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Abstract. NTS-KEM is one of the 17 post-quantum public-key encryp-
tion (PKE) and key establishment schemes remaining in contention for
standardization by NIST. It is a code-based cryptosystem that starts
with a combination of the (weakly secure) McEliece and Niederreiter
PKE schemes and applies a variant of the Fujisaki-Okamoto (Journal of
Cryptology 2013) or Dent (IMACC 2003) transforms to build an IND-
CCA secure key encapsulation mechanism (KEM) in the classical ran-
dom oracle model (ROM). Such generic KEM transformations were also
proven to be secure in the quantum ROM (QROM) by Hofheinz et.
al. (TCC 2017), Jiang et. al. (Crypto 2018) and Saito et. al. (Eurocrypt
2018). However, the NTS-KEM specification has some peculiarities which
means that these security proofs do not directly apply to it.
This paper identifies a subtle issue in the IND-CCA security proof of
NTS-KEM in the classical ROM, as detailed in its initial NIST second
round submission, and proposes some slight modifications to its specifi-
cation which not only fixes this issue but also makes it IND-CCA secure
in the QROM. We use the techniques of Jiang et. al. (Crypto 2018) and
Saito et. al. (Eurocrypt 2018) to establish our IND-CCA security reduc-
tion for the modified version of NTS-KEM, achieving a loss in tightness
of degree 2; a quadratic loss of this type is believed to be generally un-
avoidable for reductions in the QROM (Jiang at. al., ePrint 2019/494).
Following our results, the NTS-KEM team has accepted our proposed
changes by including them in an update to their second round submis-
sion to the NIST process.

Keywords: code-based, KEM, quantum random oracle model, IND-
CCA security, NIST standardization

1 Introduction

NIST’s post-quantum cryptography (PQC) standardization project reached its
second phase when, on 30th January 2019, a shortlist of 26 second-round can-
didate algorithms was announced – out of which 17 are public-key encryption
(PKE) and key establishment schemes, and the rest are digital signature schemes
[NIS19]. In a public-key setting, a key encapsulation mechanism (KEM) is consid-
ered to be a versatile cryptographic primitive, as it can be used for efficient black-
box constructions of secure PKE (via the KEM-DEM paradigm [CS03]), key
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exchange and authenticated key exchange schemes [BCNP08,FOPS01]. Hence,
a majority of these 17 second-round submissions are proposals for KEMs.

Indistinguishability against chosen-ciphertext attacks (IND-CCA) is widely
accepted as the standard security notion for KEMs and PKE schemes, but it is
usually more difficult to prove than weaker notions of security such as indistin-
guishability (IND-CPA) and one-wayness (OW-CPA) against chosen-plaintext
attacks. Therefore, most of the NIST KEM submissions employ some generic
transformations, as studied by Dent [Den03] and Hofheinz et. al. [HHK17],
to construct an IND-CCA secure KEM from a weakly (OW-CPA or IND-CPA)
secure PKE. To be specific, these generic constructions are usually variants of
the Fujisaki-Okamoto transformation [FO13], e.g., FO⊥, FO6⊥, FO⊥m and FO6⊥m
(as named in [HHK17]). Figure 1 contains a description of the FO6⊥m transforma-
tion that, given hash functions G(.) and H(.), turns an OW-CPA secure PKE
(KGenPKE,Enc,Dec) to an IND-CCA secure KEM (KGenKEM,Encap,Decap) –
see Subsection 2.3 for definitions of PKEs and KEMs. (Also, Enc(pk,m;G(m))
denotes that G(m) is used as random coins in the encryption of message m
sampled from the message space M.)

KGenKEM

1 : (pk, sk)← KGenPKE

2 : z←$M
3 : sk′ = (sk, z)

4 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : c = Enc(pk,m;G(m))

3 : K = H(m)

4 : return (K, c)

Decap(c, sk′)

1 : m̂ = Dec(sk, c)

2 : if Enc(pk, m̂;G(m̂)) = c

3 : return H(m̂)

4 : else return H(z | c)

Fig. 1. IND-CCA secure KEM = FO6⊥m[PKE, G, H].

The other three variants (namely FO⊥, FO6⊥ and FO⊥m) have slight differ-
ences: the subscript m (without m, resp.) means that, in the corresponding trans-
formation, the encapsulated key K is equal to H(m) (K = H(m | c), resp.), and
the superscript ⊥ (6⊥, resp.) means explicit1 (implicit, resp.) rejection of invalid
ciphertexts during decapsulation.

Typically, the security of such schemes is analyzed (heuristically) in the ran-
dom oracle model (ROM), introduced in [BR93], where a hash function is ide-
alized as a publicly accessible random oracle. But as pointed out by Boneh et.
al. [BDF+11], in a post-quantum setting, an adversary could evaluate a hash
function on an arbitrary superposition of inputs. This is not captured in the
ROM as an adversary is only given a classical access to the random oracle. In
order to fully assess the post-quantum security of cryptosystems, the quantum
random oracle model (QROM) was advocated in [BDF+11]. Here, the adversary
is allowed to make quantum queries to the random oracle. The above generic

1 In explicit rejection, the symbol “⊥” is returned (instead of a pseudorandom key
H(z | c) as is the case in implicit rejection) for the decapsulation of invalid cipher-
texts.
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KEM transformations (FO⊥, FO 6⊥, FO⊥m, FO 6⊥m) were initially only analyzed in
the ROM by Hofheinz et. al. [HHK17] but then later were proven to be secure in
the QROM by Jiang et. al. [JZC+18] and Saito et. al [SXY18], giving confidence
in the NIST KEM candidates that rely on these transformations.

NTS-KEM is a KEM proposal that is shortlisted by NIST for PQC stan-
dardization. It is also one of a handful of second-round candidates that are
code-based, as it is based on the well-known McEliece cryptosystem [McE78].
NTS-KEM employs a transformation similar to the Fujisaki-Okamoto [FO13]
(or Dent [Den03]) transforms to achieve IND-CCA security of its KEM in the
ROM. In particular, the transformation looks similar to FO6⊥m since, as will be
detailed in Section 3, NTS-KEM does an implicit rejection of invalid cipher-
texts during decapsulation, and when computing the encapsulated keys, the
ciphertext is not included in the input to the hash function. But at the same
time, NTS-KEM contains significant variations from FO6⊥m in its specification,
meaning that straightforward application of known QROM security proofs for
FO-transformations ( [JZC+18,SXY18]) do not work. One of these major varia-
tions from FO 6⊥m is that, during the encapsulation of keys, the message m to be
encrypted is not sampled uniformly from the message space, but is determined
from the randomness e that is used in the McEliece-type encryption function.

