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Abstract: Inner product encryption is a powerful cryptographic primitive, where a private key and a ciphertext are both
associated with a predicate vector and an attribute vector, respectively. A successful decryption requires the
inner product of the predicate vector and the attribute vector to be zero. Most of the existing inner product
encryption schemes suffer either long private key or heavy decryption cost. In this manuscript, an efficient
inner product encryption is proposed. The length for a private key is only an element in G and an element in
Zp. Besides, only one pairing computation is needed for decryption. Moreover, both formal security proof and
implementation result are demonstrated in this manuscript. To the best of our knowledge, our scheme is the
most efficient one in terms of the private key length and the number of pairings computation for decryption.

1 INTRODUCTION

Traditional public key encryption provides only
coarse-grained access control. That is, given a
ciphertext encrypted under a public key, only the
owner of the corresponding private key can obtain
the plaintext. However, in many applications,
such as distributed file systems and cloud services,
more complex access policies may be necessary.
Compared with traditional public key encryption,
predicate encryption (Boneh and Waters, 2007; Katz
et al., 2008) can provide fine-grained access control
over encrypted data. Such encryption is suitable for
various applications, for instance, searching over
encrypted data. In a predicate encryption scheme,
the ciphertext for message M is associated with an
attribute x, and the private key is associated with a
predicate f . A successful decryption requires that
f (x) = 1.

Katz et al. (2008) first considers the predicate for
the computation of inner product over ZN , where N
is a composite number. They also gave an instance
for inner product predicate, called inner product
encryption (IPE). In an IPE scheme, the ciphertext
associated with an attribute vector x can be decrypted
by the private key associated with a predicate vector
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y, if and only if 〈x,y〉 = 0 (Here 〈x,y〉 denotes
the standard inner product operation for vectors
x,y). Due to its flexibleness, lots of works on IPE
scheme have been proposed, such as pairing-based
IPE schemes (Okamoto and Takashima, 2009, 2015;
Kurosawa and Phong, 2017; Chen et al., 2018; Zhang
et al., 2019) and lattice-based IPE schemes (Agrawal
et al., 2011; K. Xagawa, 2013; Li et al., 2017; Wang
et al., 2018).

In additional to its usefulness on fine-grained
access control, IPE scheme can be used to construct
various cryptographic primitives or be convert to
more complex primitives, e.g., identity-based encryp-
tion (IBE) (Shamir, 1985; Boneh and Franklin, 2001;
Boneh and Boyen, 2004), hidden vector encryption
(Boneh and Waters, 2007; Lee, 2017), subset pred-
icate encryption (Katz et al., 2018; Chatterjee and
Mukherjee, 2019). We refer the readers to Katz et al.
(2008, 2018) for details.

Although many IPE schemes have been proposed,
these schemes suffer from either large private key
sizes or heavy computation costs, as described below:

• Pairing-based IPE schemes: existing pairing-
based IPE schemes are generally computationally
inefficient because of the large number of pair-
ings (linear to vector lengths) used during decryp-
tion. In addition, the private key length of most
schemes is also linear to vector lengths, so it is



not practical enough.

• Lattice-based IPE schemes: though lattice-based
IPE schemes are believed to be quantum-resistant,
nearly all of them suffer from either large key size,
or small message space.

All the problems mentioned above will make an IPE
scheme impractical and brings us to the following
open question:

Can we optimize the length of the private key and
reduce the cost of decryption, and further make them

constant in relation to vector lengths?

1.1 Contributions

In this manuscript, we give a positive answer to the
above question by proposing an effective inner prod-
uct encryption scheme. More preciously, in the pro-
posed scheme, the length of a private key is only an
element in G and an element in Zp, i.e., independent
of the length of the predicate vector. Besides, the
decryption is efficient since only one pairing is nec-
essary (also independent of the length of the predi-
cate vector). We also provide rigours proof to show
that our proposed scheme is co-selective IND-CPA
secure under modified decisional Diffie-Hellman as-
sumption. Furthermore, Table 1 and Table 3 show the
comparison with other state-of-the-art schemes, illus-
trating that our proposed scheme is not only secure,
but also very practical.

