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In a witness encryption scheme, to decrypt a ciphertext associated with an NP
statement, the decrypter takes as input a witness testifying that the statement
is in the language. When the statement is not in the language, then the message
is hidden. Thus far, the only provably secure constructions assume the existence
of indistinguishability obfuscation (iO) and multilinear maps (MMaps).

We make progress towards building polynomially efficient witness encryption
for NP without resorting to iO or MMaps. In particular, we give a witness en-
cryption scheme from Yao’s garbled circuit technique and a new type of fully
homomorphic encryption (FHE) that we call annihilating. Interestingly, we re-
quire a version of the annihilating FHE that is circularly insecure, i.e., allows
testing the presence of a key cycle. We prove our witness encryption’s security
from a novel assumption about our annihilating FHE. We formulate the assump-
tion as an interplay between an annihilating FHE and ciphertexts modeled as
ideal ciphers. We show a candidate (leveled) annihilating FHE built from a mul-
tikey variant of the BGV/BFV fully homomorphic cryptosystems.

1 Introduction

Witness Encryption (WE), introduced by Garg et al. [GGSW13], is a cryptosys-
tem where the encryption algorithm Enc beside a message msg, takes as input
a statement stmt from an NP language L associated with a polynomial-time
checkable relation R. To decrypt the message msg, the decryption algorithm
Dec takes as input a witness wit such that (stmt,wit) ∈ R. For security, we
require that if stmt 6∈ L (no witness exists), then it is infeasible to distinguish
between potentially encrypted messages.

Besides offering very general access control and being an exciting primitive
on its own, WE has numerous applications in cryptography. Among others,
we can use WE to design identity and attribute-based encryption [GGSW13],
secret sharing [KNY17], oblivious transfer [BGI+17], multiparty computation
[GGHR14, GLS15], time-lock encryption [LJKW18], (optimally laconic) argu-
ment systems [KMN+14, BP15, FNV17, BISW18, BKP19], indistinguishability
obfuscation for evasive functions [GKW17a, WZ17], or reusable garbled circuits
and single key succinct functional encryption for Turing machines [GKP+13].
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1.1 Contribution

Since its inception, provably secure witness encryption schemes for NP were con-
structed either from indistinguishability obfuscation [GGH+13] or from generic
multilinear maps [GGSW13, GKP+13, GLW14, LJKW18].

Our main contribution is to introduce new techniques from which we can
build witness encryption schemes for all NP with security reductions to novel
assumptions. New design paradigms are desirable, as they might deepen the un-
derstanding of a primitive and lead to more efficient instantiations under different
assumptions. The design paradigm behind our witness encryption construction
follows a straightforward intuition on how such cryptosystem should look like:

A witness encryption is a special encoding of a boolean formula that we
can decode gate-by-gate according to the witness until we decode the mes-
sage from the output gate. Furthermore, it is hard to decode the encoding
inconsistently with the formula, and in consequence, decrypt the message
when no witness exists.

Notably, our witness encryption scheme handles general formula satisfiability.
Thus we can directly instantiate it for SAT related problems. Previous construc-
tions, excluding iO based, were limited to the exact cover or subset sum prob-
lems. We reduce our schemes’ security to the security of primitives not known
to imply iO or MMaps. In particular, we introduce a new primitive called anni-
hilating fully homomorphic encryption (AFHE). For our WE scheme, we assume
the security of a particular interplay between AFHE and ideal ciphers. We call it
ideal cipher annihilation security. The assumption shares some conceptual sim-
ilarities to linear-only encryption [BISW17] or targeted malleability [BSW12],
but comes with a novel spin. Interestingly we use a circularly insecure AFHE,
in the sense that it is possible to detect key cycles. Previously such systems
were constructed solely to show separations between semantic and circular se-
curity. Our work shows that we can view circularly insecure encryption as a
useful tool to build advanced cryptographic primitives. We give a candidate in-
stantiation of the AFHE scheme based on a multikey version of the BGV/BFV
(leveled) fully homomorphic encryption schemes [Bra12, BV11, BGV12, FV12].
Then we compile it to a circularly insecure version via lockable obfuscation
[GKW17a, WZ17, CVW18]. We conjecture that our candidate satisfies ideal ci-
pher annihilating security. This conjecture constitutes the heuristic part of our
contribution. However, we argue that potential attack vectors on the candidate
with practical instantiations of the ideal cipher are very unlikely to work and
could potentially lead to the development of techniques useful to build more
efficient homomorphic schemes.

1.2 Overview of Our Techniques

The intuitive design paradigm mentioned in the previous section is the starting
point to build our scheme.
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Basic Scheme form Yao’s Technique. Observe that to implement the idea of a
boolean formula encoding, the first thing that comes to mind is to use Yao’s gar-
bled circuits [Yao86]. In particular, to build a basic witness encryption scheme,
we can garble a formula (encrypt the gates), but the last garbled gate encrypts
the message in place of the accepting label. Then, the witness encryption con-
sists of the garbled circuit and all labels of input variables. We note that we do
not use garbled circuits as a black-box primitive. We do not need to permute the
garbled gates, and we do not rely on the standard properties of garbled circuits.

Let us illustrate the basic witness encryption scheme on the following boolean
formula: C(a, b) = (a ANDx 0) ANDz (b ANDy 0). Denote the output wire of
(a ANDx 0) as c and (b ANDy 0) as d. Clearly, there is no valuation of a, b ∈ {0, 1}
that C(a, b) = 1. Now, we build a witness encryption scheme for C as follows.
The encrypter chooses keys K0

a , K0
b , K1

a , K1
b , K0

c , K0
d , K1

c , K1
d ∈ {0, 1}`sk repre-

senting all value assignments of all wires in the circuit, where `sk is the key size.
We call these keys labels. To encrypt a message msg, we create garbled gates fol-
lowing the truth tables of gates in the circuit. That is, the encrypter encodes the
ANDz gate: ct0,0z ← Enc([K0

c ,K
0
d ], reject), ct0,1z ← Enc([K0

c ,K
1
d ], reject), ct1,0z ←

Enc([K1
c ,K

0
d ], reject), ct1,1z ← Enc([K1

c ,K
1
d ],msg). Analogously, the encrypter en-

codes the ANDx and ANDy gates: ct0x ← Enc([K0
a ],K0

c ), ct1x ← Enc([K1
a ],K0

c ), and
ct0y ← Enc([K0

b ],K0
d), ct1y ← Enc([K1

b ],K0
d). The ciphertext includes all variable

labels K0
a ,K

0
b ,K

1
a ,K

1
b and all garbled gate ciphertexts ct0,0z , ct0,1z , ct1,0z , ct1,1z ,

ct0x, ct1x, ct0y, ct1y. Note that we do not include labels of internal wires. It is easy
to see that, to decrypt the message msg, a decrypter would first need to obtain
the labels corresponding to c = 1 and d = 1. That is, we would need to decrypt
somehow K1

c , K1
d from the garbling of the ANDx, and ANDy gates. However, none

of the ANDx and ANDy garbled gates contains any information about K1
c or K1

d .
Therefore, even though the decrypter has all variable labels, the keys K1

c , K1
d

are not decryptable from the garbled circuit.

Mixed Input Attack. Unfortunately, applying the garbled circuit technique works
only for a narrow family of read-once formulas. That is, formulas where each
variable is assigned to a single input wire. We can prove (see Appendix A)
that a scheme as above yields an (extractable) witness encryption for read-once
formulas in the ideal cipher model. However, for us, this is unsatisfactory as
the NP-complete SAT problem requires formulas that read each variable poly-
nomially many times. The problem is that we cannot force the adversary A,
who is given all the variable labels, to evaluate the garbled circuit consistently.
In other words, despite the formula being read-many, no mechanism prevents
A from treating the garbled formula as read-once, which satisfiability is in
P. It is easy to see the problem for example on the (non-satisfiable) formula
C(a) = (a ANDx 1) ANDz (a NANDy 1). When garbling C and publishing all the
labels for the variable a, an adversary A can decode all the internal wire keys
corresponding to 1 by applying both 0 and 1 labels of a. In other words, from
A’s perspective, a garbling of C is equivalent to a garbling of the (satisfiable)
read-once formula C ′(a, a′) = (a ANDx 1) ANDz (a′ NANDy 1), with an additional
variable a′.
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Enforcing Consistency. Observe that whenever an adversary A learns all variable
labels of the garbled circuit, A may always run the mixed input attack. Hence, our
first step is to encrypt the variable labels with a fully homomorphic encryption
scheme. This way, the adversary does not learn the labels but can still evaluate
the garbled circuit homomorphically.

Now, to solve the mixed input issue, we build a special fully homomorphic en-
cryption scheme that we call annihilating. In an annihilating fully homomorphic
encryption (AFHE), we assign a set of tags to each ciphertext. When computing
on such ciphertexts, the result is assigned the union of the tags. We can mark
some tags as mutually annihilating and require that it is hard to perform a
correct homomorphic computation on ciphertexts that contain mutually annihi-
lating tags. Now we encrypt each variable labels from the garbling scheme with
a unique tag, and mark tags that correspond to different valuations of the same
variable as annihilating. This way, the AFHE “remembers” which variable labels
a decrypter used to obtain an internal wire label. Finally, attempts to evaluate
the decryption circuit of a garbled gate on ciphertexts with annihilating tags
(corresponding to contradictory valuations of input variables) should result in
a ciphertext holding random noise. Therefore, mixed input attacks should not
be a useful strategy to decode the garbled circuit, and the only option left is to
decode consistently.

Testing the Encrypted Output. We give more details on annihilating FHE in
the next paragraph. The problem now is that an honest decrypter with a valid
witness can obtain only an AFHE ciphertext of the message (the output of the
last garbled gate) instead of the actual message. Moreover, as the FHE should
be indistinguishable under chosen plaintext attack (IND-CPA), there seems to be
no way to decode the message.

To resolve this issue, the first idea that comes to mind is to have the garbled
circuit encode AFHE.Dec(sk,msg) instead of the message. When homomorphi-
cally evaluating the garbled circuit, we get AFHE.Enc(sk, AFHE.Dec(sk, msg)) =
msg. Unfortunately, we do not know of any FHE scheme, for which AFHE.Dec(sk,
msg) would be a well-formed plaintext.

The next iteration of this idea is to have the garbled circuit encode sk and use
an (annihilating) FHE that is IND-CPA secure but breakable for key-dependent
plaintexts. In other words, there is a distinguisher that detects key cycles [CL01].
Then upon homomorphically evaluating the garbled circuit, we can test whether
the plaintext is sk (indicating that the message is 1) or something else (telling
that it is 0).

We note that a key-dependent plaintext might result in the total break of the
encryption scheme. However, the adversary must first homomorphically decrypt
the accepting label to break the scheme. Until that event, all plaintexts are
independent of the key. Furthermore, given that the formula is not-satisfiable,
and the AFHE system prevents inconsistent computation, the adversary will
never decrypt the accepting label.
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Annihilating Fully Homomorphic Encryption. Let us first address the
possibility of realizing AFHE using FHE with targeted malleability [BSW12].
Targeted malleability guarantees that an evaluator can compute only functions
on ciphertexts specified in the FHE’s public key. Therefore, at a high level, it
may seem that targeted malleability immediately solves our problem, as we could
limit the evaluator to functions consistent with the tags of the AFHE. Unfortu-
nately, targeted malleability does not require the plaintext to be “destroyed”
upon attempts to compute invalid functions. It merely requires the existence of
a verification algorithm that judges whether a ciphertext came out of a consistent
evaluation or not.

To build annihilating encryption, we put our focus on multikey FHE (MKFHE)
schemes instead. MKFHE is a generalization of (single key) FHE introduced by
López-Alt, Tromer, and Vaikuntanathan [LTV12], that allows computation on
ciphertexts created using different secret keys. Many current MKFHE candidates
[CM15, MW16, PS16, BP16, CCS19, CDKS19] require to publish special eval-
uation keys to allow computation on encrypted data of distinct origin. Thus
our idea is as follows: We associate a secret key with a tag. If we want to mark
two tags as annihilating, we simply do not publish the special evaluation keys
corresponding to those tags.

To simplify exposition, we describe our idea for the basic scheme over a ring
Rq and the two-key case. Also, we omit to denote the way messages and er-
rors are encoded. To encrypt m1,m2 ∈ Rq under keys s1, s2 ∈ Rq, we use the

Regev cryptosystem [Reg05]. Specifically, we choose ai
$← Rq, ei

$← X , and set
ci = [bi, ai] = [−ai · si + mi + ei, ai] for i ∈ {1, 2}. To decrypt each ciphertext
with respect to a secret key si we run mi ← b〈ci, [1, si]〉e, where b.e is the appro-
priate rounding function. Note that we can generalize the decryption function
to handle multiple secret keys as 〈ĉi, [1, s1, s2]〉 and extend ci to ĉi, where we set
ĉ1 ← [b1, a1, 0], and ĉ2 ← [b2, 0, a2]. This way we can “lift” ciphertexts without
increasing the noise and add the ciphertexts as ĉ1 + ĉ2.

Multiplication is a bit more involved. In BGV/BFV type cryptosystems [Bra12,
BV11, BGV12, FV12], the first step towards multiplying two ciphertexts is to
compute the Kronecker product of the ciphertexts ĉ1 and ĉ2 under secret key
ŝ = [1, s1, s2]. Note that 〈ĉ1, ŝ〉 · 〈ĉ2, ŝ〉 = 〈ĉ1 ⊗ ĉ2, ŝ ⊗ ŝ〉, what follows from
the mixed-product property of the Kronecker product. So c̃ = ĉ1 ⊗ ĉ2 is a
ciphertext of the product of the two messages, under the key s̃ = ŝ ⊗ ŝ =
[1, s1, s2, s1, s

2
1, s1 · s2, s2, s1 · s2, s22]. Unfortunately, we cannot keep multiplying

using the Kronecker product as the ciphertexts’ size grows exponentially. Hence
we need to map the ciphertext back to the form that decrypts with ŝ. This pro-
cess is called relinearization (or keyswitchnig in general), and requires to publish
special encryptions of si, s

2
i for i ∈ {1, 2}, and s1 ·s2. Roughly speaking, using the

relinearization keys, one homomorphically decrypts c̃. The crucial observation
that we want to point to is that without having the encryptions of s1 ·s2, we end
up with a standard BGV/BFV cryptosystem that is not multikey. It seems to be
infeasible to relinearize the extended ciphertext completely and remove the part
dependent on s1 ·s2. Hardness to perform multikey multiplication is, in some way,



6 Kamil Kluczniak

analogical to the hardness of performing non-linear operations in the linear-only
encryption of Boneh et al. [BISW17]. In particular, the linear-only cryptosystem
[BISW17], is basically a BGV/BFV scheme without any relinearization keys (just
as symmetric Regev encryption), with only one additional tweak to make the
ciphertext space sparse needed to justify extractability that in our setting is not
required.

