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A ring signature scheme allows the signer to sign on behalf of an ad hoc set of users, called
a ring. The verifier can be convinced that a ring member signs, but cannot point to the exact
signer. Ring signatures have become increasingly important today with their deployment in
anonymous cryptocurrencies. Conventionally, it is implicitly assumed that all ring members are
equally likely to be the signer. This assumption is generally false in reality, leading to various
practical and devastating deanonymizing attacks in Monero, one of the largest anonymous
cryptocurrencies. These attacks highlight the unsatisfactory situation that how a ring should
be chosen is poorly understood.

We propose an analytical model of ring samplers towards a deeper understanding of them
through systematic studies. Our model helps to describe how anonymous a ring sampler is
with respect to a given signer distribution as an information-theoretic measure. We show that
this measure is robust, in the sense that it only varies slightly when the signer distribution
varies slightly. We then analyze three natural samplers – uniform, mimicking, and partitioning
– under our model with respect to a family of signer distributions modeled after empirical
Bitcoin data. We hope that our work paves the way towards researching ring samplers from a
theoretical point of view.

1 Introduction
A ring signature scheme [RST01] allows the signer to sign on behalf of an ad hoc chosen set of users, called
a ring. The verifier can be convinced that a ring member signed, but cannot tell who it was exactly. Initially
motivated by anonymous disclosure of secrets, the concept of ring signatures has subsequently been studied
extensively, and has been extended to many variants such as linkable [LWW04] and accountable [XY04]
ring signatures. A notable extension of linkable ring signatures, known as ring confidential transactions
(RingCT) [NMMRL16], is the foundation of some privacy-preserving cryptocurrencies such as Monero.
An overall market capitalization of more than two billion USD1 makes Monero a high-value target of
deanonymization attacks. Understanding the concrete anonymity of RingCT, or ring signatures in general,
is thus unprecedentedly important.
In most applications of ring signatures and its extensions, it is implicitly assumed that all honest

members of a ring are equally likely to be the actual signer(s). This assumption could be justified in
applications of ring signatures where there is a natural choice of ring from the context. For example, if a
high-rank member of an organization wishes to disclose a secret, a natural choice of the ring consists of
all high-rank members of the organization. In other applications, such as in anonymous cryptocurrencies
where ring members are picked from a universe of seemingly indifferent anonymous accounts, the signer
distribution is not at all obvious. For example, it is shown that the signer distribution of (an old version
of) Monero is highly correlated with the “age” distribution of the signers [Mös+18].
1https://coinmarketcap.com/currencies/monero/ Nov. 28th, 2020
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Picking a ring whose members have highly uneven signing probabilities could provide a false sense of
anonymity. To illustrate the problem with a simple example, consider that Alice chooses to form a ring
with Bob and Charlie and issues a ring signature. Suppose that an adversary somehow knows that Bob
and Charlie (e.g., by social engineering) are very unlikely to issue such a signature, then Alice would not
have much anonymity despite using a ring signature.

In practice, imperfect rings were exploited by the devastating attacks against Monero (see Section 2.1),
which sometimes completely deanonymized the signers. Although countermeasures were proposed, to
the best of our knowledge, all proposals are based on the intuition derived from known exploits and are
tailored to solve those specific issues.

1.1 Problem Statement
As of today, no analytical model is proposed for ring samplers, which prohibits a systematic study. For
example, without such a model, it is difficult to make sense of the following questions, not to mention
answering them: Is ring sampler Π better than Π′? Can we provably say that Π is good? Is Alice more
anonymous than Bob when using Π?2 These questions call for a framework for quantifying and hence
comparing the anonymity of (users of) ring samplers.

1.2 Our Methodology
In contrast to the existing bottom-up (concrete, attack-driven) approaches, we use a top-down (abstract)
approach towards understanding the anonymity of ring samplers.

1.2.1 Model of Ring Samplers

In Section 4 we model ring samplers as an oracle machine Π which optionally gets oracle access to an
(estimated) signer distribution, inputs the identifiers of the signers and outputs a ring. We then propose
an information-theoretic measure of the anonymity of a ring sampler with respect to a signer distribution.
More concretely, given random variable S following a signer distribution S, we define the anonymity α[S,Π]
of the ring sampler Π to be the conditional min-entropy H∞(S|Π(S)). In the presence of a side-channel Λ,
the anonymity is defined as

α[S,Π,Λ] := H∞(S|Π(S),Λ(S)).

We also discuss the potential extension, and the difficulty thereof, to capture anonymity “over time” in
Section 4.2.3.

Furthermore, in Section 5 we show that the definition is robust, in the sense that the anonymity changes
only slightly when the signer distribution changes slightly. In particular, if a ring sampler is shown to be
good with respect to a close estimate Ŝ of the real signer distribution S, then it should also be good with
respect to the real signer distribution S.

1.2.2 Attacks against Ring Samplers

Our definition covers all (possibly computationally unbounded) deanonymization attacks against ring
samplers in which the goal of the attacker is to guess the real signer. Such attacks could be classified in
two orthogonal dimensions: passive v.s. active and direct v.s. side-channel.

Passive and Active Attacks In a passive attack, the adversary does not participate in the execution
of the ring sampler. Abstractly, it has no influence on the signer distribution S or the execution of the
ring sampler Π. This captures a wide range of “after-the-fact” attacks which rely on publicly available
information such as transaction times, transaction graphs, account correlations, etc.

In an active attack, the adversary directly participates and/or indirectly influence the execution of the
ring sampler. Abstractly, it influences or specifies the signer distribution S, or subverts the ring sampler
Π, e.g., by manipulating the input randomness or its implementation. This captures attacks which are
powerful but rely on stronger setup assumptions.

2We discuss in Section 4.2.3 the difficulty of formalizing this question.
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Direct and Side-Channel Attacks In a direct attack, the only information available to the adversary
about the signer distribution S is a sample from Π(S) output by the ring sampler. In a sense, the adversary
is attempting to deanonymize the signer by directly attacking the ring sampler. In a side-channel attack,
more side-channel information might be available to the adversary. This extra information is abstracted
as Λ(S), where Λ is some leakage function.

1.2.3 Signer Distributions for Comparison

To understand the anonymity of different samplers, we analyze them with respect to various distributions,
with a focus on the cryptocurrency context due to its high real-world impact.

A cryptocurrency consists of a history of transactions each encoding a set of spenders and a set of
receivers (possibly in a hidden manner). Each set of spenders can be thought of as a sample of the real
signer distribution at that particular point in time. The real signer distributions at different points in
time could be correlated arbitrarily.

Due to the anonymous nature of anonymous cryptocurrencies, it is (supposedly) infeasible to learn the
real signer distributions. Möser et al. [Mös+18] empirically analyzed the transaction graph of Monero in
the pre-RingCT (i.e., non-anonymous) era, and “heuristically determined” that the signer distribution
of Monero matches a gamma distribution over the logarithm of the age3 of accounts, which we simply
call the log-gamma distribution hereinafter. While their heuristic lacks a physical interpretation, the
distribution is nevertheless later used in the ring sampler of Monero [Mös+18], which can be seen as an
instantiation of the mimicking sampler that we introduce in Section 6.2. As the graph analysis tools and
results of [Mös+18] are not publicly available, we could not replicate their procedures of identifying the
log-gamma distribution. We remark that there is no guarantee that the Monero distributions in the pre-
and post-RingCT (i.e., current) eras are similar.

Another reference is the signer distribution of a non-anonymous cryptocurrency such as Bitcoin, despite
the potential differences in spending behavior in a non-anonymous cryptocurrency compared to anonymous
ones. To this end, we analyze the 300,000 to 400,000-th block of Bitcoin as in [Mös+18], and found that
the age of a transaction output matches a (shifted) Pareto distribution. We thus propose to use the
(shifted) Pareto distributions as a baseline for evaluating ring samplers.

Interestingly, for the appropriate parameters, the probability density functions (PDFs) of the (shifted)
Pareto distribution and the log-gamma distribution have very similar asymptotic behavior. Indeed,
their PDFs only differ by a poly-logarithmic factor. In terms of physical interpretation, we found the
modeling by the (shifted) Pareto distribution more convincing as it is classically used to model a wide
range of human-related phenomenon, whereas the log-gamma distribution seems somewhat arbitrary. We
emphasize, however, that the proposed baseline distribution, or any other non-application-specific ones,
should only be treated as reference points. Even if a ring sampler is good with respect to the baseline
distribution, it does not necessarily mean that it is good for a particular anonymous cryptocurrency, since
the signer distributions of anonymous and non-anonymous cryptocurrencies could be very different.

1.2.4 Analysis of Natural Samplers

We analyze the anonymity of three natural families of samplers – uniform, mimicking, and partitioning
– with respect to general (possibly adversarially influenced) signer distribution S, assuming that the
samplers are not subverted.

Uniform Samplers The uniform sampler simply samples uniformly random rings. It is shown to be bad
with respect to signer distributions which are far from uniform, such as the (shifted) Pareto distributions.
The fact that the uniform sampler is generally bad is quite expected. In a signer distribution which is
very far away from uniform, the majority of users are unlikely to be the signer. Therefore the real signer
would end up with a ring in which most members other than himself are unlikely to be the signer, and
thus stand out from the crowd.

3The age is defined as the difference between spent and creation time.
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Mimicking Samplers The Ŝ-mimicking sampler is an abstraction of the (current) Monero sampler. It
is given oracle access to some signer distribution Ŝ, which supposedly estimates the real distribution
S, and aims to output rings which “mimic” Ŝ in some sense. For the special case where Ŝ = S, which
we call the mimicking sampler, we prove that its anonymity is lower bounded by half of the optimal
value. The tightness of the lower bound is limited by the use of an intermediate distribution, which has
lower conditional min-entropy but is easier to analyze, and the available bounding techniques. We believe
that the exact anonymity should be considerably closer to the optimal value. Suppose that is the case,
due to robustness, the Ŝ-mimicking sampler is also good when Ŝ ≈ S. This can be seen as a theoretical
confirmation of the approach used in Monero, albeit conditioned on the strong assumption that Monero
chose a good Ŝ.

The major drawback of the Ŝ-mimicking sampler is the requirement of the knowledge of a estimation
Ŝ of S. Indeed, as S could depend on the economic situation and the free will of signers, it is arguably
unknowable and inapproximable. Even if an estimation Ŝ is known, the description of an Ŝ-mimicking
sampler could be quite complicated depending on the description of the distribution Ŝ, and its anonymity
depends on how well Ŝ estimates S. It could also be difficult to write down its exact anonymity if Ŝ lacks
a close form.

