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ABSTRACT

Recent studies and incidents have shed light on the threat
posed by botnets consisting of a large set of relatively weak
IoT devices that host an army of bots. However, little is known
about the threat posed by a small set of devices that are not
infected with malware and do not host bots. In this paper,
we present Botnet-IND (indirect), a new type of distributed
attack which is launched by a botnet consisting of botless IoT
devices. In order to demonstrate the feasibility of Botnet-IND
on commercial, off-the-shelf IoT devices, we present Piping
Botnet, an implementation of Botnet-IND on smart irrigation
systems, a relatively new type of IoT device which is used by
both the private and public sector to save water; such systems
will likely replace all traditional irrigation systems in the next
few years. We perform a security analysis of three of the
five most sold commercial smart irrigation systems (GreenIQ,
BlueSpray, and RainMachine). Our experiments demonstrate
how attackers can trick such irrigation systems (Wi-Fi and
cellular) without the need to compromise them with malware
or bots. We show that in contrast to traditional botnets that
require a large set of infected IoT devices to cause great
harm, Piping Botnet can pose a severe threat to urban water
services using a relatively small set of smart irrigation systems.
We found that only 1,300 systems were required to drain a
floodwater reservoir when they are maliciously programmed
to simultaneously consume water for just one hour.

I. INTRODUCTION

Botnets continue to pose great risk to the virtual and
physical worlds, especially in the IoT device era. Recent
studies and incidents have shown how the collective effect
of a large set of relatively weak IoT devices that host an
army of bots can be used by attackers to perform powerful
attacks. In these attacks, the infected IoT devices (botnet) were
used to disrupt power grids [1], block 911 emergency services
[2], disable servers [3], etc. These incidents and studies have
contributed to an understanding of the great harm that attackers
can cause by using a large set of infected IoT devices. While
the threat posed by infected IoT devices that host bots is clear,
another important question remains: How much damage can
be caused by a small set of devices that are not infected with
malware and do not host bots?

In this paper, we present Botnet-IND (indirect), a new type
of DDoS attack which is launched by botless IoT devices.
Botnet-IND targets actuators, IoT devices that are used to

manipulate the physical environment. Inspired by recent inci-
dents [4], [5], we investigate how IoT devices that do not host
bots can be tricked to take part in DDoS attack. We explain
the parties involved in Botnet-IND, the steps in Botnet-IND’s
lifecycle, and the significance of Botnet-IND with respect to
standard botnets.

In order to demonstrate the attack on commercial IoT
devices, we present ”Piping Botnet,” an implementation of
Botnet-IND on a relatively new type of IoT device, the smart
irrigation system. We perform a security analysis of three
of the five most sold commercial smart irrigation systems
(GreenIQ, BlueSpray, and RainMachine). To profile them,
we analyze their network behavior; in doing so, we expose
vulnerabilities that can be exploited by attackers to trick them,
without the need to compromise them with malware. Based
on our findings, we show how Piping Botnet can be applied
against urban water services using a small set of botless,
commercial smart irrigation systems that were tricked into
executing a DDoS attack.

This paper makes the following contributions: (1) We
present a new type of botnet that does not require that attackers
infect the devices used to attack a target with a bot/malware.
Instead, the devices that take part in the distributed attack
are tricked into performing malicious activity (as part of
the distributed attack). (2) We implement the botnet using
commercial smart irrigation systems. We demonstrate that
three of the most popular commercial smart irrigation systems
can be tricked by another device to irrigate according to
the attacker’s wishes, without the need to infect the smart
irrigation system with a bot/malware. By doing so, we show
how such systems can take part in a DDoS attack against
urban water services. (3) We present an implementation of a
botnet that targets the physical world (as opposed to previous
botnets that targeted servers and services in the virtual world
[6], [7], [2]). While the use of botnets as means of attacking
the physical world has already been suggested (for example,
to disrupt the power grid [1]), we present a new type of botnet
that can be used to disrupt urban water services. (4) We also
show that in contrast to traditional distributed attacks that
are executed by botnets and rely on a large set of devices,
significant harm can be inflicted with a relatively small set of
smart irrigation systems (in terms of the size of the botnet;
only 1,300 smart irrigation systems are required to drain a
floodwater reservoir when they are maliciously programmed
to simultaneously irrigate for one hour).

The rest of the paper is structured as follows: We review
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related work in Section II. In Section III, we present Botnet-
IND’s threat model, discuss the attack steps, and describe
the attack’s significance with respect to traditional botnets. In
Sections IV-VII, we present Piping Botnet, a demonstration
of the implementation of Botnet-IND on commercial smart
irrigation systems. We provide the necessary background about
smart irrigation systems and discuss attackers’ motivation
for using smart irrigation systems for a DDOS attack; we
explain the methodology used to implement Piping Botnet
with commercial irrigation systems; and we demonstrate how
three commercial smart irrigation systems (Wi-Fi and cellular)
can be tricked into initiating irrigation without infecting them.
We discuss countermeasures in Section VIII. In Section IX,
we present the results of our disclosure to the companies, and
finally, in Section X, we provide a brief discussion of this
research.

II. RELATED WORK

Adversaries’ interest in attacking the cyber-physical systems
of critical infrastructure began three and a half decades ago.
The first known cyber attack was launched in 1982 by intruders
who planted a Trojan in the SCADA system controlling
the Siberian pipeline and caused an explosion equivalent to
three kilotons of TNT [8]. In recent years, there has been
a significant increase in the number of cyber attacks against
critical infrastructure [9], which can even result in death
[8]. Two famous cyber attacks against critical infrastructure
launched in the last 10 years that resulted in a large amount
of damage are the cyber attack against Ukraine’s power grid,
which left 700,000 people without electricity for several hours
[10], and Stuxnet, which targeted nuclear facilities and caused
a large number of centrifuges to be taken offline [11]. Recently,
national water supply services have become the target of cyber
attacks. In April 2020, six facilities were hit in a cyber attack
on Israel’s water infrastructure that aimed to increase the
water’s chlorine level. The cyber attack had the potential to
cause hundreds of people to become ill, however its success
was very limited; some systems were impacted, but the attack
did not cause a disruption of the water supply or waste
management systems [12], [13]. In this paper, we show that
smart irrigation systems can be used by attackers to attack
critical infrastructure (urban water service).