1.1 Our Contributions

In this paper, we make two contributions:

– We identify a flaw in the IND-CCA security proof for NTS-KEM in the
ROM, as described in its initial NIST second round submission. We also
propose some changes to the specification of NTS-KEM which, in addition
to fixing the flaw, preserve the tightness of the intended ROM proof.

– We present a proof of IND-CCA security for the modified version of NTS-
KEM in the QROM. On a high level, our proof is structurally similar to
[JZC+18]’s QROM security proof of FO6⊥m. At the same time, our proof needs
to account for significant differences between FO6⊥m and the new NTS-KEM
specification.

To be specific, we recommend a re-encryption step in the NTS-KEM decap-
sulation routine (similar in spirit to the FO-type transformations) to account for
invalid ciphertexts that may not be implicitly rejected. This change not only fixes
NTS-KEM’s tight IND-CCA security proof in the classical ROM but also leads
to an IND-CCA security reduction in the QROM, only incurring a quadratic
loss w.r.t. degree of tightness. This loss might be impossible to avoid [JZM19].

In order to formulate a security proof in the QROM for the modified NTS-
KEM, we consider the FO 6⊥m transformation which is proven to be secure in
the QROM. So to devise a proof based on the FO 6⊥m framework, we view the
random bits of the encryption function used in NTS-KEM, i.e., the error vectors
e, as “messages” encrypted by OW-CPA secure PKEs in the context of FO 6⊥m.
Namely, we start with the scheme NTS−, a variant of NTS-KEM as will be
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defined in Section 4, that involves a “randomized encryption” of error vectors
during key encapsulation. By doing this, we found it necessary to work with
a non-standard security notion called error one-wayness or EOW security, as
introduced in [ACP+19a], which is an analogue to OW-CPA security but for
schemes that mainly process error vectors. Then the challenge is to account for
notable differences between the modified NTS-KEM scheme and FO6⊥m in the
proof, which includes the fact that to derive the encapsulated keys K in NTS-
KEM, the message m itself is not hashed but a modified version of it is.

It is worth mentioning that the NTS-KEM team has adopted our proposed
changes. On 3rd December 2019, an updated specification of NTS-KEM [ACP+19b]
was posted on the website https://nts-kem.io/. Hence, in the rest of this pa-
per, “NTS-KEM” will be used to refer to the updated version of the second round
submission to NIST’s PQC standardization process, unless stated otherwise.

2 Preliminaries

2.1 Notation

In this section, we outline notation borrowed from [ACP+19a] regarding NTS-
KEM. We denote by F2 the field with two elements, and by F2m an extension
field of F2 with 2m elements. If F is a field, then F[x] is the ring of univariate
polynomials with coefficients in F. We denote by Fn2 the n-dimensional vector
space with entries in F2, and by Fk×n2 the kn-dimensional vector space of matrices
with k rows and n columns with entries in F2. We denote vectors of Fn2 in bold
lowercase, for example e = (e0, e1, . . . , en−1) ∈ Fn2 ; and matrices of Fk×n2 in
bold uppercase, for example G ∈ Fk×n2 . The Hamming weight of a vector e
is the number of non-zero components in the vector and is denoted by hw(e).
Given a vector e of length n over a field F, and positive integers ` < k < n, we
adopt the following notation to denote the partition of e into three sub-vectors:
e = (ea | eb | ec), where ea ∈ Fk−`, eb ∈ F` and ec ∈ Fn−k. More generally, if
v ∈ Fn1 and w ∈ Fn2 are vectors over F, we will denote by (v | w) the vector
in Fn1+n2 constructed as the concatenation of v and w. A permutation vector
p = (p0, p1, . . . , pn−1) is a permutation of the n elements {0, 1, . . . , n− 1}. Then
given the sequence b = (b0, b1, . . . , bn−1), we denote the permuted sequence
b′ = b ·P = πp(b) such that b′i = bpi , and the inverse permutation is given by
b = b′ · P−1 = π−1p (b′) such that bpi = b′i. We denote the length of a vector x
by |x|.

The security parameter is denoted by λ. Given a set X, we denote by x←$X
the operation of sampling an element x ∈ X uniformly at random, and we denote
the sampling according to some arbitrary distribution D by x← D. We denote
probabilistic computation of an algorithm A on input x by y←$A(x). AH(.)

implies that the algorithm has access to the oracle H(.).

2.2 Quantum Random Oracle Model

We introduce some lemmas in the QROM that will be used to derive the main
results of this paper.
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Lemma 1. (Simulating a QRO, [Zha12, Theorem 6.1]) Let H(.) be an
oracle drawn from the set of 2q-wise independent functions uniformly at random.
Then the advantage any quantum algorithm making at most q quantum queries
to H(.) has in distinguishing H(.) from a truly random oracle is identically 0.

Lemma 2. ( [SY17, Lemma C.1]) Let gz : {0, 1}` → {0, 1} denotes a func-
tion defined as gz(z) = 1 and gz(z

′) = 0 for all z 6= z′, and g⊥ : {0, 1}` → {0, 1}
denotes a function that returns 0 for all inputs. Then for any unbounded adver-
sary C that issues at most q quantum queries to its oracle, we have

|Pr[Cgz(.)(.)→ 1 | z←$ {0, 1}`]− Pr[Cg⊥(.)(.)→ 1]| ≤ q · 2−
`+1
2

Lemma 3. (Generalized OW2H2 lemma, [JZC+18, Lemma 3 con-
densed]3) Let oracles O1(.),O2(.), input parameter inp and x be sampled from a
joint distribution D, where x ∈ {0, 1}n (the domain of O1(.)). Consider a quan-
tum oracle algorithm UO1,O2 which makes at most q1 queries to O1(.) and q2
queries to O2(.). Denote Ö1(.) to be a reprogrammed oracle such that Ö1(x) = y,
for a uniformly random y in {0, 1}`, and Ö1(.) = O1(.) everywhere else. Let

VÖ1,O2 be an oracle algorithm that on input (inp, x,O1(x)) does the following:

picks i←$ {1, . . . , q1}, runs U Ö1,O2(inp, x,O1(x)) until the i-th query to O1(.),
measures the query in the computational basis and outputs the measurement
outcome (when U makes less than i queries, V outputs ⊥/∈ {0, 1}n). Define the
events E1, E2 and probability PV as follows,

Pr[E1] = Pr[b′ = 1 : (O1,O2, inp, x)← D, y←$ {0, 1}`, b′ ← UO1,O2(inp, x,O1(x))]

Pr[E2] = Pr[b′ = 1 : (O1,O2, inp, x)← D, y←$ {0, 1}`, b′ ← U Ö1,O2(inp, x,O1(x))]

PV = Pr[x′ = x : (O1,O2, inp, x)← D, y←$ {0, 1}`, x′ ← VÖ1,O2(inp, x,O1(x))]

Then |Pr[E1]− Pr[E2]| ≤ 2q1
√
PV .