Partitioning Samplers Partitioning samplers are based on another natural strategy of grouping users
with similar signing probabilities together. More concretely, a partitioning sampler is defined by a
distribution over a public family of partitions and optionally a ring size n. A ring is sampled by sampling
a partition from the distribution, and then, if the ring size n is given, outputting a uniformly random
n-subset of the chunk (an element of the partition) which contains the signer. If n is not given, the sampler
simply outputs the unique chunk containing the signer. A special case of the partitioning sampler was
also suggested in [YAEV19].

We show that the anonymity of a partitioning sampler is at most lg ε away from the optimal value,
where ε measures the non-uniformity of signing probabilities within chunks of the partitions. For the
variant where n is given, if the partitions are chosen in such a way that the signing probabilities are
constant within each chunk (which can be done naturally for the baseline distributions), the partitioning
sampler is optimal.

Partitioning samplers are easy to describe and preferable in practice. Depending on how partitions
are chosen, they could also have other nice properties which are not captured by our model. We refer to
Section 6.3 for details.

1.2.5 Implication to Ring Signatures

To help grasp the meaning of our work more concretely, in Appendix B we define a generalized notion
of ring signatures which captures extended variants such as linkable ring signatures. We also define a
simulation-based notion of anonymity which, although being equivalent to the usual indistinguishability-
based notion, synergizes better with our anonymity notion of ring samplers. Finally, we define the concrete
anonymity of the composition of ring signatures and ring samplers, and relate the anonymity of the
composed system to those of the components.

2 Related Work

To better position our work in the literature, we overview the existing attacks against Monero, other ring
sampler formalizations, and the formalizations of other anonymous systems.

2.1 Attacks against Monero

The formal study of ring samplers is largely motivated by the plentiful attacks against Monero. To explain
these attacks, we first briefly overview how ring signatures are used there.

In Monero, a spender can spend funds from possibly multiple source accounts to possibly multiple
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Work Venue Domain Metric Scope Remarks
[Día+02;
SD02]

PETS’02 Communication Shannon-Entropy Local (Co-)introduced information-
theoretic metrics

[New+03] PETS’03 Communication Shannon-Entropy4 Global Extended information-theoretic
metrics to global scope

[DPW06] FAST’06 Communication Shannon-Entropy5 Local Integration with process calculi
[ESY07] ISI’07 Communication Permanent Global Permanent-based metric to better

capture global scope
[TH04] PETS’04 Mixnet Posterior Probability Local6 Handles cover traffic
[GJH13] PETS’13 Tor Shannon-Entropy Local Evaluating performance trade-offs

using the metrics
[BMS16] PETS’13 Tor “Impact”7 Local Evaluating real-world attacks
[Sho+11b;
Sho+11a]

PETS,
SP’11

Location Shannon-Entropy8 Both New metric & tool applicable to
location privacy

[YAEV19] CSF’19 Ring Sampling Permanent Global Formal analysis of ring sampling,
orthogonal work

Ours Ring Sampling Min-Entropy Global Introduced information-theoretic
metrics to ring sampling

Table 2: Comparison of Entropy/Probability-Based Anonymity Metrics

receivers as follows. First, the spender samples a ring of potential source accounts which is a superset of
the actual source accounts. Next, for each receiver, it creates one target account whose secret key can
be derived by the receiver. It then creates a proof that it knows the secret keys of the actual source
accounts and that it wishes to transfer funds to some specified target accounts, which can be seen as a
generalization of a ring signature. The proof also guarantees that none of the actual source accounts have
been spent before. The owners of the target accounts can then further spend funds from them using the
same procedure.

In the following we overview existing deanonymization attacks against Monero mostly based on ill-chosen
rings.

2.1.1 Passive Direct Attacks

Passive direct attacks against Monero exploit public information available after the target transaction is
made. These attacks are particularly well-captured by our anonymity definition and the analysis of the
natural samplers. They also constitute the majority of existing attacks, and are more realistic due to the
minimal assumption on the attacker.

Exploiting Transaction Times The age of an account influences the likelihood of it being an actual
source of a transaction [Mös+18]: Old accounts become increasingly less likely to still be unspent and
therefore be an actual source account of a transaction. On the other hand, freshly created target accounts
are highly likely to be used as source accounts in transactions soon. Using the above observation, the
ring sampling strategy which selects accounts uniformly at random over the set of all accounts is not a
good idea, as younger accounts are less likely to function as decoys in the ring. These attacks have been
deployed in [Mös+18; Kum+17].

In particular, for over 95% of existing transactions in an older pre-RingCT version of Monero, the
newest account in the ring is the signer [Kum+17]. This makes the simple attack of guessing the newest
account to be the signer devastating, highlighting the importance of using a good ring sampler.

4But already has many ideas of permanent-based metrics
5In the form of information gain
6Global is mentioned but considered infeasible
7A metric measuring the loss of anonymity computed from the conditional distributions of the observable events
8In the form of relative entropy
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Exploiting Graph Structures When rings selected for different transactions overlap, by analyzing
the graph induced by the relation between the rings, one can infer non-trivial information about the
actual source accounts of a transaction, e.g. shown in [Mös+18; Kum+17]. In the extreme case, which is
considered in the “zero-mixin attack”, some transactions use rings of size one. If such a zero-mixin account
is used in other rings, it does not add any anonymity as an observer can clearly rule out this account as a
possible source (c.f., the illustrative example in Section 1).

Exploiting Correlated Accounts Transactions with multiple source accounts expose an additional
problem [Kum+17].

For example, let more than one target account be the output of the same previous transaction. If these
accounts are included in a ring of a subsequent transaction with multiple inputs, then it is quite likely that
they are the actual source of the subsequent transaction. This attack is based on the implicit assumption
that output accounts in one transaction have a significant chance to belong to the same receiver and that
both output accounts being chosen as decoys is low.

2.1.2 Active Direct Attacks

The best known attack of this kind against Monero is the so called “black marble attack”, proposed in
[NNM; MNT; Wij+18], which consists of two active parts.

In the first part, the attacker compromises existing accounts or spawns new accounts in the system, and
hopes that some of them (the black marbles) will be included in future rings. This can be modelled by
considering an adversarially influenced signer distribution S. If it happens that a ring chosen by the victim
consists of mostly black marbles, then the anonymity of the victim is severely limited. While this attack
seems reasonable in theory, its practicality is unclear. Even for the provably bad uniform sampler, the
probability of randomly picking a black marble as a ring member is low, assuming the universe of signers
is large. To increase this probability, the attacker could spawn an overwhelming number of accounts,
which however requires substantial transaction fees.

In the second part, the attacker subverts the victim’s ring sampler, so that black marbles are injected
into the rings chosen by the signer. While this attack is in no doubt devastating, the assumption on the
attacker’s ability to subvert ring samplers is very strong. Indeed, if subversion is allowed, the attacker
might as well directly embed the signer’s identity in the chosen ring in an undetectable manner9, without
going through all the trouble of spawning black marbles. No ring sampler could defend against this.

We remark that although our analysis of the partitioning sampler does not consider subversion attacks,
the fact that its output must be a subset of a chunk of a publicly defined partition limits the flexibility of
the attacker in planting black marbles.10 The signer could easily detect the subversion if the sampled ring
is “illegal” (e.g., if it contains black marbles chosen from chunks where the signer does not belong to).

2.1.3 Side-Channel Attacks

In existing implementations of Monero, a client consists of two parts known as the node and the wallet,
which may or may not be co-located in the same device. Some side-channel attacks (e.g., [TBP20])
exploit the communication patterns between the two parts, and/or the reaction of the client to inbound
communication, to deduce whether the client is the intended receiver of a transaction. Such attacks are
purely side-channel and are independent of the ring sampler. Moreover they aim to deanonymize the
receiver but not the signer, which is out of the scope of our model.

9The subverted ring sampler could for example only output rings whose hash value equals to a one-time pad of the i-th bit
of the signer’s identity or secret key. From a steganographic point of view [vH04], this is provably undetectable. If the
setting allows to repeat the procedure many times for different i, the attacker could recover the exact identity of the
signer.

10Depending on the choice of the partition(s), the subset and the chunk that the signer belongs to could even be unique.
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2.2 Other Formalization Attempts

Yu, Au, and Esteves-Verissimo [YAEV19] analyzed ring samplers from another perspective: They studied
the anonymity of a group of signers after all of them have chosen particular instances of rings, while
implicitly assuming that the signer distribution is uniform. The core technique of their study is modelling
signer identities using graphs to rule out impossible signers. This can be seen as an instantiation of the
work by Edman, Sivrikaya, and Yener [ESY07] who studied matrix permanents to understand potential
message flows in an anonymous communication system.

In contrast, we model ring samplers as probabilistic algorithms, and focus on analyzing the (loss of)
anonymity of signers when given individual rings. The two approaches are orthogonal and complementary
[ESY07] since they give different insights about the anonymity of ring samplers. We envision the unification
of them towards a more comprehensive theory of ring samplers.

Although the approach taken by Yu, Au, and Esteves-Verissimo [YAEV19] is very different, they arrived
at a similar conclusion to ours that a partitioning sampler (using our terminology) is optimal (in both our
and their sense). Indeed, their partitioning sampler can be seen as a specific instantiation of our generic
one. Furthermore, we analyzed the robustness of our definition, and the anonymity of the uniform and
the mimicking samplers. Similar results were not in [YAEV19].

2.3 Other Anonymous Systems

It is common to quantify the anonymity of anonymous systems, in particular anonymous communication
systems. Proposed metrics include information-theoretic measures, permanents (of induced bipartite
graphs), or other metrics derived from probabilities. Table 2 provides an overview of these quantification
efforts, but due to the volume of the literature it is necessarily incomplete. For a comprehensive survey,
see [WE18].

Historically it is not uncommon that concrete tasks are guided by anonymity metrics after the latter
are sufficiently well studied. These include for example the analysis of performance tradeoffs [GJH13] and
attacks [BMS16] against the Tor system. It has also been noted that other areas like location privacy
[Sho+11b] profit from the guidance of information-theoretic measures. However a information-theoretic
treatment of ring (or generally speaking, decoy) selection is, thus far, missing in literature. Unique to ring
samplers is the use of decoys (ring members), which is not covered by the analysis of, e.g., mixnet-style
anonymous communication where all inputs to a mixer are “real”. We close this gap with this paper.

3 Preliminaries

Denote by λ the security parameter. For M,N ∈ N, we denote [N ] := {1, . . . , N } and [M : N ] :=
{M,M + 1, . . . , N }. Logarithms are either with base 2, denoted by lg, or natural, denoted by ln. The sets
of polynomials and negligible functions in λ are denoted by poly(λ) and negl(λ) respectively. Probabilistic
polynomial time is abbreviated as PPT. If A is a PPT algorithm, y ← A(x) means assigning the result of
running A on x (with implicit randomness) to y. Sets are denoted by capital letters. If S is a finite set,
x←$S means that a random x is chosen uniformly from S. An algorithm A having black-box access to a
subroutine R is represented as AR.
Let f and g be real-valued functions. If f is proportional to g, i.e., f(x) = k · g(x) for all x for some

constant k, we write f ∝ g. We use primarily to express probability density functions (PDFs) without
specify the normalizing constant.

