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—— Abstract

Innovative side-channel attacks have repeatedly falsified the assumption that cryptographic im-

plementations are opaque black-boxes. Therefore, it is essential to ensure cryptographic con-
structions’ security even when information leaks via unforeseen avenues. One such fundamental
cryptographic primitive is the secret-sharing schemes, which underlies nearly all threshold cryp-
tography. Our understanding of the leakage-resilience of secret-sharing schemes is still in its
preliminary stage.

This work studies locally leakage-resilient linear secret-sharing schemes. An adversary can
leak m bits of arbitrary local leakage from each n secret shares. However, in a locally leakage-
resilient secret-sharing scheme, the leakage’s joint distribution reveals no additional information
about the secret.

For every constant m, we prove that the Massey secret-sharing scheme corresponding to a
random linear code of dimension k (over sufficiently large prime fields) is locally leakage-resilient,
where k/n > 1/2 is a constant. The previous best construction by Benhamouda, Degwekar, Ishai,
Rabin (CRYPTO-2018) needed k/n > 0.907. A technical challenge arises because the number
of all possible m-bit local leakage functions is exponentially larger than the number of random
linear codes. Our technical innovation begins with identifying an appropriate pseudorandomness-
inspired family of tests; passing them suffices to ensure leakage-resilience. We show that most
linear codes pass all tests in this family. This Monte-Carlo construction of linear secret-sharing
scheme that is locally leakage-resilient has applications to leakage-resilient secure computation.

Furthermore, we highlight a crucial bottleneck for all the analytical approaches in this line
of work. Benhamouda et al. introduced an analytical proxy to study the leakage-resilience of
secret-sharing schemes; if the proxy is small, then the scheme is leakage-resilient. However, we
present a one-bit local leakage function demonstrating that the converse is false, motivating the
need for new analytically well-behaved functions that capture leakage-resilience more accurately.
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Technically, the analysis involves probabilistic and combinatorial techniques and (discrete)
Fourier analysis. The family of new “tests” capturing local leakage functions, we believe, is of
independent and broader interest.

Keywords and phrases Local leakage-resilience, Massey secret-sharing scheme, Random linear
codes, Shamir’s secret-sharing scheme, Discrete Fourier analysis

1 Introduction

Traditionally, one treats the cryptosystems implementing cryptographic primitives as imper-
vious black-boxes that faithfully realize the intended input-output behavior and provide no
additional information. In the real-world implementations and deployments, however, this as-
sumption has been repeatedly proven false. Beginning with the works of Kocher et al. [Koc96,
KJJ99], several innovative and sophisticated side-channel attacks reveal partial information
about the intermediate values and stored secrets of computation (for a summary of the
history of several of these attacks, refer to [OP03, KS04, ZF05, BT18, SLS19, RD20]). These
side-channel attacks on fundamental cryptographic building blocks like secret-sharing schemes
pose a threat to the security of all cryptographic constructions relying on them.

Towards addressing these concerns, one can design mechanical countermeasures, hardware
solutions, and algorithmic representation to protect against known threats [Ava05, BSS05,
CFA105, FGM 110, FV12, AVL19]. However, this approach creates unknown risks, the risk of
undiscovered attacks compromising a scheme’s security. On the other hand, leakage-resilient
cryptography formally models potential avenues of information leakage and the leakage attacks
that an adversary may undertake. This approach has the benefit that the general model
encompasses leakage attacks beyond those that are already known. Furthermore, one knows
the formal security guarantees and risks of using such cryptographic schemes. In the last
few decades, there has been a large body of highly influential research on the feasibility
and efficiency of realizing leakage-resilient variants of fundamental cryptographic primitives
against active/passive adversaries that perform leakage statically /adaptively (refer to the
excellent survey [KR19]).

One such fundamental cryptographic primitive is secret-sharing schemes, which are
essential to nearly all threshold cryptography. In the (so-called) standard model, the
adversary can corrupt a few parties and obtain their secret-shares; however, it obtains no
additional information about the remaining secret shares. The security of secret-sharing
schemes crucially relies on the fact that the corruption threshold is lower than the secret-
sharing schemes’ privacy threshold. However, a side-channel attack on a secret-sharing
scheme provides the adversary a restricted or noisy access to every party’s secret share. For
instance, a passive adversary can leak a few bits from each secret share. Although it has a
partial view of each secret share, the leakages’ joint distribution may be correlated with the
secret to compromise its secrecy.

Our understanding of the leakage-resilience of secret-sharing schemes is still in its pre-
liminary stage. Even for prominent secret-sharing schemes like Shamir’s secret-sharing
scheme, the exact characterization of the leakage-resilience is not well-understood. A locally
leakage-resilient secret-sharing scheme (LLRSS) [BDIR18] (also implicit in the constructions
of [GK18]) protects against a static passive adversary. The adversary chooses leakage func-
tions from all the secret shares. However, an LLRSS secret-sharing scheme ensures that
the leakage’s joint distribution is statistically independent of the secret. Guruswami and
Wootters’s reconstruction algorithm [GW16, GW17] for Reed-Solomon codes (and follow-up
works [TYB17, GR17, DDKM18, MBW19]) demonstrate that Shamir’s secret-sharing scheme
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on characteristic-2 finite fields is insecure even when the adversary can leak only one bit
from every secret share. Achieving leakage-resilience seems challenging because the adversary
need not reconstruct the complete secret; obtaining only some partial information about the
secret precludes leakage-resilience. For example, over characteristic-two fields, if the secret is
a linear combination of some parties’ secret shares, then the adversary can leak only one bit
from these secret shares and reconstruct the least significant bit of the secret. Although this
attack does not suffice to reconstruct the complete secret (which is impossible using entropy
arguments), it suffices to distinguish the secret 0 from secret 1.

There has been a significant amount of research into constructing new leakage-resilient
secret-sharing schemes [BPRW16, ADNT19, SV19, BS19, KMS19, BIS19, FY19, FY20,
HVW20, CGGT20, MSV20]. However, it seems insurmountable to replace every deployed
secret-sharing scheme with their leakage-resilient version or an entirely new leakage-resilient
secret-sharing scheme. Furthermore, in specific contexts, cryptographic constructions crucially
rely on the secret-sharing scheme’s additional salient features (for example, their linearity and
algebraic structure); thus, making such a substitution impossible. Inspired by these concerns,
recently, there have been studies on the leakage-resilience of prominent secret-sharing schemes,
like Shamir’s secret-sharing scheme and the additive secret-sharing scheme [HIMV19, CGN19,
LCG*20, MNP*21, ANNT21].

A summary of our model and results. This work studies the leakage-resilience of
Massey secret-sharing schemes [Mas01] corresponding to various linear codes, for example,
random linear codes, Reed-Solomon codes, and the parity code. We remind the readers
that prominent secret-sharing schemes like Shamir’s secret-sharing scheme and the additive
secret-sharing scheme are the Massey secret-sharing schemes corresponding to (punctured)
Reed-Solomon codes and the parity code. Our work considers m-bit general leakage from
each secret share, where m is a constant.

Result 1. We present a Monte Carlo algorithm for a linear secret-sharing scheme that is
secure against m-bit leakage from each secret share, where m is a constant. We prove that
the Massey secret-sharing scheme corresponding to a random linear code is leakage-resilient if
k/n is a constant > 1/2. Towards this objective, the technical challenge is that the number of
potential constructions is exponentially smaller than the number of all such leakage functions.
Overcoming this hurdle requires identifying a significantly smaller set of “tests,” passing
them suffices to guarantee leakage-resilience.

Result 2. Next, we show an explicit leakage function (leaking only m = 1 bit from each
secret share) that highlights a significant shortcoming of the analytic techniques employed in
this line of work. Ever since the work of Benhamouda et al. [BDIR18], analytic techniques
employ a (natural) “proxy analytic function” to study the leakage resilience of secret-sharing
schemes. If this proxy is small, then the insecurity of the secret-sharing scheme to leakage
attacks is small as well. However, we present an explicit attack demonstrating that the
converse is false, making a case for discovering new (analytically well-behaved) proxies that
represent the insecurity of secret-sharing schemes more accurately.

Result 3. Using the new analytical techniques developed for “Result 1” in our work, we
improve the leakage-resilience guarantees for Shamir’s secret-sharing scheme for n parties.
We prove that if the reconstruction threshold k£ > 0.8675 - n then it is secure against m = 1
bit leakage from each secret share improving the previous state-of-the-art from k& > 0.907 - n.?
Independent to our work, the journal version [BDIR21] of [BDIR19] also improved the

3 The older full version of [BDIR19] claims a smaller constant in Theorem 1.2, which is a consequence of
an incorrect calculation. & > 0.907n is an accurate reflection of the result in their full version.



Constructing Locally Leakage-resilient Linear Secret-sharing Schemes

threshold to £ > 0.85n.

Result 4. Finally, we note that an attack for additive secret-sharing schemes proposed
by Benhamouda et al. [BDIR18] can be extended to all linear secret-sharing schemes. By
this observation, we prove that to achieve 27 insecurity, the threshold k must be at least

Q(log )\). This generalizes a similar result by Nielsen and Simkin [NS20] as their result works

only for polynomially large fields while our result works for fields of arbitrary size.

1.1 OQOur Contributions

This section introduces some basic definitions to facilitate an intuitive presentation of our
results.

F is a prime field such that |F| needs X bits for its binary representation, i.e., 2 7! <
|F| < 22, We interpret \ as the security parameter and, therefore, the number of parties
n = poly(A). Typically, in cryptography, the objective is to demonstrate the insecurity
of cryptographic constructions is negl(A), a function that decays faster than any inverse-
polynomial in A. However, in this work, as is common in information theory and coding
theory literature, all our results shall further ensure that the insecurity is exponentially
decaying in the security parameter.

Massey secret-sharing scheme. Let C C F"*! be a subset, referred to as a code. The
Masey secret-sharing scheme [Mas01] corresponding to code C' secret-shares the secret s € F'
by choosing a random (co,c1,...,¢,) € C conditioned on ¢y = s. The secret share of party i
iss;=¢, forallie{1,...,n}.

Linear codes. A vector subspace V C F"T! of dimension (k+1) is an [n+1, k+1] p-code.
A matrix Gt € FETDXx(+1) guccinetly represents this vector space V if the linear span of
its rows, represented by (GT), is identical to the vector space V. (Punctured) Reed-Solomon

codes and parity codes are linear codes. Fix distinct evaluation places X1,..., X, € F*. The
set of elements ( f(0), f(X1),..., f(Xy) ), for all polynomials f(X) € F[X] of degree < (k+1),
is the (punctured) Reed-Solomon code. The set of all elements (cg, 1, .. .,c,) € F**1 such

that cg + ¢1 +- -+ + ¢, = 0 is the parity code.

This work considers Massey secret-sharing schemes of linear codes.

Local leakage-resilience of secret-sharing schemes. An (n,m) local leakage
function leaks m-bit leakage from each of the secret shares of the n parties. The output of an
(n,m) local leakage function is the joint distribution of the mn leakage bits. A secret-sharing
scheme for n parties is (m,e)-locally leakage-resilient if any (n,m) local leakage function
cannot distinguish whether the secret s(°) € F from the secret s() € F based on the joint
leakage distributions, for arbitrary s(®, s(1) ¢ F.

