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Abstract. Bit permutations are efficient linear functions often used for1

lightweight cipher designs. However, they have low diffusion effects, com-2

pared to word-oriented binary and MDS matrices. Thus, the security of3

bit permutation-based ciphers is significantly affected by differential and4

linear branch numbers (DBN and LBN) of nonlinear functions. In this5

paper, we introduce a widely applicable method for constructing S-boxes6

with high DBN and LBN. Our method exploits constructions of S-boxes7

from smaller S-boxes and it derives/proves the required conditions for8

smaller S-boxes so that the DBN and LBN of the constructed S-boxes9

are at least 3. These conditions enable us to significantly reduce the10

search space required to create such S-boxes. In order to make crypto-11

graphically good and efficient S-boxes, we propose a unbalanced-Bridge12

structure that accepts one 3-bit and two 5-bit S-boxes, and produces13

8-bit S-boxes. Using the proposed structure, we develop a variety of new14

lightweight S-boxes that provide not only both DBN and LBN of at15

least 3 but also efficient bitsliced implementations including at most 1116

nonlinear bitwise operations. The new S-boxes are the first that exhibit17

these characteristics. Moreover, we propose a block cipher PIPO based18

on one of the new S-boxes, which supports a 64-bit plaintext and a 12819

or 256-bit key. Our implementations demonstrate that PIPO outperforms20

existing block ciphers (for the same block and key lengths) in both side-21

channel protected and unprotected environments, on an 8-bit AVR. The22

? This paper is partially based on the paper “PIPO: A Lightweight Block Cipher
with Efficient Higher-Order Masking Software Implementations” [43] presented at
the 23rd annual International Conference on Information Security and Cryptology
(ICISC 2020).

?? Corresponding author, jskim@kookmin.ac.kr
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security of PIPO has been scrutinized with regards to state-of-the-art23

cryptanalysis.24

Keywords: Lightweight S-boxes · Differential and linear branch num-25

bers · PIPO · Higher-order masking26

1 Introduction27

The fourth industrial revolution encompasses a wide range of advanced technolo-28

gies. One of its core elements is the Internet of Things (IoT), which binds together29

people, objects, processes, data, applications, and services to make networked30

connections more relevant and valuable than ever before. However, trustworthy31

systems are required to enable secure and reliable IoT-based infrastructures, and32

an essential building block for such systems is cryptography.33

Most devices in IoT environments are miniature and resource-constrained.34

Therefore, lightweight cryptography, which is an active area of research, is es-35

sential. Some lightweight block ciphers such as PRESENT [25] and CLEFIA [64]36

have been standardized by ISO/IEC. In addition, a lightweight cryptography37

standardization project is ongoing at NIST.38

In 1996, Paul Kocher first introduced side-channel attacks, which extract se-39

cret information by analyzing side-channel information [51]. Since secure designs40

for mathematical cryptanalysis cannot guarantee security against side-channel41

attacks, various countermeasures have been studied. With side-channel attacks42

becoming more advanced and the associated equipment cost decreasing [71], the43

application of side-channel countermeasures to ciphers has become crucial. Re-44

cently, various studies have been actively conducted on efficient implementations45

of side-channel countermeasures, especially on efficient masked implementations.46

To minimize performance overhead, the focus has been on reducing the number47

of nonlinear operations. Several lightweight block ciphers, with the design goal48

of low nonlinear operation count, have been proposed [2,3,40].49

The lightweightness of block ciphers and the efficiency of their side-channel50

protected implementations depend significantly on their nonlinear functions.51

Many of lightweight block ciphers use 4-bit S-boxes [2,9,13,25,42] or 8-bit S-52

boxes [1,14,40,48,64] as nonlinear functions. One of the main design approaches53

of lightweight 8-bit S-boxes is to use existing structures, such as Feistel, Lai-54

Massey and MISTY, employing smaller S-boxes (e.g., 3, 4, or 5-bit S-boxes).55

However, most related studies have focused on the S-box construction to combine56

with the linear functions such as word-oriented binary or MDS matrices [1,28,40].57

Contributions. In this paper, we introduce a construction method for a differ-58

ent type of lightweight 8-bit S-boxes that are well-suited to a linear bit permu-59

tation layer, based on which we develop many of new S-boxes with both DBN60

and LBN of at least 3 and with efficient masked software implementations. We61

employ one of them to design a new lightweight versatile block cipher PIPO1,62

1 PIPO stands for “Plug-In” and “Plug-Out”, representing its use in side-channel pro-
tected and unprotected environments, respectively.
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which can be used in diverse resource-constrained environments, because it is63

secure and efficient for multiple platforms. Our proposed S-box construction and64

cipher have the following characteristics and advantages.65

1. Our S-box construction methodology enables both DBN and LBN of at least66

3, and this property, in combination with a bit permutation, enhances secu-67

rity. It can be used in the construction of a variety of S-boxes from smaller68

S-boxes. In this study, the Feistel, Lai–Massey, and unbalanced-MISTY struc-69

tures as well as our proposed unbalanced-Bridge structure have been ana-70

lyzed. Our framework eliminates all the input and output differences (or71

masks) where the sum of their Hamming weights is two, during which some72

conditions of the employed smaller S-boxes are induced. These conditions73

could accelerate the S-box search, resulting in more than 8,000 new lightweight74

8-bit S-boxes with both DBN and LBN of 3. Their bitsliced implementations75

include 11 nonlinear bitwise operations each. One of them, whose crypto-76

graphic properties and efficiency are overall superior or comparable to those77

of state-of-the-art lightweight S-boxes, was employed for PIPO. Our method-78

ology was also used to find more than 1,000 8-bit S-boxes with DBN of 4 and79

LBN of 3. To the best of our knowledge, all the aforementioned S-boxes are80

the first S-boxes with such properties. Furthermore, we found 6 and 7-bit81

new S-boxes with both DBN and LBN of 3 which are more efficient than82

existing ones.83

2. During the PIPO design process, the focus was on minimizing the number of84

nonlinear operations bacause this is the most significant factor for efficient85

higher-order masking implementations. Consequently, PIPO-64/128 achieves86

fast higher-order masking implementations on an 8-bit AVR, and its execu-87

tion time increases less with the number of shares (i.e., the masking order)88

compared with other lightweight 64-bit block ciphers with 128-bit keys. PIPO89

also shows excellent performance on 8-bit microcontrollers. For the 128-bit90

key version, the bitsliced implementation for a single-block data requires91

only 320 bytes of ROM, 31 bytes of RAM, and 197 cycles/byte on an 8MHz92

ATmega CPU. Accordingly, PIPO-64/128 outperforms other lightweight 64-93

bit block ciphers with 128-bit keys in terms of 8-bit AVR implementa-94

tions. It is also competitive in round-based hardware implementations. Using95

130nm CMOS technology, the round-based and area optimized implemen-96

tation of PIPO-64/128 requires only 1,446 gates and achieves 492 Kbps at97

100KHz. Although more gates are required to implement PIPO-64/128 than98

CRAFT-64/128 [13], Piccolo-64/128 [63], and SIMON-64/128 [12], it can be99

implemented with at least twice the throughput. Accordingly, PIPO-64/128100

records a higher FOM. Furthermore, PIPO can be efficiently implemented101

with minimal memory consumption, other than for storing a plaintext (fol-102

lowed by an intermediate state) and a key. Predefined tables are unnecessary103

for the nonlinear and linear layers, due to their efficient bitsliced implemen-104

tations. The advantage of low memory usage elevates PIPO as the preferred105

choice for low-resource devices.106
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Organization. In section 2, we introduce a method for constructing S-boxes107

with DBN and LBN greater than 2. In section 3, we describe the S-box selection108

procedure for PIPO and new other S-boxes, based on a comparison of our and109

existing S-boxes. Section 4 specifies the PIPO cipher and its design choices, and110

section 5 offers our security and performance evaluations of PIPO. Section 6 com-111

pares higher-order masking implementations of PIPO and other ciphers. Finally,112

section 7 concludes the paper, and suggests future studies.113

Notation and Definitions. The following notation and definitions are used114

throughout this paper.115

DDT Difference Distribution Table of an n-bit S-box whose
(∆α,∆β) entry is #{x ∈ Fn2 |S(x) ⊕ S(x ⊕ ∆α) =
∆β}, where ∆α,∆β ∈ Fn2 .

LAT Linear Approximation Table of an n-bit S-box whose
(λα, λβ) entry is #{x ∈ Fn2 |λα•x = λβ•S(x)}−2n−1,
where λα, λβ ∈ Fn2 , and the symbol • denotes the
canonical inner product in Fn2 .

Differential uniformity max
∆α6=0,∆β

#{x ∈ Fn2 |S(x)⊕ S(x⊕∆α) = ∆β}.

Non-linearity 2n−1 − 2−1 × max
λα,λβ 6=0

|Φ(λα, λβ)|, where Φ(λα, λβ) =∑
x∈Fn2

(−1)λβ•S(x)⊕λα•x.

DBN Differential Branch Number of an S-box defined as
min
a,b6=a

(wt(a⊕ b) + wt(S(a)⊕ S(b))).

LBN Linear Branch Number of an S-box defined as
min

a,b,Φ(a,b) 6=0
(wt(a) + wt(b)).

116

2 Construction of S-Boxes with Differential and Linear117

Branch Numbers Greater than 2118

In this section, we describe how to construct S-boxes with DBN>2 and LBN>2.119

In [61], Sarkar et. al. proposed a method for constructing S-boxes with both120

DBN and LBN of 3 using resilient Boolean functions, and designed such 5 and121

6-bit S-boxes. Our method takes a different approach: it uses smaller S-boxes to122

create S-boxes with DBN>2 (or LBN>2) by eliminating all the input and output123

differences (or masks) where the sum of their Hamming weights is 2. During this124

elimination process, relevant conditions of the employed smaller S-boxes can be125

induced. In this section, we focus on the construction of 8-bit S-boxes.126

Several methods have been proposed in the literature to construct 8-bit S-127

boxes from smaller ones. These methods typically rely on one of the Feistel,128

Lai-Massey, or (unbalanced-)MISTY structures, as depicted in Fig. 1-(A), (B),129
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and (C), respectively [1,28,40,47,48,54,57]. In Fig. 1, Sji represents the j-th and130

i-bit S-box, and Fig. 1-(D) depicts our proposed structure, named a unbalanced-131

Bridge structure. Among the structures in Fig. 1, both (A) and (B) use three132

4-bit S-boxes and 12 XOR operations on a bit level, whereas both (C) and (D)133

use one 3-bit and two 5-bit S-boxes and 6 XOR operations.

Fig. 1. Constructions of 8-bit S-boxes from smaller S-boxes

134

In this section, we use the following notation.135

ρc : F5
2 → F5

2, ρc(x||y) = y||x, for x ∈ F3
2, y ∈ F2

2,136

τn : F5
2 → Fn2 , τn(x||y) = x, for x ∈ Fn2 , y ∈ F5−n

2 , n ∈ {1, 2, 3, 4},137

τ ′n : F5
2 → Fn2 , τ ′n(x||y) = y, for x ∈ F5−n

2 , y ∈ Fn2 , n ∈ {1, 2, 3, 4},138

F1
A : F3

2 → F5
2, F1

A(X) = (S1
5)−1(X||A) for A ∈ F2

2,139

F2
A : F3

2 → F5
2, F2

A(X) = S2
5(X||A) for A ∈ F2

2,140

0(i) : i-bit zeros.141

142

The unbalanced-Bridge structure depicted in Fig. 1-(D) can be defined as143

follows. Let S8(XL||XR) = CL(XL, XR)|| CR(XL, XR), where XL and XR rep-144

resent the input variables of S8 which are in F5
2 and F3

2, respectively. Then,145

CL(XL, XR) = τ3(S1
5(XL)) ⊕ S3(XR) and CR(XL, XR) = ρc(S

2
5(S1

5(XL) ⊕146

(S3(XR)||0(2))))⊕ (0(2)||S3(XR)) with CL : F5
2×F3

2 → F3
2 and CR : F5

2×F3
2 → F5

2.147

Proposition 1 shows the conditions for which an 8-bit S-box constructed using148

Fig. 1-(D) is bijective.149

Proposition 1. The 8-bit S-box constructed using the unbalanced-Bridge struc-150

ture of Fig. 1-(D) is bijective if and only if the following three conditions are all151

satisfied:152

i) S3 is bijective.153

ii) S1
5 is bijective.154
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iii) For all y ∈ F3
2, fy(x) = τ ′2(S2

5(y||x)) is a bijective function with fy : F2
2 → F2

2.155

Proof. Refer to Appendix B.1.156

In order to guarantee the bijectivity of S-boxes generated from the Lai-Massey157

and unbalanced-MISTY structures, all the smaller S-boxes except for S1
4 should158

be bijective, whereas the Feistel structure always offers bijective S-boxes regard-159

less of the smaller S-boxes.160

Since all the structures in Fig. 1 have two input branches, S-boxes with
DBN>2 can be constructed by eliminating four cases (∆0||∆a,∆0||∆c), (∆0||∆a,
∆d||∆0), (∆b||∆0, ∆0||∆c), (∆b||∆0, ∆d||∆0), where (∆α,∆β) represents the
input and output difference pair of the S-boxes, and wt(∆a) = wt(∆b) =
wt(∆c) = wt(∆d) = 1. Some conditions of the employed smaller S-boxes are
required to rule out these four cases. We take some examples from the Feistel
structure below. The input and output variables of the 3-round Feistel are related
as follows.

CL(XL, XR) = XL ⊕ S2
4(XR ⊕ S1

4(XL)),

CR(XL, XR) = XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL))).

We define a variable Y as Y = XR ⊕ S1
4(XL).161

A case concerning DBN. (∆0||∆a,∆0||∆c) : It happens if and only if there
exists at least one (XL, XR) satisfying both CL(XL, XR)⊕CL(XL, XR⊕∆a) =
∆0 and CR(XL, XR)⊕CR(XL, XR ⊕∆a) = ∆c. The first equation is expressed
as

XL ⊕ S2
4(XR ⊕ S1

4(XL))⊕XL ⊕ S2
4(XR ⊕∆a⊕ S1

4(XL))

= S2
4(XR ⊕ S1

4(XL))⊕ S2
4(XR ⊕∆a⊕ S1

4(XL)) = ∆0.

By applying Y , we obtain

S2
4(Y )⊕ S2

4(Y ⊕∆a) = ∆0. (1)

Similarly, the second equation is expressed as

XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))⊕XR ⊕∆a⊕ S1
4(XL)

⊕ S3
4(XL ⊕ S2

4(XR ⊕∆a⊕ S1
4(XL)))

= S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)⊕∆a))⊕∆a = ∆c.

By applying Eq. (1), we get
∆a = ∆c.

Therefore, the (∆0||∆a,∆0||∆c) case is an impossible case if ∆a 6= ∆c. Other-162

wise, since the function (XL, XR) 7→ (XL, Y ) is bijective, the (∆0||∆a,∆0||∆c)163

case does not happen if and only if there is no Y satisfying Eq. (1). This means164

the entries of the (∆a,∆0) in DDT of S2
4 have to be zero. Refer to condition i)165

of Theorem 1. S-boxes with LBN>2 can be made in the same way.166
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A case concerning LBN. (0||λa, 0||λc) : Its bias can be calculated by the
number of (XL, XR) satisfying XR • λa = CR(XL, XR) • λc. The equation is
expressed as

XR • λa = (XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))) • λc.

It follows

(XR⊕S1
4(XL))•λa⊕S1

4(XL)•λa = (XR⊕S1
4(XL)⊕S3

4(XL⊕S2
4(XR⊕S1

4(XL))))•λc.

