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Abstract. Privacy is a critical issue for blockchains and decentralized
applications. Currently, there are several blockchains featured for privacy.
For example, Zcash uses zk-SNARKs to hide the transaction data, where
addresses and amounts are not visible to the public. The zk-SNARK
technology is secure and has been running stably in Zcash for several
years. However, it cannot support smart contracts, which means people
are not able to build decentralized applications on Zcash.
To solve this problem, two protocols, Quorum ZSL and Nightfall, have
tried to implement zk-SNARKs through smart contracts. In this way, de-
centralized applications with privacy features are enabled by these pro-
tocols on the blockchain. However, experiments on the Ethereum Virtual
Machine show that these protocols cost a lot of time and gas for running,
meaning they are not suitable for everyday use.
In this paper, we propose an efficient privacy protocol using zk-SNARKs
based on smart contracts. It helps to make several decentralized appli-
cations, like digital assets, stable coins, and payments, confidential. The
protocol balances the trade-off between the gas cost of smart contracts
and the computational complexity of zk-SNARK proof generation. More-
over, it uses the In-band Secret Distribution to store private information
on the blockchain. The gas cost for a confidential transaction is only
about 1M, and the transaction generation takes less than 6 seconds on
a regular computer.
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1 Introduction

In September 2008, Satoshi Nakamoto published the Bitcoin whitepaper
[1]. In January 2009, the Bitcoin mainnet was formally launched, creat-
ing a new era of cryptocurrency and launching the new technology to the
public’s view. In July 2015, the Ethereum[2] was launched. The embedded



EVM (Ethereum Virtual Machine) could execute Turing-complete smart
contracts, bringing about the second generation of blockchain technol-
ogy. Afterwards, a large number of blockchains with smart contracts (like
Qtum, Tron, EOS) and decentralized applications implemented through
smart contracts (like CryptoKitties, MakerDAO, Uniswap) emerged.

In 2016, the Zcash [3] protocol was proposed, which uses cryptogra-
phy to provide enhanced privacy to the blockchain. There are two types
of addresses in Zcash: transparent address (taddr) and shielded address
(zaddr). A transparent address sends and receives transactions such that
the address and associated amount are publicly recorded on the Zcash
blockchain, similar to the Bitcoin. A shielded address, however, uses zk-
SNARKs to hide the transaction data, where the address and amount are
not visible to the public.

Based on the design of Zcash, more protocols and platforms have been
proposed to enhance the privacy of Ethereum. Quorum [4] is an open-
source blockchain platform that combines enhancements and innovations
from the Ethereum community to satisfy enterprise needs. Quorum ZSL
(zero-knowledge security layer) is a protocol that leverages zk-SNARKs to
enable transfers of digital assets using smart contracts without revealing
any information about the sender, recipient, and amount. According to
[5], one JoinSplit operation takes 42.6 seconds on an Intel Xeon E3-1225
v2 3.2GHz processor (4 cores) and requires nearly 3GB of RAM. The
consumption of time and resources is excessive for everyday use.

In October 2018, Ernst and Young introduced Nightfall [6] at the
Ethereum Devcon in Prague. On May 31, 2019, EY released Nightfall,
which enables private transfers of ERC-20 and ERC-721 tokens on the
Ethereum mainnet using zk-SNARK smart contracts. Nightfall uses the
SHA256 hash function for the Merkle tree with a depth of 33. The transfer
of ERC-20 needs 2,292,000 zk-SNARK constraints and costs about 2.7M
gas, which is relatively high since the gas limit for each block is 8M in
Ethereum.

From the above, we can see that existing privacy protocols on smart
contracts are not practical enough. Users have to wait more than 40 sec-
onds to generate a transaction, and the gas cost is hardly acceptable to
the blockchain. With the same security level, we reduce the circuit size
and gas cost of the zk-SNARK proof. Similar to Nightfall, our proto-
col provides two kinds of assets: transparent and confidential assets. The
former is a generic ERC-20 token, while the latter has a design similar
to Zcash but much simpler. By utilizing a new approach for confidential
assets, the resulting performance is impressive: the gas cost for a trans-



action is about 1M, and the proof generation of a transaction takes less
than 6 seconds on a regular computer.

