
The proceedings version of this paper appears at USENIX Security 2021. This is the full version.

Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

Abstract
In this paper we introduce partitioning oracles, a new

class of decryption error oracles which, conceptually, take
a ciphertext as input and output whether the decryption
key belongs to some known subset of keys. We introduce
the first partitioning oracles which arise when encryption
schemes are not committing with respect to their keys. We
detail novel adaptive chosen ciphertext attacks that exploit
partitioning oracles to efficiently recover passwords and de-
anonymize anonymous communications. The attacks utilize
efficient key multi-collision algorithms — a cryptanalytic
goal that we define — against widely used authenticated en-
cryption with associated data (AEAD) schemes, including
AES-GCM, XSalsa20/Poly1305, and ChaCha20/Poly1305.

We build a practical partitioning oracle attack that quickly
recovers passwords from Shadowsocks proxy servers. We
also survey early implementations of the OPAQUE proto-
col for password-based key exchange, and show how many
could be vulnerable to partitioning oracle attacks due to in-
correctly using non-committing AEAD. Our results suggest
that the community should standardize and make widely
available committing AEAD to avoid such vulnerabilities.

1 Introduction

The design of encryption historically separated the goals
of confidentiality and authenticity, which led to widespread
deployment of encryption schemes vulnerable to chosen-
ciphertext attacks (CCAs) [16, 95]. Subsequently, re-
searchers showed how to exploit CCAs to recover plain-
text data, most notably via padding [3, 4, 16, 95] and
format [10, 27] oracle attacks. As a result, cryptogra-
phers now advocate the use of authenticated encryption
with associated data (AEAD) schemes and CCA-secure
public key encryption. There has since been a shift to
adopt fast CCA-secure schemes, notably AES-GCM [64],
XSalsa20/Poly1305 [12, 14], and (in the public key setting)
hybrid encryption that makes use of the aforementioned
AEAD schemes.

Such schemes do not target being robust [1, 24], also
called committing [30]. While exact formal notions vary,
committing schemes ensure that attackers cannot construct
a ciphertext that decrypts without error under more than
one key. Thus far, robustness has not been considered an
essential security goal for most cryptographic applications.

This is perhaps because attacks exploiting lack of robustness
have arisen in relatively niche applications like auction
protocols [23] or recently as an integrity issue in moderation
for encrypted messaging [22, 30].

We introduce partitioning oracle attacks, a new type of
CCA. These are similar to previous attacks considered in
the password-authenticated key exchange (PAKE) litera-
ture [11, 72, 98]; we provide a unifying attack framework
that transcends PAKE and show partitioning oracle attacks
that exploit weaknesses in widely used non-committing
AEAD schemes. Briefly, a partitioning oracle arises when
an adversary can: (1) efficiently craft ciphertexts that suc-
cessfully decrypt under a large number of potential keys,
and (2) submit such ciphertexts to a system that reveals
whether decryption under a target secret key succeeds. This
enables learning information about the secret key.

The main cryptanalytic step for our attacks is construct-
ing (what we call) key multi-collisions, in which a single
AEAD ciphertext can be built such that decryption suc-
ceeds under some number k of keys. We formalize this
cryptanalytic goal and give an algorithm for computing key
multi-collisions for AES-GCM. It builds key multi-collision
ciphertexts of length O(k) in O(k2) time using polynomial
interpolation from off-the-shelf libraries, making them rea-
sonably scalable even to large k. An algorithm that executes
in time O(k log2 k) is possible using a different polynomial
interpolation technique [17], although it is not available
in standard library implementations to our knowledge. We
give more limited attacks against XSalsa20/Poly1305 (and
ChaCha20/Poly1305) and AES-GCM-SIV.

Given access to an oracle that reveals whether decryption
succeeds, our key multi-collisions for AES-GCM enable
a partitioning oracle attack that recovers the secret key in
roughly m+ logk queries in situations where possible keys
fall in a set of size d = m · k. This will not work to recover
much information about, e.g., random 128-bit keys where
d = 2128, but we show that it suffices to be damaging in set-
tings where keys are derived from user-selected passwords
or where key anonymity is important.

We explore partitioning oracles via two case studies. First
we show how to build a practical partitioning oracle attack
against Shadowsocks proxy servers [85]. Shadowsocks was
first built to help evade censorship in China, and it underlies
other tools such as Jigsaw’s Outline VPN [70]. In Shad-
owsocks, the connections are secured via password-based
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AEAD with a user-chosen password shared between a client
and the proxy server. We show how an attacker can turn
the proxy server into a partitioning oracle, despite it being
designed to silently drop incorrect ciphertexts.

Simulations using password breach data show that 20%
of the time the attacker recovers the user’s password by
sending 124 ciphertexts to the server — several orders of
magnitude fewer than the ∼60,000 required by a standard
remote guessing attack. The latter requires less overall band-
width because our attack ciphertexts are large, but to suc-
ceed 70% of the time our attack requires fewer queries
and less overall bandwidth than the remote guessing attack.
We responsibly disclosed our attacks to the Shadowsocks
community, and helped them mitigate the vulnerability.

We then turn to password-authenticated key exchange
(PAKE). Here we focus on incorrect implementations of
the OPAQUE [42] protocol, which was recently chosen by
the IETF’s Crypto Forum Research Group (CFRG) as a
candidate for standardization. OPAQUE makes use of an
AEAD scheme in its protocol and both the original paper
and the (rapidly evolving) standard [52, 53] mandate that
the AEAD used be committing. We consider what happens
when implementations deviate from the standard by using
a non-committing AEAD scheme. Indeed, early implemen-
tations (some of which predate the standardization effort)
use AES-GCM, XSalsa20/Poly1305, or AES-GCM-SIV.
As we discuss, these implementations would be hard to
use without giving rise to partitioning oracles. Our simu-
lations show that a partitioning oracle here would enable
successful password recovery 20% of the time using just
18 man-in-the-middle impersonations against a vulnerable
client implementation. Our results therefore reinforce the
importance of using committing AEAD by quantifying the
danger of failing to do so.

In addition to these in-depth case studies, we discuss
other potentially vulnerable cryptographic tools and proto-
cols. Some of these, such as the file encryption tool called
age [93] and the internet-draft of the Hybrid Public Key En-
cryption scheme [8], have already made updates to mitigate
our attacks.

Our findings join prior ones [22, 30] in a growing body
of evidence that using non-committing AEAD as a default
choice can lead to subtle vulnerabilities. We suggest consid-
ering a shift towards committing AEAD being the default
for general use, and using non-committing AEAD only for
applications shown to not require robustness. This will re-
quire some work, however, as existing committing AEAD
scheme designs [22, 30] are slower than non-committing
ones and not yet supported by standards. We believe fu-
ture work should target fast, committing AEAD schemes
suitable for standardization and widespread deployment.

2 Partitioning Oracle Attacks

Here we provide an overview of the abstract partitioning
oracle attack setting. In addition to our new attacks, our
attack abstraction captures some previously known attacks
in the PAKE setting [72, 99], as we will discuss.

Attack abstraction. We consider settings in which an
attacker seeks to recover a secret pw ∈D from some set of
possible values D. The attacker has access to an interface
that takes as input a bit string V , and uses it plus pw to
output the result of some boolean function fpw : {0,1}∗→
{0,1}. Here fpw is an abstraction of some cryptographic
operations that may succeed or fail depending on pw and V .
We use fpw(V ) = 1 for success and fpw(V ) = 0 for failure.
We give examples of fpw below; in this work fpw usually
indicates success or failure of decrypting a ciphertext using
password pw.

Given oracle access to adaptively query fpw on cho-
sen values, the question is: Can an attacker efficiently re-
cover pw? This of course will depend on f . We refer to f as
a partitioning oracle if it is computationally tractable for an
adversary, given any set S ⊆D , to compute a value V̂ that
partitions S into two sets S∗ and S \S∗, with |S∗| ≤ |S \S∗|,
such that f (pw,V̂ ) = 1 for all pw ∈ S and f (pw,V̂ ) = 0
for all pw ∈ S \S∗. We call such a V̂ a splitting value and
refer to k = |S∗| as the degree of a splitting value V̂ . We say
that a splitting value is targeted if the adversary can select
the secrets in S∗, in contrast to untargeted attacks that, e.g.,
compute a splitting value that results in a random partition
of S.

For most fpw of practical interest it will be trivial to com-
pute splitting values with degree k = 1. In this case, a par-
titioning oracle attack coincides with a traditional online
brute-force guessing strategy for recovering pw. The ad-
versary has nothing other than black-box oracle access to
fpw and knowledge of an ordering pw1, pw2, . . . of D ac-
cording to decreasing likelihood. First compute a splitting
value V̂1 that partitions S = D into S∗1 = {pw1} and the rest
of S . Query fpw(V̂1). The resulting bit indicates whether
S∗1 = {pw1} = {pw}. Assuming not, compute a splitting
value V̂2 that partitions D \S∗1 into S∗2 = {pw2} and the re-
mainder, query fpw(V̂2), and so on. The attacker will learn
pw in worst case d = |D| oracle queries. Notice that in this
case the best possible attack is non-adaptive, meaning the
attacker can pre-compute all of its splitting values.

Partitioning oracles become more interesting when we
can efficiently build splitting values of degree k > 1. In
the limit, we can perform a simple adaptive binary search
for pw if we can compute splitting values of degree up
to k = dd/2e. Initially set S = D and compute a value
V̂1 that splits S into two halves of (essentially) the same
size. Query fpw(V̂1) to learn which half of D the value pw
lies within. Recurse on that half. Like all binary searches,
this provides an exponential speed-up over the brute-force
strategy because we can recover pw in dlogde queries. We
provide more details about this attack, in particular taking
into account non-uniform distributions of the secret pw, in
Sections 4 and 5.

Example: Password-based AEAD. Consider a server
that accepts messages encrypted using a password pw. To
send an encrypted message m, a client derives a key K←
PBKDF(sa, pw) using a uniformly random per-message
salt sa. Here PBKDF is a password-based key derivation
function (e.g., one of those specified in PKCS#5 [47]). The
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client then uses K to encrypt m according to an authen-
ticated encryption with associated data (AEAD) scheme,
resulting in a ciphertext C. It sends V = (sa,C) to the
server, which re-derives K and decrypts the ciphertext.
This represents a standardized and widely used way to per-
form password-based AEAD, and it is standard practice
now to use fast AEAD schemes such as Galois Counter
Mode (GCM) [64] or XSalsa20/Poly1305 [12, 14].

Nevertheless, if the server reveals just whether or not
decryption succeeds (e.g., due to an attacker-visible er-
ror message), one can construct a partitioning oracle with
fpw(sa,C) = 1 if and only if decryption of (sa,C) succeeds.
A priori, the authenticity (ciphertext unforgeability) of mod-
ern AEAD schemes might seem to prevent efficiently com-
puting splitting ciphertexts for degree k > 1, but it does not.
In fact a simple extension of prior work already gives an
attack for k = 2: Dodis et al. [22] showed how, for any two
keys, one can build an AES-GCM ciphertext such that de-
cryption succeeds under both keys. This is possible because
AES-GCM is not committing (also called robust) [24].

In more detail, our adversary can check membership in a
set S∗1 = {pw′, pw′′} of two passwords by sending a split-
ting value V̂1 to the server. First, it computes keys K ←
PBKDF(sa, pw′) and K′← PBKDF(sa, pw′′) for some ar-
bitrary sa. Then, it uses the Dodis et al. approach to con-
struct a ciphertext Ĉ1 that successfully decrypts under both
K and K′. Finally, it sends splitting value V̂1 = (sa,Ĉ1) to
the server. If the server’s response indicates decryption suc-
ceeded, fpw(sa,Ĉ1) = 1 and pw∈ S∗1 . Else, fpw(sa,Ĉ1) = 0
and pw 6∈ S∗1 . Iterating this procedure allows finding pw in
at most |D|/2+1 queries, beating brute-force by almost a
factor of two.

We will achieve more significant speed-ups in recover-
ing pw by showing how to build splitting ciphertexts Ĉ with
degree k proportional to |Ĉ|.

Example: password-authenticated key exchange. An
attack proposed by Patel [72] against a variant of the Diffie-
Hellman Encrypted Key Exchange (DH-EKE) [11], a pre-
decessor of PAKEs, can be viewed as a simple, nonadaptive,
untargeted partitioning oracle attack. It enables an adver-
sary impersonating one of the honest parties to eliminate
in expectation half of the attacker’s password dictionary,
although the adversary does not choose which half. Further-
more, a classical attack against an early version of the Se-
cure Remote Password (SRP) password-authenticated key
exchange (PAKE) protocol [98, 99] can also be viewed as
a partitioning oracle attack. This attack gives an adversary
who engages in the SRP protocol without knowledge of the
victim’s password the ability to check two password guesses
in one run of the protocol. In the parlance of partitioning
oracles, the attack turns an SRP client into a partitioning
oracle with degree k = 2. We describe both attacks in more
detail in Appendix D.

We note that Bellovin and Merritt’s partition attacks
against EKE schemes [11] also partition password sets but
because they rely on intercepting honest traffic to do this
partitioning, we do not consider them partitioning oracle
attacks. We describe them further later in this section.

We will show in later sections a “k-for-one” (for k� 2)
partitioning oracle attack against incorrect implementations
of the OPAQUE PAKE protocol. OPAQUE mandates use of
committing AEAD, and the designers clearly specified that
using non-committing AEAD leads to vulnerabilities [42].
Nevertheless we found prototype implementations that use
AES-GCM and other non-committing AEAD schemes. Our
results demonstrate how damaging exploits can be should
implementers not abide by the protocol specification.

Example: hybrid encryption. Partitioning oracles can
also arise in hybrid encryption. For example, some KEM-
DEM constructions, like the HPKE scheme [8] currently
being standardized, support authenticating senders based on
a pre-shared key (PSK) from a dictionary D by mixing the
PSK into DEM key derivation and using an AEAD scheme
as the DEM.

If the sender can learn whether the receiver successfully
decrypted a ciphertext, a trivial brute-force attack can re-
cover the PSK with enough queries. However, if the DEM
is a non-committing AEAD, a malicious sender can gain an
exponential speedup by crafting splitting DEM ciphertexts
similarly to the password-based AEAD example above. See
Appendix A for an example of this attack for HPKE.

Example: anonymity systems. Partitioning oracles
against hybrid encryption can also arise in anonymity sys-
tems. Prior work showed a link between robustness and
anonymous encryption [1, 23, 66]. By exploiting a lack of
robustness, our partitioning oracle attacks could be used to
perform de-anonymization.

As an example scenario consider anonymous end-to-end
encrypted messaging, in which a recipient has a key pair
(pk,sk) for receiving encrypted messages that are delivered
via an anonymous channel. A modern choice for encryp-
tion would be the crypto_box KEM-DEM scheme in the
widely-used libsodium library [15, 58]. An adversary wants
to determine if the recipient is using one of many possible
public keys {pk1, . . . ,pkd} (possibly gleaned from the web
or a public-key directory). The adversary has some way
of inferring when an encrypted message is successfully re-
ceived (e.g., due to a reply message or lack thereof). As
above, a brute-force attack over the set of public keys can
find the right one in d messages; this could be prohibitive
if d is large.

Instead, one can build a partitioning oracle attack against
crypto_box in this setting requiring only logd messages.
Here D = {1, . . . ,d}, that is, the partitioning oracle’s secret
is which of the keys is used. While we do not know of
any deployed system that is vulnerable to this attack sce-
nario, it is possible this vulnerability will arise with growing
adoption of non-committing AEAD for E2E encryption.