The equation becomes

Y • λa ⊕ S1
4(XL) • λa = (Y ⊕ S3

4(XL ⊕ S2
4(Y ))) • λc (2)

by using the definition of Y . As mentioned before, the function (XL, XR) 7→167

(XL, Y ) is bijective. The (0||λa, 0||λc) case has zero bias if and only if the168

equation (2) is not biased. This means #{(X,Y ) ∈ (F4
2)2|(Y ⊕ S1

4(X)) • λa =169

(Y ⊕ S3
4(X ⊕ S2

4(Y ))) • λc} = 27. Refer to condition i) of Theorem 2.170

The following theorems present the necessary and sufficient conditions of171

smaller S-boxes so that the 8-bit S-boxes constructed by Feistel, Lai-Massey,172

unbalanced-MISTY and unbalanced-Bridge structures have both differential and173

linear branch numbers greater than 2. All the proofs of the following theorems174

are given in Appendix B.175

Theorem 1. The DBN of bijective 8-bit S-boxes, constructed using the Feistel176

structure depicted in Fig. 1-(A), is greater than 2 if and only if conditions i) ∼177

iv) are all satisfied (∆α and ∆β below represent arbitrary 4-bit differences where178

wt(∆α) = wt(∆β) = 1). For each ∆α and ∆β;179

i) the entry of the (∆α,∆0) in DDT of S2
4 is 0,180

ii) at least one entry of the (∆α,∆β) in DDT of S2
4 and (∆β,∆α) in DDT of181

S3
4 is 0,182

iii) at least one entry of the (∆α,∆β) in DDT of S1
4 and (∆β,∆α) in DDT of183

S2
4 is 0,184

iv) at least one of S2
4(Y ) ⊕ S2

4(Y ⊕ S1
4(X) ⊕ S1

4(X ⊕ ∆α)) = ∆α ⊕ ∆β and185

S3
4(S2

4(Y ) ⊕ X) ⊕ S3
4(S2

4(Y ) ⊕ X ⊕ ∆β) = S1
4(X) ⊕ S1

4(X ⊕ ∆α) has no186

solution pair (X,Y ), where X,Y ∈ F4
2.187

Theorem 2. The LBN of bijective 8-bit S-boxes, constructed using the Feis-188

tel structure depicted in Fig. 1-(A), is greater than 2 if and only if conditions189

i) ∼ iv) are all satisfied (λα and λβ below represent arbitrary 4-bit masks where190

wt(λα) = wt(λβ) = 1). For each λα and λβ;191

i) #{(X,Y ) ∈ (F4
2)2|(Y ⊕ S1

4(X)) • λα = (Y ⊕ S3
4(X ⊕ S2

4(Y ))) • λβ} = 27,192

ii) at least one entry of the (λα, λβ) in LAT of S1
4 and (λβ , λα) in LAT of S2

4193

is 0,194

iii) at least one entry of the (λα, λβ) in LAT of S2
4 and (λβ , λα) in LAT of S3

4195

is 0,196
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iv) the entry of the (0, λα) in LAT of S2
4 is 0.197

Theorem 3. The DBN of bijective 8-bit S-boxes, constructed using the Lai-198

Massey structure depicted in Fig. 1-(B), is greater than 2 if and only if conditions199

i) ∼ iv) are all satisfied (∆α and ∆β below represent arbitrary 4-bit differences200

where wt(∆α) = wt(∆β) = 1). For each ∆α and ∆β;201

i) at least one entry of the (∆α,∆0) in DDT of S1
4 and (∆α,∆β) in DDT of202

S3
4 is 0,203

ii) at least one entry of the (∆α,∆α) in DDT of S1
4 and (∆α,∆β) in DDT of204

S2
4 is 0,205

iii) at least one entry of the (∆α,∆α) in DDT of S1
4 and (∆α,∆β) in DDT of206

S3
4 is 0,207

iv) at least one entry of the (∆α,∆0) in DDT of S1
4 and (∆α,∆β) in DDT of208

S2
4 is 0.209

Theorem 4. The LBN of bijective 8-bit S-boxes, constructed using the Lai-210

Massey structure depicted in Fig. 1-(B), is greater than 2 if and only if conditions211

i) ∼ iv) are all satisfied (λα and λβ below represent arbitrary 4-bit masks where212

wt(λα) = wt(λβ) = 1). For each λα and λβ;213

i) at least one entry of the (0, λα) in LAT of S1
4 and (λα, λβ) in LAT of S3

4214

is 0,215

ii) at least one entry of the (λα, λα) in LAT of S1
4 and (λα, λβ) in LAT of S2

4216

is 0,217

iii) at least one entry of the (λα, λα) in LAT of S1
4 and (λα, λβ) in LAT of S3

4218

is 0,219

iv) at least one entry of the (0, λα) in LAT of S1
4 and (λα, λβ) in LAT of S2

4220

is 0.221

Theorem 5. The DBN of bijective 8-bit S-boxes, constructed using the unbalanced-222

MISTY structure depicted in Fig. 1-(C), is greater than 2 if and only if conditions223

i) and ii) are both satisfied (∆α, ∆β and ∆γ below represent arbitrary 5, 5 and224

3-bit differences, respectively, where wt(∆α) = wt(∆β) = wt(∆γ) = 1). For225

each ∆α, ∆β and ∆γ;226

i) at least one entry of the (∆γ,∆γ) in DDT of S3 and (∆γ||0(2), ∆α) in DDT227

of S2
5 is 0,228

ii) for each A,B(6= A) ∈ F2
2, at least one of F1

A(X)⊕F1
B(X) = ∆α and F2

A(X)⊕229

F2
B(X) = ∆β has no solution X, where X ∈ F3

2.230

Theorem 6. The LBN of bijective 8-bit S-boxes, constructed using the unbalanced-231

MISTY structure depicted in Fig. 1-(C), is greater than 2 if and only if conditions232

i) and ii) are both satisfied (λα, λβ and λγ below represent arbitrary 5,5 and 3-233

bit masks, respectively, where wt(λα) = wt(λβ) = wt(λγ) = 1). For each λα, λβ234

and λγ ;235

i) at least one entry of the (λγ , λγ) in LAT of S3 and (λα, λγ ||0(2)) in LAT of236

S1
5 is 0,237
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ii)
∑
A∈F2

2
X · Y = 0 where X is the entry (0, λα) in LAT of F1

A and Y is the238

entry (0, λβ) in LAT of F2
A.239

Theorem 7. The DBN of bijective 8-bit S-boxes constructed using the unbalanced-240

Bridge structure of Fig. 1-(D) is greater than 2 if and only if conditions i), ii),241

and iii) are all satisfied (∆α and ∆β below represent arbitrary differences where242

wt(∆α) = wt(∆β) = 1):243

i) For each ∆α,∆β ∈ F3
2, at least one of the entry (∆α,∆β) in DDT of S3244

and the entry (∆β||0(2), ∆β||0(2)) in DDT of S2
5 is 0,245

ii) For each ∆α,∆β ∈ F5
2, for each A,B(6= A) ∈ F2

2, at least one of F1
A(X) ⊕246

F1
B(X) = ∆α and F2

A(X)⊕F2
B(X) = ∆β has no solution X, where X ∈ F3

2,247

iii) For each ∆α ∈ F3
2 and ∆β ∈ F5

2, for each A,B ∈ F2
2, at least one of F1

A(X)⊕248

F1
B(X ⊕ ∆α) = ∆β and F2

A(X) ⊕ F2
B(X ⊕ ∆α) = ∆0 has no solution X,249

where X ∈ F3
2.250

Theorem 8. The LBN of bijective 8-bit S-boxes constructed using the unbalanced-251

Bridge structure of Fig. 1-(D) is greater than 2 if and only if conditions i),252

ii), and iii) are all satisfied (λα and λβ below represent arbitrary masks where253

wt(λα) = wt(λβ) = 1):254

i) For each λα, λβ ∈ F3
2, at least one of the entry (λα, λβ) in LAT of S3 and255

the entry (0, λβ ||0(2)) in LAT of S2
5 is 0,256

ii) For each λα ∈ F5
2 and λβ ∈ F3

2,
∑
A∈F2

2
X · Y = 0 where X is the entry257

(λβ , λα) in LAT of F1
A and Y is the entry (λβ , λβ ||0(2)) in LAT of F2

A,258

iii) For each λα, λβ ∈ F5
2 satisfying τ3(λβ) = 0,

∑
A∈F2

2
X ·Y = 0 where X is the259

entry (0, λα) in LAT of F1
A and Y is the entry (0, λβ) in LAT of F2

A.260

In practice, most S-boxes searched from the above theorems have both DBN261

and LBN of 3. In order to provide higher DBN or LBN of S-boxes, additional262

conditions are generally required (e.g., a search for S-boxes of DBN of 4 requires263

additional conditions for eliminating input and output differences where the sum264

of their Hamming weights is three).265

In the above theorems, conditions of smaller S-boxes are different for each266

structure, leading to different numbers of the required smaller S-box computa-267

tions. In order to find an S-box with DBN (or LBN) of 3, then the Feistel, Lai-268

Massey, unbalanced-MISTY and unbalanced-Bridge structures depicted in Fig. 1269

require about 11,200, 1,000, 600, and 1,700 (or 13,300, 1,600, 800, and 900)270

smaller S-box computations, respectively, which were confirmed in our simula-271

tions. Employed smaller S-boxes or their combinations are early aborted once272

they do not meet any of the conditions in Theorems 1∼8. Note that the method273

described in this section can be applied to any of S-box extension structures.274

3 S-Box Selection for PIPO and New Other S-Boxes275

We focused on the following three criteria when selecting the 8-bit S-box for276

PIPO, named S8.277
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1. It should offer an efficient bitsliced implementation including 11 or fewer278

nonlinear operations.279

2. Its DBN and LBN should both be greater than 2.280

3. Its differential uniformity should be 16 or less, and its non-linearity should281

be 96 or more.282

Criterion 1 minimizes the number of nonlinear operations required by PIPO,283

which allows for efficient higher-order masking implementations. Criteria 2 and 3284

ensure the cryptographic strengths of the S8 against differential cryptanalysis285

(DC) and linear cryptanalysis (LC). Any inferior criteria will lead to the imple-286

mentation of more rounds to achieve acceptable security against these attacks,287

eventually resulting in a weak proposal. The thresholds of the criteria were se-288

lected based on the properties of the existing lightweight 8-bit S-boxes (refer to289

Table 1).290

Previously proposed lightweight 8-bit S-boxes constructed from three smaller291

S-boxes, such as the Fantomas, Robin [40], FLY [48], LILLIPUT [1] S-boxes, do292

not meet at least one of the above three design criteria. We obseve that 8-bit293

S-box constructions using three 4-bit S-boxes would be hard to satisfy criterion294

1, even though they conform to criteria 2 and 3; the Feistel and Lai-Massey have295

been experimentally verified by our simulations.296

In order to construct S8 satisfying all the three criteria, our proposed struc-297

ture depicted in Fig. 1-(D) is used. It is designed based on three conditions listed298

below. First, it should use 3 and 5-bit S-boxes instead of 4-bit S-boxes. Second,299

all eight output bits should be generated from at least two smaller S-boxes (to300

meet criterion 3). Finally, at least one non-bijective smaller S-box can be adopted301

to increase the number of possible combinations of smaller S-boxes. Since (D)302

allows S2
5 to be either bijective or non-bijective, the search pool in (D) is larger303

than that in the unbalanced-MISTY structure.304

Proposition 2. The number of possible combinations of S3, S
1
5 , and S2

5 in the305

unbalanced-Bridge structure of Fig. 1-(D) is 32!× 8!× 983048 ≈ 2265.6, whereas306

that in the structure of unbalanced-MISTY of Fig. 1-(C) is 32!×8!×32! ≈ 2250.6.307

Proof. Refer to Appendix B.2.308

Our S8 search process is outlined as follows. First, we generated 3-bit and309

5-bit S-box sets; for 3-bit S-boxes we ran an exhaustive search with AND, OR,310

XOR, and NOT instructions while restricting the number of nonlinear (resp.311

linear) operations to 3 (resp. 4), and for 5-bit S-boxes we ran an exhaustive312

search with AND, OR, and XOR instruction while restricting the number of313

nonlinear (resp. linear) operations to 4 (resp. 7) with a differential uniformity314

of 8 or less. Second, we classified two 5-bit S-boxes and one 3-bit S-box that315

satisfy the conditions of Proposition 1 as well as Theorems 7 and 8. During316

this process, the search space for S8 was significantly reduced because the early317

abort technique was used to select S3, S5
1 , and S5

2 . Third, we randomly chose the318

combination of S3, S1
5 , and S2

5 to verify whether the corresponding 8-bit S-boxes319

satisfy criterion 3. During the search, we found more than 8,000 candidates for320
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S8. We selected the one (with no fixed point) that leads to the best resistance321

to differential and linear attacks when combined with the linear layer of PIPO322

(refer to section 4.4). The final selected input/output values of S8 are presented323

in Table 3; its bitsliced implementation is given in Appendix C.324

We also found many of lightweight S-boxes with both DBN and LBN of325

3 by using Theorems 1∼6 of the Feistel, Lai-Massey, and unbalanced-MISTY326

structures. Furthermore, the unbalanced-Bridge structure enabled us to construct327

more than 1,000 S-boxes with DBN of 4 and LBN of 3. They were found by using328

the aforementioned additional conditions, but there is one entry of −128 in each329

of their LATs that might cause ciphers weakened by LC. Appendix C includes a330

bitsliced implementation of a representative S-box found from each of the four331

structures. Table 1 compares their cryptographic properties and operations with332

those of other bitslice 8-bit S-boxes built from smaller three S-boxes.

Table 1. Comparison of bitslice 8-bit S-boxes with respect to cryptographic properties
and numbers of operations

New1 New2 New3 New4 PIPO FLY Fantomas Robin LILLIPUT

DBN 3 3 3 4 3 3 2 2 2

LBN 3 3 3 3 3 3 2 2 2

Differential uniformity 16 16 16 64 16 16 16 16 8

Non-linearity 96 96 96 0 96 96 96 96 96

Algebraic degree 6 5 5 5 5 5 5 6 6

#(Fixed points) 16 1 0 2 0 1 0 16 1

#(Nonlinear operations)** 12 12 11 8 11 12 11 12 12

#(Linear operations) 30 31 24 29 23 24 27 24 27

Construction method Feistel Lai-Massey U-MISTY* U-Bridge U-Bridge Lai-Massey U-MISTY MISTY Feistel

Reference This paper [48] [40] [40] [1]

*‘U-’ represents ‘Unbalanced-’.
**Nonlinear (resp. linear) operations represent AND, OR (resp. XOR, NOT).

333

Designing new 6 and 7-bit S-boxes. Sarkar et al. proposed algorithms to334

search for 5 and 6-bit S-boxes with DBN and LBN greater than 2, and presented335

several such S-boxes [61]. They have good cryptographic properties. However,336

they are not efficient in a bitslice manner, since their search algorithms are based337

on the algebraic methods. Meanwhile, 7-bit S-boxes have been used in KASUMI338

and MISTY, but DBN and LBN of 7-bit S-boxes have not been studied.339

With minor modifications, the theorems presented in Section 2 can be applied340

not only to the 6-bit S-boxes but also to the 7-bit S-boxes. We were able to find341

6-bit S-boxes with DBN and LBN of 3 using three 3-bit S-boxes in the Feistel342

structure. Using two 4-bit S-boxes and a 3-bit S-box in the unbalanced-MISTY343

structure, we were able to find 7-bit S-boxes with DBN and LBN of 3. Since344

these are based on 3 and 4-bit small S-boxes, it is easy to find their efficient345

bitsliced implementations (some are described in Appendix C). The 6 and 7-bit346

S-boxes we found are compared with published ones in Table 2.347
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Table 2. Comparison of 6 and 7-bit S-boxes with respect to cryptographic properties
and numbers of operations

6-bit S-boxes 7-bit S-boxes

Sakar’s S6 Sakar’s S6’ New S6 MISTY, KASUMI New S7

DBN 3 3 3 2 3

LBN 3 3 3 2 3

Differentiality 4 4 4 2 8

Non-linearity 8 8 8 8 16

Algebraic degree 3 2 4 3 4

#(Fixed points) 2 4 2 1 0

#(Nonlinear operations)* 167 36 9 104 11

#(Linear operations) 119 54 12 77 24

Construction method Cubic function Toeplitz matrix Feistel A • xα over GF (27) U-MISTY

Reference [61] [61] Listing 1.8 [37,57] Listing 1.9

*For the previously published 6 and 7-bit S-boxes the numbers of operations used in their algebraic nomal
forms are indicated.

4 Specification of PIPO and Its Design Choices348

4.1 Encryption Algorithm349

The PIPO block cipher accepts a 64-bit plaintext and either a 128 or 256-bit key,350

generating a 64-bit ciphertext. It performs 13 rounds for a 128-bit key and 17351

rounds for a 256-bit key. Each round is composed of a nonlinear layer denoted352

as the S-layer, a linear layer denoted as the R-layer, and round key and constant353

XOR additions. The overall structure of PIPO is depicted on the left side of354

Fig. 2. Here, RK0 is a whitening key and RK1, RK2, · · · , RKr are round keys,355

where r = 13 (128-bit key) or 17 (256-bit key). The i-th round constant ci is i356

(the round counter) which is XORed with RKi. During the enciphering process,357

the intermediate state is regarded as an 8 × 8 array of bits, as shown on the358

right side of Fig. 2, where X[i] represents the i-th row byte for i = 0 ∼ 7. The359

S-layer executes eight identical 8-bit S-boxes (denoted as S8) in parallel. The S8360

is applied to each column of the 8× 8 array of bits, where the uppermost bit is361

the least significant. Table 3 shows the S8. The R-layer rotates the bits in each362

row by a given offset (Fig. 3).363

4.2 Key Schedule364

The key schedule of PIPO is very simple. For PIPO-64/128, split a master key K365

into two 64-bit subkeys K0 and K1, i.e., K = K1||K0. The whitening and round366

keys are then defined as RKi = Ki mod 2, where i = 0, 1, 2, · · · , 13. Similarly, for367

PIPO-64/256, a master key K is divided into four 64-bit subkeys K0, K1, K2,368

and K3, i.e., K = K3||K2||K1||K0. Some test vectors for PIPO are provided in369

Appendix A. Note that resistance to related-key attacks was not considered when370

designing the PIPO cipher. This aspect will be discussed further in Section D.12.371
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Fig. 2. Overall structure (left) and intermediate state (right) of PIPO

Table 3. 8-bit S-box of PIPO in hexadecimal notation: For example, S8(31)=86.

