
Improved privacy-preserving training using fixed-Hessian
minimisation

Tabitha Ogilvie, Rachel Player, and Joe Rowell
Information Security Group, Royal Holloway, University of London

ABSTRACT
The fixed-Hessian minimisation method can be used to implement
privacy-preserving machine learning training from homomorphic
encryption. This is a relatively under-explored part of the literature,
with the main prior work being that of Bonte and Vercauteren
(BMC Medical Genomics, 2018), who proposed a simplified Hessian
method for logistic regression training over the BFV homomorphic
encryption scheme. Our main contribution is to revisit the fixed-
Hessian approach for logistic regression training over the CKKS
homomorphic encryption scheme. We improve on the prior work
in several aspects, most notably showing how the native encoding
in CKKS can be used to take advantage of SIMD operations. We
implement our new fixed-Hessian approach in SEAL and compare it
to more commonly-used minimisation methods, based on Gradient
Descent and Nesterov’s Accelerated Gradient Descent. We find that
the fixed-Hessian approach exhibits fast run time and comparable
accuracy to these alternative approaches. Moreover, it can be argued
to be more practical in the privacy-preserving training context, as
no step size parameter needs to be chosen.

As an additional contribution, we describe and implement three
distinct training algorithms, based on Gradient Descent, Nesterov’s
Accelerated Gradient Descent, and a fixed-Hessian method respec-
tively, to achieve privacy-preserving ridge regression training from
homomorphic encryption. To the best of our knowledge, this is the
first time homomorphic encryption has been used to implement
ridge regression training on encrypted data.

CCS CONCEPTS
• Security andprivacy→Public key (asymmetric) techniques;

KEYWORDS
homomorphic encryption; fixed Hessian; logistic regression; ridge
regression; privacy-preserving training

1 INTRODUCTION
Cloud computing is becoming increasingly prevalent, with indi-
viduals, groups and companies outsourcing heavy computation to
dedicated cloud computing services. At the same time, interest in
machine learning techniques has grown, with many researchers
and organisations keen to harness the predictive power of the data
they already possess or have access to. In particular, many machine
learning models are too complex to train on a general purpose
machine, so outsourcing this computation to the cloud is a popular
option. Moreover, it is common that the training data is sensitive
or legally protected: for example, it could be the medical data of
patients, the employment status of vulnerable members of society,
or the financial records of a company. This motivates the problem

of privacy-preserving machine learning training, which is the focus
of this paper.

Specifically, we are interested in outsourcing the training of a
machine learning model to the cloud, while keeping the training
data confidential. This is a different context to that considered in
many priors work on privacy-preserving training. For example,
some prior works, such as [43, 46, 61], have sought to train models
in a joint manner, or to train models on aggregated data, as in [12].
In our context, we do not want the cloud to learn from our data at
all, but rather to perform the training as a service.

In our situation, we consider a client who possesses a quantity
of data that they wish to use to build a machine learning model, but
they lack the computational resources to handle this training locally.
They would like to outsource the training to the cloud, but do not
want the cloud to have access to their training data in the clear.
Using homomorphic encryption [28] is a plausible solution for this
scenario. The client encrypts their training data and transmits it to
the cloud, who then homomorphically trains the model. The result
is an encryption of the model, which is transmitted back to the
client, who decrypts to obtain the model. We note that the security
of homomorphic encryption depends on the absence of decryption
oracles. For this reason, all the methods suggested in this paper
would result in one-trip protocols: the client transmits encrypted
data, the cloud returns an encrypted model.

Many works have shown that homomorphic encryption can be
valuable at performing privacy-preserving inference on encrypted
data [10, 15–18, 45, 66]. Privacy-preserving inference refers to
the situation where the machine learning model has already been
trained and is held on the cloud. The client then asks the cloud
to use the model to make a prediction on a new datapoint, while
keeping this datapoint confidential. In contrast, leveraging homo-
morphic encryption to train the model itself in a privacy-preserving
way has been less widely studied.

Two common types of machine learning model are logistic re-
gression and ridge regression. Logistic regression predicts the value
of a dependent variable, e.g. malign or benign, based on the values
of a set of independent variables. This technique is widely used
in many disciplines, including genetics [60], healthcare [65], and
economics [62]. Ridge regression is a form of linear regression that
uses L2 regularisation to avoid overfitting. Its usage is ubiquitous
in statistics, machine learning, and data mining [38, 44, 55, 63].

To train either a logistic regression or ridge regression model,
we must minimise an appropriate cost function. To train these
two types of machine learning model, in this paper, we consider
the use of three possible minimisation methods: Gradient Descent,
Nesterov’s Accelerated Gradient Descent, and Newton-Raphson
and Hessian-based methods. We mainly focus on the third of these
three methods: that is, using a fixed-Hessian minimisation. The
main prior work in this setting is that of Bonte and Vercauteren [14],

1



who used a fixed-Hessian method and the BFV [27] homomorphic
encryption scheme to homomorphically train a logistic regression
model.

1.1 Contributions
Our main contribution is to present a new implementation of
privacy-preserving logistic regression training using fixed-Hessian
minimisation. Our starting point is the work of Bonte and Ver-
cauteren [14], which we improve upon in several aspects. First,
we switch the underlying homomorphic encryption scheme from
BFV to CKKS [22]. This enables us to use the native CKKS encod-
ing to take advantage of SIMD operations while still being able to
compute on non-integers. In contrast, [14] usedw-NIBNAF encod-
ing [13] to convert real numbers into sparse integer BFV plaintext
polynomials and so were unable to achieve SIMD speedups. Next,
we adopt a data preprocessing step similar to [40] and [41] to save
layers during polynomial evaluations. In addition, instead of using
the 1-degree Taylor approximation to the sigmoid function, we
used the Chebyshev polynomial approximation used in [9]. We also
adapted the approximation of the inverse function, using a linear
approximation as the starting point and increasing the number of
iterations from one to three. Finally, we increased the number of
updates to the weights vector from one iteration to four.

We implement our new fixed-Hessian approach for logistic re-
gression in Microsoft SEAL [59] version 3.5.1 and compare it to
more commonly-used minimisation methods, based on Gradient
Descent and Nesterov’s Accelerated Gradient Descent. Our results
are presented in Table 1, which shows that our fixed-Hessian ap-
proach achieves comparable accuracy and AUC to prior work, at a
greater security level and with a faster runtime. In more detail, for
a 5 fold CV average, applied to the Edinburgh dataset, our fixed-
Hessian approach achieves 88.26% CV accuracy with a training
time of 27 seconds per fold, while the Nesterov’s Accelerated Gradi-
ent Descent approach of [40] achieves 88.90% with 42 seconds per
fold. Moreover, we argue that the fixed-Hessian approach is more
practical in the privacy-preserving training context, as no step size
parameter needs to be chosen.

As an additional contribution, we describe and implement three
separate privacy-preserving training algorithms for ridge regres-
sion. To the best of our knowledge, this is the first time homo-
morphic encryption has been used to implement ridge regression
training on encrypted data. All the implementations reported on
this work are publicly available on Github [52, 53].

1.2 Related work
The work of Bonte and Vercauteren [14] was a contribution to
Track 3 of the iDASH 2017 competition1, which concerned using
homomorphic encryption to train a logistic regression model using
a genomic data set of 1579 samples over 18 features. While [14]
proposed a fixed-Hessian minimisation, the other finalists proposed
solutions using Gradient Descent [19, 40]. The work [40] has since
been updated [21, 35]. The iDASH 2017 Track 3 data set was also
considered by Crawford et al. in [24]. Instead of using iterative
methods, they opt for formulating the model parameters as the

1https://www.humangenomeprivacy.org/2017/

solution to a closed form approximation. Other works consider-
ing logistic regression training using homomorphic encryption
include [4, 23, 30, 41, 57].

In Section 5 we consider the use of homomorphic encryption
to enable a single client to completely outsource ridge regression
training to a server. As far as we are aware, the use of homomorphic
encryption for ridge regression training has not been considered in
the literature. However, solutions based onmulti-party computation
have been proposed. For example, Nikolaenko et al. [49] considered
many users contributing data to an evaluator who outputs a model
in the clear. Other works considering privacy-preserving training
using multiparty computation include [1, 29, 34, 37, 43, 46, 64].

1.3 Structure of the paper
We recall relevant background in Section 2. We describe our new
fixed-Hessian minimisation approach for logistic regression in Sec-
tion 3. We report on an implementation of our fixed-Hessian ap-
proach, and compare it with otherminimisationmethods for logistic
regression, in Section 4. In Section 5, we describe and implement
three different approaches to privacy-preserving training using
ridge regression.

2 BACKGROUND
2.1 CKKS
The CKKS scheme [22] is a homomorphic encryption scheme that
supports approximate arithmetic on floating point numbers. The
key idea of CKKS is to interpret noise not as an error term but as
part of the usual errors observed when computing with floating
point numbers. We now recall the main features of the scheme that
are relevant for our purposes, following the presentation of [40]
and [9]. For additional details, including noise analysis, we refer
the reader to [22].

CKKS has a native encoding function from the message space
to the plaintext space, arising from the canonical embedding2. In
more detail, the message space of CKKS is CN /2, and the encoding
function is given by

Encode((m1, ...,mN /2)) = ⌊△ · ϕ
−1(m1,m2, ...,mN /2)⌉

where ϕ(·) is the complex canonical embedding and △ is the ‘scale’;
that is, the desired degree of precision. Like several other homomor-
phic encryption schemes, CKKS supports the encoding of multiple
messages from the message spaceM into a single plaintext which
enables “slotwise” operations on the messages.