Since 2008, many types of IoT botnets that were not
triggered by servers, PCs, or laptops [14] have appeared in
the wild. Probably the most famous IoT botnet in recent
years is Mirai, which turned a large number of IP cameras
running the Linux OS into remote-controlled bots; the bots
were used to launch a massive DDoS attack in 2016 [6], [7]
via 600K devices. Since then, new kinds of botnets have been
introduced. A recent study [2] described a TDoS (telephony
denial-of-service) attack against 911 emergency services using
a botnet of smartphones that initiated a large volume of calls to
the service simultaneously. As opposed to the abovementioned
botnets that target servers and computers in the virtual world
[6], [7], [2], Botnet-IND targets the physical world. Another
recent study found that a botnet of IoT devices can be used to

disrupt the activity of the smart grid [1]. Botnet-IND targets
another type of critical infrastructure, urban water services.
The abovementioned botnets [14], [6], [7], [2], [1] relied on
compromised devices that host a bot to attack a target. In
contrast, Botnet-IND initiates a DDoS attack with botless
devices.

Recently, we witnessed two new DDoS attacks performed
via botless smart assistants that were triggered (intentionally
and accidentally) [5], [4] via TVs. In both cases, a voice
command delivered by the TV triggered a large number of
smart assistants to launch a request to their servers at the
same time. These incidents are similar to Botnet-IND in that
the attacks are performed via botless devices. However, these
incidents exploit smart assistants to attack cloud servers, while
Botnet-IND exploits smart irrigation systems to attack critical
infrastructure. In addition, the DDoS attacks performed via
the smart assistants require a very large number of smart
assistants to initiate their requests at the same time in order
to disable servers that were designed to handle large numbers
of simultaneous requests. Piping Botnet, the implementation
of Botnet-IND that is demonstrated in the paper, can cause
a great deal of damage using a small set of smart irrigation
systems: only 1,300 devices are required to drain a floodwater
reservoir when the devices are simultaneously operated for one
hour, as we show later in the paper in Table I.

III. BOTNET-IND’S ATTACK & LIFECYCLE

In this section, we describe the Botnet-IND attack, the
entities involved, the steps of the attack, and the significance
of the attack with respect to standard botnets.

A. Parties Involved

A standard botnet typically consists of three entities: the
botmaster/attacker, the C&C infrastructure, and an army of
bots [15]. The botmaster usually uses the C&C infrastructure
to command and control his/her army of bots, with each
bot running on a host device. Each bot in the army is used
for two tasks: (1) propagation - bots are applications that
propagate themselves by infecting new host devices with
malware, and (2) attack execution - bots are applications used
by the botmaster to perform a malicious activity.

However, in Botnet-IND, the devices that are used to
propagate and the actuators used to execute the DDoS attack
are different and consist of:

(1) Recruiter devices - the devices used to trick actuators
into executing a DDoS attack. Recruiter devices are any type
of device that is connected to a LAN with Internet connectivity
(e.g., laptop, smartphone, IP camera, etc.) and hosts a bot
that is controlled by the botmaster. Recruiter devices scan
for actuators connected to their LAN and trick the actuators
detected into performing the desired attack without infecting
them with a bot. Recruiter devices do not take part in executing
the DDoS attack.

(2) Attack devices - the actuators used to execute the DDoS
attack. These devices are botless. They are not infected with
a bot/malware. An actuator is tricked into taking part in a



Fig. 1: A comparison between a standard botnet’s lifecycle (as presented in [15]) and Botnet-IND’s lifecycle. The blue boxes
are the steps executed by a bot (in the case of a standard botnet) or recruiter device (in the case of Botnet-IND). The red box
is a step executed by an attack device (the actuator).

DDoS attack by a recruiter device. The actuators are not used
to infect new devices, because they do not contain a bot that
is controlled by the attacker/botmaster.

B. Botnet-IND’s Lifecycle
A standard botnet’s lifecycle usually consists of five steps:

initial infection, secondary injection, connection, malicious
activity, and maintenance/upgrading [15], as can be seen
in Figure 1. Botnet-IND’s lifecycle differs from a standard
botnet’s lifecycle and consists of six steps which can be seen
in Figure 1 and are described below:

Step 1 - infection: The attacker builds a botnet of recruiter
devices. To do this, the attacker can rent botnet services [16],
[17] which are traded for bitcoin on the darknet. Alternatively,
the attacker can infect devices that are connected to the
Internet (e.g., laptop, smartphone, etc.) with malware using
common infection vectors (e.g., email attachments, compro-
mised websites, malvertising campaigns, and supply chain
attacks).

Step 2 - detecting connected actuators: Each bot (recruiter
device) scans for actuators that are connected to its LAN. If
an actuator is detected in its LAN and the exact time of the
DDoS attack (i.e., the time the actuator needs to execute the
attack) was given to the bot running on the recruiter device in
the infection step (step 1), the bot proceeds directly to step 4.
If the exact time of the attack was not provided in step 1, and
the botmaster prefers to trigger the botnet in real time, the bot
proceeds to step 3. If no connected actuators are found, the
bot destroys itself in order to cover its tracks (step 6).

Step 3 - connection: A connection between the bot running
on the recruiter device and its botmaster is established through
the C&C infrastructure by using one the following C&C
mechanisms that are described in [18]. The botmaster can
deliver information to the bot regarding the exact time of
the attack (which will cause the bot to proceed to step 4).
Alternatively, the botmaster can upgrade the bot’s code or send
it a signal indicating that it should self-destruct (which will
cause the bot to proceed to step 6). Step 3 is optional, and the
attack can be applied without it by giving the bot the needed
information in the infection step (step 1).

