
DNFA: Differential No-Fault Analysis of Bit
Permutation Based Ciphers Assisted by Side-Channel

Xiaolu Hou
Temasek Laboratories

Nanyang Technological University
Singapore

ho0001lu@e.ntu.edu.sg

Jakub Breier
Silicon Austria Labs

Graz, Austria
jbreier@jbreier.com

Shivam Bhasin
Temasek Laboratories

Nanyang Technological University
Singapore

sbhasin@ntu.edu.sg

Abstract—Physical security of NIST lightweight cryptography
competition candidates is gaining importance as the standardiza-
tion process progresses. Side-channel attacks (SCA) are a well-
researched topic within the physical security of cryptographic
implementations. It was shown that collisions in the intermediate
values can be captured by side-channel measurements to reduce
the complexity of the key retrieval to trivial numbers.

In this paper, we target a specific bit permutation vulnerability
in the block cipher GIFT that allows the attacker to mount a
key recovery attack. We present a novel SCA methodology called
DCSCA – Differential Ciphertext SCA, which follows principles
of differential fault analysis, but instead of the usage of faults, it
utilizes SCA and statistical distribution of intermediate values. We
simulate the attack on a publicly available bitslice implementation
of GIFT, showing the practicality of the attack. We further show
the application of the attack on GIFT-based AEAD schemes
(GIFT-COFB, ESTATE, HYENA, and SUNDAE-GIFT) proposed
for the NIST LWC competition. DCSCA can recover the master
key with 213.39 AEAD sessions, assuming 32 encryptions per
session.

Index Terms—side-channel attacks, bit permutations, GIFT,
AEAD

I. INTRODUCTION

With the emergence of pervasive computing and the Internet-
of-Things (IoT) paradigm, the need for lightweight ciphers has
been felt more than ever. PRESENT [1] which was proposed
in 2007, was one of the first few symmetric ciphers with
lightweight design goals and motivated several other proposals
that followed. Later in 2017, GIFT [2] was proposed as a
PRESENT-like cipher to push the limits for lightweight en-
cryption by choosing optimal design parameters to achieve a
smaller area, better resistance to linear cryptanalysis, better
throughput, and simpler key schedule. While PRESENT and
GIFT were initially considered to be hardware oriented ciphers
due to the bit permutation operation which has zero-cost in
hardware, recent works have shown that these ciphers can be
efficient in software as well [3], [4].

Recently, the National Institute of Standards and Technology
(NIST) has launched the Lightweight Cryptography (LWC)
Standardization1 process to select the cipher that will be used
in lightweight applications such as IoT. The competition calls
for Authenticated Encryption with Associated Data (AEAD).
There are 32 candidates in Round 2 of the competition, out

1https://csrc.nist.gov/Projects/lightweight-cryptography

of which four candidates use GIFT-128 as an underlying block
cipher. While all of them provide security guarantees related
to standard cryptanalytic attacks, most of them do not discuss
physical attacks, such as side-channel analysis (SCA) [5] and
fault injection attacks (FIA) [6].

Our contribution. The resistance of PRESENT and GIFT
ciphers against SCA has been explored in series of works in
the past (e.g. [7], [8]), but their resistance to SCA within the
AEAD setting is not yet explored. Several AEAD schemes use
plaintext masking. It is well known that the majority of SCA
operates under a known/chosen plaintext setting, making those
attacks impossible when plaintext masking is in place. Further,
we notice that several NIST LWC candidates using GIFT-128
are designed to allow access to ciphertext. We thus propose
DCSCA– Differential Ciphertext SCA, which can break all
4 NIST LWC candidates based on GIFT-128. DCSCA works
similarly to Differential Fault Analysis (DFA), but without the
need for physical fault injection but rather assisted by side-
channel leakages. It can recover the GIFT-128 master key with
213.39 AEAD sessions, assuming 32 encryptions per session.