We denote the power set of S by 2S . If A ⊆ B and |A| = n, we write A ⊆n B. If |A| ≤ n, we write
A ⊆≤n B.

3.1 Random Variables and Min-Entropy

(Discrete) random variables are written in sans-serif, e.g., X,
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distributions of random variables are written in calligraphic, e.g., X . When the connection is obvious
we only denote the distribution and use the same letter in sans-serif for the underlying random variable.

The support of X is denoted by Supp(X) := {X : Pr [X = X] > 0}. If it is obvious that X has support S,
we write X ∈ S instead of X ∈ Supp(X). When summing over all X in the support of X, i.e.,

∑
X∈Supp(X),

we usually omit Supp(X) and simply write
∑
X unless there is an ambiguity. The same holds when taking

minimum or maximum. For a function f , we write f(X) ≡ Y if Pr [f(X) = Y ] = 1.

Definition 3.1. The guessing probability of X is defined as

Guess (X) := max
X

Pr [X = X] .

This gives an upper bound on the probability that an (unbounded) adversary can "guess" the value of
the random variable X correctly.

Definition 3.2. The (average) conditional guessing probability of X given Y is defined as

Guess (X|Y) :=
∑
Y

Pr [Y = Y ] max
X

Pr [X = X|Y = Y ] .

This gives an upper bound on the probability that an (unbounded) adversary "guesses" the value of
the random variable X correctly when given a sample of Y.

Definition 3.3. The min-entropy of X is defined as

H∞(X) := − lg (Guess (X)) .

The min-entropy of X is in a sense the most pessimistic measure of information given in X. It has
significance in randomness extraction in the sense that nearly H∞(X) random bits can be extracted from
the source X [Dod+08]. Therefore a higher value of H∞(X) is desirable. As is common in cryptography,
in this work we consider only min-entropy. All definitions however naturally extend to other measures of
entropy.

Definition 3.4. The (average) conditional min-entropy of X given Y is defined as

H∞(X|Y) := − lg (Guess (X|Y)) .

The conditional min-entropy has similar interpretations as that of min-entropy. There are several
equivalent expressions of the conditional min-entropy useful for different occasions.

Lemma 1. H∞(X|Y) can be expressed as:

H∞(X|Y)

=− lg

(∑
Y

Pr [Y = Y ] max
X

Pr [X = X|Y = Y ]

)

=− lg

(∑
Y

max
X

Pr [Y = Y |X = X]Pr [X = X]

)

=− lg

(∑
Y

max
X

Pr [X = X ∧ Y = Y ]

)
.

The following properties about min-entropy and conditional min-entropy are well-known.

Lemma 2 (Non-Negativity, Monotonicity). For any X, Y,

0 ≤ H∞(X|Y) ≤ H∞(X).

8



Lemma 3 (Data Processing Inequality). Let S,R,X be random variables where R = f(X) for some
function f . Then H∞(S|R) ≥ H∞(S|X).

Proof. Note that H∞(S|R,X) = H∞(S|X) (trivial) and H∞(S|R,X) − H∞(S|R) ≤ 0 (monotonicity).
Therefore H∞(S|X) ≤ H∞(S|R).

We recall the Rényi divergence (of ∞-order) to measure the closeness of two distributions.

Definition 3.5. Let S and S′ be such that Supp(S) ⊆ Supp(S′). Their Rényi divergence of order ∞ is
defined as

D∞(S‖S′) := lg max
S∈Supp(S′)

Pr [S = S]

Pr [S′ = S]
.

4 Modeling

In this section, we devise a formal model of ring samplers which in particular includes an information-
theoretic measure of anonymity. We also derive general lower and upper bounds of anonymity, and discuss
its extensions.

4.1 Syntax

Throughout this work, we consider a universe of users indexed by the set [N ] where a subset S of them
wish to hide themselves among a ring of users.

Definition 4.1 (Signer Distributions). A signer distribution S is a distribution over the set 2[N ] \{∅}.
Let k ∈ [N ]. S is said to be a k-signer distribution if Pr [|S| ≤ k] = 1.

In this work, we focus mostly on 1-signer distribution, i.e., there is only one signer. Next, we state a
minimalistic syntax of ring samplers.

Definition 4.2 (Ring Samplers). A ring sampler Π is a PPT (oracle) machine which inputs a set of
signers S ⊆ [N ] and outputs a ring R satisfying S ⊆ R ⊆ [N ]. Let k, n ∈ [N ] with k ≤ n. Π is said to an
n-ring sampler if it always holds that |R| ≤ n. If additionally Π only takes S with |S| ≤ k as input, then
it is a (k, n)-ring sampler.

For concreteness, think of k and n to be small constants, e.g., k = 1 or 2, and n = 10, and lgN = poly(λ).
In such case, the input and output of Π can each be represented by poly(λ) bits, and an efficient ring
sampler should run in time poly(λ).

4.2 Anonymity

We measure the quality of a ring sampler in terms of its anonymity, i.e., the difficulty to guess who the
signer(s) are when given a ring. From an adversary’s point of view, before seeing any information about
the signing/transaction event, e.g., a ring R = Π(S), the anonymity of all participants is considered to be
maximum, and can be measured by the value H∞(S).

The knowledge of R or other side-channel leakage of S can only reduce the anonymity from H∞(S)
towards zero. From this viewpoint, let Λ be a leakage function capturing the side-channel. We define the
anonymity of a ring sampler Π with respect to S in presence of the side-channel Λ as the min-entropy of
S conditioning on the ring and the leakage.
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Definition 4.3 (Anonymity). Let Π be a ring sampler and Λ : {0, 1}∗ → {0, 1}∗ be a leakage function.
The anonymity of Π with respect to S in presence of Λ is defined as

α(S,Π,Λ) := H∞(S|Π(S),Λ(S))

where Π(S) is the random variable induced by applying Π on S with uniform randomness, and Λ(S) is the
leaked side-channel information about S due to Λ. If Λ is a constant function (i.e., there is no leakage),
then we simply write

α(S,Π) := H∞(S|Π(S))

and regard it as the anonymity of Π with respect to S.

4.2.1 Scope and Implications

Our approach of defining anonymity is natural and general in the sense that it can be adopted to any
anonymous system. Abstractly, if S is a distribution over a set of objects whose anonymity is to be
protected by an anonymous system Π, and Λ is a leakage function capturing any side-channel information
leakage external to Π, then the anonymity of Π with respect to S in presence of Λ can be measured by
H∞(S|Π(S),Λ(S)), exactly like how we measure the anonymity of a ring sampler.

Our definition captures all deanonymization attacks: passive, active, direct, and side-channel, by any
computationally unbounded adversary. Given a sample of the induced ring distribution Π(S) and a sample
of the leakage Λ(S), the goal of a deanonymizing adversary is to output a guess of the signer S.

Remark 1. While our definition captures active and side-channel attacks, it is somewhat unnatural.
A more convenient and expressive way of capturing those is through security experiments akin to those
used in (computational) cryptography, such as the ones defined in Appendix B for the anonymity of the
composition of ring samplers and ring signatures.

For a more concrete feeling of the definition, we state the following immediate implication on any
deanonymization attacks from any computationally unbounded adversaries. The proof is obvious and is
omitted.

Theorem 4.4. Let A be any computationally unbounded adversary, who inputs a ring Π(S) (where Π is
possibly subverted by A) and some leakage Λ(S), where S is sampled from the distribution S (possibly
influenced or specified by A), and outputs a guess S′. The probability of A correctly guessing the signer S,
i.e., S′ = S, is upper bounded by

Guess (S|Π(S),Λ(S)) = 2−α(S,Π,Λ).

4.2.2 Basic Properties

Intuitively, a higher value of α(S,Π) (or α(S,Π,Λ)) means a higher anonymity, or rather, the amount
of anonymity lost due to the use of the ring sampler (and the leakage) is smaller. Due to monotonicity
(Lemma 2), α(S,Π,Λ) lies between zero and H∞(S) for any Π and Λ, which aligns with our subtractive
view of anonymity.

General Bounds When analyzing the fundamentals of a ring sampler Π, it is instrumental to focus on
the value α(S,Π) even if there might be some external leakage Λ which is not the “fault” of the sampler
Π. The following lemma relates the anonymity definitions with and without leakage. Its proof follows
immediately from the chain rule and the monotonicity of min-entropy.

Lemma 4. For any S, Π, and Λ, it holds that

α(S,Π)− lg |Supp(Λ(S))| ≤ α(S,Π,Λ) ≤ α(S,Π).

10



Although the above bound is loose (compared to the Shannon entropy counterpart), it suggests that the
anonymity of the ring sampler without leakage, i.e., α(S,Π), is the dominating component of α(S,Π,Λ)
when the max-entropy lg |Supp(Λ(S))| of the leakage is small. For the typical size leakage where Λ(S) = |S|,
where S is a k-signer distribution and Π is an (k, n)-ring sampler with k � n, this is indeed the case since
lg |Supp(Λ(S))| = lg k � lg n.

Let ΠAll be the “all sampler” which always outputs [N ]. Let ΠId be the “identity sampler” which on
input S outputs S. We first state some trivial bounds of anonymity, and how they can be achieved. The
proof is obvious and omitted.

Lemma 5. For any S, Π, and Λ, it holds that

α(S,ΠId,Λ) = 0 ≤ α(S,Π,Λ) ≤ H∞(S) = α(S,ΠAll).

The upper and lower bounds above are too far apart to tell us anything useful about α(S,Π,Λ). The
main reason is that the “all sampler” and the “identity sampler” have extreme ring sizes (n = N and k
respectively), while in practice we are interested in n-ring samplers for (small) fixed n. We therefore state
another upper bound of anonymity of n-ring samplers, whose proof can be found in Appendix C.

Lemma 4.1. For any k-signer distribution S, any n-ring sampler Π, and any leakage function Λ,

α(S,Π,Λ) ≤ lg

k∑
i=1

(
n

i

)
.

In particular, for k = 1 we have
α(S,Π,Λ) ≤ lg n.