To sum up, we construct our candidate annihilating FHE from a version of
BGV/BFV that is symmetric and multikey. Each secret key is associated with a
unique tag, and for annihilating tags/keys, we do not publish the part of the re-
linearization key holding s1 · s2. Finally, we conjecture that without encryptions
of s1 · s2 it is infeasible to compute non-linear functions on corresponding mul-
tikey ciphertexts. The assumption needed for our WE is stated in conjunction
with ideal ciphers that, in practice, can be instantiated by block-ciphers (e.g.,
AES256). Roughly speaking, the assumption says that the query patterns to the
ideal cipher given real AFHE ciphertexts should be as in an ideal system. In the
ideal system, we don’t allow queries to an ideal cipher on data encrypted un-
der annihilating tags, but we allow queries to the ideal cipher on data encrypted
under non-annihilating tags. The output of a successful query is an AFHE encryp-
tion of what the oracle returns. We note, however, that as linear-only encryption
[BISW17] or extractable FHE [BC12], our assumption is not falsifiable.

Circularly Insecure Annihilating Fully Homomorphic Encryption. Fortunately,
there are candidate constructions for IND-CPA secure encryption schemes that
are not circular secure [BHW15, AP16, KW16, GKW17b]. We put our attention
on the works from Goyal, Koppula, and Waters [GKW17a], and Wichs and
Zirdelis [WZ17], who introduced a primitive called lockable obfuscation3 and
used it to build cycle testers that distinguish whether a chain of ciphertexts
contains a key cycle or not. Lockable obfuscation is a mechanism that takes as
input a circuit C and a lock value lock and outputs an obfuscated circuit C̃.
An evaluator can run the obfuscated circuit on any input x, and C̃ returns 1
if C(x) = lock, and ⊥ otherwise. For security, C̃ reveals no information on C
(virtual black-box security) assuming that lock has sufficient entropy even given
the circuit C. Importantly we can build lockable obfuscation assuming hardness
of the (subexponential) learning with errors problem [GKW17a, WZ17, CVW18].
Furthermore, lockable obfuscation is not known to imply iO or MMaps. To build
our cycle tester, we use the generic compiler from [GKW17a]. In a nutshell,
the compiler extends the secret key of an encryption scheme with a uniformly
random lock and publishes a lockable obfuscation where C(x) = Dec(sk, x).

Note that our approach shares some similarities to the concept of zero-testing
required by multilinear maps, in that there exists a plaintext for which we can
perform a test. However, in contrast to zero-testing, the testable message has
high entropy in our case, and we know secure methods to implement such testers.

3 Wichs and Zirdelis [GKW17a] call the primitive distributional virtual black-box
obfuscation for compute and compare programs. We refer to the primitive shortly
as lockable obfuscation as in [WZ17].
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An important caveat is that we cannot show that annihilating security is pre-
served when given an obfuscated program. While the lockable obfuscation may
not reveal any information on the circuit, it does not guarantee that we can-
not use it to perform homomorphic computation. For our candidate AFHE, we
chose to instantiate the lockable obfuscation with the concrete construction from
[CVW18]. Since the construction is based on noisy encodings [GGH15, CVW18]
and is designed for circuits in NC1 only, it seems unlikely that obfuscated pro-
grams might help in any way to break the annihilating security of our candidate.

1.3 Previous Work

Garg, Gentry, Sahai, and Waters [GGSW13] introduced the concept of witness
encryption and showed a candidate construction for the exact cover problem
from generic multilinear maps. Several other works [GKP+13, LJKW18] built
upon [GGSW13], and proposed (extractable) witness encryption schemes, or
witness pseudorandom functions [Zha16], based on similar assumptions. To be
more specific, these assumptions rely on generic multilinear maps and depend on
the exact cover or subset sum problems. Gentry, Lewko, and Waters [GLW14]
showed the first construction of a witness encryption scheme for NP from instance
independent assumptions, albeit their candidate still requires multilinear maps.

Recently Barta et al. [BIOW20] showed a witness encryption for a variant of
the problem of approximating the minimum distance of a linear code (GapMDP)
assuming only generic groups. However, it remains an open question whether
GapMDP for certain specific parameters is NP-hard. The authors hypothesize
that there exists a deterministic polynomial-time reduction from NP to their
version of GapMDP. Unfortunately, we do not know whether such reduction
exists and whether the witness encryption works for all problems in NP or not.

Bartusek et al. [BIJ+20] design witness encryption from new algebraic struc-
tures, and Chen et al. [CVW18] show a construction from lattice-based tech-
niques. Both candidates are conjectured to be secure. However, there is also no
attempt made to provide a security reduction for those schemes.

Garg et al. [GGH+13] observed that iO for NC1 is enough to build witness
encryption for NP. iO with reductionist security analysis, until very recently
was constructed mainly from multilinear maps, or assuming the existence of
PRG’s with special properties [LT17, AJL+19, Agr19, JLMS19, BHJ+19]. Re-
cently, Jain, Lin, and Sahai showed a candidate assuming well studied assump-
tions and the existence of PRGs in NC0 with polynomial stretch. Brakerski et
al. [BDGM20a] followed by a sequence of works [GP20, BDGM20b, WW20],
show candidates for non-trivial exponentially efficient iO, called XiO, assuming
certain circular security assumptions. Plugging the XiO into the framework of
Lin et al. [LPST16], we obtain polynomially efficient iO, assuming addition-
ally (subexponential) security of the LWE problem. Brakerski et al. [BJK+18]
proposed a nontrivial exponentially efficient witness encryption. However, no
framework analogous to [LPST16] is known for witness encryption.

Importantly building WE without iO or MMaps but with a security reduction
to instance independent assumptions is a long-standing open problem.
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2 Preliminaries

Notation. We denote as A[i, j] the entry of matrix A in the ith row and jth col-
umn. When addressing the ith row of a matrix A we write A[i, ∗]. Analogically,
we address the jth column of a matrix A as A[∗, j]. We denote v> ∈ R1×n, the
transposition of v ∈ Rn×1. For brevity, we denote as [n] the vector [i]ni=1. By de-
fault we abbreviate row vectors R1×n as Rn. For a function f we write f([xi]

n
i=1)

instead of f(x1, . . . , xn). We denote any positive polynomial as poly(.). Finally,
we denote as negl(.) any negligible function. That is, for any positive polynomial
poly(.) there exists c ∈ N such that for all λ ≥ c we have |negl(λ)| ≤ 1

poly(λ) .

Circuits and Formulas. We give the notation and terminology for circuits.

Definition 1 (Circuit). A circuit C : Λη 7→ Λν , over the alphabet Λ is a
directed acyclic graph, where vertices are called gates and edges are called wires.
Gates are associated with a function f ∈ F from the family of functions F :
Λτ 7→ Λδ, where τ is the number of incoming wires called fan-in, and δ is the
number of outgoing wires called the fan-out of the gate. If a gate does not have
any incoming wires outgoing for another gate, such a gate is called an input
gate, and its incoming wires are called input wires. Each input wire is associated
with a variable xi indexed by i ∈ [η]. If a gate has outgoing wires which are not
incoming for any other gate, such gates are called output gates, and the outgoing
wires are called output wires. Any other gate (resp. wire) is called an internal
gate (resp. wire). We call the number of gates in a circuit C the size of the circuit
and denote it as |C|. Finally we access the jth symbol in the alphabet as Λ[j].

Definition 2 (Formula). A formula is a circuit C : Λη 7→ Λ over F arrange-
able to the form of a rooted tree. Equivalently each gate has fan-out at most one,
and each internal wire is input to only a single gate. We say that a formula is
read-once if every variable is assigned to only a single input wire.

Definition 3 (Satisfiability). Let C : Λη 7→ Λ be a circuit over an alphabet Λ
with η input variables and a single output wire. We define the circuit satisfiability
problem, given (C, v) decide whether there exists x ∈ Λη such that C(x) = v,
where v ∈ Λ is called the accepting symbol.

Due to the Cook-Levin Theorem, it is widely known that the satisfiability of
boolean formulas (SAT) is NP-complete.

Notation for Trees. Finally, in this paper, we represent formulas as trees. Here
we list the notation we use to operate on trees.

We treat a vertex g as an object with internal variables and methods. For a
vertex g, we define g.child(j) the method which on input an index j ∈ [τ ] outputs
the jth child of g. If g is an input gate, g.child(j) outputs null. If a gate is an
input gate, then g.wireVar(j) outputs the index i ∈ [η] of the variable assigned
to the jth incoming wire of the gate. By g.fan-in(), we denote the function that
outputs the number of incoming wires to that gate.
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Encryption Schemes and Ideal Cipher Model. We give our syntax for
symmetric encryption and recall the ideal cipher model [Sha49]. Recall that
the ideal cipher model and the random oracle model are equivalent [CPS08].
Moreover, the ideal cipher or the random permutation models are often used to
argue the security of dual-key ciphers for garbled circuit schemes [BHR12].

Definition 4 (Symmetric Key Encryption). Let λ be a security parameter
and let `sk, `ct, τ = poly(λ). An encryption scheme SKE = (Enc,Dec) consists
of an encryption algorithm Enc and decryption algorithm Dec with the following
syntax.

Enc([Kk]τk=1,msg): Takes as input secret keys [Kk]τk=1 and a message msg ∈
{0, 1}`sk , and outputs a ciphertext ct ∈ {0, 1}`ct .

Dec([Kk]τk=1, ct): This deterministic algorithm takes as input keys [Kk]τk=1 ∈
{0, 1}τ ·`sk and a ciphertext ct. The algorithm outputs msg.

(Perfect) Correctness: We say that SKE = (Enc,Dec) is correct, if for all se-
curity parameters λ and all `sk, `ct, τ = poly(λ), all keys [Kk]τk=1 ∈ {0, 1}τ ·`sk
and all messages msg ∈ {0, 1}`sk , the following holds.

Dec([Kk]τk=1,Enc([Kk]τk=1,msg)) = msg.

Ideal Cipher Model: We model SKE = (Enc,Dec) for all security parameters
λ, and all `sk, `ct, τ = poly(λ) as follows. On input a vector of binary strings

[Kk]τk=1 ∈ {0, 1}τ ·`sk and msg ∈ {0, 1}`sk to Enc the oracle chooses ct
$←

{0, 1}`ct , stores ([Kk]τk=1, ct, msg) for future calls and returns ct. On input
a set of strings ([Kk]τk=1, ct) ∈ {0, 1}τ ·`sk to Dec the oracle looks up for the
tuple ([Kk]τk=1, ct, msg) in its internal memory and returns msg if such
tuple is present, otherwise it chooses msg uniformly at random and stores
the query for a future call.

Remark 1. Representing the secret key as a vector serves only a notational pur-
pose, and can trivially be realized by setting a single key K = K1|| . . . ||Kτ where
|| denotes concatenation. In Section 3.2, we discuss potential instantiations from
block ciphers or key derivation functions.

Witness Encryption. We recall the definition of witness encryption introduced
by Garg, Gentry, Sahai, and Waters [GGSW13].

Definition 5 (Witness Encryption). A witness encryption scheme WE con-
sists of algorithms (Enc, Dec) with the following syntax.

Enc(λ, stmt,msg) : This PPT algorithm takes as input a security parameter λ,
a statement stmt and message msg and outputs a ciphertext ct.

Dec(stmt,wit, ct) : This deterministic algorithm takes as input a statement stmt,
a witness wit and a ciphertext ct, and outputs a message msg or ⊥.
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Correctness: We say that a witness encryption scheme WE = (Enc,Dec) is cor-
rect if for all languages L ∈ NP with witness relation R, all security parame-
ters λ ∈ N, all statements stmt ∈ L, all witnesses wit, s.t., R(stmt,wit) = 1,
and messages msg ∈M where M is the message space, we have

Pr[Dec(stmt,wit,Enc(λ, stmt,msg)) 6= msg] ≤ negl(λ).

Security: A witness encryption scheme WE = (Enc,Dec) is secure if for all
security parameters λ ∈ N, all languages L ∈ NP, all stmt 6∈ L and all PPT
adversaries A = (A1,A2), the advantage AdvWESec

A,WE (λ) is∣∣∣∣Pr

[
A2(ct, st) = b :

(msg0,msg1, st)← A1(stmt, λ);

b
$← {0, 1}, ct← Enc(λ, stmt,msgb)

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Lockable Obfuscation. As a building block, we use lockable obfuscation intro-
duced by Goyal, Koppula, and Waters [GKW17a], and independently by Wichs
and Zirdelis [WZ17].

Definition 6 (Lockable Obfuscation). Let C = {Cη,ν,ξ}η,ν,ξ∈N be a family of
circuits with η bit input, ν bit output and size ξ = |C|. A lockable obfuscation
scheme lockObf = (Obf,Eval) consists of an obfuscation algorithm Obf and an
evaluation algorithm Eval with the following syntax.

Obf(λ,C, lock): This PPT algorithm takes as input a security parameter λ ∈ N,
a circuit C ∈ Cη,ν,ξ, where η, ν, ξ = poly(λ), and a lock string lock ∈ {0, 1}ν .

The algorithm outputs an obfuscated circuit C̃.
Eval(C̃,x) : This deterministic algorithm takes as input an obfuscated circuit C̃

and input x ∈ {0, 1}η, and outputs 1 or ⊥.

Functionality: For all λ ∈ N, all η, ν, ξ, `sk = poly(λ), all C ∈ Cη,ν,ξ, all x ∈
{0, 1}η, and all lock ∈ {0, 1}ν , if C̃ ← Obf(λ,C, lock), then for C(x) = lock

Pr[Eval(C̃,x) = 1] ≥ 1− negl(λ),

and for C(x) 6= lock it holds that

Pr[Eval(C̃,x) 6= ⊥] ≤ negl(λ),

where the probability is over random coins of Obf.
Distributional Virtual Black-Box (DVBB) Security: For all λ ∈ N, all η,

ν, ξ, `sk = poly(λ), and for all PPT adversaries A = (A1,A2), there exists
a PPT simulator Sim, such that:

∣∣∣∣∣Pr

A2(C̃b, st) = b :

(C, st)← A1(λ), C ∈ Cη,ν,ξ,
b

$← {0, 1}, lock $← {0, 1}ν ,
C̃0 ← Obf(λ,C, lock),

C̃1 ← Sim(λ, η, ν, ξ)

− 1

2

∣∣∣∣∣ ≤ negl(λ).
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Learning With Errors. We recall the learning with errors assumption by
Regev [Reg05]. We use generalized LWE as in [BGV12], to capture LWE and
ring LWE at once. We extend the notation even further to manage multiple keys
within a single GLWE tuple.