The plaintext space of CKKS is R = Z[X ]/(XN + 1), where
N is a power of 2. We employ the RNS variant [21] for efficient
implementation, so that the initial ciphertext modulus is given
by QL =

∏L
i=1 pi for distinct primes pi , and lower level ciphertext

moduli are given byQl =
∏l

i=1 pi , 0 < l ≤ L. Writing Rl = R/QlR,
we have that a level l ciphertext is a pair of polynomials (c0, c1) in
the ciphertext space R2l .

The CKKS scheme is comprised of the following algorithms,
specified below: KeyGen, SwitchKeyGen, EvalKeyGen, RotKeyGen,
Enc, Dec, Add, AddPlain, Mult, MultPlain, Rescale, Rotate.

2For a comprehensive explanation of this embedding, and other algebraic background,
we refer the reader to [20, 42].

2

https://www.humangenomeprivacy.org/2017/


• KeyGen(1λ): Sample a secret s ← χenc , an error e ← χerr ,
and a random ring element a ← RL . Set the secret key as
sk← (1, s) and the public key as pk← (b,a) ∈ R2L , where
b = −as + e mod 2L . Output (sk, pk).
• SwitchKeyGen(sk, s ′): Parse sk as (1, s). For s ′ ∈ R, sample

a random a′ ← R2L and an error e ′ ← χerr . Set the
switching key swk← (b ′,a′) ∈ R∈L2, where b ′ = −a′s ′+
e ′ +QLs mod Q2L . Output swk.
• EvalKeyGen(sk): Output evk← KSGen(sk, s2).
• RotKeyGen(sk,κ): Output rk(κ) ← KSGen(sk, s(κ)).
• Enc(pk,m): for a plaintextm ∈ R, sample v ← χenc and

e0, e1 ← χerr and set ct = v · pk + (m + e0, e1) mod QL .
Output ct.

• Dec(sk, ct): Parse ct as (c0, c1) ∈ R2l . Setm
′ = c0 + c1 · s

mod Ql . Outputm′.
• Add(ct1, ct2): for two ciphertexts ct1, ct2 ∈ Rl , output

ctadd = ct1 + ct2 mod Ql
• AddPlain(ct, c): for a ciphertext ct = (b,a) ∈ R2l and a

plaintext c ∈ R, output ctaddp = (b + c,a) mod Ql
• Mult(ct1, ct2, evk): for two ciphertexts ct1 = (b1,a1), ct2 =
(b2,a2) ∈ R2l , let (d0,d1,d2) = (b1b2,a1b2 + a2b1,a1a2)

mod Ql . Set ctmult = (d0,d1)+ ⌊bQ−1L ·d2 · evk⌉ mod Ql .
Output ctmult.

• MultPlain(ct,m): for a ciphertext ct ∈ R2l and a plaintext
m ∈ R, output ctmultp ←m · ct mod Ql .
• Rescale(ct): for a ciphertext ct ∈ Rl , output ctrs =
⌊ct/pl ⌉ mod Ql−1.

• Rotate(ct, rk(κ),κ): for a ciphertext ct = (b,a) ∈ Rl ,
output ctrot ← (b(κ), 0) + ⌊Q−1L · a

(κ) · rk(κ)⌉ mod Ql .

When multiplying two ciphertexts that correspond respectively
to messagesm1,m2, each encoded with scale factor △, the resulting
ciphertext ctmult will correspond to the message m1 · m2 with
a scale factor of △2. We choose all of the intermediary primes,
p2, ...,pL−1 to be approximately equal to △. Thus, after a rescaling,
ctrs = Rescale(ctmult) will correspond to the messagem1 ·m2
with a scale factor of approximately △.

We denote by ct.m a ciphertext that corresponds to the message
m. We sometimes make explicit the messagesmi in the ‘slots’ by
writingm = (m1,m2, ...,mN /2). In Algorithm 1 we recall a useful
algorithm, AllSum, previously described in the literature [33, 41],
which we will make extensive use of. Given a ciphertext ct.m,
wherem = (m1,m2, ...,mN /2), AllSum generates a ciphertext ctall
that corresponds to

(∑N /2
i=1 mi ,

∑N /2
i=1 mi , , ...,

∑N /2
i=1 mi

)
. This algo-

rithm uses SIMD to generate the sum of N /2 complex numbers
using logN /2 additions.

2.2 SEAL implementation of CKKS
All experiments in this paper were written in the Microsoft SEAL
homomorphic encryption library [59], version 3.5.1. The SEAL li-
brary implements the RNS variants [5, 21] of both the BFV [27]
and CKKS [22] homomorphic encryption schemes, having func-
tions for encoding, encrypting, and all evaluation operations. In
SEAL, the ciphertext modulusQL is specified via a set of bit lengths,
{b0, ...,bk }. SEAL will then find primes p0, ...,pk with logpi ≈ bi .
These primes serve a variety of different functions, which specify

Algorithm 1 AllSum(ct.m)
Input: A ciphertext ct.m corresponding to the message

(m1,m2, ...,mN /2)
Output: a ciphertext ctall corresponding to the message(∑N /2

i=1 mi ,
∑N /2
i=1 mi , ...,

∑N /2
i=1 mi

)
ctall ← ct.m
for i = 0, . . . , logN /2 − 1 do

ctall ← Add
(
ctall,Rotate(ctall, 2i )

)
end for

how their bit lengths should be chosen. The prime p0 is the decryp-
tion prime, so must be larger than the scale △, giving b0 > log△.
The difference (b0 − log△) gives how many bits of precision we
are guaranteed before the decimal point. The intermediary primes
p1, ...,pk−1 are the rescaling primes, so should be set close to △,
giving bi = log△, 1 ≤ i ≤ k − 1. The final prime pk is the so-called
special prime [32] which is used during key switching, and SEAL re-
quires these to be at least as big as all other primes in the ciphertext
modulus, so that bk ≥ b0.

The SEAL library follows the Homomorphic Encryption Stan-
dard [2] in order to ensure security of the parameters chosen. In
particular, the underlying Learning with Errors (LWE) [56] instance
is parameterised by the ring dimension N , the ciphertext modulus
QL , a discrete Gaussian error distribution with standard deviation σ
and a secret distribution S . We will always use an error distribution
with σ = 3.2 and a uniform ternary secret distribution, which are
are the default choices in SEAL. Following [2], we target 128-bit
security and assume that the logarithm of the cost of lattice reduc-
tion with blocksize β in dimension d is 0.292β + 16.4 + log(8d) [8].
In SEAL, as the product QL =

∏k
i=0 pi forms the initial cipher-

text modulus, in order to achieve 128-bit security we must have∑k
i=0 bi ≤ logQL , where the value of logQL for a given N is as

above. If a ciphertext modulus is specified by {b0, ...,bk }, the re-
sulting parameters can handle circuits of depth k − 1.

2.3 Machine learning training models
2.3.1 Logistic regression. Logistic regression is a machine learn-

ing classification technique that predicts the value of a dependent
variable, e.g. malign or benign, based on the values of a set of in-
dependent variables. In this work, we consider a binary logistic re-
gression classification, where the value to be predicted takes one of
two values, y ∈ {±1}. Given model parameters β = (β0, β1, ..., βd ),
we calculate the probability that y = 1 given covariate values
(x1, ...,xd ) ∈ R

d as:

P(y |β, x) = σ (yβTx) .

where we define x0 = 1. To fit this model to our training data we
need to maximise the likelihood estimator:

n∏
i=1
P(yi |, βxi ) =

n∏
i=1

σ (yβTx) .

This is equivalent to minimising the following cost function:

J (β) =
n∑
i=1

log(1 + exp(−yiβT xi )) . (1)

3



For logistic regression we use two metrics to measure the quality
of a derived model on a test set: AUC and accuracy. Accuracy
corresponds to the proportion of the test set that themodel correctly
classifies against a threshold of 0.5. AUC stands for Area Under
the receiver operating curve (ROC), and can be understood as the
probability the derived model will rank a positive sample randomly
chosen from the test set higher than a negative sample randomly
chosen from the test set [47].

2.3.2 Ridge regression. Ridge regression is a form of linear re-
gression that uses L2 regularisation to avoid overfitting. Given a set
of n vectors with d features, xi ∈ Rd , and n output variables yi ∈ R,
linear regression aims to find weights β0, β1, ..., βd ∈ R such that

yi ≈ β0 + β1xi1 + β1xi2 + ... + β1xid

for each i . Augmenting each feature vector by setting xi0 = 1, we
can rewrite this as yi ≈ βT xi . Ridge regression fits a linear model
while penalising large values of βj for 0 < j ≤ d in order to stop
the model from overfitting to the training data. The cost function
for ridge regression is given by:

J (β) =
1
2
(λ

d∑
i=1

β2i +
n∑
i=1
(yi − β

T xi )
2) (2)

where the parameter λ is the regularisation parameter, reflecting
how much we want to penalise large coefficients. This parameter
is typically set via cross validation.

By differentiating Equation (2), we find that the jth component
of the gradient vector is given by

∂J

∂βj
=


∑n
i=1 xi j (β

T xi − yi ) j = 0

λβj +
∑n
i=1 xi j (β

T xi − yi ) j , 0

Letting Ĩ be the (d + 1) × (d + 1) diagonal matrix with 0 in the upper
most entry and 1s otherwise, we can rewrite this as:

∇J (β) = ((XTX + λĨ )β − XTy) (3)

where

y =

©«
y1
y2
...

yn

ª®®®®¬
and X =

©«
x10 x11 . . . x1d
x20 x21 . . . x2d
...