2.3 Cryptographic Primitives

Definition 1. A Public Key Encryption scheme (PKE) consists of the following
triple of polynomial-time algorithms (KGen,Enc,Dec).

– The Key Generation algorithm KGen takes as input a security parameter 1λ

and outputs a public/private key-pair (pk, sk).

2 The one-way to hiding (OW2H) lemma, introduced in [Unr14], provides a generic
reduction from a hiding-style property (indistinguishability) to a one-wayness-style
property (unpredictability) in the QROM.

3 We are referring to the latest version of [JZC+18] on the Cryptology ePrint Archive
– Report 2017/1096, Version 20190703 – which differs from the conference version
in that Lemma 3 no longer requires O1(x) to be independent from O2(.). Also we
would be working with a condensed version of the lemma where we do not need
O1(x) to be uniformly distributed for any fixed O1(x′) (x′ 6= x), O2(.), inp and x.
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– The Encryption algorithm Enc takes as input a public key pk and a valid
message m, and outputs a ciphertext c.

– The Decryption algorithm Dec takes as input a ciphertext c and a private key
sk, and outputs a message m (or an error message indicating a decryption
failure).

For example, McEliece [McE78] proposed a PKE scheme which is based on
linear error-correcting codes. Let C = [n, k, d]2 be such a code over F2 of length n
and dimension k, with minimal distance d. The code C is capable of correcting at
most τ =

⌊
d−1
2

⌋
errors, and can be described by a generator matrix G ∈ Fk×n2 .

Then a vector w ∈ Fk2 can be encoded as a codeword in C as c = w ·G ∈ Fn2 .
Now the McEliece scheme could be described as follows.

KGen: Generate a special type of [n, k, d]2 linear error-correcting code CG4 with

generator matrix G′ ∈ Fk×n2 and that is capable of correcting up to τ
errors; this special code is defined by a polynomialG(z) ∈ F2m [z] of degree
τ . Let S be a non-singular matrix in Fk×k2 and P be a permutation matrix
in Fn×n2 , both generated at random. Then, define G = S·G′·P. The public
key is given by pk = (G, τ) and the private key is sk = (G(z),S−1,P−1).

Enc: To encrypt a message m ∈ Fk2 , sample e ∈ Fn2 with Hamming weight τ
and output the ciphertext c = m ·G + e ∈ Fn2 .

Dec: To recover the message m, compute c′ = c ·P−1 = m ·S ·G′+e ·P−1, and
decode c′ using a decoder for CG to recover the permuted e, and hence
m′ = (m · S) ∈ Fk2 . Finally, recover m = m′ · S−1 and output m.

The McEliece PKE scheme achieves a certain notion of security known as
one-wayness (OW), relying on hardness of the well-known problem of decod-
ing random linear codes. Roughly speaking, the notion states that an adversary
cannot recover the underlying message m from a given ciphertext c. The OW

security notion is formalized in Figure 2, where we write {0, 1}poly(λ) for the mes-
sage space, indicating that it consists of bit-strings of some length that depends
on some polynomial function of the security parameter.

OWAEnc

1 : (pk, sk)← KGen(1λ)

2 : m←$ {0, 1}poly(λ)

3 : c← Enc(pk,m)

4 : m′ ← A(1λ, pk, c)

5 : return (m′ = m)

Fig. 2. OW-security game for PKE.

An adversary A is said to be a (t, ε)-adversary against OW security of a PKE
scheme if that adversary causes the OWAEnc game to output “1” with probability

4 Known as a binary Goppa code, as described in [ACP+19a].
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at least ε (where 0 < ε ≤ 1) and runs in time at most t. A PKE scheme is said
to be (t, ε)-secure with respect to a given security notion, such as OW security,
if no (t, ε)-adversary exists for that notion.

Definition 2. A Key Encapsulation Mechanism (KEM) consists of the follow-
ing triple of polynomial-time algorithms (KGen,Encap,Decap).

– The Key Generation algorithm KGen takes as input a security parameter 1λ

and outputs a public/private key-pair (pk, sk).

– The Encapsulation algorithm Encap takes as input a public key pk and out-
puts an encapsulated key and ciphertext (K, c).

– The Decapsulation algorithm Decap takes as input a ciphertext c and a pri-
vate key sk, and outputs a key K encapsulated in c (or an error message
“⊥” indicating a decapsulation failure).

Compared to OW security, the desired notion for a KEM or a PKE scheme
is IND-CCA security, i.e. indistinguishability under chosen ciphertext attacks. In
the KEM version of this security notion, informally, an adversary should not be
able to decide whether a given pair (K, c∗) is such that c∗ encapsulates K or if
K is a random key independent of c∗. In addition, the adversary is also given
access to a decapsulation oracle that returns the output of Decap(c′, sk) for any
c′ 6= c∗ (and where we assume the adversary never queries c∗ to this oracle,
to prevent trivial wins). We denote this capability of accessing an oracle by the
adversary as ADecap(·,sk)(1λ, pk,Kb, c

∗) in Figure 3. Here we write {0, 1}poly(λ)
for the key space, indicating that it consists of bit-strings of some length that
depends on a polynomial function of the security parameter λ.

IND-CCAAKEM

1 : b←$ {0, 1}
2 : (pk, sk)← KGen(1λ)

3 : (K0, c
∗)← Encap(pk)

4 : K1 ←$ {0, 1}poly(λ)

5 : b′ ← ADecap(·,sk)(1λ, pk,Kb, c
∗)

6 : return (b′ = b)

Fig. 3. IND-CCA-security game for KEM.