1.2 Related Works

1.2.1 Pairing-based IPE Schemes

The first IPE scheme was introduced by Katz et al.
(2008), which allows evaluating predicates over ZN
using inner product, where N is a composite number.
After this pioneering work, many studies have been
proposed. Okamoto and Takashima (2009) proposed
the first hierarchical predicate encryption (or del-
egateable predicate encryption) for inner product
predicates, which allows a user with functionality that
can delegate more restrictive functionality to another
user. Attrapadung and Libert (2010) constructed an
IPE scheme, which solves the inefficiency of the
previous scheme. More preciously, as long as the
description of the ciphertext attribute vector is not
included in the ciphertext, the ciphertext overhead of
the scheme is reduced to O(1). Lewko et al. (2010),
by carefully combining dual system encryption (Wa-
ters, 2009) and dual pairing vector spaces (Okamoto
and Takashima, 2009), obtained the first fully secure
IPE scheme and hierarchical predicate encryption

under n-extended decisional Diffie-Hellman assump-
tion. However, the security of all previous studies
based on non-standard assumptions. In order to solve
this issue, Park (2011) provided the first IPE scheme
under the standard assumptions (i.e., decisional bi-
linear Diffie-Hellman (DBDH) and decisional linear
(DLIN) assumptions). Okamoto and Takashima
(2011) then introduced two non-zero inner-product
encryption (NIPE) schemes that support constant-size
ciphertexts and constant-size secret key respectively,
which are adaptively secure under the DLIN assump-
tion in the standard model. Okamoto and Takashima
(2012a) proposed the first IPE scheme that is fully
secure and fully attribute-hiding, and Okamoto
and Takashima (2012b) further proposed the first
unbounded IPE scheme that is also fully secure
and fully attribute-hiding in the standard model
under DLIN assumption. Kawai and Takashima
(2014) introduced a new notion, called IPE with
ciphertext conversion, which takes into account the
security of predicate hiding. Zhenlin and Wei (2015)
introduced another concept, called multiparty cloud
computation IPE with multiplicative homomorphic
property, which enables IPE to support multiparty
cloud computation. Kim et al. (2016) proposed a
new efficient IPE scheme which only required n
exponentiation and three pairing computations for
decryption. Huang et al. (2016) proposed the first
enabled/disabled IPE, which supports timed-release
services and data self-destruction. Ramanna (2016)
constructed two IPE schemes using tag-based quasi-
adaptive non-interactive zero-knowledge. The former
has the property of constant-size ciphertext, while
the latter has the same property as the former and
has the property of attribute hiding. Zhang et al.
(2019) proposed a new IPE scheme based on double
encryption system, which is proven to be adaptive
security under weak attribute hiding model.

As mentioned below, although a lot of work
has been proposed, the private key length of most
schemes is linearly dependent on the vector length,
or requires many pairing operations, making these
schemes impractical. Thus, how to construct a more
practical scheme still an important issue.

1.2.2 Lattice-based IPE Schemes

On the other hand, to fend off the attack of quantum
computers in the future, Agrawal et al. (2011)
proposed the first IPE scheme based on lattice hard
assumption (i.e., learning with error assumption,
which is believed to be able to withstand quantum
attacks) by twisting an identity-based encryption
(Agrawal et al., 2010). K. Xagawa (2013), inspired



by Agrawal et al.’s work, proposed an improved
lattice-based IPE scheme that reduced the size of
public parameters and ciphertext. Li et al. (2017)
proposed a lattice-based IPE scheme that further
reduced the size of public parameters and ciphertext.
In contract to K. Xagawa (2013), the work reduces
the size by a factor of logn, where n is security
parameter. Recently, Wang et al. (2018) proposed the
first compact IPE scheme by employing IPE scheme
(K. Xagawa, 2013), fully homomorphic encryption
(Gentry et al., 2013), and vector encoding schemes
(Apon et al., 2017).

Although these constructions are thought to be
able to withstand quantum computer attacks, they
are based on the LWE assumption, resulting in key
lengths that are still too large to be practical.

1.3 Organization

The remainder of this paper is organized as follows.
We start by some preliminaries on bilinear maps,
complexity assumptions, and the definition of inner
product encryption in Section 2. In Section 3, we pro-
pose our inner product encryption scheme and show
its correcness. In Section 4, we demonstrate secu-
rity proofs using modified decisional Diffie-Hellman
problem. In Section 5 and 6, we give a comparison
with other state-of-the-art schemes and show the im-
plementation result. Finally, we conclude this paper
in section 7.

2 PRELIMINARIES

In this section we give the necessary preliminar-
ies, such as notations, complex assumptions, and the
definition for IPE scheme.