. . .

xn0 xn1 . . . xnd

ª®®®®¬
so that ridge regression differs from logistic regression in that it
has a closed form solution, given by:

β = (XTX + λĨ )−1XTy. (4)

The inverse of the matrix XTX + λĨ can be found via Cholesky
decomposition for λ > 0 with complexityO(d3) [49]. However, this
technique is difficult to achieve homomorphically. Therefore, in
this work, we will seek to minimise the cost function (2) directly.
For numerical stability and comparability, we scale each covariate
to the range [0, 1], and centre the regressand via yi 7→ yi − y.

We can measure the predictive power of a ridge regression model
using the coefficient of determination, or r2, statistic:

r2 = 1 −
SSres
SStot

= 1 −
∑n
i=1(yi − β

T xi )
2∑n

i=1(yi − y)
2 .

A perfect model would have r2 = 1, while a model that always pre-
dicts the mean y would have r2 = 0. A model can receive a negative
r2 score, indicating that, on average, it is worse at predicting yi
than simply guessing the mean.

2.4 Optimisation techniques
In this section we recall the common approaches for homomorphi-
cally minimising a cost function, such as the logistic regression
cost function given by Equation (1). These are Gradient Descent,
Nesterov’s Accelerated Gradient Descent, and Newton-Raphson
and Hessian Based Methods.

2.4.1 Gradient Descent. Gradient Descent is perhaps the sim-
plest minimisation technique, proceeding by taking successive steps
“downhill”. We use the observation that, at a given value of the pa-
rameters β ∈ R(d+1),d ≥ 1, we decrease the value of J (β) fastest by
taking a step in the direction of the negative of the gradient vector,
−∇J (β). Thus, we should perform updates of the form:

β (k+1) = β (k ) − α∇J
(
β (k )

)
(5)

whereα is the step size or learning rate. Recall that, if β = (β0, ..., βd )
the coordinates of ∇J (β) are given by

∇J (β) =

(
∂J

∂β0
,
∂J

∂β1
, ...,

∂J

∂βd

)
.

If α > 0 is small enough, (5) guarantees that J (β (k+1)) ≤ J (β (k )). In
other words, the value of our cost function shrinks every iteration.
However, choosing α too small will result in very slow convergence.
Typically the value of α will be chosen using line search [26, 31],
or changed every iteration as a function of the previous values of β
[6]. These techniques are difficult to achieve homomorphically.

Whenever J is convex and differentiable, and its gradient is
Lipschitz continuous with constant L, we have that:

J (β (k )) − J (βmin ) ≤
L

2k

���β (0) − βmin

���2
2
,

where βmin is the global minimum, and we take a fixed step size
α ≤ 1/L. Thus we can understand the convergence rate of Gradient
Descent under this conditions to be O(1/k), where k is the number
of iterations. Equivalently, if we want our solution β to satisfy
J (βk ) − J (βmin ) ≤ ϵ , we need to complete O(1/ϵ) iterations. More
details can be found in [50].

2.4.2 Nesterov’s Accelerated Gradient Descent. Although Gradi-
ent Descent is guaranteed to converge for the right cost functions
and the right choice of step size, it can exhibit a kind of “zigzagging”
behaviour. To combat this, and hopefully achieve faster conver-
gence, Nesterov’s Accelerated Gradient Descent (NAD) maintains
a momentum term. Intuitively, this can be understood as kicking
a ball down a hill rather than taking fixed steps. Nesterov’s Ac-
celerated Gradient Descent maintains two terms: β (k ), the model
parameters, and v(k ), the momentum term. Adopting the notation
of [19], updates are then given by [48]:{

β (k+1) = v(k) − αk · ∇J (v
(k))

v(k+1) = (1 − γk ) · β (k+1) + γk · β (k)

where 0 < γt < 1 is a smoothing parameter.
4



We setγt = 1−tk/tk+1, according to the Fast Iterative Shrinkage-

Threshold Algorithm [7], where t1 = 1 and tk+1 =
1+

√
1+4t 2k
2 . For

this choice of γt and a good choice of αt , Nesterov’s Accelerated
Gradient Descent exhibits convergence at rate O(1/k2) in the num-
ber of iterations k .

2.4.3 Newton-Raphson and Hessian Based Methods. We proceed
from the observation that the vector β that minimises the cost
function will return a gradient vector of zero [14]. For example,
for the logistic regression cost function of Equation (1), and for
j ∈ {0, . . . ,d}, the jth component of this gradient vector at a point
β ∈ R(d+1) is given by

∇J (β)j =
∂J

∂βj
= −

n∑
i=1
(σ (−yiβ

Txi))yixi j , (6)

where we define xi0 = 1. To find the root β ∈ R(d+1) to ∇J (β) = 0,
we use the Newton-Raphson root finding method. Given the right
kind of function and a suitable starting point, Newton-Raphson
guarantees very fast convergence [11].

For our running example of Equation (6), setting the multivariate
equation ∇J (β) = 0, these updates are given by

β (k+1) = β (k) − H (β (k ))−1∇J (β (k )), (7)

where the matrix H (β) ∈ R(d+1)×(d+1) is the Hessian matrix, given
element-wise by

H (β)i j =
∂2 J

∂βj∂βi
=

n∑
k=1
(1 − σ (yk βTxk))σ (yk βTxk)(yk )2xk jxki .

3 IMPROVED FIXED-HESSIAN TRAINING
FOR LOGISTIC REGRESSION

In this section we describe our improvements to the fixed-Hessian
minimisation approach of [14], in the context of logistic regression
training over CKKS. We first present an overview of our approach.

Recall from Section 2.4.3 that we are interested in evaluating
the update (7) homomorphically. Doing so directly presents three
difficulties. Firstly, we need to approximate the sigmoid function
using a polynomial. Secondly, evaluating the value of the Hessian
H (βk ) at each iteration is extremely costly in terms of levels. Thirdly,
performing a matrix inversion for an arbitrary matrix each iteration
is very challenging. To address the first problem, we adopt the linear
approximation to the sigmoid function given in [9], given by:

σ (x) ≈
1
2
+

5
32

x , (8)

found by approximating the sigmoid function with Chebyshev
polynomials.

For the second and third difficulties, we take a similar approach
to [14], who proceed by replacing the full HessianH (β)with a fixed
diagonal matrix H̃ . The diagonal entries of this matrix H̃ are given
by:

− H̃kk =
1
4

d∑
i=0

n∑
j=1

x jkx ji . (9)

We show how to homomorphically evaluate the entries of H̃ in
Algorithm 2.

Substituting H (β) with H̃ results in losing the guarantee of qua-
dratic convergence Newton-Raphson normally provides. However,
since H (β) ≥ H̃ , it is argued in [14] that, by using the results
from [11], the resulting Newton-Raphson sequence is monotoni-
cally decreasing, exhibits guaranteed convergence, and still con-
verges linearly, with rate c < 1.

Fixing the matrix H̃ means the updates (c.f. Equation (7)) that
we require to evaluate are now given by:

β (k+1) = βk − H̃
−1∇(β (k)) . (10)

Since we have replaced the Hessian with a diagonal matrix, to
perform the matrix inversion (−H̃ )−1 we simply need to find the
values 1

−H̃kk
for 0 ≤ k ≤ d . We show how to do so in Algorithm 3.

Note that, like the sigmoid function, this matrix inversion needs
to be approximated with a polynomial evaluation. The authors of
[14] use Newton-Raphson in one variable applied to the function
f (x) = 1

x − a, where a is the number they wish to invert. In [14],
a fixed starting value and one iteration is used. In contrast, we
increase the number of iterations, and use a linear approximation
as the initial value, to minimise the relative error. Our approach is
discussed in more detail in Section 3.3.

Putting everything together, having evaluated (−H̃ )−1, we are
able to evaluate an approximation of the circuit given by Equa-
tion (10). We show how to do so in Algorithm 4.

3.1 Encoding
An appropriate choice of encoding for the training data can enable
us to reduce the number of levels required in Algorithm 4. We use a
“feature by feature” encoding, similar to [41]. Specifically, we define
zji := yjx ji , and then construct (d + 1) messages

Zi =
(z1i
2
,
z2i
2
, ...,

zni
2

)
∈ Rn .

As long as n ≤ N /2, these messages can be encoded into the plain-
text space and then encrypted, giving (d + 1) ciphertexts ct.Zi for
0 ≤ i ≤ d that encrypt the training data. The factor 1/2 saves levels
during training due to the choice of sigmoid approximation. For a
higher degree approximation, a different constant factor should be
used: for example, [22] uses a factor of 1/8. A more compact encod-
ing method exists [40], but it requires extra levels to compensate.

3.2 Homomorphic evaluation of H̃
We first show how to homomorphically evaluate the entries of H̃ .
We begin by rewriting Equation (9) as follows:

− H̃kk =

d∑
i=0

n∑
j=1

yjx jk

2
yjx ji

2
=

n∑
j=1

zjk

2

d∑
i=0

zji

2
(11)

where the first equality exploits the fact that yi ∈ {±1} and the
second comes from swapping the order of summation and using the
definition of zi j . We can therefore evaluate the diagonal entries of
H̃ using Algorithm 2, which consumes one level, and from line 5 can
be evaluated in parallel. For ease of exposition, in Algorithm 2 we
omit the relinearisation steps that follow all ciphertext-ciphertext
multiplications. In our implementation, we parallelised the loop
given by lines 5 - 9 as each of the ciphertexts can be operated on
independently. We remark that the usage of SIMD in this Algorithm

5



Algorithm 2 Homomorphic evaluation of the entries of −H̃ .
Input: Ciphertexts {ct.Z j }j=0, ...,d
Output: Ciphertexts {ct.H̃j }j=0, ...,d

1: ctsum ← ct.z0
2: for j = 1, ...,d do
3: ctsum ← Add(ctsum, ct.zj )
4: end for ▷ the kth entry of ctsum corresponds to

∑d
i=0

zki
2

5: for j = 0, ...,d do
6: ct.H̃j ← Mult(ctsum, ct.zj )
7: ct.H̃j ← RS(ct.H̃j )

8: ▷ the kth entry of ct.H̃j corresponds to
zk j
2

∑d
i=0

zki
2

9: ct.H̃j ← AllSum(ct.H̃j )

10: ▷ Every entry of ct.H̃j corresponds to −H̃j j as defined in
(11)

11: end for

enables the complexity of the algorithm to stay constant in the size
of the dataset n so long as n ≤ N /2, and beyond this range the
complexity of the modified procedure would only increase linearly
in ⌊ 2nN ⌋.