Discussion. An interesting aspect of our attack settings
is that the attacker has no information about the target se-
cret beyond access to the partitioning oracle and, perhaps,
some information about the set D and how the secret was
sampled from it. In particular, our adversaries will not have
to break in to some system or observe network commu-
nications to obtain a hash or ciphertext derived from this
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target secret. We do note, however, that an attacker will
need to know the set of possible secrets. For example, in
the password-based setting, the attack we describe assumes
that attackers have good estimates of password distribu-
tions. If an attacker wishes to compromise the password of
a particular user whose password has never been breached,
the attack would fail. However, prior work [71] shows that
attackers do indeed have good estimates.

We further note that we have framed partitioning oracles
as outputting binary values, but it could be possible that
there exist oracles that output one of many values. A parti-
tioning oracle that returns one of r values could be used to
identify a secret chosen from D in logr |D| queries. We do
not know of any examples of such a partitioning oracle.

Relationship to partition attacks. Bellovin and Merritt
introduced partition attacks against EKE [11]. An attacker
that can intercept traffic between two parties obtains a ci-
phertext sent between them and then, given a dictionary
of possible passwords, trial decrypts with each password’s
derived key. Decryption with the incorrect key can return
an invalid value (based on the underlying number-theoretic
properties of the key exchange scheme); based on this, the
attacker can eliminate some number of the passwords from
the dictionary. With each interception, the adversary can
rule out more passwords, until it finds the correct one. Our
attacks similarly involve partitioning the set of possible
passwords, but do so via careful chosen-ciphertext construc-
tion and involve potentially adaptive querying of an oracle
(hence the name). Partition attacks instead rely on trial
decryption of intercepted traffic, thereby more closely re-
sembling dictionary attacks. We recall partition attacks in
more detail in Appendix D.

Relationship to padding oracles. Partitioning oracle at-
tacks are analogous to, but distinct from, padding oracle at-
tacks [95] or other format oracle attacks [5,27]. Partitioning
oracles can be exploited to reveal information about secret
keys, whereas format oracles can only reveal information
about plaintexts. That said, there is some overlap conceptu-
ally in the underlying techniques, as classic padding oracle
attacks like Bleichenbacher’s [16] or Vaudenay’s [95] can
also be viewed as adaptive attacks that provide exponential
speed-ups in recovering unknown values.

Additionally, padding oracles may be useful in helping
construct partitioning oracles. For example, consider our
password-based AEAD example, but replace the AEAD
scheme with a scheme such as HMAC-then-Encrypt which
is well known to give rise to padding oracle attacks that
recover plaintext data [3, 4, 95]. We can use the padding
oracle to construct a partitioning oracle where fpw(Ĉ) = 1
if and only if the padding check succeeds. Even if the check
succeeds, decrypting Ĉ will fail, but the padding oracle will
reveal f ’s output and thereby enable recovery of pw.

Relationship to side-channels. Side-channel attacks that
exploit timing or other aspects of a computation may help
in constructing partitioning oracle attacks. Many padding
oracle attacks exploit timing side-channels (e.g., [3]) and
they can analogously aid partitioning oracle attacks. One of

our attacks against Shadowsocks, for example, exploits a
side-effect of correct decryption that is remotely observable.
In Section 6 we discuss how timing side-channels that may
arise in decryption can enable partitioning oracle attacks,
even if a nominally committing scheme is used. But parti-
tioning oracles do not necessarily rely on side channels.

Timing side-channels have also been used recently to
learn information about passwords [94] from implementa-
tions of the PAKE protocol Dragonfly [35]. We discuss this
in more detail in Section 7.

3 Key Multi-Collision Attacks

Our partitioning oracle attacks will utilize the ability to
efficiently compute a ciphertext that decrypts under a large
number k of keys. We refer to this as a key multi-collision,
a cryptanalytic target for encryption schemes that is, to
the best of our knowledge, new. Our primary focus will be
on key multi-collision attacks against widely used AEAD
schemes, including AES-GCM and XSalsa20/Poly1305.

Key multi-collision attacks. We formalize our cryptana-
lytic goal as follows. Let AEAD = (AuthEnc,AuthDec) be
an authenticated encryption with associated data scheme,
and let its key space be the set K . We write encryption
AuthEncK(N,AD,M) to denote running the encryption al-
gorithm with secret key K ∈K , nonce N (a bit string), asso-
ciated data AD (a bit string), and message M (a bit string).
Decryption is written analogously, as AuthDecK(N,AD,C)
where C is a ciphertext. Decryption may output a distin-
guished error symbol ⊥. We require of our AEAD scheme
that AuthDecK(N,AD,AuthEncK(N,AD,M)) = M for all
N,AD,M not exceeding the scheme’s length restrictions.
We formalized AEAD as nonce-based [77], but our treat-
ment and results easily extend to randomized AEAD.

We define targeted multi-key collision resistance
(TMKCR) security by the following game. It is parame-
terized by a scheme AEAD and a target key set K⊆ K . A
possibly randomized adversary A is given input a target
set K and must produce nonce N∗, associated data AD∗,
and ciphertext C∗ such that AuthDecK(N∗,AD∗,C∗) 6= ⊥
for all K ∈K. We define the advantage via

Advtmk-cr
AEAD,K(A) = Pr

[
TMKCRA

AEAD,K⇒ true
]

where “TMKCRA
AEAD,K⇒ true” denotes the event that A

succeeds in finding N∗,AD∗,C∗ that decrypt under all keys
in K. The event is defined over the coins used by A .

We can define a similar untargeted multi-key collision
resistance goal, called simply MKCR. The associated se-
curity game is the same except that the adversary gets to
output a set K of its choosing in addition to the nonce N∗,
associated data AD∗, and ciphertext C∗. For k = |K|, the
adversary wins if k ≥ κ for some parameter κ > 1 and de-
cryption of N∗,AD∗,C∗ succeeds for all K ∈K. We define
the advantage as

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ⇒ true
]
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GCM-Enc(K,N,AD,M):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|M|)
T ← (L ·H)⊕P
m← |M|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ← T ⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
C[i]← EK(N +1+ i)⊕M[i]
T ← T ⊕ (C[i] ·Hb+2−i−a)

Return N ‖C ‖T

GCM-Dec(K,AD,N ‖C ‖T ):

H← EK(0128) ; P← EK(N ‖0311)
L← encode64(|AD|)‖encode64(|C|)
T ′← (L ·H)⊕P
m← |C|/128 ; a← |AD|/128
b← m+a
For i = 1 to a :

T ′← T ′⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :
M[i]← EK(N +1+ i)⊕C[i]
T ′← T ′⊕ (C[i] ·Hb+2−i−a)

If T ′ 6= T then return ⊥
Return M

Multi-Collide-GCM(K,N,T ):

L← encode64(0)‖encode64(|K|×128)
pairs[·]←⊥ ; C← ε

For i = 1 to |K| :
H← EK[i](0128) ; P← EK[i](N‖0311)
y← ((L ·H)⊕P⊕T ) ·H−2

pairs[i]← (H,y)
f ← Interpolate(pairs) ; x← Coeffs( f )
For i = 1 to |K| :

C←C ‖x[i]
Return N ‖C ‖T

Figure 1: (Left) The Galois Counter mode (GCM) encryption and (middle) decryption algorithms. (Right) The Multi-Collide-GCM
algorithm, which takes a set K of keys, a nonce N, and a tag T and computes a nonce-ciphertext-tag triple N‖C‖T such that it decrypts
correctly under every key in K. The function encode64(·) returns a 64-bit representation of its integer input. The function Interpolate(·)
is a polynomial interpolation algorithm that accepts a vector of data pairs and returns a polynomial, while Coeffs(·) returns the coefficients
of this polynomial. We denote · as multiplication and ⊕ as addition in GF(2128).

where “MKCRA
AEAD,κ⇒ true” denotes the event that A suc-

ceeds in finding K,N∗,AD∗,C∗ such that N∗,AD∗,C∗ de-
crypts to non-⊥ under all keys in K. The event is defined
over the coins used by A .

A TMKCR adversary trivially gives an MKCR adversary,
but not vice versa. Both targeted and untargeted MKCR at-
tacks will enable partitioning oracle attacks, as both provide
the ability to compute splitting values that work for some
subset K of the key space. But targeted attacks are better
for adversaries, since it will allow, for example, generating
sets for the most probable keys (e.g., due to a non-uniform
distribution over the passwords used to derive them).

Our attacks will require that decryption fails for K /∈K.
This will hold except with tiny probability for the target
schemes of interest. We therefore focus on the cryptanalyti-
cally hard task of computing the key multi-collisions.

Committing AEAD and MKCR. Informally, a commit-
ting encryption scheme is one for which it is computation-
ally intractable to find a pair of keys and a ciphertext that
decrypts under both keys. Security goals for committing
AE were first formalized by Farshim et al. [24]. Grubbs et
al. [30] later formalized committing AEAD, with slightly
different semantics than usual for AEAD to capture a goal
of compact commitments. Compactness is relevant in the
moderation settings they considered, but not here. Commit-
ting AEAD may also be referred to as “key-committing
AEAD” in other literature; we use committing AEAD in
this work.

The Farshim et al. full robustness (FROB) notion is clos-
est to our MKCR notion: once translated to the nonce-based
AEAD setting (by adding nonces and associated data), it is
a special case of MKCR in which |K|= 2. We use commit-
ting AEAD to refer to schemes that meet this FROB notion,
which, in turn, rule out MKCR attacks. The converse is not
true, since being MKCR for κ does not imply being MKCR
for κ′ < κ.

Related security goals. Multi-collision resistance has
been treated in the context of hash functions, but here we
are interested in multi-collisions over keys and not over
messages. In particular the attacks of Joux [46] are not ap-
plicable to our setting, even if one were to focus on keyed
Merkle-Damgård hash functions, since applying his attack
technique would rely on very long multi-block keys.

One can also formalize and investigate key multi-
collision security for other symmetric and asymmetric prim-
itives, including message authentication schemes, digital
signatures, and public-key encryption. We leave doing so
to future work.

3.1 Key Multi-collisions for AES-GCM

At a high level, our multi-collision attack against AES-GCM
reduces the task of finding key multi-collisions to solving
a system of linear equations. This is possible because of
the algebraic properties of the universal hashing underlying
integrity protection in AES-GCM [64, 65].

AES-GCM is an AEAD scheme that composes AES in
counter mode with a specially designed Carter-Wegman
MAC [96]. The latter uses an XOR-universal hash func-
tion called GHASH. Detailed pseudocode is provided
in Figure 1. Encryption takes in a nonce N, an AES key
K, associated data AD, and plaintext M. It outputs a cipher-
text C1, . . . ,Cm,T ; here T is the authentication tag and m =
dM/ne for n = 128 the block size of the underlying AES
block cipher denoted by E. The ciphertext blocks C1, . . . ,Cm
are generated using counter mode with E, and the tag T
is computed by applying GHASH to AD and C1, . . . ,Cm to
obtain a value h. Finally T = h⊕EK(N ‖0311). Decryption
re-computes the tag, compares it with T , and, if success-
ful, outputs the counter-mode decryption of the ciphertext
blocks. To disambiguate, we consider the message authenti-
cation tag T as separate from the ciphertext blocks.

We now explain GHASH, but for simplicity omit asso-
ciated data. For a key K, GHASH first derives a hash key
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H = EK(0n). It then hashes by computing

h =C1 ·Hm+1⊕·· ·⊕Cm−1 ·H3⊕C∗m ·H2⊕L ·H (1)

where C∗m is Cm concatenated with enough zeros to get an
n-bit string and L is an n-bit encoding of the length of the
message (equivalently, the length of the ciphertext). The
maximum plaintext length is 239−256. The multiplications
are performed over the finite field GF(2128) with a particular
fixed irreducible polynomial.

For a set K = {K1, . . . ,Kk} and nonce N, one can com-
pute a single ciphertext (C1, . . . ,Ck−1,T ) that decrypts cor-
rectly under every key in K. For each Ki, derive the asso-
ciated GHASH key Hi = EKi(0

n) and then construct the
linear equation

T =C1 ·Hk−1
i ⊕·· ·⊕Ck−1 ·H2

i ⊕L ·Hi⊕EKi(N ‖0311)

which one arrives at by assigning Hi to H in (1) and
then substituting the result into the equation T = h⊕
EKi(N ‖0311). Note that we have fixed the number of the
ciphertext blocks to be k−1. The result is then a system of
k equations in k unknowns:

1 H2
1 H3

1 · · · Hk+1
1

1 H2
2 H3

2 · · · Hk+1
2

...
...

...
. . .

...

1 H2
k H3

k · · · Hk+1
k

 ·


T

Ck−1
...

C1

=


B1

B2
...

Bk

 (2)

where Bi = (L ·Hi)⊕EKi(N ‖0311). At this point, one can
solve the linear equations using Gaussian elimination to
produce the desired ciphertext. This will require O(k3) time,
which may be prohibitive for very large k.

The polynomial matrix in (2) is almost a Vandermonde
matrix, whose structured form allows for finding solutions
more efficiently. The difference is the missing column
[H1,H2, . . . ,Hk]

ᵀ that is omitted because of the fixed length
value L (which we cannot treat as a variable). We can, how-
ever, treat T as a fixed value (e.g., a randomly chosen con-
stant) instead of a variable and add one block of ciphertext
as a new variable. We then solve for the following system
of equations

1 H1 H2
1 · · · Hk−1

1

1 H2 H2
2 · · · Hk−1

2
...

...
...

. . .
...

1 Hk H2
k · · · Hk−1

k

 ·


Ck

Ck−1
...

C1

=


B′1
B′2
...

B′k

 (3)

where B′i = ((L ·Hi)⊕EKi(N + 1)⊕ T ) ·H−2
i and where

now L is larger by one block. We can solve this special
system of equations in time O(k2) and space O(k) using
off-the-shelf polynomial interpolation algorithms, a factor
of k improvement. The resulting solution will have one extra
ciphertext block. While ideally an adversary wants multi-
collision ciphertexts to be as compact as possible, one extra
block will not significantly impact attacks. Detailed pseu-
docode for this procedure, denoted Multi-Collide-GCM, ap-
pears in in Figure 1.

Let Agcm be the TMKCR adversary that picks N,T arbi-
trarily and runs Multi-Collide-GCM. The adversary is guar-

anteed to succeed assuming the system of linear equations
is solvable, which is equivalent to the matrix having a non-
zero determinant. A well-known fact about Vandermonde
matrices is that their determinant is non-zero if and only
if all the Hi values are pairwise distinct, i.e., Hi 6= H j for
1≤ i < j≤ k. In the ideal cipher model we can therefore di-
rectly compute the probability of success (over the coins of
the ideal cipher), because in this case the Hi values are cho-
sen uniformly at random. Thus, Advtmk-cr

GCM (Agcm)≥ 1− k2

2n .
This is essentially one for the values of k we will consider
and n = 128.

We conjecture that, up to additive constant terms, our
attack is “tight” in its trade-off between ciphertext size and
runtime: namely, any attack that (w.h.p.) constructs degree-
k AES-GCM ciphertexts with fewer than k−1 ciphertext
blocks should require at least birthday-bound complexity.
Finding this “short” colliding AES-GCM ciphertext means
solving an overdetermined system of equations (i.e., one
which has more equations than variables). For such a sys-
tem to be solvable, there have to be rows that are linear
combinations of other rows. Since each row is increasing
powers of a random field element (i.e., the hash key) this
dependence between rows should be rare as long as the
block cipher acts like an ideal cipher. We leave confirming
or disproving our conjecture to future work.