2.1 Notations

Given a set S, “choose an element x randomly from

the set S” will be denoted as “x $←− S”. We use x←A to
denote “x is the output of the algorithm A”. The bold
lowercase latter, e.g., s, is used to denote a vector. For
a vector s, si denotes the i-th entry of vector s. Given
two vectors x,y, we denote the inner product of these
two vectors as 〈x,y〉. The set of positive integer and
integer are represented by N and Z, respectively. For
a prime p, Zp denotes the set of integers module p.

2.2 Bilinear Maps

Let G be an additive cyclic group and GT be a mul-
tiplicative cyclic group, where the order of G and GT
is a large prime p (i.e., |G| = |GT | = p). Besides,
let P be a generator of G. A bilinear map (pairing)
e :G×G→GT is a mapping with the following prop-
erties.

• Bilinearity. For a,b ∈ Zp, e(aP,bP) = e(P,P)ab.

• Non-Degeneracy. ∃P ∈ G, such that e(P,P) 6=
1GT .

• Computability. The mapping e is efficiently
computable.

2.3 Complexity Assumption

In this work, we take advantage of the generalized de-
cisional Diffie-Hellman exponent (GDDHE) problem
due to Boneh et al. (2005). The GDDHE problem
is a generic framework to create new complexity as-
sumptions. We first give an overview of the GDDHE
problem. Let

• p be a prime;

• s,n be two positive integers;

• P,Q ∈ Fp[X1, . . . ,Xn]
s be two s-tuple of n-variate

polynomials over Fp;

• f be a n-variate polynomial in Fp[X1, . . . ,Xn].

Note that Q,QT are two ordered sets with multi-
variate polynomials, and thus we denote Q =
(q1,q2, . . . ,qs) and R = (r1,r2, . . . ,rs). As stated in
Boneh et al. (2005), we require p1 = q1 = 1 to be
two constant polynomials. Consider a bilinear map
e : G×G→ GT with the generator P of G and gT =
e(P,P) ∈ GT . For a vector (x1,x2, . . . ,xn) ∈ Fn

p, we
define

Q(x1,x2, . . . ,xn)P
= (q1(x1,x2, . . . ,xn)P, . . . ,qs(x1,x2, . . . ,xn)P) ∈Gs,

and

gR(x1,x2,...,xn)
T

= (gr1(x1,x2,...,xn)
T , . . . ,grs(x1,x2,...,xn)

T ) ∈Gs
T .

By “ f depends on (Q,R)” we mean that there are s2+
s constants {ai, j}s

i, j=1 and {bk}s
k=1 such that

f =
s

∑
i, j=1

ai, jqiq j +
s

∑
k=1

bkrk.

We say that f is independent of (Q,R) if f is not de-
pend on (Q,R).



Definition 1 (The (Q,R, f )-GDDHE Problem).
Given (Q(x1, . . . ,xn)P,g

R(x1,...,xn)
T ,Z)∈Gs×Gs

T ×GT ,

decide if Z ?
= g f (x1,...,xn)

T . For an algorithm A , the ad-
vantage of A in solving the (Q,R, f )-GDDHE prob-
lem is defined as

Adv(Q,R, f )-GDDHE(A)

=
∣∣∣A(Q(x1, . . . ,xn)P,g

R(x1,...,xn)
T ,g f (x1,...,xn)

T )

− A(Q(x1, . . . ,xn)P,g
R(x1,...,xn)
T ,Z $←−GT )

∣∣∣ .
In Boneh et al.’s paper, they have proposed that

the (Q,R, f )-GDDHE problem is hard if f is indepen-
dent of (Q,R). They also show a large class of hard
problems can be fit into the framework of the GDDHE
problem, e.g., the DDH problem over GT .

Definition 2 (The Decisional Diffie-Hellman Problem
over GT (DDHGT problem)). Let gT = e(P,P) be a
generator of GT . Given (P,gT ,A = ga

T ,B = gb
T ,C) ∈

G×G4
T , where a,b $←− Zp, decide whether C = gab

T or
an random element from GT .

By setting Q = (1),R = (1,a,b), f = ab, the
DDH problem over GT is equivalent to the (Q,R, f )-
GDDHE problem. Observe that there exist no
constants such that the linear combination of 1,a,b
equals to ab, f is therefore independent of (Q,R).
From Boneh et al.’s result, we can say that there
is no algorithm to solve the DDHGT problem with
non-negligible advantage. We refer the readers to
Boneh et al. (2005) for more details.

Next, we give a modified version of the DDHGT
problem which will be used in the security proof.