3.3 Homomorphic evaluation of −H̃−1

Having homomorphically evaluated the entries of the matrix −H̃ ,
it is necessary to calculate their inverse. This is achieved in Algo-
rithm 3, where we present a general procedure for finding 1

d for an
arbitrary value d which can be bounded to an interval [a,b]. This
Algorithm is fully parallelisable, and consumes 1+ 2κ levels, where
κ is the number of iterations.

If the number we want to invert is d , we are seeking a root to
the equation f (x) = 1

x − d , which has Newton-Raphson updates of
the form

x(k+1) = 2x(k ) − dx2(k ) .

However, the speed at which this converges is very sensitive to the
initial value. In everyday usage, practitioners have the advantage
of being able to see the number they are trying to invert, and so
can use lookup tables or approximate 1

x over a tight range to min-
imise the initial error and guarantee fast convergence [51]. Since
we are working over encrypted data, we use a linear approxima-
tion, T1 + T2d . We use the results from [58], who show that, in
order to minimise the relative error in both the initial and final
approximations over a range [a,b], one should take:

T1(a,b) =
8(a + b)

a2 + 6ab + b2
, T2(a,b) =

−8
a2 + 6ab + b2

Taking a = 1 and b = X for X a value we will discuss later, we
now have that the maximum relative error after κ iterations of
Newton-Raphson is given by [58]:

Rmax (µ) =

(
(X − 1)2

X 2 + 6X + 1

)2κ
.

To choose X , we need to have some idea about the maximum
possible absolute value of each −H̃kk . Examining (11), we see this
cannot exceed B(d+1)n

4 , where B is an upper bound on the absolute
value of each feature. If the client is uncomfortable sending this

Algorithm 3 Invert(ct.H̃j , pt.T1, pt.T2,κ): Homomorphic evalua-
tion of 1

−H̃kk
for k = 0, ...,d

Input: Ciphertexts {ct.H̃j }j=0, ...,d , plaintexts pt.T1, pt.T2, and a
number of iterations κ

Output: Ciphertexts {ct.H j }j=0, ...,d where H j corresponds to
1
H̃j j

1: for j = 0, ...,d do
2: ct.H j ← Mult(pt.T2, ct.H̃j )

3: ct.H j ← RS(ct.H j )

4: ct.H j ← Add(pt.T1, ct.H j )

5: ▷We have (homomorphically) initialised H j to T1 +T2H̃j
6: for k=1,...,κ do
7: cttemp ← Add(ct.H j , ct.H j )

8: ct.H j ← Mult(ct.H j , ct.H j )

9: ct.H j ← RS(ct.H j )

10: ct.H j ← Mult(ct.H j , ct.H̃j )

11: ct.H j ← RS(ct.H j )

12: ct.H j ← Subtract(cttemp, ct.H j )

13: end for
14: end for

value of X = B(d+1)n
4 in the clear, they could instead encrypt

the values T1 and T2 and transmit them with the training data.
In Algorithm 3 we assume the T1 and T2 are encoded in to the
plaintexts pt.T1 and pt.T2 respectively. In our implementation, we
parallelised the entirety of this process into d + 1 threads.

3.4 Putting it all together
Having evaluated the entries of our fixed Hessian, we are able to
evaluate Equation (10), the updates on the weights β . This is done
in Algorithm 4, which consumes 1 + 3(µ − 1) levels, where µ is the
number of iterations.

Component wise, using Equation (6) and Equation (8), we must
evaluate:

β (k+1)(j) = β (k )(j) + H j

( n∑
i=1

zi j

2
−

n∑
i=1

5zi j
8 · 2

β (k ) · zi
2

)
.

Note that
∑n
i=1

zi j
2 can be precomputed as it does not depend on

βk , while only βT zi cannot be computed feature-by-feature, as the
inner product requires all d + 1 features. In our implementation, we
initialise all weights to zero, so the first iteration is given simply by
β (1) = H j

∑n
i=1

zi j
2 . In our implementation we parallelised the loop

given by lines 11 - 18.
Algorithms 2, 3 and 4, employed consecutively, constitute the

entire learning process. In total, this process consumes 2 + 2κ +
3(µ − 1) levels, where κ corresponds to the number of iterations in
Algorithm 3, and µ corresponds to the number of updates to the
weight vector β as in Algorithm 4.

4 IMPLEMENTATION AND COMPARISON
In this section we report on an implementation of our improved
fixed-Hessian minimisation method for logistic regression that was
introduced in Section 3. We also present (in Table 1) experimental

6



Algorithm 4 Homomorphic evaluation of fixed-Hessian updates
to the weights {βj }j=0,1...,d for logistic regression

Input: Ciphertexts {ct.H j }j=0, ...,d , {ct.Z j }j=0, ...,d , a plaintext
pt.a1 which has 5

8 in every slot, and an iteration number µ
Output: Ciphertexts {ct.βj }j=0,1...,d

1: for j = 0, 1...,d do
2: ctallsumj ← AllSum(ct.Z j )
3: ct.βj ← Mult(ct.H j , ctallsumj )

4: ct.βj ← RS(ct.βj )
5: end for
6: for k = 2, ..., µ do
7: ctip ← RS(Mult(ct.β0, ct.Z0))
8: for j = 1, ...,d do
9: ctip ← Add(ctip,RS(Mult(ct.βj , ct.Z j )))
10: end for
11: for j = 0, ..d do
12: ctgrad ← RS(Mult(pt.a1, ct.Z j ))
13: ctgrad ← RS(Mult(ctip, ctgrad))
14: ctgrad ← AllSum(ctgrad)
15: ctgrad ← Subtract(ctallsumj , ctgrad)

16: ctgrad ← RS(Mult(ct.H j , ctgrad))
17: ct.βj ← Add(ct.βj , ctgrad)
18: end for
19: end for

results that enable us to compare our approach to prior works [40,
41] that also implement homomorphic logistic regression training
using (respectively) Gradient Descent minimisation and Nesterov’s
Accelerated Gradient Descent.

4.1 Experimental set up
We compare our fixed-Hessian minimisation (FH) for logistic re-
gression to the Gradient Descent (GD) approach of [41] and the
Nesterov’s Accelerated Gradient Descent (NAD) approach of [40]
for a 5 fold CV average, applied to the Edinburgh dataset. This
dataset contains 1253 observations, each with one classification and
9 covariates [39].

For a fair comparison, we have altered the underlying Learning
with Errors (LWE) parameter sets used by [41] and [40] in order
to increase the targeted security level from 80-bit to 128-bit. In
more detail, we always use the SEAL recommended parameter set
(N , logQL) for ring dimension N = 215 to achieve an estimated
128-bit security according to the Homomorphic Encryption Stan-
dard [2]. The number of iterations µ, and the requirement to decrypt
with a certain precision, imposes a minimum bit length of QL . We
set µ so that logQL is as close as possible to the maximum value
permitted by the security analysis, and then compose QL to permit
the computation.

We choose to decrypt using 10 bits of precision, so that for
Gradient Descent using a degree 3 sigmoid approximation as in [41]
the bit length of logQL is given by 2·(log△+10)+(4(µ−1)+1) log△,
while for Nesterov’s, using the same approximation, a lower bound
on logQL is given by 2 · (log△ + 10) + (6(µ − 1) + 1) log△. For

our fixed-Hessian method, a lower bound on logQL is given by
2 · (log△ + 10) + (2 + 2κ + 3(µ − 1)) log△.

In the original implementations [40, 41], the parameter log△
was set to 28 bits, respectively 30 bits. At the higher security level
of 128-bit, this permits 7, respectively 5, iterations. We report on
implementation using these values of log△, but we also calculated
that the same number of iterations can be performed at this security
level, while increasing both the values of log△ to 31 bits. We also
experimented by calculating the maximum values of log△ that
would permit us to perform an additional iteration: these are 27
bits for Gradient Descent, and 26 bits for Nesterov. The 26-bit scale
proved too low to complete the algorithm, while we observed the
Gradient Descent algorithmwas non-deterministic, so we report the
averages over 5 runs. We retain the original encoding style: either
feature-by-feature, as in this work, or a more compact database
encoding, as in [40]; as well as the original degree degд of the
sigmoid approximation.

We note that our re-implementation of [40] uses one value of △
throughout, while the authors of [40] suggest performing several of
the plaintext multiplications at a lower precision in order to reduce
the bits of ciphertext modulus consumed in these operations and so
increase the number of updates to the parameters β . They suggest
encoding certain plaintexts at 20-bit precision while encoding the
data at 30-bit precision, and this modificationwould have enabled us
to calculate an extra iteration while maintaining the same security
level. Unfortunately, SEAL calculated that there weren’t enough
appropriate 20-bit primes to use in the RNS modulus, and so we
were unable to implement this improvement.