» Remark. In the literature (e.g., [BDIR18]), the following definition of leakage-resilience
has also been considered. The adversary is given some secret shares explicitly and then
allowed to leak from the remaining secret shares. We note that, for an MDS code G, the
leakage-resilience of Massey secret-sharing corresponding to G in these two definitions are
equivalent as follows.

Suppose GT is an MDS code of dimension (k + 1) x (n + 1). If the adversary obtains
t shares explicitly, the remaining secret shares is exactly a Massey secret-sharing scheme
corresponding to some G’ of dimension (k + 1 —t) x (n+ 1 —t). Hence, G" is leakage-
resilient to an adversary who obtains ¢ shares explicitly if and only if Massey secret-sharing
corresponding to G’ is leakage-resilient when the adversary only leaks from every secret
share.
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In this paper, we only work with G* that is MDS.* Therefore, we restrict to the simple
setting where the adversary only leaks from every secret share.

Result 1. Leakage-resilience of Random Linear Codes. For the presentation in
this section, a random [n+1, k+ 1] p-code is the linear code (G) where Gt € F*k+1)x(n+1) jg
a rank-(k 4+ 1) random matrix. Section 2.2 provides additional details on efficiently sampling
such a matrix.

» Corollary 1 (Random Linear Secret-sharing Schemes are Leakage-resilient). Fix constants
meN, 6 €(0,1), andn € (0,1). Definen=(1—n)-Xand k = (1/2+6)-n. Let F be a prime
field of order € {2*~1 ... 2 —1}. For all sufficiently large \, the Massey secret-sharing
scheme corresponding to a random [n+1,k+1]p-code is (m, e)-locally leakage-resilient, where
e =exp(—0O(N)), except with exp(—O(N)) probability.

We highlight that one can publicly choose the randomness determining G+ once (say, using
a CRS) and use this code for all future applications. With high probability, as long as the
local leakage is < m, the Massey secret-sharing scheme corresponding to the linear code
(GT) shall be leakage-tesilient.” Intuitively, the Massey secret-sharing scheme corresponding
to a random [n + 1,k + 1]p-code (where F is a finite field of order > 2*~1 n = 0.97), and
k = 0.49)\) shall be leakage-resilient to arbitrary m-bit local leakages when A is sufficiently
large (except with exponentially small probability). The threshold of A being sufficiently
large depends on the choices of m,d, and 7. For example, when m = 1 and using 2000-bit
prime numbers, the insecurity of the above scheme is < 2750,

Efficiency. Linear codes, in contrast to non-linear codes, result in efficient Massey secret-
sharing schemes. In particular, when G* = [I;41 | P] is in the standard form, as is the case
in this work, then the corresponding Massey secret-sharing scheme is easy to specify, where
Iy € FRHDX(E+D) g the identity matrix. Observe that the secret shares of the secret
seFis

(8,81,-,8n) = (8,71,...,7%) - G,

where 71, ..., are independently and uniformly distributed over F'. Reconstruction of the
secret is efficient as well for this secret-sharing scheme. Suppose G:O =\ ~G:j1 + A .G::-,jt’
where G:j represents the j-th column of the matrix G* and A1,...,\; € F are appropriate
constants. Then, parties ji, ..., j; can efficiently reconstruct the secret s = Ay-s;, 4+ - -+ X-55,,
where s; represents the secret share of party j. Furthermore, any ¢ = k + 1 shall be able to
reconstruct the secret because any (k + 1) columns of a random G™ is full rank, except with
an exponentially small probability.

The efficient reconstruction of the secret depends on parties reporting their secret shares
correctly. If there are (k + 1) publicly identifiable honest parties, all parties can efficiently
reconstruct the secret from these parties’ secret-shares. Additionally, information-theoretic
primitives like message authentication codes can ensure that malicious parties cannot disclose
incorrect secret shares.® Using such information-theoretic cryptographic primitives, all parties
can efficiently reconstruct the secret in applications using such secret-sharing schemes.

In particular, our main result considers a random G, which is MDS with overwhelming probability.
However, as are typical for probabilistic existential results in information theory and coding theory, one
cannot efficiently test whether the sampled G is leakage-resilient.

This step is necessary because efficient error-correction algorithms for (dense) random linear codes
shall require incredible breakthroughs in mathematics. In fact, a lot of cryptography assumes that
error-correction for random linear codes is inefficient [Piel2, Reg]. Efficient error-correction is known
only when the matrix GT has additional algebraic structures.
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Applications. Linear secret-sharing schemes have applications in secure multi-party
computation [Yao82, GMWS87] due to their additive structure. In particular, an additive
secret-sharing scheme is useful for the secure computation of circuits that use only addition
gates, i.e., the aggregation functionality. The secure computation protocol proceeds as follows.
Party i secret-shares its inputs z(*) using a linear secret-sharing scheme. Let the secret
share of (V) for party j be ("), Now, party j has the secret shares z(1:7) ... (™) Party
j defines sU) := 2?21 27 Now, the secret shares s(), ..., s(") are secret shares of the
sum s = () 4. 4 2 If any (k + 1) parties can reconstruct the secret in the linear
secret-sharing scheme, any subset of (k + 1) parties can come online to recover the sum s.

When using our linear secret-sharing scheme” robust to arbitrary m-bit local leakage,
this secure computation is leakage-resilient to arbitrary m-bit leakage as well, when k/n is a
constant > 1/2. The previous state-of-the-art construction [BDIR18] used Shamir’s secret-
sharing scheme and needed k/n > 0.907, which was a significantly larger fraction.[MNP*21]
proved the leakage-resilience of Shamir’s secret-sharing scheme for an extremely restricted
family of leakage functions, namely, the physical-bit leakage function, for every k > 1.

Derandomization. We highlight that we significantly derandomized the space of all
possible codes to demonstrate that a linear code suffices to construct a leakage-resilient
secret-sharing scheme. For example, against active adversaries who tamper the secret
shares, the probabilistic construction of Cheraghchi and Guruswami [CG14] used (inefficient)
non-linear codes.®

Technical Highlights. At the outset, linear codes as potential candidate constructions for
leakage-resilient secret-sharing schemes seem far-fetched. Observe that the set of all possible
(n,m) local leakage functions is 2m"1F| > 92" where m is a constant, n = poly(\), and
p ~ 2*. However, there are only |F |Im ~ 2PN different matrices GT. Typically, the proofs
of similar results (see, for example, [FMVW14, CG14, MNP*21]) proceed by “union bound”
techniques and need the set of adversarial strategies to be significantly smaller than the
potential choices available for the construction. One of our work’s key technical contributions
is to address this apparent handicap that our construction faces.

We introduce a new family of “tests” (see Section 3) inspired by the various notions of
pseudorandomness [V 112, Tao]. We show that if a generator matrix G* passes all these tests,
then the Massey secret-sharing scheme corresponding to the linear code (GT) is leakage-
resilient (see Section 3.3). The advantage here is that the number of all possible tests is
significantly smaller than the number of choices for choosing GT. Finally, we show that
nearly all matrices G* pass all our tests (see Section 3.2). Lemma 1 and Lemma 2 abstract
these two technical innovations, which, the authors believe, are of potential independent
interest in the broader field of probabilistic analysis. Section 3 presents the proof of this
result.

Result 2. A Barrier in the Analytic Modeling. Benhamouda et al. [BDIR18]
introduced an analytic proxy (Refer to Equation 6) for upper bounding the statistical
distance between leakage distributions of different secrets. All the works in this line of
research ([BDIR18, MNP*21] and this work) essentially study leakage-resilience of the
secret-sharing scheme through this analytic proxy. We present an inherent barrier for this
proof strategy. We prove that one cannot prove any meaningful result when the threshold is

7 Additionally, one can use information-theoretic message authentication codes to avoid incorrect revelation
of secret-shares.

8 We note that non-malleability naturally requires the code to be non-linear. However, our point is that
the union bound technique would not have worked if one considers a very small family of constructions
such as linear codes.
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less than half of the number of parties.

In particular, we present an explicit leakage function E, which tests whether the field
element is a quadratic residue or not. We prove that for any linear secret-sharing scheme
with threshold & and n parties such that k < n/2, the analytic proxy with respect to this
secret-sharing scheme and our leakage function L is at least 1. Therefore, using this analytic
proxy, it is hopeless to prove leakage-resilience against general leakage when k < n/2. This
result is summarized as Theorem 1 in Section 4.

In light of this, our first result that states a random linear code is leakage-resilient when
k > (% 4 0)n for an arbitrary constant 6 € (0,1/2) is the optimal result one could hope to
obtain using the current proof technique. To obtain better results, significantly different
ideas are required.

We note that the recent work of Maji et al. [MNP*21] also employs this analytic proxy.
They show that Shamir’s secret-sharing with random evaluation places is leakage-resilient
even for the most stringent case k = 2 and n = poly(\). Their results, however, do not
contradict the barrier we present here. They only consider the family of leakage functions
that leak physical-bit when the field elements are store in their natural binary representations.
The counter-example we present, i.e., testing whether a field element is a quadratic residue
or not, cannot be simulated by leaking a constant number of physical-bits.

Result 3. We prove the following result on the leakage-resilience of Shamir’s secret-
sharing scheme.

» Corollary 2. There exists a universal constant py such that, for all finite field F' of prime
order p > pg, the following holds. Shamir’s secret-sharing scheme with number of parties n
and threshold k is (1,exp(—0©(n))-leakage-resilient if k > 0.8675n.

We improve from the previous state-of-the-art result of k > 0.907n of [BDIR18] to k& > 0.8675n.
In an independent work, Benhamouda et al. [BDIR21] also improved their results to k > 0.85n.
Note that achieving k < n/2 shall enable parties to multiply their respective secret shares to
obtain secret shares of the product of the secrets.

Technically, we prove this result by employing a more fine-grained (compared to [BDIR18])
analysis on the analytic proxy. Section 5 presents the proof overview.

Result 4. Consider a secret-sharing scheme with n parties and threshold & over a prime
field F of order p that is leakage-resilient to m-bit leakage from each share. Nielsen and
Simkin [NS20] proved that it must hold that k- logp > m - (n — k). Intuitively, they prove
this result using an entropy argument.'? Consequently, their result is inevitably sensitive to
the size of the field. They used this result to show that if the field size satisfies p = poly(n),
the threshold k must be at least Q(n/logn).

For linear secret-sharing schemes, we obtain a similar result, independent of the field size.

» Corollary 3. If a linear secret-sharing scheme (over an arbitrarily large field) with n parties
and threshold k is (1,¢)-leakage-resilient, then it must hold that € > (i)k Consequently, if
it is (1,exp(—0O(n)))-leakage-resilient, it must hold that k = Q(n/logn).

We prove our result through a similar attack proposed by [BDIR18] (on additive secret-sharing
schemes). We present the proof in Appendix E.

9 Note that this analytic proxy is used as an upper bound of the statistical distance. Hence, it gives an
inconsequential bound if it is > 1.