Definition 3 (The Modified Decisional Diffie-Hell-
man Problem over GT (M-DDHGT problem)).
Let gT = e(P,P) be a generator of GT . Given
(P,A′ = aP,gT ,A = ga

T ,B = gb
T ,C) ∈G2×G4

T , where

a,b $←− Zp, decide whether C = gab
T or an random

element from GT .

Compared with the DDHGT problem, the instance
of the M-DDHGT problem contains an additional el-
ement A′ = aP. One can observe that the M-DDHGT
problem is equivalent to the (Q,R, f )-GDDHE prob-
lem with

Q = (1,a),R = (1,a,b), f = ab.

We can see that there exist no constants such that
the linear combination of the monomials (1 ·a),1,a,b
equals to the polynomial ab. Therefore, from Boneh
et al.’s result, we conclude that the M-DDHGT is hard.

Besides, define the advantage for an algorithm D in
solving the M-DDHGT problem as

AdvM-DDHGT (D)
=

∣∣Pr[D(P,A′,gT ,A,B,C = gab
T ) = 1]

− Pr[D(P,A′,gT ,A,B,C
$←−GT ) = 1]

∣∣∣ .
Definition 4 (The Modified Decisional Diffie-Hell-
man Assumption over GT (M-DDHGT assumption)).
We say that the M-DDHGT assumption holds if there
is no algorithm D solving the M-DDHGT problem
with a non-negligible advantage.

2.4 Definition of Inner Product
Encryption

An inner product encryption scheme consists of four
algorithms: Setup, KeyGen, Encrypt, Decrypt. The
details of the algorithms are shown below.

Setup(1λ,1`). Taken as input the security parameters
(1λ,1`), where λ, ` ∈ N, the algorithm outputs the
system parameter params and the master secret key
msk. Note that the description of the attribute vector
space A and the predicate vector space P will be
implicitly included in params. Besides, we require
that the inner product operation over A and P should
be well-defined.

Encrypt(params,x,M). Given the system parameter
params, an attribute vector x ∈ A, and a message M,
the algorithm outputs a ciphertext Cx for the attribute
vector x.

KeyGen(params,msk,y). Given the system param-
eter params, a predicate vector y ∈P, the algorithm
outputs the private key Ky for the predicate vector y.

Decrypt(params,Cx,Ky). Given the system parame-
ter params, a ciphertext Cx, and the private key Ky,
the algorithm output a message M or a error symbol
⊥.

The correctness is defined as follows. For all λ, `∈
N, let Cx←Encrypt(params,x∈A,M) and let Ky←
KeyGen(params,msk,y ∈P), we have

M← Decrypt(params,Cx,Ky) if 〈x,y〉= 0;
⊥← Decrypt(params,Cx,Ky) if 〈x,y〉 6= 0,

where (params,msk)← Setup(1λ,1`).



2.5 Security Model

Here, we first introduce the IND-CPA security for
inner product encryption.

The IND-CPA game of an inner product encryp-
tion for attribute vector space A and predicate vector
space P is defined as an interactive game between a
challenger C and an adversary A .

Setup. The challenger C runs Setup(1λ,1`) and
sends the system parameter params to the adversary
A .

Query Phase 1. The challenger answers polynomi-
ally many private key queries for y ∈P for the adver-
sary A by returning Ky←KeyGen(params,msk,y).

Challenge. The adversary A submits an at-
tribute vector x∗ ∈ A such that 〈x∗,y〉 6= 0 for
all y which has been queried in Query Phase 1,
and two massages M0,M1 with the same length
to the challenger C . Then C randomly chooses
β ∈ {0,1} and returns a challenge ciphertext
Cx∗ ← Encrypt(params,x∗,Mβ).

Query Phase 2. This phase is the same as Query
Phase 1, except that the adversary is not allowed to
make a query with y ∈P such that 〈x∗,y〉 6= 0.

Guess. The adversary A outputs a bit β′ and wins the
game if β′ = β. The advantage of an adversary for
winning the IND-CPA game is defined as

AdvIND-CPA(A) =

∣∣∣∣Pr[β′ = β]− 1
2

∣∣∣∣ .
Definition 5 (IND-CPA Security for Inner Product
Encryption). We say that an inner product encryp-
tion is IND-CPA secure if there is no probabilistic
polynomial-time adversary A wins the IND-CPA
game with a non-negligible advantage.

In some literature (Katz et al., 2008; Park, 2011),
the security notions for an inner product encryption
is defined with the notions “payload hiding” and
“attribute hiding”. Informally, payload hiding (resp.
attribute hiding) is defined to argue that a ciphertext
leaks no information about the encrypted message
(resp. attribute vector). The IND-CPA security
shown in this section is equivalent to payload hiding.