Definition 7 (Generalized Learning With Errors). For a security param-
eter λ, let n = poly(λ) be an integer dimension, N = poly(λ) be a power of 2,
q = poly(λ) ≥ 2. Furthermore let R = Z[X]/(XN + 1) and Rq = R/qR, and let

X be a distribution over R. For all i ∈ [d] let ai
$← Rnq , si

$← Rnq and ei
$← X .

We define a Generalized Learning With Errors (GLWE) sample of a message

m ∈ Rq with respect to [si]
d
i=1, as GLWEX ,n,N,q([si]

d
i=1,m) = [−

∑d
i=1〈ai, si〉 +

ei+m, [ai]
d
i=1]. The GLWEX ,n,N,q problem is to distinguish the following two dis-

tributions: In the first distribution, one samples [b(j), [a
(j)
i ]di=1] uniformly from

Rn·d+1
q for j ∈ [poly(λ)]. In the second distribution one first draws [si]

d
i=1

$←
Rn·dq and then samples GLWEX ,n,N,q([si]

d
i=1, 0) = [b(j), [a

(j)
i ]di=1] ∈ Rn·d+1

q . The
GLWEX ,n,N,q assumption is that the probability of distinguishing the distributions
is at most negl(λ).

Definition 8 (LWE and RLWE samples). We denote a Learning With Er-
rors (LWE) sample as LWEX ,n,q(s,m) = GLWEX ,n,1,q(s,m), which is a special
case of a GLWE sample with N = 1. Similarly we denote a Ring-Learning with
Errors (RLWE) sample as RLWEX ,N,q(s,m) = GLWEX ,1,N,q(s,m) which is the
special case of an GLWE sample with n = 1.

Definition 9 (Decomposition Gadget). We call g`,B = [Bi−1]`i=1 ∈ N` for
some `, B ∈ N, the powers-of-B vector. We define the decomposition function
G−1B,q : Rq 7→ R`q, where ` = dlogB qe, that on input a ring element a ∈ Rq
outputs a vector y = [a1, . . . , a`] such that a =

∑`
i=1 ai · g[i].

3 Annihilating Fully Homomorphic Encryption

In this section, we introduce annihilating fully homomorphic encryption and
show a plausible candidate in the leveled setting. For clarity, we denote AFHE
keys/ciphertext with overline and symmetric keys/ciphertexts with an underline.

Definition 10 (Annihilating FHE). An annihilating fully homomorphic en-
cryption AFHE consists of algorithms (Setup,Enc,Eval,Dec) with the following
syntax.

Setup(λ, κ,K): This PPT algorithm takes as input a security parameter λ, a
number of keys κ ∈ poly(λ) and a set of tags indicating which keys are
annihilating K ⊆ [κ] × [κ] such that if (i, j) ∈ K, then (j, i) ∈ K. The
algorithm outputs a secret key sk, and an evaluation key ek.

Enc(sk, T ,msg): This PPT algorithm takes as input a secret key sk, a set of
tags T ⊆ [κ] and a message msg, and returns a ciphertext ct.
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Eval([cti]
m
i=1, ek, C): Given as input a set of ciphertexts [cti]

m
i=1, an evaluation

key ek and a circuit C, the algorithm outputs a ciphertext ct.
Dec(sk, ct): This deterministic algorithm given a secret key sk and a ciphertext

ct, outputs a message msg.

Correctness: Let λ ∈ N and κ = poly(λ). Let K ⊆ [κ]× [κ] be a set of annihi-
lating tags, such that if (i, j) ∈ K, then (j, i) ∈ K, and K = ([κ] × [κ]) \ K
be the set of non-annihilating tags. We say that AFHE = (Setup, Enc, Eval,
Dec) over some message space M is correct if for all circuits C with η in-
put variables over M, all [mi]

κ
i=1 ∈ Mκ, all K and K as defined above, all

T ⊆ [κ] such that η = |T | and for all (i, j) ∈ T we have (i, j) ∈ K, we have

Pr

Dec(sk, ct) = C([mi]i∈T ) :
(sk, ek)← Setup(λ, κ,K),

[cti ← Enc(sk, {i},mi)]i∈T ,

ct = Eval([cti]i∈T , ek, C)

 ≥ 1− negl(λ).

While cycle testers were first defined by Bishop, Hohenberger, and Waters
[BHW15], we depart from their correctness definition as it does not distinguish
between a cycle tester and a zero tester.

Definition 11 (Cycle Testing). We define an additional algorithm, CycleTest,
to have the following syntax.

CycleTest([ekk]nk=1, [ctk]nk=1): On input a vector of evaluation keys [ekk]nk=1 and
a vector of ciphertexts [ctk]nk=1, outputs a bit b ∈ {0, 1}.

We say that AFHE = (Setup,Enc,Eval,Dec,CycleTest) is an annihilating fully
homomorphic encryption scheme with an n-cycle tester for a function F : S 7→
M, where M denotes the message space and S the secret key space, if for
all λ ∈ N, κ = poly(λ), K ⊆ [κ] × [κ] such that if (i, j) ∈ K, then (j, i) ∈
K, all Tk ⊆ [κ], all [(skk, ekk) ← Setup(λ, κ,K)]nk=1, given that [ctk]nk=1 =
[Enc(skk, Tk,F(sk(k mod n)+1))]nk=1, we have

Pr[CycleTest([ekk]nk=1, [ctk]nk=1) = 1] ≥ 1− negl(λ),

and given that [ctk]nk=1 6= [Enc(skk, Tk,F(sk(k mod n)+1))]nk=1 we have

Pr[CycleTest([ekk]nk=1, [ctk]nk=1) = 1] ≤ negl(λ),

where the probability is over random coins of Setup and random coins of Enc.

3.1 How to Define Annihilation Security

We define IND-CPA security in the usual way, but we omit it here as we do not
use IND-CPA security explicitly in our application. However, for completeness,
we devise IND-CPA security to Appendix C.

Modeling that computing on annihilating tags “destroys” the plaintext turns
out to be complicated. We decided to model how annihilating encryption should
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interplay with ideal ciphers. We define two experiments. In the real experiment
RealExp, an adversary A is given pre-computed ciphertexts of an ideal cipher
SKE, and AFHE encryptions of SKE secret keys. In the ideal experiment IdealExp,
the adversary obtains uniformly random values instead of real AFHE encryptions,
and access to an oracle Eval. The Eval oracle representing the homomorphic eval-
uation of SKE.Dec gets as input a vector of AFHE ciphertexts and a SKE cipher-
text. If the AFHE ciphertexts are non-annihilating, then Eval queries SKE.Dec on
the plaintexts they encrypt. Otherwise, if the AFHE ciphertexts are annihilating,
then Eval queries SKE.Dec on random input. Note that this step represents an
erroneous evaluation of the SKE.Dec circuit that in practice should result in an
AFHE encryption of “rubish” when evaluated on annihilating ciphertexts. Before
running RealExp or IdealExp, the challenger D queries SKE.Enc on keys according
to a query specification QSpec. In the definition, we denote this set of queries to
SKE.Enc as QChal. The challenger is given a set of keys/messages [Kk]ρk=1 on
which it makes the queries. Furthermore, we give QSpec to A, as we only want
to hide the keys and not the relations between the SKE generated ciphertexts.
We register all queries to SKE due to the adversary’s activity in QA. Finally, we
say that AFHE is secure if, for all QSpec, and all sets of keys/messages [Kk]ρk=1

and annihilating tag specifications K, querying SKE by any PPT adversary A
on every query in QChal is equally (computationally close) probable in RealExp
as in IdealExp. In other words, A getting real encryptions should not be capable
of issuing queries to SKE that contradict the ideal model, and, in particular, are
queries on keys encrypted under annihilating tags.

Note that, when secret keys are encrypted under annihilating tags, but it
is possible to decrypt the keys, it is also possible to issue queries to SKE on
those keys. In IdealExp, this possibility is reduced only to a lucky guess. Hence
our definition already captures some notion of secrecy. It seems that a IND-CPA
secure AFHE would satisfy the secrecy requirement, but we do not know of any
formal reduction.

An important caveat of our definition is that we use the ideal cipher as a black
box and a circuit simultaneously. While such an implicit assumption is not a
“clean,” use of idealized objects in cryptography, we note that our work is not the
first to exploit such duality. Notably, Gentry [Gen09, Theorem 4.4.2.] implicitly
assumes a circuit representation of the random oracle that enables an adversary
to query the oracle on encrypted data. Bitansky et al. [BCCT13, BCC+17] use
an analogous assumption on generic groups for recursive proof composition.

Definition 12 (Ideal Cipher Annihilation Security). Let D be a PPT
algorithm that takes as input a set QSpec = [(Si, yi)]γi=1, where Si ⊂ [ρ] and
yi ∈ [ρ], and a set of keys [Kk]ρk=1, where Kk ∈ {0, 1}`sk . The algorithm D
outputs a set [cti]

γ
i=1, where cti ← SKE.Enc([Kk]k∈Si ,Kyi

) for all i ∈ [γ]. We
denote as QChal = [([Kk]k∈Si , Kyi

, cti)]
γ
i=1 the set of D’s queries to SKE.Enc.

Finally, by Q(RealExp(., ., ., .)) (resp. Q(IdealExp(., ., ., .))) we denote the set of
queries to SKE by A after running the real (resp. ideal) experiment.

We say that AFHE is secure, if for all λ ∈ N, all poly(λ) size sets QSpec as

described above, all κ ≤ ρ, all Kk
$← {0, 1}`sk for k ∈ [ρ], all K ⊆ [κ] × [κ], all
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T ∈ [γ], and all PPT adversaries A, the advantage AdvAnniSecA,AFHE(λ) is∣∣∣∣∣Pr

 ([cti]
γ
i=1,QChal)← D(QSpec, [Kk]ρk=1)

Q ∈ QA : QA ← Q(IdealExp(λ, [Kk]κk=1, [cti]
γ
i=1,K,QSpec, T ))

Q = ([Kk]k∈ST , KyT
, ctT )


−Pr

 ([cti]
γ
i=1,QChal)← D(QSpec, [Kk]ρk=1)

Q ∈ QA : QA ← Q(RealExp(λ, [Kk]κk=1, [cti]
γ
i=1,K,QSpec, T ))

Q = ([Kk]k∈ST , KyT
, ctT )

 ∣∣∣∣∣ ≤ negl(λ),

where the probability is over the random coins of AFHE.Setup and AFHE.Enc,
random choice of [Kk]ρk=1, and where the real experiment RealExp and ideal
experiment IdealExp are defined as follows.

RealExp(λ, [Kk]
κ
k=1, [cti]

γ
i=1,K,QSpec, T ): Takes as input a security parameter λ,

a set of keys [Kk]κk=1, a set of ciphertexts [cti]
γ
i=1, a set of annihilating tags

K ⊆ [κ]× [κ], the query specification QSpec and a target T ∈ [γ].

1. (sk, ek)← AFHE.Setup(λ, κ,K).
2. ctk ← AFHE.Enc(sk, {k},Kk) for all k ∈ [κ].
3. ASKE([cti]

γ
i=1, ek, [ctk]κk=1,QSpec, T ).

IdealExp(λ, [Kk]
κ
k=1, [cti]

γ
i=1,K,QSpec, T ): Takes as input a security parameter λ,

a set of keys [Kk]κk=1, a set of ciphertexts [cti]
γ
i=1, a set of annihilating tags

K ⊆ [κ]× [κ], the query specification QSpec and a target T ∈ [γ].

1. Initiate the evaluation table E and set sk
$← {0, 1}`sk .

2. For all k ∈ [κ]

– choose ctk
$← {0, 1}`ct ,

– store the tuple (ctk, Tk,Kk) in E, where Ti ← {k}.
3. ASKE,AFHE([cti]

γ
i=1, ek, [ctk]κk=1,QSpec, T ).

The SKE = (Enc,Dec) is modeled as an ideal cipher. Furthermore, the oracle

AFHE.Enc, upon receiving a query (T ,K), chooses ct
$← {0, 1}`ct and stores

(ct, T ,K) into E. AFHE.Dec on input sk and ct returns K if ct exists. And
finally AFHE.Eval is an oracle that is defined as follows.

Eval([cti]
τ
i=1, ct): Takes as input ciphertexts [cti]

τ
i=1 where cti ∈ {0, 1}`ct , and a

ciphertext ct ∈ {0, 1}`ct .
1. If ([cti]

τ
i=1, ct) was queried earlier, then return the corresponding ctout.

2. Choose a uniform ctout
$← {0, 1}`ct .

3. For each i ∈ [τ ] find the tuple (cti, Ti,Ki) in E.

4. If ∪τi=1Ti contains annihilating tags according to K, choose K ′i
$← {0, 1}`sk

for all i ∈ [τ ]. Otherwise set [K ′i]
τ
i=1 ← [Ki]

τ
i=1.

5. Call Kout ← SKE.Dec([K ′i]
τ
i=1, ct).

6. Set Tout = ∪τi=1Ti and store (ctout, Tout,Kout) in the E.
7. Store ([cti]

τ
i=1, ct, ctout) for a future call with the same inputs.

8. Return ctout.
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3.2 Candidate Annihilating (Leveled) FHE

In this section, we give our candidate AFHE in its basic version, i.e., without
optimizations. Our candidate is based on a multikey FHE variant of BGV/BFV
type FHE schemes [Bra12, BV11, BGV12, FV12].

Construction 1 ((Basic) Candidate Annihilating FHE) The candidate an-
nihilating fully homomorphic encryption AFHE = (Setup,Enc,Eval,Dec) is as
follows.

Setup(λ, κ,K): The algorithm takes as input the security parameter λ, a number
of keys κ ∈ poly(λ) and a set indicating which keys are annihilating K ⊆
[κ]× [κ].

# Select the Parameters:

1. Select error distributions Xek, Xct, Xsk, the degree N ∈ N and a modulus
q ∈ N that define the ring Rq.

2. Select B ∈ N defining the gadget vector gB,q, and ` = dlogB qe.
# Generate Secret Keys and Relinearization Keys:

3. For all k ∈ [κ] do:

3.1. Choose sk
$← Xn·κsk .

3.2. For all i ∈ [n] and l ∈ [`]:

3.2.1 Compute ek1,k[i, l]
$← GLWEXek,n,N,q(sk,g[l] · sk[i]).

3.3. For all all i, i′ ∈ [n] and l ∈ [`]:

3.3.1 Compute ek2,k[i, i′, l]
$← GLWEXek,n,N,q(sk,g[l] · sk[i] · sk[i′]).

# Generate Multikey Relinearization Keys:

4. Define the non-annihilating tags K = ([κ]× [κ]) \ K.
5. For all (k, j) ∈ K do:

5.1. Set mkk,j [i, i
′, l]

$← GLWEXek,n,N,q([sk, sj ],g[l] · sk[i] · sj [i′]) for all
i, i′ ∈ [n] and l ∈ [`].