Step 4 - tricking an actuator: The bot running on the
recruiter device tricks an actuator into irrigating at a time
specified by its botmaster. The coordinated attack initiated by
the actuator is part of a DDoS attack against a target that is
triggered by the botmaster. Step 5 - attack execution: This
step is not executed by the bot that runs on the recruiter device.
This step is executed by the actuator (the attack device).

Step 6 - maintenance/self-destruction: In the final step,
the bot can: (1) destroy itself in order to cover its tracks, (2)
update its code by downloading an updated version, or (3)
connect to the botmaster for new commands.

The significance of Botnet-IND with respect to standard
botnets is: (1) the bots can destroy themselves before the attack
is performed (proceed from step 4 to step 6) by scheduling
irrigation at a future time (the exact time that the attack is
performed), and (2) the devices used to perform the DDoS
attack are botless. The attacker does not need to infect the
devices that are used to attack a target with malware. These
facts make the forensic detection of Botnet-IND after the
attack much harder than that of a standard botnet.

IV. PIPING BOTNET

In this section, we present Piping Botnet, an implementa-
tion of Botnet-IND using smart irrigation systems. We start
by providing the background needed to understand smart
irrigation systems and how they work. We then explain an
adversary’s motivation for implementing Piping Botnet and
present the methodology used in this research to demonstrate
Piping Botnet on three commercial smart irrigation systems
(GreenIQ, BlueSpray, and RainMachine).

A. About Smart Irrigation Systems

Smart irrigation systems refer to advanced irrigation sys-
tems that incorporate various sensors and network components
for better efficiency [19]. They were first introduced in 2013,
and in the next few years they will replace most traditional
irrigation systems around the world [20], [21], [22]. Smart
irrigation systems are physically connected to a set of valves
that are connected to the main water line on one end and to
pipelines/sprinklers on the other end. The valves are controlled



Fig. 2: Smart irrigation systems consume water from the urban water service and interface with various sensors, weather
forecast services, C&C devices, and dedicated cloud servers.

by the smart irrigation system and used to regulate the water
flow from the main water line to sprinklers and droppers.

Smart irrigation systems are equipped with Internet connec-
tivity based on Wi-Fi communication via an integrated NIC or
cellular connectivity via an integrated dongle. Currently, only
a few smart irrigation systems with cellular connectivity are
sold, and the vast majority of smart irrigation systems are Wi-
Fi based and intended for home use. While the exact number
of commercial Wi-Fi smart irrigation systems is unknown
(because Shodan and other similar websites only index cellular
smart irrigation systems that face the Internet), the global smart
irrigation market is estimated at $1 billion in 2020 and is
expected to reach $2.1 billion by 2025, with compound annual
growth rate of 15.3% [23]; accelerated deployment is expected
due to the COVID-19 pandemic [24].

Smart irrigation systems use Internet connectivity to support
the following functionality: (1) provide remote HMI communi-
cation (for purposes of scheduling a watering plan, presenting
the watering history, etc.) over the Internet to C&C devices,
(2) monitor water consumption, and (3) automatically adapt
the watering plan according to data obtained from weather
forecast services and sensors.

Figure 2 outlines the entire smart irrigation system ecosys-
tem. As can be seen in the figure, smart irrigation systems
typically interface with the following entities:

1) Weather Forecast Service - There are many weather
forecast services on the Internet [25], [26], [27], [28], [29],
[30], [31] that provide a REST API in which a request
that contains the location of the desired weather forecast is
sent from a client and is followed by a response from the
weather forecast service that contains the weather forecast
(temperature, humidity, wind direction, wind speed, pressure,

cloudiness, etc.) for each hour/part of day for the upcoming
days/week. Smart irrigation systems use weather forecasts in
order to adjust their watering plan and typically launch a few
requests a day to obtain updates.

2) C&C Device - Smart irrigation systems provide an HMI
to users for C&C that is based on a web browser, mobile/tablet
application, and smart assistant. The HMI provides users with
various capabilities to remotely control and monitor smart
irrigation system operation from anywhere (e.g., to schedule
a watering program, to visualize weekly aggregated watering
consumption data).

3) Cloud Server - Each smart irrigation system communi-
cates with its own cloud server. The primary role of the cloud
server is to mediate between the C&C device and the smart
irrigation system. In addition, the cloud server also provides
firmware updates, and stores the smart irrigation system’s
configuration and watering history. Smart irrigation systems
typically launch an update request once a minute in order to
verify whether new updates have been sent from the user.

4) Sensors - Smart irrigation systems provide a wired/wire-
less interface for sensors (e.g., precipitation, soil moisture,
temperature, and water flow sensors). Based on the data
obtained from the connected sensors, smart irrigation systems
adjust the watering plan and regulate their operation.

B. Piping Botnet: An Attacker’s Motivation & Expected Dam-
age

Botnet-IND is a distributed attack that is executed using a
botnet of botless actuator devices. In this paper we demonstrate
the implementation of Botnet-IND that we refer as Piping
Botnet: botless smart irrigation systems are used to execute
a DDoS against urban water services in order to drain a
water reservoir; this is accomplished by using a set of smart



Fig. 3: SoC board of RainMachine (left), GreenIQ (middle), and BlueSpray (right).

irrigation systems (which are not infected with a bot or
directly controlled by the attacker) that consume water from
the same source at the same time. Instead of infecting the
smart irrigation systems with bots that are used to execute the
attack, the smart irrigation systems are tricked into executing
the attack. The attacker’s objective for applying Piping Botnet
can be one of the following:

(1) To drain an urban water source - usually, water is
purified at a treatment plant after it has been pumped from
a natural water source (e.g., groundwater). From the treatment
plant, the water is distributed to urban/areal reservoirs and
tanks that distribute water to residents in the entire distribution
area. In some places, areal reservoirs and water tanks are not
physically connected to a treatment plant using pipelines due
to physical limitations. Instead, areal reservoirs are filled with
water shipped to the reservoir on a weekly/monthly basis or
when the reservoir is nearly empty. Applying an attack that
wastes water and empties an urban water reservoir may result
in the inability to provide water to residents until the local
water reservoir can be refilled. In addition, in many places
around the world, there is a serious water shortage [32], so so
the reservoir cannot easily be refilled.