10Note that a secret-sharing scheme contains exactly k - log p amount of entropy. Hence, intuitively, the
total amount entropy leaked m - n cannot exceed k - log p.
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1.2 Prior Works

Local leakage-resilient secret-sharing schemes were introduced by Benhamouda, Degwekar,
Ishai, and Rabin [BDIR18] (also, independently by [GK18] as an intermediate primitive).
There has been a sequence of works analyzing the leakage-resilience of prominent secret-
sharing schemes [HIMV19, CGN19, LCG20, MNP*21, ANN'21] and constructing new
leakage-resilient secret-sharing schemes [BPRW16, ADNT19, SV19, BS19, KMS19, BIS19,
FY19, FY20, HVW20, CGG*20, MSV20].

There is an exciting connection between repairing a linear code in the distributed storage
setting and the leakage-resilience of its corresponding Massey secret-sharing scheme [Mas01].
In the distributed storage setting, every coordinate of the linear code is separately stored. The
objective is to repair a block of the code by obtaining information from all other blocks. For
example, Guruswami and Wootters [GW16, GW17] present a reconstruction algorithm that
obtains m = 1 bit from every block of a Reed-Solomon code to repair any block when the field
has characteristic two. These reconstruction algorithms ensure that by leaking m bits from the
secret-shares corresponding to the Massey secret-sharing scheme corresponding to the linear
code, it is possible to reconstruct the secret. For example, the Reed-Solomon reconstruction
algorithm of Guruswami-Wootters translates into a leakage attack on Shamir’s secret-sharing
scheme (for characteristic two fields), the Massey secret-sharing scheme corresponding to a
(punctured) Reed-Solomon code.

However, when working over prime fields, [BDIR18] proved that Shamir’s secret-sharing
scheme is robust to m = 1 bit leakage if the reconstruction threshold is sufficiently high.
In particular, their analysis proved that it suffices for the reconstruction threshold %k to be
at least 0.907n, where n is the total number of parties. Moreover, their results extend to
arbitrary MDS codes. They complement this positive result with an attack on the additive
secret-sharing scheme that has a distinguishing advantage of ¢ > k~*. After that, Nielsen and
Simkin [NS20] present a probabilistic argument to construct a leakage attack on any Massey
secret-sharing scheme. Roughly, their attack needs m > klogp/(n — k) bits of leakage from
each secret share, where p is the order of the prime field.

Recently, [MNP*21] studied a restricted family of leakage on Shamir’s secret-sharing
schemes. The secret-shares, which are elements of the prime field, are represented in their
natural binary representation and stored in hardware. The adversary can leak only physical
bits from the memory storage. They proved that Shamir’s secret-sharing scheme with random
evaluation places is leakage-resilient to this leakage family.

2 Preliminaries and Notations
The binary entropy function hy: [0,1] — [0,1] is
ha(p) := —plogyp — (1 — p)logy(1 — p).

We shall use the following elementary upper bound on the binomial coefficients.

» Claim 1 (Estimation of Binomial Coefficients). For all n € N and k € {0,1,...,n}, we have

n
< 2h2(k/n)n
(&)

Proof. Observe that

n k n—k
= (B EY S (MY (R (1 _ (™ g=hatk/m)n
n n k n n k




H. K. Maji, A. Paskin-Cherniavsky, T. Suad, M. Wang

This completes the proof of the claim. <

Our work uses the length of the binary representation of the order of the prime field F' as
the security parameter A\. The total number of parties n = poly(A) and the reconstruction
threshold k = poly(\) as well. The objective of our arguments shall be to show the insecurity
of the cryptographic constructions is e = negl(}), i.e., a function that decays faster than any
inverse-polynomial of the A.

We shall also use the following Vinogradov notations for brevity in our analysis (as
consistent with, for example, [AB09]). For functions f(\) and g(\), one writes f(A\) ~ g(}\)
to represent f(A) = (1 + o(1)) - g(\), where o(1) is a decreasing function in A. Similarly,
F(A) < g(X) is equivalent to f(A) < (1 +0(1)) - g(A). Finally, f(A) < g(\) represents that
F(A) =o(1) - g(A). We explicitly mention the definitions of these notations because there are
multiple interpretations of these symbols even in the field of analysis.

2.1 General Notation: Vectors, Random Variables, Sets

Let X be a sample space. Particular elements of X are represented using the small-case
letter . A random variable of sampling x from the sample space X shall be represented by
X.

For any two distributions A and B over the same sample space (which is enumerable),
the statistical distance between the two distributions, represented by SD(A, B), is defined as
15, IPr[A = 2] — Pr[B =1]|.

A vector 7 € Q" is interpreted as ¥ = (v1,...,v,), where each v; € Q. For any
I C{1,...,n}, the vector #; € QI represents the vector (v;: i € I).

Let (S,0) be a group. Let A C S and x € S be an arbitrary element of S. Then z o S is
the set {roy : y € S}.

2.2 Matrices

We adopt the following notations for matrices as consistent with [0’D14].

Let F be a finite field. A matrix M € F**™ has k-rows and n-columns, and each of its
element is in F. For i € {1,...,k} and j € {1,...,n}, M, ; represents the (i, j)-th elements
in the matrix M. Furthermore, M; ., represents the i-th row of M and M, ; represents the
j-th column of M. The transpose of the matrix M € F¥*" is the matrix N € F"** such
that M; ; = N;,;, foralli € {1,...,k} and j € {1,...,n}. We represent N = MT.

Let I C{1,...,k} and J C {1,...,n} be a subset of row and column indices, respectively.
The matrix M restricted to rows I and columns J is represented by My ;. If I = {i} is
a singleton set, then we represent M; ; for My, ;. The analogous notation also holds for
singleton J. Furthermore, G, ; represents the columns of G indexed by J (all rows are
included). Similarly, G, ; represents the j-th column of the matrix G. Analogously, one
defines Gt . and G .

Some parts of the documents use {0,1,...,k} as row indices and {0,1,...,n} as column
indices for a matrix G € F*TDx(+1)  We will be explicit in mentioning the row and column
indices in this work.

Random Matrices. A random matrix M of dimension k x n is a uniformly random
element of F'**™_ This sampling is equivalent to choosing every element M; ; of the matrix
uniformly and independently at random from F, for all i € {1,...,k} and j € {1,...,n}.
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2.3 Codes and Massey Secret-sharing Schemes

We use the following notations for error-correcting codes as consistent with [MS77].

Let F be a finite field. A linear code C (over the finite field F') of length (n + 1) and rank
(k+1) is a (k + 1)-dimension vector subspace of F"1 referred to as an [n + 1, k + 1] p-code.
The generator matriz G € FFTDX0+) of an [n+ 1,k + 1] linear code C ensures that every
element in C can be expressed as Z- G, for an appropriate £ € F¥*1. Given a generator matrix
G, the row-span of G, i.e., the code generated by G, is represented by (G). A generator
matrix G is in the standard form if G = [I41|P], where I, € F++1Dx(k+1) ig the identity
matrix and P € F:+1Dx(=k) ig the parity check matrix. In our work, we always assume
that the generator matrices are in their standard form.

Let C C F"*! be the linear code that G generates. The dual code of C, represented
by C+ C F™*1 s the set of all elements in F™*! that are orthogonal to every element in
C'. The dual code of an [n + 1,k + 1]p-code happens to be an [n + 1,n — k]p-code. The
generator matrix H for the dual code of the [n + 1,k + 1]p linear code C generated by
G = [I141|P] satisfies H = [~ PT|I,,_4], where PT € F(»=k)x(k+1) ig the transpose of the
matrix P € F(+1)x(n=k) For brevity, we shall refer to the generator matrix H as the dual
of the generator matrix G.

Mazimum Distance Separable Codes. The distance of a linear code is the minimum weight
of a non-zero codeword. An [n, k]p-code is maximum distance separable (MDS) if its distance
is (n — k + 1). Furthermore, the dual code of an [n, k]| p-MDS code is an [n,n — k] p-MDS
code.

Massey Secret-sharing Scheme. Let C C F"*! be a code (not necessarily a lin-
ear code). Let s € F be a secret. The secret-sharing scheme picks a random element
(s,81,...,5n) € C toshare the secret s. The secret shares of parties 1,...,nare s1,...,s, € F,
respectively. Below, we elaborate on the Massey secret-sharing scheme and its properties
specifically for a linear code C such that its generator matrix G is in the standard form.

Recall that the set of all codewords of the linear code generated by the generator matrix
Gt e F+1)x(n+1) ig

{§: Fe P 5. GF =g} C P

For such a generator matrix, its rows are indexed by {0,1,...,k} and its columns are indexed
by {0,1,...,n}. Let s € F be the secret. The secret-sharing scheme picks independent and
uniformly random ry,...,7x € F. Let

(yOuylv"‘7yn) = (8,7’1,...,7"]@) 'G+'

Observe that yy = s because the generator matrix G is in the standard form. The secret
shares for the parties 1,...,n are s; = y1, 52 = Y2, ..., Sn = Yn, respectively. Observe that
every party’s secret-share is an element of the field F'. Of particular interest will be the set
of all secret shares of the secret s = 0. Observe that the secret-shares form an [n, k| p-code
that is (G), where G = G?l,.‘.,k}x{l,..‘,n}‘ Note that the matrix G is also in the standard

form. The secret shares of s € F** form the affine space s - ¥+ (G), where ¥ = Ga'{l o}
Refer to Figure 1 for a pictorial summary.
Suppose parties iy, ...,4; € {1,...,n} come together to reconstruct the secret with their,

respective, secret shares s;,,...,s;,. Let G, ,...,G}, € F(+1)X1 represent the columns

indexed by i1, ...,4; € {1,...,n}, respectively. If the column Gj,o e F:+Dx1 Jieg in the span

of {G:il, ceey G:it} then these parties can reconstruct the secret s using a linear combination
of their secret shares. If the column Gjo does not lie in the span of {G+ ey G:Z—t} then the

*,i17

secret remains perfectly hidden from these parties. The perfectly-hiding property is specific
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to the case that a linear code is used for the Massey secret-sharing scheme. In particular,
this perfectly-hiding property need not necessarily hold for Massey secret-sharing schemes
that use a non-linear secret-sharing scheme.

In this document, we shall use the “Massey secret-sharing scheme of G to refer to the
Massey secret-sharing scheme corresponding to the linear code generated by the generator
matrix GT. The underlying field F, the length of the code (n+1), and the rank (k+1) of the
linear code are implicit given the definition of the generator matrix G*. These parameters, in
turn, define the space of the secret-shares, the total number of parties, and the randomness
needed to generate the secret shares for the Massey secret-sharing scheme, respectively.

Specific Linear Codes. The (punctured) Reed-Solomon code of rank (k + 1) and
evaluation places X = (X1,...,Xp) € (F*)", where i # j implies X; # X, is the following
code. Let f(X) be the unique polynomial with F-coefficients and degree < k such that

f0) = wo, f(X1) = w1, f(X2) = w2,..., f(Xk) = yi, for any yo,y1,...,yx € F. Define
ckr1 = [(Xga1),---,¢n = f(Xp). The set of all codewords (Yo, Y1, -, Yk, Cktly---5Cn) €
Fntlis an [n + 1,k + 1] p-code. Furthermore, the mapping

(y07y17"'7yk> = (yO,yla"'7ykack+l7~-~7C'r7,>

is linear and a generator matrix in the standard form establishes this mapping.