Optimality Our definition of anonymity in a sense describes the anonymity of the system employing the
ring sampler as a whole. In other words, the (conditional) signing probabilities of individual signers are
collapsed into a single value. In Lemma 4.1, we showed that the anonymity of a ring sampler with ring
size n for a 1-signer distribution is at most lg n, which is also the entropy of the uniform distribution over
a set of size n. If the anonymity is (significantly) below lg n, then not much about the individual signing
probabilities can be inferred. However, if the anonymity reaches lg n, then the signing probability of each
signer in the ring is exactly 1/n. The optimality of the anonymity is in this sense informative. Interestingly,
in the formulation of [YAEV19] optimal global anonymity also implies optimal local anonymity.

Later in this work, we will show that for 1-signer distributions S the optimal anonymity is always
almost achievable. More concretely, in Section 6.2 we show that there exists a “mimicking” sampler ΠMimic

which achieves anonymity α(S,ΠMimic) ' 1
2 lg n, which is only a constant fraction away from the optimum,

assuming minimally that S has at least lg n bits of min-entropy.

While the near-optimal anonymity of the mimicking sampler is quite impressive, the result is mostly
theoretical as it requires the knowledge of the distribution S. More realistically, with a mild assumption
that the support of S can be partitioned into chunks of size at least n, such that the signing probabilities
of the signers within a chunk are similar, then the partitioning sampler presented in Section 6.3 also
achieves near-optimal anonymity.

4.2.3 Extensions

In the following we discuss natural extensions of our anonymity definition, and why we decide not to
incorporate them into our main definition.

“Local” Anonymity In some sense, the value α[S,Π,Λ] = H∞(S|Π(S),Λ(S)) captures the “global”
anonymity of all participants as a whole. To capture the “local” anonymity of a certain subset I ⊆ [N ] of
users, one might want to consider the value H∞(SI |Π(S),Λ(S)), where SI := S∩ I. We argue that however
the value H∞(SI |Π(S),Λ(S)) does not capture the intuitive anonymity enjoyed by the subset I of users.
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For a counter-argument, it suffices to consider the case where Λ is constant, |S| ≡ 1 and I = {i} for
some i ∈ [N ]. Note that SI is a Boolean random variable (with support {∅,{i}}). Recall that

H∞(SI |Π(S),Λ(S))

=H∞(SI |Π(S))

=− lg

(∑
R

Pr [Π(S) = R] max
SI

Pr [SI = SI |Π(S) = R]

)
.

Note that for any R 63 i, which are the majority,

Pr [SI = ∅|Π(S) = R] = 1,

and therefore
max
SI

Pr [SI = SI |Π(S) = R] = 1.

Therefore, intuitively, the expected value of maxSI Pr [SI = SI |Π(S)] is close to 1, which means the
conditional min-entropy H∞(SI |Π(S)) is close to 0, even for the “best” samplers.

The above issue was due to the fact that user i is almost always not in the ring, and therefore an
adversary could be successful by always guessing that user i is not a signer, i.e., SI = ∅. An attempt to
avoid this issue is to consider the entropy of SI conditioning on RI , where the latter is distributed as Π(S)
conditioned on that I ⊆ Π(S). We examine the value

H∞(SI |RI)

=− lg

(∑
R

Pr [RI = R] max
SI

Pr [SI = SI |RI = R]

)
for a hypothetical “best” sampler with a fixed ring size n, where for every ring R ∈ Supp(R) such that
S ⊆ R, it holds that Pr [S = S|Π(S) = R] = 1/n (note that we are assuming that |S| ≡ 1).

One would have hoped that the value is close to or exactly 1, which is the highest (min-)entropy that a
Boolean random variable can have. However, note that in particular Pr [S = {i} |Π(S) = R] = 1/n in the
case I = {i} ⊆ R, and hence Pr [SI = {i} |RI = R] = 1

n for any R ∈ Supp(RI). We therefore have

max
SI

Pr [SI = SI |RI = R] = Pr [SI = ∅|RI = R] =
n− 1

n

for all R ∈ Supp(RI), and hence H∞(SI |RI) = lg n− lg(n− 1) (≈ 0 for large n), which is still counter-
intuitive.

Anonymity “Over Time” Our main definition captures the remaining anonymity of the users in the
view of an adversary after seeing a single ring. In reality, however, multiple rings would be sampled
throughout the lifetime of the system, possibly even via different ring samplers, which might collectively
leak more information about the signers (behind each ring) than any single ring does. For the ease of
exposition we omit the leakage Λ in the discussion below.

Formally, suppose the system has been run for t time steps, i.e., t rings have been sampled. For time
step i ∈ [t], let Ni ∈ N be the universe size, Si be the signer distribution over the universe [Ni], Πi be the
ring sampler, and Ri = Πi(Si) be the random variable denoting the sampled ring. Then, for any subset
{i1, . . . , i`} ⊆ [t], we might want to consider the value H∞(Si1 , . . . ,Si` |R1, . . . ,Rt) which captures the
anonymity of the signers at time steps i ∈ {i1, . . . , i`}, after seeing the rings from all time steps.11 In
particular, the extreme values H∞(S1, . . . ,St|R1, . . . ,Rt) and H∞(Sj |R1, . . . ,Rt) for j ∈ [t] might be of
interest.

It is not difficult to show that

max
j∈[t]

H∞(Sj |R1, . . . ,Rt)

11To take leakages into account, we additionally condition the min-entropy on Λ1(S1), . . . ,Λt(St) for possibly different
leakage functions Λ1, . . . ,Λt.
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≤H∞(S1, . . . ,St|R1, . . . ,Rt)

≤
∑
j∈[t]

H∞(Sj |R1, . . . ,Rt)

≤
∑
j∈[t]

H∞(Sj |Rj),

which relates the aforementioned extreme values with our definition of anonymity. Unfortunately, not
much more can be said about these values in general since, for any i 6= j, (Si,Πi) and (Sj ,Πj) can be
arbitrarily correlated depending on the application and user behavior.

For example, if (Si,Πi) and (Sj ,Πj) are independent for all i 6= j, then t ·maxj∈[t]H∞(Sj |R1, . . . ,Rt) =
H∞(S1, . . . , St|R1, . . . ,Rt), and the last two inequalities become equalities. On the other extreme, if (Si,Πi)
and (Sj ,Πj) are identical and dependent for all i, j, then the first inequality becomes an equality, while
t ·H∞(S1, . . . ,St|R1, . . . ,Rt) =

∑
j∈[t]H∞(Sj |R1, . . . ,Rt).

In summary, the values H∞(Si1 , . . . , Si` |R1, . . . ,Rt) are extremely sensitive to the correlations between
(Si,Πi) and (Sj ,Πj) for i 6= j, which highly depend on the real-world application and user behavior.
Therefore, in a general theory about ring samplers where minimal assumptions about the signer distributions
and user behavior are made, not much can be said about the “anonymity over time” meaningfully.

5 Robustness

We show that our anonymity definition is robust in the sense that, if the source distributions S and S ′ are
close (in Rényi divergence), then the anonymity of a ring sampler with respect to S is close to that with
respect to S′. This allows us to analyze ring samplers with respect to some distribution S which is easier
to deal with, and get a guarantee of the anonymity of the sampler with respect to the real distribution S ′
assuming that it is close enough to S.

Robustness also allows us to reason about the anonymity of a ring sampler against active attackers who
attempt to perturb the signer distribution from S to S ′. Suppose we have deduced that the anonymity of
a ring sampler with respect to S (against a passive adversary) is high. Assuming that no adversary could
influence S too much, i.e., S ′ is not too far away from S, then by robustness the anonymity of the ring
sampler with respect to S ′ is also high. Such an assumption could be realistic, e.g., in the cryptocurrency
setting where we anyway assume that the majority of the users are honest for the consensus protocol to
function.

Theorem 5.1 (Robustness). For any S and S′ with Supp(S) ⊆ Supp(S′), any Π and Λ, and any ε ≥ 0,
if D∞(S‖S′) ≤ ε, then

α(S,Π,Λ) ≥ α(S′,Π,Λ)− ε.

6 Analysis of Natural Samplers

We formalize the the uniform, mimicking, and partitioning samplers, and analyze their anonymity. To
understand the fundamental strengths and weaknesses of the samplers, we focus on 1-signer distributions,
assume that the ring samplers are not subverted, and assume that no side-channel leakage is present. In
cases where a close form of anonymity is unavailable, we provide lower bounds.

6.1 Uniform Samplers

A natural (yet generally bad) way to select rings is to just sample them uniformly at random. Formally,
for each 1 ≤ k ≤ n ≤ N , we define the uniform sampler ΠRand,k,n as follows:

ΠRand,k,n(S ⊆≤k [N ]): Sample R ⊆n [N ] uniformly at random subject to S ⊆ R.
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Theorem 6.1 (Uniform Sampler). Let S be a 1-signer distribution. Let Ei be the i-th most probable
event in S and

ρi =

{
Pr [Ei] i ∈ [|Supp(S)|]
0 i ∈ [N ] \ [|Supp(S)|].

Then

α(S,ΠRand,1,n) = − lg

(∑N−1
i=n−1

(
i

n−1

)
ρN−i(

N−1
n−1

) )
. (1)

Let us say a few words about the uniform sampler. Suppose S is the uniform distribution over [N ], we
have ρi = 1/N for all i ∈ [N ]. Then by the “hockey-stick” identity, we have α(S,ΠRand,1,n) = lg n which
is optimal. This aligns with our expectation that when S is uniform the best way to sample a ring is to
just sample uniformly.

Next we examine the scenario where S is very far from uniform. For example, suppose that ρi = 2ρi−1

for all i. In this case,
∑N−1
i=n−1

(
i

n−1

)
ρN−i is dominated by the first few terms as ρi diminishes exponentially

as i decreases. We can therefore expect that α(S,ΠRand,1,n) is very far from lg n.

6.2 Mimicking Samplers

Another natural strategy of ring sampling is to mimic the true source distribution S. Suppose that Ŝ is
an estimate of the true source distribution and is efficiently sampleable. We formalize this strategy as the
Ŝ-mimicking sampler ΠŜMimic,k,n with size parameter (k, n) as follows:

ΠŜMimic,k,n(S ⊆k [N ]): Let S1 := S. For i ∈ [n] \{1}, sample Si←$ Ŝ. Output R :=
⋃
i∈[n] Si.

Note that ΠŜMimic,k,n is a (k, kn)-ring sampler. In the case Ŝ = S and S is a k-signer distribution, we
simply write ΠSMimic,k,n as ΠMimic,k,n and call it the mimicking sampler.

We remark that ΠŜMimic,k,n is defined as above for easier analysis. It does not always produce a ring of
size kn due to collisions from sampling with replacement, i.e., it might happen that Si ∩ Sj 6= ∅ for i 6= j.
Therefore the anonymity of ΠŜMimic,k,n cannot be optimal among all kn-ring samplers. The anonymity can
only increase by padding the ring to contain kn users with any strategy. In the special case where k = 1,
one can continue to populate the ring with samples from Ŝ, until the ring size reaches n.