Organization. The rest of the paper is organized as follows.
In Section II we provide background on side-channel attacks
and discuss related work. In Section III we detail the spec-
ifications of GIFT-128 and the specific properties of its bit-
permutation operation we target. Section IV presents DCSCA
methodologies with application to GIFT-128. Section V shows
the simulated attack results on GIFT-128. Section VI discusses
the impact of DCSCA on AEAD schemes in the NIST LWC
competition. We finally conclude with Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we outline the general background on side-
channel attacks and differential fault analysis.

A. Side-Channel Analysis.

Side-Channel Analysis (SCA) attacks target implementations
of cryptographic primitives passively. They exploit the possibil-
ity of observing the physical characteristics of a device during
the encryption/decryption process [9]. The attacker obtains
so-called side-channel information that can be in a form of
execution time [10], power consumption [5], electromagnetic
emanation (EM) [11], etc. This information is then used to

reveal information related to the secret key used during the
computation.

In this work, we focus on SCA attacks that use either power
consumption leakage or EM leakage for the analysis. These can
be generally divided into three categories. Simple Side-Channel
Attacks (SSCA) aim at information recovery by observing
secret dependent patterns in one or few side-channel traces
like conditional multiply in square and multiply operation of
RSA when the key bit is 1. Differential Side-Channel Attacks
(DSCA) operate on a higher number of side-channel traces
compared to SSCA where an attacker uses statistical means to
find dependency between hypothetical leakage based on key
hypothesis and the assumed leakage model (like Hamming
Weight model) and actual traces.

Lastly, Side-Channel Assisted Differential Plaintext Attacks
(SCADPA [12]) uses side-channel leakage to aid differential
cryptanalysis [13] like attacks. Generally, the attacker encrypts
two known plaintexts and tracks the difference propagation
in middle rounds through side-channels. The middle round
difference is computed by subtracting side-channel traces from
the two plaintexts. The input and middle-round differences
can be used in differential cryptanalysis to recover the key.
This attack, initially introduced against bit-permutation based
ciphers, was recently extended to SPN ciphers, being capable
of targeting deep rounds [14].

B. Differential Fault Analysis

Differential Fault Analysis (DFA) [6] belongs to a class
of fault attack methods that analyze the differences in ci-
phertexts to derive the information on the secret key. It
quickly became the method of choice for breaking symmetric
cryptosystems [15] and up to date, there is no symmetric
cipher that would provide resistance against DFA without the
usage of countermeasures. Several DFA automation approaches
were published up to date, working either on cipher level or
implementation level [16].

The working principle is as follows. First, the attacker
performs encryption of a plaintext P without faults to obtain
ciphertext C. Then, she induces a fault in one of the last rounds
of the cipher during the encryption of the same plaintext to get
a faulty ciphertext C ′. Based on the differences between C
and C ′, she gets information on the secret key. She repeats
this process with the injection of different faults to either fully
recover the key or to reduce the search complexity to a trivial
number.

DCSCA as proposed in this paper combines the principles
of DFA and SCADPA. The key recovery follows the principle
of DFA, however, we relax the attack by removing the need
to inject faults using physical perturbation methods. Instead
of inducing faults during the last rounds, DCSCA utilizes
the statistical distribution of intermediate values to get the
differentials that help to recover the information on the secret
key. To get the knowledge on this differentials, the attacker
utilizes the properties of bit permutations in a similar way as

SCADPA does2.

III. ATTACK TARGETS

DCSCA targets the bit-permutation operation with certain
properties. We first provide an overview of block cipher GIFT
which uses such bit-permutation as its diffusion function. Next,
we give the details of this particular class of bit-permutation.
Finally, we give a brief overview of the NIST lightweight
cryptography competition.