Specific Secret-sharing Schemes. Shamir’s secret-sharing scheme is the Massey
secret-sharing scheme corresponding to (punctured) Reed-Solomon codes. Suppose the

evaluation places of the (punctured) Reed-Solomon code are X = (Xi,...,X,) € (F*)™.

Suppose the secret is s € F. Let f(X) be the unique polynomial with F-coefficients and
degree < k such that f(0) = s, f(X1) = r1,..., f(Xg) = r,. Define the secret shares
(8$1y...,8n), where s; = f(X;), forall i € {1,...,n}.

2.4 Locally Leakage-resilient Secret-sharing Scheme

Fix a finite field F' and an n-party secret-sharing scheme for secrets s € F', where every party
gets an element in F' as their secret share. An (n,m) local leakage function L = (L1, ..., Ly,)
is an n-collection of m-bit leakage functions L;: F — {0,1}™, for i € {1,...,n}. Note
that there are a total of 2™ 7| different (n,m) local leakage functions. Let L(s) be the
joint distribution of the (n,m) leakage function L over the sample space ({0,1}™)" defined
by the experiment: (a) sample secret shares (si,...,s,) for the secret s, and (b) output
(L1(s1)y.-.,Ln(sn)). We emphasize that the secret-sharing scheme and the finite field F
shall be evident from the context. So, we do not include the description of the secret-sharing
scheme and the finite field in the random variables above to avoid excessively cumbersome
notation.

A secret-sharing scheme for n-parties is (m,e)-locally leakage-resilient secret-sharing
scheme if, for all (n,m) local leakage functions L = (L1,..., L,) and secret pairs (s(*), s(1)),
the statistical distance between the leakage joint distributions L(s(*)) and L(s(?)) is at most
€.

For brevity, we shall say that a generator matrix G is (m,e)-locally leakage-resilient
if the Massey secret-sharing scheme corresponding to the linear code generated by G is
(m, e)-locally leakage-resilient.

11
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N ~
Ik R —RT In—k

N .

Figure 1 The matrix on the left is GT = [Ix11 | P], where P is the random matrix in the shaded
region. The indices of rows and columns of G are {0,1,...,k} and {0,1,...,n}, respectively. The
blue G' = [I1 | R] is a submatrix of G*. The vector highlighted in red is the vector ¥. On the
right-hand side, we have the matrix H, where (H) is the dual code of (G).

3 Leakage-resilience of Random Linear Codes

In this section, we prove Corollary 1. We start by recalling some notations. Refer to Figure 1
for a pictorial summary of the notations. The secret shares of 0 is the vector space

(0,71, 57%) - Gpo,... ky.{1,....n) € F".
Observe that this vector space is an [n, k] p-code, represented by (G), where G = G{+1 kb {1n}

Each element of (G) is equally likely to be chosen as the secret share for the n parties. Next,
consider the secret s € F*. The secret shares of s form the affine space

(s,rl,...,rk)-G+

*,{1,...,n} S

Observe that, one can express this affine space as
s- T+ (G) C F",

where ¢ = G&{Lm’n} e Fm.

To demonstrate that the Massey secret-sharing scheme corresponding to the linear code
generated by a generator matrix G+ € F*+1)x(+1) g yulnerable to leakage attacks, the
adversary needs to present two secrets (9, s(!) € F and an (n,m) local leakage function L
such that the statistical distance between the joint leakage distributions for these two secrets
is large.

First Attempt. Fix an (n,m) local leakage function L. Let (e ({0,1}™)™ be a leakage
value. Let L;!(¢;) C F be the subset of i-th party’s secret shares such that the leakage
function L; outputs ¢; € {0,1}"™ as output. Therefore, we have s; € L;l(ﬁi) if and only if
L;(s;) = ¢;. Furthermore, the leakage is 7if and only if the secret shares § belongs to the set

LYY := LY (0y) %+ x LM (£n).

So, the probability of the leakage being 7 conditioned on the secret being s(¥ is

-

1
W-‘s<0>-ﬁ+<a> n L-Y5

Similarly, the probability of the leakage being 7 conditioned on the secret being s is
1
Ik

‘ sV g1(@) n LY

The absolute value of the difference in the probabilities is, therefore, the following expression.

sO.F4+(G) N L7Y(0)

- ‘s(l)-qﬂ—(G) N E*I(E)‘

A
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The statistical distance between the joint leakage distributions is

1 1
5T

fe({0,13m)n

(1)

5O .54+ (G) N E*l(i)’ - ‘3(1)'17+<G> N L)

If the expression in Equation 1 is < ¢ for all (n,m) leakage functions L and all pairs of
secrets s(9 and s(!), then the generator matrix G7 is (m, e)-locally leakage-resilient.

» Remark. Observe that if one can choose L to ensure that any codeword ¢ € (G) that
belongs to L1(f) (for some ) also has &+ s - 7 & L=1(¢) for some secret sV, then the
expression in Equation 1 is identical to 1.

For example, if the finite field is characteristic-2, even with m = 1 bit leakage from each
secret share, an adversary can ensure this condition. The attack works as follows. Suppose
the secret s can be reconstructed by ay$7 + asss + - - + agsg where aq, ..., ax are fixed
field elements and s; is the i-th secret share. The adversary leaks the least significant symbol
b; of a;s; from the i-th secret share. Afterwards, the adversary can reconstruct the least
significant symbol of the secret s by computing b1 ® by P - - - D bi.. This leakage attack extends
to linear secret-sharing schemes over finite fields with small characteristics. More specifically,
the above attack generalize to characteristic-p field when the adversary is allowed to leak
[log p| bits from each secret share.

Recall that the number of (n,m) local leakage functions is 2™ I¥I. One encounters the
following hurdle while proceeding by the union bound technique to prove our result. Suppose
that for every leakage function L there is one generator matrix such that the statistical
distance in Equation 1 is > ¢. Using naive union bound technique, one shall rule out 2™
generator matrices. However, there are only a total of |F |(k+1)x("_k)
For the event of encountering generator matrices that are (m, ¢)-locally leakage-resilient with

high probability, we shall require

gmn|F| |F|(k+1)'(n*k) ~ QFn-logs | F|

For simplicity, consider the minimal non-trivial case of m = 1 and k¥ = n(1 — o(1)). Our
result is impossible to prove even for this minimal non-trivial case where |F| = p > 22! and
m = 1.

» Remark. We note that the recent result of [MNP*21] uses a union bound technique. In
their work, however, they consider physical-bit leakage functions. The total number of
physical-bit leakage functions is extremely small;'! otherwise, their approach (despite all the
exciting new technical tools) would not have worked.

» Remark. In the active adversary setting, to the authors’ best knowledge, union bound
(over all possible adversaries) is the only general technique known in the literature. See, for
instance, the probabilistic proofs of the existence of non-malleable extractors [DW09] and
non-malleable codes [FMVW14, CG14]. The proof of [CG14] even employs non-linear codes
(which provide significantly more degrees of freedom in designing the encoding schemes) to
push a “union bound based proof” through.

A New Set of Tests. To circumvent the hurdles associated with the naive union bound,
we propose a new set of tests. We emphasize that it is non-trivial to prove that if a generator

1 For example, consider a physical-bit leakage function that leaks one bit from the field F'. There are
log,|F| such functions. In comparison, there are 2!¥! general 1-bit leakage functions.

generator matrices.

13
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matrix G passes all these tests, then G is (m,¢e)-locally leakage-resilient. Section 3.3
elaborates this implication. The inspiration for these tests stems from the literature in
pseudorandomness [V*12, Tao].12

Recall that G+ € F(-+1x(+1) jg the generator matrix of the code, and G* = [I}41|P]
is in the standard form, where P € F(k+1D)x(n=k)  The secret shares of secret 0 is the
[n, k]p-code (G). The matrix G is also in the standard form, say G = [I;|R], where
R =Py, kyx{1,...n—k} € Fkx(=F) Then, the matrix H = [~ RT|I,,_.] generates the dual
code of the code generated by the matrix G = [I|R]. We introduce the matrix H because it
is easy to express our tests using the row-span of H, i.e. (H).

Fix parameters o € [0,1], v € N, and a € N. The set of all tests Test, - o is defined as
follows. Every test is additionally indexed by (‘7, J), where V= (Vi,..., V), each V; is a
size-y subset of the finite field F', and .J is a size-(1 — o) - n subset of {1,...,n}. A codeword
c € F" fails the test indexed by (\7, J)ifec; €V, forall jeJ.

The generator matrix H fails the test indexed by (V,J) if at least a™ codewords fail this
test. The generator matrix H passes Test, . if H does not fail for any test in Test, . 4.

» Lemma 1 (Technical Lemma 1). Let G be the generator matriz of an [n + 1,k + 1] p-code.
Consider a Massey secret-sharing scheme corresponding to the linear code (GT). Let (G)
be the [n,k]p-code formed by the set of all secret shares of the secret 0. Let (H) be the
[n,n — k] p-code that is the dual code of (G). Let Test, o be a set of tests, where v = 2™ -T2
and T € N. If H passes Testy .o, (H) is an MDS code, and o € (0,2k/n — 1], then G is
(m, e)-locally leakage-resilient, where

& — 9 (108a(Con):(k/m) ~logy (@) —ha(o))n | o= (logs(T)-o—(o+k /n)m—ha(a))

)

and Cy, > 1 is a suitable constant depending on m.'3

» Remark. Note that this lemma is where we inherently need k > n/2. Otherwise, we are
unable to pick a 0. We discuss this barrier further when we go into the proof in Remark 3.3
and Section 4.

In Section 3.1, we shall set the parameters properly to ensure the insecurity is negligible.
There are potentially several techniques to prove this result. We prove this technical lemma
using Fourier analysis in Section 3.3.

Most Matrices Pass the Tests. Let us do a sanity check first. The total number of tests

in Testy 4,4 is
|F| " . n _ ®<|F|’Y7l A 2}12(0)%)
~y (1-o0)n '

Furthermore, the total number of generator matrices G is |F |k'(”7k). So, it is plausible that
the union bound technique may work for this result.

However, naive accounting does not suffice. Section 3.2 presents the careful accounting
needed to prove the following result.

» Lemma 2 (Technical Lemma 2). Fiz constant o,v,a. Let p > 2 71 be a prime and
limy oo n/A € (0,1), where X is the security parameter. Let GT be the generator matriz of

12 Intuitively, a set whose correlation with any Fourier character is small can be interpreted as a pseu-
dorandom object. On the other side, a large Fourier coefficient indicates a correlation with a Fourier
character; thus, the object is not pseudorandom. In a similar spirit, as we shall explain, our tests find
whether a code (H) has many codewords with large Fourier coefficients or not.

13 Refer to Imported Lemma 2 for the relation between m and the constant Cp,.
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an [n+ 1,k 4+ 1) p-code in the standard form such that each element of its parity check matriz
is independently and uniformly chosen from F, where constant k/n € (0,1). Consider a
Massey secret-sharing scheme corresponding to the linear code (GT). Let (G) be the [n, k]p-
code formed by the set of all secret shares of the secret 0. Let (H) be the [n,n — k|p-code
that is the dual code of (G). Then, the following bound holds.