We then present the selective security and the
co-selective security (Attrapadung and Libert, 2010;
Attrapadung, 2014) for inner product encryption.

The selective IND-CPA (sIND-CPA) game is
defined as the same of the IND-CPA game, except
that the adversary A is forced to commit ahead before
Setup phase an attribute vector x∗, and A is not
allowed to make private key queries with y such that
〈x∗,y〉 6= 0 in both Query Phase 1 and Query Phase
2.

Definition 6 (Selective IND-CPA Security for Inner
Product Encryption). An inner product encryption
scheme is said to be sIND-CPA secure if no prob-
abilistic polynomial-time adversary wins the sIND-
CPA game with non-negligible advantage.

The co-selective IND-CPA (csIND-CPA) game
is defined as the same of the IND-CPA game, except
that the adversary A is forced to commit ahead before
Setup phase q predicate vectors y(1), . . . ,y(q) for the
private key queries, where q is a polynomial in the
security parameter λ, and A is required to invoke
Challenge phase with an attribute vector x∗ such that
〈x∗,y( j)〉 6= 0 for j = 1, . . . ,q.

Definition 7 (Co-Selective IND-CPA Security for In-
ner Product Encryption). An inner product encryption
scheme is said to be csIND-CPA secure if no prob-
abilistic polynomial-time adversary wins the csIND-
CPA game with non-negligible advantage.

One can think of co-selective security as the com-
plementary notion for selective security. In the se-
lective security game, the adversary is able to learn
private key according to its previous choices, while in
the co-selective security game, the adversary is able
to choose its target after seeing the public parameter
and learning the private keys of its choice. We note
that, though selective security and co-selective secu-
rity are weaker than the full security, both notions are
incomparable in general by definition.

3 THE PROPOSED INNER
PRODUCT ENCRYPTION
SCHEME

Our IPE scheme consists of four algorithms:
Setup, KeyGen, Encrypt, Decrypt. The details of
the proposed scheme are demonstrated below.

Setup(1λ,1`). Given the security parameters (1λ,1`),
where λ, ` ∈ N, the algorithm performs as follows.

1. Choose bilinear groups G,GT of prime order p >
2λ. Let P and gT = e(P,P) be the generator of G
and GT , respectively.



2. Set the predicate vector space and the attribute
vector space to Z`

p.

3. Choose s = (s1,s2, . . . ,s`)
$←− Z`

p.

4. Compute ĥ = (gsi
T )

`
i=1 = (ĥ1, . . . , ĥ`).

5. Output the system parameter params= (P,gT , ĥ),
and the master secret key msk= s.

Encrypt(params,x,M). Given the system parameter
params, a vector x = (x1,x2, . . . ,x`) ∈ Z`

p, and a
message M ∈GT , the algorithm performs as follows.

1. Choose r,δ $←− Zp.

2. Compute C0 = rP, and Ĉ0 = gr
T .

3. Compute Ci = ĥr
i ·g

δxi
T ·M for i = 1 to `.

4. Output the ciphertext Cx = (C0, Ĉ0,C1,C2, . . . ,C`)

KeyGen(params,msk,y). Given the system param-
eter params, a master secret key msk, and a vector
y = (y1,y2, . . . ,y`) ∈ Z`

p, where ∑
`
i=1 yi 6= 0, the

algorithm performs as follows.

1. Choose k $←− Zp.

2. Compute K0 = kP, and K1 = 〈s,y〉+ k mod p.

3. Output the private key Ky = (K0,K1).

Decrypt(params,Cx,Ky). Given the system parame-
ter params, a ciphertext Cx, and the private key Ky,
where y = (y1,y2, . . . ,y`) the algorithm performs as
follows.

1. Compute D0 = e(K0,C0).

2. Compute D1 = ∏
`
i=1 C

yi
i .

3. Compute D=
D0 ·D1

Ĉ
K1
0

.

4. Compute d = (∑`
i=1 yi)

−1 mod p.

5. Compute M = Dd .

3.1 Correctness

The correctness of the proposed scheme is shown as
follows.