A. GIFT-128

In this section we follow the terminologies from [2] and
describe the specifications of GIFT-128. GIFT-128 consists of
40 rounds, where each round consists of three operations:
SubCells, PermBits and AddRoundKey. The cipher state
can be expressed as 32 nibbles S = b127||b126|| . . . ||b0 =
ω31||ω30|| . . . ||ω1||ω0.

a) SubCells: operation applies a 4−bit invertible Sbox
to each nibble of the cipher state: ωi ← GS(ωi), ∀i ∈
{0, 1, . . . , 31}. The specification of the GIFT Sbox is
1a4c6f392db7508e.

b) PermBits: maps bit i to another bit according to the
following formula

P (i) = 4

⌊
i

16

⌋
+32

((
3

⌊
i mod 16

4

⌋
+ (i mod 4)

)
mod 4

)
+ (i mod 4).

c) AddRoundKey: consists of adding the round key and
the round constant. A 64-bit round key RK is extracted from
the key state and partitioned into two 32−bit words RK =
U ||V = u31 . . . u0||v31 . . . v0. U and V are then XORed to
{b4i+2} and {b4i+1} of the cipher state respectively:

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}

B. Target Bit-Permutation

Bit-permutation operation has been used as a building block
in many SPN cipher designs. We are interested in a particular
class of bit-permutation operation, which satisfies:
• Each Sbox is a b−bit permutation.
• Sboxes in each round can be divided into groups of m in

two ways – the Quotient and Remainder groups.
• The bit-permutation operation can be viewed as a group

mapping, which takes the outputs from one Quotient group
as the input and outputs m× b bits which will be XORed
with the round key and used as inputs for one Remainder
group in the next round.

• The input bits of an Sbox in round i + 1 come from m
distinct Sboxes in one Quotient group in round i.

• The output bits of an Sbox in round i go to m distinct
Sboxes in one Remainder group in round i+ 1.

For both GIFT and PRESENT cipher designs, m = b =
4. Let us number the Sboxes in round i of the cipher as
SBi

0, SB
i
1, . . . , SB

i
s, where s = n/4 and n is the block size of

2We assume the attacker can use SSCA to determine the executed operations
of the cryptographic algorithm by observing the trace.

0

0

1

1

2

2

3

3

4

32

5

33

6

34

7

35

8

64

9

65

10

66

11

67

12

96

13

97

14

98

15

99

GSi
3

GSi+1
24

GSi
2

GSi+1
16

GSi
1

GSi+1
8

GSi
0

GSi+1
0

Fig. 1. Grouping of bits and nibbles in GIFT.

the cipher. Then, for both PRESENT and GIFT, the Quotient
groups and Remainder groups, Qx and Rx, are defined as
• Qx = {SB4x, SB4x+1, SB4x+2, SB4x+3};
• Rx = {SBx, SBq+x, SB2q+x, SB3q+x},

where q = s/4, 0 ≤ x ≤ q − 1. For example, Figure 1 shows
the mapping from Quotient group Q0 in round i to Remainder
group R0 in round i+1 for GIFT-128, where GSi

j denotes the
jth Sbox in the ith round.

C. NIST Lightweight Cryptography Competition

Proliferation of IoT devices made lightweight cryptography
(LWC) the main direction in symmetric block ciphers. Based on
this trend, NIST launched a lightweight cryptography compe-
tition to select algorithms for standardization3. Currently, there
are 32 candidates for authenticated encryption with associated
data (AEAD) that had passed the first round of evaluation.
AEAD algorithm takes four inputs: plaintext, associated data,
nonce, and secret key; and outputs the ciphertext and a tag.
Such an algorithm provides confidentiality of the plaintext
and integrity of the ciphertext. We present the application of
the proposed attacks to GIFT-based LWC candidates of NIST
competition Round 2 in Section VI.

IV. DCSCA – DIFFERENTIAL CIPHERTEXT SIDE-CHANNEL
ATTACK

In this section, we outline the working principle of DCSCA –
Differential Ciphertext Side-Channel Attack on bit permutation-
based ciphers with application to GIFT-128. Generally, DCSCA
works in a very similar way to differential fault analysis –
it exploits ciphertext differences between two encryptions to
derive the secret key information, however, no fault injection
is needed.

A. DCSCA Methodology

DCSCA methodology utilizes the knowledge of the cipher-
text together with the side-channel information leaked from the
second last round to recover the last round key. In case the last
round key does not provide enough information to recover the
secret key (e.g. as in GIFT-128), the same procedure can be
applied again to earlier rounds.