Performance. We implemented Multi-Collide-GCM us-
ing the Python-based mathematics library SageMath [91]
and the Magma computational algebra system [18].
We used SageMath for its convenient integration with
Python and its cryptography libraries (specifically, Py-
Cryptodome [74]). While SageMath can be used directly,
we found Magma’s polynomial interpolation algorithm to
be significantly faster. Our proof-of-concept code is pub-
licly available.1 We note that SageMath and Magma imple-
ment an algorithm that interpolates a degree-k polynomial
in time O(k2), but there exists an algorithm that can do this
in time O(k log2 k) using FFTs [17]. Thus, while the times
we report here work for existing library implementations,
one could compute key multi-collisions far more quickly
with known specialized algorithms.

Timing experiments were performed on a desktop with
an Intel Core i9 processor and 128 GB RAM, running Linux
x86-64. We present the results in the table in Figure 2,
which shows both the time in seconds to generate a k-way
key multi-collision for AES-GCM and the size in bytes of
the resulting ciphertext, including the tag. There was little
variance in timing when generating multi-collisions, so we
report the times for just one execution for each k. Most of
the multi-collision ciphertexts could be computed relatively
quickly. Colliding ciphertexts for k = 216 keys, for instance,
took less than thirty minutes. For smaller k it is much faster.
We note that SageMath’s interface with Magma returns a
segmentation fault when polynomial interpolation is used
with value k = 218. In Figure 2 for this k value, we therefore
report the time to perform polynomial interpolation for 218

1https://github.com/julialen/key_multicollision
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216 1,820 1,048,592

218 20,122 4,194,320

Figure 2: (Left) Success rate of identifying a key uniformly chosen
from a set of size d = 230 as a function of the number of queries q
for brute-force attack (k = 1) and partitioning oracle attack (k > 1).
(Right) Time in seconds to generate key multi-collisions for AES-
GCM and the resulting ciphertext size in bytes (including the tag).
For k = 218 the time is just for Magma’s polynomial interpolation.

randomly-generated points using Magma itself; the timing
for the actual attack will be essentially the same.

To illustrate the power of key multi-collisions, we return
to the simple password-based AEAD partitioning oracle
scenario described in Section 2. Assume a partitioning or-
acle that returns fK(N,C,T ) = 1 if and only if AES-GCM
decryption AuthDecK(N,C ‖T ) 6=⊥ . We omit associated
data for simplicity. Then, consider an attacker attempting
to discover a key chosen uniformly from a set D of size
d = 230 (i.e., the approximate size of a large password
dictionary). We simulate the brute-force attack (k = 1) as-
suming the oracle works for plaintexts as small as one
byte. We also simulate our adaptive partitioning oracle at-
tack that constructs splitting ciphertexts of size k iteratively
for different sets of keys until the oracle returns one. At
this point the adversary performs a binary search in logk
queries to find the secret. We perform these simulations for
k ∈ {210,212,214,216,218}.

The graph in Figure 2 shows the attacks’ success rates —
how often they succeed in uniquely identifying the key —
as a function of the number of queries made. In this context
brute-force attacks do poorly, achieving negligible perfor-
mance even for large numbers of queries. The partitioning
oracle attack can search the space much more efficiently,
even for moderate k.

We also measured total bandwidth cost (total number of
bytes sent to the oracle) used by each attack to achieve a
certain success rate. We omitted the nonces from the band-
width calculations, which can only make the brute-force
attack look more competitive with the partitioning oracle at-
tacks. For a 20% success rate, the brute force attack (k = 1)
has a bandwidth cost of 3.65 GB, while the other values of
k require about 3.44 GB. For a 60% success rate, the differ-
ence is greater, with the brute force attack accumulating a
bandwidth cost of about 11 GB, while the other values of
k require only about 10.3 GB. Thus, partitioning oracle at-

tacks provide a significant speed up over brute-force search
when queries are the limiting factor.

3.2 Other AEAD Schemes

Schemes that use Poly1305. The
XSalsa20/Poly1305 [12, 14] and ChaCha20/Poly1305 [13]
are widely used AEAD schemes due to their speed, ease
of constant-time software implementations, and security
properties. Both schemes have a high-level structure similar
to AES-GCM, combining a stream cipher (XSalsa20 or
ChaCha20) with a Carter-Wegman style MAC called
Poly1305. Here we outline a key multi-collision attack
against it, and defer the details to Appendix B.

The core of the attack is against Poly1305 [12], which
is similar to GHASH except that it: (1) encodes an input
(a ciphertext in the context of its use within the AEAD
schemes here) as a sequence of blocks with 0x01 appended;
(2) performs the polynomial evaluation over Fp for prime
p = 2130− 5 (hence the name); and (3) adds the result to
a pseudorandom pad modulo 2128 to provide a tag value.
The way Poly1305 encodes its inputs breaks the algebraic
structure of the collision-finding problem, necessitating a
more complex and less scalable attack. Concretely, we were
not able to compute splitting ciphertexts with degree greater
than ten with our current techniques; this still gives a factor-
of-ten speedup in partitioning oracle attacks.

Misuse-resistant AEAD. Many schemes, including those
described above, leak information about plaintexts should
nonces (IVs) be accidentally reused. Misuse-resistant
AEAD [78] provides security even in the presence of nonce
reuse. This security goal fundamentally rules out online en-
cryption, meaning one must process the entire plaintext be-
fore outputting any ciphertext bits. One popular suggested
scheme is AES-GCM-SIV [32], which instantiates the SIV
mode of operation [78] using primitives borrowed from
AES-GCM (specifically, AES counter mode and a variant
of GHASH called POLYVAL).

Nonce misuse-resistance is different than robustness, and
in Appendix C we show that AES-GCM-SIV is vulnerable
to key multi-collision attacks. (A variant of this attack,
limited to only two keys, was discovered by Schmieg in
concurrent work [83].) One interesting point is that our
attack against AES-GCM-SIV is not targeted, meaning we
cannot precisely control the set of keys that end up in a
collision set. As mentioned previously untargeted key multi-
collisions suffice for partitioning oracle attacks.

3.3 Passing Plaintext Format Checks

Our MKCR attacks so far ensure that decryption succeeds,
but the resulting plaintexts are random. In some cases this
suffices, for example when a decryption implementation
aborts with an error message when decryption outputs ⊥.
However in some situations — including one of our attacks
against Shadowsocks — building partitioning oracles will
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require MKCR attacks that result in plaintexts that satisfy
some format checks.

MKCR with plaintext format checks. We formalize the
resulting cryptanalytic goal by extending the MKCR se-
curity definition as follows. Let M be the set of possible
plaintexts. We generalize the MKCR game by parameter-
izing it with a predicate pr : M ∪{⊥}→ {0,1} that deter-
mines whether a message M is valid (i.e., pr(M) = 1) or
invalid (pr(M) = 0). We assume pr(⊥) = 0 and pr is fast
to compute.

Then we change the MKCR game to be parameter-
ized by pr, written MKCRAEAD,κ,pr. The adversary wins
by producing a set K, associated data AD∗, and cipher-
text C∗ such that |K| ≥ κ and for all K ∈ K it holds that
pr(AuthDecK(AD∗,C∗)) = 1. This strictly generalizes the
prior definition, since we can set pr(M) = 1 for all M ∈M
and thus arrive at the original same definition. We define
the advantage via

Advmk-cr
AEAD,κ,pr(A) = Pr

[
MKCRA

AEAD,κ,pr⇒ true
]

where “MKCRA
AEAD,κ,pr ⇒ true” denotes the event that A

wins. The event is defined over the coins used by A .

A rejection sampling approach. Consider a predicate
pr and let p1 = Pr [ pr(M) = 1 ] for message M sampled
randomly from M . When p1 is not very small, one sim-
ple approach is to use rejection sampling. Consider a tar-
get set of keys K. We can choose a random nonce N and
tag T and run our MKCR algorithm using S ,N,T to ob-
tain a solution ciphertext N ‖C ‖ T . We then check that
pr(AuthDecK(C,T )) = 1 for all K ∈ S . If not, then repeat
the attack using a fresh choice of nonce. Each attempt will
succeed with probability (negligibly far from) pk

1 for k = |S |,
because changing the nonce leads to fresh pseudorandom
plaintexts for each key.

Most format checks will make p1 too small for this basic
approach to work. For example, one of our attacks against
Shadowsocks will require the first byte to be a fixed value,
making p1 = 1/256. So unless k is small, rejection sam-
pling alone will be too inefficient.

Exploiting structure. We can instead take advantage of
the fact that many format predicates will be structured, e.g.,
checking just the first few bytes of a header. This allows us
to extend our AES-GCM attack (and others) in an efficient
way. Intuitively, we will set aside the ciphertext blocks
whose underlying plaintext must satisfy format checks, and
we will then leave the rest as free variables to define a
system of linear equations.

As a concrete example, assume a predicate pr that only
compares the first byte of the plaintext M to some arbi-
trary fixed byte. We extend our AES-GCM MKCR attack
as follows. Consider a potential set of multi-collision keys
S . First, choose a nonce N arbitrarily and compute for each
K ∈ S the first byte of AES-GCM ciphertext. We then deter-
mine the largest subset K⊆ S that have the same ciphertext
byte value. Applying known results [75] on balls-and-bins
problems gives us that E[|K|] ≈ |D|/256+8

√
|D|/256. Then

run the targeted TMKCR attack against AES-GCM using
N, but fixing the first block of ciphertext to a constant equal
to the byte value plus some arbitrary 15 bytes to get a
full fixed ciphertext block C1. Then the system of equa-
tions is defined by taking the corresponding contribution
to the GHASH equation, namely C1 ·EKi(0

128)k+1 as a con-
stant and adding it to the right hand side of each equation.
One can generalize this to n bits of plaintext, for which
E[|K|]≈ |D|/2n +

√
2n|D|/2n.

This extension is efficient, running in time O(S). One
could also combine it with the rejection sampling approach
by having the first phase try multiple random nonces to look
for fortuitous multi-collisions in the first byte, but we did
not need to do this for practical attacks.

One can easily extend the approach to other kinds of
format checks, though if the check is too constrained it may
become inefficient (e.g., if plaintexts must have many fixed
bytes). The technique also extends to other stream-cipher
based AEAD schemes in a straightforward manner.

4 Password Recovery for Shadowsocks

The prior section showed how to build partitioning oracle
attacks against non-committing AEAD schemes. Now we
turn to case studies that surface how partitioning oracles
arise in practice. We start with Shadowsocks and show how
to build a partitioning oracle that efficiently recovers user-
chosen passwords.

Background on Shadowsocks. Originally written by
a pseudonymous developer, Shadowsocks [85] is an
encrypted proxy for TCP and UDP traffic, based on
SOCKS5 [55]. It is used both as a standalone proxy and as
the core of other censorship evasion tools such as Google
Jigsaw’s Outline VPN [70]. The original GitHub repository
has been “starred” by more than 32,000 users and forked
by nearly 20,000 [84].

To use Shadowsocks, a user first deploys the Shadow-
socks proxy server on a remote machine (typically hosted
in a cloud service), provisions it with a static password2 pw,
and chooses an encryption scheme to use for all connec-
tions. Originally, only AES-CFB was supported, but cipher
choices were modernized after a series of integrity attacks
on the protocol [86]. Current documentation recommends
either AES-GCM or ChaCha20/Poly1305, which are the
only two AEAD schemes supported. Clients given pw can
then forward TCP or UDP traffic from their machine to
the Shadowsocks proxy. Our attack targets UDP and use of
AES-GCM, and so we restrict our explanation to this setup.

The Shadowsocks protocol. The client starts by hash-
ing the user password to obtain a key Kr = H(pw). The
hash is currently MD5, but our attacks would still work
should it be replaced with a modern password hashing al-
gorithm. The client then samples a random sixteen-byte
salt sa and computes a session key Ks using HKDF [51],

2Using high-entropy symmetric keys instead of passwords became
possible recently [89]; this feature does not appear to be widely used.
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as Ks ← HKDF(Kr,sa,“ss-subkey”). A new salt and ses-
sion key are generated for every message. The client
encrypts its plaintext payload pl by computing C ←
AuthEnc(Ks,Z,ε,01 ‖ ip ‖ port ‖ pl) where Z denotes a
nonce that is set to a string of sufficiently many zero bytes
(12 for AES-GCM); the value ε indicates empty associated
data; and 01 is a one-byte header indicating that ip is an
IPv4 address. The client sends (sa,C) to the server.

When the Shadowsocks server receives (sa,C), it extracts
the salt and uses it together with pw to re-derive the session
key Ks. It decrypts the remainder of the ciphertext with Ks.
If decryption fails, no error message is sent back to the
client. Silently dropping invalid or malformed requests is an
explicit countermeasure against active probing attacks [97];
we will see it also complicates building partitioning oracles.

If decryption succeeds, the plaintext’s format is checked
by verifying that its first byte is equal to 01.3 If that check
passes, the next six bytes are interpreted as a four-byte IPv4
address ip and two-byte port number port. Finally, the rest
of the payload is sent to the remote server identified by ip
and port. The proxy then listens on an ephemeral source
UDP port assigned by the kernel networking stack for a
reply from the remote server.

When Shadowsocks receives a reply on the ephemeral
port, the server generates a random salt and uses it with pw
to generate a new session key. It then encrypts the response,
and sends the resulting salt and ciphertext back to the client.
The same encryption algorithm is used in both directions.

Threat model. We focus on remote password recovery at-
tacks, meaning a malicious client that knows the IP address
of a Shadowsocks server seeks to recover the password(s)
it uses. We do not assume the ability to monitor network
traffic from honest clients. Capturing honest traffic would
enable offline brute-force dictionary attacks against the
password-based encryption — future versions of Shadow-
socks might consider using password-authenticated public-
key encryption instead to mitigate this [20].

A basic attack that works in our threat model is online
brute-force, in which the adversary enumerates a sequence
of guesses pw1, pw2, . . . and sends an encryption under each
guess to the server. By having the encrypted plaintext pl
encode a request back to the malicious client, the adversary
can determine if decryption succeeds by seeing if it obtains
a forwarded request from the proxy. The Shadowsocks
designers recommend using rate limits to make remote
guessing attacks more difficult, and several of the libraries
implement them.

Shadowsocks would be considered secure in our threat
model if online brute-force attacks were the best possible
attack. We demonstrate how adversaries can do better via
partitioning oracles.

3In fact Shadowsocks supports ASCII domain names and IPv6 ad-
dresses, indicated by other byte values, but we ignore these for simplicity.

Shadowsocks
1. Send splitting ciphertext

4. If listener open,
spoofed reply sent
back to attacker

2. Decrypt !𝑉 with ks. If success: 
send UDP packet to (ip, port) 
from plaintext, listen for reply

Server
ports

3. Send spoofed UDP
replies to each port

!𝑉

Figure 3: Diagram of the Shadowsocks partitioning oracle. Val-
ues V̂ and Ks defined in the text. Solid lines indicate actions that
always occur, and dashed lines indicate actions that occur only
if V̂ decrypts correctly, begins with byte 01, and contains a valid
(ip,port) pair.