S8(x||y)
y

0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 5E F9 FC 00 3F 85 BA 5B 18 37 B2 C6 71 C3 74 9D

1 A7 94 0D E1 CA 68 53 2E 49 62 EB 97 A4 0E 2D D0

2 16 25 AC 48 63 D1 EA 8F F7 40 45 B1 9E 34 1B F2

3 B9 86 03 7F D8 7A DD 3C E0 CB 52 26 15 AF 8C 69

4 C2 75 70 1C 33 99 B6 C7 04 3B BE 5A FD 5F F8 81

5 93 A0 29 4D 66 D4 EF 0A E5 CE 57 A3 90 2A 09 6C

6 22 11 88 E4 CF 6D 56 AB 7B DC D9 BD 82 38 07 7E

7 B5 9A 1F F3 44 F6 41 30 4C 67 EE 12 21 8B A8 D5

8 55 6E E7 0B 28 92 A1 CC 2B 08 91 ED D6 64 4F A2

9 BC 83 06 FA 5D FF 58 39 72 C5 C0 B4 9B 31 1E 77

A 01 3E BB DF 78 DA 7D 84 50 6B E2 8E AD 17 24 C9

B AE 8D 14 E8 D3 61 4A 27 47 F0 F5 19 36 9C B3 42

C 1D 32 B7 43 F4 46 F1 98 EC D7 4E AA 89 23 10 65

D 8A A9 20 54 6F CD E6 13 DB 7C 79 05 3A 80 BF DE

E E9 D2 4B 2F 0C A6 95 60 0F 2C A5 51 6A C8 E3 96

F B0 9F 1A 76 C1 73 C4 35 FE 59 5C B8 87 3D 02 FB

4.3 Choice of S-Layer372

The S-layer was chosen to be efficient implementations on byte-level operations,373

without any table lookup. As mentioned before, S8 offers an efficient bitsliced374

implementation including only 11 nonlinear and 23 linear bitwise operations.375
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Fig. 3. R-layer

Therefore, it enables the S-layer to be implemented with the same number of376

byte-level operations, since eight identical S8s are performed in parallel.377

4.4 Choice of R-Layer378

To ensure efficient hardware and software implementations, we chose the R-379

layer to be a bit permutation which only uses bit-rotations in bytes. Listing 1.1380

presents the bitsliced implementation of our R-layer, which is free for hardware381

implementations. During the design of the R-layer, the following criteria were382

considered.383

Listing 1.1. Bitsliced implementation of R-layer (in C code)
384

//Input: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)385

X[1] = ((X[1] << 7)) | ((X[1] >> 1));386

X[2] = ((X[2] << 4)) | ((X[2] >> 4));387

X[3] = ((X[3] << 3)) | ((X[3] >> 5));388

X[4] = ((X[4] << 6)) | ((X[4] >> 2));389

X[5] = ((X[5] << 5)) | ((X[5] >> 3));390

X[6] = ((X[6] << 1)) | ((X[6] >> 7));391

X[7] = ((X[7] << 2)) | ((X[7] >> 6));392

//Output: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)393
394

1. The number of rounds to achieve full diffusion – through which any input395

bit can affect the entire output bits – should be minimized.396

2. Combining the R-layer with the S-layer should enable the cipher to have the397

best resistance to DC and LC (among all bit permutations satisfying the398

first criterion).399

To meet the first criterion, we adopted a bit permutation that enables PIPO to400

achieve full diffusion in two rounds by using rotation offsets 0 ∼ 7 for all rows.401

The second criterion was taken into account when deciding which rotation to402

use for which row. We applied all 5,040(=7!) R-layers (except for all rotation403

equivalences) to the S-layer and selected one with the lowest probabilities of404

6 and 7-round best differential and linear trails. Table 4 presents the highest405
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probabilities of differential and linear trails according to some of the rotation406

offset selections2 (the first row represents the rotation offsets selected for the407

R-layer). Our analysis found that the selected combination of the S and R layers408

provides superior resistance to DC and LC than any other combinations even409

when other S-boxes among the aforementioned candidates were chosen. Note410

that most combinations of S and R layers candidates could not provide best411

7-round differential and linear trails with less than probability 2−64.412

Table 4. Best probabilities of differential and linear trails according to rotation offset
selections

Rotations
2-round 3-round 4-round 5-round 6-round 7-round
DC LC DC LC DC LC DC LC DC LC DC LC

(0,7,4,3,6,5,1,2) 8 8 16 16 26.8 24 40.4 38 54.4 52 65 66

(0,1,2,3,4,5,6,7) 8 8 16 16 26.8 24 38.4 36.8 44.8 48.8 52.8 60

(0,2,1,5,3,4,6,7) 8 8 16 16 26.8 24 38 38 50.4 48.8 59 58

...

*The numbers in the table are the values of − log2 p, where p is the
probability of the best differential trail for the DC column, and p is
the correlation potential of best linear trail for the LC column.

An important design strategy in PIPO is to perform an exhaustive search for413

the R-layer. All R-layer candidates that achieve full diffusion in minimal rounds414

have been examined based on the resistance of DC and LC. This approach to415

the selection of the linear layer differs from or improves on other state-of-the-416

art bit permutation-based designs. The linear layer of GIFT was chosen to be a417

BOGI (Bad Output must go to Good Input) bit permutation, whereas a regular418

bit permutation was used as the linear layer of PRESENT and those with full419

diffusion after minimal numbers of rounds were chosen in RECTANGLE and FLY.420

Our design strategy eventually allowed us to adopt fewer rounds in PIPO.421

5 Security and Performance Evaluations of PIPO422

5.1 Security Evaluation423

Table 5 shows the maximum numbers of rounds of characteristics and key re-424

covery attacks that we found for each attack [4,17,18,20,56,62,69]. In addition to425

the cryptanalysis shown in Table 5, we conducted algebraic attack [27], integral426

attack [73], statistical saturation attack [31], invariant subspace attack [52,53],427

nonlinear invariant attack [67] and slide attack [24], but they were not applied428

2 Our program to search for the best differential and linear trails can be downloaded
from GitHub (https://github.com/PIPO-Blockcipher).

https://github.com/PIPO-Blockcipher
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more effectively than DC or LC. Detailed analysis of all the attacks can be found429

in Appendix D.

Table 5. The numbers of rounds of the best characteristics for each cryptanalysis

Key length Cryptanalysis Best characteristic Key recovery attack

128-bit

Differential 6-round 9-round
Linear 6-round 9-round

Impossible differential 4-round 6-round
Boomerang/Rectangle 6-round 8-round

Meet-in-the-Middle 6-round 6-round

256-bit

Differential 6-round 11-round
Linear 6-round 11-round

Impossible differential 4-round 8-round
Boomerang/Rectangle 6-round 10-round

Meet-in-the-Middle 10-round 10-round

430

One of the major design considerations for PIPO is to adopt a compact num-431

ber of rounds (not enough rounds to guarantee security that is (too) high) based432

on thorough security analyses. We discovered that the best attacks applied to433

PIPO are DC and LC. An exhaustive search (based on the branch and bound434

technique [58]) for the DC and LC distinguishers was performed, in which the435

best reaches 6 rounds. Our analyses could recover the key of up to 9 and 11436

rounds of PIPO-64/128 and PIPO-64/256, respectively.437

Assume that SM = (FR−AR)/FR, where SM, FR, and AR represent security438

margin, number of full rounds, and number of attacked rounds (key recovery in439

the single key setting), respectively. The PIPO’s SM is then 0.31, compared with440

those of the other ciphers listed in Table 6. We stress that the best DC and LC441

distinguishers of PIPO were searched exhaustively, whereas they were analyzed442

by upper bounds for their probabilities in several other ciphers [25,48,63]. The443

latter method might require more rounds (whose distinguishers’ probabilities are444

upper bounded by random probability) than r+1 rounds, where r is the number445

of rounds for the actual best distinguishers. It might lead to several redundant446

extra rounds being used, causing some loss of efficiency.447

In general, there is a trade-off between a cipher’s security margin and ef-448

ficiency. The greater (resp. the smaller) security margin the cipher has, the449

lower (resp. the higher) efficiency it achieves. Unlike general-purpose ciphers,450

lightweight ciphers tend to be designed with efficiency first because of limited451

resources. Considering high efficiency and moderate security levels, we believe452

that the security margin of PIPO is reasonable.453
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Table 6. Comparison of ciphers’ security margins*

Block cipher FR
Proposal/State-of-the-art

AR SM Methods Refs.

PIPO-64/128 13 9 0.31 DC, LC This work

PRIDE-64/128 20 NA/19 NA/0.05 NA/DC [2]/[66]

PRESENT-64/128 31 NA/27 NA/0.13 NA/LC [25]/[26]

SPECK-64/128 27 NA/20 NA/0.26 NA/DC [12]/[65]

RECTANGLE-64/128 25 18/18 0.28/0.28 DC/DC [74]/[74]

SIMON-64/128 44 NA/31 NA/0.30 NA/LC [12]/[32]

Piccolo-64/128 31 NA/21 NA/0.32 NA/MITM [63]/[35]

CRAFT-64/128 32 NA/19 NA/0.41 NA/DC [13]/[41]

SKINNY-64/128 36 16/20 0.56/0.44 IDC, Integral/IDC [14]/[68]

PIPO-64/256 17 11 0.35 DC, LC This work

*All the ciphers compared here are from implementation Tables 8, 10, and 11. The
best key recovery attack of RoadRunneR has not been presented in literature.

5.2 Software Implementations454

In the near future, the growth of the Internet of Things (IoT) is expected to be455

very rapid. Thus, billions of sensors, actuators, and smart devices, many of which456

are battery-powered (e.g., wireless sensor nodes), are expected to be used [29,72].457

Therefore, any progress in the lightweight block cipher for 8-bit processors (i.e.,458

low-end platform) carries the potential to advance the whole field of IoT security.459

The AVR embedded processor is a typical 8-bit microcontroller [5]. It has460

a RISC architecture with 32 general-purpose registers, of which 6 (R26∼R31)461

serve as special pointers for indirect address mode, whereas the remaining 26462

are available to users. In general, one arithmetic instruction requires one clock463

cycle, whereas memory access and 8-bit multiplication instructions require two464

clock cycles. The details of the instructions used in this paper are available in [5].465

The PIPO block cipher consists of permutation (R-layer) and S-box (S-layer)466

computations. First, the permutation routine is performed in 8-bit rotation op-467

erations; our implementation uses the optimized 8-bit rotation operations shown468

in Table 7. We minimized the number of clock cycles required by converting left469

rotations to right rotations and vice versa: for example, we converted a 7-bit470

left rotation to a 1-bit right rotation. To compute the S-box, we used the most471

optimal method (in terms of logical operations), which requires 22 XOR, 6 AND,472

5 OR, 1 COM and 24 MOV instructions. This uses a total of 21 general-purpose473

registers: six for temporal storage, one for a zero constant, eight for a plaintext,474

four for address pointers and two for counter variables.475

Low-end IoT devices are considered to be resource-constrained platforms, in
terms of execution time, code size (i.e., ROM) and RAM. Consequently, crypto-
graphic implementations on low-end devices need to meet not only throughput
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Table 7. 8-bit rotations on 8-bit AVR

≪ 1 ≪ 2 ≪ 3 ≪ 4 ≪ 5 ≪ 6 ≪ 7

LSL X1

ADC X1, ZERO

LSL X1

ADC X1, ZERO

LSL X1

ADC X1, ZERO

SWAP X1

BST X1, 0

LSR X1

BLD X1, 7

SWAP X1

SWAP X1

LSL X1

ADC X1, ZERO

SWAP X1

LSL X1

ADC X1, ZERO

LSL X1

ADC X1, ZERO

BST X1, 0

LSR X1

BLD X1, 7

2 cycles 4 cycles 4 cycles 1 cycle 3 cycles 5 cycles 3 cycles

targets but also code size and RAM usage ones. The developers of SIMON and
SPECK have proposed a new metric to measure overall performance on low-end
devices, namely RANK [11]. This is calculated as follows:

RANK = (106/CPB)/(ROM + 2×RAM).

In this metric, higher values of RANK correspond to better performance.476

Table 8 compares results for several block ciphers on an 8-bit AVR platform.477

Here, we used Atmel Studio 6.2, and compiled all implementations with opti-478

mization level 3. The target processor was an ATmega128 running at 8MHz.479

PIPO requires 320 bytes of code, 31 bytes of RAM and an execution time of 197480

CPB. We used the RANK metric to compare the ciphers’ overall performances,481

finding that PIPO achieved the highest score among block ciphers with the same482

parameter lengths.483

Table 8. Comparison of block ciphers on 8-bit AVR*

Block cipher
Code size RAM Execution time

RANK
(bytes) (bytes) (cycles per byte)

PIPO-64/128 320 31 197 13.31

SIMON-64/128 [11] 290 24 253 11.69

RoadRunneR-64/128 [10] 196 24 477 8.59

RECTANGLE-64/128 [34] 466 204 403 2.84

PRIDE-64/128 [34] 650 47 969 1.39

SKINNY-64/128 [34] 502 187 877 1.30

PRESENT-64/128 [36] 660 280 1,349 0.61

CRAFT-64/128 [13] 894 243 1,504 0.48

PIPO-64/256 320 47 253 9.54

*The code size represents ROM, and RAM metric includes STACK.

5.3 Hardware Implementations484

We implemented PIPO in Verilog, and synthesized the proposed architectures485

using the Synopsys Design Compiler with 130nm CMOS technology. Fig. 4 shows486
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the datapath of an area-optimized encryption-only PIPO block cipher, which487

performs one round per clock cycle (i.e., uses a 64-bit-wide datapath). The S-488

layer uses the same 8-bit S-box 8 times, whereas the R-layer is implemented in489

wiring. For lightweight key generation, we obtain the round key from the master490

key, directly. This feature avoids including the key storage. Our implementations491

require 13 clock cycles to encrypt a 64-bit plaintext.492

Table 9 shows the areas required by PIPO-64/128 and PIPO-64/256. Most of493

the areas are taken up by the S-layer, in order to compute eight 8-bit S-boxes in494

parallel.7 The flip-flops are used for storing plaintext and counter, and the other495

areas consist of MUX and other logical operations.496

Table 10 compares the results for several different block ciphers implemented497

as ASICs. Compared with the other block ciphers using the same parameter498

lengths, PIPO needs more gates than CRAFT, Piccolo and SIMON but its cycles499

per block are much lower, resulting in the highest figure of merit FOM (nano500

bits per clock cycle per GE squared [6,42]). It is obvious that the high FOM of501

PIPO requires less energy and battery consumption.502

Fig. 4. Datapath of an area-optimized version of PIPO

6 Performance Evaluations of Higher-Order Masking503

Implementations of PIPO504

Side-channel attacks were published by Kocher in 1996 [51] and can reveal secret505

information by analyzing side-channel leakages, such as power consumption and506

7 The NAND gate is the most basic unit for hardware implementations. In 130nm
ASIC library, which was used in our hardware implementations, AND, OR, and
XOR operations require 1.66, 1.66, and 2.66 NAND gates, respectively.
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Table 9. Area requirement of PIPO-64/128 and PIPO-64/256.

PIPO-64/128 PIPO-64/256

Module GE % GE %

Data and Counter States 341 24 360 22

S-layer 581 40 581 36

Add Round Key 170 12 170 11

Others 354 24 491 31

Total 1,446 100 1,602 100

Table 10. Comparison of round-based and area optimized implementations for block
ciphers using 130nm ASIC library.

Block cipher
Area Throughput cycles FOM

[GE] (Kbps@100KHz) /block [ bits×109

clk×GE2 ]

PIPO-64/128 1,446 492 13 2,355

CRAFT-64/128 [13] 949 200 32 2,221

Piccolo-64/128 [63] 1,197 194 33 1,354

SIMON-64/128 [12] 1,417 133 48 664

RECTANGLE-64/128 [74] 2,064 246 26 578

PIPO-64/256 1,602 376 17 1,467

electromagnetic emission [55]. This information reveal is due to the fact that side-507

channel leakages depend on data values being manipulated, i.e., intermediate508

values, while the cryptographic algorithm is running. Thus, to cope with this,509

randomization techniques, which make side-channel leakages of a cryptographic510

device independent of the intermediate values of the cryptographic algorithm511

are generally used. Among them, a higher-order Boolean masking technique is512

the most popular.513

For low spec-devices which have tiny processors, noise is relatively lower514

and the feasibility of higher-order side-channel attacks increases. Therefore, the515

main aim of our proposed PIPO is to enable efficient implementations that are516

secure against high-order side-channel attacks. Thus, we now compare the execu-517

tion times, for different numbers of shares, when we apply higher-order Boolean518

masking schemes [44,55].519

6.1 Higher-Order Masking520

Higher-order masking is a randomization technique, which splits the sensitive521

intermediate variable x into d+1 random variables x1, x2, · · · , xd+1 called shares522

and satisfies x = x1 ∗ x2 ∗ · · · ∗ xd+1 for the operation ∗ defined according to the523

cryptographic algorithm. In this paper, ∗ is considered as the exclusive-or (XOR)524
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operation denoted by ⊕. This masking scheme is called Boolean masking, and525

it is the most generally used. The number of shares is d + 1, and the masking526

order is d.527

6.2 Bitsliced Implementations for Efficient Higher-Order Masking528

Bitsliced implementations, initially proposed by Biham [16], are known to be529

efficient when applying Boolean masking, since secure S-box computations can be530

carried out in parallel [38,39,40,45]. Thus, we used an S-box that can be efficiently531

implemented in this way, and only involves 11 nonlinear bitwise operations. The532

number of nonlinear operations is very important for Boolean masking schemes,533

since they have a quadratic complexity, i.e., O(d2), compared with the linear534

complexity, i.e., O(d), for other operations.535

We constructed PIPO using higher-order masked S-layer and R-layer, which536

is shown in Appendix E. The nonlinear operations, logical AND and OR, were537

replaced by ISW-AND and ISW-OR, respectively. ISW-AND is d-probing secure538

with a masking order d and has a quadratic complexity for d. There are several539

variations of ISW-AND [7,8,15], however, in this paper, we apply original ISW-540