Attacker assumption. For DCSCA, we assume the attacker

3https://csrc.nist.gov/Projects/lightweight-cryptography

0

0

0

1

1

8

2

2

16

3

3

24

4

32

33

5

33

41

6

34

49

7

35

57

8

64

66

9

65

74

10

66

82

11

67

90

12

96

99

13

97

107

14

98

115

15

99

123

GS39
3

GS40
24

GS39
2

GS40
16

GS39
1

GS40
8

GS39
0

GS40
0

Fig. 2. Last two rounds of GIFT.

• cannot control the plaintext, but we assume the plaintext
comes from random sources,

• has access to the ciphertext,
• can observe by side-channel leakage if there is a change

in either the input or output of each Sbox in the second
last round.

Attack rationale. In case the outputs of a Remainder group
of Sboxes (see Section III-B for notation) in the last round
do not change except for one Sbox, the attacker can gain
knowledge of the input difference of this particular Sbox by
side-channel leakage at the second last round. She can reduce
the candidates for this Sbox input and further reduce key
candidates with the knowledge of ciphertext.

Target ciphertext difference. Following the notations in
Section III-B, we aim to find a pair of ciphertexts, say C1

and C2 such that C1 and C2 agree on the outputs of m − 1
Sboxes which are in the same Remainder group and they differ
in the remaining Sboxes from that group.

Attack steps:
1) Run the encryption and get one ciphertext, say C1, as well

as the corresponding side-channel leakage t1.
2) Repeat the encryption and record the corresponding side-

channel leakage until getting a ciphertext, say C2, such
that the target ciphertext difference mentioned above is
achieved. Store the side-channel leakage for encryption of
C2 as t2.

3) Based on ∆C = C1⊕C2 and the part of ∆t = t1−t2 that
corresponds to the second last round computation, reduce
the last round key candidates.

4) Repeat steps 2-3 to recover the entire last round key.

B. Application of DCSCA to GIFT-128

In this section, we first detail the attack with an example
that recovers an input of one particular Sbox input of GIFT-
128. Then, we give an estimation of the attack complexity.

Attack to recover input of GS40
0 . Figure 2 shows that the

outputs of the first four Sboxes {GS39
0 , GS39

1 , GS39
2 , GS39

3 } in

round 39 go to four Sboxes {GS40
0 , GS40

8 , GS40
16 , GS

40
24} in the

last round.
By our assumption, the attacker can observe the cipher-

text C = c0||c1|| . . . ||c127. From Figure 2 we can see
that c0||c33||c66||c99, c8||c41||c74||c107, c16||c49||c82||c115 and
c24||c57||c90||c123 correspond to the outputs of Sboxes GS40

0 ,
GS40

8 , GS40
16 and GS40

24 , respectively. Let us suppose the
attacker observed a ciphertext pair C1, C2 that satisfies the
following:

1) C1 and C2 differ at least in one bit at bit positions
0, 33, 66, 99;

2) C1 and C2 agree on all the 12 bits at positions
8, 16, 24, 41, 49, 57, 74, 82, 90, 107, 115, 123.

The attacker can conclude that at the last round, the inputs of
Sboxes GS40

8 , GS40
16 , GS

40
24 are the same while the inputs of

Sbox GS40
0 are different for the computations of C1 and C2.

Now, with the assistance of side-channel leakage, the attacker
can observe if there is a change in the outputs of SubCells in
the second last round. In particular, she can observe if there
is a change in the outputs of GS39

0 , GS39
1 , GS39

2 , and GS39
3 .