Formally, a (t, ε)-adversary against the IND-CCA security of a KEM causes
the above game to return “1” with probability at least 1/2 + ε (where 0 < ε ≤
1/2) and runs in time at most t. We say that a KEM is (t, ε)-secure in the
IND-CCA sense if no (t, ε)-adversary exists; NTS-KEM is IND-CCA secure in
the classical random oracle model with a tight relationship to the OW-security
of the McEliece PKE.
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Finally, a KEM (respectively, PKE scheme) is said to be perfectly correct if for
any public/private key pair (pk, sk) generated by KGen, we have Pr[Decap(c, sk) =
K | (c,K)← Encap(pk)] = 1 (respectively, Pr[Dec(c, sk) = m | c← Enc(pk,m)] =
1 for any valid message m). For example, the McEliece scheme is a perfectly cor-
rect PKE and NTS-KEM is a perfectly correct KEM as shown in [ACP+19a].

3 NTS-KEM Specification

NTS-KEM is a key encapsulation mechanism that can be seen as a mixture of
the McEliece and Niederreiter PKE schemes [McE78,Nie86] combined with a
transform similar to the Fujisaki-Okamoto [FO13] or Dent [Den03] transforms
to achieve (tight) IND-CCA security in the classical ROM. We provide a higher-
level overview of the scheme’s three main operations – namely Key Generation,
Encapsulation and Decapsulation – that is relevant to the main results of this
paper (refer to [ACP+19a,ACP+19b] for a more detailed description). Most
importantly, the description below also includes our proposed changes to the
decapsulation routine.

In the following, (n, τ, `) are public parameters where n = 2m denotes the
length of codewords, τ denotes the number of errors that can be corrected by
the code (see McEliece PKE scheme in Subsection 2.3) and ` denotes the length
of the random key to be encapsulated. Also k is a value which is chosen such
that k = n− τm with ` < k < n. NTS-KEM uses a pseudorandom bit generator
H`(.) to produce `-bit binary strings; the current version uses the SHA3-256
hash function [NIS15] to implement H`(.).

Key Generation: Without going into details on how the keys are generated, it
is sufficient to know that an NTS-KEM public key is given by pk = (Q, τ, `)

where Q ∈ Fk×(n−k)2 is a matrix used in the encryption of messages during
encapsulation, and private key is defined as sk = (a∗,h∗,p, z, pk) where a∗,h∗ ∈
Fn−k+`2m are used in the decoding algorithm used for decapsulation, p ∈ Fn2m is a
permutation vector and z ∈ F`2 is used in the decapsulation of invalid ciphertexts.

Encapsulation: Given an NTS-KEM public key pk = (Q, τ, `), the encapsulation
algorithm produces two vectors over F2 – a random vector K, where |K| = `,
and the ciphertext c∗ encapsulating K. It uses the following function that acts
on n-bit error vectors, and denoted as Encode(pk, e), which proceeds as follows.

1. Partition e as e = (ea | eb | ec), where ea ∈ Fk−`2 , eb ∈ F`2 and ec ∈ Fn−k2 .
2. Compute ke = H`(e) ∈ F`2 and construct message vector m = (ea | ke) ∈ Fk2 .
3. Perform systematic encoding of m with Q:

c = (m |m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb | ec)
= (0a | cb | cc) ,

where cb = ke + eb and cc = (ea | ke) ·Q + ec. Then remove the first k − `
coordinates (all zero) from c to output c∗ = (cb | cc) ∈ Fn−k+`2 .
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NTS-KEM encapsulation is then defined as:

1. Generate uniformly at random an error vector e ∈ Fn2 with hw(e) = τ .
2. Compute ke = H`(e) ∈ F`2.
3. Output the pair (K, c∗) where K = H`(ke | e) and c∗ = Encode(pk, e).

Decapsulation: 5 The decapsulation of an NTS-KEM ciphertext c∗ = (cb | cc)
proceeds as follows.

1. Consider the vector c = (0a | cb | cc) ∈ Fn2 , and apply a decoding algo-
rithm — using the secret parameters (a∗,h∗) — to recover a permuted error
pattern e′.

2. Compute the error vector e = πp(e′), partition e = (ea | eb | ec), where
ea ∈ Fk−`2 , eb ∈ F`2 and ec ∈ Fn−k2 , and compute ke = cb − eb.

3. Compute c′ = Encode(pk, e). Verify that c′ = c∗ and hw(e) = τ . If yes,
return K = H`(ke | e) ∈ F`2; otherwise return H`(z | 1a | cb | cc).

3.1 Changes to the Initial NTS-KEM Decapsulation [ACP+19a]

The NIST second round submission for NTS-KEM [ACP+19a] does not perform
the re-encoding check in the decapsulation algorithm. Specifically, the evaluation
of Encode(pk, e) in step 3 of the Decapsulation operation above is not performed,
and instead it only verifies if hw(e) = τ and H`(e) = ke to identify valid cipher-
texts. But this may allow some invalid ciphertexts c to evade implicit rejection by
the decapsulation oracle, leading to a possible attack in the IND-CCA security
game of NTS-KEM.

To be specific, the initial IND-CCA security proof for NTS-KEM in the ROM
[ACP+19a] failed to account for ciphertexts c which, when given as input to the
decoding algorithm used in NTS-KEM decapsulation, result in an error vector e
such that hw(e) = τ and H`(e) = cb−eb, but Encode(pk, e) 6= c. Because of the
correctness of NTS-KEM (as shown in [ACP+19a]), it is not hard to see that
such a ciphertext c is not the result of any valid NTS-KEM encapsulation.6 This
might lead to a potential attack in the IND-CCA security game of NTS-KEM.
Given a challenge ciphertext c∗ = (c∗b | c∗c) (along with a key Kb, see Subsection
2.3 for definitions of security games w.r.t. KEMs), the adversary could possibly
construct the above invalid ciphertext c = (c∗b | cc) by modifying the last (n−k)
bits of c∗, such that the decoding algorithm in NTS-KEM decapsulation would
recover the error vector e∗ used in the NTS-KEM encapsulation that produced
c∗; the attack would then be to query the decapsulation oracle on c (6= c∗) to
recover the encapsulated key.