4.1 The Attack
We now show how to turn a Shadowsocks proxy server into
a partitioning oracle. This would be simple if the proxy
server responded with an error message when decryption
fails, in which case the basic partitioning oracle attack de-
scribed in Section 2 would apply. But the active probing
countermeasure prevents this simple approach. A key in-
sight is that we can exploit the fact that the proxy server
opens an ephemeral UDP port in response to a valid request
(and does not otherwise). One can view this as a remotely
observable, logical side-channel that reveals whether de-
cryption succeeds. See Figure 3 for a diagram of our attack,
which we now explain in detail.

The attacker starts with knowledge of a password dic-
tionary D and an estimate p̂ of the probability distribution
over passwords in the dictionary. That is, p̂(pwi) is the
probability that pwi ∈D is the correct password. (We will
use password leak data to derive p̂, as discussed below.)
The attack has two steps, a pre-computation phase and an
active querying phase.

Pre-computation phase: In a pre-computation phase, the
attacker generates a splitting value (sa∗,C∗), as follows.
Given p̂ and D with d = |D|, the attacker uses the MKCR
attack that handles format checks from Section 3.3. It de-
rives Ki

s ← HKDF(H(pwi),sa,“ss-subkey”) for all pwi ∈
D, uses the resulting set S = {K1

s , . . . ,K
d
s } as the target

keys, sets the nonce to be the zero byte string Z, and sets
the format check predicate pr to output one if the first byte
is equal to 01. The algorithm outputs a subset of keys K⊂ S
and a ciphertext C∗ such that decrypting C∗ under each of
the keys in K results in a plaintext with a leading byte equal
to 01.

Applying this directly will not quite work, because Shad-
owsocks servers will only accept UDP packets whose length
is less than or equal to 65,507 bytes. This means we can at
best use a key-colliding ciphertext for a key set of size
k = 4,091. We therefore modify slightly the procedure
above to find a size-k subset Kmax ⊂K that has maximum
aggregate probability under p̂. Fixing a salt sa, we abuse
notation and let p̂(Ks) = p̂(pw) for Ks, the key derived from
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pw using sa. Then we solve the optimization problem de-
fined by

Kmax = argmax
S⊆K , |S|≤k

∑
Ks∈S

p̂(Ks) .

We compute the key-colliding ciphertext C∗ that decrypts
under that subset using the first block fixed to ensure the
format check is passed. Let P⊆D be the set of passwords
associated to the subset of colliding keys Kmax (for salt sa∗).
Recall that since we must fix a block of C∗, it will have k+1
16-byte blocks, which does not include the message tag.

Querying phase: Having done the pre-computation, the
attacker can then submit to the proxy server (sa∗,C∗) and it
will decrypt correctly for any of the 4,091 passwords in P.
This is shown as step (1) in Figure 3. Should pw ∈ P, the
server will interpret the decrypted plaintext as a 01 byte
followed by a random IPv4 address, destination port, and
payload. The IPv4 and destination port will be accepted by
the server’s network protocol stack with high probability,
and so the server will send the payload as a UDP packet to
the IP address ip and destination port port. It will also open
a UDP source port to listen for a response. This is step (2)
in the figure.

The attacker does not a priori know the listening port the
server uses, and modern operating systems randomize this
port. The traditional range used for ephemeral source ports
is 49,152 through 65,535, though some systems use slightly
larger ranges. The attacker can simply send a UDP probe
to every port in that range — the port is left open for five
minutes by default for the Shadowsocks server implemen-
tations we inspected. This is shown as step (3) in the figure.
Should the system respond with ICMP error messages on
closed ports, this will already be sufficient for the attacker
to learn if a port was opened. If there is no other activity on
the system, this suffices to construct a partitioning oracle.

But in fact we observed that Shadowsocks server imple-
mentations will accept arbitrary response data. Thus, upon
receiving the UDP probe the server believes this to be the
valid response and proceeds to encrypt it and send it back to
the attacker.4 This is marked as step (4) in the diagram. At
this point, the attacker can simply perform trial decryption
for each pw ∈ P and recover the password.

The attacker can repeat steps (1)–(3) multiple times, fo-
cusing iteratively on the set of remaining passwords. The
attacker can also amortize the cost of the UDP port scan
across multiple attempts, by simply sending a sequence of
pre-computed key colliding ciphertexts to the server (for
distinct subsets of keys), and then performing the port scan.

4.2 Experimental Evaluation

Success rate simulations. To evaluate the efficacy of the
attack in recovering a target password, we perform simula-
tions using a sanitized version of a large breach compila-
tion [21] obtained from the authors of [71]. The sanitized
dataset contains 377 million unique passwords together

4This seems to be a vulnerability in its own right, as it could potentially
allow attackers to inject malicious responses to honest client UDP requests.
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Figure 4: The (left) number of queries versus success rate and
(right) bandwidth versus success rate for simulations of the brute-
force attack (k = 1) and partitioning oracle attack (k = 4091).

with the frequency with which they occurred, totaling 1.1
billion passwords overall. To perform password simulation
experiments, we partitioned the password dataset randomly
into two halves: a training set (Ptrain) used by the attacker
to estimate p̂ and a testing set (Ptest) used as an empirical
distribution for sampling a target password pw. This rep-
resents an attacker having a good, but not exact, estimate
of the distribution from which a password is drawn. The
maximum success rate achievable for the simulations is
70%, because the test set has many passwords not found in
the training set.

We wrote a program that uses the training set Ptrain to
determine a sequence of password sets P1,P2, . . . accord-
ing to the maximization approach described earlier. This
was run on the same Linux desktop we used for our multi-
collision timing experiments in Section 3. The probability
of success of the first set is 0.9%. In contrast, the brute-force
attack achieves a 0.76% success rate with its first ciphertext.
The reason for the mild improvement is that the formatting
check for Shadowsocks means that P1 contains one of the
most popular passwords plus many lower probability pass-
words. One could improve this with further precomputation
effort by repeating the process until a higher performing P1
is found.

Even without such embellishments, the success rate as a
function of the number of ciphertext queries made goes up
rapidly. The left graph of Figure 4 shows how the partition-
ing oracle attack outperforms brute force for all query bud-
gets. As examples: the partitioning oracle attack achieves a
success rate of 20% with just 124 queries while brute-force
achieves only 3% with the same number. A success rate of
70% would require 21,503 partitioning oracle queries while
the brute-force attack would require 87.8 million queries.

We also estimated bandwidth usage for both attacks,
shown in the right graph of Figure 4. A single query in
the partitioning oracle attack is 65,532 bytes total, includ-
ing an 8-byte UDP header, 20-byte IP header, 16-byte salt,
and 65,488-byte ciphertext. For the simple brute-force at-
tack a single query is 68 bytes, including the UDP header,
IP header, salt, and 24-byte ciphertext. The ciphertext itself
includes a 16-byte authentication tag and encrypted 7-byte
header and 1-byte payload. For success rates below 25%
the brute-force attack requires less total bandwidth than the
partitioning oracle attack, but the latter uses less bandwidth
above 25%.
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Concretely, the total bandwidth of all the submitted ci-
phertexts in the partitioning oracle attack to achieve 20%
success rate would be 8.1 MB across 124 UDP packets.
The total bandwidth of submitted ciphertexts to achieve
70% success rate, the maximum possible, would be 1.4 GB
across 21,503 UDP packets. The simple online brute-
force attack achieves success rate of 20% using 4.1 MB
of data sent over 60,250 requests. For 70%, this increases
to 5.97 GB of data sent over 87.8 million requests. Note
that these calculations do not include the up to 28,231 UDP
packets for the port scan of the partitioning oracle attack,
but these can potentially be sent once for multiple (or even
all of the) ciphertexts.

Proof of concept. We implemented a full proof of concept
of the attack. Our adversary used the same Linux desktop
for the pre-computation step as the one used in the sim-
ulation experiments, and an EC2 micro instance running
Ubuntu 18.04 to send queries in the online portion of the
attack. The target Shadowsocks server was an EC2 micro
instance running Ubuntu 18.04 and go-shadowsocks2 [29].
We used a default configuration for the target EC2 instance,
except that we allowed UDP inbound traffic on the server’s
ephemeral port range (32,768–60,999). Without opening
those ports, Amazon’s firewall will by default block the
UDP port scan.

Using this setup, we verified steps (1)–(4) of the attack
work as expected and measured its performance. Because
our simulations above show that 20% of the training set
Ptrain can be recovered within 200 queries, we chose to
demonstrate the end-to-end time and bandwidth of an at-
tack requiring 200 queries. To complete the offline pre-
computation phase of the attack performed by the malicious
client, we wrote a program that uses Ptrain to determine a
sequence of 200 password sets P1,P2, . . . ,P200 according
to the maximization approach described earlier. Our unop-
timized implementation took approximately 33 hours, for
an average of about 10 minutes per password set, and then
took 92 minutes to compute the 200 multi-key colliding
ciphertexts for each of the resulting password sets. One
could speed up this precomputation step via parallelization
and by focusing on only higher probability passwords (in-
stead of the entire set, as these timings reflect). We then
randomly chose a target password from the set of passwords
covered by the 200 ciphertexts and registered it with the
Shadowsocks server.

Lastly, we used the EC2 client to send the 200 ciphertexts
and perform a port scan of the Shadowsocks server. Our
program waited 100 ms between each ciphertext to avoid
overloading the server, so the total time to send the cipher-
texts was 20 seconds and required 13.1 MB of bandwidth.
For the port scan, we used the python3 scapy library to
send a 20-byte payload to every port in the range 32,768 to
60,999. This took 97 seconds and required 1.36 MB of band-
width. Once the correct port was probed, we verified that
the encrypted payload was sent back to the client. Know-
ing the set of 818,200 passwords associated with the 200
ciphertexts, the client derived the key for each password
and then trial decrypted with this set of keys to find the tar-

get password. We confirmed that the correct password was
indeed found by the client. This required 392,179 decryp-
tions, which took 58 seconds. Altogether the entire attack
required a total of 14.5 MB of bandwidth.

Comparison to brute-force. We also implemented a
brute-force attack and ran it using the desktop client. Our
attack went through each password in Ptrain to derive the
key and encrypt a Shadowsocks packet whose destination
IP address is the adversarial EC2 instance. Meanwhile, the
adversarial EC2 instance was setup to run a simple echo
server. If the adversarial client submitted a ciphertext using
the correct password, the Shadowsocks server would for-
ward the decrypted payload to the echo server, and the echo
server would send it back to the Shadowsocks server. The
latter would encrypt the echo reply and send it back to the
desktop client. Thus, once the desktop client received a pay-
load from the Shadowsocks server, it would know it chose
the correct password. When the same password as above
was registered with the Shadowsocks server, this brute-force
attack found it in about 30 minutes, using 60,305 queries
and 4.1 MB of bandwidth.

Thus, both our simulations and proof of concept imple-
mentations show that if an adversary wants to minimize its
queries (e.g., because of rate limiting by the target server),
the partitioning oracle attack is strictly better than the brute-
force attack. While pre-computation for the partitioning
oracle is expensive, the online phase is fast. Finally, our
attack may require more total bandwidth than brute-force
to find the most popular passwords, but for less popular
passwords it will use less bandwidth.

4.3 Further Attack Settings

A multi-user variant. One limitation of using a port scan
to learn the output of the partitioning oracle is that strict
firewall rules can disrupt or prevent port scanning. Here we
describe another attack that does not require port scanning,
but works only in certain multi-user settings.

There are two ways of implementing multi-user support
in a Shadowsocks server. The first, used by most major
implementations, is giving each user its own dedicated port,
and attempting to decrypt that port’s inbound traffic only
with that user’s password. This method is not vulnerable to
our attack.

The second way, used by Jigsaw’s Outline server, is allow-
ing multiple passwords to be specified for a single port [88];
when the server receives a packet, it tries to decrypt the
ciphertext with every possible user password. There are
ongoing discussions on whether to make this a standard
feature for all Shadowsocks servers [87]. Our attack is ef-
fective on this latter method, and is a kind of cross-user
partitioning oracle attack: a user already having a credential
for a Shadowsocks server can learn the credentials of other
users on the same port, without the need to scan ports or
pass format checks.

To see why, assume there are two users u0 and u1
on the same port with passwords pw0 and pw1 (assume
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pw0 6= pw1), and every ciphertext received on that port
is decrypted first with pw0 then pw1. To learn u0’s pass-
word, u1 can build a partitioning oracle as follows: first,
construct a splitting ciphertext (sa∗,C∗) that decrypts un-
der pw1 to a chosen (IP, port) pair where u1 has a UDP
listener, and decrypts to an arbitrary random plaintext un-
der some set of guesses S ⊆D. Upon sending this cipher-
text, if the Shadowsocks server sends a UDP packet to
u1’s listener we have that fpw0(sa∗,C∗) = 0, and otherwise
fpw0(sa∗,C∗) = 1. This holds because the server only de-
crypts under pw1 if pw0 decryption fails.

Though theoretically sound, mounting this attack on a
real multi-user deployment of Jigsaw’s server would likely
be challenging due to a performance optimization present
in their implementation. To decrease the latency of future
trial decryptions, Jigsaw’s server changes the ordering of
passwords in the list each time a correct decryption happens.
This means that the assumption about decryption happening
first with pw0 holds only for the first partitioning oracle
query — if this one fails, pw1 is moved to the top of the list,
and u1 cannot make another query until pw0 is put back at
the top of the list. If u1 can cause u0 to send traffic through
Shadowsocks, pw0 will be put at the top of the list, and u1
can make more queries. This attack is therefore likely to be
useful only in quite narrow threat models.

Shadowsocks TCP mode. We were not able to build a
working attack on Shadowsocks’s protocol for TCP con-
nections. The main challenge is that in this setting Shad-
owsocks servers expect two ciphertexts, first an encryption
of the payload length and then an encryption of the pay-
load. The former only allows ciphertexts including 2-byte
plaintexts, which seems too small for efficiently construct-
ing splitting ciphertexts — our attacks can only construct
splitting ciphertexts of at least one full block. There may be
more advanced algorithms for finding short splitting cipher-
texts; we leave to future work the question of building such
an algorithm or proving it cannot be done. As mentioned
above, deployments use the same password across TCP and
UDP, so our UDP attack affects both.

5 Password-Authenticated Key Exchange

We turn to partitioning oracles in the context of password-
authenticated key exchange (PAKE). As mentioned earlier,
a version of the PAKE secure remote password (SRP) proto-
col [98] has long been known to be vulnerable to a “two-for-
one” attack (c.f., [99]). A network adversary impersonates
a server response to a client, and based on the client’s sub-
sequent behavior can rule out two possible passwords. This
provides a modest speedup over standard brute-force. We
want to know if our techniques enable attacks with bigger
speedups against PAKE implementations.

We explore this question in the context of a modern
PAKE protocol called OPAQUE [42]. It is undergoing a
standardization process currently, having been suggested
by the IETF CFRG as a good candidate for next generation
PAKE. OPAQUE uses as a component an AEAD scheme,

and its designers and the (evolving) draft standards [52, 53]
make clear the necessity of using committing AEAD.

We perform a case study focusing on what happens when
implementations incorrectly deviate from the specification,
and instead use a non-committing AEAD. Indeed some
early prototype implementations of OPAQUE use AES-
GCM or XSalsa20/Poly1305, as we detail below.

Background on OPAQUE. OPAQUE is meant to replace
existing password authentication protocols on the web,
which today is done by having the client send the server its
password through TLS. This approach requires the server
to handle the client’s plaintext password, and also relies on
public-key infrastructure (PKI) for authentication.