Pr  [H is MDS and passes Test, o) = 1 — 27 17/A)A exp(—O(X%)).
o

3.1 Parameter Setting for Corollary 1

Before we go into the proof of Lemma 1 and Lemma 2, let us first show how we can set up
the parameters in both lemmas to imply Corollary 1. Let us restate the corollary first.

» Corollary 4 (Restatement of Corollary 1). Fiz constants m € N, § € (0,1), and n € (0,1).
Definen = (1—n)-X and k = (1/2+08)-n. Let F be a prime field of order € {22~1,... 22 —1}.
For all sufficiently large X\, the Massey secret-sharing scheme corresponding to a random
[n+ 1,k + 1) p-code is (m,e)-locally leakage-resilient, where € = exp(—O(N)), except with
exp(—O(A)) probability.

The sequence of parameter choices is as follows. We emphasize that all parameters below
are constants.

1. We are given the number of bits leaked from each share m and the target threshold § as
constants. Therefore, Cy,, > 1 is also fixed as a constant. (Refer to Imported Lemma 2.)
2. We shall pick constants ¢ > 0 and a > 1 arbitrarily satisfying the following constraints.

a. 0 <min(24,1/2 + §). This parameter choice ensures that ¢ < 2k/n —1 and o < k/n.
b. log,(Cy,) - (1/2+ 6) —logy(a) — ha(o) > 0. This choice ensures that the first part in
the expression of € in Lemma 1 is negligible.

3. Next, we pick any constant 7" satisfying log,(T") -0 — (0 4+ (1/2 — 6)) m — ha(c) > 0. This
choice ensures that the second part in the expression of € in Lemma 1 is negligible.
4. Since we have picked T, this implicitly fixes v as y = 2™ - T2,

Clearly, all the steps above are feasible, and we have now fixed all the constants involved. One
can verify that all the prerequisites of Lemma 1 and Lemma 2 are satisfied. Consequently,
Lemma 1 and Lemma 2 together imply that the Massey secret-sharing scheme corresponding
to a random linear code is negligibly-insecure with overwhelming probability.

As a concrete example, suppose m = 1, n. = 0.97\, and k = 0.49\. In this case C,,, = /2,
by setting, o = 0.01, a = 1.5, and T' = 2°9, one can verify that A > 2000 ensures that we
achieve 275%-insecurity.'*

3.2 Proof of Lemma 2

The proof of Lemma 2 proceeds by a combinatorial argument. Fix a test (‘7, J) in the set of
tests Test, . ,. Consider the experiment where G & G+, and H € F¥"*" be the matrix
corresponding to Gt as described in the statement of Lemma 2, where k&~ = n — k. Our
entire analysis is for this distribution of the matrix H.

1 For similar range of parameter choices, e.g., when n is close to A, the dominant failure probability is the
probability that a random matrix is not MDS, which is 2" *.

15
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Observe that (H) is a maximum distance separable (MDS) code, with high probability.
We defer the proof of this claim to Appendix B.1.

» Claim 2. The linear codes (G) and (H) are maximum distance separable codes, except
with probability (at most) 2™ /p = exp(—©())).

Henceforth, our analysis shall assume that G is random as well as (G) and (H) are MDS
(without loss of generality). Therefore (G) is an [n, k] »-MDS code and (H) is an [n, k*]p-
MDS code, where k+ = n — k. Recall that H = [~ RT|I,,_], where every element of —RT is
independent and uniformly random over F'.

Without loss of generality, assume that J = {on+ 1,0n+ 2,...,n}. Among the indices
in J, let us fix the indices J' = {k+1,k+2,...,n} as the information set for the linear code
(H)."® Let us fix a set of witnesses B C F¥" of size a™.

Objective. Over the distribution of (H), what is the probability that every codeword
¢ € (H) such that ¢ restricted to the information set J’ is in the set B fails the test (V,.J)?
That is, compute the probability of the event “if c;» € B then ¢; € Vj, for all j € J”

Proof for a Weaker Bound. The total number of choices for V is at most (|[F|")" = |[F|"™.
The total number of choices for J is at most ((17n0)n) = 2m2(9)n  Rinally, the total number

16

4
of sets of witnesses B is at most (”:n )16 Therefore, the total number of possibilities is

kL
[P ghatern. (7 ) (2)

an

Next, fix a column index j € J\ J' = {on+1,0n+2,...,k}. Pick one non-zero witness
d(_i) € B. Over the randomness of choosing H, ;, the random variable d(_i) - H, ; is uniformly
random over the field F. So, the probability of this coordinate being in V; is v/|F|. This
statement is true for all j € J\ J’ independently. Therefore, for all j € J\ J’, the probability
of the j-th coordinate of the codeword dV . H being in Vj is

—o)n—k*
(,y>(1 )
|F|

Now, choose a second witness d® ¢ B. Suppose d® is a scalar multiple of dD). Tn
this case, the random variables d(*) - H, ; and d® - H, ; are scalar multiples of each other

as well. However, if d® is not in the span of d(_i), then the random variable d®) - H,;
is uniformly random over the field F' and (most importantly) independent of the random
variable d(1) - H, ;. Therefore, the probability of all coordinates of the codeword d® . H
indexed by j € J\ J’ being in Vj is (independently) (7/|F|)(1_‘7)”_’fi . We highlight that
if, indeed, the witnesses are linearly dependent then the columns are linearly dependent as
well. Consequently, identifying linearly independent witnesses seems necessary (not merely
sufficient) for our proof strategy to succeed.

Generalizing this technique, one claims the following result. A proof can be found in
Appendix B.2.

15Since (H) is MDS, we can pick any k' coordinates to be the information set. We choose the last
k* coordinates (to coincide with the I,,_j block identity matrix of H) for simplicity. All remaining
coordinates of a codeword in (H) are derived via a linear combination of the information set.

16 Because there are ~ options for every k® information coordinates in (H). Among these ’ykL choices for
the information coordinates, one can choose any a™ of them as the witness set B.
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» Claim 3. Fix any r linearly independent d(_i)7d(_é), ce d™ € F* . For all jeJ\J, over
the randomness of choosing H. ;, the distribution of the random matrix

jeJ\J’
(d< oy 7]).
i€{1,2,...,r}

is identical to the uniform distribution over F"*((1=o)n—k>)

Consequently, the probability of all the codewords corresponding to these r linearly indepen-
dent witnesses in B failing the test (V,J) is

W]

Now how many linearly independent witnesses can one identify among a™ witnesses of

B? Towards this objective, we prove a bound similar in spirit to matrix rank lower bounds
from communication complexity theory. We defer the proof to Appendix B.3.

» Claim 4 (Rank bound for ‘Bounded-Diversity’ Matrices). Let M € F**¥ where u = 2*”, be
an arbitrary matrix such that each row of this matrix is distinct. Suppose every column
je{l,...,v} of M satisfies

{My;, M, ..., My} <~

Then, rank(M) >

2 Toan

Back to proving Lemma 2. Construct M such that every row of M is a witness in B. Therefore,
the matrix M € F**? where v = o™ and v = k*. Applying Claim 4 for u = a™ = 2l°g2(a)n
and v = k+, we get r > iggz ¢ . kt. For our end application scenario, we shall have k+ = O(n),

and positive constant a and v > 2. Therefore, we shall have r = ©(n). So, the probability

expression in Equation 3 effectively behaves like |F|™ (), On the other hand, the total
number of possibilities given by Equation 2 are dominated by |F|”" and ('Y:: ) < Wki'an
When n < ©(log ), using union bound, one can conclude that the probability of a random
(H) failing some test (V,.J) with some witness B is 1 — exp(—©())).

However, n < O(log \) is unacceptably small. Our objective is to achieve n = ©(A). In

fact, we have recklessly indulged in significant over-counting. Let us fix this proof to get the
desired bound.
Final Fix. Observe that we do not need to pick B of size a™ from Vi1 x--- x V. For
any B, identify the (unique) lexicographically smallest set BCBofr linearly independent
witnesses. In the analysis presented above, we have significantly over-counted by separately
con51der1ng all B D B. To fix this situation, we consider the argument below that analyzes
B to account for all B D B.

Now, fix the (canonical) set Bofr linearly 1ndependent witnesses. The proof above says
that the probability of a random (H) failing the test (V,.J) with some witness B D B is
at most (v/ |F|)((1_0)"_kl)'r. We emphasize that B may have more linearly independent
elements; however, it is inconsequential for our analysis. So, we need only to pick B of size
r such that the witnesses are linearly independent of each other. Consequently, the total
number of possibilities of Equation 2 drastically reduces to the following bound.

ki
n o) v
|F|” .th()n.(r>’ (4)
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%ggz - k. Now, we can put together the total number of witnesses of Equation 4

with the failure probability of Equation 3 using a union bound. The probability that a
random (H) fails some test (V I) witnessed by r linearly independent witnesses in B is at

most
L 1—o)n—k*)r
e graern (V) (1 (=it
r ||

yn  oho(o)n | kEA (1—0)n-r—kt7 1
<|F‘| 2" / Y |F|((170')nfki')r

1
' |F|(log,y a)(1—k/n)(k/n—0o)n2"

where r =

:|F|’Y” . th(a)-n . 2(17k/n)(170) log, (a)-n?

In our scenario, we have constant k/n € (o,1), constant a, and limy_, . n/X € (0,1). For
these setting of the parameters, the numerator is dominated by the term 20(*?). Furthermore,
we have constant -, so the denominator is 20(*?). So, the probability expression above is
exp(—Q(N).

To summarize, we incur two forms of failures in our analysis. (1) (H) is not MDS, and
(2) (H) fails some test. The probability of the first failure is exp(—©(\)), and the probability
of the second failure is exp(—Q(\)).

» Remark. It is natural to ask if one can employ standard techniques (e.g., Toeplitz matrices
and the Wozencraft ensemble) to further partially derandomize Lemma 2, which in turn, gives
a partial derandomization of leakage-resilient linear secret-sharing schemes. Unfortunately,
we remark that Toeplitz matrices and the Wozencraft ensemble do not work for our proof
strategy. The main bottleneck is that in Claim 3 we make crucial use of the fact that d - H. i
are all independent random variables for all ¢ € {1,2,...,n} and j € {1,2,...,r}. It is a case
of “too many linear equations for very few random variables.” Otherwise, one cannot argue
the failure probabilities are independent. As random matrices sampled from random Toeplitz
matrices and the Wozencraft ensemble clearly do not have this property, straightforward
employment of such techniques does not work. We leave the partial derandomization of the
results in this work as a fascinating open problem.

3.3 Proof of Lemma 1

We prove Lemma 1 using Fourier analysis. Appendix A introduces the preliminaries of
Fourier analysis that suffices for the proofs in this paper.

To begin, let us summarize what we are provided. We are given a fixed generator matrix
H € F¥ > where k' = (n — k). The code (H) is MDS and the matrix H passes all tests
in Testy ,q, where v =2 - T2,

Consider any (n,m) local leakage function L = (L1, ..., Ly), such that each L;: F —
{0,1}™. Our objective is to prove that this leakage function cannot distinguish the secret
shares of the secret 0 from the secret 1. Fix any ¢ € {1,...,n} and leakage ¢ € {0,1}". Let
1,,: F — {0,1} be the indicator function for L;(s;) = ¢, where s; is the secret share of party
i.