At the same time, we stress that the above described attack is just a possibil-
ity and is not a concrete attack. Because it is quite possible that, by analyzing

5 Our suggested routine, as adopted in the updated version of NTS-KEM [ACP+19b].
6 On the contrary, if there exists an error vector e′ with hw(e′) = τ such that

Encode(pk, e′) = c, then because of NTS-KEM correctness, the decoding algorithm
should recover error vector e′( 6= e) when given c as input.
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the decoding algorithm used in NTS-KEM decapsulation, one might show such
invalid ciphertexts are computationally hard to generate adversarially.

A re-encoding step during NTS-KEM decapsulation, which is in line with
the FO transformations, would entirely resolve this issue by correctly rejecting
such invalid ciphertexts. Our proposed changes also perform the hash check
H`(e) = ke implicitly because of the following proposition shown in [ACP+19a].

Proposition 1. ( [ACP+19a]) Let c∗ = (cb | cc) be a correctly formed cipher-
text for NTS-KEM with public key pk = (Q, τ, `). Then there exists a unique
pair of vectors ((ea | rb), e) such that hw(e) = τ and c∗ = (ea | rb) · [Ik | Q] + e.

If a ciphertext c is not rejected by the new decapsulation oracle, it means
that there is an error vector e with hw(e) = τ such that Encode(pk, e) = c. From
Proposition 1, there then exists a unique pair of vectors ((ea | rb), e) w.r.t. c,
with hw(e) = τ , such that c = (ea | rb) · [Ik | Q] +e. It is clear that rb = cb−eb,
and because of the uniqueness of rb, we must have H`(e) = cb − eb in the
evaluation of Encode(pk, e). Because of this observation, our changes to NTS-
KEM decapsulation also preserve the tightness of the initial IND-CCA security
proof for NTS-KEM in the ROM, while fixing the flaw discussed above (refer to
[ACP+19b] for more details on the updated ROM proof for NTS-KEM).

4 IND-CCA Security of NTS-KEM in the QROM

In this section, we will be providing a (game-hopping) security proof for NTS-
KEM in the QROM, relying on techniques used in [JZC+18,SXY18]. Specifically,
we show that NTS-KEM is IND-CCA secure in the QROM, if McEliece is OW
secure as a PKE scheme.

Theorem 1. In the quantum random oracle model, if there exists an adversary
A winning the IND-CCA game for NTS-KEM with advantage ε, issuing at most
qD queries to the decapsulation oracle and at most qH quantum queries to the
random oracle H`(.) , then there exists an adversary B̂ against the OW security

of the McEliece PKE scheme with advantage at least 1
4

(
ε
qH
− 1√

2`−1

)2
, and the

running time of B̂ is about that of A.

Similar to the IND-CCA security proof for NTS-KEM in the classical ROM
given in [ACP+19a], we define NTS−, a variant of NTS-KEM, which creates
key encapsulations that are McEliece-type encryptions of message vectors of the
form m = (ea | rb), where rb←$F`2, and rb is considered to be the encapsulated
key for NTS−. This is in contrast to the original NTS-KEM scheme in which
the encapsulations are encryptions of messages of the form m = (ea | ke), where
ke = H`(e) ∈ F`2, and K = H`(ke | e) is the encapsulated key. As will be seen
later on, this step is convenient for our proof because we essentially decouple the
need for random oracles from the NTS− scheme.

Towards a reduction in the QROM from the IND-CCA security of NTS-KEM
to the OW security of the McEliece PKE scheme, as an intermediate step we first
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note that NTS− satisfies a non-standard security notion, denoted as error one-
wayness or EOW security (as introduced in [ACP+19a]). This notion is specific
to McEliece-type KEM schemes, e.g., NTS-KEM, which encrypt messages of the
form m = (ea | rb) with error vector e = (ea | eb | ec) during key encapsulation.
Roughly speaking, this notion states that it is hard to recover the error vector e
used to generate a given challenge ciphertext c. EOW security for NTS-KEM-like
KEMs is defined formally in Figure 4 where the adversary gets the encapsulation
of a random key and is required to produce the error vector which led to that
particular encapsulation.

EOWAKEM

1 : (pk, sk)← KGen(1λ)

2 : (K, c∗)← Encap(pk)

3 : e : error vector used to produce c∗

4 : e′ ← A(1λ, pk, c∗)

5 : return (e′ = e)

Fig. 4. EOW-security game for KEM.

Now NTS− is EOW-secure because of the following security reduction shown
in [ACP+19a], which does not rely on any random oracles.

Theorem 2. ( [ACP+19a]) If there is a (t, ε)-adversary B against the EOW
security of NTS−, then there is a (t, ε)-adversary B̂ against the OW security of
the McEliece PKE scheme.

So we can focus on reducing the IND-CCA security of NTS-KEM to the
EOW security of NTS− in the QROM.

Proof. (of Theorem 1) Let A be an adversary against the IND-CCA game for
NTS-KEM with advantage ε, issuing at most qD queries to the decapsulation
oracle and at most qH queries to the quantum random oracle H`(.).

Consider the games G0 – G5 described in Figure 5. Here pk = (Q, τ, `)
and sk = (a∗,h∗,p, z, pk) as described in Section 3 on NTS-KEM key genera-
tion. Also H+

0 : {0, 1}∗ → {0, 1}`, Hn
1 : {0, 1}n → {0, 1}`, H`+n

2 : {0, 1}`+n →
{0, 1}`, Hn

3 : {0, 1}n → {0, 1}` and Hn
4 : {0, 1}n → {0, 1}` are independent ran-

dom functions that are used in the evaluation of queries (of varying lengths)
w.r.t. the oracles H`(.) and Decap(., sk) in the games. Decode(sk′, c) defined
over ciphertexts c ∈ Fn−k+`2 recovers an error vector after applying the decoding
algorithm used in NTS-KEM decapsulation [Decapsulation, Section 3] and the
permutation p of the secret key.