2 Preliminary

2.1 Terminology

– Note. A note is an encrypted representation of the value of digital
assets. It specifies an amount and a recipient address. Moreover, it
can be spent by a private spending key corresponding to the address.

– Commitment. For each note, there is an associated commitment, which
is generated by a hash function.

– Nullifier. There is also an associated nullifier generated by the hash
function. For each note, only one valid commitment and nullifier exist.

– Merkle tree. The Merkle tree is a tree in which each leaf node records
the hash value of a data block, and each non-leaf node records the
cryptographic hash of its child nodes.

– Incremental Merkle tree. The incremental Merkle tree is an append-
only Merkle tree that only supports data block insertions. An incre-
mental Merkle tree of fixed depth is used to store note commitments.

– In-band Secret Distribution. It is used to store the transmitted part
of notes on the blockchain in an encrypted form.

2.2 Shrubs Merkle Tree

Shrubs Merkle tree [7] is a variant of the incremental Merkle tree. In com-
parison, it is not represented by the root of the tree, but by a series of
nodes, which are the roots of subtrees. This design allows a commitment
to be inserted with O(1) updates, at the expense of a slightly more com-
plicated zk-SNARK proof used to prove that the commitment is in the
tree.

Suppose a Shrubs Merkle tree with a height of h. Totally h+1 nodes
are used to represent the tree, one from each depth. We call these nodes
Shrub nodes. At each depth, the Shrub node is either the only node or
the rightmost node that is the root of a perfect left subtree. In this way,
when inserting a new leaf node, only one Shrub node needs to be updated,
through switching to a new node or recalculating its hash value.

Here we take a Shrubs Merkle tree with a height of 3 as an example,
as shown in Fig. 1. When node 4 is inserted, the Shrub nodes are 14, 12,
8, 4. When node 5 is inserted, the Shrub nodes become 14, 12, 10, 4, since
node 10 turns out to be the root of a perfect subtree.
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Fig. 1. An example of the Shrubs Merkle tree.

As a result, the gas cost for data block insertion is much less than the
original incremental Merkle tree. For each non-leaf node, its hash value
would be calculated at most once, and totally 2h − 1 times for the entire
tree after all leaf nodes are inserted. Therefore, on average, it takes only
one hash calculation for inserting each leaf node.

2.3 Hash Function Selection

Two factors need to be considered when choosing an appropriate hash
function for zk-SNARKs: gas cost and proof generation time. Generally
speaking, the hash function with a lower gas cost would lead to a larger
circuit size (more constraints), causing a longer time for the proof gen-
eration. For the hash function used off the blockchain, we only need to
consider the latter factor. But for the one used on-chain, the trade-off
between these two factors should be balanced.

Table 1. Hash Function Selection

Hash Func Gas Cost zk-SNARK constraints

SHA256 60 28k
MiMC e7r91 8.9k 646

Poseidon t6f8p57 58.4k 317

Candidate hash functions, their gas costs (for two inputs) and zk-
SNARK constraints are listed in Table 1. We can see there is no function
that is both low in gas cost and small in circuit size. However, because
the Shrubs Merkle tree has made it possible to build a Merkle tree with
relatively low gas cost, we can reduce the weight of gas cost in the trade-
off. Finally, Poseidon or MiMC is a better choice for our system. Note



that Poseidon and MiMC hash functions have not been audited by most
cryptographic experts so that they may be vulnerable.

2.4 Shrubs Public Input Packing

As we mentioned above, although the Shrubs Merkle tree dramatically
reduces the gas cost for inserting a commitment into the tree, it increases
the gas cost for proving the commitment in the tree. To prove a leaf node
is in a Shrubs Merkle tree, one should provide not only the path from the
leaf node to its nearest Shrub node but also all Shrub nodes, where the
latter is used to prove the validity of the nearest node. As a result, the
size of the public input increases from 1 to h+ 1 because of h+ 1 Shrub
nodes. The corresponding gas cost is calculated by the following:

V erificationGas = n ∗ ScalarMulGas

+ PairingBaseGas

+ 4 ∗ PairingPerPointGas

where n is the size of the public input and ScalarMulGas,
PairingBaseGas, PairingPerPointGas are the gas costs of three elliptic
curve operations. These operations are implemented through precompiled
contracts on EVM, and their gas costs are shown in Table 2. We can see
that, for every 1 increased in the size of the public input, the gas cost
would be increased by 40,000. Therefore, the Shrubs Merkle tree costs
40,000 ∗ h more gas than the original incremental Merkle tree.

