implementation of GIFT S-box

Input: x = x[3], x[2], x[1], x[0]
1: x[1]←− Toffoli (x[0], x[2], x[1])
2: x[0]←− Toffoli (x[1], x[3], x[0])
3: x[0]←− X (x[0])
4: x[1]←− X (x[1])
5: x[2]←− Toffoli (x[0], x[1], x[2])
6: x[2]←− X (x[2])
7: x[0]←− X (x[0]) (reverse)
8: x[1]←− X (x[1]) (reverse)
9: x[3]←− CNOT (x[2], x[3])

10: x[3]←− X (x[3])
11: x[1]←− CNOT (x[3], x[1])
12: x[1]←− X (x[1])
13: x[2]←− Toffoli (x[0], x[1], x[2])
14: return x = x[0], x[2], x[1], x[3]

calculated as a quantum resource. The quantum circuit for GIFT Sbox is shown
in Figure 6.

𝑥[1]
𝑥[0]

𝑥[3]
𝑥[2]

1   31 

𝑋![2]
𝑋![1]

𝑋![4]
𝑋![3]

X

X
X

X
X

X

X 𝑥[1]
𝑥[3]

𝑥[0]
𝑥[2]

Fig. 6. Quantum circuit for GIFT Sbox

After Sbox operation, Permutation is performed. However, as mentioned ear-
lier, changing the bit position can be performed with the Swap gate and the
cost is negligible. Therefore, the GIFT permutation operation can be performed
without an additional gate by relabeling the qubits.

In AddRoundKey, the n/2-bit round key RK is XORed to the n-bit cipher-
text x and the quantum circuit implementation of GIFT-64/128 AddroundKey
is shown in Algorithm 4. GIFT-128/128 AddRoundKey is differs only in the
number of bits compared to GIFT-64/128. The quantum circuit implementation
of GIFT-128/128 AddroundKey is shown in Algorithm 5.

After the round key is used, the key state is updated as shown in the 3.
The Keyschedule also does not require quantum resources at all because it only
changes the bit position like Permutation.

Finally, the single bit 1 and the round constant C in Table 3 are XORed to
ciphertext x. Since we all know the round constant C for the quantum circuit
implementation, we passed the X gate to the position x only for the position
where the qubit of C is 1. For example, in the case of round 2, c0 and c1 are
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Algorithm 4 Quantum circuit implementation of GIFT-64/128 AddRoundKey

Input: x = x[0], ...x[63], RK = RK[0], ..., RK[31]
1: for i = 0 to 15 do
2: x[4i]←− CNOT (RK[i], x[4i])
3: x[4i + 1]←− CNOT (RK[i + 16], x[4i + 1])
4: end for
5: return x = x[0], ..., x[63]

Algorithm 5 Quantum circuit implementation of GIFT-128/128 AddRound-
Key

Input: x = x[0], ...x[127], RK = RK[0], ..., RK[63]
1: for i = 0 to 31 do
2: x[4i + 1]←− CNOT (RK[i], x[4i + 1])
3: x[4i + 2]←− CNOT (RK[i + 32], x[4i + 2])
4: end for
5: return x = x[0], ..., x[127]

1 because C=0x03. Therefore X gate(x[3]) and X gate(x[7]) are executed, and
X gate(x[n − 1]) is performed for a single bit. In this way, we did not allocate
qubits for C and we optimized it using cheaper X gates instead of CNOT gates.

4 Evaluation

The implementation is evaluated with the quantum computer emulator. In
particular, IBM ProjectQ framework is utilized1 [14]. IBM ProjectQ provides
the quantum computer compiler and quantum resource estimator. Quantum
resources are estimated in terms of qubit, Toffoli gate, CNOT gate, and X gate.
The proposed implementation focused on the optimal number of qubit and Toffoli
gate.

In Table 4, the quantum resources for GIFT block ciphers are given. In terms
of qubit, we used the minimum number of qubits to allocate the key value and
the plaintext value. GIFT block ciphers require less number of Toffoli and CNOT
gates than other block ciphers. The reason is that quantum resources are not
required for Permutation and Keyschedule.

Table 4. Quantum resources for GIFT.

Block Cipher Qubits Toffoli gates CNOT gates X gates Circuit depth

GIFT-64/128 192 1,792 1,792 3,261 308

GIFT-128/128 256 6,144 6,144 10,953 528

1 https://github.com/ProjectQ-Framework/ProjectQ



10 Jang et al.

In [15], the authors say that r = (key size/block size) known plaintext/ciphertext
pairs are needed to apply the Grover search algorithm to block ciphers. In [16],
the resources for applying the Grover algorithm to their AES quantum imple-
mentation in parallel were estimated.

According to [15], [16], we need a total of r ·q+1 qubits, where q is the number
of qubits required to implement GIFT. In case of GIFT-64/128, the gate cost
is 4 times the result of Table 4 because GIFT-64/128 requires 4 instances. In
case of GIFT-128/128, the gate cost is 2 times the result of Table 4 because
GIFT-64/128 requires 2 instances.

Additionally, 2 ·(r−1)· (key size) CNOT gates are required for parallel search.
In Table 5, quantum resources for applying Grover’s algorithm to GIFT are
shown.

Table 5. Quantum resources for applying Grover’s algorithm to GIFT

Block Cipher Qubits Toffoli gates CNOT gates X gates

GIFT-64/128 385 7,168 7,424 13,044

GIFT-128/128 257 12,288 12,288 21,906

5 Conclusion

In this paper, we presented the first GIFT block cipher implementation on
quantum computers. Our proposed method can design optimal quantum circuit
for GIFT in terms of qubits and quantum gates. We also estimated quantum
resources for applying Grover’s algorithm.

Future work is the implementation of other block ciphers to evaluate the quan-
tum resources for Grover search algorithm. One of the most promising candidate
is NIST’s lightweight cryptography competition2. Since many new block ciphers
were suggested in this competition, quantum resource estimation on these block
ciphers are interesting. Another candidate is the result of FELICS competi-
tion3 [17]. The competition evaluated a number of lightweight block ciphers on
low-end microcontrollers. It would be interesting to compare the performance
comparison on low-end microcontrollers and quantum computers, whether there
is relation between them or not.
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