
Gimli Encryption in 715.9 psec

Santosh Ghosh, Michael Kounavis and Sergej Deutsch

Security and Privacy Research, Intel Labs
Intel Corporation

2111 NE 25th Ave, Hillsboro, OR 97124
{santosh.ghosh, michael.e.kounavis, sergej.deutsch}@intel.com

Keywords: Lightweight Cryptography · Permutation · Block cipher · Gimli ·
AES · PRINCE · NIST · Encryption · Datapath design

Abstract. We study the encryption latency of the Gimli cipher, which
has recently been submitted to NIST’s lightweight cryptography com-
petition. We develop two optimized hardware engines for the 24 round
Gimli permutation, characterized by a total latency of 3 and 4 cycles, re-
spectively, supporting a range of frequencies up to 4.5 GHz. Specifically,
we use Intel’s R© 10 nm FinFET process to synthesize a critical path of
15 logic levels, supporting a depth-3 Gimli pipeline capable of computing
the result of the Gimli permutation in frequencies up to 3.9 GHz. On the
same process technology, a depth-4 pipeline employs a critical path of 12
logic levels and can compute the Gimli permutation in frequencies up to
4.5 GHz. Gimli demonstrates a total unrolled data path latency of 715.9
psec.

Compared to our AES implementation, our fastest pipelined Gimli en-
gine demonstrates 3.39 times smaller latency. When compared to the
latency of the PRINCE lightweight block cipher, the pipelined Gimli la-
tency is 1.7 times smaller. The paper suggests that the Gimli cipher, and
our proposed optimized implementations have the potential to provide
breakthrough performance for latency critical applications, in domains
such as data storage, networking, IoT and gaming.

1 Introduction

The paper studies the performance of Gimli [1]. Gimli is a lightweight cipher
based on a 384 bit permutation, proposed by Bernstein et al. in reference [1]. A
unique property of Gimli is its cross platform performance. In general, lightweight
ciphers like Gimli are required for protecting resource constrained systems such
as IoT devices. Without cryptography, such devices could be easily abused, as
they are typically the weakest entry point in larger scale systems. In the last
decade, multiple lightweight encryption techniques have been proposed. They
are broadly classified in two categories: (a) block ciphers such as Present [7],
Prince [8], Simon [9], Speck [9], Simeck [19], Gift [6], Skinny [10], Cham [11],
[12] and Pyjamask [13], and (b) permutation based ciphers, such as Gimli [1],
Subterranean [14], Xoodoo [15] and Ascon [16], [17], [18]. Gimli, the cipher we
study in this paper, is in the second category.



1.1 About permutation based ciphers and Gimli

In the past few years, permutation based ciphers have gained increasing accep-
tance. There is an attractive property of permutation based ciphers. Such ciphers
are particularly useful to applications that employ key streams to conceal their
data. In most networking applications, for instance, data transfers are performed
by employing authenticated encryption, using techniques such as AES GCM and
Poly ChaCha. In both techniques, a keystream is being generated beforehand
and added to the data, so that the data can be concealed. In the paper, we argue
that the key stream generation process can significantly benefit from a cipher
like Gimli, and by our proposed implementations. According to the numbers
reported in this paper, key stream generation, if using the Gimli permutation,
demonstrates latency that ranges between 715.9 psec and 887.2 psec.

1.2 Related work

Our performance results are not the only ones in the space. Many permuta-
tions demonstrate good performance in hardware and software for generating
keystreams. Keccak [24] the permutation used in SHA3, Salsa20 [22], ChaCha
[23] and Chaskey [25] are examples of efficient permutation functions that can
run in general purpose CPUs and microcontrollers as well. Existing implemen-
tation results for Gimli demonstrate good performance on reference platforms
like FPGAs, ASICs, 8 bit microcontrollers, 32 bit high end embedded microcon-
trollers, 32 bit smart phone CPUs and 64 bit server platforms [1]. Additionally,
reference [2] shows that Gimli is three orders of magnitude faster than Keccak on
an 8 bit TRS-80 Micro Computer System [4] completing one Gimli permutation
in 74,000 clock periods.