Table 2. Gas Costs for Elliptic Curve Operations on EVM

Operation Gas Cost

ScalarMulGas 40,000
PairingBaseGas 100,000

PairingPerPointGas 80,000

We introduce an approach, Shrubs Public Input Packing, to reduce
the size of the public input. One additional Merkle tree, named Node
Merkle tree, is created for all Shrub nodes, as illustrated in Fig. 2. One
can use a path in the Node Merkle tree, instead of all Shrub nodes, to
prove the validity of a Shrub node. In this way, the size of the public
input is reduced to 1.
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Fig. 2. Shrubs public input packing.

The Node Merkle tree is updated whenever a leaf node is inserted into
the Shrubs Merkle tree since a Shrub node is updated. It would bring an
extra gas cost to the insertion process. To reduce this cost, the Node
Merkle tree uses a new scheme for calculating the Merkle root, as shown
in Fig. 3. The tree is divided into several subtrees, and the roots of these
subtrees are saved. When a leaf node is updated, only the corresponding
subtree is recalculated as well as the Merkle root. Moreover, the MiMC
hash is selected as the hash function for the Node Merkle tree to balance
the circuit size and gas cost.

2.5 Public Input Packing

Shrubs Public Input Packing works because all Shrub nodes are public
recorded, and their Merkle root is fixed. But for other public inputs, this
scheme can no longer work. All public inputs must be constrained by
a single circuit. We use an approach, Public Input Packing, to reduce
the size of all public inputs. It is also described in a blog [8] written by
Christian Reitwiessner.

Suppose a circuit represented by the function F (u,w), in which u
stands for all public inputs and w for private inputs. This function can
be changed to the form of F (H, f(u,w)∧H(u)), and the size of all public
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Fig. 3. Node Merkle tree.

inputs becomes 1 (the hash of all public input). The MiMC hash is used
as the hash function for Public Input Packing in our protocol.

3 Protocol

The proposed protocol provides two kinds of assets: transparent and con-
fidential assets. The former is an ERC-20 token, while the latter has a
design similar to Zcash. The confidential asset can also be regarded as
a private representation of the ERC-20 token. Using this protocol, users
can easily transfer their transparent and confidential assets.

Fig. 4 illustrates the overall architecture of the protocol. Several smart
contracts are deployed on the blockchain. The Monitor is responsible for
monitoring transactions of these contracts and send transactions to the
blockchain. The Server is the core component, which calls the zk-SNARK
engine to generate proofs and synchronizes the state of the blockchain.

3.1 Key Derivation

Two private/public key pairs defined over the field Fr are used for the
protocol. sk, pk pair is for identification. esk, epk pair is the encryption
private/public key pair for In-band Secret Distribution. Their relationship
is shown in Fig. 5.



Blockchain

Monitor

Server

State Management

Database

zk-SNARK Engine

Smart Contract

Client
gRPC

Fig. 4. The overall architecture of the protocol.
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3.2 Note, Commitment, Nullifier

The protocol uses the same UTXO model as Zcash. All note commitments
are kept in a Shrubs Merkle tree. The height of the tree is set to 31 to
support a total number of 231 notes. A note consists of the following fields:

– v. Value, which stands for the amount of the digital asset.

– ρ. A random value where ρ ∈ Fr.

– pk. Public key of the note where pk ∈ Fr.

The note itself is hidden from the public. Instead, the note commit-
ment is kept on the blockchain, which is calculated from the note as:

commitment = commit hash(pk, v, ρ)

To spend a note, one must provide the corresponding nullifier and send
it to the blockchain. The nullifier can be calculated as:

nullifier = nf hash(sk, ρ)

3.3 In-band Secret Distribution

In zk-SNARKs, for transferring a note, the sender needs to send the note
commitment to the recipient through the blockchain and the note value
through a peer-to-peer manner. Our protocol uses the In-band Secret
Distribution, which allows the sender to share the note also through the
blockchain secretly. In this way, the entire process can be done on the
blockchain for convenience.