(2) To cause financial damage - attacking smart irrigation
systems increases water consumption and causes financial
loss to cities that use irrigation systems to water parks and
private households that use irrigation systems to water their
yard/garden.

(3) To reduce water flow - by applying a distributed attack
using many smart irrigation systems that are connected to the
urban water service by the same pipeline, the attacker can also
reduce the water flow in all of the households connected to
the pipeline.

A distributed attack against an urban/local water service is
very dangerous, because water is critical to daily life. As seen
in Ukraine [10], an attack on critical infrastructure can be
disastrous, depending on the number of households affected
and prevented from accessing the resource, and the amount of
the resource that remains available for consumption.

The amount of water wasted as a function of the botnet’s
size can be calculated by attackers as follows: A typical
sprinkler’s water flow is between 0.66 to 4.93 cubic meters
per hour [33]. If an attacker is able to recruit a botnet of n
smart irrigation systems (each of which is connected to a single
sprinkler) which are operated for a given period of t hours,

TABLE I: Damage Calculation

Botnet
size (n)

Amount of time
(t) in hours

Average amount of
water wasted (m3)

1 1 2.795
1,355 1

3,787 Typical water tower capacity13,550 0.1
143,200 1 404,244 Floodwater reservoir capacity23,866 6

the average water wasted by applying the attack is calculated
by multiplying the average water flow (2.795 cubic meters
per hour) by the size of the botnet n and the duration of the
attack t: 2.795 ×n× t. Table I presents the average amount of
water that can be wasted by performing the attack with various
numbers of bots n and for different periods of time t. As can be
seen from the information presented in the table, Botnet-IND
can cause significant damage (e.g., draining a water tower)
with a relatively small set of devices (1,300 smart irrigation
systems), whereas other botnets have relied on more devices to
execute a DDoS (e.g., Mirai relied on 600K infected devices).

C. Methodology

In this paper, we focus on three commercial smart irrigation
systems: RainMachine [34], BlueSpray [35], and GreenIQ
[36], which were identified as three of the five most sold smart
irrigation systems by [37] and [38]. In order to demonstrate
Piping Botnet, we implement steps two (detecting connected
actuator), four (tricking the connected actuator), and five
(attack execution) in Botnet-IND’s lifecycle (presented in
Section III) on the three commercial smart irrigation systems
mentioned above. In Section V, we implement step two and
show how a bot can detect smart irrigation systems connected
to its LAN within 15 minutes. In Sections VI and VII, we
implement steps four and five and show how a bot can trick a
Wi-Fi smart irrigation system (Section VI) and cellular smart
irrigation system (Section VII) into initiating irrigation.

In order to implement Botnet-IND on commercial smart
irrigation systems, we combined two techniques: (1) we
connected all three smart irrigation systems to a router and
captured their incoming/outgoing traffic for a week. We then
analyzed their connections with their C&C devices, cloud
servers, and weather forecast services from the captured pcap
files using Wireshark. In addition, (2) we reverse engineered
two commercial smart irrigation systems by extracting their
firmware. The GreenIQ second generation smart irrigation



system is based on a Raspberry Pi controller board with a
connected SD card (as can be seen in Figure 3b). We copied
the contents of the SD card to a laptop using an SD card
reader and found 34 Python files that the firmware is based
on. Unlike the GreenIQ smart irrigation system which uses a
Raspberry Pi as its controller board, RainMachine does not
use a commercial board and designed its own controlling
circuitry. We used a USB to UART adapter (FT232R) to
extract RainMachine’s firmware from the SoC’s UART termi-
nals, a technique that was shown in [39]. RainMachine runs a
modified version of the Android OS, so we looked for the APK
of RainMachine’s application and found the file RainMachine-
UI.apk. We extracted the APK to Java files using an online
decompiler tool. The firmware of GreenIQ and RainMachine
was not obfuscated.

V. PIPING BOTNET: DETECTING CONNECTED SMART
IRRIGATION SYSTEMS

In this section, we demonstrate the application of step two
in Botnet-IND’s lifecycle (detecting connected actuators) and
explain how a recruiter device can detect a smart irrigation
system connected to its network. In order to do so, we profiled
the network behavior of each commercial smart irrigation
system. Based on our findings, we developed an algorithm
that can be used to scan a network and determine whether an
IP is a known smart irrigation system by analyzing its network
behavior. We then evaluated the algorithm’s performance as a
function of the period of time that the network need to be
scanned and analyzed.

We connected three commercial smart irrigation systems
(RainMachine [34], BlueSpray [35], and GreenIQ [36]) to a
router via Wi-Fi and monitored the LAN traffic using a bot
that was installed on a laptop that was connected to the same
LAN (by applying ARP spoofing from the laptop to the smart
irrigation systems). We stored the traffic as PCAP files. In
addition, we downloaded another set of traffic data of popular
home appliance that was published by another study [40] and
was collected from various types of IoT devices: two smart
bulbs, wireless printer, 16 security cameras, a smart refrig-
erator, five smartwatches, two laptops, and two smartphones.
We used the two datasets to analyze the difference between
a smart irrigation system’s network behaviour and the rest of
the IoT devices.

A. Network Behaviour Analysis

In our preliminary analysis, we explored the average number
of unique destinations that smart irrigation systems interface
with per hour and compared the results with the abovemen-
tioned IoT devices. As can be seen in Figure 4, the average
number of unique destinations that smart irrigation systems
interface with is very low compared with the smartphones
and smart refrigerator. However, a small average number of
unique destinations is a property that is common to most of
the IoT devices we analyzed, so it cannot be used by a bot to
determine whether a specific IP is a smart irrigation system.

Fig. 4: The average number of unique destinations that IoT
devices interface with in an hour.

Fig. 5: Analysis of the number of TCP sessions between smart
irrigation systems and their cloud servers in a typical hour.