We note that with the assumptions on C1 and C2 above, the
change/no-change in the outputs of GS39

0 , GS39
1 , GS39

2 , and
GS39

3 correspond to change/no-change in the 1st, 2nd, 3rd, 4th
bits of the GS40

0 input, respectively. Consequently, the attacker
can get a pair of input and output difference for Sbox GS40

0 .
She can then continue to run the encryption until she gets

another ciphertext C3 such that the pair C1, C3 satisfies the
conditions 1 and 2 above, and also C3 and C2 differ at
least in one bit at bit positions 0, 33, 66, 99. This gives the
attacker another pair of input/output difference for Sbox GS40

0 .
With enough pairs of input/output differences she can recover
the input of GS40

0 for the computation of C1, and with the
knowledge of C1, she can recover the key bits 1, 2, 3 for the
last round key.

How many encryptions are needed? With the attack
scenario described above, for a successful attack with m
pairs of distinct input/output differences, the attacker needs
m+ 1 ciphertexts C1, C2, . . . , Cm+1 such that they satisfy the
following:

a. They all agree on the 12 bits at positions
8, 16, 24, 41, 49, 57, 74, 82, 90, 107, 115, 123,

b. Ci differs in at least one of the four bits 0, 33, 66, 99 from
Cj for i 6= j ((i, j = 1, 2, 3, . . . ,m+ 1)).

For a given ciphertext C1, the probability to find C2 (m = 1)
that satisfies the above is

p1 := Probability for a× Probability for b = 2−12× (1− 1

24
).

Having C1, C2, the probability to find C3 (m = 2) such that the
above conditions are satisfied is p2 := 2−12×(1− 2

24) = 14
216 . In

general, having C1, C2, . . . , Cm, the probability to find Cm+1

satisfying the conditions is pm := 2−12 × (1 − m
24). We note

that given C1, C2, . . . , Cm, the number of encryptions needed
to find Cm+1 is the inverse of the above probability, 1/pm.

By analyzing the properties of input and output differences
for GIFT Sbox, we obtained the probabilities that exactly m

TABLE I
THE PROBABILITY THAT EXACTLY m PAIRS OF INPUT/OUTPUT

DIFFERENCES ARE NEEDED TO RECOVER THE GIFT SBOX INPUT.

No. of pairs m 2 3 4 5 6
Probability 77.14 15.39 5.64 1.63 0.2

pairs of input/output differences are needed to recover GIFT
Sbox input as shown in Table I. Then, we can calculate the
expected number of encryptions needed for a successful attack
on recovering the input of GS40

0 :

1 +

6∑
m=2

Pr[exactly m pairs needed]× (
1

p1
+ · · ·+ 1

pm
)

= 10732.73 ≈ 213.39

Complexity of the full attack. Up to now, we have presented
the attack to recover the input of GS40

0 (the first Sbox in the last
round) which requires 213.39 encryptions. The attack on other
Sboxes is similar, with the same requirement on the number of
encryptions needed. Hence, the total complexity to recover the
last round key is 213.39×32 = 218.39. We assume the attacker
stores all the 218.39 ciphertexts and corresponding side-channel
traces for rounds 38, 39. After recovery of the last round key,
we can compute the output of the second last round for each of
the 218.39 encryptions. Together with the side-channel traces for
round 38 we can carry out the same attack to recover the second
last round key. By the same statistical analysis, on average,
218.39 second last round outputs are enough for getting the
whole round key. Hence, the attack complexity for recovering
the master key is 218.39, with memory for storing 218.39 ∗ 128
bits (≈ 8MB) and additional memory for storing 218.39 traces
for rounds 38, 39.

V. EXPERIMENTS

In this section, we target publicly available bit-slice imple-
mentation4 for GIFT-128 by DCSCA.

Difference Recognition by Side Channels. As it was
shown before, in bit permutation-based ciphers it is possible to
recognize differences in Sbox outputs of round i by observing
data operations in round i + 1 [12], [17]. This is due to the
characteristics of bit permutations with optimal diffusion, where
the x output bits of one Sbox are distributed to x different
Sboxes in the subsequent round. While the above-mentioned
works focused on propagating differentials from plaintext and
observing the differences in the second round, later it was
shown that middle rounds can be attacked similarly with the
so-called See-In-The-Middle attack (SITM) [14]. SITM also
extended the methodology to SPN ciphers which were protected
by shuffling.