Existing Gimli implementations are optimized for area footprint. Their main
building block is the Gimli permutation round. These implementations incur
some latency cost in order to execute a single 24 round Gimli permutation. In
the paper, we argue we can provide significant improvement in performance, if
the implementation primitive becomes the entire Gimli permutation, as opposed
to the round. There are ample latency and throughput critical applications, such
as TLS encryption, that would benefit from a faster Gimli, as mentioned above.
To improve the performance of Gimli for such applications, we designed and
implemented a family of novel realizations optimized for latency and throughput.
Their primitive is a staged implementation of the complete Gimli permutation.

1.3 Contributions of this paper

Our results demonstrate that for both short and long messages, Gimli stands
out as a much faster encryption technique, when compared to other known al-
gorithms including AES and PRINCE. Our contributions can be summarized as
follows: Two optimized hardware engines for the 24 round Gimli permutation
have been built, characterized by a total latency or 3 and 4 cycles, respectively,
in frequencies up to 4.5 GHz. Specifically, a critical path of 15 logic levels can



support a depth-3 Gimli pipeline, capable of computing the result of the Gimli
permutation in frequencies up to 3.9 GHz. Such data path can be realized using
Intel’s R© 10 nm FinFET process technology. On the same process technology, a
depth-4 pipeline employs a critical path of 12 logic levels and can compute the
Gimli permutation in frequencies up to 4.5 GHz. The total unrolled critical path
latency is 715.9 psec. In the paper, we describe our Gimli hardware designs in
Section 2, our implementation results in Section 3, and provide some concluding
remarks in Section 4.

 
Algorithm 1. The Gimli permutation  
 
Require: ��,� , 0 ≤ � ≤ 2 ��� 0 ≤ � ≤ 3 

Ensure: �����(�) = ��,� , 0 ≤ � ≤ 2 ��� 0 ≤ � ≤ 3 

��� � from 24 downto 1 inclusive ��  
f�� � from 0 to 3 inclusive ��                                                              \\ SP − box 

              x   �0,� ≪≪  24 

y   �1,� ≪≪ 9  

z   �2,�   

�2,�    x ⊕  (z ≪ 1)  ⊕  �(y ∧  z)  ≪ 2� 

�1,�    y ⊕  x ⊕  �(x ∨  z)  ≪ 1� 

�0,�    z ⊕  y ⊕  �(x ∧  y)  ≪ 3� 

��� ��� 
\\ Linear layer 

�� � mod 4 = 0 ���� 
�0,0, �0,1, �0,2, �0,3  �0,1, �0,0, �0,3, �0,2 

���� �� � mod 4 = 2 ���� 
�0,0, �0,1, �0,2, �0,3  �0,2, �0,3, �0,0, �0,1 

��� �� 
           \\ Add constant 

�� � mod 4 = 0 ���� 
�0,0  �0,0  ⊕  0x9e377900 ⊕ � 

��� �� 
��� ��� 
������ (��,� ) 

 
 

<<<

<<< 9

Fig. 1. Pseudocode description of the Gimli permutation

2 Description of the Gimli implementations

The Gimli permutation has 24 rounds which operate on a 384 bit state. The
Gimli state is represented as a 3 × 4 matrix, where each element of the matrix
is 32 bit long. Each column sj , j ∈ [0, 3] is a sequence of 96 bits such that
sj = {s0,j ; s1,j ; s2,j}. Similarly, each row si, i ∈ [0, 2] is a sequence of 128 bits



such that si = {si,0 ; si,1 ; si,2 ; si,3}. Gimli’s round function is described by
Algorithm 1, shown in Figure 1. This is a sequence of three operations: (1) a
non-linear layer, specifically a 96 bit SP-box applied to each column; (2) a linear
mixing layer applied in every second round; and (3) an add constant operation
applied in every fourth round.

 
0127255383

a00a01a02a03a10a11a12a13a20a21a22a23

z3y3x3z2y2x2z1y1x1z0y0x0

t00t01t02t03s10s11s12s13s20s21s22s23

x2i y2j z2j z2k

t03i

x0i y0j z0j z0k

s20i

s00s01s02s03s10s11s12s13s20s21s22s23

NOT gate is only for Round 24, 20, 16, 12, 8, 
and 4. For those bits, the last XOR in SP-box is 
replaced by XNOR 

32b

Inverters are present only in rounds 24, 20, 16, 12, 8 and 4.
In these rounds, the associated SP-Box output bits

are produced by equivalence gates as opposed to XOR

Fig. 2. Optimized single round Gimli datapath

2.1 The round datapath

Figure 2 shows of our proposed data path implementing one round of Gimli. This
is part of a bigger hardware block that implements the permutation. First, three
operations, which are rotations and reassignments, associated with the SP-box
are implemented through routing, without any logic gate cost. This is shown in
the top part of the diagram. A next set of three operations of the SP-box are
implemented in parallel, employing two logic levels as shown in the middle part
of the diagram. The shift left operation does not require any logic gates as well.
It is implemented through routing. At the bottom part of the diagram some logic
inversions are performed.