» Claim 5. Let i € {1,...,n} and £ € {0,1}™. The size of the following set is at most T2.

m(a)( < 1/T}.

This result follows from Parseval’s identity, and that function 1; , has a binary output. Refer
to Appendix B.4 for the proof of this claim. Given the leakage function L = (L, ..., Ly)

Big, , = {a tae L,
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and i € {1,...,n}, define the sets

V; = U Bigu.
te{0,1}™

Extend each V; arbitrarily, if needed, to be of size v = 2™T?2. Now, we have defined the
= (W1,...,V,) corresponding to the leakage function L.

Algebralzatlon of Leakage-Resilience. Benhamouda et al. [BDIR18] showed that prov-

ing that the statistical distance expression in Equation 1 is smaller than some quantity is

implied by upper-bounding the analytical expression below by the same quantity. That is,

SD ( (s <°>),E(s<1>))

S Y e e ¥ [[fae) o] @

Le({0,1}m)" |ae(H) i=1 ac(H)i=1

<) > [T (@ H.)

FEFFE\{0F} I=(ly,....0,)e({0,1}m) li=

(6)

For completeness, we include proof of this in Appendix B.5. We now proceed to upper bound
this expression for an H that passes all tests in Tests - 4.

» Remark. We emphasize that the analytical expression above is only an upper bound to the
statistical distance. We show that using the expression above as a proxy to analyze the exact
statistical distance encounters some bottlenecks. Section 4 highlights one such bottleneck.

Upper-Bounding Equation 6. We partition the elements ¥ € ol \ {Okl} into two sets.
Bad :— {:E’ . 3T st 7% 0" & - H fails the test indexed by (V,.J) € Testa,%a} .

We emphasize that J C {1,2,...,n} is of size (1 — o)n. The remaining elements form the
subset

Bad = (F*"\ {0*"}) \ Bad,

Next, we upper-bound the expression of Equation 6 for elements ¥ € Bad and ¥ € Bad
separately.
Upper Bound: Part 1. First we consider the sum of Equation 6 restricted to Z € Bad.

O S 1

ZeBad ZE({O,I}"”)"

YIS T (- He)

FeBad i=1 ¢;e€{0, 1}m

< an2hele -;relgzid H Z ‘ (Z-Hyp)

=1 ¢;€{0,1}m™

(7)

The last inequality is due to the fact that there are ((17”0)7) = 2M2(9)" gubsets J, and each

test indexed by (V,J) has at most a™ different codewords failing it.!”

17Since H passes all tests in the set Testy 4., at most a” codewords fail any test indexed by (V, J).
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Next, fix any element # € Bad. The codeword # - H has < k* zeroes.'® Therefore, the
codeword Z - H has > k elements from F*. Using this property, we claim the following result.

» Claim 6. Let (H) be an [n,n — k]p-MDS code, and & € F¥" \ {0* } be an arbitrary
message. Then, there exists a constant C),, > 1 such that

I v

i=1 ¢;e{0,1}m

— —k

17,',& (-'Z: H*,z) < C

m °

Appendix B.6 provides the proof. Substituting this upper bound in Equation 7, we get the

following upper bound
2~ (1085(Cm)-(k/n)—logz (a)=h2 (o)) n (8)

which completes the first upper bound. By picking our parameters as in Section 3.1, this
upper bound is negligibly small.
Upper Bound: Part 2. Now, it remains to upper-bound

IOEEDY

#cBad fe({0,1}m)"

n
[[%ie(@ He)

i=1

The crucial observation about any codeword ¢ = & - H € Bad is the following. The number of
Jj €{1,...,n} such that ¢; € Vj is at least on. For the coordinates where ¢; € V;, we utilize
the fact that the magnitude of the Fourier coefficients contributed in the above expression is
at most 1/7. Based on these observations, using Fourier analysis, we prove the following
bound.

» Claim 7. For 0 < 0 < 1 — 2k /n, the expression above is upper-bounded by

27(10g2 (T).07(a+kJ‘/n)mfh2(J))<n.

Appendix B.7 provides the proof. By picking our parameters as in Section 3.1, this upper
bound is negligibly small.

» Remark. We highlight that if we pick a o such that o > 1 — 2k* /n, then naively using the
analysis above yields an upper bound of

pkL—(l—a)n/Z ) 2—(logQ(T)w’f—(U—i—kL/n)m—hg(o))ﬂ_

Appendix B.8 present a proof sketch of this bound. Observe that the leading term p®*)

forces the choice of T to be w(1). However, in our analysis, we crucially rely on T to be a
constant.

In particular, if 2k > n, no suitable ¢ can be choosen to avoid this bottleneck. We
discuss this barrier further in Section 4.

4 The k > n/2 Barrier

In this section, we discuss why k& > n/2 is inherently required for the current proof techniques
(which are common to [BDIR18, MNP*21] and this work). In particular, we pinpoint the
step where one uses Equation 6 to upper bound the Equation 5 as the place where this

181f the codeword has k* zeroes, we can choose their indices as the information set (because (H) is MDS).
That implies that the entire codeword is 0™, which contradicts the fact that Bad has non-zero elements.
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barrier arises.'® That is, when one uses the magnitude of the Fourier coefficients to upper
bound the statistical distance as

2 2

FeFF\{0k+} Ze({0,1}m)"

n

i=1

To justify our claim, we prove the following theorem.

» Theorem 1. There exists a leakage function L that leaks one bit from each share such that
the following holds. Let (G) be any [n,k]p code such that k < n/2. Let (H) be the dual code
of (G). The above equation is lower bounded by 1. That is,

PR

FeFkE\{0kt} Ze{0,1}n

n

[[1e @ He)
1

1=

> p(n=20/2 5

Consequently, one cannot prove any meaningful upper-bound when k < n/2.

In fact, we identify the leakage function explicitly as follows. Define the set of quadratic
residues as
QR :={a € F: 3fs.t. g2 =a}.

Deﬁnef:(Ll,...,Ln) as for all i € {1,2,...,n},

Li(z) =

1 ifze QR
0 ifz¢ QR

By standard techniques in the Fourier analysis and the well-known facts about the quadratic
Gaussian sum, one can verify this theorem with this particular leakage function. We defer
the complete proofs to Appendix C.

5 Leakage-Resilience of Shamir’s Secret-Sharing

In this section, we present our result that Shamir’s secret-sharing with threshold k£ and n
parties is leakage-resilient when k > 0.8675n. This improves the state-of-the-art result of
Benhamouda et al. [BDIR18]. In fact, we prove a more general theorem as follows.

» Theorem 2. There exists a universal constant py such that, for all finite field F of
prime order p > po, the following holds. Let G be an arbitrary MDS [n + 1,k + 1]p
code such that k > 0.8675n. The Massey secret-sharing scheme corresponding to G* is
(1,exp(—0O(n))-leakage-resilient.

As Shamir’s secret-sharing is a Massey secret-sharing scheme corresponding to the punctured
Reed-Solomon codes, this theorem applies to Shamir’s secret-sharing directly.

We defer the full proof of this theorem to Appendix D. In what follows, we present an
overview of our proof. Starting from the upper bound Equation 6, i.e.,

)RS

FeFk\{0*+} lef{0,1}n

n

i=1

)

19 Note that Equation 5 is an identity transformation of the statistical distance. Hence, the proof until
this step must not produce any barriers.
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Ji Jo J3

A B

D, D, D3

Figure 2 The dual generator matrix H € FFXn e pick the first k% columns as J; and the
second k* columns as Jo. Let J5 be the rest of the columns. The set of columns A = A1 U As U As is
exactly where the codeword will be 0. We pick B; and Bz to ensure that |Bi|+|A| = |Bz|+|A| = k.

our main idea is that we shall bound it with the exact information where the zeros of
the codeword (from (H)) are. This is motivated by the fact that the Fourier coefficient
corresponds to 0 has the dominant weight.

Note that since (H) is an MDS [n, k- = n — k] p-code, a non-zero codeword from (H) has
at most k* — 1 zeros. For any collection of indices A C {1,2,...,n} such that |A| < k+ — 1,
let us define set

Sa={f|la€c A<= 2 H,,=0}.

That is, the collection of messages whose codewords satisfy that 0 appears exactly at those

indices from A. Clearly, Pk \ {O’“l} = U S4. We shall break the summation
A: A<kt -1
based on A, i.e.,

IDEEDIEDS

A: |AISkE—1 ZE€Sa fe{0,1}n

n
H $ H*z

To bound each summation over some A, i.e.,

PSS

TeSa fef0,1}n

n

H -T H*z

=1

we use the following ideas. (Refer to Figure 2 for notations.)

We know the codewords are 0 at columns in A = A; U A3 U A3 and non-zero at columns
outside A. Since - H., = 0 for a € A, bounding over columns from A can be easily
handled. Next, we shall use the worst-case bound to bound the summation over columns
from Dy U Dy U D3. Finally, for the columns of B; and Bs, we let them enumerate all
possibilities from F* and bound them appropriately.

The above is a very high-level summary of the derivation in Appendix D.1. Overall, we

are able to prove that
ﬂ-) —(JAl+2k—n)

< (3

Finally, our upper bound is now

L
< Z (E)f(lAszfn) _ kz o [ha(i/n)=(i/n+2k/n—1)logs (F)]

A A<k -1 i=0
Suppose k/n = o, it suffices to ensure that

max  ha(q) — (¢ +20 — 1) logy(7/2) < 0
g€[0,1—0)

We prove that ¢ > 0.8675 suffices, which completes the proof of the theorem.
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A  Preliminaries of Fourier Analysis

In this section, we introduce minimal notations for Fourier analysis that suffice for our
purpose. We follow the notation of [Rao07].

Let F be a prime field of order p. For a complex number z € C, let Z be the complex
conjugate of z. For two functions f,g: F — C, their inner product is defined as

(f) == 3 Fl)ela).
p zeF

Define w := exp(2m1/p) and function y,(z) :=w*®. For a € F, we define the Fourier
coefficient

]?(O‘) = (f, Xa) -

I, = [l

Fourier transformation satisfies the following properties.

The ¢?-norm of fis defined as

~

» Fact 1 (Fourier Inversion Formula). f(x) = cp f(a) - w®®.

o2
» Fact 2 (Parseval's Identity). %216F|f(:1:)|2 = ZaeF‘f(a)’

» Lemma 3 (Poisson Summation Formula). Let C C F™ be a linear code with dual code C*.
Forallie{1,2,...,n}, fi: F — C be an arbitrary function. The following holds,

Hfmi)] = > T 7.

E
z+C i acOL i=1

A.1 Some Useful Inequalities

Let f: F — {0,1}™ be an arbitrary function. For all u € {0,1}™, let 1,,: F' — {0,1} be the
function such that 1,(x) = 1if f(z) = w and 1,(z) = 0 otherwise.
Benhamouda et al. [BDIR18] prove the following lemmas, which shall be helpful for us.
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» Imported Lemma 1 ([BDIR18]).

ueq{0,1}™
» Imported Lemma 2 ([BDIR18]).
L Zue{o,l}'” 1u(0)‘ =1
2.
max ﬂ(a)‘ < M
aEF* psin(m/p)

ue{0,1}™
In particular, when m is a constant, there exists a constant

1

m=———— > 1
cos(m/2m+1)

and constant py = 2™+ € N such that, for all p > po, > uefo1pm i;(a)) <1/C,.2°

B Missing Proofs

B.1 Proof of Claim 2

Since the dual code of MDS codes is MDS as well, it suffices to bound the probability that
(G) is not an MDS code.