Following this preliminary analysis, we looked for unique
characteristics that could be used by a bot running on a LAN
to determine whether a connected device is a smart irrigation
system or not. Currently, the manufacturers of smart irrigation
systems do not produce any other types of IoT devices [37],
[38]. With this observation in mind, we decided to analyze
the identity of the cloud servers that smart irrigation systems
interface with. Unlike Samsung’s cloud server which supports
many IoT devices manufactured by Samsung (smart refrigera-
tor, smartphone, etc.), the cloud servers of the smart irrigation
systems examined interface only with their respective smart
irrigation systems. We found that a packet sent to the GreenIQ
cloud server was only sent from their smart irrigation systems.
The same thing is also true for BlueSpray and RainMachine.
Hence, due to the absence of overlap between the cloud servers
contacted, an outgoing packet sent to a smart irrigation system
cloud server can clearly and reliably indicate that the packet’s



Fig. 6: Distribution of the time between two consecutive
sessions. The red line represents the 99% percentile for each
model.

sender is a smart irrigation system.
As can be seen in Figure 5, smart irrigation systems typi-

cally interact with their cloud servers several times per hour
(6-11 times). We analyzed the distribution of the average time
between two consecutive outgoing packets from any smart
irrigation system to its cloud server. As can be seen in Figure
6, for GreenIQ, the average time between two consecutive
sessions with its cloud server is much lower than that of
BlueSpray and RainMachine. Overall, the maximum amount
of time between two consecutive sessions with the cloud
servers is 15 minutes (the 99th percentile is approximately 10
minutes).

B. Model: Algorithm & Performance

Based on the observations mentioned above, we present
Algorithm 1, a smart irrigation system classification model.

As input, Algorithm 1 receives an IP of a device that is
connected to the LAN of the bot and a period of time for
capturing traffic. The algorithm applies ARP spoofing to the
IP (line 7) and analyzes outgoing traffic from the IP for the
amount of time specified by period. It classifies the suspicious
IP as a smart irrigation system if the outgoing traffic is being
sent to known cloud servers. If the period of time that was
specified has passed, it classifies the suspicious IP as other
device, i.e., a device that is not a smart irrigation system.

We tested the performance of Algorithm 1 on the two
datasets that are mentioned above. The performance was tested
as a function of the period of the scanning, i.e., the detection
accuracy of the model as a function of the minutes that ARP
spoofing must be applied by a bot in order to detect a smart
irrigation system. Figure 7 presents the classification accuracy
results when applying Algorithm 1 from a laptop connected
to the same LAN as the smart irrigation systems for various
periods of time. As can be seen in Figure 7, the classification
accuracy reaches 99.9% after 10 minutes of analysis and 100%
after 15 minutes.

Algorithm 1
1: procedure ISSMARTIRRIGATIONSYSTEM(ip,period)
2: bluespray1 = ”cloud.bluespray.net”
3: bluespray2 = ”www.bluespray.net”
4: greeniq = ”www.greeniq.net”
5: rainmachine = ”proxy1.rainmachine.com”
6: startTime = currentTime()
7: applyMitmAttackToTarget(ip)
8: for packet : nextPacket() do
9: dstIP = packet.ip.dst

10: if dstIP == bluespray1 then
11: return BlueSpray
12: if dstIP == bluespray2 then
13: return BlueSpray
14: if dstIP == greeniq then
15: return GreenIQ
16: if dstIP == rainmachine then
17: return RainMachine
18: if startTime + period ¿= currentTime() then
19: return None

Fig. 7: Accuracy of Algorithm 1 for various time periods.

VI. PIPING BOTNET: TRICKING WI-FI SMART IRRIGATION
SYSTEM

In this section, we demonstrate the application of steps
four and five in the lifecycle of Botnet-IND (tricking an
actuator and attack execution) and show how a recruiter device
can trick a commercial Wi-Fi smart irrigation system into
irrigating, without infecting the smart irrigation system with a
bot/malware.

A. Tricking RainMacine to Irrigate by Impersonating a
Weather Forecast Server

The attack described in this subsection shows how a smart
irrigation system can be tricked to irrigate by spoofing the
weather forecast response sent from a weather forecast server
using a recruiter device that impersonates a weather forecast
service. We explain the which vulnerability was exploited,
show how RainMachine can be tricked to irrigate (step 4),
and present the result of the application of the attack (step 5).



Fig. 8: A session between RainMachine and the Met.no
weather forecast service.

Fig. 9: The original weather forecast in London (left) was
spoofed to a fake weather forecast (right).

1) Vulnerability: RainMachine was designed to save water
and money by automatically adapting its watering plan to
weather forecasts. It allows the user to configure a base
watering plan according to the amount of water that is needed
to water his/her yard and plants. Given the base watering
plan configuration and the weather forecast (obtained from
weather forecast services), RainMachine adapts its watering
plan automatically. This means that for a rainy/cold weather
forecast, watering will not take place or only a percentage of
the amount of water required by the base watering plan will be
used (just the amount needed to meet the water requirements
specified in the user’s configuration). In cases in which there
is a forecast for dry weather, RainMachine automatically
adjusts itself to compensate for a lack of precipitation by
supplementing with watering plans to consume the required
amount of water, based on the user’s base watering plan
configuration.

We analyzed RainMachine’s firmware and found the Main-
Activity.java file. RainMachine contains a touchscreen that
presents the weather forecast for the upcoming week. In
addition, it presents the percentage of water that the smart
irrigation system plans to consume in order to fulfill the water
requirements specified in the base watering plan. We searched
for the code that calculates the exact percentage of water
that will be consumed by RainMachine for each day in the
upcoming week and found that it relies on the amount of rain
that is predicted for each day, as can be seen in Listing 1
(presented in the appendix).