In contrast, OPAQUE is an asymmetric PAKE (aPAKE)
that keeps the client’s password hidden from the server
and does not need PKI to authenticate the server to the
client. Asymmetric here means the server only stores the
equivalent of a (salted) hash of the password, while the
client uses the password directly. OPAQUE provides mu-
tual authentication based on the password. While one can
integrate OPAQUE with certificates or PKI, we focus on
password-only authentication.

OPAQUE works by composing an oblivious PRF
(OPRF) [26] with authenticated key exchange (AKE) using
a committing AEAD. For ease of reference the OPAQUE
pseudocode is provided in Figure 9 in the appendix, where
the AKE scheme used is HMQV [50]. Here we follow
the OPAQUE description from [42]; recent internet drafts
differ in some details that do not affect the attack (should
non-committing AEAD be used).

The protocol begins with the server holding an oblivious
pseudorandom function (OPRF) key ks and the user holding
password pw. A user registers by sending pw to the server
over a secure channel such as TLS. The server computes
rw← H (pw,H ′(pw)ks) where H ′ hashes strings into a
group and H is any hash function. (This is a standard OPRF
construction [43].) The server then chooses a long-term key
pair for itself and for the client, uses AEAD with key rw
to encrypt the client’s key pair and its own public key, and
stores its key pair, the client’s public key, and ciphertext C.

After the user has registered, they can initiate a login with
the server. The client first chooses an ephemeral public key
Xu, computes a blinded OPRF input α←H ′(pw)r for ran-
dom r, and then sends both values to the server. The server
retrieves the client’s keys and C, and computes a blinded
OPRF output β← αks . It chooses its own ephemeral public
key Xs and computes the HMQV session key Ksess. It sends
(β,Xs,C,As) to the client, where As is a PRF output us-
ing Ksess (used for session key confirmation). The client can
then compute rw←H (pw,β1/r) and use that to decrypt C
to get its long-term key pair. It can then derive the session
key Ksess as per HMQV and confirm that As is correct. The
OPAQUE protocol immediately aborts should the client’s
decryption of C fail.

As discussed in [42], the AEAD must be committing
because otherwise the client’s decryption of C could re-
veal information about more than one password, similar
to the Patel attack and SRP two-for-one attack. Various
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Implementation AEAD Scheme
MKCR Emit
attacks? errors?

libsphinx [62] XSalsa20/Poly1305 X X

threshold-OPAQUE [67] XSalsa20/Poly1305 X X

Opaque [60] XSalsa20/Poly1305 X X

opaque-rs [59] AES-GCM X X

gustin/opaque [34] AES-GCM-SIV X X

gopaque [76] Encrypt-then-HMAC X –

frekui/opaque [54] Encrypt-then-HMAC X –

opaque-ke [57] AEAD-then-HMAC X –

noisat-labs/opaque [69] NORX X –

Figure 5: A summary of early prototype implementations of
OPAQUE and the AEAD scheme they use. The right-hand column
specifies whether the vulnerable implementations emit distinct,
explicit error messages during decryption.

instantiations of the AEAD have been proposed, including
Encrypt-then-HMAC, modifying AES-GCM to add a zeros
check, and more.

Early implementations. Despite this guidance, a survey
of prototype OPAQUE implementations revealed that a
majority use non-committing AEAD. See Figure 5. Many
of these prototypes predate the standard drafts, the most
recent version of which provides more specific guid-
ance on allowed AEAD schemes. Only one implemen-
tation is from a commercial product (opaque-ke [57]);
most do not appear to have been reviewed by cryptogra-
phers. We therefore expect that future implementations
will do better in terms of correctly selecting a committing
AEAD. Nevertheless, this indicates that developers need
strong, specific guidance about committing AEAD. For
instance, Figure 5 shows that XSalsa20/Poly1305, the de-
fault authenticated encryption scheme in popular cryptogra-
phy library libsodium [58], is one of the most popular
choices for an AEAD scheme. However, it is not com-
mitting, and while versions of the OPAQUE documen-
tation explicitly mention that AES-GCM should not be
used, no warnings about XSalsa20/Poly1305 have been
given. Developers seem unclear about its security proper-
ties: one implementation has source code comments stating
that a committing scheme is necessary right where it uses
XSalsa20/Poly1305 [67].

To quantify the danger of such confusion about what
AEAD to use, we turn to building partitioning oracles
against implementations that use non-committing AEAD.

Building partitioning oracles. We assume the implemen-
tation runs the OPRF and AKE in parallel, as in Figure 9,
and that an adversary that can somehow trigger client re-
quests (e.g., via appropriate client-side JavaScript [3, 6, 9]),
intercept the requests, and respond to them. Upon intercept-
ing a login request, the attacker acts as the OPAQUE server
to turn the client into a partitioning oracle fpw. It chooses
its own OPRF key k∗s , and then constructs a splitting value
(β,Xs,C∗,As). It sets β← αk∗s , lets As be arbitrary, and gen-
erates an ephemeral key Xs. Finally it generates a key-multi-
collision ciphertext C∗ for K= {H (pw,H ′(pw)k∗s )) | pw∈

S} for some target set of passwords S . We discuss selecting
passwords for S below. Note that, save β, the splitting value
can be pre-computed.

The adversary sends (β,Xs,C∗,As) to the client, who will
unblind β to obtain a key rw, hash it to derive an AEAD
key, and then decrypt C∗. If decryption fails, the client will
abort immediately and fpw(β,Xs,C∗,As) = 0; if it succeeds,
the client will use the key pair from the plaintext to derive
the shared secret k. Then, the client will re-compute A′s and
abort if A′s 6= As. If this abort occurs, fpw(β,Xs,C∗,As) = 1.

The difference between the two errors must be visible
to the server impersonator to realize the partitioning oracle.
We note that the OPAQUE security model [42] and specifi-
cation allow for distinct error messages (which should be
fine when using committing AEAD, but is dangerous here).
In Figure 5 the last column marks which vulnerable proto-
type implementations emit distinct error messages — three
of five do. If these messages reach the server impersonator,
a partitioning oracle is immediate.

Even without distinct messages, the protocol specifies
aborting if decryption fails, then having a separate abort
later if the As check fails. If implemented with this “early
abort”, side channels like memory accesses, branch predic-
tors, or timing could reveal which of the two errors occurred.

Measuring the timing channel. To determine whether
the potential timing side channel is exploitable, we per-
formed an experiment with libsphinx [62], a more mature
prototype that does not emit distinct error messages but does
abort early on decryption failure. Most of libsphinx’s code
is similar to our diagram in Figure 9, with two changes that
impact timing: (1) it uses a triple-DH handshake instead of
HMQV, and (2) it uses the memory- and time-hard Argon2
hash on rw to derive the AEAD key. By default, libsphinx
accepts a C∗ only up to length 4 MB due to a memory man-
agement bug — it crashes for larger ciphertexts due to a
statically allocated buffer. 5 Once fixed, it accepts cipher-
texts of up to 2 GB. This would enable splitting ciphertexts
with degree up to k = 1.25×108.

We performed timings for 1000 trials each on a Mac-
Book Pro with a 2.5 GHz Intel Core i7 processor using a
static 1 MB key multi-collision ciphertext. The median and
mean time were both 119 ms for server responses that did
not decrypt properly and 124 ms for server responses that
decrypted properly but failed the As check. The standard
deviation in both cases was 2 ms. A previous version of this
work reports different numbers due to an error we found
in libsphinx we have since fixed, and which has separately
also been fixed in the most recent version of the library.
The times we report here were measured on a noise-free
system, and exploiting the attack in practice may be harder.
Ultimately, our results suggest that remote timing attacks
could be feasible, though they may require multiple sam-
ples per partitioning oracle query to reduce noise, which
would reduce attack efficiency.

5More recent versions of libsphinx check for length to prevent the
issue with crashing. The library has also changed to reflect the updated
OPAQUE internet draft.
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Figure 6: (Left) Success rate achieved for different numbers q of
partitioning oracle queries. (Right) The maximum total bandwidth
(BW) in megabytes and number of queries required to guarantee
a 20% success rate.

An adaptive partitioning oracle attack. Given the abil-
ity to construct a partitioning oracle, the question becomes
how to build an attack that extracts the target password pw
from the client in as few oracle queries as possible. As
for the Shadowsocks attack, consider an attacker that starts
with knowledge of a password dictionary D and an estimate
p̂ of the password probabilities. Assume k is the maximum
multi-collision feasible from our attack, given an implemen-
tation’s constraint on ciphertext size (e.g., 1.25× 108 for
bug-free libsphinx).

The algorithmic challenge is to develop a search strategy
that minimizes the expected number of queries to recover
the password. Given input D , q, and k the attacker proceeds
as follows. First it finds a subset P ⊂ D that maximally
balances the aggregate probability mass of the partition. In
other words it solves the following optimization problem:

argmin
P⊂D , |P|≤k

∣∣∣∣∣
(

∑
pw∈P

p̂(pw))

)
−

(
∑

pw∈D\P
p̂(pw)

)∣∣∣∣∣ .
This is exactly the optimization version of the partitioning
problem, which is known to be NP-hard but relatively easy
to solve (q.v., [49]). Pragmatically for the k, q, and p̂ we
found that the following simple heuristic works well. First
check if the top k passwords by probability have aggregate
mass less than 50%. If so, set P to those top k passwords.
Otherwise, perform the classic greedy heuristic that starts
with two empty sets P,P′. Then in order of decreasing
probability, add each password to whichever of the two sets
has smaller aggregate mass, initially starting with P and
stopping when |P|= k.

The attacker can then use the partitioning oracle with P
as described above to learn if pw ∈ P. If so it recurses by
setting D = P and otherwise D = D \P.

Attack performance. We run simulations using the
datasets described in Section 4 to evaluate the efficacy of
the attack and to compare with brute force. We compute
up to q = 100 the set of passwords that will be successfully
recovered by the attack for k ∈ {1,2,210,212,214,216,218}.
We then calculate their aggregate probability according to
their distribution in Ptest , yielding the success rate (the per-

centage of times the attack will succeed). Again note that
the maximum success rate is 70% for these simulations.

Figure 6 summarizes the simulation results. The graph
(left) shows that in a brute-force search (k = 1), only 3%
of passwords can be found with 100 queries. The partition-
ing oracle attack does significantly better. The curves for
k > 2 exhibit an initial exponential growth in success rate,
which then tapers off to a logarithmic growth. This shift
occurs at around log2(k) for each value of k because: (1)
the first set P almost always contains the most probable k
passwords, and (2) the attack needs around log2(k) queries
to recover passwords from this set. Growth afterwards ta-
pers off because the popularity of passwords found with
further queries decreases.

What this means is that for, e.g., k = 210 which corre-
sponds to a ciphertext length of 16.4 kB, an attacker can
achieve 20% success with just 100 queries. For k = 218, the
attack obtains 20% with only 19 queries and 57% with only
100 queries.

The right table in Figure 6 shows the total bandwidth
and number of queries used by each attack to guarantee a
20% success rate. Despite the linear dependence of k on
ciphertext length, partitioning oracles can use about the
same bandwidth (k = 212) compared to brute-force search,
while decreasing the query cost by 2,228×.

Attack viability with TLS integration. We must imper-
sonate the server to build a partitioning oracle, which is
complicated when OPAQUE is integrated with TLS as dis-
cussed by the paper [42] and a later internet-draft [90]. One
suggested integration approach is to run OPAQUE login
within an outer TLS session. The server is authenticated to
the client (via TLS’s cert auth) before the client begins the
OPAQUE login protocol, preventing server impersonation.
If the PKI is compromised or circumvented the attack can
still work. Another suggested integration approach [90] is
different, and uses the server’s OPAQUE private key for its
TLS signature. The server public key is sent to the client
as part of the plaintext underlying C. (The document notes
“there is no need to send a regular TLS certificate”.) Because
the client must decrypt C before it can check the signature,
our attack should work against this integration approach.

6 Countermeasures

The partitioning oracle attacks against Shadowsocks and
non-compliant OPAQUE implementations represent just
two examples of a broader problem. We discuss more vul-
nerable or possibly vulnerable cryptographic tools and pro-
tocols in Appendix A, including the age file encryption
tool [93], the draft HPKE RFC [8], IKEv1 with passwords
as pre-shared secrets [36], password-based encryption in
the Java Web Encryption standard [45], and proposed Ker-
beros extensions [39, 40]. We responsibly disclosed our
results to relevant parties, and in several cases worked with
developers to explore remediations. Here we discuss these
efforts as well as longer-term fixes.
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Immediate mitigations. In many cases partitioning or-
acle vulnerabilities can be mitigated by: (1) length limi-
tations on ciphertexts and/or (2) entropy requirements on
shared secrets. For example, in response to our disclosure,
the developer of the age tool enforced ciphertext length
limits to ensure that splitting ciphertexts generated by our
attack can have degree at most k = 2 [2]. This limits a
partitioning oracle attack to a factor-2 speedup over brute
force. The HPKE draft RFC [8], after we disclosed to the
authors, was updated to require use of high-entropy secrets,
effectively barring human-chosen passwords. This makes
the attack infeasible.

When we disclosed our attack to several prominent mem-
bers of the Shadowsocks community and Outline’s tech
lead, the Shadowsocks developers took immediate action
to disable UDP proxying where enabled by default. We
discussed possible mitigations at length; because all require
non-backwards-compatible changes, the developers chose
not to deploy them.

The most recent OPAQUE draft standard specifies an
ad hoc committing AEAD scheme, obviating the concern
that future (compliant) implementations will choose a non-
committing AEAD scheme. With the current parameter
recommendations, the OPAQUE protocol only needs a six-
block AE ciphertext; thus, implementations could also limit
the ciphertext size as a defense-in-depth measure.

Modifying schemes to be committing. The mitigations
above are application-specific, and in some cases they do
not completely prevent partitioning oracle attacks. This
leaves open the question of how to fix the root cause of
vulnerability, the use of non-committing encryption.

One approach would be to attempt to retrofit existing
popular AEAD schemes to render them committing. A
transform suggested by NIST [92] and an early OPAQUE
draft appends an all-zeros block to a message before en-
crypting with AES-GCM, and, during decryption, checks
that resulting plaintext includes the zeros block. This tech-
nique can be formally shown to be committing when
used with AES-GCM as well as XSalsa20/Poly1305 and
ChaCha20/Poly1305. However, security relies on imple-
mentations avoiding timing side-channels that allow distin-
guishing between decryption failure (the authentication tag
is wrong) and a zeros-check failure.

Avoiding such timing channels will be difficult given
current cryptographic library interfaces. The natural imple-
mentation approach is to call a decryption API and only
perform the zeros check should that API call succeed. But
this may give rise to an observable timing difference, re-
enabling the attack: a splitting ciphertext Ĉ would pass
the decryption API and trigger a (failed) zeros check if
fpw(Ĉ) = 1 while the zero check would be skipped should
fpw(Ĉ) = 0. We performed an experiment to test such a
side-channel in the context of a modified OPAQUE imple-
mentation. The experiment was ultimately inconclusive due
to noise. We give more detail in Appendix F.

Side channels can be avoided if the zeros check hap-
pens in decryption before checking the authentication tag.
Current APIs for AES-GCM and other schemes cannot par-

tially decrypt a ciphertext (in other contexts this would be
dangerous), so libraries will need to be rewritten.

Moving to committing AEAD. Unfortunately no cur-
rent standards specify a committing AEAD scheme,
such as single-key6 Encrypt-then-HMAC [30]. We there-
fore suggest standardizing suitable committing AEAD
schemes, including zeros-check variants of AES-GCM and
XSalsa20/Poly1305. For general purpose AEAD where the
danger of partitioning oracles or other non-committing vul-
nerabilities (e.g., [22]) cannot be a priori ruled out, we
believe committing AEAD should be the default. In partic-
ular, this means that all password-based encryption should
use committing AEAD.