# Output the Relinearization Keys and the Secret Keys:

6. Return ek = ([ekk,1, ekk,2]k∈[κ], [mkk,j ](k,j)∈K) and sk = [sk]κk=1.

Enc(sk, T ,msg): The algorithm takes as input the secret key sk = [sk]κk=1 ∈ Rκ·nq ,
and a message msg = m ∈ Rq.
1. Set c← GLWEXct,n,N,q([sk]k∈T ,m).
2. Output ct = (c, T ).

Dec(sk, ct): Takes as input the secret key sk = [sk]κk=1 ∈ Rκ·nq , and a ciphertext
ct = (c, T ).

1. Run ct
′ ← Lift(ct, [κ]), such that ct

′
= (c, [κ]), where c ∈ Rκ·n+1

q .
2. Output b〈c, [1, [sk]κk=1]〉e, where b.e is the appropriate rounding function.

Eval([ctj ]
η
j=1, ek, C): The algorithm takes as input ciphertexts [ctj ]

η
j=1, a evalua-

tion key ek and a circuit C. The algorithm evaluates ctout ← C(ct1, . . . , ctη),
by means of the following operations.
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Lift(ct, T ): The algorithm takes as input a ciphertext ct = (c, Tct), where
c = GLWEX ,n,N,q([sk]k∈Tct , .).
1. Parse c = [b, [ak]k∈Tct ]

>, where ak ∈ Rnq .

# Set Appropriate Entries of the Ciphertext to 0:

2. We set ĉ = [b̂, [âk]k∈T ∪Tct ], such that b̂ = b, and
– for all k ∈ T \ Tct we have âk = 0 ∈ Rnq , and
– for all k ∈ Tct, set âk = ak ∈ Rnq .

3. Return ctout = (ĉ, T ∪ Tct).

Add(ct, a): Takes as input ct = (c, T ), where c ∈ Rd·n+1
q and a ∈ Rq.

1. Return ctout = (c + [a,0], T ).

Add(ct1, ct2): Takes as input ciphertexts ct1 = (c1, T1), and ct2 = (c2, T2).
1. Run ct

′
1 ← Lift(ct1, T2) and ct

′
2 ← Lift(ct2, T1).

2. Parse ct
′
1 = (c′1, T1 ∪ T2) and ct

′
2 = (c′2, T1 ∪ T2).

3. Output ctout ← (c′1 + c′2, T1 ∪ T2).

Mul(ct, a): Takes as input ct = (c, T ), where c ∈ Rd·n+1
q and a ∈ Rq.

1. Return ctout ← (c · a, T ).

Mul(ct1, ct2, ek): Takes as input ct1 = (c1, T1), ct2 = (c2, T2) and the relin-
earization keys ek = ([ek1,k]κk=1, [ek2,k]κk=1, [mkk,j ]k,j∈K).

# Lift Both Ciphertexts:

1. Set T = T1 ∪ T2.
2. Run ĉt← Lift(ct1, T2) and ĉt

′ ← Lift(ct2, T1).

3. Parse ĉt = (ĉ, T ) and ĉt
′

= (ĉ′, T )

4. Parse ĉ = [b̂, [âk]k∈T ] and ĉ′ = [b̂′, [â′k]k∈T ].

# Lift the Relinearization Keys:

5. For all k ∈ T , i ∈ [n] and l ∈ [`] set êk1,k[i, l] ← Lift(ek1,k[i, l], T ).

6. For all k ∈ T , (i, i′) ∈ [n] and l ∈ [`] compute êk2,k[i, i′, l] ←
Lift(ek2,k[i, i′, l], T ).

7. For all (k, j) ∈ K all (i, i′) ∈ [n] and l ∈ [`] compute m̂kk,j [i, i
′, l]←

Lift(mkk,j [i, i
′, l], T ).

# Relinearize the (Extended) Ciphertext:

8. Compute

cout = [b̂ · b̂′,0] +
∑
k∈T

n∑
i=1

G−1B,q(b̂
′ · âk[i] + â′k[i] · b̂) · êk1,k[i, ∗]> (1)

+
∑
k∈T

n∑
i=1,
i′=1

G−1B,q(âk[i] · â′k[i′]) · êk2,k[i, i′, ∗]> (2)

+
∑
k,j∈T ,
k 6=j

n∑
i=1,
i′=1

G−1B,q(âk[i] · â′j [i′]) · m̂kk,j [i, i
′, ∗]> (3)

# Return the Relinearized Multikey Ciphertext:

9. Output ctout = (cout, T ).
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Remark 2 (On the full construction). Above, we describe only the basic cryp-
tosystem, and we omit many optimizations [GHS12, CS16]. To encode messages,
we may use both the most significant (MSB) and least significant bit (LSB) en-
codings. It is worth noting that our scheme is a special case of the BGV/BFV-type
cryptosystems, and security analysis and optimizations for those systems apply
in our case as well. We note that the basic scheme requires circular security
of GLWE samples to show IND-CPA security. For completeness, we discuss the
full scheme and recall the MSB and LSB encodings in Appendix C, where we
also give (a sketch of) the proof for IND-CPA security without the circularity
assumption.

Below we sketch the correctness of our candidate, omitting technicalities like
noise analysis. We give the full noise analysis of the scheme in Appendix B.
The correctness of linear operations follows from linear homomorphism of GLWE
samples. Hence we focus here on lifting and multiplication.

Theorem 1 (Correctness (Informal)). The scheme given by Construction 1
is correct.

Proof (Sketch). To argue correctness of lifting, let c = GLWEX ,n,N,q([sk]k∈Tct ,m)
be the input ciphertext. Note that ĉ is equivalent except we add ak = 0, for all
k ∈ T \ Tct. Hence, we have 〈ĉ, [1, [sk]T ∪Tct ]〉 = 〈c, [1, [sk]Tct ]〉.

Showing correctness of multiplication between two ciphertexts is slightly
more involved. Let us first recall how computing the Kronecker product of two
ciphertexts works. Let ĉ = [b̂, [âk]k∈T ] and ĉ′ = [b̂′, [â′k]k∈T ]. Let c̃ = ĉ⊗ ĉ′, be
the extended ciphertext. We have that ĉ is a correct ciphertext with respect to
s̃ = ŝ⊗ ŝ, where ŝ = [1, [sk]k∈T ]. To see this, note that from the mixed-product
property of the Kronecker product we have 〈c̃, s̃〉 = 〈ĉ⊗ ĉ′, ŝ⊗ ŝ〉 = 〈ĉ, ŝ〉 · 〈ĉ′, ŝ〉.

Now consider the relinearization step. Note that we can rewrite line (1).

[b̂ · b̂′,0] +
∑
k∈T

n∑
i=1

G−1B,q(b̂
′ · âk[i] + â′k[i] · b̂) · êk1,k[i, ∗]>

= GLWEX1,n,N,q(b̂ · b̂′ +
∑
k∈T

n∑
i=1

b̂′ · âk[i] + â′k[i] · b̂ · sk)

= GLWEX1,n,N,q(b̂ · b̂′ + b̂′ · 〈[âk]k∈T , [sk]k∈T 〉) + b̂ · 〈[â′k]k∈T , [sk]k∈T 〉) (4)

Then we have that the sum of the lines 2 and 3 of the relinearization step is equal
to a GLWEX2,3,n,N,q sample with some error distribution X2,3 of the message:∑

k∈T

n∑
i=1,
i′=1

âk[i] · â′k[i′] · sk[i] · sk[i′] +
∑
k,j∈T ,
k 6=j

n∑
i=1,
i′=1

âk[i] · â′j [i′] · sk[i] · sk[i′] (5)

=
∑
k,j∈T

n∑
i=1,
i′=1

âk[i] · â′j [i′] · sk[i] · sk[i′]

=〈[âk]k∈T ⊗ [âk]k∈T , [ŝk]k∈T ⊗ [ŝk]k∈T 〉 (6)
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Finally, from the sum of 4 and 6 we have

GLWEXout,n,N,q(b̂ · b̂′ + b̂′ · 〈[âk]k∈T , [sk]k∈T 〉) + b̂ · 〈[â′k]k∈T , [sk]k∈T 〉
+〈[âk]k∈T ⊗ [âk]k∈T , [ŝk]k∈T ⊗ [ŝk]k∈T 〉)

= GLWEXout,n,N,q(〈[b̂, [âk]k∈T ]⊗ [b̂′, [âk]k∈T ], [1, [ŝk]k∈T ]⊗ [1, [ŝk]k∈T ]〉)

= GLWEXout,n,N,q(〈ĉt⊗ ĉt
′
, ŝk⊗ ŝk〉)

= GLWEXout,n,N,q(〈ĉt, ŝk〉 · 〈ĉt
′
, ŝk〉)

= GLWEXout,n,N,q(m1 ·m2)

3.3 Circular Insecure Version

We recall a generic compiler, due to Goyal, Koppula, and Waters [GKW17a],
that compiles any (bit) encryption scheme to a circular insecure version.

Construction 2 (AFHE with an 1-Cycle Tester) Let AFHE = (Setup, Enc,
Eval, Dec) be an annihilating (leveled) fully homomorphic encryption scheme.
Denote as S the secret key space and as M the message space induced by the
execution of AFHE.Setup. Let lockObf = (Obf,Eval) be a lockable obfuscation
scheme. Let F be the function that takes as input (sk, lock) ∈ S×M, and returns
lock. We define an annihilating (leveled) fully homomorphic encryption with a
1-cycle tester for the function F, as ctAFHE = (Setup,Enc,Eval,Dec,CycleTest),
where Enc, Eval and Dec are as in AFHE, but ctAFHE.Setup and ctAFHE.CycleTest
are as follows.

ctAFHE.Setup(λ, κ,K): Takes as input the security parameter λ, the number of
key κ, and the set of annihilating tags K.
1. Run (ek

′
, sk
′
)← AFHE.Setup(λ, κ,K).

2. Choose lock
$←M.

3. Set C = AFHE.Dec(sk
′
, .) and run C̃ ← lockObf.Obf(λ,C, lock).

4. Return (ek, sk), where ek = (ek
′
, C̃) and sk = (sk

′
, lock).

ctAFHE.CycleTest(ek, ct): Takes an evaluation key ek and a ciphertext ct.
1. Parse ek = (ek

′
, C̃).

2. Return 1 if lockObf.Eval(C̃, ct) = 1. Otherwise return 0.

Remark 3 (Instantiating the Lockable Obfuscation). Aside from distributional
virtual black-box security, we require that the lockable obfuscation doesn’t in-
crease the adversary’s homomorphic capabilities. We can use the GGH15 [GGH15]
encoding based lockable obfuscator from [CVW18] to instantiate lockObf, and
we conjecture such lockObf does not help to break the ideal cipher annihilat-
ing security of our candidate. The high-level intuition for our conjecture is that
GGH15 encodings are designed to compute bounded length circuits in NC1, which
is enough for correctness but seems to stand in the way to compute more com-
plex circuits naturally (i.e., without resorting bootstrapping techniques). For
completeness, we recall the full construction of the lockable obfuscator from
[CVW18] and the proof that the transformed cryptosystem preserves IND-CPA
security in Appendix C. We devise a more in-depth discussion on the conjectured
security to the same section.
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3.4 On the Security of our Candidate.

IND-CPA security follows from the fact that the adversary obtains only GLWE
samples. The proof is a standard hybrid argument as in [BV11], for completeness,
we recall a sketch in Appendix C.

Let us discuss how our candidate “destroys” plaintexts on annihilating tags
for multiplication. Note that for annihilating tags k and j, we don’t get mkk,j . As
we can see by inspecting step 3 of relinearization in Equation 5 of the correctness
proof, without relinearizing the mkk,j part, the ciphertext decrypts to m + e −∑
k,j∈T ,k 6=j

∑n
i=1,i′=1 âk[i]·â′j [i′]·sk[i]·sk[i′], where m is the product of the inputs

and e the noise. In other words, the element d = −
∑
k,j∈T ,k 6=j

∑n
i=1,i′=1 âk[i] ·

â′j [i
′] · sk[i] · sk[i′] ∈ Rq is added to the plaintext where âk[i] and â′j [i

′] are drawn
uniformly from Rq. The observation that d is over Rq is crucial because this
means that the risk that the error term e will absorb d is small.

A potential attack vector is to relinearize the ciphertext while keeping the
noise within a reasonable bound. In other words, compute multiplication with-
out the relinearization keys. Such an attack would mean that the symmetric
versions of the BGV/BFV schemes are naturally multikey, and we could reduce
the large memory requirement in the full version of the scheme where we pub-
lish relinearization keys for each level of the circuit. Note that such an attack
could also be useful for relinearizing non-multikey BGV/BFV without the keys
encrypting the quadratic part of the secret keys. Another strategy is to com-
pute without relinearization and treat the resulting ciphertext as a ciphertext
with respect to an extended secret key. Such an attack does not seem to be a
viable option, as the ciphertext size grows exponentially. Finally, observe that
computing the relinearisation keys holding powers-of-B of sk[i] · sk[i′] from the
key material available requires at least to have correct multikey multiplication
in the first place.

Intuitively, even small errors in homomorphically evaluating the decryption
circuit of an ideal cipher candidate should significantly distort the result of the
computation. As we remarked in Section 2, the SKE can be realized by dividing,
bits of the key into chunks. In particular, we might instantiate the scheme for
fan-in τ = 2, as BlockCipher(K1||K2,msg′), where Ki ∈ {0, 1}128, msg′ = 0||msg
and msg ∈ {0, 1}128, and BlockCipher is for example AES256. We also note
that cascade constructions like BlockCipher(K1,BlockCipher(K2,msg)), as used
in [BHR12], seem to be viable options that allow us to instantiate BlockCipher
with AES128. However, we recall that cascades like this do not implement the
ideal cipher model as we defined in Section 2, due to meet in the middle attacks.