We continued to analyze RainMachine’s firmware, search-
ing for the word ”Weather.” Listing 2 (in the appendix)
presents code from the ParserResponse.java file of weather
forecast services that RainMachine interfaces with. We
searched for these names on the Internet and found the weather
forecast services that appear in Listing 2 (in the appendix). We

analyzed the REST API for each weather forecast service that
was found and observed that during the time in which this
research was conducted, most of the weather forecast services
provided a REST API based on HTTP communication. Figure
8 presents the REST API interface between RainMachine and
a weather forecast service. An HTTP request that contains
RainMachine’s location (in latitude-longitude format) is sent
from RainMachine to a weather forecast service. A response
is sent from the weather forecast service in the form of a
file in XML format that contains the weather forecast (hourly
resolution) with various details including: temperature, wind
direction and speed, cloudiness, humidity, barometric pressure,
etc. Four requests per day (every six hours) are launched by
RainMachine to the weather forecast service, and based on
the weather forecast received, RainMachine adjusts its future
watering plans.

2) Tricking RainMachine to irrigate & Result: We demon-
strate how an attacker can manipulate RainMachine to sched-
ule unnecessary watering plans based on his/her wishes using
a bot running on a connected compromised device (recruiter
device) that impersonates a weather forecast service and injects
a fake weather forecast. We analyzed the Met.no API and
found that it provides a REST interface based on HTTP
communication. We identified the format of the response sent
from the Met.no weather forecast service, and based on these
findings, we wrote a Python code that changes the weather
forecast parameters between two given timestamps.

We installed our code on a laptop that was connected to
the same LAN as RainMachine and implemented an ARP
spoofing attack to divert traffic sent from RainMachine. Orig-
inally, RainMachine was configured to work in London. We
performed the attack during the winter; since London is rainy
in the winter, no watering would likely be needed to fulfill
the requirements of the base watering plan configuration. Ac-
cordingly, RainMachine adapted its watering plan to consume
no water for the upcoming week, as can be seen in Figure 9
which presents RainMachine’s screen before the attack.

Before we applied the attack, the original weather forecast
for London did not require any watering at all, because the
temperatures were expected to be between -1◦and 12◦for the
entire week (as can be seen in Figure 9). A request to the
Met.no weather forecast service is sent every six hours from
RainMachine over HTTP communication, and in this attack
such a request was intercepted by the bot running on the
laptop. The bot responded to the HTTP request with a weekly
forecast of temperatures with values between 0◦and 50◦and
sent the response back to RainMachine. The result of the attack
is presented in Figure 9. Immediately after the attack was
applied, RainMachine adjusted its watering plan to compensate
for these temperatures by scheduling watering plans for the
entire week (instructing the system to consume 50-100% of
the base watering plan in dry days that was configured by the
user). The attack was recorded and uploaded.1

1 https://youtu.be/XuPlwXVK6AY

https://youtu.be/XuPlwXVK6AY


Fig. 10: BlueSpray’s web user interface. Before the attack (top)
there is no watering scheduled, and after the attack (bottom)
watering is scheduled for the entire week.

B. Tricking BlueSpray to Irrigate by Manipulating a Watering
Plan

The attack described in this subsection shows how a smart
irrigation system can be tricked to irrigate by manipulating an
existing watering plan using a recruiter device. We explain
the which vulnerability was exploited, show how BlueSpray
can be tricked to irrigate (step 4), and present the result of the
application of the attack (step 5).

1) Vulnerability: All smart irrigation systems provide an
HMI to a C&C device. The HMI can be operated from various
C&C devices, including a mobile application, web browser, or
smart assistant. Using a C&C device, the user can use the HMI
to: (1) connect the smart irrigation system to a LAN, (2) update
the watering plan configuration, (3) monitor the watering
history, (4) define zones, (5), add sensors, etc. BlueSpray
provides an HMI interface based on PCs and laptops via a
web browser that is based on HTTP communication. The user
can open a web browser (Chrome, Firefox, etc.) from another
device that is connected to the same LAN, type BlueSpray’s IP
address, and send C&C commands. Listing 3 (in the appendix)
presents a payload (JSON format) extracted from an HTTP
packet for scheduling a watering that was sent from a Chrome
browser to BlueSpray.

We were surprised to find that no authentication is required
in order to communicate with BlueSpray from another device
that is connected to the same LAN.

2) Tricking BlueSpray to irrigate & Result: We demon-
strate how an attacker can launch watering via BlueSpray by
scheduling watering according to his/her wishes. We analyzed
the HTTP packets of watering plan updates sent from a laptop
to BlueSpray from a PC connected to the same LAN via
the Chrome web browser and learned how such a request is
generated. Based on our findings, we wrote a Python code
that schedules watering between two given timestamps using
an HTTP request that is sent to BlueSpray.

We reset BlueSpray to its previous configuration with no
watering planned (as can be seen in Figure 10). We installed
our code on a laptop that was connected to the same LAN and
ran the code. The code launched an HTTP request to schedule
watering for the entire week. Figure 10 presents the results
of the experiment. As can be seen, our code successfully

manipulated the watering plans for BlueSpray. The attack was
recorded and uploaded.1

VII. PIPING BOTNET: TRICKING CELLULAR SMART
IRRIGATION SYSTEM

In this section, we demonstrate the application of steps four
and five in Botnet-IND’s lifecycle (tricking an actuator and
attack execution) and show how a recruiter device can trick
a commercial cellular smart irrigation system into irrigating,
without infecting the smart irrigation system with a bot/mal-
ware.

The attack described in this section shows how a cellular
smart irrigation system can be tricked to irrigate by spoofing
the smart irrigation system’s configuration that is sent from
the cloud server using a recruiter device that impersonates the
smart irrigation system’s cloud server. We explain the which
vulnerability was exploited, show how GreeIQ can be tricked
to irrigate (step 4), and present the result of the application of
the attack (step 5).

GreenIQ is sold in two versions, with Wi-Fi and cellular
connectivity. The only difference between them is an addi-
tional SIM dongle that is integrated into the cellular version.
The analysis we performed in this section was done on the Wi-
Fi version. The attack demonstration presented in this section
was performed on the cellular version.