For our own fixed-Hessian method we needed a higher precision
of around log△ = 40 as many of the numbers 1

Hkk
were very close

to zero. We set the number of iterations in Algorithm 3 as κ = 3,
so that at 39-bit precision we could perform 5 iterations, while at
45-bit precision we can perform 4 iterations. The results of our
comparison can be found in Table 1.

4.2 Analysis and discussion
When running logistic regression on the Edinburgh dataset in the
clear, we observed a maximum possible CV accuracy of 91% and
CV AUC of 0.96. Therefore, the results of Table 1 suggest that both
the fixed-Hessian method and the Nesterov’s Accelerated Gradient
Descent method proposed in [40] offer a promising solution to out-
sourced logistic regression model training based on homomorphic
computation.

However, Nesterov’s Accelerated Gradient Descent requires the
choice of a step size αk , and, unlike the smoothing parameter γk , it
is not clear how to choose this value. In [40] and [41] the authors
use a harmonic learning rate of αk = 10

1+k , and we adopted this
approach for our re-implementation. Although this is more general
than a fixed value, it still requires the selection of a numerator as
in some cases the value of 10 will be much too large.

In practice, we might choose the step size αk using a backwards
line search: selecting a value, performing an update, and then cal-
culating accuracy and either proceeding or taking a smaller step
depending on whether the accuracy increases. We could alterna-
tively use a grid search, which entails training various models with
various steps sizes and then either selecting the model that shows

7



Descent Enc log△ deg д µ Time AUC Acc. (%)

GD [41]
F 27 3 8 102.18s 0.89 82.53
F 28 3 7 59.12s 0.93 83.65
F 31 3 7 58.62s 0.95 80.46

NAD [40] D 30 3 5 42.51s 0.96 88.90
D 31 3 5 42.57s 0.94 88.74

FH (Ours)
F 39 1 5 45.70s 0.94 88.50
F 40 1 4 27.18s 0.92 88.26
F 45 1 4 30.98s 0.92 88.26

Table 1: Comparison of our fixed-Hessian minimisation
(FH) for logistic regression to the Gradient Descent (GD) ap-
proach of [41] and the Nesterov’s Accelerated Gradient De-
scent (NAD) approach of [40]. All rows correspond to param-
eter settings targetting 128-bit security. The column ‘Enc’ de-
notes the type of encoding, either feature-by-feature (F) or
database (D). The column ‘degд’ denotes the degree of the
sigmoid approximation. The column ‘µ’ denotes the number
of iterations. The column ‘Time’ gives the training time in
seconds. The column ‘Acc.’ gives the accuracy. All computa-
tions were carried out across 10 cores on a computer with
two “Intel Xeon E5-2690v4 @ 2.6GHz” and 256GB of RAM.

the best CV performance or retraining with a new step size based
on which selections performed best. Either of these methods could
lead to security concerns associated with creating an interactive
protocol where the server can in essence ascertain which cipher-
texts correspond to “good” models and which do not, as well as
increasing the computational cost. We will discuss the difficulties of
choosing α further in the context of ridge regression in Section 5.

4.3 Extensions for larger ring dimension
Using a larger ring dimension N = 216 would enable us to increase
the number of Gradient Descent iterations from 7 to 15, Nesterov’s
Accelerated Gradient Descent iterations from 5 to 10, and fixed-
Hessian iterations from 4 to 10. A parameter set with N = 216 is not
recommended in the Homomorphic Encryption Standard [2] and
hence is not directly available in SEAL. Similar to the suggestion
in [25], for N = 216, with an error distribution σ = 3.2, and a uni-
form ternary secret distribution, we can chose a ciphertext modulus
of bitsize logQL = 1775. The LWE estimator3 of [3] estimates this
parameter set to have 128-bit security, assuming (in line with [2])
that logarithm of the cost of lattice reduction with blocksize β in
dimension d is 0.292β + 16.4 + log(8d).

We were unable to increase the iteration number for Gradient
Descent and Nesterov’s Accelerated Gradient Descent, so we can-
not present a full comparison analogous to Table 1 for the N = 216
parameter set. For both these minimisation methods, we found
that accuracy and AUC decreased sharply after around 4 iterations,
which we suspect is due to noise corruption from the higher degree
sigmoid approximation coupled with a lower precision. Plaintext
experimentation indicates that this would increase the Gradient
Descent CV accuracy to 86% and the Nesterov’s Accelerated Gradi-
ent Descent accuracy to 90%. For the fixed-Hessian method in this

3https://bitbucket.org/malb/lwe-estimator, commit fb7deba

setting, we obtained a CV accuracy of 91% and CV AUC of 0.95:
these results are close to the best possible.

In summary, our experiments show that the fixed-Hessianmethod
can be preferred to Nesterov’s Accelerated Gradient Descent for
outsourcing logistic regression model training, as it offers very high
accuracy and fast running times, while avoiding the requirement
to find and set an appropriate step size α .

5 RIDGE REGRESSION TRAINING
In this section, we consider how to achieve privacy-preserving ridge
regression training. Recall from Section 2.3.2 that we are interested
in minimising the ridge regression cost function (Equation (2))
and could do so, for example, using Gradient Descent, Nesterov’s
Accelerated Gradient Descent, or a fixed-Hessian approach.

5.1 Gradient Descent and Nesterov’s
Accelerated Gradient Descent

We first outline how to evaluate a Gradient Descent approach to
ridge regression training homomorphically, and then explain how to
extend these methods to compute Nesterov’s Accelerated Gradient
Descent updates.

The Gradient Descent updates for ridge regression are given by

βj ← βj − α
∂J

∂βj
(12)

where the right hand side is given by

(1 − λα1{j,0})βj + α
n∑
i=1

yixi j︸      ︷︷      ︸
Yj

−

d∑
k=0

βk α
n∑
i=1

xi jxik︸        ︷︷        ︸
Mjk

and α is the Gradient Descent learning rate. We can fix a learn-
ing rate α , which enables us to save time and levels by precom-
puting the quantities Yj = α

∑n
i=1 yixi j , 0 ≤ j ≤ d and Mjk =

α
∑n
i=1 xi jxik , 0 ≤ j,k ≤ d . The precomputation of Y and Mjk

is given in Algorithms 5 and 6 respectively. Each algorithm con-
sumes 2 levels and they can be run in parallel to each other. In our
implementation, Algorithm 5 is entirely parallelised, whereas for
Algorithm 6 we only calculate the inner loop given by lines 8 - 12
in parallel.

To encode the training data, we opt again for a “feature by feature”
encoding, creating messages y and X j where

y = (y1,y2, ...,yn ),

X j = (x1j ,x2j , ...,xnj )

Note that in practice, the vector X0 consists entirely of 1s, so does
not need to be transmitted. We also define two sets of plaintexts, C
and I , which can be constructed by the server. The set I consists of
d + 1 plaintexts, each corresponding to a row of the (d + 1) × (d + 1)
identity matrix, so that multiplying by pt.Ij corresponds to deleting
all but the jth slot in the underlying message. The setC is the same
except instead of 1s on the diagonal, we have the fixed learning
rate α .

Having calculated the ciphertexts ct.Y and {ct.Mj }j=0, ...,d , we
are able to perform Gradient Descent updates to the parameters
βj as follows. The weights are encoded as a single message β =

8

https://bitbucket.org/malb/lwe-estimator


Algorithm 5 Homomorphic evaluation of Y = (Y0, ...,Yd )
Input: Ciphertexts {ct.X j }j=0, ...,d and ct.y, plaintexts

{pt.Cj }j=0, ...,d
Output: A ciphertext ct.Y which corresponds to the message

(Y0, ...,Yd ), with Yj defined by Yj = α
∑n
i=1 yixi j

1: ct.Y ← ct.0
2: for j = 0, ...,d do
3: Z ← Mult(ct.Y , ct.X j )

4: Z ← RS(Z )
5: Z ← AllSum(Z )
6: Z ← Mult(pt.Cj ,Z )
7: Z ← RS(Z )
8: Y ← Add(ct.Y ,Z )
9: end for

Algorithm 6 Homomorphic evaluation ofMj

Input: Ciphertexts {ct.X j }j=0, ...,d and plaintexts {pt.Cj }j=0, ...,d
Output: Ciphertexts {ct.Mj }j=0, ...,d , where ct.Mj corresponds

to the message (Mj0,Mj1, ...,Mjd ), withMjk defined by
Mjk = α

∑n
i=1 xikxi j

1: for j = 0, ...,d do
2: ct.Mj ← Mult(ct.X j , ct.X j )

3: ct.Mj ← RS(ct.Mj )

4: ct.Mj ← AllSum(ct.Mj )

5: ct.Mj ← Mult(ct.Mj , pt.Cj )

6: ct.Mj ← RS(ct.Mj )

7: for k = 0, .., j − 1 do
8: Z ← Mult(ct.X j , ct.Xk )
9: Z ← RS(Z )
10: Z ← AllSum(Z )
11: ct.Mj ← Add(ct.Mj ,RS(Mult(pt.Ck ,Z )))
12: ct.Mk ← Add(ct.Mk ,RS(Mult(pt.Cj ,Z )))
13: end for
14: end for

(β0, ..., βd ). We compute the updated parameters one feature at a
time, first multiplying ct.β by ct.Mj to obtain a ciphertext that
corresponds to

(αβ0

n∑
i=1

xi jxi0,αβ1

n∑
i=1

xi jxi1, ...,αβd

n∑
i=1

xi jxid ) .