As we are focusing on implementing a high performance hardware engine,
we unroll all 24 rounds and implement them in hardware. Each round data path
in our design is further optimized for its specific round index. This allows us
to avoid any multiplexers that would otherwise need to switch between values
in linear layers. We implement round specific small and big swaps in the linear
layers through routing without any additional logic gate cost. Additionally, such
round specific design helps us to optimize the add constant step. This is realized
via the inversions of the bottom part of our diagram. For example, if r = 24,
then the add constant step performs the steps shown in Figure 3.

2.2 The 24 round Gimli pipelined designs

We have developed two Gimli pipelines with depths of three and four, based on
24 round unrolled data paths. For the depth-3 pipeline, combinatorial logic as-
sociated with eight round data paths is employed. The data paths are connected
back-to-back and form three combinatorial logic blocks. We place pipeline regis-
ters in between them to support encryption in frequencies up to 3.9 GHz. Each
pipeline stage has no more than 16 logic levels. There are 8 rounds with 2 logic
levels each.

�0,0  �0,0  ⊕  0x9e377900 ⊕ 0�00000018 

   �0,0  ⊕  0x9e377918 

                  {~�0,0[31], �0,0[30], �0,0[29], ~�0,0[28], ~�0,0[27], ~�0,0[26], 

                        ~�0,0[25], �0,0[24], �0,0[23], �0,0[22], ~�0,0[21], ~�0,0[20], �0,0[19], 

                        ~�0,0[18], ~�0,0[17], ~�0,0[16], �0,0[15], ~�0,0[14], ~�0,0[13], 

                        ~�0,0[12], ~�0,0[11], �0,0[10], �0,0[9], ~�0,0[8], �0,0[7], �0,0[6], 

                         �0,0[5], ~�0,0[4], ~�0,0[3], �0,0[2], �0,0[1], �0,0[0] } 

or, equivalently 
or, equivalently 

Fig. 3. The add constant step when r = 24

Similarly, for the depth-4 pipeline, combinatorial logic associated with six
round data paths is employed. The data paths are connected back-to-back as
forming four combinatorial logic blocks. The depth-4 pipeline stages have no
more than 12 logic levels. There are 6 rounds with 2 logic levels each. We also
place pipeline registers between the stages to support encryption in frequencies
up to 4.5 GHz.

3 Performance analysis

The performance characteristics of our Gimli pipelined implementations are
shown in the table of Figure 4. As shown in the table, there are two engines
employing stages of 12 and 15 levels respectively. The critical path latency is
221.8 and 255.3 psec for the stages of each of the two engines. The engines have
4 and 3 stages, corresponding to total critical path latencies of 887.2 and 765.9



Gimli engines

library: Intel’s ® 10nm FinFET

logic

levels

critical path

(psec)

cell counts area 

(μm2 )

latency 

(cycles)comb. seq.

Depth-4 pipeline 12 221.8 23320 1920 6958.3 4

Depth-3 pipeline 15 255.3 20201 1536 6994.4 3

Fully unrolled design 47 715.9 20452 768 7100.4 1

Fig. 4. Performance characteristics of our Gimli pipelined implementations

psec. The area footprints of the engines are 6958.3 m2 and 6994.4 m2. The fully
unrolled design employs 47 levels, demonstrates a total critical path latency of
715.9 psec and an area footprint of 7100.4 m2. All results have been produced
using Intel’s R© 10 nm FinFET process technology.

Next, we compare the performance of our Gimli engines with that of AES.
For this purpose, we used optimized hardware realizations of the AES data path
reported in reference [26]. These realizations use optimized SBox logic associated
with 9 logic levels and 1218 NAND cells per SBox. We built pipelined imple-
mentations that perform encryptions in the frequency range between 1.1 GHz
and 2.5 GHz. These implementations employ a number of stages that vary be-
tween 3 and 8. The area footprint varies between 15,030 m2 and 16,342 m2. The
best critical path latency of these implementation is 2.6 nsec. As such, our best
AES realization is 3.39 times slower than the fastest pipelined Gimli realization.
Moreover, the Gimli permutation footprint is 2.16 times smaller than AES in
the best case.