Despite the above suboptimality, in the case N � n, sampling with replacement is a reasonable
approximation of sampling without replacement. It is therefore reasonable to expect that if the mimicking
sampler has access to the true source distribution S, its anonymity should be close to optimal. In the
following, we give evidence that this is the case.

To facilitate the analysis of ΠMimic,k,n, we define a very similar algorithm ΠMimic,k,n which treats the
Si’s as multisets (sets with possibly repeated elements) and replaces the union operation with multiset
sum12:

ΠMimic,k,n(S ⊆≤k [N ]): Let S1 := S. For i ∈ [n] \{1}, sample Si←$S. Output X :=
∑
i∈[n] Si.

Clearly, ΠMimic,k,n is a function of ΠMimic,k,n (which removes all duplicated elements from the latter).
Furthermore, let ~x ∈ NN0 be the characteristic vector of X. Then, if S is a 1-signer distribution, then the
characteristic vectors ~x of ΠMimic,k,n(S) have a multinomial distribution with weights given by S.

Theorem 6.2 (Mimicking Sampler). Let S be a 1-signer distribution. Let ~x = (xi)
N
i=1 be the characteristic

vector of ΠMimic,1,n(S).

α(S,ΠMimic,1,n) ≥ lg n− lgE[max
i

xi]. (2)

12For example, {a, a, b, c} +{b, c, c} = {a, a, b, b, c, c, c}.
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Furthermore, assuming that H∞(S) ≥ lg n, we have

α(S,ΠMimic,1,n) ≥ lg(
√
n− 1) ≈ lg n

2
. (3)

Our proof of the theorem in Appendix C uses a bound of Aven [Ave85], which is loose in some cases as
it does not take into account the correlations between random variables. Nevertheless, we are able to
show a non-trivial lower bound of (roughly) 1

2 lg n, which is only a constant fraction away from optimal.

We emphasize that although Theorem 6.2 shows that the optimal anonymity is always almost achievable
up to a constant factor, the result is mostly of theoretical interest, because it requires the knowledge of
an estimation Ŝ of the signer distribution S. Even if it is possible to obtain a reasonable estimation Ŝ of
S, a questionable assumption, S may change over time, e.g., due to economic bubbles and recessions,
and depends on the free will of users. For a good and practical sampler we recommend the partitioning
sampler in Section 6.3.

Remark 2. An attentive reader might observe the following peculiar phenomenon: Suppose that today
the real signer happens to be Alice who has very low signing probability according to S. It is likely that
the mimicking sampler produces a ring in which all members except Alice have a high signing probability,
making Alice stand out. This is paradoxical since the mimicking sampler is close to optimal.

The answer to the riddle is that the sampled ring could be, with similar probability (not the same due to
potential collision), the result of someone else in the ring being the real signer, and picking Alice as a ring
member.

For the same reason as above, the mimicking sampler naturally resists timing attacks described in
Section 2.1, which assumes that the signing probability of a signer depends on its age (c.f. Section 7.1).
Namely, the event that a young signer ending up in the ring could be with similar (high) probabilities the
result of him being the signer or him being chosen as a ring member by another signer.

6.3 Partitioning Samplers

Another natural idea for ring sampling is to put signers with similar signing probabilities into the same
ring. We first abstract this idea as the family of partitioning samplers. We then propose a practical
partitioning strategy which also provides other security features.

6.3.1 Abstract Description

To recall, a set P of sets (called chunks) is said to be a partition of [N ] if
⋃
C∈P C = [N ], C ∩ C ′ = ∅ for

all C,C ′ ∈ P with C 6= C ′, and C 6= ∅ for all C ∈ P . Fix a size parameter n ∈ [N ]. Let P be a distribution
over the partitions of [N ] where each chunk is of size at least n. Intuitively, one is meant to choose P such
that its support only includes partitions where signers in each chunk have similar signing probabilities.
We will only use this assumption in the anonymity analysis but not in the construction: The construction
works for all distributions of partitions.

Given any such distribution P , size parameters k and (optionally) n, we define the partitioning sampler
ΠPart,P,k,n (ΠPart,P,k if n is not given) as follows:

ΠPart,P,k,n(S ⊆≤k [N ]): Let P ←$P be a partition of [N ]. For each s ∈ S, let Cs ∈ P be the
unique chunk such that s ∈ Cs. Sample Rs ⊆n Cs uniformly subject to s ∈ Rs. (Note that we
assumed |C| ≥ n for all C ∈ P for all P ∈ Supp(P).) Output R :=

⋃
s∈S Rs.

ΠPart,P,k(S ⊆≤k [N ]): Let P ←$P be a partition of [N ]. For each s ∈ S, let Cs ∈ P be the
unique chunk such that s ∈ Cs. Output R :=

⋃
s∈S Cs.

Clearly ΠPart,P,k,n is a (k, kn)-ring sampler. Due to the potential collision of chunks, i.e., there exist
distinct s, s′ ∈ S such that s, s′ ∈ C for some C ∈ P , the partitioning sampler cannot be optimal with
respect to k-signer distributions where k > 1. Although collisions can be made rare if the partition is
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fine-grained and random enough, the anonymity can only increase by padding the ring to size kn, similar
to our suggestion for the mimicking sampler.

We analyze the anonymity of ΠPart,P,1,n and ΠPart,P,1 with respect to any 1-signer distribution S. We
start with the simple case where the support of P is a singleton, i.e., P ≡ P for some partition P of [N ].

Theorem 6.3 (Partitioning Sampler). Let S be a 1-signer distribution. Let n ∈ [N ]. Let P ≡ P for some
partition P of [N ] such that |C| ≥ n for all C ∈ P . For each C ∈ P , let µC be the mean of Pr [S = {s}]
over all s ∈ C, i.e., µC := |C|−1

∑
s∈C Pr [S = {s}]. Suppose that for all C ∈ P , all s ∈ C, it holds that

|Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0. Let εP :=
∑
C∈P |C|εC . Then

α(S,ΠPart,P,1,n) ≥ lg n− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lg n− lg(εP + 1).

We next show that the anonymity can only be better with a larger support of P, condition on that all
partitions in the support of P satisfy the above constraints.

Corollary 6.1. Let S be a 1-signer distribution. Let n ∈ [N ]. Suppose that for each partition P in the
support of P, for all C ∈ P , all s ∈ C, it holds that |Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0, and
|C| ≥ n. Let εP :=

∑
C∈P |C|εC and let εP :=

∑
P Pr [P = P ] εP . Then

α(S,ΠPart,P,1,n) ≥ lg n− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lg n− lg(εP + 1).

In the case that the size parameter n is given, we observe that if all signers in a partition have identical
signing probabilities, then εP = 0 and the anonymity is optimal, i.e., lg n.

6.3.2 Suggested Instantiations

We suggest concrete strategies for partitioning the universe of signers in a realistic cryptocurrency setting.

In the simple case where the signers can be clustered into chunks according to signing probabilities,
such that each chunk is of size ≥ n and consists of signers with the same signing probability, the collection
of these chunks form a natural partition P which satisfies the conditions in Theorem 6.3 with εP = 0.
The partitioning sampler ΠPart,P,1,n (with n given) therefore achieves optimal anonymity. The above
requirements can be met, e.g., when we assume that the signing probability depends only on the “age” of
the signer, and there are enough signers of the same age.13 For a more detailed discussion about age, we
refer to Section 7.

The above requires to partition the universe such that each chunk is of size ≥ n. In reality it might
very well happen that some chunks are of size < n. Taking Monero as an example, if we consider all
output accounts in the same (blockchain) block to have the same age, and assume that the signing
probability depends on the age, then there are on average around 13 accounts 14 in one such chunk,
which is insufficient for a ring size of n > 13. To resolve this issue, a natural approach (Approach 1) is to
group several chunks into a bigger chunk, such that the latter is of size ≥ n. Assuming that the signing
probability of signers in consecutive chunks are similar, the resulting value of εP would still be quite close
to 0, and hence the partitioning sampler is still close to optimal.

Another issue is about the anonymity of (the users of) the partitioning sampler after several rings
are sampled by signers in the same chunk are observed. In the ideal case, where each chunk is of size

13Depending on the coarseness of the definition of “age”, signers (e.g., accounts in a cryptocurrency) of the same age might
not spawn simultaneously. In such case the ring sampler should treat as if the youngest signers are not in the universe
until all of them have spawned. Also, the youngest signers should wait until all their fellows have spawned before signing.

14See Table 4 for detailed numbers
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exactly n (as in the suggested ring sampler of [YAEV19]), no extra information about the signers can be
extracted even after seeing multiple rings – the signers are essentially running the “all sampler” treating
the chunk as the universe. In reality however where the chunk size is often greater than n, graph analysis
can potentially be performed to extract non-trivial information about the signers, especially when the
sampler is supplied with bad randomness or even subverted (as in the black marble attacks described in
Section 2.1).

To avoid the potential risk of graph analysis, an idea is to enforce the chunk size of n. Assuming that
the universe size N = ` · T for some ` which is a multiple of n,15 and assuming signers that are close in
age have similar signing probabilities, we partition [N ] in the following recursive manner (Approach 2).
Let N ′ = `(T − 1). Suppose that the subset [N ′] of signers were already partitioned. Immediately after
the universe size advances from N ′ to N = N ′ + `, we partition the ` new signers into chunks each of size
n uniformly at random using public randomness (e.g., derived by hashing the state of the blockchain up
to current time). Unioning these chunks with the original partition of [N ′] gives a partition of [N ]. Once
the partition is sampled and fixed, the ring sampler is deterministic. The case ` = n coincides with the
sampler suggested in [YAEV19].

Below, we highlight some interesting properties of our instantiation, the first two of which are outside
our model for anonymity.

Obliviousness to Signer Distribution Unlike the mimicking sampler, the partitioning sampler is
oblivious to the real signer distribution and does not require knowledge of a close estimate of it. This
provides an easy way to create partitions for any universe as long as the assumptions about similar
probabilities are met, i.e. we always can set ` to the next multiple of n greater or equal the mean block
size.

Trade-off between Waiting Time and Anonymity Both suggested approaches above require the
younger signers to wait until enough of them have spawned to be able to use the sampler. The waiting
time increases with the ring size n and hence with anonymity. For reference, in Table 4 we report the
average waiting time until ` accounts have spawned in Monero for different values of `.

Security against Deanonymization Attacks Having near-optimal anonymity (with respect to reason-
able signer distributions), our partitioning sampler instantiation is more secure against the deanonymization
attacks mentioned in Section 2.1, e.g., than the uniform sampler, according to Theorem 4.4.