We then AllSum and multiply by Ij . Summing all the resulting
ciphertexts and subtracting from ct.Y , we calculate a ciphertext
ctgrad that has its jth entry

α
n∑
i=1

yixi j − α
d∑
k=0

βk

n∑
i=1

xi jxik

exactly as is required in (12), so that we can update all parameters
simultaneously. We initialise all weights to zero, so that the first
iteration is simply β = Y . Algorithm 7 perform µ iterations of this
process. Updating the parameters β consumes 2 levels per (full)
iteration, so that the total number of levels consumed by Algorithm
(7) is 2(µ − 1), bringing the number of levels required to evaluate

Algorithm 7 Homomorphic evaluation of µ iterations of Gradient
Descent for ridge regression

Input: Ciphertexts ct.Y , {ct.Mj }j=0, ...,d , plaintexts
{pt.Ij }j=0, ...,d and pt.λ which corresponds to the message

(0, λ, λ, ..., λ), and an iteration number µ
Output: A ciphertext ct.β , corresponding to the values
(β0, β1, ..., βd ) after µ Gradient Descent updates.

1: ct.β ← ct.Y
2: for i = 2, ..., µ do
3: ctgrad ← ct.Y
4: for j = 0, ...,d do
5: Z ← RS(Mult(ct.β , ct.Mj ))

6: Z ← AllSum(Z )
7: Z ← RS(Mult(pt.Ij ,Z ))
8: ctgrad ← Subtract(ctgrad,Z )
9: end for
10: Z ← RS(Mult(ct.β, pt.α))
11: Z ← RS(Mult(Z , pt.λ))
12: ct.β ← Subtract(ct.β ,Z )
13: ct.β ← Subtract(ct.β , ctgrad)
14: end for

the entire process to 2 + 2(µ − 1).

If instead we wish to perform Nesterov’s Accelerated Gradient
Descent, we require an extra multiplication each iteration. We
recall that Nesterov’s Accelerated Gradient Descent maintains a
momentum term v(t ) ∈ R(d+1), and has updates given by [48]:

β (t+1) = v(t ) − αt∇J (v
(t )) (13)

v(t+1) = (1 − γt )β (t+1) + γt β (t ) (14)

where 0 ≤ γt ≤ 1 is a smoothing parameter. We observe that
the update given by the first line is simply the Gradient Descent
update applied to v in place of β , and so can be accomplished with
Algorithm 7. For the second line of the update, we can use SIMD
techniques to update every component of v simultaneously, giving:

ct.v ← RS(Mult(pt.(1−γt ), ct.β (t+1)))+RS(Mult(pt.γt , ct.β (t )))
(15)

This increases the number of levels required per iteration from 2
to 3. In our implementation we use the FISTA schedule for γt [7]
which gives γ0 = 0, so that we can initialise both ct.β ← ct.Y and
ct.v ← ct.Y . This brings the total number of levels required for
Nesterov’s Accelerated Gradient Descent training to 2 + 3(µ − 1).
For reasons of space, we omit details of the full algorithm giving the
homomorphic evaluation of µ iterations of Nesterov’s Accelerated
Gradient Descent for ridge regression.

5.2 Fixed-Hessian
Having described how to achieve ridge regression training using
either Gradient Descent or Nesterov’s Accelerated Gradient De-
scent, which both require a learning rate α , we now propose a
fixed-Hessian method for ridge regression training, which draws
heavily from the results of Lindsay and Böhning [11] and Bonte
and Vercauteren [14]. To make our work speak more naturally
to theirs we replace the minimisation of (2) with the (equivalent)

9



maximisation of

F (β) = −
1
2
(λ

d∑
i=1

β2i +
n∑
i=1
(yi − β

T xi )
2) ,

which has gradient vector given component wise by

∂F

∂βj
= −(λβj1j,0 +

n∑
i=1

xi j (β
T xi − yi )) .

Therefore, the full Hessian H (β) ∈ R(d+1)×(d+1) is given element
wise by

H (β)jk = −

(
λ1j=k, j,0 +

n∑
i=1

xi jxik

)
.

This Hessian is already “fixed”, but as in Section 3 we simplify our
computation by replacingH with a diagonalmatrix H̃ ∈ R(d+1)×(d+1)
with diagonal elements given by

H̃kk = λ1k,0 +
d∑
j=0

n∑
i=1

xi jxik . (16)

We assume all entries xi j are scaled to the range [0, 1] so that
by [14, Lemma 1] we have −H ≥ −H̃ . Then, by [11, Theorem
4.1], using H̃ to perform Newton-Raphson updates gives us linear
monotonic convergence. However, unlike for logistic regression,
our cost function F is not bounded above, so we lose the guaranteed
convergence property in [11].

Substituting the full Hessian for our diagonal matrix with entries
given by (16), updates are now given component wise by:

βj ← βj +
1

Hj, j
∇F (β) , (17)

where the right hand side of Equation (17) is given by

(1 −
λ1k,0
Hj, j

) +
1

Hj, j

©«
n∑
i=1

yixi j︸    ︷︷    ︸
Ỹj

−

d∑
k=0

βk

n∑
i=1

xi jxik︸      ︷︷      ︸
M̃jk

ª®®®®®®®®¬
.

Comparing this to Yj andMjk as given in (12), we see that the only
difference is the factor of α , so that we can homomorphically evalu-
ate a ciphertext ct.Ỹ which corresponds to (Ỹ0, ..., Ỹd ) and cipher-
texts {ct.M̃j }j=0, ...,d where ct.M̃j corresponds to (M̃j0, ..., M̃jd )

using Algorithms 5 and 6 respectively, simply substituting pt.Ij in
place of pt.Cj .
To homomorphically evaluate the entries ofH given in Equation (16),
we first rearrange the entries H̃kk as H̃kk = λ1k,0 +

∑d
j=0 M̃jk , so

that the entries ct.H̃kk can be easily evaluated as the homomorphic
sum of the (d + 1) ciphertexts ct.Mjk as generated in lines 4 and
10 in Algorithm 6 and a plaintext pt.λ. We can therefore calculate
(d + 1) ciphertexts ct.Hj which each correspond to (H̃j j , ..., H̃j j )

using as part of the calculation of ct.M̃j . In particular this process
consumes no extra levels.

To invert these entries, we call Algorithm 2, observing that the
scaling of the features xi j enables us to bound the values H̃kk to

the range [1,n(d + 1)], so that we can take

T1 =
8(1 + n(d + 1))

1 + 8n(d + 1) + n2(d + 1)2
, T2 =

−1
1 + 8n(d + 1) + n2(d + 1)2

.

At this point, we have (d + 1) ciphertexts ct.Hj which each corre-
spond to (an approximation of) ( 1

H̃j j
, ..., 1

H̃j j
), using 2 + 2κ levels.

To save time and levels when updating the weights β , we now use
plaintext multiplication by pt.Ij to create (d + 1) ciphertexts ct.hj ,
where hj has 1

H̃j j
in the jth slot and zeroes elsewhere, as well as a

ciphertext ct.H which corresponds to ( 1
H̃00
, 1
H̃11
, ..., 1

H̃dd
), enabling

us to use SIMD operations.
Observe that if we initialise the parameters to zero, we have

that the first iteration is given simply by βj =
1
H̃j j

Ỹj . We outline
how to perform µ fixed-Hessian updates to the parameters β in
Algorithm 8, which consumes 1 + 2(µ − 1) levels, bringing the total
level consumption to 1 + 2(µ + κ + 1). As before, we parallelise the
loop given by lines 6 - 10.

Algorithm 8 Homomorphic Evaluation of µ iterations of fixed-
Hessian Updates for Ridge Regression
Input: Ciphertexts ct.Y , ct.H , {ct.hj }j=0, ...,d , {ct.Mj }j=0, ...,d ,

a plaintext pt.λ corresponding to (0, λ, ...λ) and an iteration
number µ

Output: A ciphertext ct.β which corresponds to (β0, β1, ..., βd )
after µ fixed-Hessian updates

1: ct.Y ← RS(Mult(ct.H , ct.Y ))
2: ct.β ← ct.Y
3: pt.λ← RS(Mult(pt.λ, ct.H ))
4: for k = 2, ..., µ do
5: ctgrad ← ct.Y
6: for j = 0, ...,d do
7: Z ← RS(Mult(ct.β , ct.Mj ))

8: Z ← AllSum(Z )
9: Z ← RS(Mult(pt.hj ,Z ))
10: ctgrad ← Subtract(ctgrad,Z )
11: end for
12: Z ← RS(Mult(ct.β, pt.λ))
13: ct.β ← Subtract(ct.β ,Z )
14: ct.β ← Add(ct.β, ctgrad)
15: end for
16:

5.3 Implementation and comparison
We implemented ridge regression training homomorphically using
all three minimisation algorithms in SEAL. In order to evaluate their
effectiveness, we used the BostonHousing dataset available through
scikit-learn [54] which consists of 506 records with 13 covariates.
The goal is to predict the median house price for a region from
13 characteristics of the neighbourhood [36]. By using the closed
form for the parameters β , this dataset achieves a maximum cross
validation (CV) r2 of about 0.7.

5.3.1 Parameter selection. For each minimisation approach we
adopt the SEAL recommended parameter set for ring dimension

10



Descent log△ µ Time r2

GD 40 9 207.27s 0.4165
30 13 450.53s 0.4058

NAD 40 6 127.71s 0.4054
30 9 415.54s 0.4566

FH 40 6 137.68s 0.3206
Table 2: Comparison of a fixed-Hessian minimisation (FH)
for ridge regression to a Gradient Descent (GD) approach
and a Nesterov’s Accelerated Gradient Descent (NAD) ap-
proach.All rows correspond to parameter settings targetting
128-bit security and in all cases a feature-by-feature encod-
ing is used. The column ‘µ’ denotes the number of iterations.
The column ‘Time’ gives the 5 fold average training time in
seconds. The column ‘r2’ gives the average 5-fold CV coeffi-
cient of determination. All computations were carried out
in the same manner as Table 1.