AND. Since logical OR of two inputs a and b satisfies a ∨ b = (a ∧ b) ⊕ a ⊕ b,541

thus, ISW-OR can be calculated by replacing logical AND with ISW-AND. We542

refreshed one of two inputs of ISW-AND and ISW-OR, which might be linearly543

related, to guarantee full security by using refresh masking [38]. It is possible544

to implement higher-order masked logical XOR and rotations by repeating as545

many as the number of shares, because they are the linear operations. Higher-546

order masked logical NOT operation can be calculated by taking logical NOT547

operation on only one of the shares.548

We compare our proposed PIPO with PRIDE, RoadRunneR, RECTANGLE,549

CRAFT, SIMON, PRESENT, and SKINNY [2,10,12,13,14,25,74], which are 64-bit550

block ciphers with 128-bit keys. All the ciphers compared were implemented us-551

ing bitslice techniques, and only round constants were precomputed. There is552

no need to precompute round constants of PIPO, RoadRunneR, and PRESENT,553

because they are the i or NR − i for i = 0, 1, · · · , NR − 1, where NR is the554

number of rounds. Therefore, the required ROM for round constants is shown555

in Table 11. Only CRAFT used an additional 16-byte diffusion table Q for gen-556

erating tweakeys. The same secure logical operations of PIPO were applied to557

implement higher-order masking structures.558

Fig. 5 shows the execution times for different numbers of shares on an 8-559

bit AVR processor. Especially, it shows that the more nonlinear operations, the560

greater increase in execution time with the number of shares (refer to Table 11).3561

PIPO has the smallest number of nonlinear operations.562

3 A family of block ciphers named LowMC, whose main design goal is a low nonlinear
operation count, was introduced [3]. However, they are not in our comparison list,
because they do not have any 64-bit block/128-bit key version. We also exclude
ARX-based ciphers in our comparison Tables 8, 10, and 11 because their side-channel
countermeasures are far inferior to those of S-box-based ciphers
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Table 11. Comparison of required ROM (bytes) for round constant, number of non-
linear bitwise operations, and linear layers of round functions

Block cipher Table size
#(nonlinear bitwise

operations)
Linear layer

PIPO-64/128 0 1,144 7 bit-rotations in bytes

PRIDE-64/128 80 1,280 MixColumns*

SIMON-64/128 62 1,408 3 bit-rotations in 32-bit words

RoadRunneR-64/128 0 1,536 24 bit-rotations in bytes

RECTANGLE-64/128 25 1,600 3 bit-rotations in 16-bit words

CRAFT-64/128 64 1,984 MixColumns*, PermuteNibbles

PRESENT-64/128 0 1,984 Bit permutation

SKINNY-64/128 62 2,304 ShiftRows, MixColumns*

* : multiply with binary matrix
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Fig. 5. Execution times of one-block encryptions according to the number of shares in
an Atmel AVR XMEGA128 (1 means unprotected)

Moreover, the R-layer of PIPO consists only of seven bit-rotations in bytes,563

which is efficient compared to the other ciphers as shown in Table 11. Thus, it564

can be inferred that PIPO has the lowest time complexity. Here, the execution565

time of PIPO increases more slowly with the number of shares compared with566

the other ciphers. As a result, PIPO does not need ROM for precomputed table567

and offers excellent performance in 8-bit AVR software implementations while568

providing security against side-channel attacks.569
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7 Conclusion and Future Work570

In this paper, we presented a widely applicable method for constructing lightweight571

S-boxes with DBN and LBN greater than 2, from smaller S-boxes. Using existing572

structures such as Feistel, Lai-Massey, unbalanced-MISTY as well as the proposed573

unbalanced-Bridge structure, we were able to find many lightweight S-boxes with574

both DBN and LBN of at least 3. Among them, the most efficient and secure 8-bit575

S-box was selected to create new lightweight versatile block cipher PIPO suitable576

for diverse resource-constrained environments. In particular, PIPO exhibits exel-577

lent performance in both side-channel protected and unprotected environments578

on 8-bit microcontrollers, and fast round-based hardware implementations as579

well. Furthermore, a thorough security analysis of PIPO was conducted.580

For future work, it would be interesting to investigate the following research581

questions.582

– Are there any other 8-bit S-boxes that have the same level of cryptographic583

properties as S8 (Table 1) but require fewer nonlinear operations?584

– Are there secure and efficient 8-bit S-boxes with both DBN and LBN of 4?585

We believe that our proposed method can help cipher designers build lightweight586

S-boxes with high DBN and LBN, and that the PIPO cipher can be used for data587

condentiality in a wide range of low-end IoT environments (e.g. wireless sensors/-588

passive RFID tags and their hubs, Underwater Acoustic Networks (UAVs) which589

may only ask that 64-bit quantities be encrypted [23,46,59]).590
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A Test Vectors782

The following test vectors are represented in big endian representation.4783

– PIPO-64/128784

• Secret key: 0x6DC416DD 779428D2 7E1D20AD 2E152297785

• Plaintext: 0x098552F6 1E270026786

• Ciphertext: 0x6B6B2981 AD5D0327787

– PIPO-64/256788

• Secret key:0x009A3AA4 76A96DB5 54A71206 26D15633 6DC416DD789

779428D2 7E1D20AD 2E152297790

• Plaintext: 0x098552F6 1E270026791

• Ciphertext: 0x816DAE6F B6523889792

B Proofs of Propositions and Theorems793

B.1 Proof of Proposition 1794

(⇒)795

If S3 or S1
5 is non-bijective, there are two different inputs XL||XR, X

′
L||X ′R sat-796

isfying (S1
5(XL), S3(XR)) = (S1

5(X ′L), S3(X ′R)). Then, it is easy to see that797

4 The bitslice and table look-up implementation codes of PIPO can be found on
GitHub (https://github.com/PIPO-Blockcipher).

https://github.com/PIPO-Blockcipher
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S8(XL||XR) = S8(X ′L||X ′R), and thus two conditions i) and ii) should hold.798

Assume that the fy in condition iii) is non-bijective for some y ∈ F3
2. Then799

there should be two different inputs a, a′ satisfying fy(a) = fy(a′). It induces800

τ ′2(S2
5(y||a)) = τ ′2(S2

5(y||a′)). On the other hand, we can take a pair XR, X
′
R801

satisfying τ3(S2
5(y||a))⊕ S3(XR) = τ3(S2

5(y||a′))⊕ S3(X ′R), and thus CR = C ′R.802

Combining the above two equations yields S2
5(y||a)⊕(S3(XR)||0(2)) = S2

5(y||a′)⊕803

(S3(X ′R)||0(2)). And, we take a pair XL, X
′
L satisfying S1

5(XL) = (y⊕S3(XR))||a804

and S1
5(X ′L) = (y ⊕ S3(X ′R))||a′. Since a 6= a′, we have XL 6= X ′L satisfying805

S8(XL||XR) = S8(X ′L||X ′R). Therefore, condition iii) should also hold.806

(⇐)807

Assume that XL 6= X ′L and XR = X ′R. If τ3(S1
5(XL)) 6= τ3(S1

5(X ′L)), then808

CL(XL, XR) 6= CL(X ′L, X
′
R). Let τ3(S1

5(XL)) = τ3(S1
5(X ′L)). It leads to CL(XL,809

XR) = CL(X ′L, X
′
R), and τ ′2(S1

5(XL)) 6= τ ′2(S1
5(X ′L)). Because of condition iii),810

τ2(CR(XL, XR)) 6= τ2(CR(X ′L, X
′
R)). Assume that XL = X ′L and XR 6= X ′R.811

Since S3(XR) 6= S3(X ′R), CL(XL, XR) 6= CL(X ′L, X
′
R). Assume that XL 6= X ′L,812

XR 6= X ′R. If CL(XL, XR) = CL(X ′L, X
′
R), either τ ′2(S1

5(XL)) 6= τ ′2(S1
5(X ′L))813

or τ ′2(S1
5(XL)) = τ ′2(S1

5(X ′L)). The former case leads to τ2(CR(XL, XR)) 6=814

τ2(CR(X ′L, X
′
R)), and the latter case leads to τ ′3(CR(XL, XR)) 6= τ ′3(CR(X ′L, X

′
R)).815

Therefore, the 8-bit S-box is bijective. �816

B.2 Proof of Proposition 2817

All the smaller S-boxes in (C) and (D) should be bijective except for S2
5 in (D).818

Condition iii) of Proposition 1 should hold for S2
5 in order to make the 8-bit S-819

box bijective. For a fixed y ∈ F3
2, the number of functions S2

5(y||·) is 4!×84. Since820

y can have any value in F3
2, the number of possible S2

5 is (4!× 84)8 = 983048.�821

822

823

B.3 Proof of Theorem 1824

As stated earlier, the expression of the CL and CR is

CL(XL, XR) = XL ⊕ S2
4(XR ⊕ S1

4(XL)),

CR(XL, XR) = XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL))).

We define the following notation for ease of expression.

Y = XR ⊕ S1
4(XL), Z = XL ⊕ S2

4(Y ).

(0(4)||∆a, 0(4)||∆c) : This case is ruled out by condition i). It was proved in sec-
tion 2.

(0(4)||∆a,∆d||0(4)) : It happens if and only if there exists at least one (XL, XR)
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satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆d and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆0. The first equation is expressed as

XL ⊕ S2
4(XR ⊕ S1

4(XL))⊕XL ⊕ S2
4(XR ⊕∆a⊕ S1

4(XL))

= S2
4(XR ⊕ S1

4(XL))⊕ S2
4(XR ⊕∆a⊕ S1

4(XL)) = ∆d

By applying Y , we have

S2
4(Y )⊕ S2

4(Y ⊕∆a) = ∆d (3)

Similarly, the second equation CR(XL, XR) ⊕ CR(XL, XR ⊕ ∆a) = ∆0 is ex-
pressed as

XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))

⊕XR ⊕∆a⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕∆a⊕ S1

4(XL)))

=S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))

⊕ S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)⊕∆a))⊕∆a = ∆0

By applying Eq. (3) and using the definition of Z, we obtain

S3
4(Z)⊕ S3

4(Z ⊕∆d) = ∆a (4)

Since the function (XL, XR) 7→ (Y, Z) is bijective, the (0(4)||∆a,∆d||0(4)) case
does not happen if and only if there is no (Y, Z) satisfying both Eqs. ((3 and 4)),
which is equivalent to condition ii) where ∆α = ∆a, ∆β = ∆d.

(∆b||0(4), 0(4)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆0 and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆c. The first equation is expressed as

XL ⊕ S2
4(XR ⊕ S1

4(XL))⊕XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b))
= S2

4(XR ⊕ S1
4(XL))⊕ S2

4(XR ⊕ S1
4(XL ⊕∆b))⊕∆b = ∆0.

It becomes

S2
4(XR ⊕ S1

4(XL))⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)) = ∆b. (5)

Similarly, the second equation CR(XL, XR) ⊕ CR(XL ⊕ ∆b,XR) = ∆c is ex-
pressed as

XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))

⊕XR ⊕ S1
4(XL ⊕∆b)⊕ S3

4(XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)))
= S1

4(XL)⊕ S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))

⊕ S1
4(XL ⊕∆b)⊕ S3

4(XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)))
= ∆c.



30 Hangi Kim et al.

By applying Eq. (5), we get

S1
4(XL)⊕ S1

4(XL ⊕∆b) = ∆c. (6)

By applying Eq. (6) and using the definition of Y , Eq. (5) is rewritten as

S2
4(Y )⊕ S2

4(Y ⊕∆c) = ∆b. (7)

Since the function (XL, XR) 7→ (Y,XR) is bijective, the (∆b||0(4), 0(4)||∆c) case
does not happen if and only if there is no (Y,XR) satisfying both Eqs. (6) and
(7), which is equivalent to condition iii) where ∆α = ∆b, ∆β = ∆c.

(∆b||0(4), ∆d||0(4)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆d and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆0. The second equation is expressed as

XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))

⊕XR ⊕ S1
4(XL ⊕∆b)⊕ S3

4(XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)))
= S1

4(XL)⊕ S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))

⊕ S1
4(XL ⊕∆b)⊕ S3

4(XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)))
= ∆0.

It becomes

S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))⊕ S3

4(XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)))
= S1

4(XL)⊕ S1
4(XL ⊕∆b).

(8)

Similarly, the first equation CL(XL, XR)⊕CL(XL⊕∆b,XR) = ∆d is expressed
as

XL ⊕ S2
4(XR ⊕ S1

4(XL))⊕XL ⊕∆b⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b))
= S2

4(XR ⊕ S1
4(XL))⊕ S2

4(XR ⊕ S1
4(XL ⊕∆b))⊕∆b = ∆d.

It becomes

S2
4(XR ⊕ S1

4(XL))⊕ S2
4(XR ⊕ S1

4(XL ⊕∆b)) = ∆b⊕∆d. (9)

Therefore, (∆b||0(4), ∆d||0(4)) case does not happen if and only if there is no825

(XL, XR) satisfying both Eqs. (8) and (9), which is equivalent to condition iv).�826

B.4 Proof of Theorem 2827

We use CL, CR, Y and Z defined in proof B.3.
(0(4)||λa, 0(4)||λc) : This case is ruled out by condition i). It was proved in sec-
tion 2.
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(0(4)||λa, λd||0(4)) : Its bias can be calculated by the number of (XL, XR) satis-
fying XR • λa = CL(XL, XR) • λd. The equation is expressed as

XR • λa = (XL ⊕ S2
4(XR ⊕ S1

4(XL))) • λd.
It follows

(XR ⊕ S1
4(XL)) • λa ⊕ S1

4(XL) • λa = (XL ⊕ S2
4(XR ⊕ S1

4(XL))) • λd.

The equation becomes

XL • λd ⊕ S1
4(XL) • λa = Y • λa ⊕ S2

4(Y ) • λd (10)

by using the definition of Y . Note that the function (XL, XR) 7→ (XL, Y ) is
bijective. The (0(4)||λa, λd||0(4)) case has zero bias if and only if the equation
(10) is not biased, which is equivalent to condition ii) where λα = λd, λβ = λa.

(λb||0(4), 0(4)||λc) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CR(XL, XR) • λc. The equation is expressed as

XL • λb = (XR ⊕ S1
4(XL)⊕ S3

4(XL ⊕ S2
4(XR ⊕ S1

4(XL)))) • λc.
It follows

(XR ⊕ S1
4(XL)) • λc ⊕ S2

4(XR ⊕ S1
4(XL)) • λb

= (XL ⊕ S2
4(XR ⊕ S1

4(XL))) • λb ⊕ S3
4(XL ⊕ S2

4(XR ⊕ S1
4(XL)))) • λc.

The equation becomes

Y • λc ⊕ S2
4(Y ) • λb = Z • λb ⊕ S3

4(Z) • λc (11)

by using the definition of Y and Z. Note that the function (XL, XR) 7→ (Z, Y )
is bijective. The (λb||0(4), 0(4)||λc) case has zero bias if and only if the equation
(11) is not biased, which is equivalent to condition iii) where λα = λc, λβ = λb.

(λb||0(4), λd||0(4)) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CL(XL, XR) • λd. The equation is expressed as

XL • λb = (XL ⊕ S2
4(XR ⊕ S1

4(XL))) • λd.
It follows

XL • (λb ⊕ λc) = S2
4(XR ⊕ S1

4(XL)) • λd.
The equation becomes

XL • (λb ⊕ λc) = S2
4(Y ) • λd (12)

by using the definition of Y . Since the left side of the equation is always not
biased, only need to consider the right side. The Eq. (12) is not biased if and
only if

0 = S2
4(Y ) • λd (13)

is not biased. The (λb||0(4), λd||0(4)) case has zero bias if and only if the equation828

(13) is not biased, which is equivalent to condition iv) where λα = λd. �829
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B.5 Proof of Theorem 3830

The expression of the CL and CR is

CL(XL, XR) = S2
4(XL ⊕ S1

4(XL ⊕XR)),

CR(XL, XR) = S3
4(XR ⊕ S1

4(XL ⊕XR)).

We define the following notation for ease of expression.

Y = XL ⊕XR, Z = XL ⊕ S1
4(XL ⊕XR), W = XR ⊕ S1

4(XL ⊕XR).

(0(4)||∆a, 0(4)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆0 and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆c. The first equation is expressed as

S2
4(XL ⊕ S1

4(XL ⊕XR))⊕ S2
4(XL ⊕ S1

4(XL ⊕XR ⊕∆a)) = ∆0.

By applying (S2
4)−1 and using the definition of Y , we obtain

S1
4(Y )⊕ S1

4(Y ⊕∆a) = ∆0. (14)

Similarly, the second equation CR(XL, XR) ⊕ CR(XL, XR ⊕ ∆a) = ∆c is ex-
pressed as

S3
4(XR ⊕ S1

4(XL ⊕XR))⊕ S3
4(XR ⊕∆a⊕ S1

4(XL ⊕XR ⊕∆a)) = ∆c.

By applying Eq. (14) and using the definition of W , we obtain

S3
4(W )⊕ S3

4(W ⊕∆a) = ∆c. (15)

Since the function (XL, XR) 7→ (Y,W ) is bijective, the (0(4)||∆a, 0(4)||∆c) case
does not happen if and only if there is no (Y,W ) satisfying both Eqs. (14) and
(15), which is equivalent to condition i) where ∆α = ∆a, ∆β = ∆c.

(0(4)||∆a,∆d||0(4)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆d and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆0. The second equation is expressed as

S3
4(XR ⊕ S1

4(XL ⊕XR))⊕ S3
4(XR ⊕∆a⊕ S1

4(XL ⊕XR ⊕∆a)) = ∆0.