The passive security can also be seen intuitively. Exploitation of transaction times is immediately
prevented as the ring is fixed as soon as the whole chunk of accounts is available. Graph structure analysis
is confined as the induced bipartite graph now consists of disconnected subgraphs, each corresponding to
a chunk. In the extreme case where each chunk is of size n (as suggested in [YAEV19]), each subgraph is
balanced and complete, hence no information can be inferred from graph analysis. Correlation between
output accounts of the same transaction is not useful, since the number of signer is restricted to 1.

For active security (of the signer-distribution-influencing kind), e.g., against black marble attacks, we
note that Theorem 5.1 guarantees that the partitioning sampler is also near optimal with respect to a
slightly tempered signer distribution.

7 Empirical Evaluation

We study empirically the anonymity of the uniform and mimicking samplers with respect to several signer
distributions. We skip the partitioning sampler as it is optimal for all distributions that we consider (with
the appropriate parameters).

15If not, then as before we treat the youngest signers as if they were not part of the universe, until there are enough of them
to make the universe size a multiple of n.
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Figure 1: Empirical Bitcoin age distribution in blocks and fitted PDFs

7.1 Signer Distributions

Uniform Distribution As a reference, we first consider the uniform distribution U[N ] over [N ]. U[N ]

is the easiest to build a good ring sampler for, in the sense that the simple uniform sampler is optimal
for U[N ]. While U[N ] is unrealistic in the cryptocurrency context, it might decently model the reality in
“one-shot” applications of ring samplers, e.g., secret disclosure, especially when not much side-channel
information is known about the potential signers by the adversary.

Monero Distribution To obtain more realistic distributions, Möser et al. [Mös+18] analyzed the
empirical distribution of the age of transaction outputs/accounts. The age here refers to the difference
between the spent time and the creation time of a transaction output/account (measured in blocks). While
this information is supposedly hidden in a privacy-preserving cryptocurrency such as Monero, Möser et al.
[Mös+18] analyzed the transaction graph of Monero in the pre-RingCT era, and successfully deanonymized
a lot of transactions. For these deanonymized transactions, Möser et al. [Mös+18] “heuristically determined”
that the logarithm of the age of accounts matches a gamma distribution. In our terminology, we call such
an age distribution the “log-gamma” distribution, which has the PDF

Pr [age = t] ∝ (ln t)a−1t−b

for some shape parameter a > 0 and rate parameter b > 0, and has support Supp(age) = (0,∞). The
parameters of the log-gamma distribution fitted by Möser et al. [Mös+18] are a = 19.28 and b = 1.61
respectively.

Subsequently, the log-gamma distribution is used in the ring sampler of Monero in the following way.
First, an age is sampled from the log-gamma distribution. Rejection sampling is employed so that age
≤ 10 blocks are rejected. Then, an account is chosen uniformly at random from all accounts having the
sampled age. This process is repeated until the ring is populated to a desired size. This can be viewed as
an S-mimicking sampler, where the age of S has log-gamma distribution, and signers of the same age
have equal signing probability.

Baseline Distribution Modeled after Bitcoin Since the graph analysis tools used by Möser et al.
[Mös+18] are not publicly available, we could not replicate their results for Monero. Nevertheless, we
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Distribution Fitting Range Parameters RMSE
Log-normal [1 : 197394] (µ, σ) = (3.000, 3.610) 2.271× 10−5

(Shifted) Pareto [1 : 197394] a = 0.172 1.987× 10−5

Log-gamma [2 : 197394] (a, b) = (0.062, 0.585) 4.580× 10−5

Log-gamma [10 : 197394] (a, b) = (0.151, 0.860) 4.542× 10−6

Table 3: Parameters of fitted distributions

re-examine the age distribution of Bitcoin transaction outputs created within the 300,000-400,000 block
period. In Figure 1 is a log-log plot of the probability density functions (PDFs) of the empirical age
distribution of Bitcoin, a fitted log-normal distribution, a fitted (shifted) Pareto distribution, and two
fitted log-gamma distributions. Pale and dark vertical lines mark days and weeks respectively.

The log-normal and Pareto distributions are chosen because the log-log plot of the age distribution
looks almost like a straight line. The log-gamma distribution is include since it was the distribution of
choice of Möser et al. [Mös+18]. The log-normal distribution has the PDF

Pr [age = t] ∝ t−( ln t−2µ

2σ2
+1)

for some parameters µ, σ > 0. For a fixed shift of 1 (to shift the support from [1,∞) to [0,∞)), the
(shifted) Pareto distribution has the PDF

Pr [age = t] ∝ (t+ 1)−(a+1)

for some shape parameter a > 0.

In Section 7.1 we summarize the fitting range, parameters, and the root-mean-square error (RMSE) of
the fitted distributions. We can see that the Bitcoin distribution matches the fitted (shifted) Pareto and
the log-normal distributions beautifully, whereas the log-gamma distributions fitted to different ranges
have inconsistent behaviors. We emphasize that only the (shifted) Pareto distribution has the correct
support, i.e., [0,∞), while the support of log-normal and log-gamma is (1,∞). For this reason, although
the log-gamma distribution fitted to the range [10 : 197394] has the lowest RMSE, it does not mean that
this distribution is better than the others since the magnitude of the probability decreases rapidly in t.

While irrelevant to this work, it is interesting to note the periodicity of the Bitcoin distribution – the
local maximums align with the daily marks. This phenomenon is shown even more clearly when the age is
measured in minutes (Figure 4). Unfortunately, when measuring in minutes or seconds, some transaction
outputs appear to have negative age due to the variation of system time in different machines. It seems
difficult to de-noise the data and fitting distributions to noisy data seems less meaningful.

Based on the observation on Bitcoin data, we propose to use the discretization of (shifted) Pareto
distributions, i.e., (shifted) zeta distributions, as a baseline for signer distributions. More precisely, our
baseline family is parameterized by (`, T, a) ∈ N2 × (0,∞), where ` is the number of signers of the same
age, T is the size of the age range, and a is the parameter of the (shifted) zeta distribution. The universe
size is N = `T . For i ∈ [N ], Pr [S = {i}] ∝ (t+ 1)−(a+1) where t =

⌊
i−1
`

⌋
is the age of the signer.

7.2 Evaluation Results

Uniform Sampler In Figure 2 is a plot of the anonymity of the uniform sampler (Equation (1)) with
respect to the uniform distribution U[42198964] (blue) and the baseline distributions, with a = 0.172,
` = 1024 and different values of T , against ring size in linear-log scale. We also plotted the upper bound
lg n (orange). We observed that the anonymity for the uniform distribution is independent of the actual
universe size. For the baseline distribution, the anonymity is independent of `. As shown by the overlapping
blue and orange lines in Figure 2, the uniform sampler is optimal for the uniform distribution. The
anonymity with respect to the baseline distributions drifts away from the optimum as T increases.

Mimicking Sampler Figure 3 is a plot of the lower bound of the anonymity of the mimicking sampler
(Inequality (2)) with respect to the uniform distributions U[N ], where N ∈ {160, 6400, 10240000}, and the
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Figure 2: Selected results for anonymity of the uniform sampler, full data is available in Table 5
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Figure 3: Selected results for anonymity of the mimicking sampler. Full data is available in Tables 6 and 8
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baseline distributions, with a = 0.172 and (`, T ) ∈ {16, 64, 1024}×{100, 10000}, against ring size in linear-
log scale. We also plotted the upper bound lg n and the global lower bound lg(

√
n− 1) (Inequality (3)).

To evaluate the term E[maxi xi] in Inequality (2), we have implemented the algorithm in [Cor11].

Figure 3 shows that for a uniform distribution the mimicking sampler is nearly optimal while getting
even closer for larger N . For the baseline (with a = 0.172) and Monero distributions, the anonymity
approaches to the optimum as ` and T increases, with the effect of ` being much more significant.

Partitioning Sampler We remind that the partitioning sampler achieves the optimal anonymity of lg n
as long as each chunk in each possible partition has size at least n and contains users with equal signing
probability. Both assumptions are satisfied by the uniform distribution and the baseline distribution for
` ≥ n.
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size ` 50 100 150 200 250 300 350 400 450 500 550 600

mean 3.83 7.66 11.49 15.32 19.15 22.98 26.81 30.64 34.47 38.30 42.13 45.96
stdev 2.76 4.40 5.80 7.17 8.40 9.55 10.79 11.91 13.06 14.22 15.41 16.16

Table 4: Mean waiting time (in blocks) until ` new accounts have been accumulated

Figure 4: Empirical Bitcoin age distribution in minutes

Monero starting on February 21st 2019 16 and collected 36,000 blocks. Currently, the blocked time that a
user has to wait in Monero in order to spend from its account is around 20 minutes.

B Implication to Ring Signatures

We define a generalized version of ring signatures which aim to capture its different variants. We also
define a simulation-based notion of anonymity, which is equivalent to the classic indistinguishability-based
notion, but synergizes better with the notion of ring samplers.

Definition B.1 (Ring Signatures). A ring signature scheme Σ is a tuple of PPT algorithms (KGen,Sig,Vf)
with the following syntax:

(pk, sk)← KGen(1λ): The key generation algorithm generates a public verification key pk and a secret
signing key sk.

σ ← Sig
(
{pki}

n
i=1 ,{ski}i∈I ,m

)
: The sign algorithm inputs a set of public keys {pki}

n
i=1 called the ring,

a set of secret keys {ski}i∈I corresponding to pki for i ∈ I for some I ⊆ [n], and a message m ∈M for
some message spaceM. It outputs a signature σ.

b← Vf ({pki}
n
i=1 ,m, σ): The verify algorithm inputs a ring {pki}

n
i=1, a message m, and a signature σ. It

outputs a bit b deciding if σ is a valid signature of m with respect to the ring.