Game G0 The game G0 is exactly the IND-CCA game for NTS-KEM. So,

|Pr[GA0 =⇒ 1]− 1

2
| = ε
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Games G0 – G5

1 : b←$ {0, 1}
2 : (pk, sk)← KGenNTS-KEM(1λ)

3 : e∗ ←$ {e ∈ Fn2 | hw(e) = τ}
4 : k∗e = H`(e

∗)// G0–G4; k∗e ←$F`2// G5

5 : (0a | c∗) = (e∗a | k∗e) · [Ik | Q] + e∗

6 : K∗0 = H`(k
∗
e | e∗)// G0–G4; K∗0 ←$F`2// G5

7 : K∗1 ←$F`2
8 : b′ ← AH`(.),Decap(.,sk)(1λ, pk,K∗b , c

∗)// G0–G3

9 : Ḧ`(.) = H`(.);

Ḧ`(e
∗)←$F`2; Ḧ`(k

∗
e | e∗)←$F`2// G4

10 : b′ ← AḦ`(.),Decap(.,sk)(1λ, pk,K∗b , c
∗)// G4

11 : return (b′ = b)// G0–G4

12 : i←$ {1, . . . , qH}// G5

13 : run AH`(.),Decap(.,sk)(1λ, pk,K∗b , c
∗) until

i-th query to (Hn
1 × [Hn

4 ◦ g])(.)// G5

14 : measure the i-th query to be ê// G5

15 : return (ê = e∗)// G5

H`(x) // |x| 6= n, (`+ n)

1 : return H+
0 (x)

H`(e) // |e| = n

1 : return Hn
1 (e)

H`(ke | e)// |(ke | e)| = (`+ n)

1 : if hw(e) = τ and

ke = H`(e) then // G2–G5

2 : c = Encode(pk, e)// G2–G5

3 : return Hn
4 (1a | c)// G2–G5

4 : return H`+n
2 (ke | e)

Decap(c 6= c∗, sk) // G0–G2

1 : Parse sk = (sk′, z)

2 : e = Decode(sk′, c)

3 : ke = cb − eb

4 : if hw(e) = τ and Encode(pk, e) = c then

5 : return K = H`(ke | e)

6 : else return

7 : K = H`(z | 1a | c)// G0

8 : K = Hn
3 (1a | c)// G1–G2

Decap(c 6= c∗, sk) // G3–G5

1 : return K = Hn
4 (1a | c)

Fig. 5. Games G0 – G5 for the proof of Theorem 1.
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where “GAi =⇒ 1” denotes the event that the game Gi returns 1 w.r.t. the
adversary A.

Game G1 In game G1, we modify the decapsulation oracle such that Hn
3 (1a |

c) is returned instead of H`(z | 1a | c) for an invalid ciphertext c, i.e., pseudo-
random decapsulations of invalid ciphertexts are replaced by truly random out-
puts. We use Lemma 2 to claim that there is a negligible difference between A’s
winning probabilities in games G0 and G1, i.e.,

|Pr[GA1 =⇒ 1]− Pr[GA0 =⇒ 1]| ≤ qH · 2−
`+1
2

The proof for this claim follows along similar lines to that of [SXY18, Lemma
2.2], but with modifications to account for the specific way NTS-KEM rejects
invalid ciphertexts during decapsulation. To prove our claim, we again consider
the following sequence of games for A based on the random oracles it has access
to, that are relevant during the transition from G0 to G1.

G0: The game returns accordingly as AH
`+n
2 (.),H`+n

2 (z|1a|.)(.) outputs, where
z←$ {0, 1}` is a part of the secret key sk.

G0.5: The game returns accordingly as AO`+n[z,a,H`+n
2 ,Hn

3 ](.),Hn
3 (1a|.)(.) out-

puts, where O`+n[z,a, H`+n
2 , Hn

3 ](.) is a function defined as

O`+n[z,a, H`+n
2 , Hn

3 ](z′ | c) =

{
H`+n

2 (z′ | c) if z′ 6= z or [c]a 6= 1a

Hn
3 (c) otherwise

Here, [x]b denotes the first b-bits of input x.

G1: The game returns accordingly as AH
`+n
2 (.),Hn

3 (1a|.)(.) outputs.
Note that Pr[GA0.5 =⇒ 1] = Pr[GA0 =⇒ 1]: for (` + n)-bit queries of

the form (z | 1a | .), the function O`+n[z,a, H`+n
2 , Hn

3 ](.) makes sure that we
maintain consistency of the oracle evaluations when replacing H`+n

2 (z | 1a | .)
with Hn

3 (1a | .).
We show that |Pr[GA1 =⇒ 1]−Pr[GA0.5 =⇒ 1]| ≤ qH ·2−

`+1
2 via a reduction

to Lemma 2. Consider the algorithm C that has oracle access to the function
g(.) which is either gz(.) for uniformly random z←$ {0, 1}` or g⊥(.), where the

functions gz(.) and g⊥(.) are as defined in Lemma 2. Cg(.) runsAÔ`+n(.),Hn
3 (1a|.)(.)

where C simulates the oracles H`+n
2 (.) and Hn

3 (.) using two different 2qH -wise

independent functions respectively (see Lemma 1), and simulates Ô`+n(.) as
follows: When A queries (z′ | c) to Ô`+n(.), B queries z′ to g(.) and gets a bit b.
If b = 1 and [c]a = 1a, then C returns Hn

3 (c). Otherwise, C returns H`+n
2 (z′ | c).

It is clear that if g(.) = gz(.) for uniformly random z←$ {0, 1}`, C perfectly
simulates G0.5 in A’s view, and similarly if g(.) = g⊥(.), C simulates G1. Thus,
we get

|Pr[GA1 =⇒ 1]−Pr[GA0.5 =⇒ 1]| = |Pr[Cg⊥(.)(.)→ 1]−Pr[Cgz(.)(.)→ 1 | z←$ {0, 1}`]|

Since the number of C’s oracle queries to g(.) is the same as the number of A’s
queries to Ô`+n(.), we can use Lemma 2 to further obtain

|Pr[Cg⊥(.)(.)→ 1]− Pr[Cgz(.)(.)→ 1 | z←$ {0, 1}`]| ≤ qH · 2−
`+1
2
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which proves our claim regarding the adversary A’s winning probabilities in
games G0 and G1.

Game G2 In game G2, the encapsulated keys are derived in a different way:
if the (`+n)-bit input (ke | e) to H`(.) is of the correct form, i.e., hw(e) = τ and
ke = H`(e), then the output is replaced by Hn

4 (1a | c), where c = Encode(pk, e).