• D0 = e(K0,C0) = e(kP,rP) = gkr
T

•

D1 = ∏
`
i=1 C

yi
i

= ∏
`
i=1(ĥ

r
i ·g

δxi
T ·M)yi

= ∏
`
i=1(ĥ

yi
i )

r · (gδxiyi
T ) · (Myi)

= ∏
`
i=1((g

si
T )

yi)r
∏

`
i=1(g

δxiyi
T )∏

`
i=1(M

yi)

= gr〈s,y〉
T ·gδ〈x,y〉

T ·M∑
`
i=1 yi

• Ĉ
K1
0 = grK1

T = gr〈s,y〉+rk
T

•
D =

D0 ·D1

Ĉ
K1
0

=
gr〈s,y〉

T ·gδ〈x,y〉
T ·M∑

`
i=1 yi ·gkr

T

gr〈s,y〉+rk
T

= gδ〈x,y〉
T ·M∑

`
i=1 yi

• We have that D = M∑
`
i=1 yi iff 〈x,y〉= 0.

• Thus Dd = M∑
`
i=1 yi·((∑`

i=1 yi)
−1 mod p) = M.

4 SECURITY PROOF

We now give the security proof for the co-
selective security of the proposed IPE scheme. In the
following proof, we view a vector as a row vector.

Theorem 1. The proposed scheme is csIND-CPA se-
cure for q private key queries, where q is a polynomial
in the security parameter λ, under the M-DDHGT as-
sumption.

Proof. Given (P,A′ = aP,gT ,A = ga
T ,B = gb

T ,C), we
build an algorithm C using the adversary A to solve
the M-DDHGT problem as follows.

Init. The adversary A commits q predicate vectors
y(1), . . . ,y(q).

Setup. C first finds a vector u = (u1,u2, . . . ,u`) such
that 

y1
y2
...

yq

u> = 0>` ,

where 0` = (0,0, . . . ,0)︸ ︷︷ ︸
`

. Such u exists when

q > `. That is, to find a vector u such that
〈u,y j〉 = 0 for j = 1 to q. C then chooses

v = (v1,v2, . . . ,v`)
$←− Z`

p. Next, C computes
ĥ = (Bui · gvi

T )
`
i=1 = (ĥ1, . . . , ĥ`). Finally, C sets

params = (P,gT , ĥ) and sends params to A . Note



that C implicitly sets msk= s = (si = ui ·b+ vi)
`
i=1.

Query Phase 1. After receiving y(i) = (y(i)1 , . . . ,y(i)` )

from A , where i ∈ [1,2, . . . ,q], C first chooses k $←−
Zp, and computes Ky(i) = (K0,K1) = (kP,〈v,y(i)〉+ k
mod p). The correctness of the private key Ky(i) is
shown below.

K1
= 〈s,y(i)〉+ k mod p
= ∑

`
j=1 s jy

(i)
j + k mod p

= ∑
`
j=1(u j ·b+ v j) · y

(i)
j + k mod p

= b∑
`
j=1 u jy

(i)
j +∑

`
j=1 v jy

(i)
j + k mod p

= b〈u,y(i)〉+ 〈v,y(i)〉+ k mod p
= 〈v,y(i)〉+ k mod p.

Challenge. Upon receiving x∗, where 〈x∗,y(i)〉 6= 0
for i = 1, . . . ,q, and two equal-lengthed messages
M0,M1 from A , the challenger C performs as follows.

1. Choose β ∈ {0,1}.

2. Choose δ
$←− Zp.

3. Set C′0 = A′, and Ĉ′0 = A.

4. For i = 1 to `, compute C′i = (Cui ·Avi ·gδx∗i
T ) ·Mβ.

5. Set the challenge ciphertext C∗ =
(C′0, Ĉ

′
0,C
′
1,C
′
2, . . . ,C

′
`).

6. Return C∗ to A .

Here we implicitly set the randomness of the encryp-
tion procedure to a. Therefore, if C = gab

T , then we
have C′0 = aP, Ĉ′0 = ga

T , and for i = 1, . . . , `,

C′i = (Cui ·Avi ·gδx∗i
T ) ·Mβ

= (gabui
T ·gavi

T ·g
δx∗i
T ) ·Mβ

= (ga(bui+vi
T )) · (gδx∗i

T ) ·Mβ

= ha
i ·g

δx∗i
T ·Mβ.

That is, the challenge ciphertext C∗ is a valid cipher-
text.

Query Phase 2. This phase is the same as Query
Phase 1.

Guess. The adversary A outputs a bit β′. The
challenger C outputs 1 if A wins the game; outputs a
random bit, otherwise.

Assume that the adversary A wins the game with
advantage ε, i.e.,∣∣∣∣Pr[β′ = β]− 1

2

∣∣∣∣≥ ε.