1) Vulnerability: The cloud server is supposed to mediate
between GreenIQ’s application and a smart irrigation system.
Figure 11 outlines the interface between GreenIQ’s appli-
cation running on a smartphone to GreenIQ via the cloud
server. Using a smartphone application, the user sends C&C
commands to the cloud server (yellow arrow in Figure 11).
Independently, a ping to cloud request (that contains the
user’s ID) is launched from GreenIQ to the cloud server every
minute in order to obtain the timestamp of the last time the
user updated the watering plan configuration stored in the
cloud server (red arrow in Figure 11). A response is sent from
the cloud server with this timestamp (purple arrow in Figure
11). If the timestamp received from the cloud server is greater
(after) than the timestamp stored on GreenIQ (signifying a
more recent user update), a configxml request to retrieve
the new watering plan configuration is launched by GreenIQ
(green arrow in Figure 11). A response is hen sent from the
cloud server with a file that contains the new watering plan
configuration in XML format (blue arrow in Figure 11). This
XML file contains details about all of the watering plans
scheduled by the user (dates, hours, duration, zones/valves,
etc.). The new timestamp is stored in GreenIQ instead of
the older timestamp. The correctness of the new timestamp
received is not verified.

Listing 4 (in the appendix) presents the code that imple-
ments the abovementioned description that was extracted from
the main.py file of GreenIQ’s firmware.

A bot running on a recruiter device can exploit this mecha-
nism in order to cause GreenIQ to permanently deny service
by replying with a timestamp value that is far into the future
(e.g., the timestamp of 1/1/2022). By doing so, the bot causes



Fig. 11: A session between GreenIQ and its cloud server.

GreenIQ to ignore any legitimate C&C command that is
launched by the user until the time that is mentioned in the
response, because any C&C command during this period of
time will not be considered by GreenIQ as a user update (line
313 of the code in Listing 4 in the appendix). By combining
a permanent denial-of-service attack (by replying with a
future watering plan, e.g., the timestamp of 1/1/2022), with
a watering plan injection attack that triggers GreenIQ to
launch watering 24/7, the bot causes GreenIQ to start watering
indefinitely and prevents the user from remotely stopping the
watering using a C&C device. The only way in which a
GreenIQ user can stop GreenIQ from watering in this attack
scenario is by physically turning off the main water line. In
order to restore GreenIQ’s regular operation, the user would
have to apply a factory reset to delete the future timestamp.

2) Tricking GreenIQ to irrigate & Result: We demonstrate
how an attacker can (1) launch watering using GreenIQ by
injecting his/her own watering plans, and (2) cause GreenIQ
to deny service permanently, thereby preventing any remote
C&C interface with the smart irrigation system (including
commands to stop watering). The smart irrigation system is
tricked by a bot that installed on a device connected to its
LAN and impersonates a weather forecast service. In our
experiment, the bot scheduled a watering plan that waters
24/7 (every day, all day long) starting from two minutes
after the attack is performed and ending two years after the
attack began. We captured HTTP communication between
GreenIQ and the cloud server during this time and extracted
the watering plan configuration that was sent from the cloud
server in the XML file. Then, using GreenIQ’s application, we
restored GreenIQ to its previous state.

Algorithm 2 presents the exploitation code used to inject a
watering plan for a given future time period.

Algorithm 2 receives a packet sent from GreenIQ’s applica-
tion and two future timestamps, begin and end, to launch wa-
tering. First, it verifies that the packet was sent to GreenIQ’s
cloud server (line 7). If the packet is a ping to cloud request,
a fake timestamp (denoted by the received parameter end) is
sent to GreenIQ by the bot (line 10). A response with a future
timestamp will trigger another request to retrieve the updated
XML configuration launched from the smart irrigation system.
If the received packet is a configxml request, a fake XML
with a watering plan between the timestamps of begin and
end is sent to the smart irrigation system by the bot (line 13).

Algorithm 2
1: procedure SPOOFCONFIGURATION(packet,start,end)
2: ping ← ”/php/ping to cloud.php”
3: retrieve← ”/php/api/v2/hub/configxml.php”
4: method← packet.http.request.method
5: path← packet.http.request.uri.path
6: dstIP ← packet.ip.dst
7: if dstIP != ”www.greeniq.net” then
8: return
9: if (method == ”POST” & path == ping) then

10: sendFakeT imestampResponse(end)

11: if (method == ”GET” & path == retrieve) then
12: path← createFakeXML(start, end)
13: sendFakeXMLResponse(path)

We demonstrate the attack on cellular GreenIQ. In order
to intercept the requests that cellular GreenIQ sends to its
cloud server, we connected BladeRF, a software-defined radio
(SDR), to a laptop and installed FakeBTS [41] on the laptop.
FakeBTS is a Linux application that uses an SDR to create a
base transceiver station. It creates a tiny GSM/GPRS network
so that cellular devices can connect to this cellular cell. We
connected the laptop to the Internet via a smartphone. We
placed the laptop, the SDR, and the smartphone inside a
pizza box and mounted the pizza box to a drone (as can be
seen in Figure 12) so it would look like a legitimate aerial
pizza delivery [42]. Recently, several companies have started
to provide aerial deliveries using drones, so we show how an
attacker can exploit this fact to apply the attack without raising
any suspicion.

We flew the drone to a cellular GreenIQ smart irrigation
system that was deployed in the yard of a private house and
connected to three sprinklers. By approaching the cellular
GreenIQ irrigation system, a handoff took place and the traffic
was shifted to the fake BTS that we ran on the laptop that
provided 2G cellular connectivity to the GreenIQ smart irri-
gation system. The laptop applied ARP spoofing to GreenIQ
in order to divert traffic from GreenIQ to a local IP (on the
laptop) that was also connected to the fake cell and ran a
script that implements Algorithm 2. A ping to cloud request
is sent from GreenIQ to its cloud server every minute over
HTTP communication; this request was intercepted by the
script. Figure 12 presents the results of the attack. The three
sprinklers connected to GreenIQ started watering two minutes
after the response from the bot was received by GreenIQ. The
watering can only be stopped manually by the user, because we
caused GreenIQ to permanently deny service for the next two
years. A video demonstrating the attack has been uploaded.1

VIII. COUNTERMEASURES

In this section, we describe countermeasures to detect and
prevent a distributed attack against urban water services.