The In-band Secret Distribution is illustrated in Fig. 6. The sender
first generates a temporary key pair, tsk, tpk. Then, a “shared encryption
key” is generated through the tsk and the epk from the recipient. At last,
the sender uses the shared encryption key to encrypt the note and send the
encrypted note as well as the tpk to the blockchain. For the recipient, the
shared encryption key can be recovered based on its esk and the tpk from
the blockchain. Finally, the note can be decrypted from the encrypted
note on-chain using the shared encryption key by the recipient.

3.4 Confidential Operations

Confidential assets in the protocol support three operations: MINT,
TRANSFER, and BURN.
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Fig. 6. In-band Secret Distribution.

MINT The MINT operation is used for issuing a certain amount of con-
fidential assets by locking equivalent transparent assets in the contract.
It would create a new note for the issued assets, as shown in Fig. 7. The
zk-SNARK engine helps generate the proof for the note using the MINT
circuit with the note value and commitment as the public input. Then
they are all sent to the smart contract. If the proof is successfully verified,
the note commitment is added to the Shrubs Merkle tree.

TRANSFER The TRANSFER operation is used to transfer the con-
fidential assets from the sender to the recipient, as shown in Fig. 8. It
would generate a transaction containing four notes: two as the input and
two as the output. The sender has to provide two nullifiers for the in-
put and two commitments for the output. The zk-SNARK engine helps
generate proofs for the output using the TRANSFER circuit. Then the
transaction is sent to the smart contract. If it is verified, two nullifiers are
recorded in the smart contract, and two commitments are appended to
the Shrubs Merkle tree.
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BURN The BURN operation helps destroy a certain amount of confi-
dential assets and get equivalent transparent assets as payback, as shown
in Fig. 9. First, one has to prove the ownership of a note by providing the
note and its Merkle path. The zk-SNARK engine generates the proof for
the note using the BURN circuit. The value, note nullifier, Shrubs Merkle
tree root, and account are the public input sent to the smart contract. If
it is verified, the note nullifier is recorded in a smart contract, and the
note cannot be used anymore.

zk-SNARK Engine
(Circuit) proof

v, nullifier, Shrubs tree root Transparent Asset

Groth16 
Verification

…

Private Asset

v

Smart Contract

v, pk, ρ
sk, account
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Fig. 9. BURN Operation.

4 zk-SNARK Circuits

We use an example to describe the zk-SNARK circuits in the protocol. A
certain amount of confidential assets are minted by Alice, transferred to
Bob, and burnt by Bob. Notations with the subscript of A indicate the
notation belongs to Alice and B for Bob.

4.1 MINT circuit

The MINT circuit is used for Alice to issue confidential assets.

1. Generate a random salt ρ.
2. Compute the note commitment cm = commit hash(pkA, v, ρ).
3. Generate the zk-SNARK proof π which asserts the note commitment

is correctly constructed:
(a) public inputs (v, cm),
(b) private inputs (pkA, ρ),



(c) invoke zk-SNARK prover with public and private inputs to output
a proof π that checks cm = commit hash(v, pkA, ρ) and v is a 64-
bit unsigned integer.

4. Generate the temporary key pair, tsk, tpk, and calculate the shared
encryption key EK = BLAKE2b(Curve25519(tsk, epkA), epkA).

5. Encrypt the note ciphertext = encryption(EK, (ρ, pkA)).

6. Send π, (v, cm), ciphertext to the smart contract.

4.2 TRANSFER circuit

Suppose Alice wishes to transfer confidential assets with the amount of
e to Bob. Alice must ensure she has enough commitments whose total
amount is at least e. For convenience, suppose Alice has minted two com-
mitments with amounts of c and d, where c+d ≥ e. Let f be the balancing
amount, so that c+ d = e+ f .

1. Generate two random salts (ρe, ρf ), one for each output note.

2. Compute the commitments of two output notes:

(a) output cm[0] = commit hash(pkB, e, ρe),

(b) output cm[1] = commit hash(pkB, f, ρf ).

3. Compute the nullifiers of two input notes:

(a) input nf [0] = nf hash(ρc, skA),

(b) input nf [1] = nf hash(ρd, skA).