16Corresponding to Blockhash
5aa57a67dbc9e1a14c5b0eb4180200197d1024a26fbfd8590d34d56488bb1da4
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Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Baseline 100 16 7.37 · 10−15 2.15 · 10−1 4.40 · 10−1 6.99 · 10−1 1.01 · 100 1.40 · 100

Baseline 100 64 −4.16 · 10−15 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.01 · 100 1.40 · 100

Baseline 100 256 1.32 · 10−13 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.02 · 100 1.41 · 100

Baseline 100 1,024 −6.54 · 10−13 2.15 · 10−1 4.41 · 10−1 7.01 · 10−1 1.02 · 100 1.41 · 100

Baseline 1,000 16 2.64 · 10−14 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.08 · 10−1

Baseline 1,000 64 −8.33 · 10−15 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.08 · 10−1

Baseline 1,000 256 2.40 · 10−13 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.09 · 10−1

Baseline 1,000 1,024 1.62 · 10−12 1.18 · 10−1 2.37 · 10−1 3.69 · 10−1 5.23 · 10−1 7.09 · 10−1

Baseline 10,000 16 9.90 · 10−14 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 64 1.71 · 10−13 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 256 −3.24 · 10−13 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 10,000 1,024 −1.28 · 10−12 7.00 · 10−2 1.39 · 10−1 2.12 · 10−1 2.96 · 10−1 3.94 · 10−1

Baseline 100,000 16 2.44 · 10−13 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 64 9.80 · 10−13 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 256 −5.27 · 10−12 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Baseline 100,000 1,024 4.29 · 10−12 4.35 · 10−2 8.53 · 10−2 1.30 · 10−1 1.79 · 10−1 2.35 · 10−1

Uniform 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 5: Anonymity for Uniform Sampler

Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Baseline 100 16 0.00 · 100 9.94 · 10−1 1.96 · 100 2.85 · 100 3.56 · 100 4.19 · 100

Baseline 1,000 16 0.00 · 100 9.96 · 10−1 1.98 · 100 2.90 · 100 3.66 · 100 4.30 · 100

Baseline 10,000 16 0.00 · 100 9.97 · 10−1 1.98 · 100 2.92 · 100 3.72 · 100 4.36 · 100

Baseline 100 64 0.00 · 100 9.98 · 10−1 1.99 · 100 2.96 · 100 3.84 · 100 4.56 · 100

Baseline 1,000 64 0.00 · 100 9.99 · 10−1 1.99 · 100 2.97 · 100 3.89 · 100 4.66 · 100

Baseline 10,000 64 0.00 · 100 9.99 · 10−1 2.00 · 100 2.98 · 100 3.91 · 100 4.71 · 100

Baseline 100 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.96 · 100 4.84 · 100

Baseline 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.97 · 100 4.89 · 100

Baseline 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.98 · 100 4.91 · 100

Baseline 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.95 · 100

Baseline 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.97 · 100

Baseline 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.98 · 100

Table 6: Anonymity for Mimicking Sampler and Baseline Distribution

Σ is correct if for any λ,N ∈ N, any J ⊆ I ⊆n [N ], any (pki, ski) ∈ KGen(1λ) for i ∈ [N ], any m ∈M,
and any σ ∈ Sig

(
{pki}i∈I ,{ski}i∈J ,m

)
, it holds that Vf

(
{pki}i∈I ,m, σ

)
= 1.

Let Λ be a (possibly probabilistic and stateful) leakage function, and ε = ε(λ) ∈ [0, 1]. Σ is (Λ, ε)-
anonymous if for any N ∈ N and any stateful PPT adversary A, there exists a stateful PPT simulator S,
such that ∣∣∣∣ Pr

[
RealΣ,N,A(1λ) = 1

]
−Pr

[
IdealΣ,Λ,N,A,S(1λ) = 1

]∣∣∣∣ < ε

where the experiments RealΣ,N,A and IdealΣ,Λ,N,A,S are defined in Figure 5.

Typically, ε is considered to be a negligible function in λ. It is easy to see that the above simulation-
based definition is equivalent to the classical indistinguishability-based definition. If Σ is simulation-based
anonymous, then the indistinguishability-based anonymity can be proven by a standard hybrid argument
where we hop from the “0” experiment to the ideal experiment and then to the “1” experiment. Conversely,
if Σ is indistinguishability-based anonymous, then we can construct a simulator who generates signatures
by running the sign algorithm on an appropriate subset of keys.

The classic ring signatures corresponds to the setting where the number of signers is |I| = n ≡ 1
and there is no leakage, e.g., Λ always return the empty string. To capture, for example, linkable ring
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Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Monero 100 16 0.00 · 100 9.99 · 10−1 1.99 · 100 2.96 · 100 3.86 · 100 4.59 · 100

Monero 1,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.96 · 100

Monero 10,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 64 0.00 · 100 1.00 · 100 2.00 · 100 2.99 · 100 3.96 · 100 4.86 · 100

Monero 1,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Monero 10,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.96 · 100

Monero 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Monero 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Monero 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 7: Anonymity for Mimicking Sampler and Monero Distribution

Distribution T ` n=1 n=2 n=4 n=8 n=16 n=32

Uniform 100 16 0.00 · 100 9.99 · 10−1 2.00 · 100 2.98 · 100 3.93 · 100 4.76 · 100

Uniform 1,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.99 · 100 4.97 · 100

Uniform 10,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 16 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 3.98 · 100 4.93 · 100

Uniform 1,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.99 · 100

Uniform 10,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 64 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 4.98 · 100

Uniform 1,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 10,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100,000 256 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 100 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 1,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Uniform 10,000 1,024 0.00 · 100 1.00 · 100 2.00 · 100 3.00 · 100 4.00 · 100 5.00 · 100

Table 8: Anonymity for Mimicking Sampler and Uniform Distribution

signatures, the leakage function Λ should reveal which members of J have issued a signature before (due
to linkability) and the carnality of J (due to the number of linkability tags).

We formally capture the concrete anonymity of a ring signature scheme coupled with a ring sampler
with respect to a signer distribution as follows.

Definition B.2. Let δ > 0. Let Σ be a ring signature scheme, Π be a ring sampler, and S be a signer
distribution. The compound system (Σ,Π) is said to have concrete anonymity δ (the smaller the better)
with respect to S, if for all PPT adversary, it holds that

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤ δ

where ConcreteAnonΣ,Π,S,A is defined in Figure 6.

In the following theorem, we relate the concrete anonymity of (Σ,Π) to the anonymity of Σ and Π.

Theorem B.3. Let Σ be an (Λ, ε)-anonymous ring signature scheme. Let Π be a ring sampler. Let S be
a signer distribution. Let δ := |Supp(Λ(S))| · 2−α[Π,S] + ε. Then the system (Σ,Π) has concrete anonymity
δ with respect to S.
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RealΣ,N,A(1λ)

(pki, ski)← KGen(1λ)∀ i ∈ [N ]

b← ASigOReal

(
{pki}

N
i=1

)
return b

IdealΣ,Λ,N,A,S(1λ)

{pki}
N
i=1 ← S(1λ)

b← ASigOIdeal

(
{pki}

N
i=1

)
return b

SigOReal(I, J,m)

σ ← Sig
(
{pki}i∈I ,{ski}i∈J ,m

)
return σ

SigOIdeal(I, J,m)

σ ← S (I,Λ(J),m)

return σ

Figure 5: Anonymity experiments of ring signatures

ConcreteAnonΣ,Π,S,A(1λ)

(pki, ski)← KGen(1λ) ∀ i ∈ [N ]

m← A
(
{pki}

N
i=1

)
S ←$S

R← Π(S)

σ ← Sig
(
{pki}i∈R ,{ski}i∈S ,m

)
S∗ ← A(R, σ)

return (S = S∗)

Figure 6: Concrete anonymity experiments of ring signatures

Proof. It suffices to prove that

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤2−H∞(S|Π(S),Λ(S)) + ε.

The theorem then follows immediately from the chain rule of min-entropy. For the above inequality, we
can rewrite it as

Pr
[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
≤Guess (S|Π(S),Λ(S)) + ε.

Since Σ is (Λ, ε)-anonymous, there exists a PPT simulator S, such that∣∣∣∣ Pr
[
RealΣ,N,A(1λ) = 1

]
−Pr

[
IdealΣ,Λ,N,A,S(1λ) = 1

]∣∣∣∣ < ε.

We therefore consider a modified experiment ConcreteAnon′Σ,Π,S,A,S which is almost identical to
ConcreteAnonΣ,Π,S,A, except that the keys pki are produced by S(1λ), and the signature σ is produced
by S (R,Λ(S),m). Due to the (Λ, ε)-anonymity of Σ, we have∣∣∣∣ Pr

[
ConcreteAnonΣ,Π,S,A(1λ) = 1

]
−Pr

[
ConcreteAnon′Σ,Π,S,A,S(1λ) = 1

]∣∣∣∣ < ε.

Note that in ConcreteAnon′Σ,Π,S,A,S the only information about S available to A is R = Π(S) and
L = Λ(S). We therefore have

Pr
[
ConcreteAnon′Σ,Π,S,A,S(1λ) = 1

]
≤Guess (S|Π(S),Λ(S)) .

The claim then follows.

C Proofs

We restate and prove all lemmas and theorems whose proofs do not fit into the main body.

26



Lemma 4.1. For any k-signer distribution S, any n-ring sampler Π, and any leakage function Λ,

α(S,Π,Λ) ≤ lg

k∑
i=1

(
n

i

)
.

In particular, for k = 1 we have
α(S,Π,Λ) ≤ lg n.

Proof. By monotonicity, α(S,Π,Λ) ≤ α(S,Π). It therefore suffices to show that, for each R ⊆≤n [N ],

max
S

Pr [S = S|Π(S) = R] ≥
(
n

k

)−1

.

Fix R ⊆≤n [N ]. For all S ∈ Supp(S) and S 6⊆ R, we have Pr [S = S|Π(S) = R] = 0. Therefore∑
S:S∈Supp(S)∧S⊆R

Pr [S = S|Π(S) = R] = 1.

Note that

|{S : S ∈ Supp(S) ∧ S ⊆ R} | ≤
k∑
i=1

(
n

i

)
.

The desired result follows from the pigeonhole principle.

Lemma C.1. For any S and S′ with Supp(S) ⊆ Supp(S′), any (probabilistic) function Φ : {0, 1}∗ → {0, 1}∗,
and any ε ≥ 0, if D∞(S‖S′) ≤ ε, then for any Y ∈ Supp(Φ(S)),

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

≤ 2ε· max
S∈Supp(S′)

Pr [(S′,Φ(S′)) = (S, Y )] .

Proof. By assumption, we have

lg max
S∈Supp(S′)

Pr [S = S]

Pr [S′ = S]
= D∞(S‖S′) ≤ ε

Pr [S = S′]

Pr [S′ = S′]
≤ max
S∈Supp(S′)

Pr [S = S]

Pr [S′ = S]
≤ 2ε

for all S′ ∈ Supp(S′). Fix Y ∈ Supp(Φ(S)). Let S∗ ∈ Supp(S) be such that

Pr [(S,Φ(S)) = (S∗, Y )]

= max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )] .

We have

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

=Pr [(S,Φ(S)) = (S∗, Y )]

=Pr [(Π(S∗),Λ(S∗)) = Y ]Pr [S = S∗]

≤2εPr [(Π(S∗),Λ(S∗)) = Y ]Pr [S′ = S∗]

=2εPr [(S′,Π(S′),Λ(S′)) = (S∗, Y )]

≤2ε max
S∈Supp(S′)

Pr [(S′,Π(S′),Λ(S′)) = (S, Y )] .
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Theorem 5.1 (Robustness). For any S and S′ with Supp(S) ⊆ Supp(S′), any Π and Λ, and any ε ≥ 0,
if D∞(S‖S′) ≤ ε, then

α(S,Π,Λ) ≥ α(S′,Π,Λ)− ε.