N = 215 to achieve an estimated 128-bit security according to the
Homomorphic Encryption Standard [2]. This fixes a maximum bit
length of ciphertext modulusQL . On the other hand, the number of
iterations µ, and the requirement to decrypt with a certain precision,
imposes a minimum bit length of QL . We set µ to the maximum
value permitted by the security analysis. To implement µ iterations
of Gradient Descent and decrypt at 10 bits of precision, we require a
minimum bit length ofQL of 2(log△+10)+2µ log△. For Nesterov’s
Accelerated Gradient Descent, a minimum bit length ofQL is given
by 2(log△+ 10)+ log△(2+ 3(µ − 1)). For our fixed-Hessian method,
we set κ = 2 iterations of Newton-Raphson to invert the entries of
H̃ (Algorithm 2). Then, a lower bound on the minimum bit length
of QL is given by 2(log△ + 10) + log△(1 + 2(κ + µ + 1)).

We set log△ = 40 and tested all three methods at this precision.
Using such a high scale is necessary for the fixed-Hessian method
due to the very small values being operated on, which risk being
lost at lower precision. We are additionally able to present results
for a lower precision for the Gradient Descent methods.

For all three minimisation methods we set the regularisation
parameter λ = 1.

Unlike for logistic regression, we used a fixed learning rate α for
both Gradient Descent variants. We did not observe a better rate of
convergence when trying either harmonic or anneal learning rates.
For Gradient Descent, we chose α = 0.00125, while for Nesterov’s
Accelerated Gradient Descent we chose α = 0.00099, and again set
the smoothing parameters γt according to the FISTA framework.

5.3.2 Results and discussion. In Table 2 we present the results of
our implementation. Given the maximum CV r2 for this dataset is
around 0.7, we see that the accuracy achieved by all three minimisa-
tion methods is quite disappointing. This may be a consequence of
how slowly the ridge regression cost function converges to a min-
imum: for example, plaintext experiments give that, for example,
even in 50 iterations, GD still only exhibits an average CV accuracy
of 65%. This means that good accuracy cannot be attained in the
very limited number of iterations afforded to us by (leveled) CKKS.

We found suitable learning rates α for both Gradient Descent
variants via plaintext experiments. We found that these learning

rates had a huge impact on the accuracy of the derived model:
choosing α too small led to very slow convergence as expected,
while choosing α even 10−4 too large led to the parameters growing
uncontrollably in magnitude. We suspect this behaviour occurs for
ridge regression as its loss function is not Lipschitz continuous,
unlike logistic regression. Hence, although Table 2 shows worse re-
sults for the fixed-Hessian method, we remark that for even slightly
different choices of α the situation would be reversed. Given the dif-
ficulties associated with choosing this value securely, we would still
suggest a fixed-Hessian method is better for outsourced training.

5.4 Future work
Our results for the three iterative approaches that we examined
for ridge regression give convergence that is either unstable or
slow. It would therefore be interesting to instead homomorphically
evaluate the closed form solution to ridge regression directly.

Table 2 also gives an interesting insight on CKKS precision and
noise. Comparing the two parameter settings for Gradient Descent,
even though decreasing the precision enabled us to perform 4 more
iterations, the accuracy of the derived model actually fell slightly.
This suggests that the speed of convergence of Gradient Descent
was insufficient to overcome the noise being accrued in the lower
bits of the ciphertext at low precision. Future work could seek to
make these observations precise, for example by comparing the
rate of precision lost in CKKS operations and the rate of precision
gained each iteration.

Along similar lines, it would also be helpful to have a stronger
understanding of the noise growth in CKKS, both as a result of
encoding and operations, particularly in the context of these min-
imisation methods. Such results could be helpful not only in the
choice of log△ but also in the judicious use of bootstrapping.

Acknowledgements.Thisworkwas supported by EPSRC grants
EP/S021817/1 and EP/P009301/1 and by the European Union Hori-
zon 2020 Research and Innovation Program Grant 780701.

REFERENCES
[1] A. Akavia, H. Shaul, M. Weiss, and Z. Yakhini. 2019. Linear-Regression on Packed

Encrypted Data in the Two-ServerModel. In Proceedings of the 7th ACMWorkshop
on Encrypted Computing & Applied Homomorphic Cryptography. 21–32.

[2] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J.
Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison, A.
Sahai, and V. Vaikuntanathan. 2018. Homomorphic Encryption Security Standard.
Technical Report. HomomorphicEncryption.org.

[3] M. R. Albrecht, R. Player, and S. Scott. 2015. On the concrete hardness of Learning
with Errors. J. Mathematical Cryptology 9, 3 (2015), 169–203.

[4] Y. Aono, T. Hayashi, L. Phong, and L. Wang. 2016. Scalable and Secure Logistic
Regression via Homomorphic Encryption. 142–144. https://doi.org/10.1145/
2857705.2857731

[5] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. 2016.
A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes.
In SAC 2016 (LNCS), Roberto Avanzi and Howard M. Heys (Eds.), Vol. 10532.
Springer, Heidelberg, 423–442. https://doi.org/10.1007/978-3-319-69453-5_23

[6] J. Barzilai and J. M. Borwein. 1988. Two-point step size gradient methods. IMA
journal of numerical analysis 8, 1 (1988), 141–148.

[7] A. Beck and M. Teboulle. 2009. A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences 2, 1 (2009),
183–202. https://doi.org/10.1137/080716542

[8] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. 2016. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In 27th
SODA, Robert Krauthgamer (Ed.). ACM-SIAM, 10–24. https://doi.org/10.1137/1.
9781611974331.ch2

11

https://doi.org/10.1145/2857705.2857731
https://doi.org/10.1145/2857705.2857731
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1137/080716542
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2


[9] M. Blatt, A. Gusev, Y. Polyakov, K.Rohloff, and V. Vaikuntanathan. 2019. Opti-
mized Homomorphic Encryption Solution for Secure Genome-Wide Association
Studies. Cryptology ePrint Archive, Report 2019/223. (2019).

[10] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski. 2019. nGraph-HE: a graph
compiler for deep learning on homomorphically encrypted data. In Proceedings
of the 16th ACM International Conference on Computing Frontiers. 3–13.

[11] D. Böhning and B. Lindsay. 1988. Monotonicity of quadratic-approximation
algorithms. Annals of the Institute of Statistical Mathematics 40 (02 1988), 641–
663.

[12] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D.
Ramage, A. Segal, and K. Seth. 2017. Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17). Association for Computing
Machinery, New York, NY, USA, 1175–1191.

[13] Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. 2017. Faster Homomorphic Function Evaluation Using
Non-integral Base Encoding. In CHES 2017 (LNCS), Wieland Fischer and Naofumi
Homma (Eds.), Vol. 10529. Springer, Heidelberg, 579–600. https://doi.org/10.1007/
978-3-319-66787-4_28

[14] C. Bonte and F. Vercauteren. 2018. Privacy-preserving logistic regression training.
BMC medical genomics 11, Suppl 4 (October 2018), 86. https://doi.org/10.1186/
s12920-018-0398-y

[15] J. Bos, K. Lauter, and M. Naehrig. 2014. Private Predictive Analysis on Encrypted
Medical Data. Journal of biomedical informatics 50 (05 2014). https://doi.org/10.
1016/j.jbi.2014.04.003

[16] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast
Homomorphic Evaluation of Deep Discretized Neural Networks. In CRYPTO 2018,
Part III (LNCS), Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10993.
Springer, Heidelberg, 483–512. https://doi.org/10.1007/978-3-319-96878-0_17

[17] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha. 2019. Low Latency Privacy Preserv-
ing Inference (Proceedings of Machine Learning Research), Kamalika Chaudhuri
and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach, California, USA,
812–821.

[18] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha. 2019. Low latency privacy pre-
serving inference. In International Conference on Machine Learning. 812–821.

[19] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine,
and K. Lauter. 2018. Logistic regression over encrypted data from
fully homomorphic encryption. BMC Medical Genomics 11, 4
(10 2018). https://www.microsoft.com/en-us/research/publication/
logistic-regression-over-encrypted-data-from-fully-homomorphic-encryption-2/

[20] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. 2018. Bootstrapping for
Approximate Homomorphic Encryption. Cryptology ePrint Archive, Report
2018/153. (2018).

[21] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. 2018. A full RNS variant of
approximate homomorphic encryption. In International Conference on Selected
Areas in Cryptography. Springer, 347–368.

[22] J. H. Cheon, A. Kim, M. Kim, and Y. Song. 2016. Homomorphic Encryption
for Arithmetic of Approximate Numbers. Cryptology ePrint Archive, Report
2016/421. (2016).

[23] J. H. Cheon, D. Kim, Y. Kim, and Y. Song. 2018. Ensemble Method for Privacy-
Preserving Logistic Regression Based on Homomorphic Encryption. IEEE Access
6 (2018), 46938–46948. https://doi.org/10.1109/ACCESS.2018.2866697

[24] J. L. H. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup. 2018. Doing
Real Work with FHE: The Case of Logistic Regression. In Proceedings of the
6th Workshop on Encrypted Computing and Applied Homomorphic Cryptography
(WAHC ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3267973.3267974

[25] B. R. Curtis and R. Player. 2019. On the Feasibility and Impact of Standardising
Sparse-secret LWE Parameter Sets for Homomorphic Encryption. In Proceedings
of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019, Michael
Brenner, Tancrède Lepoint, and Kurt Rohloff (Eds.). ACM, 1–10.