By applying (S3
4)−1 and using the definition of Y , we obtain

S1
4(Y )⊕ S1

4(Y ⊕∆a) = ∆a. (16)

Similarly, the first equation CL(XL, XR)⊕CL(XL, XR⊕∆a) = ∆d is expressed
as

S2
4(XL ⊕ S1

4(XL ⊕XR))⊕ S2
4(XL ⊕ S1

4(XL ⊕XR ⊕∆a)) = ∆d.
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By applying Eq. (16) and using the definition of Z, we obtain

S2
4(Z)⊕ S2

4(Z ⊕∆a) = ∆d. (17)

Since the function (XL, XR) 7→ (Z, Y ) is bijective, the (0(4)||∆a,∆d||0(4)) case
does not happen if and only if there is no (Z, Y ) satisfying both Eqs. (16) and
(17), which is equivalent to condition ii) where ∆α = ∆a, ∆β = ∆d.

(∆b||0(4), 0(4)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆0 and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆c. The first equation is expressed as

S2
4(XL ⊕ S1

4(XL ⊕XR))⊕ S2
4(XL ⊕∆b⊕ S1

4(XL ⊕∆b⊕XR)) = ∆0.

By applying (S2
4)−1 and using the definition of Y , we obtain

S1
4(Y )⊕ S1

4(Y ⊕∆b) = ∆b. (18)

Similarly, the second equation CR(XL, XR) ⊕ CR(XL ⊕ ∆b,XR) = ∆c is ex-
pressed as

S3
4(XR ⊕ S1

4(XL ⊕XR))⊕ S3
4(XR ⊕ S1

4(XL ⊕∆b⊕XR)) = ∆c.

By applying Eq. (18) and using the definition of W , we obtain

S3
4(W )⊕ S3

4(W ⊕∆b) = ∆c. (19)

Since the function (XL, XR) 7→ (Y,W ) is bijective, the (∆b||0(4), 0(4)||∆c) case
does not happen if and only if there is no (Y,W ) satisfying both Eqs. (18) and
(19), which is equivalent to condition iii) where ∆α = ∆b, ∆β = ∆c.

(∆b||0(4), ∆d||0(4)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆d and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆0. The second equation is expressed as

S3
4(XR ⊕ S1

4(XL ⊕XR))⊕ S3
4(XR ⊕ S1

4(XL ⊕XR ⊕∆b)) = ∆0.

By applying (S3
4)−1 and using the definition of Y , we obtain

S1
4(Y )⊕ S1

4(Y ⊕∆b) = ∆0. (20)

Similarly, the first equation CL(XL, XR)⊕CL(XL, XR⊕∆a) = ∆d is expressed
as

S2
4(XL ⊕ S1

4(XL ⊕XR))⊕ S2
4(XL ⊕∆b⊕ S1

4(XL ⊕∆b⊕XR)) = ∆d.

By applying Eq. (20) and using the definition of Z, we obtain

S2
4(Z)⊕ S2

4(Z ⊕∆b) = ∆d. (21)

Since the function (XL, XR) 7→ (Z, Y ) is bijective, the (∆b||0(4), ∆d||0(4)) case831

does not happen if and only if there is no (Z, Y ) satisfying both Eqs. (20) and832

(21), which is equivalent to condition iv) where ∆α = ∆b, ∆β = ∆d. �833
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B.6 Proof of Theorem 4834

We use CL, CR, Y and Z defined in proof B.5.

(0(4)||λa, 0(4)||λc) : Its bias can be calculated by the number of (XL, XR) satis-
fying XR • λa = CR(XL, XR) • λc. The equation is expressed as

XR • λa = S3
4(XR ⊕ S1

4(XL ⊕XR)) • λc.

It follows

S1
4(XL ⊕XR) • λa = (XR ⊕ S1

4(XL ⊕XR)) • λa ⊕ S3
4(XR ⊕ S1

4(XL ⊕XR)) • λc.

The equation becomes

S1
4(Y ) • λa = W • λa ⊕ S3

4(W ) • λc (22)

by using the definition of Y and W . Note that the function (XL, XR) 7→ (Y,W )
is bijective. The (0(4)||λa, 0(4)||λc) case has zero bias if and only if the equation
(22) is not biased, which is equivalent to condition i) where λα = λa, λβ = λc.

(0(4)||λa, λd||0(4)) :Its bias can be calculated by the number of (XL, XR) sat-
isfying XR • λa = CL(XL, XR) • λd. The equation is expressed as

XR • λa = S2
4(XL ⊕ S1

4(XL ⊕XR)) • λd.

It follows

(XL ⊕XR) • λa ⊕ S1
4(XL ⊕XR) • λa

= (XR ⊕ S1
4(XL ⊕XR)) • λa ⊕ S2

4(XR ⊕ S1
4(XL ⊕XR)) • λd.

The equation becomes

Y • λa ⊕ S1
4(Y ) • λa = W • λa ⊕ S2

4(W ) • λd (23)

by using the definition of Y and W . Note that the function (XL, XR) 7→ (Y,W )
is bijective. The (0(4)||λa, λd||0(4)) case has zero bias if and only if the equation
(23) is not biased, which is equivalent to condition ii) where λα = λa, λβ = λd.

(λb||0(4), 0(4)||λc) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CR(XL, XR) • λc. The equation is expressed as

XL • λb = S3
4(XR ⊕ S1

4(XL ⊕XR)) • λc.

It follows

(XL ⊕XR) • λb ⊕ S1
4(XL ⊕XR) • λb

= (XR ⊕ S1
4(XL ⊕XR)) • λb ⊕ S3

4(XR ⊕ S1
4(XL ⊕XR)) • λc.
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The equation becomes

Y • λb ⊕ S1
4(Y ) • λb = W • λb ⊕ S3

4(W ) • λc (24)

by using the definition of Y and W . Note that the function (XL, XR) 7→ (Y,W )
is bijective. The (λb||0(4), 0(4)||λc) case has zero bias if and only if the equation
(24) is not biased, which is equivalent to condition iii) where λα = λb, λβ = λc.

(λb||0(4), λd||0(4)) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CL(XL, XR) • λd. The equation is expressed as

XL • λb = S2
4(XL ⊕ S1

4(XL ⊕XR)) • λd.

It follows

S1
4(XL ⊕XR) • λb = (XL ⊕ S1

4(XL ⊕XR)) • λb ⊕ S2
4(XL ⊕ S1

4(XL ⊕XR)) • λd.

The equation becomes

S1
4(Y ) • λb = Z • λb ⊕ S3

4(Z) • λd (25)

by using the definition of Y and Z. Note that the function (XL, XR) 7→ (Z, Y )835

is bijective. The (λb||0(4), λd||0(4)) case has zero bias if and only if the equation836

(25) is not biased, which is equivalent to condition iv) where λα = λb, λβ = λd.�837

B.7 Proof of Theorem 5838

The expression of the CL and CR is

CL(XL, XR) = S2
5(S1

5(XL)⊕XR||0(2)),
CR(XL, XR) = τ3(S1

5(XL))⊕XR ⊕ S3(XR).

We define the following notation for ease of expression.

Y = S1
5(XL), Z = S1

5(XL)⊕XR||0(2),
A = τ ′2(Y ) = τ ′2(Z), Y = Y ′||A, Z = Z ′||A.

(0(5)||∆a, 0(5)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆0 and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆c. The first equation is expressed as

S2
5(S1

5(XL)⊕XR||0(2))⊕ S2
5(S1

5(XL)⊕ (XR ⊕∆a)||0(2)) = ∆0.

By applying (S2
5)−1, we obtain

∆a||0(2) = ∆0.
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Since the equation is impossible, the (0(5)||∆a, 0(5)||∆c) case dose not happen.

(0(5)||∆a,∆d||0(3)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆d and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆0. The second equation is expressed as

τ3(S1
5(XL))⊕XR ⊕ S3(XR)⊕ τ3(S1

5(XL))⊕XR ⊕∆a⊕ S3(XR ⊕∆a) = ∆0.

Clearly,
S3(XR)⊕ S3(XR ⊕∆a) = ∆a. (26)

Similarly, the first equation CL(XL, XR)⊕CL(XL, XR⊕∆a) = ∆d is expressed
as

S2
5(S1

5(XL)⊕XR||0(2))⊕ S2
5(S1

5(XL)⊕ (XR ⊕∆a)||0(2)) = ∆d.

By using the definition of Z, we obtain

S2
5(Z)⊕ S2

5(Z ⊕∆a||0(2)) = ∆d. (27)

Since the function (XL, XR) 7→ (Z,XR) is bijective, the (0(5)||∆a,∆d||0(3)) case
does not happen if and only if there is no (Z,XR) satisfying both Eqs. (26) and
(27), which is equivalent to condition i) where ∆α = ∆a, ∆β = ∆d.

(∆b||0(3), 0(5)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆0 and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆c. The second equation is expressed as

τ3(S1
5(XL))⊕XR ⊕ S3(XR)⊕ τ3(S1

5(XL ⊕∆b))⊕XR ⊕ S3(XR) = ∆c.

Clearly,
τ3(S1

5(XL))⊕ τ3(S1
5(XL ⊕∆b)) = ∆c. (28)

Similarly, the first equation CL(XL, XR)⊕CL(XL⊕∆b,XR) = ∆d is expressed
as

S2
5(S1

5(XL)⊕XR||0(2))⊕ S2
5(S1

5(XL ⊕∆b)⊕XR||0(2)) = ∆0.

By applying (S2
5)−1, we obtain

S1
5(XL)⊕ S1

5(XL ⊕∆b) = ∆0. (29)

Since Eqs. (28) and (29) cause contradiction, the (∆b||0(3), 0(5)||∆c) case dose
not happen.

(∆b||0(3), ∆d||0(3)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆d and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆0. The second equation is expressed as

τ3(S1
5(XL))⊕XR ⊕ S3(XR)⊕ τ3(S1

5(XL ⊕∆b))⊕XR ⊕ S3(XR) = ∆0.
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Clearly,
τ3(S1

5(XL))⊕ τ3(S1
5(XL ⊕∆b)) = ∆0.

Since S1
5 is bijection, for a non-zero difference ∆ω ∈ F2

2, the above equation
becomes

S1
5(XL)⊕ S1

5(XL ⊕∆b) = ∆ω. (30)

By applying (S1
5)−1, we get

XL ⊕∆b = (S1
5)−1(S1

5(XL)⊕∆ω).

By using the definition of Y , we obtain

(S1
5)−1(Y )⊕ (S1

5)−1(Y ⊕∆ω) = ∆b. (31)

Similarly, the first equation CL(XL, XR)⊕CL(XL⊕∆b,XR) = ∆d is expressed
as

S2
5(S1

5(XL)⊕XR||0(2))⊕ S2
5(S1

5(XL ⊕∆b)⊕XR||0(2)) = ∆d.

By applying Eq. (30) and using the definition of Y , we obtain

S2
5(Y )⊕ S2

5(Y ⊕∆ω) = ∆d. (32)

For each A, the Eqs. (31) and (32) are equivalent to

F2
A(Y ′)⊕ F2

A⊕∆ω(Y ′) = ∆b, (33)

F1
A(Z ′)⊕ F1

A⊕∆ω(Z ′) = ∆d. (34)

Here, ∆ω is arbitrary nonzero 2-bit difference, and thus we can define B =839

A ⊕ ∆ω i.e., B 6= A. Since the function (XL, XR) 7→ (Y ′, A, Z ′) is bijective,840

the (∆b||0(3), ∆d||0(3)) case does not happen if and only if there is no (Y ′, A, Z ′)841

satisfying both Eqs. (33) and (34) for all B( 6= A), which is equivalent to condition842

ii) where ∆α = ∆b, ∆β = ∆d. �843

B.8 Proof of Theorem 6844

We use CL, CR, Y and Z defined in Appendix B.7.

(0(5)||λa, 0(5)||λc) : Its bias can be calculated by the number of (XL, XR) satis-
fying XR • λa = CR(XL, XR) • λc. The equation is expressed as

XR • λa = (τ3(S1
5(XL))⊕XR ⊕ S3(XR)) • λc.

It follows
XR • (λa ⊕ λc)⊕ S3(XR) • λc = τ3(S1

5(XL)) • λc.

Clearly,
XR • (λa ⊕ λc)⊕ S3(XR) • λc = S1

5(XL) • λc||0(2).
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Since S1
5 is bijective, the (0(5)||λa, 0(5)||λc) case has zero bias.

(0(5)||λa, λd||0(3)) : Its bias can be calculated by the number of (XL, XR) satis-
fying XR • λa = CL(XL, XR) • λd. The equation is expressed as

XR • λa = S2
5(S1

5(XL)⊕XR||0(2)) • λc.

The equation becomes
XR • λa = S2

5(Z) • λc
by using the definition of Z. Since left side is not biased, the (0(5)||λa, λd||0(3))
case has zero bias.

(λb||0(3), 0(5)||λc) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CR(XL, XR) • λc. The equation is expressed as

XL • λb = (τ3(S1
5(XL))⊕XR ⊕ S3(XR)) • λc.

It follows

XR • λc ⊕ S3(XR) • λc = XL • λb ⊕ τ3(S1
5(XL)) • λc.

Clearly,

XR • λc ⊕ S3(XR) • λc = XL • λb ⊕ S1
5(XL) • λc||0(2). (35)

The (λb||0(3), 0(5)||λc) case has zero bias if and only if the equation (35) is not
biased, which is equivalent to condition i) where λα = λb, λβ = λc.

(λb||0(3), λd||0(3)) : Its bias can be calculated by the number of (XL, XR) satis-
fying XL • λb = CL(XL, XR) • λd. The equation is expressed as

XL • λb = S2
5(S1

5(XL)⊕XR||0(2)) • λd.

The equation becomes

(S1
5)−1(Y ) • λb = S2

5(Z) • λd

by using the definition of Y and Z. For definition of A, the above equation is
equivalent to

f1A(Y ′) • λb = f2A(Z ′) • λd. (36)

The (λb||0(3), λd||0(3)) case has zero bias if and only if the equation (36) is not845

biased, which is equivalent to condition ii) where λα = λb, λβ = λd. �846

B.9 Proof of Theorem 7847

We define the following notation for ease of expression.
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Y = S1
5(XL), Z = S1

5(XL) ⊕ (S3(XR)||0(2)), A = τ ′2(Y ) = τ ′2(Z), Y = Y ′||A,
Z = Z ′||A.

Then, the expression of the CL and CR is

CL(XL, XR) = τ3(Y )⊕ S3(XR) = τ3(Z),
CR(XL, XR) = ρc(S

2
5(Y ⊕ (S3(XR)||0(2))))⊕ S3(XR) = ρc(Z)⊕ S3(XR).

For convenience, we do not write 0 paddings on MSBs of smaller-bit data operat-
ing with larger-bit data; here, the 5-bit operand S3(XR) represents 0(2)||S3(XR).

(0(5)||∆a, 0(3)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆0 and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆c. The first equation is expressed as

τ3(Y )⊕ S3(XR)⊕ τ3(Y )⊕ S3(XR ⊕∆a) = S3(XR)⊕ S3(XR ⊕∆a) = ∆0.

Since S3 is bijective, the (0(5)||∆a, 0(3)||∆c) case dose not happen.

(0(5)||∆a,∆d||0(5)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL, XR ⊕ ∆a) = ∆d and CR(XL, XR) ⊕
CR(XL, XR ⊕∆a) = ∆0. The first equation is expressed as

τ3(Y )⊕S3(XR)⊕ τ3(Y )⊕S3(XR⊕∆a) = S3(XR)⊕S3(XR⊕∆a) = ∆d. (37)

Similarly, the second equation CR(XL, XR) ⊕ CR(XL, XR ⊕ ∆a) = ∆0 is ex-
pressed as

ρc(S
2
5(Y ⊕ (S3(XR)||0(2))))⊕ S3(XR)

⊕ ρc(S2
5(Y ⊕ (S3(XR ⊕∆a)||0(2))))⊕ S3(XR ⊕∆a)

= ρc(S
2
5(Y ⊕ (S3(XR)||0(2))))⊕ ρc(S2

5(Y ⊕ ((S3(XR)⊕∆d)||0(2))))⊕∆d = ∆0.

By applying ρ−1c , we have

S2
5(Y ⊕ (S3(XR)||0(2)))⊕ S2

5(Y ⊕ ((S3(XR)⊕∆d)||0(2))) = ∆d||0(2).

By applying Z, we obtain

S2
5(Z)⊕ S2

5(Z ⊕ (∆d||0(2))) = ∆d||0(2). (38)

Since the function (XL, XR) 7→ (Z,XR) is bijective, the (0(5)||∆a,∆d||0(5)) case
does not happen if and only if there is no (Z,XR) satisfying both Eqs. (37) and (38),
which is equivalent to condition i) where ∆α = ∆a, ∆β = ∆d.

(∆b||0(3), 0(3)||∆c) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆0 and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆c. The first equation is expressed as

τ3(S1
5(XL))⊕S3(XR)⊕τ3(S1

5(XL⊕∆b))⊕S3(XR) = τ3(S1
5(XL))⊕τ3(S1

5(XL⊕∆b)) = ∆0.
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Since S1
5 is bijective, for a non-zero difference ∆ω ∈ F2

2, the above equation
becomes

S1
5(XL)⊕ S1

5(XL ⊕∆b) = ∆ω.

The equation is rewritten as

S1
5(XL ⊕∆b) = S1

5(XL)⊕∆ω.

By applying (S1
5)−1, we obtain

XL ⊕∆b = (S1
5)−1(S1

5(XL)⊕∆ω).