Note that, if C = gab
T , then the view of the adversary

is identical as that in real world. Thus we have

Pr[C (P,A′,gT ,A,B,C = gab
T ) = 1]

= Pr[β′ = β]
≥ 1

2 + ε.

On the other hand, if C is a random element in GT ,
then the choice of β is independent from the adver-
sary’s view, and we have

Pr[C (P,A′,gT ,A,B,C
$←−GT ) = 1]

= Pr[β′ = β]
= 1

2 .

Therefore, the advantage of C in solving the M-
DDHGT problem is∣∣Pr[C (P,A′,gT ,A,B,C = gab

T ) = 1]

− Pr[C (P,A′,gT ,A,B,C
$←−GT ) = 1]

∣∣∣
≥

∣∣( 1
2 + ε)− 1

2

∣∣
≥ ε.

That means, if there is an adversary winning the game
with non-advantage ε, there is an algorithm C solving
the M-DDHGT problem with the probability greater
than ε.

5 COMPARISON

In this section, we compare the efficiency
of the proposed IPE scheme with the previous
works (Katz et al., 2008; Okamoto and Takashima,
2009; Attrapadung and Libert, 2010; Lewko et al.,
2010; Okamoto and Takashima, 2011; Park, 2011;
Okamoto and Takashima, 2012a,b; Kawai and
Takashima, 2014; Zhenlin and Wei, 2015; Kim et al.,
2016; Huang et al., 2016; Ramanna, 2016; Kurosawa
and Phong, 2017; Xiao et al., 2017; Chen et al., 2018;
Zhang et al., 2019)‡, where the result is shown in
Table 1. The comparison focuses on two parts, one is
the private key length, and another is the number of
pairing operations in the decryption algorithm. Since
the efficiency of composite order bilinear groups is
much lower than that of prime order groups, the order
types of bilinear groups used in each scheme are also
marked in the comparison table.

‡Since Attrapadung and Libert (2012), Okamoto and
Takashima (2015) are the complete version of Attrapadung
and Libert (2010), Okamoto and Takashima (2011), respec-
tively, we only compare our work with Attrapadung and
Libert (2010); Okamoto and Takashima (2011).



Private Key Number of Pairings Group
Length for Decryption Order

Katz et al. (2008) (2`+1)|G| 2`+1 Composite
Okamoto and Takashima (2009) (`+3)|G| `+3 Prime
Attrapadung and Libert (2010)-1 (`+1)|G| 2 Prime
Attrapadung and Libert (2010)-2 (`+6)|G|+(`−1)|Zp| 9 Prime

Lewko et al. (2010) (2`+3)|G| 2`+3 Prime
Okamoto and Takashima (2011)-1 (4`+1)|G| 9 Prime
Okamoto and Takashima (2011)-2 9|G| 9 Prime
Okamoto and Takashima (2011)-3 11|G| 11 Prime

Park (2011) (4`+2)|G| 4`+2 Prime
Okamoto and Takashima (2012a) (4`+2)|G| 4`+2 Prime

Okamoto and Takashima (2012b)-1 (15`+5)|G| 15`+5 Prime
Okamoto and Takashima (2012b)-2 (21`+9)|G| 21`+9 Prime

Kawai and Takashima (2014) 6`|G| 6` Prime
Zhenlin and Wei (2015) `|G| ` Composite

Kim et al. (2016) 3|G| 3 Prime
Huang et al. (2016) (4`+2)|G| 4`+4 Prime
Ramanna (2016)-1 (2`+1)|G|+(`−1)|Zp| 3 Prime
Ramanna (2016)-2 5|G| 3 Prime

Kurosawa and Phong (2017) 2m|G| 2m Prime
Xiao et al. (2017) (4`+5)|G| 4`+5 Prime

Chen et al. (2018)-1 5|G| 5 Prime
Chen et al. (2018)-2 7|G| 7 Prime
Zhang et al. (2019) (`+1)|G| `+1 Composite

Ours 1|G|+1|Zp| 1 Prime
Table 1: Efficiency Comparison. Here, ` denotes the vector length for an IPE scheme; |Zp| and |G| denote the bit length of
the representations for an element in Zp and G, respectively; m denotes the leakage-resilience parameter.

Specification
OS Ubuntu 18.04 LTS
CPU Intel i7-4790 3.6GHz
RAM 8 gb
Language Python 3.6
Library Charm-Crypto v0.50

Table 2: The Environment of the Implementation.