7 Related Work

A few prior attacks on PAKE protocols are relevant to
our work. The first are partition attacks, which were in-
troduced by Bellovin and Merritt in their seminal work on
PAKEs [11]. While these attacks also involve partitioning
password dictionaries, they most closely resemble dictio-
nary attacks in that they rely on intercepting honest traffic to
do this partitioning. In contrast, our attacks rely on crafting
malicious ciphertexts to query to an oracle, hence the name
partitioning oracle attacks. We describe partition attacks
and compare them to partitioning oracle attacks in more
detail in Appendix D.

The second is the Patel attack [72], mentioned
in Section 2, on the Diffie-Hellman Encrypted Key Ex-
change (DH-EKE) scheme proposed by Bellovin and Mer-
ritt in [11]. Patel proposes an ad hoc variant of DH-EKE
which enables an attack where an adversary can eliminate
half of the password dictionary in expectation with one im-
personation. We describe this in more depth and relate it to
the general partitioning oracle framework in Appendix D.

Another is the two-for-one attack [99] on an early ver-
sion of SRP, mentioned in Section 2. The attack allowed an
adversary to check two passwords with one server imper-
sonation. This can be viewed as a partitioning oracle attack,
and falls into the more general framework we introduce.
We describe this in more depth in Appendix D.

Mackenzie [61] gave a PAKE relaxation where a
bounded number of guesses can be checked in each imper-
sonation and proved a SPEKE variant [41] allows testing
only two passwords per impersonation. This can be viewed
as a formal approach for allowing (limited) partitioning
oracle attacks.

A PAKE protocol by Gentry, MacKenzie, and
Ramzan [28] introduced the use of password-based
encryption to protect protocol secrets in asymmetric
PAKEs. Unlike OPAQUE, which begins with an OPRF,
their protocol begins with a symmetric PAKE. The security
of the symmetric PAKE rules out our attack.

6Using a single key is important: a draft standard [63] for AES-
CBC-then-HMAC uses distinct AES and HMAC keys, making it non-
committing [30].
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Dragonblood [94], an attack on the Dragonfly PAKE
used in WPA3 [35], also relates to our work. Their attack
uses side channels to recover passwords against a WPA3
server, due to a non-constant-time hash-to-curve algorithm
that is applied to passwords. They take (remote) measure-
ments and then use that to refine an offline brute force attack
against the password, and do not use adaptive attacks with
specially crafted protocol messages to elicit certain behav-
iors. One could potentially turn the Dragonfly side-channel
into a partitioning oracle, which we leave to future work.

Our attacks fall into a broader class of decryption er-
ror oracle attacks, which also includes padding oracle at-
tacks [3, 4, 16, 80, 95] and format oracle attacks [5, 27]. All
of these types of attacks involve adaptive CCAs that enable
speeding up recovery of some secret data. Partitioning ora-
cle attacks, however, recover information about decryption
keys, rather than plaintexts.

Also related to our work are a series of password-
recovery attacks against APOP, an authentication proto-
col for email, that showed that with server impersonation
MD5 collisions can be used to recover a user’s APOP pass-
word [56, 81]. Their techniques are specific to MD5.

Finally, our multi-collision attacks against AES-GCM
can be seen as a generalization of the two-key multi-
collision used in the invisible salamander attack [22] against
Facebook’s message franking protocol (q.v., [30]). Our re-
sults extend this to show how to collide more than two keys,
and identify new places where non-committing encryption
leads to subtle vulnerabilities.

8 Conclusion

We introduced partitioning oracle attacks, which exploit a
new type of decryption error oracle to learn information
about secret keys. We showed how to build AES-GCM ci-
phertexts that decrypt under a large number of keys, what
we call a key multi-collision attack. We gave more limited
attacks against XSalsa20/Poly1305, ChaCha20/Poly1305,
and AES-GCM-SIV. In case studies of Shadowsocks and
early, non-compliant implementations of the OPAQUE pro-
tocol, we demonstrate partitioning oracle attacks that can
efficiently recover passwords. We responsibly disclosed the
vulnerabilities, and helped practitioners with mitigations.

The non-committing AEAD schemes exploited by our
attacks are in wide use, and more tools and protocols are
likely to have vulnerabilities. Looking ahead, our results
suggest that future work should design, standardize, and
add to libraries schemes designed to be committing. A
starting point would be to improve the performance of, and
work towards standardizing, existing committing AEAD
designs [22, 30].
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A More (Possible) Partitioning Oracles

We survey several other protocols that may be vulnerable to
partitioning oracle attacks. Actual exploitability will depend
on implementation and deployment details.

A.1 Password-based and Hybrid Encryp-
tion

Kerberos. Two internet-drafts suggested the inclusion of
AES-GCM and ChaCha20/Poly1305 as available encryp-
tion types in Kerberos [39] and GSS-API [40]. They do
not appear to have been adopted as RFCs, but the Heimdal
library [38] implemented the GSS-API draft. Using these
non-committing AE schemes in Kerberos would enable a
partitioning oracle attack on Kerberos’s encrypted times-
tamp pre-authentication [37], leading to recovery of the
client’s password.

In encrypted timestamp pre-authentication, the Kerberos
client proves knowledge of its password pw by deriving
a key Ks with a server-supplied salt sa, and using Ks to
encrypt the current time. It then sends the ciphertext C to
the server, which derives its version of the key with sa and
the stored pw, then decrypts C and checks the timestamp. If
the server sends different error codes for decryption failure
and timestamp check failure, it is trivial for an attacker
to learn any user’s password pw. To build the oracle, the
attacker crafts a splitting ciphertext V̂ for any S ⊆D of its
choice, sends V̂ to the server, then uses the error code to
learn the value of f (pw,V̂ ). Without explicit error codes,
response timing could also help differentiate failures.

This is a notable example of how migrating to state-of-
the-art AE schemes would, counter-productively, drastically
reduce security — our attacks don’t seem to work against
the current Kerberos cipher suites.

Age file encryption tool. Age is a file encryption CLI
tool [93] that has a password-based encryption mode. The
mode is a KEM-DEM scheme: it uses a password-derived
key with ChaCha20/Poly1305 to encapsulate a file key, then
computes an HMAC over the KEM (and some metadata)
with a key derived from the file key, and then encrypts the
plaintext using the file key with ChaCha20/Poly1305. The
ciphertext is the KEM and metadata, then the HMAC, then
the DEM.

This scheme could be vulnerable to a partitioning oracle
attack. Observe that there are three ways for decryption to
fail: (1) KEM decryption fails, (2) the HMAC check fails,
or (3) DEM decryption fails. If failures (1) and (2) are dis-
tinguishable, using a multi-colliding ChaCha20/Poly1305
ciphertext as a KEM could let an attacker check multiple
passwords in one decryption. Before we reported this issue,
the age implementation did not limit the KEM ciphertext
length, thereby allowing key multi-collisions for large key
sets. After we reported the issue, the age maintainers limited
the KEM ciphertext length and cited this work.

JavaScript Object Signing and Encryption. JOSE is a
set of standards for encrypting and authenticating autho-

rization data, such as cookies and access control informa-
tion. One part of JOSE, the Java Web Encryption (JWE)
standard [45], specifies two password-based encryption
modes which may be vulnerable to partitioning oracles.
The first mode encrypts using a supported AEAD keyed
with a password-derived key directly, similar to Shadow-
socks. The current JWE standard mandates support for
AES-CBC-then-HMAC-SHA256 and AES-GCM; adding
ChaCha20/Poly1305 has been suggested [7] and is already
supported by some implementations. If decryption success
and failure are distinguishable, our key multi-collision at-
tacks on AES-GCM or ChaCha20/Poly1305 can be used to
build a partitioning oracle.

The second, and seemingly more common, supported
mode for password-based encryption in JWE is to use a
password-derived key Ks for a KEM in a symmetric KEM-
DEM transform. In this transform, one of the supported
AEADs can be the DEM and AES-KW [82] keyed with
Ks is the KEM, though a recent proposal [7] has suggested
using ChaCha20/Poly1305 as both KEM and DEM.

This mode is similar to age’s KEM-DEM scheme de-
scribed above, except without the header HMAC; thus, if
ChaCha20/Poly1305 is used as a KEM in this mode, it is
vulnerable to similar attacks. If the KEM is AES-KW, it is
unclear if multi-collisions are possible; AES-KW’s security
as a committing AE scheme is an open problem.

Hybrid Public-Key Encryption (HPKE). Recently, the
IETF has been evaluating a new standard for hybrid public-
key encryption, HPKE [8]. It uses an ECIES-like KEM
to derive a DEM (AEAD) key, which is used to en-
crypt the message. HPKE only supports AES-GCM and
ChaCha20/Poly1305. It supports a pre-shared secret key
(PSK) sender authentication mode by (roughly speaking)
hashing the PSK together with the KEM output in AEAD
key derivation. The draft permits short PSKs, but says the
scheme is not suitable for use with passwords. If decryption
failures are observable to the sender, a partitioning oracle at-
tack can recover the PSK. To craft a splitting ciphertext for
set S∗, an attacker can run the KEM with the receiver’s key
to get the DH shared secret, then derive the set of AEAD
keys K for each pw ∈ S∗, then finally craft a ciphertext V̂
which decrypts correctly for all keys in K.

Interestingly, the draft anticipates a decryption oracle
being used to learn the PSK. The authors observe that with
“access to an oracle that allows to distinguish between a
good and a wrong PSK, [the sender] can perform a dictio-
nary attack on the PSK”. Though correct, this belies the fact
that because the AEADs are non-committing, an exponen-
tial speedup over a naive dictionary attack is possible using
our attacks. We reported this issue to HPKE’s authors; they
changed the draft to disallow short or low-entropy PSKs
and cited this work.

A.2 Authenticated Key Exchange and PSKs
Many widely-used authenticated key exchange (AKE) pro-
tocols support PSK authentication. Prominent examples in-
clude TLS, the Internet Key Exchange (IKE) used in IPSec,
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WiFi security protocols like WEP and WPA, WireGuard,
and many more. Support for low-entropy PSKs varies be-
tween protocols, but none disallows them completely. Next
we show that partitioning oracle attacks resulting in PSK
recovery could arise on the legacy IKEv1 protocol. Our
attack does not extend to more modern AKEs used in IPSec
or TLS.

Internet Key Exchange (IKE) v1 PSK. IKEv1 [36] is
the first version of the IPSec protocol suite’s handshake
protocol, and is officially deprecated in favor of version
2 [48], but it is still supported and used for compatibility
with legacy devices.

The IKEv1 handshake has three full rounds between the
client (called the initiator in IKEv1 parlance) and the server
(responder), comprising six messages. After the first two
rounds, the client and server have established the shared DH
value for the session, but have not yet authenticated each
other. Authentication occurs in the fifth and sixth protocol
messages; these are the first to be encrypted. The fifth
message authenticates the client to the server.

In PSK mode, the client derives the encryption and au-
thentication keys Ke,Ka for the fifth message by computing
a PRF, keyed via the PSK, on the shared DH value. Then,
it computes the "authentication payload", which is a hash
of the transcript keyed with Ka, encrypts the payload with
plain CBC and Ka, and sends the resulting ciphertext to
the server. The server re-derives the keys using the shared
DH value and the PSK, decrypts the CBC ciphertext, and
checks the authentication payload. If this check passes, the
server crafts and sends the sixth message to authenticate
itself to the client.

Because the server has to decrypt the client’s message
with a PSK-derived key before authenticating the client,
a partitioning oracle attack is theoretically possible. An
adversary can initiate an IKEv1 handshake and use the fifth
protocol message as a splitting value input to the oracle,
and use the server’s response as the oracle’s output.

One way this could work is by repurposing a CBC
padding oracle vulnerability. Since encryption is done via
CBC, the adversary could craft the splitting value so that
some decryptions have valid padding and others don’t.
Then, the padding check success/failure signal could be
used as the partitioning oracle’s output. If there is no
padding oracle, other parts of the response could be used as
the oracle’s output — for example, if the server’s responses
are different for authentication payload check failure ver-
sus packet parsing failures. We have not surveyed IKEv1
implementations or found examples of vulnerable servers;
as such, this attack is purely theoretical.

Other AKEs. IKEv1’s successor IKEv2 is not vulnerable
because the encryption key for the first encrypted packet
is derived only as a function of the shared DH value and
not the PSK. Thus, in IKEv2 it appears necessary to collide
the transcript hash to build a partitioning oracle. If a PSK
was reused or correlated across both IKEv1 and IKEv2, a
partitioning oracle on IKEv1 would allow the IKEv2 PSK
to be recovered. We do not know of any settings where this

happens, but prior work showed that RSA keys were re-used
across IKEv1 and IKEv2 in many implementations [25].

We also examined the new PSK mode in TLS1.3. As in
IKEv2, a seemingly small design choice prevents partition-
ing oracles. In a TLS1.3 PSK exchange, clients can send
PSK-encrypted data in their first message to the server, but
the first message must also include (in plaintext) a PSK
identifier along with a PSK binder computed as the HMAC
of the identifier with a PSK-derived key. As long as the
binders are verified before decrypting the payload, the PSK
binder commits the client to a single guess for the PSK and
prevents partitioning oracles.

As with IKEv2’s transcript hash, TLS1.3’s PSK binders
seem to act as an implicit (pre-shared) key confirmation.
OPAQUE’s committing AEAD envelope could also be
viewed as an implicit key confirmation — decryption only
succeeds if the key is correct. In contrast, IKEv1 does not
perform key confirmation before decrypting with a PSK-
derived key, which makes an attack theoretically possible.
This raises interesting theoretical questions about the rela-
tionship between key confirmation in AKE and partitioning
oracles. We leave exploring these questions to future work.

B Poly1305-Based Schemes

Here we explain how to craft key multi-collisions
for the widely-used AEADs that are built around the
Poly1305 [12] message authentication scheme. There are at
least four such schemes in common use: Salsa20/Poly1305,
XSalsa20/Poly1305 [14] (used in libsodium [58]),
ChaCha20/Poly1305, and XChaCha20/Poly1305. All four
are similar; for concreteness, we focus on the composition
of ChaCha20 and Poly1305 standardized in RFC 7539 (up-
dated in 8439) [68] and analyzed by Procter [73], but our
attack should work on any of the four.

Background on ChaCha20/Poly1305. Pseudocode for
the scheme is provided in Figure 7, where it is denoted
as CHP. This scheme is, at a high level, very similar to
AES-GCM. It is an EtM composition of a stream cipher
(ChaCha20 [13]) with a polynomial MAC (Poly1305). Im-
portantly, all internal lengths are measured in bytes (AES-
GCM instead uses bits); we will adhere to this convention
and treat all lengths as bytes in this appendix.

Encryption takes in a 12-byte nonce N, a 32-byte
ChaCha20 key K, associated data AD and plaintext M. It
outputs ciphertext C1, . . . ,Cm,T , where m = d|M|/64e and
|T | = 16. The block size of ChaCha20’s block function,
denoted E, is n = 64. The ciphertext blocks C1, . . . ,Cm are
generated using counter mode with E, and the tag T is
computed by applying Poly1305 to AD and C1, . . . ,Cm. De-
cryption re-computes the tag, compares it with T , and, if
successful, outputs the counter-mode decryption of the ci-
phertext blocks.