By using the variables Y, Y ′ and A, we have

(S1
5)−1(Y )⊕ (S1

5)−1(Y ⊕∆ω) = ∆b,

(S1
5)−1(Y ′||A)⊕ (S1

5)−1(Y ′||(A⊕∆ω)) = ∆b. (39)

And the second equation CR(XL, XR)⊕CR(XL⊕∆b,XR) = ∆c is expressed as

ρc(S
2
5(S1

5(XL)⊕ (S3(XR)||0(2))))⊕ S3(XR)

⊕ ρc(S2
5(S1

5(XL ⊕∆b)⊕ (S3(XR)||0(2))))⊕ S3(XR)

= ρc(S
2
5(Z))⊕ ρc(S2

5(Z ⊕∆ω)) = ∆c.

By applying ρ−1c , we obtain

S2
5(Z)⊕ S2

5(Z ⊕∆ω) = ρ−1c (∆c).

This gives the equation

S2
5(Z ′||A)⊕ S2

5(Z ′||(A⊕∆ω)) = ρ−1c (∆c). (40)

For each A, the above Eqs. (39) and (40) are equivalent to

F1
A(Y ′)⊕ F1

A⊕∆ω(Y ′) = ∆b, (41)

F2
A(Z ′)⊕ F2

A⊕∆ω(Z ′) = ρ−1c (∆c). (42)

Here, ∆ω is arbitrary nonzero 2-bit difference, and thus we can define B =
A⊕∆ω i.e., B 6= A. Since the function (XL, XR) 7→ (Y ′, A, Z ′) is bijective, the
(∆b||0(3), 0(3)||∆c) case does not happen if and only if there is no (Y ′, A, Z ′) sat-
isfying both Eqs. (41) and (42) for all B(6= A), which is equivalent to condition
ii) where ∆α = ∆b, ∆β = ρ−1c (∆c).

(∆b||0(3), ∆d||0(5)) : It happens if and only if there exists at least one (XL, XR)
satisfying both CL(XL, XR) ⊕ CL(XL ⊕ ∆b,XR) = ∆d and CR(XL, XR) ⊕
CR(XL ⊕∆b,XR) = ∆0. The first equation is expressed as

τ3(S1
5(XL))⊕S3(XR)⊕τ3(S1

5(XL⊕∆b))⊕S3(XR) = τ3(S1
5(XL))⊕τ3(S1

5(XL⊕∆b)) = ∆d.
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For a difference ∆ω ∈ F2
2, the above equation becomes

S1
5(XL)⊕ S1

5(XL ⊕∆b) = ∆d||∆ω.

As in Eq. (39), we obtain

(S1
5)−1(Y ′||A)⊕ (S1

5)−1((Y ′ ⊕∆d)||(A⊕∆ω)) = ∆b. (43)

And the second equation is expressed as

ρc(S
2
5(S1

5(XL)⊕ (S3(XR)||0(2))))⊕ S3(XR)

⊕ ρc(S2
5(S1

5(XL ⊕∆b)⊕ (S3(XR)||0(2))))⊕ S3(XR)

= ρc(S
2
5(Z))⊕ ρc(S2

5(Z ⊕ (∆d||∆ω))) = ∆0.

Clearly,
S2
5(Z)⊕ S2

5(Z ⊕ (∆d||∆ω)) = ∆0.

It becomes
S2
5(Z ′||A)⊕ S2

5((Z ′ ⊕∆d)||(A⊕∆ω)) = ∆0. (44)

For each A, the above Eqs. (43) and (44) are equivalent to

F1
A(Y ′)⊕ F1

A⊕∆ω(Y ′ ⊕∆d) = ∆b, (45)

F2
A(Z ′)⊕ F2

A⊕∆ω(Z ′ ⊕∆d) = ∆0. (46)

Similarly to the case above, we define B = A⊕∆ω. In this time, B can be either848

A or not, since ∆ω can be a zero difference. The (∆b||0(3), ∆d||0(5)) case does not849

happen if and only if there is no (Y ′, A, Z ′) satisfying both Eqs. (45) and (46)850

for all B, which is equivalent to condition iii) where ∆α = ∆d, ∆β = ∆b. �851

B.10 Proof of Theorem 8852

We use CL, CR, Y , Y ′, Z, Z ′, and A defined in proof B.9.

(0(5)||λa, 0(3)||λc) : This case is expressed asXR•λa = CR(XL, XR)•λc. It follows

XR•λa = (ρc(S
2
5(S1

5(XL)⊕(S3(XR)||0(2))))⊕S3(XR))•λc. By applying the vari-
able Z, the equation becomes XR •λa⊕S3(XR)•λc = ρc(S

2
5(Z))•λc. Note that

the function (XL, XR) 7→ (Z,XR) is bijective. Suppose τ2(λc) 6= 0. Then, the
equation becomes XR •λa = ρc(S

2
5(Z)) •λc. This should have zero bias because

the equation XR•λa = 0 has zero bias, and Z and XR are independent variables.
Now, suppose τ2(λc) = 0. The equation XR • λa⊕S3(XR) • λc = ρc(S

2
5(Z)) • λc

has zero bias if and only if at least one of the entries (λa, τ
′
3(λc)) in LAT of

S3 and (0, τ ′3(λc)||0(2)) in LAT of S2
5 is zero. This is due to the fact that Z is

independent of XR. It is equivalent to condition i)

(0(5)||λa, λd||0(5)) : This case is expressed asXR•λa = CL(XL, XR)•λd. It follows
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XR•λa = (τ3(S1
5(XL))⊕S3(XR))•λd. The equation becomes XR•λa = τ3(Z)•λd

by using the definition of Z. So, this case has zero bias, because τ3(Z) is inde-
pendent of XR.

(λb||0(3), 0(3)||λc) : This case is expressed as XL • λb = CR(XL, XR) • λc. It

follows XL • λb = (ρc(S
2
5(S1

5(XL) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)) • λc. We can
replace the equation to

XL • λb ⊕ S1
5(XL) • λt

= (S1
5(XL)⊕ (S3(XR)||0(2))) • λt ⊕ ρc(S2

5(S1
5(XL)⊕ (S3(XR)||0(2)))) • λc,

where λt = τ ′3(λc)||0(2) (here, 0(2) can be replaced by 01, 10 or 1(2)). By applying
the variables of Y and Z, this becomes equivalent to the following equations

(S1
5)−1(Y ) • λb ⊕ Y • λt = Z • λt ⊕ (ρc(S

2
5(Z))) • λc,

(S1
5)−1(Y ′||A) • λb ⊕ (Y ′||A) • λt = (Z ′||A) • λt ⊕ (ρc(S

2
5(Z ′||A))) • λc.

For all A ∈ F2
2, we have

F1
A(Y ′) • λb ⊕ (Y ′||A) • λt = (Z ′||A) • λt ⊕ (ρc(F

2
A(Z ′))) • λc.

Clearly,

F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt) = Z ′ • τ3(λt)⊕ (ρc(F

2
A(Z ′))) • λc.

A collection of (Y ′, Z ′) that satisfies the above equation is equivalent to

{Y ′|0 = F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt)} × {Z ′|0 = Z ′ • τ3(λt)⊕ (ρc(F

2
A(Z ′))) • λc}

∪ {Y ′|1 = F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt)} × {Z ′|1 = Z ′ • τ3(λt)⊕ (ρc(F

2
A(Z ′))) • λc}

Then the number of the above set is (4 + aA)(4 + bA) + (4 − aA)(4 − bA) =
32+2aAbA, where aA and bA are the entries of (τ3(λt), λb) and (τ3(λt), ρ

−1
c (λc))

in LAT of F1
A and F2

A, respectively. The above equation has zero bias if and only
if ∑

A∈F2
2

(32 + 2aAbA) = 2(
∑
A∈F2

2

aAbA) + 128 = 128

It leads to
∑
A∈F2

2
aAbA = 0. Because τ3(λt) = τ ′3(λc), it is equivalent to condi-853

tion ii) (when τ ′3(λc) 6= 0) and condition iii) (when τ ′3(λc) = 0).854

855

(λb||0(3), λd||0(5)) : This case is expressed as XL•λb = CL(XL, XR)•λd. It follows856

XL •λb = (τ3(S1
5(XL))⊕S3(XR)) •λd. The equation becomes XL •λb = Z ′ •λd857

by using the definition of Z ′. We note that the function (XL, XR) 7→ (XL, Z
′) is858

bijective, and XL and Z ′ are independent variables. So, this equation has zero859

bias. �860
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C Bitsliced Implementations of New S-Boxes861

Listing 1.2 is the bitsliced implementation of the S8.5 The bitsliced implemen-862

tation of the inverse S8 cannot be obtained by reversing the bitsliced implemen-863

tation of the S8 because the input bits of S2
5 are not all given. The Listing 1.3864

shows how to implement the inverse S8 with the given input bits. Since the S8865

applies each column of 8×8 array of bits depicted in Fig. 2, we can implement the866

S-layer by replacing bit x[i] with byte X[i] which represents the i-th row value,867

where i = 0, 1, 2, · · · , 7. Listings 1.4∼1.9 represent bitsliced implementations of868

other new S-boxes.869

870

Listing 1.2. The bitsliced implementation of the S8 (in C code)
871

//(MSb: x[7], LSb: x[0]) :"b" represents bit872

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]873

// S5_1874

x[5] ^= (x[7] & x[6]);875

x[4] ^= (x[3] & x[5]);876

x[7] ^= x[4];877

x[6] ^= x[3];878

x[3] ^= (x[4] | x[5]);879

x[5] ^= x[7];880

x[4] ^= (x[5] & x[6]);881

// S3882

x[2] ^= x[1] & x[0];883

x[0] ^= x[2] | x[1];884

x[1] ^= x[2] | x[0];885

x[2] = ~x[2];886

// Extend XOR887

x[7] ^= x[1]; x[3] ^= x[2]; x[4] ^= x[0];888

//S5_2889

t[0] = x[7]; t[1] = x[3]; t[2] = x[4];890

x[6] ^= (t[0] & x[5]);891

t[0] ^= x[6];892

x[6] ^= (t[2] | t[1]);893

t[1] ^= x[5];894

x[5] ^= (x[6] | t[2]);895

t[2] ^= (t[1] & t[0]);896

// truncate XOR and swap897

x[2] ^= t[0]; t[0] = x[1] ^ t[2]; x[1] = x[0]^t[1];898

x[0] = x[7]; x[7] = t[0];899

t[1] = x[3]; x[3] = x[6]; x[6] = t[1];900

t[2] = x[4]; x[4] = x[5]; x[5] = t[2];901

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]902
903

5 For a higher resistance against DC and LC, swapping bits is additionally conducted
in the S8 design.
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Listing 1.3. The bitsliced implementation of the inverse S8 (in C code)
904

//(MSb: x[7], LSb: x[0]) :"b" represents bit905

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]906

t[0] = x[7]; x[7] = x[0]; x[0] = x[1]; x[1] = t[0];907

t[0] = x[7]; t[1] = x[6]; t[2] = x[5];908

// S52 inv909

x[4] ^= (x[3] | t[2]);910

x[3] ^= (t[2] | t[1]);911

t[1] ^= x[4];912

t[0] ^= x[3];913

t[2] ^= (t[1] & t[0]);914

x[3] ^= (x[4] & x[7]);915

// Extended XOR916

x[0] ^= t[1]; x[1] ^= t[2]; x[2] ^= t[0];917

t[0] = x[3]; x[3] = x[6]; x[6] = t[0];918

t[0] = x[5]; x[5] = x[4]; x[4] = t[0];919

// Truncated XOR920

x[7] ^= x[1]; x[3] ^= x[2]; x[4] ^= x[0];921

// Inv_S5_1922

x[4] ^= (x[5] & x[6]);923

x[5] ^= x[7];924

x[3] ^= (x[4] | x[5]);925

x[6] ^= x[3];926

x[7] ^= x[4];927

x[4] ^= (x[3] & x[5]);928

x[5] ^= (x[7] & x[6]);929

// Inv_S3930

x[2] = ~x[2];931

x[1] ^= x[2] | x[0];932

x[0] ^= x[2] | x[1];933

x[2] ^= x[1] & x[0];934

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]935
936

Listing 1.4. The bitsliced implementation of the S-box with both DBN and LBN of
3 constructed by the Feistel structure (in C code)

937

//(MSb: x[7], LSb: x[0]) :"b" represents bit938

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]939

t[0] = x[4]; t[1] = x[5]; t[2] = x[6]; t[3] = x[7];940

//S4941

t[4] = x[6];942

x[7] ^= (x[6] | x[5]);943

x[6] = (x[5] ^ (x[6] & x[7]));944

x[5] = (x[4] ^ x[7]);945

x[4] = (x[7] ^ (x[6] | x[5]));946

x[7] = (t[4] ^ x[4]);947

x[4] ^= (x[7] & x[5]);948

//XOR and Swap949

x[4] ^= x[0]; x[5] ^= x[1]; x[6] ^= x[2]; x[7] ^= x[3];950
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x[0] = t[0]; x[1] = t[1]; x[2] = t[2]; x[3] = t[3];951

t[0] = x[4]; t[1] = x[5]; t[2] = x[6]; t[3] = x[7];952

//S4953

t[4] = x[6];954

x[7] ^= (x[6] | x[5]);955

x[6] = (x[5] ^ (x[6] & x[7]));956

x[5] = (x[4] ^ x[7]);957

x[4] = (x[7] ^ (x[6] | x[5]));958

x[7] = (t[4] ^ x[4]);959

x[4] ^= (x[7] & x[5]);960

//XOR and Swap961

x[4] ^= x[0]; x[5] ^= x[1]; x[6] ^= x[2]; x[7] ^= x[3];962

x[0] = t[0]; x[1] = t[1]; x[2] = t[2]; x[3] = t[3];963

t[0] = x[4]; t[1] = x[5]; t[2] = x[6]; t[3] = x[7];964

//S4965

t[4] = x[6];966

x[7] ^= (x[6] | x[5]);967

x[6] = (x[5] ^ (x[6] & x[7]));968

x[5] = (x[4] ^ x[7]);969

x[4] = (x[7] ^ (x[6] | x[5]));970

x[7] = (t[4] ^ x[4]);971

x[4] ^= (x[7] & x[5]);972

//XOR and Swap973

x[0] ^= x[4]; x[1] ^= x[5]; x[2] ^= x[6]; x[3] ^= x[7];974

x[4] = t[0]; x[5] = t[1]; x[6] = t[2]; x[7] = t[3];975

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]976
977

Listing 1.5. The bitsliced implementation of the S-box with both DBN and LBN of
3 constructed by the Lai-Massey structure (in C code)

978

//(MSb: x[7], LSb: x[0]) :"b" represents bit979

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]980

// XOR981

t[0]=x[4]^x[0];t[1]=x[5]^x[1];t[2]=x[6]^x[2];t[3]=x[7]^x[3];982

// S5_1983

t[4] = t[2];984

t[3] ^= (t[2] | t[1]);985

t[2] = (t[1] ^ (t[2] & t[3]));986

t[1] = (t[0] ^ t[3]);987

t[0] = (t[3] ^ (t[2] | t[1]));988

t[3] = (t[4] ^ t[0]);989

t[0] ^= (t[3] & t[1]);990

// XOR991

x[4]^=t[0]; x[5]^=t[1]; x[6]^=t[2]; x[7]^=t[3];992

// S5_2993

t[4] = x[6];994

x[7] ^= (x[6] | x[5]);995

x[6] = (x[5] ^ (x[6] & x[7]));996

x[5] = (x[4] ^ x[7]);997

x[4] = (x[7] ^ (x[6] | x[5]));998
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x[7] = (t[4] ^ x[4]);999

x[4] ^= (x[7] & x[5]);1000

// XOR1001

x[0]^=t[0]; x[1]^=t[1]; x[2]^=t[2]; x[3]^=t[3];1002

// S5_31003

x[2] ^= (x[1]& x[0]);1004

x[0] ^= x[2];1005

x[1] ^= x[3];1006

x[2] ^= (x[3] | x[1]);1007

x[3] ^= x[0];1008

x[0] ^= (x[2]| x[1]);1009

x[1] ^= (x[2]& x[0]);1010

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]1011
1012

Listing 1.6. The bitsliced implementation of the S-box with both DBN and LBN of
3 constructed by the unbalanced-MISTY structure (in C code)

1013

//(MSb: x[7], LSb: x[0]) :"b" represents bit1014

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]1015

// S5_11016

x[6]^=(x[7] & x[3]);1017

x[7]^=x[6];1018

x[4]^=(x[7] & x[5]);1019

x[5]^=x[4];1020

x[7]^=(x[3] | x[4]);1021

x[4]^=x[6];1022

x[3]^=(x[6] | x[5]);1023

// Extend XOR1024

x[7] ^= x[0];x[6] ^= x[2];x[5] ^= x[1];1025

// S31026

x[1] = ~x[1];1027

x[1] ^= x[0] & x[2];1028

x[0] ^= x[2] | x[1];1029

x[2] ^= x[0] & x[1];1030

// Truncated XOR1031

x[2] ^= x[7];x[1] ^= x[6];x[0] ^= x[5];1032

// S5_21033

x[4] ^= (x[7] & x[5]);1034

x[7] ^= x[3];1035

x[3] ^= x[4];1036

x[6] ^= (x[4] & x[7]);1037

x[5] ^= x[4];1038

x[3] ^= (x[6] & x[5]);1039

x[5] ^= (x[3] | x[6]);1040

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]1041
1042

Listing 1.7. The bitsliced implementation of the S-box with DBN of 4 and LBN of 3
constructed by the unbalanced-Bridge (in C code)

1043

//(MSb: x[7], LSb: x[0]) :"b" represents bit1044
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// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]1045