Because NTS-KEM is a perfectly correct scheme as shown in [ACP+19a] (see
Subsection 2.3 for correctness definition), we note that Encode(pk, .) is injective,
and thus, Hn

4 (1a | Encode(pk, .)) returns perfectly random values for distinct
inputs of the type (H`(e) | e) with hw(e) = τ . As the oracle distributions of
H`(.) are equivalent in games G1 and G2, we have

Pr[GA2 =⇒ 1] = Pr[GA1 =⇒ 1]

Game G3 In game G3, we change the decapsulation oracle such that there
is no need for the secret key sk. Specifically, when the adversary A asks for the
decapsulation of a ciphertext c (6= c∗, the challenge ciphertext), Hn

4 (1a | c) is
returned. Let e = Decode(sk′, c) and ke = cb − eb. Consider the following two
cases:

Case 1: If the checks in NTS-KEM decapsulation – i.e., hw(e) = τ and
Encode(pk, e) = c – are satisfied, then the decapsulation oracles in games G2

and G3 return H`(ke | e) and Hn
4 (1a | c) respectively. In G2, as discussed in

Subsection 3.1, the re-encoding step does an implicit hash check, and hence, we
also have H`(e) = cb − eb = ke. Therefore, H`(ke | e) evaluates to Hn

4 (1a |
Encode(pk, e)) = Hn

4 (1a | c) in G2, which is the value returned in G3 as well.

Case 2: If one of the checks is not satisfied, then the values Hn
3 (1a | c) and

Hn
4 (1a | c) are returned in games G2 and G3 respectively. In G2, the function

Hn
3 (.) is independent of all other random oracles, and thus, the outputHn

3 (1a | c)
is uniformly random in A’s view. In G3, the only way A gets prior access to the
oracle Hn

4 (.) is if it already queried H`(.) with an input of the type (k′e | e′) such
that hw(e′) = τ and k′e = H`(e

′), and got back Hn
4 (1a | Encode(pk, e′)). Now

it’s not hard to see that Encode(pk, e′) cannot be equal to c,7 which implies that
the output of the modified decapsulation oracle Hn

4 (1a | c) is a fresh random
value like Hn

3 (1a | c).

Because the output distributions of the decapsulation oracles in games G2

and G3 are the same in both cases, we have

Pr[GA3 =⇒ 1] = Pr[GA2 =⇒ 1]

Game G4 In game G4, we reprogram the random oracle H`(.) on inputs e∗

and (k∗e | e∗) such that they result in fresh uniformly random outputs. To be
specific, we replace H`(.) with the function Ḧ`(.) where Ḧ`(e

∗) = r∗b←$F`2 and

Ḧ`(k
∗
e | e∗) = K̇∗0←$F`2, and Ḧ`(.) = H`(.) everywhere else. It is clear that in

7 On the contrary, if Encode(pk, e′) = c, then because of NTS-KEM correctness,
we have Decode(sk′, c) = e′ = e. This means that the checks hw(e) = τ and
Encode(pk, e) = c are satisfied, a contradiction.



On the Security of NTS-KEM in the Quantum Random Oracle Model 15

this game, as we are masking the information used to derive the challenge pair
(K∗b , c

∗) from A’s view, its output is independent of bit b. Therefore,

Pr[GA4 =⇒ 1] =
1

2

In order to bound the difference in A’s winning probabilities in games G3 and
G4, we use Lemma 3. Let the function g(.) defined over error vectors e ∈ Fn2 be
as follows,

g(e) =

{
1a | Encode(pk, e) if hw(e) = τ

0a | eb | ec if hw(e) 6= τ

Looking at game G3, the oracle query H`(k
∗
e | e∗) evaluates to Hn

4 (g(e∗)) =
Hn

4 ◦ g (e∗). So we are actually reprogramming the oracles Hn
1 (.) and Hn

4 ◦ g (.)
at the input e∗.

Define the function Ḧn
4 ◦ g (.) such that Ḧn

4 ◦ g (e∗)←$F`2 and Ḧn
4 ◦ g (.)

= Hn
4 ◦ g (.) everywhere else. Similarly, let Ḧn

1 (e∗)←$F`2 and Ḧn
1 (.) = Hn

1 (.)
everywhere else. Now let the oracles (Hn

1 × [Hn
4 ◦ g])(.) = (Hn

1 (.), Hn
4 ◦ g (.))8

and (Ḧn
1 × [Ḧn

4 ◦ g])(.) = (Ḧn
1 (.), Ḧn

4 ◦ g (.)). If we also have a function Ĥn
4 (.)

such that Ĥn
4 (g(e∗)) =⊥ and Ĥn

4 (.) = Hn
4 (.) everywhere else, then Ĥn

4 (1a | .) is
precisely the (unchanged) decapsulation oracle in games G3 and G4.

Let U (Hn
1 ×[H

n
4 ◦g]),Ĥ

n
4 be an algorithm described in Figure 6 that has quan-

tum access to the oracles (Hn
1 × [Hn

4 ◦ g])(.) and Ĥn
4 (.), and takes an input

(pk, e∗, (k∗e,K
∗
0)) which is derived in the same way as in games G3 and G4; i.e.,

(pk, sk) ← KGenNTS-KEM(1λ), e∗←$ {e ∈ Fn2 | hw(e) = τ},k∗e = Hn
1 (e∗) and

K∗0 = Hn
4 ◦ g(e∗), with functions Hn

1 (.), Hn
4 (.) and g(.) as previously described.

Here the random functions H+
0 : {0, 1}∗ → {0, 1}` and H`+n

2 : {0, 1}`+n →
{0, 1}` are independently sampled by the algorithm. Note that, U (Hn

1 ×[H
n
4 ◦g]),Ĥ

n
4

on input (pk, e∗, (k∗e,K
∗
0)) simulates G3 in the adversary A’s view, whereas the

algorithm U (Ḧn
1 ×[Ḧ

n
4 ◦g]),Ĥ

n
4 on the same input (pk, e∗, (k∗e,K

∗
0)) simulates G4.

Also A can have (separate) access to the internal oracles Hn
1 (.) and [Hn

4 ◦g](.) by
querying H`(.), which could be simulated by U by accessing (Hn

1 ×[Hn
4 ◦g])(.) and

ignoring part of the output of the oracle using a trick9 described in [BZ13,TU16].
Therefore, the number of oracle queries to (Hn

1 × [Hn
4 ◦ g])(.) is at most qH .