Poly1305 in detail. Let encodele
x (·) be a function that

takes an integer and outputs an x-byte little-endian en-
coding of its input. For a key K and nonce N, Poly1305
first derives two sixteen-byte values r,s from computing
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CHP-Enc(K,N,AD,M):

C← ChaCha(K,N,M)

B0← encodele
4 (0)

r̃ ‖ s← trunc32(EK(B0)) ; r← clamp(r̃)
L← encodele

8 (|AD|)‖encodele
8 (|M|)

T ← Poly1305(r,s,Split16(AD)‖Split16(C)‖L)

CHP-Dec(K,N,AD,C ‖T ):

B0← encodele
4 (0)

r̃ ‖ s← trunc32(EK(B0)) ; r← clamp(r̃)
L← encodele

8 (|AD|)‖encodele
8 (|M|)

T ′← Poly1305(r,s,Split16(AD)‖Split16(C)‖L)
If T ′ 6= T then Return ⊥
M← ChaCha(K,N,C)

Return M

ChaCha(K,N,M):

m← |M|/64
For i = 1 to m :

Bi← encodele
4 (i)

C←C ‖ (EK(Bi)⊕M[i])
Return C

Poly1305(r,s, ~M):

b← |~M|
h← 0 ; p← (2130−5)
For i = 1 to b :

Xi← ~M[i]‖encodele
1 (1)

h← h+Xi · rb+1−i mod p
h← h+ s mod 2128

Return h

Multi-Collide-CHP(K,N,T,m):

L← encode64(0)‖encode64(|K|−1)
A[·, ·]←⊥ ; b[·]←⊥
For i = 1 to |K| :

r̃i ‖ si← trunc32(EK[i](032 ‖N))

ri← clamp(r0
i )

For j = 1 to m :
A[i, j]← r|m|− j+1

b[i]← ([T − si mod 2128]−L · ri)

x← SolveSystem(A,b)

If !InRange(x) :
For z in kerA : (∗)

If InRange(x+ z) :
x← x+ z; break

If !InRange(x) :
Return ⊥

For i = 1 to |x| :
Ci← trunc16(x[i])

Return N ‖C ‖T

Figure 7: (Left) The ChaCha20-Poly1305 encryption and decryption algorithms. (Middle) ChaCha20 encryption and Poly1305 helper
functions. (Right) The Multi-Collide-CHP algorithm, which takes a set K of keys, nonce N, length m > |K| and tag T and computes
a ciphertext C such that N ‖C ‖ T decrypts correctly under every key in K. The function encodele

x (·) returns an x-byte little-endian
representation of its integer input. The function truncx truncates its input to x bytes. The function Splitx splits its input into a vector of
blocks of at most x bytes. We omit a description of the function clamp — it is inconsequential for our attacks; we include it only for
completeness. All arithmetic is done mod 2130−5 unless otherwise noted. The function InRange takes a vector and returns true if each of
its entries is in the range [2128,2129−1], and false otherwise. The boxed code represents the sieving step which is not performed in our
basic attack; see the text for more explanation. The loop marked (∗) is aborted after thirty seconds in our implementation.

EK(encode
le
4 (0)‖N) and then truncating the resulting out-

put to 32 bytes. It then “clamps” the value r, setting some
of its bits to zero. (The details of this are not important for
our purposes.) Then, it breaks the AD and ciphertext into a
sequence of blocks AD1, . . . ,ADa∗ ,C1, . . . ,Cm∗ ,L of at most
sixteen bytes, where m∗ = d|M|/16e and a∗ = d|AD|/16e
and L = encodele

8 (a)‖ encodele
8 (m) is the concatenation of

encodings of the AD and ciphertext lengths, respectively.

To compute the polynomial, Poly1305 must encode each
of the `= a∗+m∗+1 blocks as an integer modulo the titular
2130−5. It does this by appending 0x01 to each block, right-
padding with zeros up to sixteen bytes if necessary, then
interpreting the resulting block as a little-endian integer Xi.
It then hashes by computing the polynomial

h =
`

∑
i=1

Xi · r`−i+1 mod (2130−5) . (4)

Lastly, h is added with s modulo 2128 to produce the final
128-bit tag.

Challenges in finding multi-collisions. Poly1305 is
quite similar to GHASH; however, a few subtle differences
between the two make Poly1305 multi-collisions much
more difficult. Most important is the way Poly1305 ap-
pends 0x01 to each block before hashing it. Unlike with
GHASH, this means that not every element of F2130−5 can
be a polynomial coefficient —in fact, only a little more than
a quarter of the field elements can be (namely, those in the
range [2128,2129−1]). This complicates solving for a multi-
collision using a straightforward linear system of equations
over the field—we must either express this constraint in the

system of equations (difficult, as it is not a linear function)
or ignore it and hope the solution is in the correct range.

Another subtlety is the final reduction mod 2128, which
breaks the algebraic structure of the field of integers mod
p = 2130−5. This makes it more challenging to express the
multi-collision problem as simple linear algebra, as in our
other MKCR attacks. It could, however, benefit collision
finding: before the final reduction, any of the three or four
values of h which are congruent mod 2128 lead to the same
tag. Intuitively, this increases the number of multi-colliding
ciphertexts for a given key set and nonce; however, we
do not know how to express this in the linear-algebraic
framework of our attacks. We will ignore this additional
flexibility below, and force all equations to hold mod p.

The two-key case. As a warm-up, we will walk through
a simplified algorithm for two keys. The algorithm
2-Collide-CHP takes as input two keys K1,K2 and a nonce
N and outputs a sixteen-byte ciphertext block C and tag T .
The (N,C,T ) triple decrypts to non-⊥ under both keys with
probability about one-quarter.

First write the equation representing the Poly1305 tag of
a sixteen-byte ciphertext C. Defining L,r,s as in Figure 7,
and X0←C ‖ encodele

1 (1) and X`← L‖ encodele
1 (1) it is((

(X0 · r2 +X` · r) mod p
)
+ s
)

mod 2128 .

If we want to choose C so that this equation is satisfied for
two keys, we must solve

(
(X0 · r2

1 +X` · r1) mod p
)
+ s1

≡
(
(X0 · r2

2 +X` · r2) mod p
)
+ s2 (mod 2128) .
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We can rewrite to obtain

(
X0 · (r2

1− r2
2)+X` · (r1− r2)

)
mod p≡ s2− s1 (mod 2128)

and since 2128 < 2130−5, solving for X0 mod 2130−5 im-
plies this equation is satisfied as well, as long as the right-
hand side s2− s1 is computed mod 2128. Let rhs= s2− s1
mod 2128. Thus, we can solve for X0 as

X0 ≡ [rhs−X` · (r1− r2)] · (r2
1− r2

2)
−1 (mod p) .

At this point X0 is an integer mod 2130− 5. Letting C =
X0 mod 2128 gives a suitable sixteen-byte ciphertext block.
Finally, we can compute T ← Poly1305(r1,s1,C ‖L) and
then output C and T .

As mentioned above, 2-Collide-CHP only works for
about one-quarter of possible (K1,K2,N) inputs, if the
ChaCha20 block function acts like an ideal random function
and we ignore bias in the hash key. This is because trun-
cating X0 mod 2128 only preserves the collision if 2128 ≤
X0 ≤ 2129−1. Otherwise, during CHP-Dec, when the tag is
recomputed, the value X0 will not be a solution to the equa-
tion above: instead, it will be different by some multiple of
2128, and the tags will no longer collide.

The general case. Next, we describe the algorithm
Multi-Collide-CHP, with pseudocode given in Figure 7,
for constructing collisions under more than two keys. It
works in two steps: first, it derives the key material used by
Poly1305 and constructs a system of linear equations. This
step is straightforward, and we will describe it first below.
Then, it solves the equation to find the ciphertext blocks.
As we shall see, this step is substantially more compli-
cated than in our other MKCR attacks: the ciphertext trun-
cation/padding problem described above is compounded
with more than two keys, necessitating new techniques. We
will first describe an approach to this step with a low suc-
cess probability (corresponding to the Multi-Collide-CHP
pseudocode without the code in the box), then explain how
to increase the success probability efficiently.

Constructing the linear system. Let the keyset K and
nonce N be as in Figure 7, and k← |K|. Let ri,si be as
computed in CHP-Dec for input key Ki and nonce N. Let
C be a ciphertext with m ≥ k blocks. Then if C decrypts
correctly under all Ki ∈ K with tag T it must satisfy the
following equation for each key, where Xi and X` are as
defined above:[(

m−1

∑
i=0

Xi · rm−i+1
i +X` · ri

)
mod p

]
+si≡T (mod 2128)

Taking each of these equations as a row of a matrix/vector
equation with ciphertext blocks as unknowns, and defining
Bi = ([T −si mod 2128]−X` ·ri) mod p, we get this system
of k equations in m unknowns, denoted as the matrix A and
vector b in the pseudocode:


rm+1

1 rm
1 · · · r2

1

rm+1
2 rm

2 · · · r2
2

...
...

. . .
...

rm+1
k rm

k · · · r2
k

 ·


X0

X1
...

Xm−1

=


B1

B2
...

Bk

 .

Finding the ciphertext blocks. This linear system is sim-
ilar to the one we obtained for GCM in Section 3.1 above.
We can solve it using polynomial interpolation or Gaussian
elimination; this is what Multi-Collide-CHP does without
the boxed code. This will fail to give a valid multi-collision
if any of the field elements in the solution vector of the
linear system are outside the range [2128,2129−1]. We can
compute the failure probability analytically: if we model the
vector x output from SolveSystem as random in Fm

2130−5 and
disregard the effect of the final truncation modulo 2128, the
probability InRange(x) is true is only ≈ 1/4m. If this fails,
we can run Multi-Collide-CHP again with a new nonce,
which gives us another 1/4m probability of success, but at
the cost of O(m2) field operations: each new nonce requires
computing new values of A and b and solving a new system
of equations.

We can do better than this using a simple sieving heuristic
that seems to work with reasonable probability when k is
small. (The heuristic corresponds to the boxed code in the
Multi-Collide-CHP description in Figure 7.) To use the
heuristic, it must be the case that m > k. This in particular
means the matrix A has more variables than constraints, and
therefore also has a nontrivial kernel. (It is of dimension
m− k with high probability.)

The heuristic works as follows. First, we take the solu-
tion x ∈ Fm

2130−5 output by SolveSystem(A,b) and check if
it obeys the constraint for every block. If it does not, we
compute a basis for the kernel of A and do a limited brute-
force search: for each z ∈ kerA, add it to x and check if the
resulting vector obeys the constraint. If it does, output it
as the ciphertext. This works because Az =~0, so x+ z is
a different solution to our system. After some time bound
is exceeded (we used 30 seconds in our implementation)
abort the brute-force search and output ⊥.

Under the assumption that each vector in the kernel is
individually uniformly random and we can sieve through
n vectors per second, the overall success probability of our
heuristic is ≈ (30n+ 1)/4m. This is still relatively poor
for large m, but saves a factor of m over the naive method:
each new solution checked only costs O(m) field operations,
whereas generating a new solution by starting over with a
new nonce costs O(m2) field operations.

Implementation and analysis. We implemented
Multi-Collide-CHP using Sage 9.0 [91] and Python 3.7.7,
and successfully constructed colliding ciphertexts for
k = 10. Our implementation tried 100 nonces with the
same K (and T as the all-zeros string for simplicity) and
Multi-Collide-CHP succeeded for five of them. We tried
fifteen and twenty keys with one hundred nonces each, but
did not succeed.
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2Key-GCM-SIV-Enc(K1,K2,N,AD,M):

lens← encode64(|AD|)‖encode64(|M|)
R← GHASH(K1,AD‖M ‖ lens)

T ← EK2 (0‖ (N⊕R)[: 126])
m← |M|/128
For i = 0 to m−1 :

Bi← 1‖T [32 : 126]‖encode32(i)
C←C ‖EK2 (Bi)⊕Mi

Return C ‖T

2Key-GCM-SIV-Dec(K1,K2,N,AD,C ‖T ):

m← |C|/128
For i = 0 to m−1 :

Bi← 1‖T [32 : 126]‖encode32(i)
M←M ‖EK2 (Bi)⊕Ci

lens← encode64(|AD|)‖encode64(|M|)
R← GHASH(K1,AD‖M ‖ lens)

T ′← EK2 (0‖ (N⊕R)[: 126])
If T 6= T ′ then return ⊥
Return M

Multi-Collide-2Key-GCM-SIV(K,N,T ):

lens← encode64(0)‖encode64(|K| ·128)
pairs[·]←⊥ ; C← ε

For i = 1 to |K| :
K1,K2←K[i]
X ← E−1

K2
(T )

y← (lens ·K1)⊕X⊕N
For j = 0 to |K|−1 :

Si← EK2 (1‖T [32 : 126]‖encode32(i))

y← y⊕ (Si ·K|K|+1− j
1 )

pairs[i]← (K1,y ·K−2
1 )

f ← Interpolate(pairs) ; x← Coeffs( f )
For i = 1 to |x| :

C←C ‖x[i]
Return N ‖C ‖T

Figure 8: The Two-Key GCM-SIV mode of operation from [33], with k = 32 (left and middle), and our MKCR attack,
Multi-Collide-2Key-GCM-SIV against the scheme (right). Here we assume E has a 128-bit block size. The Multi-Collide-2Key-GCM-SIV
algorithm takes a set K of keys, a nonce N, and a message tag T and computes a nonce-ciphertext-tag triple N‖C‖T ; in expectation
N‖C‖T will decrypt correctly under half the keys in K. The function encode64(·) returns a 64-bit representation of its integer input. We
denote · as multiplication and ⊕ as addition in GF(2128).

Our results here are, admittedly, much more modest than
those for GCM or GCM-SIV, and the failure rate appears
high even with our heuristic. This is probably due to the
limitations of our algorithmic techniques — while multi-
colliding ciphertexts are likely to exist, new algorithmic
ideas are needed to find them reliably.

We can argue this more quantitatively: with a few rea-
sonable assumptions, we can show that for any k, a multi-
colliding ciphertext exists (in expectation) as long as m >
(129/127) · k. First, observe that kerA is isomorphic to
Fm−k

2130−5, and therefore |kerA|> 2129(m−k). If we again as-
sume that for each z ∈ kerA, x+ z is uniform in Fm

2130−5,
the expected number of solutions to our system in the right
range is |kerA|/4m > 2129(m−k)/4m, which is greater than
one whenever m > (129/127)k. (This argument ignores the
final truncation mod 2128; as explained above, this trun-
cation further increases the number of multi-colliding ci-
phertexts.) Thus, our attack’s scaling difficulties should not
be taken as evidence that ChaCha20/Poly1305 inherently
resists multi-collision attacks.

C Key Multi-Collisions for AES-GCM-SIV

GCM-SIV [33] and the closely-related AES-GCM-SIV [31,
32] are two instantiations of the SIV construction [79] using
AES-GCM. They are misuse-resistant AEAD schemes [78]
that provide security in the case of accidental nonce reuse.
By necessity, they are two-pass schemes that must crypto-
graphically process the entire message before outputting
any block of ciphertext.

Their security as committing AEAD is an open prob-
lem we resolve in the negative,7 by presenting efficient
MKCR attacks on both. For the sake of brevity we focus
on the “Two-Key GCM-SIV” scheme from the original
paper. The attack also works on the one-key variant from

7While this paper was in submission, a two-key collision attack on
GCM-SIV was demonstrated by Schmieg [83].

that paper, with only one minor change — in line four of
Multi-Collide-2Key-GCM-SIV in Figure 8, K1,K2 are de-
rived as encryptions of zero and one instead of specified
directly. The three-key variant requires only minor changes
as well.