Finally, note that our candidate AFHE allows us to compute affine functions
on annihilating tags. While this fact contradicts the intuitive requirement that
no computation is allowed on annihilating tags, for our security Definition 12,
the inability to multiply should be enough. However, it is essential to keep that
in mind when instantiating SKE. In particular, one should be careful and avoid
instantiations like msg⊕KDF(K1)⊕KDF(K2) used in some implementations of
garbled circuits [LPS08], where KDF is a key derivation function.
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4 Our Witness Encryption Scheme

This section gives our main witness encryption scheme from Yao’s garbling tech-
nique and annihilating FHE. To reduce complexity, we first give definitions for
two subroutines in Subsection 4.1. In Subsection 4.2, we show our witness en-
cryption scheme. In Subsection 4.3, we prove the security of our scheme.

4.1 Subroutines

Below we define our procedures that encode and decode a formula. For this
purpose, for a gate g, we define a table g.encG[v1, . . . , vτ ], that stores ciphertexts
and is indexed by symbols associated with all τ incoming wires to that gate.

Construction 3 (Gate Encoding and Decoding) Let λ be a security pa-
rameter and Λ an alphabet. Let SKE = (Enc,Dec) be a symmetric encryption
scheme with key size `sk = poly(λ) and ciphertext size `ct = poly(λ). The
gate encoding algorithm EncodeGate and homomorphic gate decoding algorithm
HomDecodeGate are as follows.

EncodeGate(varLabels, g, [Kv
out]v∈Λ): Takes as input, an array of variable labels

varLabels, the gate g and the output wire labels [Kv
out]v∈Λ ∈ {0, 1}`sk·|Λ|.

1. Set τ ← g.fan-in().

# Choose the Labels of Internal Wires:

2. For each v ∈ Λ and each j ∈ [τ ]:
2.1. If g.child(j) = null, then set Kv

j ← varLabels[g.wireVar(j), v].

2.2. Otherwise, choose Kv
j

$← {0, 1}`sk uniformly random.
# Encode the Gate According to its Truth Table:

3. For each tuple (v1, . . . , vτ ) ∈ Λτ
3.1. Compute g.encG[v1, . . . , vτ ]← SKE.Enc([Kv1

1 , . . . ,K
vτ
τ ],Kvout

out ), where
vout ← g(v1, . . . , vτ ).

# Execute the Procedure Recursively:

4. For each j ∈ [τ ],
4.1. if g.child(j) 6= null, then run EncodeGate(g.child(j), [Kv

j ]v∈Λ).

HomDecodeGate(varLabels, ek, g,wit): Takes as input an array of AFHE cipher-
texts varLabels and an evaluation key ek, a gate g and a witness wit.
1. Set τ ← g.fan-in().
2. Set the values (v1, . . . , vτ ) of incoming wires to gate g according to wit.
# Obtain the Incoming Wire Labels According to the Witness:

3. For all j ∈ [τ ],
3.1. if g.child(j) = null, then ct

vj
j ← varLabels[g.wireVar(j), vj ].

3.2. otherwise, run ct
vj
j ← HomDecodeGate(varLabels, g.child(j),wit).

# Homomorphically Decrypt the Output Wire:

4. Compute

ctout ← AFHE.Eval([ct
vi
j ]τj=1, ek,SKE.Dec(. . . , g.encG[v1, . . . , vτ ])).

5. Return ctout.
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4.2 Construction of the Witness Encryption

In this section, we show our witness encryption construction. In a nutshell, we
encode a formula using the subroutines from Section 4.1. However, we set the
label representing the accepting symbol to a function of the AFHE secret key if
the message is 1. If the message is 0, then we choose the label of the accepting
symbol uniformly at random. Then we encrypt the variable labels using the
AFHE with a cycle tester. We set the tags of the AFHE ciphertexts such that
ciphertexts holding labels that represent the same variable but different values
are annihilating.

Construction 4 (Our Witness Encryption Scheme) Let λ be a security
parameter. Let SKE = (Enc,Dec) be a symmetric encryption scheme with key
size `sk = poly(λ) and ciphertext size `ct = poly(λ). Let AFHE = (Setup, Enc,
Eval, Dec, CycleTest) be an annihilating (leveled) homomorphic encryption with
a 1-cycle tester with respect to a function F. The witness encryption scheme
WE = (Enc,Dec) is as follows.

Enc(λ, stmt,msg): The algorithm takes as input a security parameter λ, a state-
ment stmt and a message msg ∈ {0, 1}`msg . We assume that the relation R
associated with stmt can be represented as a formula C of η variables, over
the alphabet Λ and with gout being the root of the formula.

# Set up the Annihilating Fully Homomorphic Encryption:

1. Set the number of all tags κ← |Λ| · η.
2. Define K such that for all i ∈ [η] and all j, j′ ∈ |Λ| such that j 6= j′, we

have the following

((i− 1) · |Λ|+ j, (i− 1) · |Λ|+ j′) ∈ K

3. Run (ek, sk)← AFHE.Setup(λ, κ,K).

# Create a Basic Witness Encryption of F(sk) or a Random String:

4. If msg = 1 set unlock
$← F(sk). Otherwise, choose unlock

$← {0, 1}`sk .
5. For each v ∈ Λ

5.1. if v is accepting then set Kv
out ← unlock,

5.2. otherwise choose Kv
out

$← {0, 1}`sk uniformly at random.
6. For all input variables i ∈ [η], and all v ∈ Λ:

6.1. Choose Kv
i ← {0, 1}`sk , and set varLabels[i, v]← Kv

i .
7. Run EncodeGate(gout, [K

v
out]v∈Λ, varLabels).

# Encrypt the Variable Labels:

8. For all v ∈ Λ and all variables i ∈ [η] compute

varLabels[i, v]← AFHE.Enc(sk, {(i− 1) · |Λ|+ j}, varLabels[i, v]),

where j ∈ [|Λ|] is such that v = Λ[j].

# Return the Ciphertext:

9. Return ct← (gout, varLabels, ek).
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Dec(stmt,wit, ct): The algorithm takes as input a statement stmt, a witness wit
and a ciphertext ct.
1. Parse ct = (gout, varLabels, ek, P̃ ).

# Homomorphically Decode the Basic Witness Encryption:

2. Compute ctunlock ← HomDecodeGate(varLabels, gout,wit).

# Run the Cycle Tester and Return the Result:

3. Run msg← AFHE.CycleTest(ek, ctunlock).
4. Return msg.

Remark 4 (Arbitrary Cycle Length). For simplicity, we described our witness
encryption scheme for a 1-cycle tester. Extending the construction of an n-cycle
tester is straightforward. It suffices to run n witness encryption in parallel. If
msg = 1, then unlocki in the ith scheme is set to F(sk(i mod n)+1).

Theorem 2 (Correctness). Let λ ∈ N denote the security parameter. Let stmt
be a formula C over alphabet Λ and with fan-in at most τ . Let SKE = (Enc,Dec)
be a perfectly correct symmetric encryption scheme with key size `sk = poly(λ)
and ciphertext size `ct = poly(λ). Let AFHE = (Setup, Enc, Eval, Dec, CycleTest)
be an annihilating (leveled) homomorphic encryption with a 1-cycle tester with
respect to a function F. Then WE for stmt is correct.

Furthermore, encryption works in time poly(λ, |C| · |Λ|τ ), decryption works
in time poly(λ, |C|) and the size of a ciphertext is |ct| = poly(λ, |C| · |Λ|τ ).

Proof. The decrypter is given as input a statement stmt and witness wit such
that R(stmt,wit) = 1 and a ciphertext ct. Let (v1, . . . , vτ ) be the values of
the incoming wires to a gate g according to the witness wit. Let us denote
as ct = SKE.Enc([K

vj
j ]τj=1,K

vout
out ) a ciphertext corresponding to an evaluation

of a gate. If the decrypter has cti = AFHE.Enc(sk, Ti,Kvi
i ) for i ∈ [τ ] where

T =
∑
i∈[τ ] Ti doesn’t contain annihilating tags, then from the fact that Kvout

out =

SKE.Dec([K
vj
j ]τj=1, ct) holds by the correctness of the SKE cryptosystem, we have

that AFHE.Enc(sk, T ,Kvout
out ) = AFHE.Eval([ci]

τ
i=1, ek,SKE.Dec(., ct)) holds with

probability 1 − negl(λ) from correctness of the AFHE cryptosystem. Hence the
decrypter obtains ctout = AFHE.Enc(sk, T , Kvout

out ), which is an encryption of the
label associated with g(v1, . . . , vτ ) = vout. In the case the decrypter has no access
to all labels, it recursively walks the tree ending up with an input gate and then
gradually decodes all necessary labels. The decrypter starts the recursion from
ctunlock = AFHE.Enc(sk, Twit, unlock). Note that each input variable is assigned
only a single value, and the ciphertexts of the corresponding keys are not annihi-
lating. Finally, from correctness of cycle tester we have that if unlock = sk then
AFHE.CycleTest(ek, ctunlock) = 1 with probability 1− negl(λ), and ⊥ otherwise.

For efficiency, the encrypter needs to invoke SKE.Enc |Λ|τ times per gate,
and the decrypter homomorphically computes SKE.Dec once per gate. Thus the
execution times are poly(λ, |C|·|Λ|τ ) and poly(λ, |C|) respectively. The ciphertext
ct contains labels of all gates in the formula where each gabled gate consists of
|Λ|τ ciphertexts, hence |ct| = poly(λ, |C| · |Λ|τ ). We omit including the number
of input labels separately, as their number is upper-bounded by the formula size.
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4.3 Security Analysis

In this section, we show the following theorem.

Theorem 3 (Security). Denote as λ ∈ N the security parameter and let stmt 6∈
L. Given that the SKE is modeled as an ideal cipher and AFHE is an Annihilating
FHE scheme that is secure in the sense of Definition 12, then WE given by
Construction 4 is a secure witness encryption scheme. In particular, for all PPT
adversaries A we have that AdvWESec

A,WE (λ) ≤ negl(λ).

Proof. We show the theorem by a sequence of hybrid experiments. In a nutshell,
we start with an experiment where we encrypt msg = 0 and choose unlock at
random. We will show that, given stmt 6∈ L, querying the SKE oracle by A on a
key/ciphertext tuple that would require SKE to return unlock is infeasible. Since,
SKE never returns unlock, we may as well set unlock to F(sk) thus encrypting
msg = 1. We denote as Hj the event that the adversary guesses the bit b in
Hybrid j. Formally the proof goes as follows.

Hybrid 0. This is a witness encryption scheme as in Construction 4 encrypting
the message msg = 0. Note that in this case, unlock and all other labels are
chosen uniformly at random.

Hybrid 1. This hybrid is identical to Hybrid 0, except that we abort the
experiment if A queries SKE.Dec on (K1, . . . ,Kτ , ctout) ∈ {0, 1}τ ·`sk+`ct such
that (K1, . . . ,Kτ , ctout, unlock) is in QChal, or A queries SKE.Enc on (K1, . . . ,
Kτ , unlock).

Claim. Given that stmt 6∈ L and AFHE satisfies the security given by Defi-
nition 12, Hybrid 1 is identical to Hybrid 0. We have that

∣∣Pr[H0]− Pr[H1]
∣∣ ≤ q2

2`ct
+

q2

2`ct
+

q

2`sk
+

q2

2`sk
+ AdvAnniSecA,AFHE(λ).

Proof. From Definition 12, we have that the probability of querying the
SKE oracle on a particular input is close to the probability of querying it
in a system, where the annihilating FHE is ideal. In particular, we threat
Hybrid 1 as the RealExp from Definition 12. Below we show that in IdealExp,
the probability that A issues the queries related to the lock value is infeasible
given stmt 6∈ L. Thus, if issuing such a query would be feasible in RealExp,
we could use such an adversary to break the security of AFHE.
Let us consider the IdealExp from the Definition 12. Assume that A queries
SKE directly or due to the Eval oracle, on a tuple related to unlock. Let
us call this query the unlock query. In IdealExp, we can build an extractor
Ext that, upon receiving the unlock query, extracts a valid witness from the
registered oracle calls, thus contradicting that stmt 6∈ L.
The extractor Ext initializes the oracles SKE and AFHE, and initiates E . Then
Ext computes all ciphertexts in the WE scheme as in Hybrid 0. Note that
QSpec represents the query specification and QChal the set of queries to SKE.
Ext also sets up a table QA to register queries to SKE due to A’s activity. For
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the ciphertexts of the AFHE scheme, Ext chooses varLabels[i, v]
$← {0, 1}`ct

uniformly at random for all i ∈ [η] and all v ∈ Λ. In particular, we have
κ = η · |Λ| and for each i ∈ [η] and v ∈ Λ we denote k = i · |Λ| + j,
where j ∈ [|Λ|] is such that v = Λ[j] and we set the ciphertexts from the
experiment as ctk = varLabels[i, v]. For each k ∈ [κ] the extractor stores each
(ctk,Kk,Kk) in E as specified in IdealExp.
We will first rule out collisions and lucky guesses for the oracles. Let q denote
all queries that A and the challenger make to the SKE and AFHE oracles.
– In case there is a pair of queries to SKE.Enc, which outputs the same

ct, the extractor aborts and returns ⊥. This event may happen with
probability at most q2/2`ct .

– If there is a collision when querying the oracle AFHE and writing to E ,
then the extractor aborts and returns ⊥. In other words, if the AFHE.Enc
or AFHE.Eval oracle try to store a ct into E , but E already contains ct.
This event may happen with probability at most q2/2`ct .

– If A makes a query to AFHE.Dec that includes sk ∈ {0, 1}`sk , then Ext
aborts. This event may happen with probability at most q/2`sk .

– If A makes a direct query to SKE or AFHE on an input x such that x
contains a substring K ∈ {0, 1}`sk and K can be found in QChal, then Ext
aborts. Since A does not get any information on the keys stored in QChal,
this event may happen with probability at most q2/2`sk . Note that we
upperbound ρ · q ≤ q2, where ρ ∈ N denotes the number of all SKE keys
used in WE.