Proof. By Lemma C.1,

max
S∈Supp(S)

Pr [(S,Φ(S)) = (S, Y )]

≤ 2ε· max
S∈Supp(S′)

Pr [(S′,Φ(S′)) = (S, Y )] .

for any (probabilistic) function Φ and any Y ∈ Supp(Φ(S)). Therefore

2−H∞(S|Φ(S))

=
∑

Y ∈Supp(Φ(S))

max
S∈Supp(S)

Pr [(S,Π(S)) = (S, Y )]

≤2ε
∑

Y ∈Supp(Φ(S))

max
S∈Supp(S′)

Pr [(S′,Π(S′)) = (S, Y )]

≤2ε
∑

Y ∈Supp(Φ(S′))

max
S∈Supp(S′)

Pr [(S′,Π(S′)) = (S, Y )]

=2−(H∞(S′|Φ(S′))−ε).

Recall that
α(S,Π,Λ) = H∞(S|Π(S),Λ(S)).

By setting Φ = (Π,Λ), we have the desired result.

Theorem 6.1 (Uniform Sampler). Let S be a 1-signer distribution. Let Ei be the i-th most probable
event in S and

ρi =

{
Pr [Ei] i ∈ [|Supp(S)|]
0 i ∈ [N ] \ [|Supp(S)|].

Then

α(S,ΠRand,1,n) = − lg

(∑N−1
i=n−1

(
i

n−1

)
ρN−i(

N−1
n−1

) )
. (1)

Proof. Let Π = ΠRand,1,n. Recall that

α(S,Π) = H∞(S|Π(S))

=− lg

(∑
R

max
S

Pr [Π(S) = R|S = S]Pr [S = S]

)
.

We examine the value Pr [Π(S) = R|S = S]. Fix R ⊆ [N ]. If S 6⊆ R, we have Pr [Π(S) = R|S = S] = 0. On
the other hand, if S ⊆ R, we have Pr [Π(S) = R|S = S] =

(
N−1
n−1

)−1
since there are

(
N−1
n−1

)
many R ⊇ S.

Note that ∑
R

max
S

Pr [Π(S) = R|S = S]Pr [S = S]

=
∑
R

max
S∈Supp(S)∧S⊆R

Pr [Π(S) = R|S = S]Pr [S = S]
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=

(
N − 1

n− 1

)−1∑
R

max
S∈Supp(S)∧S⊆R

Pr [S = S]

Consider each term of the sum ∑
R

max
S∈Supp(S)∧S⊆R

Pr [S = S] .

For each i ∈ [|Supp(S)|], let Si be the i-th most probable event in S (note that |S| ≡ 1). For i ∈
[N ] \ [|Supp(S)|], let Si = ∅. In either case we have Pr [S = Si] = ρi. For each R, if S1 ⊆ R, then we have
maxS∈Supp(S)∧S⊆R Pr [S = S] = ρ1. Note that there are

(
N−1
n−1

)
many such R. Else, if S1 6⊆ R but S2 ⊆ R,

then we have maxS∈Supp(S)∧S⊆R Pr [S = S] = ρ2. Continuing in this way, we can conclude that∑
R

max
S⊆R

Pr [S = S]

=

(
N − 1

n− 1

)
ρ1 +

(
N − 2

n− 1

)
ρ2 + . . .+

(
n− 1

n− 1

)
ρN−n+1

=

N−1∑
i=n−1

(
i

n− 1

)
ρN−i.

The theorem statement follows.

Theorem 6.2 (Mimicking Sampler). Let S be a 1-signer distribution. Let ~x = (xi)
N
i=1 be the characteristic

vector of ΠMimic,1,n(S).

α(S,ΠMimic,1,n) ≥ lg n− lgE[max
i

xi]. (2)

Furthermore, assuming that H∞(S) ≥ lg n, we have

α(S,ΠMimic,1,n) ≥ lg(
√
n− 1) ≈ lg n

2
. (3)

Proof. For each S and ~x, note that if S 6⊆ X, then Pr [S = S ∧~x = ~x] = 0. On the other hand, suppose
S ⊆ X. Since S is a 1-signer distribution, S = {i} for some i ∈ [N ]. We have

Pr [S = S ∧~x = ~x] =
xi(n− 1)!

x1! . . . xN !

∏
j∈[N ]

Pr [S = {j}]xj

Since ~x is multinomially distributed,

Pr [~x = ~x] =
n!

x1! . . . xN !

∏
j∈[N ]

Pr [S = {j}]xj .

Therefore

Pr [S = S|~x = ~x] =
Pr [S = S ∧~x = ~x]

Pr [~x = ~x]

=
xi
n

max
S

Pr [S = S|~x = ~x] =
maxi xi

n∑
~x

Pr [~x = ~x] max
S

Pr [S = S|~x = ~x] =
E[maxi xi]

n

H∞(S|~x) = lg n− lgE[max
i

xi].
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Recall that ΠMimic,1,n is a function of ΠMimic,1,n. By a data processing inequality (Lemma 3), we have

α(S,ΠMimic,1,n) =H∞(S|R)

≥H∞(S|~x)
= lg n− lgE[max

i
xi].

Furthermore, assume that H∞(S) ≥ lg n, or in other words maxS Pr [S = S] ≤ 1/n. We recall the upper
bound

E[max
i

xi] ≤ max
i
µi +

√
N − 1

N

∑
i

σ2
i

by Aven [Ave85], where µi = E[xi] and σ2
i = Var[xi].

For i ∈ [N ], denote pi := Pr [S = i]. Substituting µi = npi ≤ n · 1/n = 1 and σ2
i = npi(1− pi), we have

E[max
i

xi] ≤ 1 +

√
N − 1

N

∑
i

npi(1− pi)

= 1 +

√
N − 1

N
· n · (1−

∑
i

p2
i )

≤ 1 +

√
N − 1

N
· n · (1− 1/N)

= 1 +
N − 1

N

√
n ≤
√
n+ 1

where in the second inequality we applied the Cauchy-Schwarz inequality on (p1, . . . , pN ) and (1, . . . , 1).

Consequently, we have

H∞(S|R) ≥ lg n− lg(
√
n+ 1) = lg

n− 1 + 1√
n+ 1

= lg(
√
n− 1 +

1√
n+ 1

)

≥ lg(
√
n− 1)

Theorem 6.3 (Partitioning Sampler). Let S be a 1-signer distribution. Let n ∈ [N ]. Let P ≡ P for some
partition P of [N ] such that |C| ≥ n for all C ∈ P . For each C ∈ P , let µC be the mean of Pr [S = {s}]
over all s ∈ C, i.e., µC := |C|−1

∑
s∈C Pr [S = {s}]. Suppose that for all C ∈ P , all s ∈ C, it holds that

|Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0. Let εP :=
∑
C∈P |C|εC . Then

α(S,ΠPart,P,1,n) ≥ lg n− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lg n− lg(εP + 1).

Proof. In the following, we write Π = ΠPart,P,1,n, Π′ = ΠPart,P,1, R := Π(S), and R′ := Π′(S). We first
analyze the anonymity of Π.

For any C ∈ P , and any R we have

Pr [R = R|S = {s}] =

{(|C|−1
n−1

)−1
s ∈ R ⊆n C

0 otherwise.
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Since for all C ∈ P , all s ∈ C, |Pr [S = {s}]− µC | ≤ εC , we have maxs∈R Pr [S = {s}] ≤ µC + εC .
Therefore

2−α(Π,S) = 2−H∞(S|Π(S))

=
∑
R

max
s

Pr [R = R|S = {s}]Pr [S = {s}]

=
∑
C∈P

∑
R⊆nC

(
|C| − 1

n− 1

)−1

max
s∈R

Pr [S = {s}]

≤
∑
C∈P

∑
R⊆nC

(
|C| − 1

n− 1

)−1

(µC + εC)

=
∑
C∈P

(
|C|
n

)(
|C| − 1

n− 1

)−1

(µC + εC)

=
∑
C∈P

|C|
n

(µC + εC) =
εP + 1

n
.

In a similar fashion, we analyze the anonymity of Π′. For any C ∈ P we have

Pr [R′ = B|S = {s}] =

{
1 s ∈ C
0 otherwise.

Recall that for all C ∈ P , all s ∈ C, it holds that |Pr [S = {s}]− µC | ≤ εC . Therefore

2−α(Π′,S) = 2−H∞(S|Π′(S))

=
∑
C∈P

max
s

Pr [R′ = B|S = {s}]Pr [S = {s}]

=
∑
C∈P

max
s∈C

Pr [S = {s}]

≤
∑
C∈P

µC + εC =
∑
C∈P

|C|
|C|

(µC + εC)

≤
∑
C∈P

|C|
n

(µC + εC) =
εP + 1

n
.

Corollary 6.1. Let S be a 1-signer distribution. Let n ∈ [N ]. Suppose that for each partition P in the
support of P, for all C ∈ P , all s ∈ C, it holds that |Pr [S = {s}]− µC | ≤ εC for some εC ≥ 0, and
|C| ≥ n. Let εP :=

∑
C∈P |C|εC and let εP :=

∑
P Pr [P = P ] εP . Then

α(S,ΠPart,P,1,n) ≥ lg n− lg(εP + 1)

and
α(S,ΠPart,P,1) ≥ lg n− lg(εP + 1).

Proof. We prove the result for ΠPart,P,1,n by direct calculation. As before, we write Π = ΠPart,P,1,n and
R = Π(S).

2−α(Π,S) = 2−H∞(S|Π(S))

=
∑
R

max
s

Pr [R = R|S = {s}]Pr [S = {s}]
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=
∑
R

max
s

∑
P

(
Pr [R = R|S = {s} ∧ P = P ]
·Pr [P = P ] · Pr [S = {s}]

)
=
∑
P

Pr [P = P ]
∑
R

max
s

(
Pr [R = R|S = {s} ∧ P = P ]

·Pr [S = {s}]

)

=
∑
P

Pr [P = P ]
∑
C∈P

∑
R⊆nC

(
|C| − 1

n− 1

)−1

max
s∈R

Pr [S = {s}]

≤
∑
P

Pr [P = P ]
∑
C∈P

∑
R⊆nC

(
|C| − 1

n− 1

)−1

(µC + εC)

=
∑
P

Pr [P = P ]
∑
C∈P

|C|
n

(µC + εC)

=
∑
P

Pr [P = P ]
εP + 1

n
=
εP + 1

n
.

The analogy for ΠPart,P,1 is similar and is omitted.
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