Description of 2Key-GCM-SIV. Here we give a brief de-
scription of the scheme, accompanied by pseudocode in
Figure 8. GCM-SIV uses a block cipher E with 128-bit in-
puts and outputs in counter mode, and the GHASH universal
hash function used by GCM. Our pseudocode assumes that
the plaintext and associated data are block-aligned; when
this is not the case the associated data and plaintext can
simply be padded by zeros.

Encryption takes as input two keys K1,K2 and nonce N.
The message tag T is computed on plaintext blocks, instead
of ciphertext blocks as in GCM. Furthermore, GHASH is
keyed with K1 and the first 96 bits of the resulting output is
XORed with N, after which the most significant bit is set to
zero; the result of a block cipher call on this value again with
key K2 is the message tag. This tag is then used as a counter
value in the counter mode encryption of the plaintext blocks.
Decryption uncovers the message blocks, runs GHASH on
the message and AD, encrypts it, and compares to T .

Multi-Collide-2Key-GCM-SIV. The multi-collision algo-
rithm is shown in Figure 8. It takes in a set K of keys, a
nonce N, and a tag T and computes a ciphertext C with
|K| blocks. At a high level, Multi-Collide-2Key-GCM-SIV
builds a set of input/output pairs, one per key, then inter-
polates a polynomial having those inputs and outputs. The
coefficients are the ciphertext blocks.

However, a few things make this multi-collision more
complicated than Multi-Collide-GCM. Recall that GHASH
is computed on the plaintext blocks, not the ciphertext
blocks. Thus the algorithm must compute the pad EK2(Bi)
(in Multi-Collide-2Key-GCM-SIV, Si is the pad), and then
multiply by the appropriate exponentiation of key K1. The
equation is simplified by XORing the result to the y value,
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leaving only the ciphertext blocks with their coefficients
on the left side. This “trick” works because counter-mode
encryption is a linear function of the message blocks, and
it therefore respects the algebraic structure we use to build
the multi-collision.

Further, the tag T itself is not the output of GHASH so
it must be decrypted by E−1

K2
(T ), then the first 96 bits must

be XORed by N and the result assigned to y. The tag re-
computation in 2Key-GCM-SIV-Dec always sets the high-
order bit of its input to zero, so to succeed it must be the
case that the decryption of T under each key begins with a
zero. This means the multi-collision algorithm as depicted
succeeds on all keys in K only with probability about 1/2|K|.
For any single key the probability is 1/2, though, so in ex-
pectation |K|/2 keys decrypt correctly. Thus, an MKCR
adversary can still win with high probability by just out-
putting the subset of K for which decryption succeeds.

AES-GCM-SIV. Multi-Collide-2Key-GCM-SIV extends
to AES-GCM-SIV [31], a recently-standardized variant of
GCM-SIV which uses the POLYVAL universal hash instead
of GHASH and a nonce-based KDF. To build an MKCR
attack against AES-GCM-SIV, the following changes are
required: (1) derive K1,K2 using the correct KDF, (2) re-
place K1 with K1 · x−128, (3) change how field elements
are mapped to ciphertext blocks. See [31] for a detailed
comparison between GCM-SIV and AES-GCM-SIV.

D Other Attacks Partitioning Password Sets

In this section, we compare partitioning oracle attacks with
other attacks that partition password dictionaries.

Partition attacks. We begin by formalizing partition at-
tacks [11], which can be considered a variant of a dictionary
attack. In this setting, an attacker seeks to recover a secret
pw∗ ∈D known only to two honest parties from some set
of possible values D. The attacker is given a transcript τ

of the communication between these two parties and some
boolean function g : {0,1}∗×{0,1}∗→{0,1}. The func-
tion g takes as input τ and pw ∈ D and returns whether
some cryptographic property of τ holds for pw. We use
g(τ, pw) = 1 to indicate success and g(τ, pw) = 0 to indi-
cate failure. The goal of the attacker is to recover pw∗.

For a traditional brute-force dictionary attack, the func-
tion g derives the key K from pw, attempts to decrypt the
ciphertext in the transcript using K, and returns 1 if decryp-
tion was successful and 0 otherwise. For this attack, g(τ, ·)
returns 1 only for a single password in D . The attacker can
then compute g(τ, pw) for every pw ∈ D to recover pw∗.
In this case, only a single transcript is sufficient for the
attacker to succeed. In contrast, during a partition attack,
g(τ, ·) returns 1 for some subset of D. For example, if for
each transcript the attacker reduces its dictionary in half,
then log(|D|) transcripts are needed to find pw∗.

Bellovin and Merritt give an example partition attack for
their RSA-based encrypted key exchange (EKE) scheme.
In this scheme, two honest parties share a password and
the first party has a public key, which it wants to send to

the second party. The public key is (e,n), where e is the
RSA encryption exponent and n is the RSA modulus. The
first party uses the password to derive a key K and sends
(EncK(e),n) to the second party, where EncK(·) is some
unauthenticated encryption algorithm with corresponding
decryption algorithm DecK(·). Unlike for the dictionary
attack, Dec will return a value even if decrypting with the
wrong key. An attacker could instead utilize the informa-
tion that the RSA encryption exponent e must be odd to
eliminate passwords. For transcript τ← (EncK(e),n), the
function g(τ, pw) can then derive a key K′ from pw and
return 1 if DecK′(EncK(e)) is odd. In expectation this will
reduce D by half.

While the partition attack described by Bellovin and
Merritt is passive, variants have been suggested in which
an attacker can impersonate one of the parties and choose
malicious protocol parameters that aid in the attack, such as
sending a non-safe prime modulus [41, 72]. We can model
this variant by additionally giving the attacker access to an
initialization function that enables the attacker to set the
protocol parameters before receiving the transcripts.

Both partitioning oracle attacks and partition attacks rely
on partitioning a password dictionary to recover a target
password, but they differ in a few crucial ways. In particu-
lar, partitioning oracle attacks are a CCA and, therefore, an
active attack. The original attack described by Bellovin and
Merritt is passive and offline. Although later variants do
involve an active attacker, the attacker only initializes the
protocol with malicious parameters and then continues the
attack passively. Indeed, partition attacks are considered by
some a special class of dictionary attack [19, 41, 44]. Fur-
thermore, for the case studies we discuss, partition attacks
are irrelevant. For Shadowsocks, an attacker only needs a
single transcript to execute a dictionary attack and discover
the target password. For OPAQUE, an attacker could not
perform a dictionary attack with the transcript alone; if,
however, the server and its OPRF key were compromised,
only a single transcript would be required to perform a
dictionary attack.

Patel attack. Patel [72] considered a variant of Bellovin
and Merritt’s Diffie-Hellman Encrypted Key Exchange
(DH-EKE) protocol [11]. The Patel variant introduces a
vulnerability that Patel then exploits via an attack; the at-
tack can be viewed as a partitioning oracle attack. In DH-
EKE, two honest parties Alice and Bob share a password
pw∗, from which they derive key Kp. The scheme proceeds
like classic Diffie-Hellman key exchange except that Al-
ice and Bob encrypt the values, ga mod p and gb mod p,
respectively, that they send to each other using Kp. They
then derive shared secret key K from gab mod p. DH-EKE
includes a subsequent challenge-response step where Bob
chooses random value CB, encrypts this using K, and sends
it to Alice. Alice decrypts the ciphertext to learn CB, chooses
random value CA, encrypts CA and CB together using K, and
sends this to Bob. Bob decrypts the ciphertext to learn CA,
verifies that CB is correct, and sends Alice an encryption of
CA by itself, which Alice can then verify.

25



Bellovin and Merritt claimed that it is possible to omit
encryption of one of the exponentials in DH-EKE and still
be secure against both passive and active attacks. Patel de-
scribes an active attack against DH-EKE where the second
message sent between Alice and Bob is unencrypted, al-
though we highlight that the attack only works because Patel
includes an ad hoc redundancy in the challenge-response
step. Indeed, Bellovin and Merritt explicitly warn against us-
ing a redundancy for the challenge. Patel’s variant includes
a bit in the challenge to indicate the sender: Alice now
sends an encryption of CA‖0 and Bob sends an encryption
of CB‖1.

In the attack, the attacker impersonates Bob, receives
EncKp(g

a mod p) from Alice, and sends gb mod p in
plaintext back to Alice. Having password dictionary D,
for each password pw ∈D the attacker derives encryption
key K′p, decrypts EncK′p(g

a mod p) to get some value A,
and then knowing b computes candidate secret key K′. For
the challenge-response step, the attacker chooses some ran-
dom value X and sends this to Alice. Alice decrypts with
K and accepts or rejects the result depending on whether it
ends with bit 0. For each candidate key computed, the at-
tacker can also decrypt X , check whether it matches Alice’s
result, and eliminate all passwords that result in the wrong
bit. In expectation, the attacker can eliminate half of D .

We can formalize Patel’s attack as a partitioning ora-
cle attack by setting V̂ ← X with degree k ≈ |D|/2. The
function fpw∗(X) = 1 if and only if decryption of X with
K results in a value that ends with bit 0. The attack is un-
targeted, since the attacker does not control the partition.
Notably, this attack requires constant time to generate the
splitting value with respect to its degree but requires time
O(|D|) after the response from the partitioning oracle to
choose the correct partition, as Patel describes the attack. In
contrast, the partitioning oracle attacks we present require
a large upfront computational cost in generating the key
multi-collisions used for the splitting value, but choosing
the correct partition is immediate after the query response.
Patel’s attack could be modified to have a similar large up-
front computational cost by performing the trial decryption
of X first and partitioning D before sending X to Alice and
observing her response.

SRP two-for-one attack. We now describe the SRP two-
for-one attack in our framework, using the notation in [98].
Impersonating the server, the attacker chooses two pass-
words pw1 and pw2 from its password dictionary D and
a salt s. The attacker then computes v1 ← gH(s,pw1) and
v2 ← gH(s,pw2) and sends B← v1 + v2 in the second mes-
sage the server sends back to the client, instead of gb for
random value b. For target password pw∗, the client sub-
tracts gH(s,pw∗) from B, so if either pw1 or pw2 is pw∗ the
protocol will proceed correctly, with the incorrect password
becoming the basis for b. In this way, the attacker can check
two passwords with only one impersonation. In terms of
the partitioning oracle attack, B is the splitting value with
degree k = 2. The attack is targeted, since the attacker can
choose the passwords it wants to compute B.

E Diagram of OPAQUE

Figure 9 depicts the OPAQUE protocol [42] instantiated
with HMQV.

F Measuring the Zeros-Check Transform

In this appendix we describe an experiment we performed
with the “zeros-check” transform applied to AES-GCM.
The purpose of the transform, discussed in Section 6, is
to turn AES-GCM into a committing AEAD. It works by
adding a block of zeros to the plaintext before encryption,
and checking the zeros during decryption.

A major benefit of the zeros-check transform is that it
does not require changing libraries or APIs that only sup-
port AES-GCM: during decryption, the zeros check can be
performed on the plaintext returned from (non-transformed)
AES-GCM decryption. In Section 6, we explained that be-
cause of the way AES-GCM and other AEAD APIs are
currently designed, the most natural way to implement the
transform could result in a timing difference between the
two different kinds of decryption failures: (1) AEAD de-
cryption failing, and (2) the zeros check failing after AEAD
decryption succeeds. The purpose of our experiment was
twofold: first, we wanted to validate our intuition and con-
firm a timing difference exists; second, we wanted to mea-
sure its exploitability.

Experiment setup. We modified the C implementation of
OPAQUE in libsphinx [62] so that it uses the GCM-with-
zeros-check construction rather than XSalsa20-Poly1305.
We used libsodium’s implementation of AES256-GCM
and appended a 16-byte all-zeros string to the plaintext.
After the client decrypts the envelope ciphertext, we use
libsodium’s constant-time memory comparison function
sodium_memcmp to compare the last 16-bytes of the de-
crypted ciphertext to an all-zeros string.

To produce an AES-GCM ciphertext decryption failure,
we chose a password pw0 and, as the client, initiated the
OPAQUE registration sequence with the server. The server
derives key rw0 and 128-byte AES-GCM envelope cipher-
text C0. Then when performing the login sequence with
the server, we provide a different password which derives
incorrect key rw′ that fails to decrypt C0.

To produce a zeros check failure, we use the same process
as above except that a 16-byte all-ones string is appended
to the plaintext instead. In particular, the client again reg-
istered pw0 as their password, but during login the server
returned the AES-GCM envelope C1, for which the last 16
bytes of its associated plaintext is all ones. When the client
decrypts C1, we confirmed that libsodium’s AES-GCM
decryption succeeds but the zeros check fails. Thus, we
are measuring the time difference between two different
failure cases of libsphinx’s implementation of the OPAQUE
client login: the first is AES-GCM decryption failing and
the second is failing after comparing the last 16-bytes of
the successfully decrypted plaintext to a 16-byte all-zeros
string using sodium_memcmp.
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Client Server
Registration

pw, idu
ks←$Zq
rw←H (pw,(H ′(pw))ks )
ps←$Zq ; pu←$Zq
Ps← gps ; Pu← gpu

C← AuthEncrw(pu,Pu,Ps)
file[idu]← (ks, ps,Ps,Pu,C)

Login
r,xu←$Zq
α← (H ′(pw))r

Xu← gxu
α,Xu, idu

If α /∈ G∗: Return (ABORT, idu, ids)
(ks, ps,Ps,Pu,C)← file[idu]
xs←$Zq ; β← αks ; Xs← gxs

id′←H (idu, ids,α)
d←H (Xu, ids, id′) mod q
e←H (Xs, idu, id′) mod q
Ksess←H ((Xu(Pu)

d)xs+eps )
sk← fKsess (0, id

′) ; As← fKsess (1, id
′)

β,Xs,C,As

If β /∈ G∗: Return (ABORT,sid,ssid)
rw←H (pw,β1/r)
M← AuthDecrw(C)
If M =⊥: Return (ABORT,sid,ssid)
(pu,Pu,Ps)←M
id′←H (idu, ids,α)
d←H (Xu, ids, id′) mod q
e←H (Xs, idu, id′) mod q
Ksess←H ((Xs(Ps)

e)xu+d pu )
sk← fKsess (0, id

′)
A′s← fKsess (1, id

′) ; Au← fKsess (2, id
′)

If A′s 6= As: Return (ABORT, idu, ids)
Return (idu, ids,sk) Au

A′u← fKsess (2, id
′)

If A′u 6= Au:
Return (ABORT, idu, ids)

Return (idu, ids,sk)

Figure 9: The OPAQUE protocol instantiated with key exchange formula HMQV.
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Results. We timed the AES-GCM decryption failure and
zeros check failure 1,000 times each using the time stamp
counter rdtsc, on a MacBook Pro 2017 with a 2.5 GHz
Intel Core i7 running macOS Mojave. Our results showed
that the timing difference is difficult to exploit: the mean
and median time for both decryption failure and the zeros
check failure was 118 ms with a standard deviation of 1 ms.
This was mainly due to variation in the execution time of
the Argon2 key derivation function adding noise that made
the timing difference negligible.

While these results show exploiting a timing side chan-
nel for libsphinx, and other similar OPAQUE implemen-
tations, may be challenging, this does not mean that more
sophisticated side-channel attacks cannot exploit this con-
struction. Further research is needed to understand the side
channels that may potentially arise in implementations of
committing AEAD.
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