Recall that the generator matrix G is of the form [I;|R], where R is a random matrix of
dimension k x (n — k). Every entry of G is an element from field F of size p. Furthermore,
the row indices and column indices of G are {1,2,...,k} and {1,2,...,n}, respectively.

For i € {k,k+1,...,n}, define & to be the event that G, {15 s is full rank and let
—&; be the complement of this event. Clearly, Pr[€;] = 1 and we are interested in Pr[-&,].

We shall prove that for all ¢ € {k+ 1,...,n}, the following holds.

Pr[=&|€i1] < <;: 11) /p- (9)

Equation 9 holds because of the following. Given G, (12,... -1y is full rank, G, (15 ;) is
full rank if and only if for all S C {1,2,...,i— 1} of size |S| = k — 1, we have G, suys} is full
rank. Since G s is full rank, G, sy is not full rank if and only if the randomly picked G ;
falls into the column span of G, g, which happens with probability p*~!/p* = 1/p. Finally,
the number of choices of S is (,’;11) and hence, by union bound, Equation 9 holds.

Now, given Equation 9, we have

Pr[w‘,‘n] = Pr[ﬁ€k+1|5k] + Pr[ﬁ5k+2|€k+1] + -+ Pr[ﬁ5n|5n,1]
k E+1 n—1
< e
< (k 1)/p+ (k 1)/p+ + (k 1)/p
n
<
< (i)

Finally, note that Pr[-&,] < (})/p < 2"/p = exp(—O())) as long as we have p > 2*~! and

lim )y oo ’I’L/)\ S (0, 1).

20 This follows from the fact that sin(m/z) is a monotonely increasing function on [2, o).
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B.2 Proof of Claim 3

For any i # j, H,; and H, ; are independently sampled. Therefore, it suffices to prove that,
for all 4 € J\ J', joint distribution

(d@> CHey d® H,g, ... dO- H)

is uniformly randomly distributed.

Note that H,; = (Hy, Ha i, ..., Hpo ;)T and each Hj; is independently uniformly sam-
pled. Furthermore, da), dé), . A € F* are linearly independent. Therefore, the claim
is trivially correct.

B.3 Proof of Claim 4

Note that every column j € {1,...,v} of M has “y bounded-diversity,” i.e., there are at
most «y distinct symbols in the column M, ;. Intuitively, consider any rank(M) linearly
independent columns in M. These coordinates can take at most v***(M) distinct values; so,
u = 2%V < ~rark(M)  Therefore, a matrix M, such that each column has “y bounded-diversity,”
must satisfy rank(M) > g7 * V-

B.4 Proof of Claim 5

By Parseval’s identity, we have

acF JEF

Clearly, by Markov’s inequality, m(a)’ > 1/T is at most T?.

B.5 Proof of Equation 6

This proof follows from standard Fourier analysis as similarly proven in [BDIR18]. The secret
shares of s(*) are the affine space s(*) - &+ (G), and the secret shares of s(!) are the affine
space s(1) - &+ (G). The dual code of (G) is (H).

1 n n
== > [T1ieG@ vita)| - E lH 10, (s -0, + ) |
2 e c{0,1}m)n IHG> i=1 (@) ;51
1 no__ no
) Z Z H L (i) - w™ o _ H 14 (a;) - w @, (Lemma 3)
Le({0,1}m)" |ae(H) =1 a€(H) i=1
1 n
<§ Z H () ‘wz s @i 30 ais o (Triangle inequality)
Le({0,1}m)" ae(H)li=1
S H L (i) (Triangle inequality)
Le({0,1}m)™ ac(H)\{0"}

(Identity Transformation)

ms
=

- Z 2.

FeFFT\{0F} fe({0,1}m)"

i=1

29
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B.6 Proof of Claim 6

The proof follows immediately from that (H) is MDS and Imported Lemma 2. By Imported
Lemma 2, when - H, ; = 0, we have

> |me@ =1
£;€{0,1}m
otherwise, ¥ - H, ; € F'* and we have

ZiE{O,l}m

The MDS property ensures that for an arbitrary & # Oki7 there are more than n — k+ =k
many non-zero entries in Z - H. Hence, we have

I v

=1 &G{O,l}m

—

]-i,@i (f H*,i) < (Cm)_k

B.7 Proof of Claim 7

Our objective is to bound

Recall that

Bad = {:E’ . 3 s.t. £ # 0" & - H fails the test indexed by (V, J) € Testma} .

Hence, ¥ € Bad implies that there exists a subset K C {1,2,...,n} and |K| = on such that
foralli € K, ¥ Hy; ¢ V;. Let us define

Good(K) :={Z#0": forallie K,&-H.,; ¢ Vi}.

We stress that Good(K') and Good(K') are not necessarily disjoint for some K # K’. Hence,
we have

Bad = U Good(K),
and we shall bound as follows.

<D 2 X

K:|K|=on Z€Good(K) je({0,1}m)"

< 2ha(o)n - max Z z

T€Good(K) fe({0,1}m)™

n

[[tn(@ H.)

i=1

n

i=1

(10)

Fix an arbitrary K, the size of {1,2,...,n}\ K is at least 2k since we require o < 1—2k* /n.
We shall partition {1,2,...,n}\ K as Ji, Jo, and J3 arbitrarily as long as |J;| = |J2| = k.
Now, we have
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kL kL on

Figure 3 A pictorial summary of the generator matrix H and the set of columns Ji, J2, Js, and
K.

>

Z€Good(K) [G({O,l}m)" i=1
- 2 > |te@ )
Ze({0,1ym)" T€Good(K) li=1

2

< X > Hpiwemaf | X I |t m

Ze({0,1}m)™ ZeGood(K) i€J1 \feGood(K) i€JoUJ3UK

(Cauchy—-Schwarz)

< X > |t A > ol |reE m

Ze({0,13m)" #€Good(K) i€ \feGood(K) i€JoUK

2 2

(We simply ignore Js since the magniture of Fourier coefficient is at most 1.)

< ¥ DR | ETmCar > I|re@ B

Ze({0,1}m)n  \ £€Good(K) i€y #€Good(K) i€
(Definition of Good(K) and V ensure that the Fourier coefficient is at most 1/7)

2 2
.T—on

_—

< ) > 11 i@ H,)| S0 i@ mH)
Ze({0,1}m)" geFkt 1€N1 Fepkl i€Js

-y (sEer) 1 (el e

Ze({0,1}m)" \ieJ1 aEF i€Ja \a€F

(Since H is MDS and |J;| = | Jo| = k)

= H Z ‘ 1/,? . ((2m)|K| -T_‘m) (Identity Transformation)
i€J1UJa \£;€{0,1}™
<@ ] (zm/ 2) (Imported Lemma 1)

i€J1UJ2

= (2m/T)°" - 2™k

Plug this into Equation 10, we complete the proof.

DY

#eBad fe({0,1}m)™

< 2h2(a)n . (Qm/T)Un . 2m-kJ‘

n

[t B

i=1
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< 2—(log2(T)-Un—a'mn—ka‘—hQ(U)n)

B.8 Proof Sketch related to Remark 3.3

Suppose we upper bound in the same manner as in Appendix B.7. Suppose we have picked
the on columns as K. Note that the rest (1 —o)n columns are not sufficient to be partitioned
into two sets of information columns. That is, (1 —o)n < 2k*. Hence, when we partition the
rest columns into J; and Jsz, we will encounter problems starting from Equation 11. When z
iterates over all elements in F’ ki, because of the MDS property, the every possible codeword
restricts to J; columns will appear exactly p(ki*UlD times. Similarly, every codeword
restricts to Jo columns will appear exactly p(kL"b') times. Therefore, our lower bound will
be blowed up by a factor of

VD) [pl =1l 3 pht=O=ain/2,

This explains the bound in Remark 3.3.

C More On the k > n/2 Barrier

In this section, we provide more insights into why our proof techniques inherently require
k > n/2. To be precise, this barrier arises exactly at the place when one uses Equation 6 to
upper-bound Equation 5. That is, when one uses the magnitude of the Fourier coefficient to
upper bound Equation 5, this is doomed to fail to prove any result if k < n/2.

To justify this, we shall prove the following Theorem 3. Let us set up some notations
first. Define the QR C F as the set of quadratic residues. That is,

OR:={a € F: 33€ Fst. 32 =al.

The set F'\ QR is called quadratic non-residues. Define the leakage function L = (L1, ..., L)
as, for all i € {1,2,...,n}, L; = 1gr. That is, every L; leaks one bit, indicating if the field
element is a quadratic residue or not. We have the following claim.

» Theorem 3. Let L be defined as above. Let (G) be any [n, k] code such that k < n/2.
Let (H) be the dual code of (G). Equation 6 is lower bounded by 1. That is,

PR

FeFk\{0k+} fef0,1}n

> p(’ﬂ,—Qk)/Q > 1.

~

[t (@ H.2)
1

1=

In words, this upper bound is hopeless to prove any meaningful bound when k < n/2.

For the proof, we need some preparations. The following facts are well-known about
quadratic residues.

> Fact 3. |QR|=(p+1)/2.

» Fact 4. The quadratic Gaussian sum is defined as

g(a,p) == iXa (4%) -
7=0

In particular,

P ifp=1 mod4
g(1,p) = VP o :
1/p ifp=3 mod4
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The following claim follows trivially from the definitions of Fourier coefficients.
» Claim 8. Let A C F be an arbitrary set. For all a € F*, we have [La(a)| = |1p\ 4()].
Moreover, since ‘Q(O)‘ = |A|/p, we have ‘@3(0)‘ > ‘1@(0)‘ Overall, for all « € F,

|Tor(@)] > |Trar()|

Finally, we need the following claim.

» Claim 9. For all i € {1,2,...,n}, ¢; € {0,1}, and a € F, we have the following

’ 75 +6(1/p) ifaeF
B :I:@l/p) ifa=0

Proof. Without loss of generality, assume p =1 mod 4. Since every leakage function L; is
identical, we shall write 1,, instead of 1; 4, for simplicity.

The statement regarding o = 0 is trivial from the definition. In the following, we shall
only consider the case o € F™*.

Observe the fact that if « is a quadratic residue, we have

a- QR =09QR and a-(F\QR)=F)\ QR.
If o is a quadratic non-residue, we have
a- QR ={0}U(F\ QR) and a-(F\QR)=9R\ {0}.