// S5_11046

t[0] = x[7] ^ x[5];1047

t[1] = x[6] ^ t[0];1048

t[2] = x[3] ^ x[4];1049

t[3] = x[7] ^ (t[0] | t[1]);1050

t[4] = x[5] ^ (x[7] & t[1]);1051

x[5] = t[3] ^ x[6] ^ t[2];1052

x[6] = t[1] ^ (x[4] | x[3]);1053

x[3] = x[4];1054

x[7] = t[2] ^ x[6];1055

x[4] = t[4];1056

// S31057

t[0] = x[1] ^ x[2];1058

t[1] = x[0] ^ t[0];1059

t[2] = t[1] | x[1];1060

t[3] = t[1] & t[0];1061

x[1] = t[3] ^ t[2];1062

x[0] = x[2] ^ t[3];1063

x[2] = t[1];1064

// XOR1065

x[7] ^= x[2];x[6] ^= x[1];x[5] ^= x[0];1066

// S5_21067

t[0] = x[6] ^ x[7];1068

t[1] = t[0] ^ x[3];1069

t[2] = t[1] ^ (x[5] | x[6]);1070

t[3] = x[4] ^ (t[2] & x[3]);1071

t[4] = x[6] ^ t[3];1072

t[1] ^= (x[4] & x[5]);1073

x[3] = x[5] ^ t[4];1074

x[4] = x[3] ^ t[2];1075

t[2] = t[1] ^ x[5];1076

t[0] ^= x[5];1077

// XOR1078

x[2] ^= t[2];x[1] ^= t[1];x[0] ^= t[0];1079

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]1080
1081

Listing 1.8. The bitsliced implementation of the 6-bit S-box with both DBN and LBN
of 3 constructed by the Feistel structure (in C code)

1082

//(MSb: x[5], LSb: x[0]) :"b" represents bit1083

// Input: x[5], x[4], x[3], x[2], x[1], x[0]1084

// S3_11085

t[2] = x[4] ^ x[5];1086

t[1] = x[5] ^ x[3];1087

t[0] = x[4] | x[3];1088

t[0] = t[1] ^ t[0];1089

t[1] = t[1] | t[2];1090

t[2] = t[2] & x[3];1091

// XOR1092
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x[0]^=t[0]; x[1]^=t[1]; x[2]^=t[2];1093

// S3_21094

t[2] = x[0] & x[1];1095

t[2] = t[2] ^ x[2];1096

t[0] = x[1] | x[2];1097

t[0] = t[0] ^ x[0];1098

t[1] = x[2] & t[0];1099

t[1] = t[1] ^ x[1];1100

// XOR1101

x[3]^=t[0]; x[4]^=t[1]; x[5]^=t[2];1102

// S3_31103

t[2] = x[4] & x[3];1104

t[1] = t[2] ^ x[5];1105

t[2] = x[5] | x[4];1106

t[2] = x[3] ^ t[2];1107

t[0] = t[2] ^ x[4];1108

t[0] = x[5] & t[0];1109

// XOR1110

x[0]^=t[0]; x[1]^=t[1]; x[2]^=t[2];1111

// Output: x[5], x[4], x[3], x[2], x[1], x[0]1112
1113

Listing 1.9. The bitsliced implementation of the 7-bit S-box with both DBN and LBN
of 3 constructed by unbalanced-MISTY structure (in C code)

1114

//(MSb: x[6], LSb: x[0]) :"b" represents bit1115

// Input: x[6], x[5], x[4], x[3], x[2], x[1], x[0]1116

// S4_11117

x[4] ^= x[5] & x[3];1118

x[5] ^= x[4];1119

x[3] ^= x[6];1120

x[4] ^= x[6] | x[3];1121

x[6] ^= x[5];1122

x[5] ^= x[3] | x[4];1123

x[3] ^= x[5] & x[4];1124

T[0]=x[6]; x[6] = x[3]; x[3] = T[0];1125

// Extend XOR1126

x[4]^=x[0]; x[5]^=x[1]; x[6]^=x[2];1127

// S31128

T[0] = x[1] | x[2];1129

T[2] = x[1];1130

x[1] = T[0] ^ x[0];1131

T[1] = ~x[2];1132

T[0] = x[1] & x[2];1133

x[2] = T[2] ^ T[0];1134

T[0] = T[2] | x[1];1135

x[0] = T[0] ^ T[1];1136

// Truncated XOR1137

x[0]^=x[4]; x[1]^=x[5]; x[2]^=x[6];1138

// S4_21139

x[5] ^= x[6]& x[4];1140
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x[6] ^= x[5];1141

x[4] ^= x[3];1142

x[5] ^= x[3] | x[4];1143

x[3] ^= x[6];1144

x[6] ^= x[4] | x[5];1145

x[4] ^= x[6] & x[5];1146

T[0] = x[4]; x[4] = x[3]; x[3] = T[0];1147

// Output: x[6], x[5], x[4], x[3], x[2], x[1], x[0]1148
1149

D Detailed Security Analysis of PIPO1150

We provide a security analysis of PIPO against relevant and powerful attacks.1151

D.1 Differential Cryptanalysis1152

Differential Cryptanalysis [20] (DC) is one of the most powerful attacks on block1153

ciphers. After examining all possible differential trails using the branch and1154

bound technique [58], we found the minimum numbers of differential active S-1155

boxes and probabilities of the best differential trails for up to 7 rounds (Table 12).1156

The best of these differential trails reaches 6 rounds with a probability of 2−54.4,1157

and 18,944 such 6-round trails were found, each with different input and output1158

differences. One of them is given in Fig. 6.

Table 12. Minimum numbers of differential active S-boxes and probabilities of best
differential trails

Rounds

1 2 3 4 5 6 7

#(Active S-box) 1 2 4 6 9 11 13

Prob. of best trail 2−4 2−8 2−16 2−26.8 2−40.4 2−54.4 2−65

1159

In order to obtain a differential probability, we need to investigate all dif-1160

ferential trails with the same input and output differences and sum up their1161

probabilities. For the best 6 and 7-round differential trails mentioned above, we1162

repeatedly searched for the next-best possible differential trails until these trails1163

made only negligible contributions to the differential probability. This search1164

showed that the best differential probabilities for 6 and 7-round PIPO are not1165

greater than 2−54 and 2−64, respectively. We could append three rounds and five1166

rounds to the best 6-round differentials as the key recovery of PIPO-64/128 and1167

PIPO-64/256, respectively. A detailed attack on 9-round PIPO-64/128 (together1168

with the computation of differential probabilities) is described below.1169
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Fig. 6. 6-round differential trail with probability 2−54.4 (R-layer+ : R-layer followed
by round key and constant-XOR)

9-Round Differential Attack on PIPO-64/128. As stated in Section D.1,1170

the best differential trails reach 6 rounds with probability 2−54.4, and the num-1171

ber of such trails we found is 18,944. The number of these trails is reduced to1172

2,368 except for all rotation equivalences. In order to consider the differential ef-1173

fect, we repeatedly searched for the next-best possible 6-round differential trails1174

whose probabilities are between 2−54.4 and 2−64.4. Our simulations demonstrate1175

that at most 4 differential trails contribute to a differential. Consequently, each1176

summation of the relevant probabilities ranges from 2−54.3729 to 2−54.415. Refer1177

to Table 13 for more details.1178

Based on the differential trail depicted in Fig. 6, we could find the 6-round dif-1179

ferential (∆8800088008088000→∆0010000200010018) with probability 2−54.4087.1180

For a better understanding of our differential attack, each state is re-ordered1181

with S-box input-wise (column-wise) representation (e.g., ∆88000880080880001182

re−order−−−−−−→ ∆92000000AC000000 and ∆0010000200010018
re−order−−−−−−→ ∆0000004101183

1001004). Hereinafter, we consider re-ordered differentials and values. Adding1184

one and two rounds at the beginning and the end of the differential respectively,1185

we could attack 9-round PIPO. The following notation is used to describe our1186

differential attack.1187

– ∆Sr : The difference in outputs of the r-th round’s S-layer.1188

– ∆Rr : The difference in outputs of the r-th round’s R-layer.1189

– ∆Kr : The difference in outputs of the r-th round’s key and constant-XOR.1190

– ∆K0 : The difference in outputs of the whitening key-XOR.1191

– S−1 : The inverse S-box.1192

– S : The inverse S-layer.1193

– R−1 : The inverse R-layer.1194

– Y [i]: The 8-bit value in the i-th column of a 64-bit Y (i starts from the right).1195
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Table 13. 6-round differentials and their probabilities

Probabilities of differential trails contributing to a differential Differential Prob. Number of differentials

2−54.415, 2−60.0, 2−61.8301, 2−62.8301 2−54.3729 8

2−54.415, 2−60.0, 2−62.8301, 2−63.8301 2−54.3791 16

2−54.415, 2−60.0, 2−64.0, 2−64.0 2−54.3816 16

2−54.415, 2−60.0 2−54.3853 88

2−54.415, 2−61.0, 2−61.8301, 2−62.8301 2−54.3876 4

2−54.415, 2−61.0, 2−62.8301, 2−63.8301 2−54.3938 8

2−54.415, 2−61.8301, 2−62.0, 2−62.8301 2−54.3949 8

2−54.415, 2−61.0, 2−64.0, 2−64.0 2−54.3963 8

2−54.415, 2−61.0 2−54.4001 44

2−54.415, 2−62.0, 2−62.8301, 2−63.8301 2−54.4012 16

2−54.415, 2−61.8301, 2−62.8301 2−54.4024 128

2−54.415, 2−62.0, 2−64.0, 2−64.0 2−54.4038 16

2−54.415, 2−62.0 2−54.4075 88

2−54.415, 2−62.8301, 2−63.8301 2−54.4087 256

2−54.415, 2−64.0, 2−64.0 2−54.4112 88

2−54.415 2−54.415 1,576

Total 2,368

– Y [i, j, ..., k] : The concatenation of Y [i], Y [j], ... , and Y [k].1196

– RRKi : The re-ordered state of RKi ⊕ ci where RKi and ci are the i-th1197

round key and constant.1198

– RRK ′i : R−1(RRKi).1199

The 9-round differential attack is outlined in Table 14. Note that the 20-bit1200

of RRK ′8[0, 1, 3, 4] can be derived from RRK0[0, 1, 5, 6, 7] since the whitening1201

key RK0 and the 8-th round key RK8 equal as K0 according to the key schedule1202

for PIPO (128-bit master key K = K1||K0).1203

Data Collection. We establish structures consisting of 240 plaintexts which have1204

all distinct values on 0, 1, 5, 6, and 7-th columns and a fixed value on the1205

other columns. Since plaintexts in each structure have all distinct values on the1206

corresponding columns, we can match 239 pairs in a structure whose differences1207

all satisfy ∆S1 after guessing the re-ordered whitening key RRK0[0, 1, 5, 6, 7].1208

As the 7-th round output difference of such a pair has a probability of 2−54.40871209

to satisfy ∆K7 with the right key, each structure is expected to have 2−15.40871210

right pairs with the right key guess. So as to expect the number of the right1211

pairs to be four, we chose to establish 217.4087 structures. Thus the total data1212

complexity for our attack is 217.4087 × 240 = 257.4087.1213

Key Recovery. Our key recovery includes the key guess for partial 52-bit of K01214

and all 64-bit of K1. Totally, we need 2116 counters for the guessed keys. Algo-1215

rithm 1 presents our key recovery procedure in detail. Taking advantage of the1216

early abort technique at ∆K8 and ∆K7, the time complexity is about 217.4087×1217
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Table 14. The 9-round differential attack on PIPO : col. means column, and “0” and
“1” are one-bit differences 0 and 1, respectively, while the “?” denotes an undetermined
one-bit difference.

7-th col. 6-th col. 5-th col. 4-th col. 3-rd col. 2-nd col. 1-st col. 0-th col. prob.

∆K0 01??1??? ???????? 1?????1? 00000000 00000000 00000000 0??????? ????????

1
1R

∆S1 00000100 00100000 10000000 00000000 00000000 00000000 10010000 00001010

∆R1 10010010 00000000 00000000 00000000 10101100 00000000 00000000 00000000

∆K1 10010010 00000000 00000000 00000000 10101100 00000000 00000000 00000000

2R

∼
7R

∆S2
... 2−54.4087· · ·

∆K7 00000000 00000000 00000000 01000001 00000001 00000000 00010000 00000100

8R

∆S8 00000000 00000000 00000000 ???????? ??1????? 00000000 ???????1 ?1??????

1

∆R8 000????0 ?0???000 ???00?00 0?00??0? ?000?0?? ??0?00?0 01??0001 00100???

∆K8 000????0 ?0???000 ???00?00 0?00??0? ?000?0?? ??0?00?0 01??0001 00100???

9R

∆S9 ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????????

∆R9 ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????????

∆K9 ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????????

240 × (240 × 5 + (247 + 249 + 252 + 256 + · · ·+ 272 + 271 + 266 + 262 + 258)× 2︸ ︷︷ ︸
the early abort technique

)1218

≈ 2131.0717 S-box look-ups, equivalently about 2124.9017 9-round PIPO encryp-1219

tions.1220
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Algorithm 1: Key recovery procedure on 9-round PIPO

1 for each of the prepared 217.4087 structures do

// A structure consists of 240 of (Pi, Ci)

2 for each guess for RRK0[0, 1, 5, 6, 7] do

3 rrk0[0, 1, 5, 6, 7]← the 40-bit guess

4 for each plaintext(Pi) in a structure do

5 P ′i [0, 1, 5, 6, 7]← S(Pi[0, 1, 5, 6, 7]⊕ rrk0[0, 1, 5, 6, 7])
6 end

7 Match all (Ci, Cj) where P ′i [0, 1, 5, 6, 7]⊕ P
′
j [0, 1, 5, 6, 7] = ∆S1[0, 1, 5, 6, 7].

// 239 distinct pairs (Ci, Cj) are matched in each structure.

// The following applies the early abort technique for RRK′9 and

RRK′8[0, 1, 3, 4].

8 for each of the matched pairs (Ci, Cj) do

9 C′i ← R−1(Ci), C
′
j ← R−1(Cj)

// By the order 1,0,2,3,4,5,6,7-th columns of ∆K8

// 8-bit guess and 6-bit filtering

10 for each guess for RRK′9[1] do

11 rrk′9[1]← the 8-bit guess

12 k9i [1]← S−1(C′i[1]⊕ rrk
′
9[1]), k

9
j [1]← S−1(C′j [1]⊕ rrk

′
9[1])

13 if (k9i [1]⊕ k
9
j [1]) 6= ∆K8[1] then break

// 8-bit guess and 5-bit filtering

14 for each guess for RRK′9[0] do

15

. . .

// 8-bit guess and 4-bit filtering

16 for each guess for RRK′9[7] do

17 rrk′9[7]← the 8-bit guess

18 k9i [7]← S−1(C′i[7]⊕ rrk
′
9[7]), k

9
j [7]← S−1(C′j [7]⊕ rrk

′
9[7])

19 if (k9i [7]⊕ k
9
j [7]) 6= ∆K8[7] then break

20 C′′i ← R−1(k9i ), C
′′
j ← R−1(k9j )

// By the order 0,1,3,4-th columns of ∆K7

// 3-bit guess and 8-bit filtering

21 for each possible guess for RRK′8[0] do

22 rrk′8[0]← the 3-bit guess and 5-bit derivation from

rrk0[0, 1, 5, 6, 7]

23 ∆k7[0]← S−1(C′′i [0]⊕ rrk
′
8[0])⊕ S

−1(C′′j [0]⊕ rrk
′
8[0])

24 if ∆k7[0] 6= ∆K7[0] then break

25

. . .

// 3-bit guess and 7-bit filtering

26 for each possible guess for RRK′8[4] do

27 rrk′8[4]← the 3-bit guess and 5-bit derivation from

rrk0[0, 1, 5, 6, 7]

28 ∆k7[4]← S−1(C′′i [0]⊕ rrk
′
8[4])⊕ S

−1(C′′j [4]⊕ rrk
′
8[4])

29 if (∆k7[4] = ∆K7[4] then

30 Increase the corresponding 116-bit key counter.

31 end

32 end

33 end

34 end

35 end

36 end

37 end

38 end

39 end

40 Derive partial 52-bit of K0 and 64-bit of K1 from the max-counted re-ordered key.

1221
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D.2 Linear Cryptanalysis1222

Linear Cryptanalysis [56] (LC), along with DC, is a powerful attack on block1223

ciphers. Given a linear trail (linear approximation) with probability p, the bias1224

ε is defined as p− 1
2 and the correlation potential [33] as 4ε2. For LC to work on1225

an n-bit block cipher, the correlation potential should be greater than 2−n.1226

We investigated all possible linear trails for up to 7 rounds, in order to find1227

the minimum numbers of linear active S-boxes and the correlation potentials of1228

the best linear trails (Table 15). The best of these linear trails reaches 6 rounds1229

with a correlation potential of 2−52, and 768 such 6-round trails were found, each1230

with different input and output masks. An example trail is presented in Fig. 7.