Now we have that, for all keys K ∈ {0, 1}`sk that appear in the QA table,
there must be a corresponding entry in E since we ruled out the possibility
of A making a direct query that includes K to SKE. Furthermore, all these
values were established in the Eval oracle, as we ruled out the possibility of
A to luckily guessing them when querying AFHE.Enc or obtaining them from
AFHE.Dec.
Now suppose that A queries Eval on ([ct

in
i ]τi=1, ctout), and let [T in

i ,K
in
i ]τi=1 be

the tags and keys corresponding to the ciphertexts [ct
in
i ]τi=1. Denote Twit =

∪τi=1T in
i and suppose Twit does not contain annihilating tags. Finally, sup-

pose that the tuple (K in
1 , . . . ,K

in
τ , ctout, unlock) is in the QChal table. In other

words, the query requires the ideal cipher to return unlock. In this case, the
extractor Ext builds a witness wit by setting its ith variable to wit[i]← Λ[j],
where j is such that (i − 1) · |Λ| + j ∈ Twit. Note that due to the fact that
all indexes in Twit are not annihilating, there is no other j′ 6= j such that
(i− 1) · |Λ|+ j′ ∈ Twit, and so each variable i ∈ [η] in the formula is assigned
a unique value.
Since we ruled out lucky guesses and collisions, for each K in

i where i ∈ [τ ]

there must be an entry ([Kj ]
τ
j=1, ct,K

in
i ) in QA, unless ct

in
i is given to A

as input. From correctness of the WE scheme, i.e., the way ct
in
i is con-

structed, we have that the values (v1, . . . , vτ , vin) ∈ Λ associated with the
keys (K1, . . . ,Kτ ,K

in
i ) satisfy g(v1, . . . , vτ ) = vin if K in

i represents an inter-

nal wire of the formula. If K in
i represents an input wire, i.e.,ct

in
i is given to
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A as input, then the corresponding variable in wit is set to the value the key
represents. We follow this reasoning recursively until we end up with input
wires.

Consistency of the witness, i.e., that all input wires are assigned the same
value, follows, again, from the fact that we ruled out random guesses. Note
that having an inconsistent assignment, we would end up the recursion with
at least two keys that represent two input wires with the same variable but
different value. Since each invocation of Eval includes the corresponding tags
into the output set, at some point in the computation, A must have queried
the Eval oracle on annihilating tags. Without loss of generality, assume it is
the lock query. In this case, Eval chooses the keys at random, but it might
have happened that the keys are equal to K in

1 , . . . ,K
in
τ . However, we have

already ruled out such an event.

Hybrid 2. This hybrid is identical to Hybrid 1 except we encrypt the message
msg = 1. In particular the unlock is set to F(sk).

Since in Hybrid 1 we ruled out queries to the ideal cipher that would
require the oracle to return unlock, from an adversaries perspective Hybrid
2 is identical to Hybrid 1. In particular, we have that

Pr[H1] = Pr[H2].

Finally, we have that the difference between the probabilities of distinguishing
b in Hybrid 0 and Hybrid 2 is a negligible function, given that AFHE satisfies
Definition 12 and `ct, `sk, `ct, `sk = poly(λ).

5 Conclusions and Future Directions

We introduce a construction for witness encryption, albeit requiring a strong
assumption that involves idealized primitives. Nevertheless, we believe that our
novel design paradigm that departs the usual iO or MMap’s based constructions
might lead to a better understanding of witness encryption and perhaps even
practical instantiations.

Crucially, our construction of AFHE is only conjectured to satisfy the needed
security. However, it seems that a class of attacks on our candidate may lead to
interesting techniques useful to optimize some existing schemes. Nevertheless, a
natural open question is whether one can show our construction’s security under
possibly novel but falsifiable and instance independent assumptions.

An exciting part of our construction is that we exploit the fact that the
annihilating fully homomorphic scheme is circularly insecure. To the best of our
knowledge, our work shows the first instance that circular insecure schemes are
useful building blocks. We hope that our work will motivate further study of
circular insecure systems from a protocol designer’s perspective, instead only
from the theoretical perspective.
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Appendices

A Basic Witness Encryption Scheme from Yao’s Garbling
Technique

This section defines the basic witness encryption scheme for read-once formu-
las built only from Yao’s garbled circuits. We can instantiate the construction
from symmetric primitives. While the construction itself is not very useful, as
it works only for read-once formulas, the analysis may serve as an additional
sanity check for our main witness encryption candidate. The witness encryption
uses gate encoding algorithms as given by Construction 3, but, since we do not
use annihilating FHE, we need to modify the gate decoding algorithm.

Construction 5 (Gate Encoding and Decoding) Let λ be a security pa-
rameter and Λ an alphabet. Let SKE = (Enc,Dec) be a symmetric encryption
scheme with key size `sk = poly(λ) and ciphertext size `ct = poly(λ). We define
the gate encoding EncodeGate as in Construction 3. The gate decoding algorithm
DecodeGate is as follows.

DecodeGate(varLabels, g,wit): The algorithm takes as input an array of variable
labels varLabels, a gate g and the witness wit. Let (v1, . . . , vτ ), be the values
of the input wires of g according to wit.
1. Set τ ← g.fan-in().
2. Set the values (v1, . . . , vτ ) of incoming wires to gate g according to the

witness wit.

# Obtain the Incoming Wire Labels According to the Witness:

3. For all j ∈ [τ ],
3.1. if g.child(j) = null, then K

vj
j ← varLabels[g.wireVar(j), vj ].

3.2. otherwise, run K
vj
j ← DecodeGate(varLabels, g.child(j),wit).

# Decrypt the Output Wire:

4. Compute Kout ← SKE.Dec(Kv1
1 , . . . ,K

vτ
τ ; g.encG[v1, . . . , vτ ]).

5. Return Kout.

Now we are ready to specify the basic witness encryption scheme.

Construction 6 (Basic Witness Encryption) Let λ be a security parame-
ter. Let SKE = (Enc,Dec) be a symmetric encryption scheme with key size
`sk = poly(λ) and ciphertext size `ct = poly(λ). The witness encryption scheme
WE = (Enc,Dec) is as follows.

Enc(λ, stmt,msg): The algorithm takes as input a security parameter λ, state-
ment stmt and message msg. We assume that the relation R associated with
stmt can be represented as a formula over the alphabet Λ of η variables and
with gout being the root of the formula.

# Set Labels for the Output Wire of the Formula:

1. For each v ∈ Λ
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1.1. if v is accepting then set Kv
out ← msg,

1.2. otherwise choose Kv
out

$← {0, 1}`sk uniformly at random.

# Choose the Labels for Input Variables:

2. For all input variables i ∈ [η], and all v ∈ Λ:
2.1. Choose Kv

i ← {0, 1}`sk , and set varLabels[i, v]← Kv
i .

# Run Gate Encoding Starting from the Output Gate:

3. Run EncodeGate(gout, [K
v
out]v∈Λ, varLabels).

# Return the Encoded Formula and the Variable Labels:

4. Return ct← (gout, varLabels).

Dec(stmt,wit, ct): The algorithm takes as input the statement stmt, witness wit,
and ciphertext ct. Remind that the ciphertext ct is parsed as a formula,
representing the relation R associated with stmt, with gout be the root of that
formula.

# Run Gate Decoding Starting from the Output Gate:

1. Compute msg← DecodeGate(gout,wit).
2. Return msg.

Theorem 4 (Correctness). Let stmt be a formula C over alphabet Λ and with
fan-in τ . If SKE = (Enc,Dec) is a perfectly correct encryption scheme parameter-
ized by `sk and `ct, then WE for stmt is perfectly correct. Furthermore, for every
security parameter λ, every message msg ∈ {0, 1}`sk , ct←WE.Enc(λ, stmt,msg)
works in time poly(λ) · |C| · |Λ|τ , WE.Dec(stmt,wit, ct) works in time poly(λ) · |C|
and |ct| = `ct · |C| · |Λ|τ .

Proof. The decrypter is given as input a statement stmt and witness wit such
that R(stmt,wit) = 1 and a ciphertext ct. Let (v1, . . . , vτ ) be the values of the
incoming wires to a gate g according to the witness wit. Assume the decrypter
has all the labels (Kv1

1 , . . . ,K
vτ
τ ) corresponding to (v1, . . . , vτ ) gate g. Then the

following

Kvout
out = SKE.Dec(Kv1

1 , . . . ,K
vτ
τ ,SKE.Enc(K

v1
1 , . . . ,K

vτ
τ ,K

vout
out ))

holds by the correctness of the SKE cryptosystem. Hence the decrypter obtains
Kvout

out , which is the label associated with g(v1, . . . , vτ ) = vout. In the case the
decrypter has no access to all labels, it recursively walks the tree ending up with
an input gate and then gradually decodes all necessary labels. Note that the
recursion must end, since the ciphertext of the witness encryption includes all
labels for all input wires.

For efficiency, it is easy to see that the encrypter needs to invoke SKE.Enc |Λ|τ
times per gate in the circuit and the decrypter needs to invoke SKE.Dec once per
gate, thus the execution times are poly(λ) · |C| · |Λ|τ and poly(λ) · |C| respectively.
Furthermore, the ciphertext ct contains encodings of all gates in the circuit where
each gate encoding consists of |Λ|τ ciphertexts, hence |ct| = `ct · |C| · |Λ|τ . Note
that we omit including the input labels, size these are upper-bounded by the
circuit size.
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A.1 Security Analysis

First, we recall the definition of extractable witness encryption introduced by
Goldwasser et al. [GKP+13].

Definition 13 (Extractable Security). A witness encryption scheme for lan-
guage L ∈ NP is extractable secure if for all PPT adversaries A, and all poly-
nomials q there exists a polynomial-time extractor Ext and a polynomial p, such
that for all auxiliary inputs aux and for all stmt ∈ {0, 1}∗, the following holds:

Pr

[
A(stmt, ct, aux) = msg :

msg
$← {0, 1};

ct← Enc(λ, stmt,msg)

]
≥ 1/2 + 1/q(|stmt|)

=⇒ Pr[Ext(stmt, aux) = wit : (stmt,wit) ∈ R] ≥ 1/p(|stmt|)

Theorem 5 (Extractable Security). Let L be a language recognized by a
read-once formula C over the alphabet Λ. Given that SKE = (Enc,Dec) is modeled
as an ideal cipher with parameters `ct and `sk, the witness encryption scheme
WE = (Enc,Dec) for C is extractable secure against every PPT adversary A

with extraction error at most q2

2`ct
+ q2

2
`sk

, where q is the number of all queries to

SKE.

Proof. Let A be a PPT adversary against the extractable security property of
the WE = (Enc,Dec) scheme. We will start the proof by describing an extractor
Ext, which is given as input a statement stmt and exploits A to compute the
witness that stmt ∈ L. First the extractor represents stmt as a read-once formula
C over alphabet Λ such that C(stmt, .) = 1 iff there exists a witness wit testifying
stmt ∈ L. Without loss of generality, assume all gates of the formula C have
fan-in τ .

The extractor executes the WE.Enc(stmt,msg) algorithm according to speci-
fication. Ext registers the association between the labels it chooses and the values
of the wires for each gate g it encodes. We will denote this register in the QChal

table. Ext sets up also a challenge table to register A’s queries. Let ctchal be
the witness encryption ciphertext computed by Ext. The extractor Ext runs the
adversary A on input stmt and ctchal.

A might query the SKE oracle. If due to any of A’s queries, there is a collision

in SKE, then Ext aborts. This event may happen with probability at most q2

2`ct
.

If A makes a direct query to SKE or AFHE on an input x such that x contains a
substring K ∈ {0, 1}`sk and K can be found in QChal but isn’t in QA yet, then Ext
aborts. In other words, if A guesses a key. Since A does not get any information
on the keys stored in QChal, this event may happen with probability at most
q2/2`sk . Note that we upperbound ρ · q ≤ q2, where ρ ∈ N denotes the number
of all SKE keys used in WE. When A queries the oracle SKE.Dec on input x, Ext
does the following.

– If x is not of the form (K1, . . . , Kτ , ct) ∈ {0, 1}τ ·`sk+`ct , or x = (K1, . . . ,
Kτ , ct) ∈ {0, 1}τ ·`sk+`ct but x is not in the QChal table then Ext ignores the
query.
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– Otherwise, Ext looks up QChal for the corresponding tuple K1, . . . , Kτ , ct,
msg) and stores it in the QA table. Furthermore, for each j ∈ [τ ], Ext checks
whether rj was returned by a previous query to SKE.Dec. Concretely, Ext
checks whether there is a tuple in the QA table containing rj .

• If Kj was in the QA table, then
* If Kj is a leave, Ext stops the recursion and proceeds further.
* If Kj is not a leave, Ext runs the same procedure recursively for Kj .

• If Kj was not in the QA table, then Ext fails at extracting the witness
and aborts. Since the only way A may learn any information about Kj

is either obtaining it from Ext or from a previous SKE oracle query,
Kj must have been guessed by A. However, we already ruled out the
possibility.

Assume now that Ext did not abort the experiment and A returns the message
msg. Ext will now check whether msg was returned by the SKE.Dec oracle, as
described above, and simultaneously reconstruct the witness wit. Since Ext did
not abort previously, we have that each label was either returned by SKE.Dec or is
a leave. The extractor will run the following procedure for each gate recursively.
Suppose Ext starts with an output wire Kout. Ext looks up the QA table for
tuples (., . . . , ., ct,Kout). If there are multiple tuples of this form, Ext chooses
one of them at random. Denote the chosen tuple as (Kv1

1 , . . . ,K
vτ
τ , ct,Kout)

which corresponds to gate g. Now, Ext finds the wire values (v1, . . . , vτ ) and vout
corresponding to the label and sets the part of the witness that is the values of
g’s wires to the extracted wire values. Note, that from correctness of WE.Dec we
have g(v1, . . . , vτ ) = vout, where g is the function corresponding to the input and
output wires. Next, Ext repeats this procedure for every Kv1

1 , . . . , Kvτ
τ except

any of the labels correspond to input wires. Finally, Ext will start extraction
from the output wire msg, which corresponds to the value accept and ends the
execution upon reaching the input wires.

To sum up, the extractor Ext extracts a valid witness wit with probability at

least 1− ( q2

2`ct
+ q2

2
`sk

).

Remark 5. Note that the security of witness encryption as given by Definition 13,
reduces the message to only a single bit. However, from the proof of Theorem 5,
it is immediate that the definition can be extended to messages from the entire
domain of `ct.

B Full Correctness Analysis of the Annihilating (Leveled)
Fully Homomorphic Encryption Candidate

In this section we give the analysis of the homomorphic operations that consti-
tute Theorem 1. We do so by showing that each operation is correct. We denote
||a||∞ = maxi |a[i]| the infinity norm of a vector a ∈ Rn, where |x| denotes the
absolute value of x ∈ R. For polynomials of degree N in R, we compute the ∞-
norm by taking its coefficient vector. First we recall the definition of B-Bounded
distributions, and introduce our notation for phase and error.
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Definition 14 (B-Bounded Distributions). A distribution ensemble {XB}B∈N
is called B-Bounded if

Pr
e←XB

[||e||∞ ≥ B] ≤ negl(λ).

Definition 15 (Phase and Error for GLWE samples). We define the phase
of a sample c = GLWEX ,n,N,q([si]

d
i=1,m), as Phase(c) = [1, [s]di=1] ·c>. We define

the error of a GLWE sample as Error(c) = Phase(c) − m. Furthermore, we note
that if X is B-bounded, then ||Error(c)||∞ ≤ B.