One can observe that, in Table 1, our proposed
scheme owns the shortest private key length and the
smallest number of parings. Besides, both the private
key length and the number of pairings in our proposed
scheme are independent of the length of the predicate
vector and the attribute vector. The most efficient ex-
isting scheme is Kim et al. (2016), where the private
key length is three group elements and the three pair-
ings are needed for decryption. In our scheme, the pri-
vate key is only an element of G and an element of Zp,
and only one pairing is necessary during decryption.
One may also found that, in Kurosawa and Phong
(2017), the private key length (2m|G|) and the number
of pairings (2m) are also independent of the length of
the vectors, where m is the leakage-resilience param-
eter. However, m must at least greater or equal than 2.

Therefore, the private key length and pairing number
are still larger than those of ours.§

6 IMPLEMENTATION

We also implement our scheme and the schemes
of Attrapadung and Libert (2012); Kim et al. (2016);
Ramanna (2016), in order to show the efficiency com-
parison. The reason for choosing these three scheme
is that,

• among all the existing IPE schemes, the first
scheme of Attrapadung and Libert (2010) owns
the smallest number of pairings for decryption
(only 2 pairings required);

• among the schemes supporting constant private
key length, the schemes of Kim et al. (2016); Ra-
manna (2016) own the smallest number of pair-
ings for decryption (only 3 pairing required).

§The reason is that their scheme will degenerate to a
conventional IPE scheme without leakage-resilience when
m = 1.



Encryption Time Decryption Time Private Key Length Ciphertext Length
(ms) (ms) (kb) (kb)

Attrapadung and Libert (2010) 100 100 31.7 0.937
Kim et al. (2016) 170 140 0.955 17.5
Ramanna (2016) 260 140 1.59 25.9

Ours 20 10 0.37 31.3
Table 3: The Implementation Result.

The environment of the implementation is shown in
Table 2 and the implementation result is shown in
Table 3. We implement these schemes by using
the Charm-Crypto library Akinyele et al. (2013) via
Python language. For schemes constructed over sym-
metric paring groups (Attrapadung and Libert (2010),
ours), we choose the pairing group SS512 (Lee and
Park, 2019) (a.k.a. type A groups); and the schemes
constructed over asymmetric pairing groups ((Kim
et al., 2016; Ramanna, 2016)), we choose the pair-
ing group BN254 (Barreto and Naehrig, 2006) (a.k.a.
type F groups). The SS512 groups is a super-singular
elliptic curve group where the size of the base field
order is 512 bits and the embedding degree is two.
For a bilinear map e : G×G→ GT over the SS512
groups, the bit length of elements in G and GT are 64
bytes and 128 bytes, respectively. In the case of the
BN254 groups, the size of the base field order is 256
bits, and the embedding degree is 12. For a bilinear
map e :G1×G2→GT over the BN254 groups, the bit
length of elements in G1, G2 and GT are 64 bytes, 128
bytes, and 384 bytes, respectively. We refer the read-
ers to Lynn (2007) for more details. For the length of
predicate and attribute vectors, we choose ` = 100.
From Table 3, one can observe that the encryption
and decryption algorithm of our scheme are very ef-
ficient. For decryption (encryption), only 10 ms (20
ms) is required. Compared with Attrapadung and Lib-
ert (2010), Kim et al. (2016), Ramanna (2016), our
encryption algorithm is 5x, 8.5x, and 13x faster than
Attrapadung and Libert (2010), Kim et al. (2016), Ra-
manna (2016), respectively; and our decryption algo-
rithm is 10x, 14x, 14x faster than Attrapadung and
Libert (2010), Kim et al. (2016), Ramanna (2016),
respectively. For the private key length, ours is also
86x, 2.6x, 4.3x shorter than Attrapadung and Libert
(2010), Kim et al. (2016), Ramanna (2016), respec-
tively. However, as a trade-off, the length of cipher-
text in our scheme is the largest among these schemes.

7 CONCLUSION

This paper propose a practical inner product
encryption scheme with constant-size private keys

and constant pairing computations for decryption.
More concretely, the private key of the proposed
scheme has only an element in G and an element
in Zp, and decryption requires only one pairing
calculation. The security proof shows that our
proposed scheme is co-selective IND-CPA secure
under modified decisonal Diffie-Hellman assumption.
Experimental results show that comparing with other
schemes, our proposed scheme can effectively reduce
the encryption and decryption time and private key
length.

In future works, we will make our best effort to
improve the efficiency of the ciphertext length, and
provide the security proof for stronger security no-
tions under standard assumptions.
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