Table 15. Minimum numbers of linear active S-boxes and best correlation potentials
of linear trails

Rounds

1 2 3 4 5 6 7

#(Active S-box) 1 2 4 6 9 11 13

Best correlation potential 2−4 2−8 2−16 2−24 2−38 2−52 2−66

Fig. 7. 6-round linear trail with correlation potential 2−52

1231

The average correlation potential, which is a more accurate metric for LC,1232

is the sum of the correlation potentials of all linear trails with the same input1233

and output masks [33,74]. To calculate this, we searched for the next-best linear1234

trails with the same input and output masks used by the best 6 and 7-round1235

trails. However, we found that only a few linear trails improved the correlation1236
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potential, so we concluded that the best average correlation potentials for 6 and1237

7-round PIPO are not greater than 2−51 and 2−64, respectively. Similarly to DC,1238

a LC based key recovery attack could be applied up to 9-round PIPO-64/1281239

and 11-round PIPO-64/256.1240

D.3 Impossible Differential Attack1241

Impossible differential cryptanalysis [17] exploits impossible differentials. When1242

a differential has probability zero, the differential is called an impossible differen-1243

tial. To search for impossible differentials, we developed a SAT-based finder that1244

collects zero-probability differentials with given input and output differences for1245

a reduced-round PIPO [60]. We investigated whether there are impossible dif-1246

ferentials satisfying the following conditions which are expected to go through1247

the longest rounds: the input difference activates one S-box, and the output1248

difference activates one S-box.1249

In total, there are 8 × 255 = 2, 040 differences for input and output, which1250

satisfy the above conditions, creating a search pool of (2, 040)2 = 4, 161, 600 pairs1251

of input and output differences. After testing whether any of these 4,161,6001252

choices yielded impossible differentials for a 4 or 5-round PIPO, we found 52,8561253

4-round impossible differentials, and no 5-round impossible differentials. Using1254

these impossible differentials we could not design any shortcut attack on more1255

than 6 rounds of PIPO-64/128 or 8 rounds of PIPO-64/256.1256

D.4 Boomerang and Rectangle Attacks1257

The boomerang and rectangle attacks [18,69] exploit a variety of two independent
differentials. These attacks are effective when an n-bit cipher satisfies p̂ × q̂ ≤
2−n/2, where

p̂ =

√∑
β

Pr2[α→ β], and q̂ =

√∑
γ

Pr2[γ → δ].

Based on the best 3 and 4-round differential trails (Table 12), we computed p̂1258

and q̂. For 3 rounds, we investigated all differential trails with probabilities in the1259

range 2−24 ∼ 2−16, obtaining approximate values of p̂ = 2−12.11 and q̂ = 2−13.86.1260

For 4 rounds, we investigated all differential trails with probabilities in the range1261

2−32 ∼ 2−24, obtaining approximate values of p̂ = 2−22.94 and q̂ = 2−22.23. For1262

more details, see Table 16 (note that differential trails with probabilities less than1263

the minimum probabilities in Table 16 have minor contributions to p̂ and q̂).1264

These results indicate that PIPO has 6-round boomerang and rectangle dis-1265

tinguishers that allow for key recovery attacks on at most 8 rounds of PIPO-1266

64/128 and 10 rounds of PIPO-64/256 (unlike DC, these attacks are hard to1267

have filtering effects of partially decrypted data for each guessed key). We also1268

confirmed that advanced techniques such as boomerang switch [22,70] are not1269

applicable to PIPO. Thus, we believe that PIPO cannot be compromised by1270

boomerang or rectangle attacks.1271
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Table 16. Numbers of 3 and 4-round differential trails with respect to probabilities

3 rounds for p̂ for q̂ 4 rounds for p̂ for q̂

Prob. Number of trails Prob. Number of trails

2−16 = p 64 32 2−24 = p 0 0

2−16 > p ≥ 2−17 512 0 2−24 > p ≥ 2−25 0 0

2−17 > p ≥ 2−18 904 64 2−25 > p ≥ 2−26 0 0

2−18 > p ≥ 2−19 5,024 0 2−26 > p ≥ 2−27 56 128

2−19 > p ≥ 2−20 7,380 512 2−27 > p ≥ 2−28 688 576

2−20 > p ≥ 2−21 12,560 0 2−28 > p ≥ 2−29 2,176 960

2−21 > p ≥ 2−22 7,488 1,546 2−29 > p ≥ 2−30 1,598 2,816

2−22 > p ≥ 2−23 4,416 2,395 2−30 > p ≥ 2−31 3,088 5,472

2−23 > p ≥ 2−24 6,656 4,847 2−31 > p ≥ 2−32 5,000 19,936

...
...

...
...

...
...

*In this table, p is the probability of differential trails.

D.5 Algebraic Attack1272

The S-boxes S3, S
1
5 , and S2

5 used in PIPO are described by 14, 25, and 251273

quadratic equations and 6, 10 and 10 variables over GF (2), respectively. Since1274

PIPO uses eight S8s per round, it can be expressed by 64 × 8 × 13 quadratic1275

equations in 26 × 8 × 13 variables. Therefore, it requires 6,656 quadratic equa-1276

tions and 2,704 variables, more than those required by AES (consisting of 6,4001277

equations in 2,560 variables [30]). This indicates that PIPO provides a high level1278

of security against algebraic attacks.1279

D.6 Integral Attack1280

Using the method presented in [27], we found the cumulative algebraic degrees of1281

several PIPO rounds (Table 17). The cumulative algebraic degree is calculated1282

over plaintext and key variables. Since PIPO encrypts 64-bit data blocks and1283

has a cumulative algebraic degree of 63 after 5 rounds, it would be difficult to1284

create an r-round integral distinguisher for r ≥ 5. Thus, we believe that PIPO is1285

resistant to the integral attack.1286

Table 17. Cumulative algebraic degrees of PIPO

# of rounds 1 2 3 4 5 6 7 · · ·
Cumulative algebraic degrees 5 25 57 62 63 63 63 · · ·
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D.7 Statistical Saturation Attack1287

For 4 selected S-box positions, 16 out of 32 bits are directed to the same posi-1288

tions even after the R-layer is applied, as indicated in Fig. 8. This weak R-layer1289

diffusion can be targeted by the statistical saturation attack [31].1290

A series of simulations were performed to test the statistical saturation attack1291

on PIPO. These simulations can be classified into 5 sets. Each set is independent1292

of the others (i.e., they all use randomly generated different keys), it uses a single1293

key, and it includes 10 experiments from which the average squared Euclidean1294

distance is calculated. In each experiment, a squared Euclidean distance between1295

a uniform distribution and a 16-bit distribution (black cells in Fig. 8) after 2321296

plaintexts were computed. These cells, which are all fixed by the same 32-bit1297

value in colored cells and receive all values in the white cells (on the left side of1298

Fig. 8), are encrypted by 2∼4 rounds of PIPO. Simulation results are presented1299

in Table 18.1300

Fig. 8. A weak diffusion of the R-layer on 4 selected S-boxes

Table 18. Experimental results on the average squared Euclidean distances with 232

plaintexts

2-round 3-round 4-round

Simulation 1 2−12.580 2−20.900 2−30.783

Simulation 2 2−12.529 2−20.977 2−30.656

Simulation 3 2−12.358 2−20.908 2−30.902

Simulation 4 2−12.645 2−20.766 2−30.712

Simulation 5 2−12.492 2−20.888 2−30.622

The above simulation results indicate that the addition of a round multiplies1301

the distance by a factor of approximately 2−9. Assuming the distance continues1302

to decrease by a similar factor, PIPO with more than 7 rounds would have no1303

statistical saturation distinguisher. Thus, we believe that PIPO is sufficiently1304

resistant to the statistical saturation attack.1305
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D.8 Invariant Subspace Attack1306

The invariant subspace attack exploits a subspace A and constants u, v such that1307

F (u⊕A) = v ⊕A, where F is a round transformation of a block cipher [52,53].1308

For the round key rk ∈ A⊕ u⊕ v, F ⊕ rk maps the subspace u⊕A onto itself,1309

because F (u⊕A)⊕rk = v⊕A⊕rk = u⊕A. However, we can avoid this invariant1310

subspace by using appropriate round constants; recall that PIPO uses a round1311

constant (counter) that is XORed with the least-significant byte of the state at1312

the end of each round.1313

We investigated all possible invariant subspace transitions in the S8, finding1314

a total of 124 invariant subspace transitions (excluding dimension 8); 120 and 41315

such transitions exist in dimentions 1 and 2, respectively. One such example is1316

{0x00, 0x6F}⊕ 0x25
S8−→ {0x00, 0x6F}⊕ 0xBE. If we disregard the R-layer and1317

round constant, and the corresponding round key byte is in the {0x00, 0x6F} ⊕1318

0x9B, then we can use this invariant subspace transition again in the next round1319

since 0xBE ⊕ 0x9B = 0x25.1320

However, XORing a different constant with the state in each round breaks all1321

the invariant subspaces, even though we can bypass the R-layer by applying the1322

same input subspace to all 8 S-boxes in the S-layer. We confirmed by simulation1323

that there are no invariant subspaces in PIPO.1324

D.9 Nonlinear Invariant Attack1325

The nonlinear invariant attack [67] exploits nonlinear invariant equations through1326

ciphers (for some weak-key classes). This attack can be mounted when 1) the1327

S-box has at least one nonlinear invariant equation with probability one and 2)1328

the equations generated by each round can be XORed to produce an equation1329

whose variables consist purely of plaintext, ciphertext, and round key bits.1330

PIPO uses different rotations for different rows to send all the 8 output bits1331

of an S8 to the inputs of different S8’s in the next round, breaking the second1332

condition. Thus, PIPO is secure against the nonlinear invariant attack.1333

D.10 Meet-in-the-Middle Attack1334

We here present a key recovery attack against 6-round PIPO-64/128 using meet-1335

in-the-middle (MITM) attack with splice-and-cut and initial-structure (IS) tech-1336

niques [4,62]. In this analysis, 6-round PIPO-64/128 is separated into 5 chunks,1337

as shown in Table 19.

Table 19. Chunk separation for 6-round MITM attack on PIPO-64/128

Roundkey RK0 RK1 RK2 RK3 RK4 RK5 RK6

Subkey K0 K1 K0 K1 K0 K1 K0

Chunk ← IS → PM ←
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1338

Since PIPO-64/128 achieves full diffusion in 2 rounds and uses the round keys1339

alternately, if more than 2 rounds are allocated to the IS or partial match (PM)1340

process, the propagation of the neutral bit is bound to overlap. In the whole1341

steps of MITM analysis, K1 is used for the forward computations whereas K01342

is used for computation in the opposite direction. The IS and PM porcesses are1343

illustrated in Figures 9 and 10.1344

By carefully setting 10 neutral bits for each of K0 and K1 (colored in blue and1345

red, respectively), the propagations of neutral bits in the forward and backward1346

computation do not overlap. It is assumed that bits other than the 20 neutral1347

bits are fixed. In the analysis, we use the notation SIr , SSr and SRr to denote the1348

initial state of round, the state after S-layer, and the state after R-layer in round1349

r, respectively. In IS, we fix 32 state bits in SR1 and 32 state bits in SI3 (colored1350

in green) which are not affected by the backward and forward computations,1351

respectively. Then, one can compute the value of SS1 (resp. SS3 ) in the backward1352

(resp. forward) computation for each of the 210 choices of neutral bits in K01353

(resp. K1).

Fig. 9. 2-round initial structure for MITM attack

1354

After IS, only one round of forward computation is possible because RK4 is1355

K0 (which is the backward computation key). For each choice of neutral bits in1356

K1 (resp, K0), one can compute 54 (resp, 32) bits of SI5 , where 31 bits can be1357

used for matching (colored in yellow in Fig. 10).1358

Then 210 × 210 = 220 of candidates are filtered out to 2−11 by probability1359

2−31 of partial matching. By repeating this process for each of the 108 values1360

of keys not chosen as neutral bits, a total of 2108 × 2−11 = 297 candidates are1361
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Fig. 10. 2-round partial matching for MITM attack

expected. Therefore, the time and memory complexity are 2108×210+297 ≈ 21181362

and 210, respectively. The data complexity is 264 because the 2108 queries require1363

the knowledge of the full codebook.1364

We found that a key recovery attack against 10-round PIPO-64/256 is also1365

possible by applying the same method. In the MITM attack on PIPO-64/256, K31366

is used for forward computation and K0 is used for computation in the opposite1367

direction, but they use the same neutral bits setting as in the 128-bit version1368

attack. In this attack, 10-round PIPO-64/256 is separated as in Table 20.

Table 20. Chunk separation for 10-round MITM attack on PIPO-64/256

Roundkey RK0 RK1 RK2 RK3 RK4 RK5 RK6 RK7 RK8 RK9 RK10

Subkey K0 K1 K2 K3 K0 K1 K2 K3 K0 K1 K2

Chunk ← IS → PM ←

1369
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D.11 Slide Attack1370

The slide attack exploits round functions that have self similarities [24]. Round-1371

dependent constant-XORs in PIPO simply break self similarities in sliding round1372

functions. Therefore, the slide attack does not apply to PIPO.1373

D.12 Attacks Using Related-Keys1374

The simple key schedule of PIPO enables us to make several related-key dif-1375

ferential trails containing a few active S-boxes. However, as noted earlier, the1376

resistance of PIPO against attacks using related keys, such as related-key differ-1377

ential [21] or related-key boomerang/rectangle attacks [19,49,50], is not consid-1378

ered. This is due to the fact that these kinds of attacks are unrealistic in most1379

of resource-constrained environments. There have been many lightweight block1380

ciphers that do not claim the related-key security [2,3,9,10,13,40,42].1381

E Bitsliced Implementations of Higher-Order Masked1382

S-Layer and R-Layer1383

Listing 1.10. The bitsliced implementation of higher-order masked S-layer (in C code)
1384

// ISW_AND(out,in1,in2): out=in1&in2, ISW_OR(out,in1,in2): out=in1|in21385

// MSB: X[7][SHARES], LSB: X[0][SHARES]1386

// Input: X[i][SHARES], 0<=i<=71387

// S5_11388

Mask_refreshing(X[7]);1389

ISW_AND(T[3], X[7], X[6]);1390

for (i = 0; i < SHARES; i++) X[5][i] ^= T[3][i];1391

Mask_refreshing(X[3]);1392

ISW_AND(T[3], X[3], X[5]);1393

for (i = 0; i < SHARES; i++)1394

{X[4][i] ^= T[3][i]; X[7][i] ^= X[4][i]; X[6][i] ^= X[3][i];}1395

Mask_refreshing(X[4]);1396

ISW_OR(T[3], X[4], X[5]);1397

for (i = 0; i < SHARES; i++) {X[3][i] ^= T[3][i]; X[5][i] ^= X[7][i];}1398

Mask_refreshing(X[5]);1399

ISW_AND(T[3], X[5], X[6]);1400

for (i = 0; i < SHARES; i++) X[4][i] ^= T[3][i];1401

// S31402

Mask_refreshing(X[1]);1403

ISW_AND(T[3], X[1], X[0]);1404

for (i = 0; i < SHARES; i++) X[2][i] ^= T[3][i];1405

Mask_refreshing(X[2]);1406

ISW_OR(T[3], X[2], X[1]);1407

for (i = 0; i < SHARES; i++) X[0][i] ^= T[3][i];1408

Mask_refreshing(X[2]);1409

ISW_OR(T[3], X[2], X[0]);1410
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for (i = 0; i < SHARES; i++) X[1][i] ^= T[3][i];1411

X[2][0] = ~X[2][0];1412

// Extend XOR1413

for (i = 0; i < SHARES; i++)1414

{X[7][i] ^= X[1][i]; X[3][i] ^= X[2][i]; X[4][i] ^= X[0][i];}1415

// S5_21416

for (i = 0; i < SHARES; i++)1417

{T[0][i] = X[7][i]; T[1][i] = X[3][i]; T[2][i] = X[4][i];}1418

Mask_refreshing(T[0]);1419

ISW_AND(T[3], T[0], X[5]);1420

for (i = 0; i < SHARES; i++) {X[6][i] ^= T[3][i]; T[0][i] ^= X[6][i];}1421

Mask_refreshing(T[2]);1422

ISW_OR(T[3], T[2], T[1]);1423

for (i = 0; i < SHARES; i++) {X[6][i] ^= T[3][i]; T[1][i] ^= X[5][i];}1424

Mask_refreshing(X[6]);1425

ISW_OR(T[3], X[6], T[2]);1426

for (i = 0; i < SHARES; i++) X[5][i] ^= T[3][i];1427

Mask_refreshing(T[1]);1428

ISW_AND(T[3] T[1] T[0]);1429

for (i = 0; i < SHARES; i++) T[2][i] ^= T[3][i];1430

// Truncate XOR1431

for (i = 0; i < SHARES; i++)1432

{X[2][i] ^= T[0][i];1433

T[0][i] = X[1][i] ^ T[2][i]; X[1][i] = X[0][i] ^ T[1][i];1434

X[0][i] = X[7][i]; X[7][i] = T[0][i]; T[1][i] = X[3][i];1435

X[3][i] = X[6][i]; X[6][i] = T[1][i]; T[2][i] = X[4][i];1436

X[4][i] = X[5][i]; X[5][i] = T[2][i];}1437

// Output: X[i][SHARES], 0<=i<=71438
1439

1440

Listing 1.11. The bitsliced implementation of higher-order masked R-layer (in C code)
1441

// MSB: X[7][SHARES], LSB: X[0][SHARES]1442

// Input: X[i][SHARES], 0<=i<=71443

for(i=0;i<SHARES;i++)1444

{1445

X[1][i] = ((X[1][i] << 7)) | ((X[1][i] >> 1));1446

X[2][i] = ((X[2][i] << 4)) | ((X[2][i] >> 4));1447

X[3][i] = ((X[3][i] << 3)) | ((X[3][i] >> 5));1448

X[4][i] = ((X[4][i] << 6)) | ((X[4][i] >> 2));1449

X[5][i] = ((X[5][i] << 5)) | ((X[5][i] >> 3));1450

X[6][i] = ((X[6][i] << 1)) | ((X[6][i] >> 7));1451

X[7][i] = ((X[7][i] << 2)) | ((X[7][i] >> 6));1452

}1453

// Output: X[i][SHARES], 0<=i<=71454
1455
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