Lemma 1 (Linear Homomorphism of GLWE samples). Let us define c =
GLWEXBc ,n,N,q

([si]
d
i=1,mc) and d = GLWEXBd

,n,N,q([si]
d
i=1,md), where XBc and

XBd
is respectively a Bc and Bd-Bounded distribution. If cout ← c + d, then

cout ∈ GLWEXB ,n,N,q([s]di=1,m), where m = mc + md, and XB is a B-Bounded
distribution with B ≤ Bc + Bd. Furthermore, let d ∈ RBd

where Bd ∈ N. If
cout ← c · d, then cout ∈ GLWEXB ,n,N,q([s]di=1,mc · d), and XB is a B-Bounded
distribution with B ≤ N ·Bc · (Bd − 1).

Proof. Denote c = [bc,ac] ∈ R1+n·d
q , where bc = −〈ac, [si]i=1〉 + mc + ec and

d = [bd,ad] ∈ R1+n·d
q , where bd = −〈ad, [si]i=1〉 + md + ed. Then we have

cout = [b,a] = c + d = [bc + bd, (ac + ad)], and b = −〈a, [si]i=1〉+ m + e, where
m = mc + md and e = ec + ed. Thus, we have that Error(cout) = ec + ed, and
||Error(cout)||∞ ≤ B ≤ ||ec + ed||∞ = ||ec||∞ + ||ed||∞ ≤ Bc + Bd. For d ∈ RBd

and cout = c ·d = [bd,ad], where ad = ad ·d and bd = −〈ad, [si]
d
i=1〉+mc ·d+ec ·d.

Thus ||Error(cout)||∞ ≤ B ≤ ||ec · d||∞ ≤ N ·Bc · (Bd − 1).

Lemma 2 (Correctness of Multiplication). Let ĉt = (ĉ, T ) and ĉt
′

= (ĉ′, T )
where c = GLWEXB ,n,N,q(s,m) and c′ = GLWEXB′ ,n,N,q(s,m

′), where XB and
XB′ are B and B′ bounded distributions respectively. Let BG−1 be the bound on
the output elements of the decomposition function G−1B,q and denote ` = dlogB qe.
Let Xek be the Bek distribution of the GLWE sample in the relinearization key

ek. Let ctout be the outcome of multiplying ĉt and ĉt
′
, where ct = (cout, T ). Then

cout ∈ GLWEXBout,n,N,q
(s,mout), where mout = mc ·md and the bound is

Bout ≤ B⊗ +N ·BG−1 ·Bek · (` · n · |T | · (1 + n+ n · |T |))

where B⊗ ≤ N · (||m||∞ ·B′ + ||m′||∞ ·B +B ·B′).

Proof. Let us first recall how computing the Kronecker product of two cipher-
texts works. Let ĉ = [b̂, [âk]k∈T ] and ĉ′ = [b̂′, [â′k]k∈T ]. Let c̃ = ĉ ⊗ ĉ′, be
the extended ciphertext. We have that ĉ is a correct ciphertext with respect to
s̃ = ŝ⊗ ŝ, where ŝ = [1, [sk]k∈T ]. To see this, note that from the mixed-product
property of the Kronecker product we have 〈c̃, s̃〉 = 〈ĉ⊗ĉ′, ŝ⊗ŝ〉 = 〈ĉ, ŝ〉·〈ĉ′, ŝ〉 =
(m + e) · (m′ + e′). Hence, we can see that

Error(ĉ⊗ ĉ′) = ||m · e′ + m′ · e + e · e′||∞ ≤ B⊗
≤ N · (||m||∞ ·B′ + ||m′||∞ ·B +B ·B′).
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Now consider the relinearization step. Note that we can rewrite line (1).

∑
k∈T

n∑
i=1

G−1B,q(b̂
′ · âk[i] + â′k[i] · b̂) · êk1,k[i, ∗]>

= GLWEX1,n,N,q(b̂ · b̂′ +
∑
k∈T

n∑
i=1

b̂′ · âk[i] + â′k[i] · b̂ · sk)

= GLWEX1,n,N,q(b̂ · b̂′ + b̂′ · 〈[âk]k∈T , [sk]k∈T 〉) + b̂ · 〈[â′k]k∈T , [sk]k∈T 〉) (7)

Then we have that the sum of the lines 2 and 3 of the relinearization step is equal
to a GLWEX2,3,n,N,q sample with some error distribution X2,3 of the message:

∑
k∈T

n∑
i=1,
i′=1

âk[i] · â′k[i′] · sk[i] · sk[i′] +
∑
k,j∈T ,
k 6=j

n∑
i=1,
i′=1

âk[i] · â′j [i′] · sk[i] · sk[i′]

=
∑
k,j∈T

n∑
i=1,
i′=1

âk[i] · â′j [i′] · sk[i] · sk[i′]

=〈[âk]k∈T ⊗ [âk]k∈T , [ŝk]k∈T ⊗ [ŝk]k∈T 〉 (8)

Finally, from the sum of 7 and 8 we have

GLWEXout,n,N,q(b̂ · b̂′ + b̂′ · 〈[âk]k∈T , [sk]k∈T 〉) + b̂ · 〈[â′k]k∈T , [sk]k∈T 〉
+〈[âk]k∈T ⊗ [âk]k∈T , [ŝk]k∈T ⊗ [ŝk]k∈T 〉)

= GLWEXout,n,N,q(〈[b̂, [âk]k∈T ]⊗ [b̂′, [âk]k∈T ], [1, [ŝk]k∈T ]⊗ [1, [ŝk]k∈T ]〉)

= GLWEXout,n,N,q(〈ĉt⊗ ĉt
′
, ŝk⊗ ŝk〉)

= GLWEXout,n,N,q(〈ĉt, ŝk〉 · 〈ĉt
′
, ŝk〉)

= GLWEXout,n,N,q(m1 ·m2)

Note that the relinearization consists of linear operations on GLWE ciphertexts,
so the error bound follows from counting the operations. Finally, we have that
Xout is a Bout bounded distribution where

Bout ≤ B⊗ +N ·BG−1 ·Bek · (` · n · |T | · (1 + n+ n · |T |)).

C Annihilating FHE: The Full Scheme

Let us first note that when tags are non-annihilating, particularly for K = ∅,
our scheme is equivalent to the basic version of the BGV scheme. In particular,
when all tags are non-annihilating, then we can rewrite the GLWE samples as
GLWEX ,κ·n,N,q(s, .) where s = [sk]κk=1 ∈ Rκ·nq instead of GLWEX ,n,N,q([sk]κk=1, .)
as in the protocol. In other words a multikey GLWE sample is equivalent to a
“classic” GLWE sample, with a higher dimension n′ = κ · n. The change is only
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notational. Furthermore, we may think of the multikey relinearisation keys mk as
a part of the BGV relinearisation key ek2,k in the single key mode. Thus, the only
real difference between BGV/BFV-type cryptosystems and our multikey version
is that we do not publish certain parts of the relinearization key and use only a
fraction of the secret key for encryption. Otherwise, the analysis and numerous
optimizations for BGV/BFV-like cryptosystems also apply to our scheme. We
refer to the work of Costache and Smart [CS16] for an excellent comparison of
different variants of BGV/BFV-type cryptosystems.

The full scheme is as follows. The Setup algorithm takes as input additionally
the level L. For each level h ∈ [L] we generate a moduli qh where qh ≥ gh−1, and

independent secret keys s
(h)
k

$← Rn·κqh . As for the relinearization keys, we encrypt
the keys of level h under keys of level h − 1. Specifically, we modify steps 3 to
5.1 of the Setup is as follows:

3. For all k ∈ [κ] and h ∈ [L− 1] do:

3.1. Choose the secret keys as described above (for all levels h ∈ [L]).
3.2. For all i ∈ [n] and l ∈ [`] compute

ek1,k[i, l, h]
$← GLWEXek,n,N,qh(s

(h)
k ,g[l] · s(h+1)

k [i]).

3.3. For all i, i′ ∈ [n] and l ∈ [`] compute

ek2,k[i, i′, l, h]
$← GLWEXek,n,N,qh(s

(h)
k ,g[l] · s(h+1)

k [i] · s(h+1)
k [i′]).

4. Define the non-annihilating tags K = ([κ]× [κ]) \ K.
5. For all (k, j) ∈ K do:

5.1. For all i, i′ ∈ [n] and l ∈ [`] set

mkk,j [i, i
′, l]

$← GLWEXek,n,N,qh([s
(h)
k , s

(h)
j ],g[l] · s(h+1)

k [i] · s(h+1)
j [i′]).

To encrypt a message, we use the secret key at level L. The addition of two
ciphertexts at the same level is done as in the basic scheme. When multiplying
ciphertexts at a level h, we obtain a ciphertext at level h − 1 after relineariza-
tion. In its simplest version, the moduli at each level are equivalent. However, to
achieve better noise control, Brakerski, Vaikuntanathan [BV11] showed a tech-
nique called modulus switching. In the modulus switching technique, we choose
the sequence of moduli very carefully and change the moduli of ciphertext by
multiplying it with qh−1

qh
and rounding at each level. This way, we can evalu-

ate arbitrary polynomial-size circuits without resorting to bootstrapping and
circular security. Finally, we note that to realize the cycle tester as given by
Construction 2, we set the circuit to be obfuscated as the decryption function
at the last level of the AFHE.

Remark 6 (Redundant Relinearization Keys). Note that to simplify exposition,
we include multikey relinearization keys that are not needed. Specifically, the
keys mkk,j and mkj,k for (k, j) ∈ K encrypt for the same plaintexts, and it is
enough to publish only one of them.



Witness Encryption from Garbled Circuit and Multikey FHE Techniques 39

As mentioned in Section 3.2, both the least significant LSB and most sig-
nificant bit MSB encodings of the message are possible. In LSB m ∈ Rp, for
some p ≤ q, and e = p · e′. Then decryption outputs 〈c, [1, [sk]κk=1〉] mod p. In
MSB we scale the message m · qp , and have ||e||∞ ≤ q

2·p . In this case decryption

is computed as bpq · 〈c, [1, [sk]κk=1]〉e, where b.e outputs the closes integer. The

MSB encoding is often referred to as the scale-invariant version [Bra12, FV12],
but we note that multiplication requires to rescale and round the ciphertexts. In
particular step 8 of the multiplication in Construction 1 is

cout = [
⌊p
q
· (b̂ · b̂′)

⌉
,0] +

∑
k∈T

n∑
i=1

G−1B,q

(⌊p
q
· (b̂′ · âk[i] + â′k[i] · b̂)

⌉)
· êk1,k[i, ∗]>

+
∑
k∈T

n∑
i=1,
i′=1

G−1B,q

(⌊p
q
· (âk[i] · â′k[i′])

⌉)
· êk2,k[i, i′, ∗]>

+
∑
k,j∈T ,
k 6=j

n∑
i=1,
i′=1

G−1B,q

(⌊p
q
· (âk[i] · â′j [i′])

⌉)
· m̂kk,j [i, i

′, ∗]>,

where p
q · (b̂ · b̂

′), pq · (b̂′ · âk[i] + â′k[i] · b̂) and p
q · (âk[i] · â′j [i′]) are performed in R

instead of Rq. In other words, we reduce the coefficients modulo q after rescaling
and rounding.

C.1 IND-CPA of the Annihilating FHE Candidate

Let us first recall the definition for IND-CPA security.

Definition 16 (Indistinguishability Under Chosen Plaintext Attack).
We say that AFHE = (Setup, Enc, Dec, Eval) is IND-CPA secure, if for all security
parameters λ ∈ N, all κ = poly(λ), all K ⊆ [κ] × [κ] and all PPT adversaries
A = (A1,A2), we have that

∣∣∣∣∣Pr

 b = A
Enc(sk,.)
2 (ct, st) :

(ek, sk)← Setup(λ, κ,K)

(msg0,msg1, st)← A1(λ, ek);

b
$← {0, 1};

ct← Enc(sk, T ,msgb);

− 1

2

∣∣∣∣∣ ≤ negl(λ),

The security proof is a standard hybrid argument in which we first eliminate
all evaluation keys, starting from level 1, and then change the challenge encryp-
tion assuming GLWE. Finally, we note that to show the basic scheme’s security,
we need to assume circular GLWE since we have a 1-cycle. By 1-cycle, we mean
that a function on the keys sk is encrypted under sk in the relinearisation keys.

Theorem 6 (Security). Under the GLWE assumption the full scheme is IND-CPA
secure.



40 Kamil Kluczniak

Proof (sketch). The proof is via the following hybrid argument. We note that
we need to iterate the hybrids starting from h = 1 to L. However, for other
iterators, we do not require any particular order.

Hybrid 0: This is the original scheme.
Hybrid (1, h, k, i, l): For all h ∈ [L], starting from h = 1, we consider the

hybrids Hybrid (1, h, k, i, l) where ek1,k[i, l, h] is computed at random and
k ∈ [κ], i ∈ [n] and l ∈ [`]. The indistinguishability of the hybrids follows
trivially from the GLWE assumption.

Hybrid (2, h, k, i, i′, l): For all h ∈ [L], starting from h = 1, we consider the
hybrids Hybrid (2, h, k, i, i′, l) where ek2,k[i, i′, l, h] is computed at random
and k ∈ [κ], i, i′ ∈ [n] and l ∈ [`]. The indistinguishability of the hybrids
follows trivially from the GLWE assumption.

Hybrid (3, h, i, i′, l): For all h ∈ [L], starting from h = 1, we consider the
hybrids Hybrid (3, h, i, i′, l) where mkk,j [i, i

′, l] is computed at random and
(k, j) ∈ K, i, i′ ∈ [n] and l ∈ [`]. The indistinguishability of the hybrids
follows trivially from the GLWE assumption.

Hybrid 4: In Hybrid 4, we compute the challenge ciphertext at random. The
indistinguishability follows from the GLWE assumption.

Note that in each hybrid, we compute the GLWE tuple at random. Hence a
single ciphertext acts as a one time pad on the message it encrypts. Therefore,
in Hybrid 4, the advantage of the adversary of guessing the bit b is 1

2 .

C.2 IND-CPA in the Presence of a Cycle Tester

Below we give the IND-CPA security proof for the circular insecure annihilating
fully homomorphic encryption given by Construction 2. The proof is basically a
rewrite of the IND-CPA security proofs for the cycle testers given in [GKW17a].