This shows that

- 1,(1) if v € QR
Li(a) =4~ .
1(1)+1/p fag¢ OR
Similarly,
- 1(1) if « € OR
1o(a) = § ~ .
1,(1)-1/p ifa¢ QR
Moreover, 11 ‘ = ‘10 ’ It suffices to only consider 11( )’ By definition,
-~ 1 |g(1p)+ 1‘ 1
11‘:-‘ - 1 0(1/p). Fact 4
L= 7 55 e (Fact 4)
This completes the proof. |

We are now equipped to prove the main results. Without loss of generality, we assume
=1 mod 4. Qualitatively, when we use Claim 9, we shall ignore the lower order term.

of Theorem 3 . Since every leakage function L; is identical, we shall write 1, instead of
1, , for simplicity.

n

[

i=1

PR

FeFr\{0k+} fe{0,1}n

2t Y HTo(a:H>

ZeFkt \{Okl} =1

(Claim 8)
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-min|1n
min|Lo(e)

n—k

i=1

Y ‘k

FeFkE\ {0k}

Nzn.(2\1@>k. >

FeFkE\ {0k}

k n—k
1 —~
~2" | — ] - ‘1 «@ ’
() TS
(Add 0™ codeword does not change the sum qualitatively)

o <2éﬁ>k T (?) (Claim 9)

=1

n—=k

II 1@ H.)

i=1

(Claim 9)

=pln2/2 > (. k<n/2)

This completes the proof. |

D Leakage-resilience of Shamir’s Secret-sharing Scheme

In this section, we consider fixed MDS [n + 1, k + 1] codes and the corresponding Massy
secret-sharing scheme. We prove the following theorem.

» Theorem 4. There exists a universal constant pg such that, for all finite field F of
prime order p > po, the following holds. Let GT be an arbitrary MDS [n + 1,k + 1]r
code such that k > 0.8675n. The Massey secret-sharing scheme corresponding to Gt is
(1, exp(—O(n))-leakage-resilient.

As Shamir’s secret-sharing is a Massey secret-sharing scheme corresponding to a punctured
Reed-Solomon code, we obtain the following corollary.

» Corollary 5. There exists a universal constant py such that, for all finite field F of
prime order p > po, (n, k)-Shamir secret-sharing scheme over field F with k > 0.8675n is
(1,exp(—O(n))-leakage-resilient.

In the rest of this section, we prove Theorem 4.

Proof. Let G = GE 2, k}x{1,2,...,n}"
sponding to the secret being 0. Let H be the dual generator matrix. Our starting point is

Equation 6. That is,

SD (E(s<0>),ﬂ(s<1>)) < ¥ 3

7e{0,1}" e F+\{ok+}

i.e., the generator matrix for the secret shares corre-

n

[[1e @ H)l.

i=1

(12)

Our main idea is that we shall bound the right hand side with the exact information where
the zeros of the codeword (from (H)) are. This is motivated by the fact that the Fourier
coefficient correspond to 0 has the dominant weight. Note that since (H) is an MDS
[n, k't = n — k]p-code, a non-zero codeword from (H) has at most k* — 1 zeros. For any
A C{1,2,...,n} such that |A| < k*+ — 1, let us define set

Sp = {feF’“l\{o’“L}‘agA«:»f.H*,a:o}.
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That is, the collection of non-zero messages whose codewords satisfy that 0 appears exactly
at those indices from A. Clearly,

R\ {0“} = U s

A A<kt -1
Continue from Equation 12, we have

>3 |

zel JSa le{o,1}n 1t

SIS S| A

A: |A|<kt—1 TESa /E{O 1}nle ]

(13)

D.1 Bounding the summation over S,

The following claim is useful for bounding the summation over S4.

» Claim 10. For all ¢ € {1,2,...,n}, we have

> Y )| <
£;€{0,1} | acF*

—1
of Claim 10 . Let p:= 1i+(1)‘, i.e., the fraction of elements from F' such that leakage

:i( )| _

function L; shall output 0. Clearly, 1 — p. By the definition, we know

I;,\0(0)’ =

and

i71 ‘ =1— pu. By Parseval,

o) =Y

acF* acF

li,o(a)

— ‘ 2

Similarly,

(@) = [0 = - -0-w

Yl =3

aEF* acF

N ‘ =2yp(l—p) <1
£;€{0,1} | acF*

This completes the proof. |

Hence,

Now, let us fix a set A and define the sum

=2 >

ZESA fe{o 1}nle

n

H (Z-Hyp)

=1

To further bound I' 4, let us introduce some notations first.
Refer to Figure 4 for the following definitions. Define J; := {1,2,...,k*} and Jp := {k+ +
S 2ktY Let Jyi={1,....n}\ (J1 UJ). Forie€ {1,2,3}, let A; := AN J;. Now, pick
an arbitrary By C Jj such that (1) ByN A = 0; and | By |+ |A| = k*. Similarly, pick By C J,.
Furthermore, let Dy := J; \ (B1 U A1), Dy := Jo \ (B2 U As), and D3 := J3 \ A3.
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J1

Jo J3

A

D3

D, D,

Figure 4 The dual generator matrix H € FFXn We pick the first k&% columns as J; and the
second k* columns as Jo. Let Js be the rest of the columns. The set of columns A = A; U As U A3
is exactly where the codeword will be 0. We pick B1 C J; \ A and B2 C J> \ A to ensure that
|Bul+ Al = [Ba| + |A] = k.

We are ready to bound I' 4. We have the following derivation.

D S 9 | | it

ZG{O,l}” TES 4 li=1
2 2
<> U ve@E 2 S| I Lie@ He) (Cauchy-Schwartz)
fe{o,1}n \ TE€Sali€sy FeSalieJaUJs
2 2
< Z Z H 1ig, (% Hi ) Z H 1,.,(Z- H.;)
fe{0,1}n \ TE€Sa|i€J1\A; FeSa|i€J2UJ5\(A2UA3)

[t

i€EA

by

7e{0,1}n— 14l

> T L@

TeSaliei\ A1

H*,i) Z

H 1,,,(Z- H,;)

TESA iGJZUJ3\(A2UA3)

I > 1.0

€A Zie{O,l}

>

le{0,1}n— Al

81

|

i€J1\ A1

2

I[I @ H.

1€ J2UJ3\ (A2UA3)
(Imported Lemma 2)

<

>

Ze{0,1}n— 141

>

Ze{O,l}""AUJ3|

2 2
> IT tie@- He) > | [] Tiw@ He)
TeSA|i€J1\ A1 TESA|i€T2\ A2
max |1, ¢ (« )
‘ ac Zyez( )
i€Ds3
2 2

D

zeSa|i€J1\ A1

I t.@

- H, ;)

TeSA|i€T2\ A2
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I3 max
ack*

1€D3 £;€{0,1}

2 2

<oy ST te@ ma)| || [] Tia(@ He)

ZG{O,I}"*'AUJM TeSA|i€J1\Ar TESA|1€J2\ A2
(Imported Lemma 2)

=cy 3 ST i@ He) 3 ST Te@-He)

7e{0,1}171\ A1l | T€Sa|i€J1\ Ay 7e{0,1}172\A2] \ FESa|i€J2\A2

Let us bound the term in the last equation separately.

2
> Yol I tie@ He
7e{0,1}171\A1] \ FESa|i€ 1\ Ax
2
< Y S|t m| - TT max|te )]
«
7e{0,1}171\A1] \ TE€ESAli€EB €D,

H ]-zE z- H*z
i€ By

T Y mffe

i€D1 £;€{0, 1}

= > X

7e{0,1}1B11 Y T€Sa

a3 X

7e{0,1}1B11 Y T€Sa

(1)
< C;|D1\ Z

56{0,1}‘31‘ i€B) a€F*

AL IS /Z ‘1/1'\,&(0[)’2
i€B1 £,€{0,1} | a€F*

< Cl_lDl‘ H 1 (Claim 10)

1€ By
_ D1l
= Cl

2

H 1/7/72(5 H*,i)

1€ By

(Imported Lemma 2)

Let us elaborate on step (i).

(H) is a MDS code and we pick B; such that |By| + |A| = k1. Therefore, columns from
A and B forms a set of information columns. And enumerating over all the possibilities
of - H, p, € (F*)IP1l will ensure that we cover all the elements in z € S4.

It is possible that we are overcounting. Suppose there exists a codeword ¢ = Z - H such
that (1) ca = 0141; (2)ep, € (F*)IB1l; and (3) 3i ¢ A such that ¢; = 0. By definition
¢ ¢ Sa, but we will include the contribution of ¢ as we enumerate all possibilities of

—

Z- H, p,. Since we only aim for an upper bound, this shall be fine.

In analogous manner, we can prove

> S| Ta@ B <o

7e{0,1}172\A2] \ £€Sa|i€ 2\ A2
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Overall, we now have

T4 < C;(|D1\+|Dzl+|D3\) _ C;(\A|+n72l#) _ C;(\A|+2k7n)

)

where |Dy| + |D2| + | D3| = |A| + n — 2k follows from their definitions.

D.2 Finish the Proof

Going back to our proof, continue from Equation 13, we have

—(|Al+2k—
< Z C; (4] n)
A A<kt —1

kt—1
_ Z (N> 2k
=0 L

kt—1
< Z 2h2(i/n)-n7(i+2k7n) log,(C1)

=0
Et—1
_ Z Qn[hg(i/n)f(i/n+2k/n71)logQ(Cl)]

=0

Note that, from Imported Lemma 2, C; can be set to be arbitrarily close to pliﬁrgo % =z
as long as p is large enough.
Suppose k/n = o, we have now reduce the problem to how large does ¢ need to be to

ensure that

max  ha(q) — (¢ + 20 — 1) log,(w/2) < 0.
g€l0,1—0)

When o > 0.7, one can find that
ha(q) —logy(m/2) - q
is monotonely increasing on [0,1 — o). Hence, it suffices to ensure
ho(l — o) —log,(n/2) - 0 < 0.

One can verify that ¢ > 0.8675 suffices. One can verify the above argument through
https://www.desmos.com/calculator/qvguaidg06. <

E Proof of Corollary 3

Let (s1,s2,-..,8,) be the random variables of each secret-shares. Since, we have a linear
secret-sharing scheme, there must exist fixed aq,...,ar € F such that one can reconstruct
the secret s by

k
S = E [O7E =T
i=1

Intuitively, our attack tests whether «; - s; < p/(2k) or not. This shall give us an advantage
in distinguishing whether the secret is < p/2 or > p/2.


https://www.desmos.com/calculator/qvguaidg06
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Let us define 7 := | Z-|.2! Consider the leakage function L= (Ly,...,L,) where for all
ie{l,2,...,k},

L( ) 1 ifai-SiE{O,l,...,T}
i\Si) = .
0 otherwise

For ¢ > k, let L; be arbitrary functions.
Let s(» = p— 1 be a fixed secret. Let s be a uniformly random secret. We shall prove
that

SD (ﬂ(3<o>),ﬁ(s)) > (21k>k (14)

This implies that there exists secret s(!) such that

5D (L(s@), L(sV)) > <21k)k

and hence Corollary 3.

To prove Equation 14, we consider the probability that the first k& leakage is 1. Clearly,
when the secret is s(9, it will never happen that, for all i € {1,2,...,k}, a;-s; < 7. On
the other hand, for a random secret s, «; - s; are independently uniformly distributed for
i €{1,2,...,k}. Therefore, the first k leakage is 1 is exactly

1(;)=(x)"

This proves Equation 14 and completes the proof.

*!'Here, £ is over the real number. L%J is treated as a field element.
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