A. Targeting Bit-Slice Implementation of GIFT-128

In software, it is usually recommended to use bit-slice
implementations to fully utilize the bandwidth provided by
the architecture. In this part, we detail the attack on bit-slice
implementation of GIFT for 32-bit architectures.

4https://www.isical.ac.in/∼lightweight/COFB/resource.html

We focus on the bit-slice implementation provided in [18],
where the state of an intermediate value is represented by
four 32−bit variables S0, S1, S2, S3. In this implementation,
PermBits is realized by the rowperm function, detailed in
Listing 1, which permutes one nibble of the input S in one
loop (line 5 - 8).

0 rowperm(uint32_t S, int B0_pos, int B1_pos,
1 int B2_pos, int B3_pos){
2 uint32_t T=0;
3 int b;
4 for(b=0; b<8; b++){

//permute bits at positions 4b
5 T |= ((S>>(4*b+0))&0x1)<<(b + 8*B0_pos);

//permute bits at position 4b+1
6 T |= ((S>>(4*b+1))&0x1)<<(b + 8*B1_pos);

//permute bits at position 4b+2
7 T |= ((S>>(4*b+2))&0x1)<<(b + 8*B2_pos);

//permute bits at position 4b+3
8 T |= ((S>>(4*b+3))&0x1)<<(b + 8*B3_pos);
9 }
10 return T;
11 }

// call rowperm with state variables S[0-3]
12 S[0] = rowperm(S[0],0,3,2,1);
13 S[1] = rowperm(S[1],1,0,3,2);
14 S[2] = rowperm(S[2],2,1,0,3);
15 S[3] = rowperm(S[3],3,2,1,0);

Listing 1. Implementation of permutation in bit-slice GIFT.

The side-channel leakage we would like to exploit happens at
the execution of each iteration of the for loop (line 4) in the
second last round. Keeping the notations from Section III-B.
At each round, with input S[j] to rowperm, the bth iteration
of the for loop applies PermBits to the jth bit of each Sbox
output in Quotient group b in that round.

We can assume the side-channel leakage in the bth iteration
is closely related to the four jth bits of the Sboxes’ outputs in
Quotient group b. We would like to exploit this relation. In the
following, we analyze this leakage for different Signal-to-Noise
Ratio (SNR) values.

We implemented rowperm in ARM Cortex-M4 assembly
and leakage traces are generated as follows:
• We have adopted the Hamming Weight (HW) model.

Namely, we model the leakage of an assembly instruction
as the sum of Hamming weights of the value in each
register involved in the instruction (when loaded in the
pre-charged data bus).

• The noise component at each time sample are mutually
independent and each of them follows the same Gaussian
distribution with mean 0 and variance σ2. For different
SNR, we vary the noise variance σ2.

We remark that we have also simulated the leakage with
the regression model [19]. We found that deviation from the
HW model due to the non-equal contribution of each bit does
not influence the attack results – there is no improvement nor
degradation of the difference recognition.

B. Recovery of last round key

Recall by the assumption of DCSCA (Section IV-B), the
inputs of Sboxes GS40

24 , GS
40
16 , GS

40
8 are not changed.

Consequently, the corresponding 12 bits of Sboxes

GS39
3 , GS39

2 , GS39
1 , GS39

0 outputs are not changed. Hence the
side-channel leakage of 0th iteration of rowperm with input
S[0] (line 12); S[1] (line 13); S[2] (line 14) and S[3] (line 15)
correspond to the 1st bit of GS39

0 output; the 2nd bit of GS39
1

output; the 3rd bit of GS39
2 output and the 4th bit of GS39

3

output respectively. And each of the above tells us if there is
a change in the 1st, 2nd, 3rd, 4th bit of GS40

0 input.
To simulate the leakage of 1st bit of GS40

0 input. For different
SNR values we repeat the following steps:

1) Generate three random 32−bit values X , Y and Z such
that

X[0] = Z[0], Y [0] = Z[0]⊕1, X[i] = Y [i] = Z[i], i = 0, 1, 2, 3

with no restrictions on other 28 bits for X,Y, Z.
2) Generate one side-channel trace TX for the 0th iteration

of rowperm(X, 0, 3, 2, 1).
3) Generate one side-channel trace TY for the 0th iteration

of rowperm(Y, 0, 3, 2, 1).
4) Generate one side-channel trace TZ for the 0th iteration

of rowperm(Z, 0, 3, 2, 1).
5) Find max |TX − TZ | and max |TY − TZ | for the part of

the traces that corresponds to line 5 in Listing 15.
In this simulation, Z simulate the intermediate value S[0]

as the input of rowperm at line 12 in the second last round. X
simulates the intermediate value for the scenario when the 1st
bit of all four Sboxes GS39

3 , GS39
2 , GS39

1 , GS39
0 outputs are the

same for X,Z, and the values in the 1st bit of other Sboxes’
outputs are random. Y simulates the intermediate value for the
scenario when GS39

3 , GS39
2 , GS39

1 outputs are the same while
the first bits of GS39

0 output are different for Y and Z.
If we can distinguish these two scenarios by observing the

peaks of |TX − TZ | and |TY − TZ | then we can carry out
the attack. In Figure 3 we show the simulated results for the
plot of the two different peaks versus the SNR. The black
line corresponds to the peaks for |TY − TZ | and the grey line
corresponds to the peak for |TX − TZ |. From the figure we
can see that with SNR >= 16 we can successfully conclude
if there was a change in the first bit of the intermediate value
Z(S[0]) and hence if there is a change in the 1st bit of GS39

0

output. We note that the attack for the remaining three bits of
the GS39

0 output work in a similar way.

VI. APPLICATION OF DCSCA TO LIGHTWEIGHT AEAD
SCHEMES

We have the following assumptions:
1) The attacker has knowledge of nonce, associated data, tag,

message and ciphertext.
2) The length of the message is long. Particularly, there are

more than 32 blocks of message for each encryption.
By our assumption, the attacker knows both the message
and the ciphertext for GIFT-COFB, so she can recover the
ciphertext for encryption of each message block by XORing the
message and ciphertext for GIFT-COFB. In this case, she can

5Here, we assume the attacker can distinguish which part of the trace
corresponds to which operation. This can be achieved for most side-channel
attacks, see e.g. [9].

0 2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

Signal-to-Noise Ratio

L
e
a
k
a
g
e
(H

a
m
m
in
g
W

e
ig
h
t) X[0] = Z[0]

Y [0] 6= Z[0]

16.5 17 17.5 18 18.5 19 19.5 20
2

3

4

5

6

7

Signal-to-Noise Ratio

X[0] = Z[0]

Y [0] 6= Z[0]

Fig. 3. Plot showing leakage for DCSCA. X[0] = Z[0], Y [0] = Z[0]⊕ 1, X[i] = Y [i] = Z[i], i = 0, 1, 2, 3 and other 28 bits for X,Y, Z are random.

recover different bits of last round key for different encryption
blocks with different Sboxes. As detailed in Section IV-B,
the complexity to recover one Sbox input is 213.39. There
are more than 32 blocks of message, so she can recover the
Sbox input with different encryption blocks in one session. The
complexity is then 213.39 sessions of GIFT-COFB. We assume
the attacker saves the trace for each session of GIFT-COFB.
After recovering the last round key, with the knowledge of
the ciphertext, she can calculate the output of the second last
round. Thus, she can reuse the traces to recover the second last
round key with DCSCA as described above. The complexity for
recovering the master key is 213.39 sessions of GIFT-COFB.

We note that a similar attack method also applies to ESTATE,
HYENA, and SUNDAE-GIFT with the same attack complexity.