Theorem 7 (IND-CPA of Construction 2). Let AFHE be a IND-CPA se-
cure annihilating encryption scheme, and lockObf = (Obf,Eval) be a lockable
obfuscation. Let ctAFHE be an annihilating fully homomorphic encryption with
a cycle tester build from AFHE and lockObf as specified by Construction 2.
Given IND-CPA security of AFHE and distributional virtual black-box security
of lockObf = (Obf,Eval), ctAFHE is IND-CPA secure.

Proof (Sketch). We show the proof via a sequence of hybrid experiments.

Hybrid 0: This is the original scheme in which we encrypt the message m0.
Hybrid 1: This hybrid is as the previous, except we simulate the lockable

obfuscation. Specifically, we compute C̃ ← Sim(λ, η, ν, ξ) instead of C̃ ←
lockObf.Obf(λ, P, lock). Indistinguishability between Hybrid 0 and Hybrid
1 follows from distributional virtual black-box security of the lockable ob-
fuscation scheme. Note that we may reduce security to DVBB since lock is
chosen independently from the uniform distribution.

Hybrid 2: This hybrid is as the previous, except we encrypt the message m1.
Since the lockable obfuscation is simulated, indistinguishability between Hy-
brid 1 and Hybrid 2 follows from IND-CPA security of the annihilating fully
homomorphic scheme.
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C.3 Instantiating the Lockable Obfuscation

We recall the construction of the GGH15-based lockable obfuscation [CVW18]
and argue that when we instantiate the cycle tester with this concrete lockable
obfuscator, then ideal cipher annihilation security should hold. We note that we
limit the exposition to the algorithms and preliminaries necessary to understand
our arguments. For detailed correctness and security proofs, we refer to [CVW18].

Insecure Instantiation We first show an example of an insecure instantiation4.
We use the example to showcase the nature of the problem in instantiating the
lockable obfuscation and as a tool to further argue the security of our candidate.

Theorem 8. Let AFHE = (Setup,Enc,Dec,Eval) be an annihilating homomor-
phic encryption scheme, and let FHE = (Setup,Enc,Dec,Eval) be a fully homo-
morphic encryption scheme. Let lockObf be a lockable obfuscation scheme. We
construct an alternative lockable obfuscation lockObf ′ = (Obf,Eval) for the func-
tion AFHE.Dec(sk, .), where lockObf ′.Obf(C, lock) returns C̃ ′ = (C̃, ctFHE,sk) with

C̃ ← lockObf.Obf(C, lock) and ctFHE,sk ← FHE.Enc(sk, sk). Then

1. lockObf ′ is a secure lockable obfuscation scheme, and
2. the cycle tester build as specified by Construction 2, from AFHE and lockObf′

is not ideal cipher annihilation secure.

Proof (Sketch). The first part is rather straightforward. Since the encryption of
ctFHE,sk is independent of the lock, we change it to an encryption of a uniformly
random message given IND-CPA security of the FHE scheme. Then we run the
simulator of lockObf.

For the second part of the lemma, consider the following attack. An attacker,
obtains the AFHE ciphertexts ctk for k ∈ [κ] from Definition 12, computes ctk ←
FHE.Eval(ctFHE,sk,AFHE.Dec(., ctk)), and evaluates the ideal ciphers on ctk.

Remark 7 (Extending the Attack). Note that when we additionally include the ci-
phertext AFHE.Enc(sk, sk) in the obfuscated circuit above, we can further switch
from FHE ciphertexts back to AFHE ciphertexts. In this case, the lockable ob-
fuscator’s security requires assuming circular security between AFHE and FHE.

Remark 8 (On the Attack). Note that the adversary in the attack above learns
nothing about the secret keys. In particular, the adversary isn’t even able to
verify whether his computations were correct or not and whether the adver-
sary lives in a world where the obfuscation is simulated or not. Nevertheless,
when the lockable obfuscation consists of data that allows performing correct
homomorphic operations, the ideal cipher annihilation assumption is broken.

The ideal cipher annihilation security and assumptions like linear-only en-
cryption are based on heuristic beliefs about the underlying cryptosystems’ ho-
momorphic capabilities. The example shows that, whenever publishing auxiliary

4 The idea for the construction is due to an anonymous reviewer.
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information that depends on the cryptosystem’s secret key, we must argue again
that the auxiliary information doesn’t help to perform homomorphic operations.
In particular, the fact that the auxiliary data does not leak any information on
the secret key is not enough of an argument.

Additional Preliminaries The following lemma establishes the notation for
trapdoor and preimage sampling that we use later.

Lemma 3 (Trapdoor Sampling). For dimensions n ∈ N and m ∈ N and
a modulus q, let (A, td) ← TrapSam(n,m, q), be an algorithm that outputs a
matrix A ∈ Zn×mq and a trapdoor td, such that A ∈ Zn×mq is statistically close
to the uniform distribution. There is a probabilistic polynomial time algorithm
d ← SamPre(A,y, td, B) that on input A ∈ Zn×mq , td, y ∈ Znq and a bound B
outputs d ∈ Zm×1q such that A · d = y and ||d||∞ ≤ B.

The lockable obfuscator computes functions that are in NC1, such us decryp-
tion of LWE tuples. Technically, the obfuscator from [CVW18] computes matrix
branching programs that are defined as follows.

Definition 17 (Matrix Branching Program). Let υ ∈ N be the length, ω ∈
N the width of the branching program and η ∈ N the bit-length of the input. A
width-ω, length-υ matrix branching program MBP over η-bit inputs is a tuple

MBP = (inp,v, {Mi,b}i∈[υ],b∈{0,1}, P0, P1)

where inp ∈ [η]υ, v ∈ Zωq , Mi,b ∈ {0, 1}ω×ω, and P0, P1 ⊂ {0, 1}ω×ω. Further-
more, the vector v and the sets P0 and P1 satisfy v ·w = 01×w for all w ∈ P0,
and v ·w 6= 01×w for all w ∈ P1.

A matrix branching program MBP computes a function F : {0, 1}η 7→ {0, 1}
as

F (x) =

{
0 if

∏υ
i=1 Mi,x[inp[i]] ∈ P0

1 if
∏υ
i=1 Mi,x[inp[i]] ∈ P1.

GGH15 Encodings and the Lockable Obfuscation Candidate. As a sub-
routine, we use the generalized GGH15 encodings.

Construction 7 (Generalized GGH15 Encodings) Let TrapSam and SamPre
be the algorithms from Lemma 3. Let γ : Zω×ω × Zn×n → Zt×t, be such that
γ(M,S)·γ(M′,S′) = γ(M·M′,S·S′). We define the following encoding function.

GGH15Encode(γ,BE, BD, [Mi,b]i∈[υ],b∈{0,1}, [Si,b]i∈[υ],b∈{0,1},Aυ): This algorithm
takes as input a function γ : Zω×ω × Zn×n → Zt×t, bounds BE, BD ∈ N,
matrices Mi,b ∈ {0, 1}ω×ω, matrices Si,b ∈ Zn×nq and a matrix Aυ ∈ Zt×mq ,
where n,m, t, ω ∈ N.
1. For i ∈ {0, . . . , υ − 1} compute (Ai, tdi)← TrapSam(t,m, q).
2. For i ∈ [υ] and b ∈ {0, 1}
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2.1. Compute Ŝi,b ← γ(Mi,b,Si,b).

2.2. Sample Ei,b
$← X t×mE .

2.3. Compute Di,b ← SamPre(Ŝi,b ·Ai + Ei,b, td, BD).
3. Output (A0, {Di,b}i∈[υ],b∈{0,1}).

Finally, we are ready to describe the obfuscator. The lockable obfuscation
construction defines the γ function, as

γ⊗diag : Zw×w × Zn×n 7→ Z(wn+n)×(wn+n), (M,S) 7→
[
M⊗ S 0

0 S

]
We adapt the notation form [CVW18] and for a matrix A ∈ Zt×∗, where

t = η ·ω ·n+n, we write A =

[
B
C

]
, where B ∈ Zη·ω·n×1 and C ∈ Zn×1. We write

B[i] to denote the matrix that consists of the rows of B from ((i− 1) · ω · n+ 1)
to (i · ω · n). Furthermore, as B[i,j] we denote the matrix that consists of the
rows of B(i) from ((j − 1)n+ 1) to (jn).

Construction 8 (Lockable Obfuscator from [CVW18]) For a circuit C :
{0, 1}η 7→ {0, 1}ν let C(j) : {0, 1}η 7→ {0, 1}ν be the function that outputs the jth

output bit of C. In other words, C(j)(x) = F (x)[j], for j ∈ [η]. Let MBP(j) =

(inp(j),v(j), {M(j)
i,b }i∈[υ],b∈{0,1}, P

(j)
0 , P

(j)
1 ) denote the matrix branching program

that computes C(i). Assume that there is a tuple (inp, P0, P1,v) such that inp =

inp(j), P0 = P
(j)
0 and P1 = P

(j)
1 , and v = vj for all j ∈ [ν].

Obf(λ,C, lock): This PPT algorithm takes as input a security parameter λ ∈ N,
a circuit C ∈ Cη,ν,ξ, where η, ν, ξ = poly(λ), and a lock string lock ∈ {0, 1}ν .
1. Set the bounds BS, BD and BE such that the ratio q/B is “small”, where

B ≤ υ ·BE · t · (
√
t ·
√
m ·BS ·BD)υ−1.

2. For i ∈ [υ] and b ∈ {0, 1} sample Si,b
$← Xn×nBS

.

3. Set Aυ =

[
B
C

]
∈ Zt×1q , where B

$← Zη·ω·n×1q and C←
∑
i∈[ν] B

[i,(2−y[i])] ∈

Zn×1q .
4. For i ∈ [υ] and b ∈ {0, 1}, define Mi,b ∈ {0, 1}η·ω×η·ω as a diagonal

block matrix with M
(j)
i,b ∈ {0, 1}ω×ω in its jth diagonal. In other words,

Mi,b = diag(M
(1)
i,b , . . . ,M

(η)
i,b ).

5. Set M = [Mi,b]i∈[υ],b∈{0,1} and S = [Si,b]i∈[υ],b∈{0,1}.
6. Compute

(A0, [di,b]i∈[υ],b∈{0,1})← GGH15Encode(γ⊗diag, BE, BD,M,S,Aυ)

7. Set J← [v,v, . . . ,v,−1]⊗ In×n ∈ {0, 1}n×t.
8. Return C̃ = (J ·A0, [di,b]i∈[υ],b∈{0,1}).

Eval(C̃,x) : Takes as input an obfuscated circuit C̃ = (J ·A0, [di,b]i∈[υ],b∈{0,1})
and input x ∈ {0, 1}η.
1. Compute d =

∏
i∈[η] di,x[i].

2. If ||J ·A0 · d||2 ≤ B, return 1. Otherwise return ⊥.
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On Security of the Candidate Instantiation. First, we emphasize that we
consider the candidate instantiation as given by Construction 2 with the lock-
able obfuscator limited only to the GGH15 encoding. In particular, we do need
to switch AFHE ciphertexts to any other fully homomorphic encryption scheme
as AFHEs decryption function is in NC1 and can directly be implemented by
the matrix branching program. On the other hand, we may add a key switch-
ing key to the last level of the AFHE scheme and instantiate the obfuscation
for the key switching cryptosystem’s decryption circuit. However, we note that
we must be careful to instantiate the key switching key properly, i.e., do not
publish any further relinearization or key switching keys and choose the error
magnitudes to allow only computation necessary for correctness. In particular,
it is enough that the ciphertexts constituting the key switching key are only
additively homomorphic.

Note that IND-CPA security of the cycle tester holds, given DVBB of the
lockable obfuscation and IND-CPA security of the base AFHE. Furthermore, note
that the keys in the ideal cipher annihilating security definition are chosen in-
dependently of the lock. Following the same reasoning as for IND-CPA security,
we can show that a world where the obfuscated program C̃ is simulated is indis-
tinguishable from the real world. In other words, C̃ gives no information on the
AFHE secret key. Thus we believe that an adversary cannot perform inconsistent
operations on the AFHE ciphertext itself but must switch from AFHE ciphertexts
to ciphertexts of an alternative cryptosystem based on the information that con-
stitutes C̃.

We argue that it seems hard to use the GGH15 encodings to perform any
meaningful homomorphic computation. On a high level, we choose the param-
eter and error magnitudes of the GGH15 encodings only to support the matrix
branching program’s computation. Furthermore, the encodings are not designed
to be ever be decrypted. Instead, when evaluated on x such that C(x) = lock,
we have that ||J ·A0 ·

∏
i∈[η] di,x[i]|| =

∏
i∈[η] Si,x[i] · 0n + E∗ = E∗ ≤ B from

correctness of the obfuscator. When evaluated on x such that C(x) 6= lock, we
have J ·A0 ·

∏
i∈[η] di,x[i] =

∏
i∈[η] Si,x[i] ·AIh + E∗ = E∗, where AIh is the sum

of independent uniformly random vectors over Znq .

Looking closer, we argue that the encodings do not have the necessary struc-
ture to support meaningful homomorphic computation. Remind that di,b are

preimages of Ŝi,b · Ai + Ei,b. Furthermore, Ai are trapdoor matrices, Ei,b are

small norm matrices, and Ŝi,b = γ(Mi,b,Si,b) with Si,b being also small norm
matrices without any other special structure. According to the security analysis,
[CVW18], we treat the Ai matrices as the secret keys of LWE tuples. Observe
that it is already unclear how to start any meaningful homomorphic compu-
tation from di,b since, as mentioned, those are trapdoor preimages. The tuples

Ŝi,b ·Ai+Ei,b may be viewed as matrices of LWE tuples b = 〈Ŝi,b[j, ∗],Ai[∗, k]〉+
Ei,b[j, k], for j ∈ [t] and k ∈ [m], but without explicit access to Ŝi,b[j, ∗]. Note
that from these tuples, we don’t have any key switching keys. Furthermore, the
tuples do not possess any special structure, like for example, the GSW [GSW13]
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cryptosystem. Finally, the error magnitude of Ei,b isn’t chosen to support any
further homomorphic computation.

As an end note, we observe that, for our application to witness encryption,
C̃ only makes a difference to the adversary A if A manages to test whether
there is a key cycle in the AFHE ciphertext after homomorphically evaluating
the garbled circuit or not. Importantly, we would need to strengthen the attack
from the beginning of this section to the case described in Remark 7. In our
candidate instantiation with GGH15 encodings only, the ability to re-encrypt
from GGH15 encodings back to AFHE would hint at a possibility to exploit GGH15
as a bootstrapping algorithm. Specifically, we could obtain fully homomorphic
encryption instead of level homomorphic encryption without circular security.
Note that from the proof of Theorem 7, we have that IND-CPA security for this
construction doesn’t require circular security.
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