4. Generate zk-SNARK proof π which asserts the TRANSFER operation
is valid:

(a) public intput
(input nf [0], input nf [1], output cm[0], output cm[1], shrubs).

(b) private inputs:

i. old input notes (pkA, c, ρc) and (pkB, d, ρd).
ii. new output notes (pkB, e, ρe) and (pkB, f, ρf ).
iii. Alice’s spending key sk.
iv. Merkle witness (Shrubs and Node Merkle tree) for each input

note.

(c) invoke zk-SNARK prover with public and private inputs to output
a proof π that checks the following constraints hold:

i. output cm[i] are correctly constructed.
ii. input nf [i] are correctly constructed.
iii. pkA = pk hash(sk).
iv. Merkle witness is valid for each input note.
v. the balance equation c+ d = e+ f holds.



5. Generate the temporary key pair, tsk, tpk and calculate the encryption
key EK = BLAKE2b(Curve25519(tsk, epkB), epkB).

6. Encrypt the note: cxte = encrypt(EK, (e, ρe, pkB)).

7. Encrypt the note: cxtf = encrypt(EK, (f, ρf , pkB)).

8. Send π, public inputs, and two output notes’ ciphertexts cxte, cxtf to
the smart contract.

4.3 BURN circuit

Bob can burn his confidential assets using the BURN operation.

1. Compute the nullifier for the input note nf = nf hash(e, ρe, skB).

2. Generate zk-SNARK proof π which asserts the BURN operation is
valid:

(a) public input: nf , e, account, shrubs.

(b) private input: input note, sk and its Merkle witness (Shrubs and
Node merkle witness).

(c) invoke zk-SNARK prover with public and private inputs to output
a proof π that checks the following constraints hold:

i. nf is correctly constructed from the input note.
ii. Merkle witness is valid for the input note.
iii. the value of input note is e.
iv. the zk-SNARK proof is bound to the public account.

3. Send π and public input to the smart contract.

5 Performance

The protocol was evaluated on a computer with an Intel(R) Core(TM)
i5-7500 CPU 3.40GHz processor (4 cores) and 8GB of RAM. We used
Qtum v0.18.1 to launch a private blockchain with EVM build-in and
then deployed our smart contracts to it. Each of the MINT, TRANSFER,
and BURN operations was performed 20 times to measure the average
of the proof generation time, and their gas costs are obtained from the
blockchain data.

The parameters and results are shown in Table 3. We can see that
the gas cost for the TRANSFER operation is about 1M, and the proof
generation time is 5.68s, which are obviously lower than other protocols.
The MINT and BURN operations consume even fewer resources than the
TRANSFER. Overall, the protocol performs more efficiently on EVM
compared to others.



Table 3. Protocol Performance

Operation Gas Cost Circuit Constraints Circuit Variables Proof Generation Time (s)

Mint 551k 1892 1896 0.45
TRANSFER 1014k 35323 35328 5.68

BURN 542k 16844 16895 3.05

6 Conclusion

This paper presents an efficient privacy protocol using zk-SNARKs based
on smart contracts. By using an improved Merkle tree and carefully se-
lected hash functions, it reduces the gas cost to only about 1M, and the
transaction generation takes less than 6 seconds on a regular computer.
Moreover, it uses the In-band Secret Distribution to store private infor-
mation on the blockchain, enabling non-interactive transaction generation
between the sender and recipient.

To deploy a zk-SNARK circuit, a trusted setup is required to generate
a proving key and a verifying key. Unfortunately, this process also pro-
duces a piece of data called toxic waste, which must be discarded after the
setup since it can be used to produce fake proofs and thereby violate the
security of the system. To solve this problem, the trusted setup is always
realized through a cryptographic ceremony in which multiple participants
take turns to perform a computation to get the final results.

The Zcash project has performed such a ceremony in 2017. In Aug
2019, the Semaphore team conducted phase 1 of a multi-party trusted
setup ceremony [9] based on the Zcash Powers of Tau ceremony. The
ceremony can be perpetual; any zk-SNARK project can pick any point
of the ceremony to begin their circuit-specific second phase, and there is
no limit to the number of participants required. Our protocol can benefit
from the new ceremony and generate its own proving key and verifying
key for circuits.
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