VII. CONCLUSION

In this paper, we have presented DCSCA – a side-channel
attack on bit permutation operations with the ciphertext-only
knowledge. We showed how this attack can be applied to
GIFT-128 as well as to LWC candidates that use GIFT-128
as their main building block. The simulation results show
the feasibility of the attack. The proposed DCSCA removes
the need for fault injection in DFA at the cost of high SNR
side-channel observation. Similarly choice between DSCA and
DCSCA depends on the attack setting. DSCA works well on
the last round while DCSCA exploits inner round leakages.

There are generally two ways to mitigate DCSCA: ap-
plication of SCA countermeasures; an implementation that
processes bits in a way that it is not possible to distinguish
the changes from the leakage trace. When it comes to SCA
countermeasures, masking is an obvious choice to protect the
implementation, as it is provably secure [20]. If the masks are
completely independent and uniformly distributed, the attack
will not work. However, if a bias in masks is present, the attack
could be still possible with increased effort, as stated in [17].
Similarly, for a hiding-based countermeasure, any imbalance
can reveal the differentials in the leakage traces. Shuffling
countermeasures were shown to be vulnerable against SCA that
aim at distinguishing middle rounds differentials [14]. We leave
the further investigation of countermeasures for future work.

ACKNOWLEDGMENT

The authors acknowledge the support from the Singapore National
Research Foundation (“SOCure” grant NRF2018NCR-NCR002-0001
– www.green-ic.org/socure).

REFERENCES

[1] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2007, pp. 450–466.

[2] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“GIFT: a small present,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2017, pp. 321–345.

[3] T. B. Reis, D. F. Aranha, and J. López, “Present runs fast,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 644–664.

[4] A. Adomnicai, Z. Najm, and T. Peyrin, “Fixslicing: A new gift represen-
tation,” Cryptology ePrint Archive, Report 2020/412, 2020.

[5] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO’99. Springer, 1999, pp. 789–789.

[6] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in CRYPTO’97. Springer, 1997, pp. 513–525.

[7] J. Zhang, L. Li, Q. Li, J. Zhao, and X. Liang, “Power analysis attack on
a lightweight block cipher gift,” in Proceedings of the 9th International
Conference on Computer Engineering and Networks. Springer, pp. 565–
574.

[8] J. Breier, D. Jap, X. Hou, and S. Bhasin, “On Side Channel Vulnerabilities
of Bit Permutations in Cryptographic Algorithms,” IEEE Transactions on
Information Forensics and Security, 2019.

[9] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008,
vol. 31.

[10] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in CRYPTO’96. Springer, 1996, pp. 104–113.

[11] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards,” in International Conference
on Research in Smart Cards. Springer, 2001, pp. 200–210.

[12] J. Breier, D. Jap, and S. Bhasin, “SCADPA: Side-channel assisted
differential-plaintext attack on bit permutation based ciphers,” in
DATE’18. IEEE, 2018, pp. 1129–1134.

[13] E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryptosys-
tems,” in Advances in Cryptology-CRYPTO, vol. 90. Springer, 1991, pp.
2–21.

[14] S. Bhasin, J. Breier, X. Hou, D. Jap, R. Poussier, and S. M. Sim,
“Sitm: See-in-the-middle side-channel assisted middle round differential
cryptanalysis on spn block ciphers,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 95–122, 2020.

[15] M. Khairallah, X. Hou, Z. Najm, J. Breier, S. Bhasin, and T. Peyrin,
“SoK: On DFA Vulnerabilities of Substitution-Permutation Networks,”
in AsiaCCS’19, 2019, pp. 403–414.

[16] J. Breier, X. Hou, and S. Bhasin, Automated Methods in Cryptographic
Fault Analysis. Springer, 2019.

[17] J. Breier, D. Jap, X. Hou, and S. Bhasin, “On side channel vulnerabilities
of bit permutations in cryptographic algorithms,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 1072–1085, 2019.

[18] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin,
Y. Sasaki, and Y. Todo, “GIFT-COFB,” Submission to NIST Lightweight
Cryptography Competition (round 2), vol. 1, 2019.

[19] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2005, pp. 30–46.

[20] E. Prouff and M. Rivain, “Masking against side-channel attacks: A formal
security proof,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2013, pp. 142–159.