[26] J. E. Dennis Jr and R. B. Schnabel. 1996. Numerical methods for unconstrained
optimization and nonlinear equations. SIAM.

[27] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. (2012).
http://eprint.iacr.org/2012/144.

[28] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
ACM STOC, Michael Mitzenmacher (Ed.). ACM Press, 169–178. https://doi.org/
10.1145/1536414.1536440

[29] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. 2018. Privacy-preserving
ridge regression with only linearly-homomorphic encryption. In International
Conference on Applied Cryptography and Network Security. Springer, 243–261.

[30] T. Graepel, K. Lauter, and M. Naehrig. 2012. ML confidential: Machine learn-
ing on encrypted data. In International Conference on Information Security and
Cryptology. Springer, 1–21.

[31] W. W. Hager and H. Zhang. 2005. A new conjugate gradient method with
guaranteed descent and an efficient line search. SIAM Journal on optimization
16, 1 (2005), 170–192.

[32] S. Halevi and V. Shoup. 2013. Design and implementation of a homomorphic-
encryption library. IBM Research (Manuscript) 6 (2013), 12–15.

[33] S. Halevi and V. Shoup. 2014. Algorithms in HElib. In Annual Cryptology Confer-
ence. Springer, 554–571.

[34] R. Hall, S. E. Fienberg, and Y. Nardi. 2011. Secure multiple linear regression based
on homomorphic encryption. Journal of Official Statistics 27, 4 (2011), 669.

[35] K. Han, S. Hong, J. H. Cheon, and D. Park. 2018. Efficient Logistic Regression on
Large Encrypted Data. IACR Cryptology ePrint Archive 2018 (2018), 662.

[36] D. Harrison Jr and D. L. Rubinfeld. 1978. Hedonic housing prices and the demand
for clean air. (1978).

[37] S. Hu, Q. Wang, J. Wang, S. S. M. Chow, and Q. Zou. 2016. Securing fast learning!
Ridge regression over encrypted big data. In 2016 IEEE Trustcom/BigDataSE/ISPA.
IEEE, 19–26.

[38] C. Huang and A. Mintz. 1990. Ridge regression analysis of the defence-growth
tradeoff in the United States. Defence and Peace Economics 2, 1 (1990), 29–37.

[39] R. L. Kennedy, H. S. Fraser, L. N. McStay, and R. F. Harrison. 1996. Early diagnosis
of acute myocardial infarction using clinical and electrocardiographic data at
presentation: derivation and evaluation of logistic regression models. European
heart journal 17, 8 (1996), 1181–1191.

[40] A. Kim, Y. Song, M. Kim, and J. H. Lee, K.and Cheon. 2018. Logistic regression
model training based on the approximate homomorphic encryption. BMCmedical
genomics 11, 4 (2018), 83.

[41] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. 2018. Secure logistic regres-
sion based on homomorphic encryption: Design and evaluation. JMIR medical
informatics 6, 2 (2018), e19.

[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. A Toolkit for Ring-
LWE Cryptography. Cryptology ePrint Archive, Report 2013/293. (2013). http:
//eprint.iacr.org/2013/293.

[43] X. Ma, F. Zhang, X. Chen, and J. Shen. 2018. Privacy preserving multi-party
computation delegation for deep learning in cloud computing. Information
Sciences 459 (2018), 103–116.

[44] D. W. Marquardt and R. D. Snee. 1975. Ridge regression in practice. The American
Statistician 29, 1 (1975), 3–20.

[45] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa. 2020. Delphi: A
Cryptographic Inference Service for Neural Networks. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 2505–2522.

[46] P. Mohassel and Y. Zhang. 2017. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 19–38.

[47] K. P. Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[48] Y. Nesterov. A method of solving a convex programming problem with conver-

gence rate O (1/k2). In Sov. Math. Dokl, Vol. 27.
[49] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. 2013.

Privacy-preserving ridge regression on hundreds of millions of records. In 2013
IEEE Symposium on Security and Privacy. IEEE, 334–348.

[50] J. Nocedal and S. Wright. 2006. Numerical optimization. Springer Science &
Business Media.

[51] S. F. Obermann and M. J. Flynn. 1997. Division algorithms and implementations.
IEEE Trans. Comput. 46, 8 (1997), 833–854.

[52] Tabitha Ogilvie, Rachel Player, and Joe Rowell. 2020. FHLR: Fixed
Hessian Logistic Regression. (2020). https://github.com/TabOG/
Fixed-Hessian-Logistic-Regression Available at https://github.com/TabOg/
Fixed-Hessian-Logistic-Regression.

[53] Tabitha Ogilvie, Rachel Player, and Joe Rowell. 2020. PPRR: Pri-
vacy Preserving Ridge Regression. (2020). https://github.com/TabOG/
Privacy-Preserving-Ridge-Regression Available at https://github.com/TabOg/
Privacy-Preserving-Ridge-Regression.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[55] B. Price. 1977. Ridge regression: Application to nonexperimental data. Psycho-
logical Bulletin 84, 4 (1977), 759.

[56] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and
cryptography. In 37th ACM STOC, Harold N. Gabow and Ronald Fagin (Eds.).
ACM Press, 84–93. https://doi.org/10.1145/1060590.1060603

[57] M. Georgieva J. R. Troncoso-Pastoriza S. Carpov, N. Gama. 2020. Privacy-
preserving semi-parallel logistic regression training with fully homomorphic
encryption. BMC medical genomics 13 (2020), 88. https://doi.org/10.1186/
s12920-020-0723-0

[58] M. J. Schulte, J. Omar, and E. E. Swartzlander. 1994. Optimal initial approximations
for the Newton-Raphson division algorithm. Computing 53, 3-4 (1994), 233–242.

[59] SEAL 2020. Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL.
(April 2020). Microsoft Research, Redmond, WA.

12

https://doi.org/10.1007/978-3-319-66787-4_28
https://doi.org/10.1007/978-3-319-66787-4_28
https://doi.org/10.1186/s12920-018-0398-y
https://doi.org/10.1186/s12920-018-0398-y
https://doi.org/10.1016/j.jbi.2014.04.003
https://doi.org/10.1016/j.jbi.2014.04.003
https://doi.org/10.1007/978-3-319-96878-0_17
https://www.microsoft.com/en-us/research/publication/logistic-regression-over-encrypted-data-from-fully-homomorphic-encryption-2/
https://www.microsoft.com/en-us/research/publication/logistic-regression-over-encrypted-data-from-fully-homomorphic-encryption-2/
https://doi.org/10.1109/ACCESS.2018.2866697
https://doi.org/10.1145/3267973.3267974
http://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://eprint.iacr.org/2013/293
http://eprint.iacr.org/2013/293
https://github.com/TabOG/Fixed-Hessian-Logistic-Regression
https://github.com/TabOG/Fixed-Hessian-Logistic-Regression
https://github.com/TabOg/Fixed-Hessian-Logistic-Regression
https://github.com/TabOg/Fixed-Hessian-Logistic-Regression
https://github.com/TabOG/Privacy-Preserving-Ridge-Regression
https://github.com/TabOG/Privacy-Preserving-Ridge-Regression
https://github.com/TabOg/Privacy-Preserving-Ridge-Regression
https://github.com/TabOg/Privacy-Preserving-Ridge-Regression
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1186/s12920-020-0723-0
https://doi.org/10.1186/s12920-020-0723-0
https://github.com/Microsoft/SEAL


[60] E. Setakis, H. Stirnadel, and D. J. Balding. 2006. Logistic regression protects
against population structure in genetic association studies. Genome research 16,
2 (2006), 290–296.

[61] R. Shokri and V. Shmatikov. 2015. Privacy-Preserving Deep Learning. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS ’15). Association for Computing Machinery, New York, NY, USA,
1310–1321.

[62] I. Theodossiou. 1998. The effects of low-pay and unemployment on psychological
well-being: a logistic regression approach. Journal of health economics 17, 1 (1998),
85–104.

[63] H. J. P. Timmermans. 1981. Multiattribute shopping models and ridge regression
analysis. Environment and Planning A 13, 1 (1981), 43–56.

[64] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou.
2019. A hybrid approach to privacy-preserving federated learning. In Proceedings
of the 12th ACM Workshop on Artificial Intelligence and Security. 1–11.

[65] Panayiotis N. V., D. Eastwood, H. J. Yun, M. V. Spanaki, L. H. Bey, C. Kessaris,
and T. A. Gennarelli. 2006. Impact of a neurointensivist on outcomes in patients
with head trauma treated in a neurosciences intensive care unit. Journal of
Neurosurgery JNS 104, 5 (2006), 713 – 719.

[66] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig. 2014.
Crypto-nets: Neural networks over encrypted data. arXiv preprint arXiv:1412.6181
(2014).

13


	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Structure of the paper

	2 Background
	2.1 CKKS
	2.2 SEAL implementation of CKKS
	2.3 Machine learning training models
	2.4 Optimisation techniques

	3 Improved fixed-Hessian training for logistic regression
	3.1 Encoding
	3.2 Homomorphic evaluation of 
	3.3 Homomorphic evaluation of --1
	3.4 Putting it all together

	4 Implementation and Comparison
	4.1 Experimental set up
	4.2 Analysis and discussion
	4.3 Extensions for larger ring dimension

	5 Ridge regression training
	5.1 Gradient Descent and Nesterov's Accelerated Gradient Descent
	5.2 Fixed-Hessian
	5.3 Implementation and comparison
	5.4 Future work

	References