Fig. 12: Left: The drone carries a laptop and SDR that are used to trick cellular GreenIQ. Right: Sprinklers (boxed in red)
are operated by cellular GreenIQ (boxed in blue) as a result of a cloud server impersonation attack that was conducted from
a drone.

A. Countermeasures for urban water services

A DDOS attack launched from smart irrigation systems can
be detected by deploying a model that monitors unusual water
consumption in urban water services (e.g., using anomaly
detection methods), as in other cases of DDoS attacks [43].
However, even if such an attack is detected by an urban water
service, the ability of the water service to react to such an
attack is very limited. The only thing that such a service can do
when an attack is detected is stop water distribution. While this
solution prevents the attacker from wasting any more water, it
also prevents people from obtaining water, which is the aim
of the attacker. Preventing people from obtaining a critical
resource can even be considered a national disaster, as was
the case in the cyber attack against the Ukrainian power grid
[10].

B. Countermeasures for smart irrigation systems

Preventing a bot from impersonating a party that a smart
irrigation system interfaces with can be done by upgrading
HTTP communication to HTTPS communication. Doing this
will prevent the attacker from spoofing TCP packets.

C. Countermeasures for consumers

Consumers can monitor their water consumption using
water flow sensors with Internet connectivity that can be inte-
grated in the main water line. This can provide the consumer
with an indication of whether irrigation has been triggered
without his/her consent.

IX. ETHICAL CONSIDERATIONS AND DISCLOSURE

We performed full ethical disclosure, revealing the vul-
nerabilities discussed in this paper and providing all of the
relevant technical details and suggestions for addressing them
to GreenIQ, RainMachine, and BlueSpray when the research
was conducted. We received confirmation of our findings from
each of them. GreenIQ thanked us for sharing our findings and
decided to apply HTTPS communication between their smart
irrigation system and cloud server.

X. DISCUSSION, LIMITATIONS & FUTURE WORK

We note that we do not consider Botnet-IND a botnet of
smart irrigation systems. We consider Botnet-IND to be a
new concept of a botnet of botless actuators that are tricked
into participating in a distributed attack against a target in the
physical world. Smart irrigation systems were only used in
this paper to demonstrate this concept, because we considered
them an interesting IoT device that could potentially cause
great harm when misused (as was indicated in Table I, the
attack can be applied via 1,300 smart irrigation systems).

The smart irrigation system market is estimated at $1 billion
and is expected to reach $2.1 billion by 2025 [23]. However,
smart irrigation systems are a much less popular IoT device
than smartphones, and they are mainly used in Europe and
parts of North America (according to [23], [24]), a fact
that can limit the application of the attack in some places
around the world. Whether or not smart irrigation systems
will be popular home appliance, the purpose of this research
is to raise the awareness about botnets that rely on botless
devices to execute DDoS attack. we believe that similar attacks
performed by other types of home appliances that were not
infected by malware will appear in the next few years (as was
demonstrated in two recent incidents [4], [5]) because many of
them have not been properly secured by their developers, a fact
that creates new opportunities for attackers. Without proper
security, attackers can trick Internet connected actuators into
performing a malicious activity, without the need to infect the
devices with malware.

As future work, we suggest investigating: (1) whether other
types of IoT devices can be used to facilitate/implement
Botnet-IND, (2) new methods that can be used to trick devices
into participating in a distributed attack, and (3) dedicated
network countermeasure methods that can be deployed in a
LAN to prevent devices that are not secured properly from
being tricked into participating in a distributed attack.
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XI. APPENDIX

370 i n t p e r c e n t V a l u e = Math . round ( 1 0 0 . 0 f ∗
( ( F l o a t ) ( ( MainDayViewModel )

viewModel . days . g e t ( s t a r t D a t e .
p lusDays ( indexDay ) ) ) .
programWaterNeed . g e t ( viewModel .
indexProgram ) ) . f l o a t V a l u e ( ) ) ;

Listing 1: RainMachine’s firmware code from
MainActivity.java file

p u b l i c boolean isNOAA ( )
p u b l i c boolean isMETNO ( )
p u b l i c boolean isWUnderground ( )
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p u b l i c boolean i s F o r e c a s t I O ( )
p u b l i c boolean isNETATMO ( )
p u b l i c boolean isCIMIS ( )
p u b l i c boolean isFAWN ( )
p u b l i c boolean i s W e a t h e r R u l e s ( )
p u b l i c boolean isPWS ( )

Listing 2: List of weather services extracted from
RainMachine firmware

1{” a c t i o n ” : ” s e t ” , ” d a t a ” : [{ ” e n a b l e d ” :1 , ”
t y p e ” :2 , ” program ” :10 , ” r p t ” : [ 0 ] , ”
s e a s o n ” :0 , ” c y c l e ” : [ 5 , 6 0 ] , ”name” : ”
New run ” , ” s t a r t d a t e ” : ”2018−06−17” ,
” s t a r t t i m e ” :0 , ” i d ” :5 , ” f l a g ” : ”
change ” } ] , ” msgid ” :77080 }

Listing 3: Payload of an HTTP request sent to BlueSpray

312# Check i f c o n f i g . xml was m o d i f i e d . I f
yes , r e t r i e v e i t .

313 i f new conf ig > c u r r e n t c o n f i g :
314 main log . i n f o ( ’ c o n f i g t ime u p d a t e d

. c u r r e n t c o n f i g : %d ,
new conf ig %d ’ % (
c u r r e n t c o n f i g , new conf ig ) )

315 s2 = GD. g e t c o n f i g x m l ( hub hash )
316 i f s2 :
317 c u r r e n t c o n f i g = new conf ig
318 u p d a t e p i n g t o c l o u d i m m i d i a t e

= True
319 e l s e :
320 main log . i n f o ( ’ c o n f i g t ime d i d n o t

change . new conf ig : %d ’ %
new conf ig )

Listing 4: GreenIQ’s firmware code extracted from
main.py file
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