Let V(Ḧn
1 ×[Ḧ

n
4 ◦g]),Ĥ

n
4 be an algorithm that on input (pk, e∗, (k∗e,K

∗
0)) does the

following: samples i←$ {1, . . . , qH}, runs U (Ḧn
1 ×[Ḧ

n
4 ◦g]),Ĥ

n
4 until the i-th query to

(Ḧn
1 × [Ḧn

4 ◦ g])(.) and returns the measurement outcome of the query in the
computational basis (if U makes less than i queries, the algorithm outputs ⊥).

8 For error vectors e ∈ Fn2 with hw(e) 6= τ , the reason we defined g(e) – even though
A only has access to Hn

4 (1a | .) in games G3 and G4 – is to have a consistent domain
(Fn2 ) and co-domain (F`2) between the oracles Hn

1 (.) and Hn
4 ◦ g (.). This would be

helpful, for example, when applying Lemma 3 in our setting.
9 For example, if we want to access Hn

1 (.) by making queries to (Hn
1 × [Hn

4 ◦g])(.), then
we just have to prepare a uniform superposition of all states in the output register
corresponding to Hn

4 ◦ g(.).
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U (Hn
1 ×[Hn

4 ◦g]),Ĥ
n
4 (pk, e∗, (k∗e,K

∗
0))

1 : c∗ = Encode(pk, e∗)

2 : K∗1 ←$F`2
3 : b←$ {0, 1}
4 : b′ ← AH`(.),Decap(.,sk)(1λ, pk,K∗b , c

∗)

5 : return (b′ = b)

Decap(c 6= c∗, sk)

1 : return K = Ĥn
4 (1a | c)

H`(x) // |x| 6= n, (`+ n)

1 : return H+
0 (x)

H`(e) // |e| = n

1 : return Hn
1 (e)

H`(ke | e)// |(ke | e)| = (`+ n)

1 : if e = e∗ then

2 : if ke = k∗e then

3 : return Hn
4 ◦ g(e)

4 : else return H`+n
2 (ke | e)

5 : elseif hw(e) = τ and

ke = H`(e) then

6 : return Hn
4 ◦ g(e)

7 : else return H`+n
2 (ke | e)

Fig. 6. Algorithm U (Hn
1 ×[Hn

4 ◦g]),Ĥ
n
4 for the proof of Theorem 1.

Game G5 From the description of G5, we see that Pr[V(Ḧn
1 ×[Ḧ

n
4 ◦g]),Ĥ

n
4 =⇒

e∗] = Pr[GA5 =⇒ 1] because, as previously discussed regarding the winning
probability in G4, the oracle (Ḧn

1 × [Ḧn
4 ◦ g])(.) does not reveal any information

about H`(e
∗) and H`(k

∗
e | e∗). So applying Lemma 3 with the setting O1 =

(Hn
1 × [Hn

4 ◦ g])(.), Ö1 = (Ḧn
1 × [Ḧn

4 ◦ g])(.),O2 = Ĥn
4 (1a | .), inp = pk, x = e∗

and y = (k∗e,K
∗
0), we obtain10,

|Pr[GA4 =⇒ 1]− Pr[GA3 =⇒ 1]| ≤ 2qH

√
Pr[GA5 =⇒ 1]

Finally, we construct an adversary B against the EOW security of NTS− (as
described in Figure 4) such that its advantage is Pr[GA5 =⇒ 1]. Given an input
(1λ, pk, c∗), B does the following:

– Runs A as a subroutine in game G5.
– Uses four different 2qH -wise independent functions to perfectly simulate the

random oracles H+
0 (.), Hn

1 (.), Hn
4 (.) and H l+n

2 (.) respectively in A’s view, as
described in Lemma 1. Also evaluates Hn

1 (.) and [Hn
4 ◦ g](.) at A’s queries

using the oracle (Hn
1 × [Hn

4 ◦ g])(.).
– Answers decapsulation queries using the function Hn

4 (1a | .).
– For A’s challenge query, it samples K∗←$F`2 and responds with (K∗, c∗).

10 The original OW2H lemma of [Unr14] would have required e∗ to be sampled uni-
formly in Fn2 , the domain of (Hn

1 × [Hn
4 ◦ g])(.). Therefore we use Lemma 3 which

generalizes to arbitrary distributions of e∗; in particular, e∗ ←$ {e ∈ Fn2 | hw(e) = τ}.
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– Samples i←$ {1, . . . , qH}, measures the i-th query to the oracle (Hn
1 × [Hn

4 ◦
g])(.) and returns the outcome ê.

From the above description of B, we note that its EOW advantage against
NTS− is indeed Pr[GA5 =⇒ 1]. Coming to the running times of A and B,
say tA and tB respectively, if tEnc denotes the time needed to perform a single
Encode(pk, .) operation, we have tB ≈ tA + (qH + qD) · O(qH) + qH · tEnc, i.e.,
the overhead is due to the simulation of H`(.) and Decap(., sk) oracles by B.

By combining the bounds obtained w.r.t. the winning probabilities of A in
each of the previous games and applying the security reduction of Theorem 2
to the EOW adversary B, we obtain an adversary B̂ against the OW security of
the McEliece PKE scheme with a running time (= tB) close to that of A, and
advantage ε̂ where

ε̂ ≥ 1

4

( ε

qH
− 1√

2`−1

)2
(1)

5 Conclusion

In this paper, we analyzed the security of NTS-KEM – a second round PKE/KEM
candidate in NIST’s PQC standardization project – in the QROM. Specifically,
we identified an issue in the IND-CCA security proof of NTS-KEM in the classi-
cal ROM and suggested some modifications to the scheme towards fixing it. We
later showed that our changes not only preserve the tightness of the intended
ROM proof for NTS-KEM but also lead to an IND-CCA security reduction in
the QROM. The proposed changes were later adopted by the NTS-KEM team
in an update to their second round submission [ACP+19b].

We also note that our QROM reduction can be made tighter by using newer
OW2H lemmas of [AHU19] and [BHH+19]. For example, one could consider
the improved security reduction of the U 6⊥m transform in [BHH+19] to get rid of
the factor 1/qH from the term “ε/qH” in Equation (1). However, the quadratic
loss in degree of tightness incurred by our reduction might still be unavoidable
in the QROM [JZM19].

Acknowledgments. It is my pleasure to thank Kenny Paterson, and the rest
of the NTS-KEM team, for helpful discussions. I would also like to thank the
anonymous reviewers of CBCrypto 2020 for their comments.
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