Finally, we compare Gimli with optimized PRINCE pipelined logic we have
also built. We found that pipelined Gimli is 1.7 times faster even though the area
footprint of PRINCE is 8.7 times smaller. This should be expected as PRINCE
produces encrypted outputs of significantly smaller length, specifically of 64 bits.
In contrast, the Gimpli permutation produces outputs of 384 bits. Both the AES
and PRINCE engines were synthesized using Intel’s R© 10 nm FinFET library.

4 Concluding Remarks

We studied the encryption latency of the Gimli cipher. The most significant
contribution of this work is that it demonstrates that hardware encryption in the
order of psec is possible. Furthermore the result is achieved using a lightweight
cipher which is a submission to the second round of NIST’s ongoing lightweight
cryptography competition.

The work also demonstrates that permutation based cipher implementations
optimized for latency have the potential to significantly outperform other ciphers
and implementations that are not permutation based. As future work we plan
to implement other permutation based candidates submitted to the competition
and compare their performance characteristics with Gimli.



References

1. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Flo-
rian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Stan-
daert, Yosuke Todo and Benôıt Viguier, Gimli: a cross-platform permutation, CHES,
2017.

2. Mike Hamburg, Cryptanalysis of 22 1
2

rounds of Gimli, IACR ePrint 743, 2017.
3. Jean-Marie Chauvet, Gimli, Lord of the Glittering TRS-80, IACR ePrint 792, 2017.
4. David Lien, TRS-80 Micro Computer System, Radio Shack, 1978.
5. Christoph Dobraunig, Maria Eichlseder, Florian Mendel and Martin Schläffer, Ascon

v1.2. Submission to the NIST LWC competition, 2019.
6. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng

Sim and Yosuke Todo, GIFT: A small present - towards reaching the limit of
lightweight encryption, In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings, pages 321–345, 2017.

7. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin and C. Vikkelsoe, PRESENT:
An Ultra-Lightweight Block Cipher, In CHES 2007, pages 450–466, 2007.

8. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen and Tolga Yalçin. PRINCE – A Low-
Latency Block Cipher for Pervasive Computing Applications, ASIACRYPT 2012:
Advances in Cryptology, pp 208-225, 2012.

9. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks
and Louis Wingers, The SIMON and SPECK Families of Lightweight Block Ciphers,
Cryptology ePrint Archive, Report 2013/404, 2013.

10. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich and Siang Meng Sim, The SKINNY
Family of Block Ciphers and its Low-Latency Variant MANTIS, Cryptology ePrint
Archive, Report 2016/660, 2016.

11. Bonwook Koo, Dongyoung Roh, Hyeonjin Kim, Younghoon Jung, Dong-Geon Lee
and Daesung Kwon,CHAM: A Family of Lightweight Block Ciphers for Resource-
Constrained Devices, Information Security and Cryptology – ICISC 2017 pp 3-25,
2017.

12. Dongyoung Roh, Bonwook Koo, Younghoon Jung, Il Woong Jeong, Dong-Geon
Lee, Daesung Kwon and Woo-Hwan Kim, Revised Version of Block Cipher CHAM,
Information Security and Cryptology – ICISC 2019 pp 1-19, 2019.

13. Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu Rivain,
Yu Sasaki and Siang Meng Sim, Pyjamask v1.0. Submission to the NIST LWC
competition, 2019.

14. Luc J. M. Claesen, Joan Daemen, Mark Genoe and G. Peeters, Subterranean: A
600 mbit/sec cryptographic VLSI chip, Proceedings 1993 International Conference
on Computer Design: VLSI in Computers and Processors, ICCD ’93, Cambridge,
MA, USA, October 3-6, 1993, IEEE Computer Society, 1993, pp. 610–613.

15. Joan Daemen, Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis, PhD thesis, K.U.Leuven, 1995.

16. Joan Daemen, Bart Mennink and Gilles Van Assche, Full-state keyed duplex with
built-in multi-user support, Advances in Cryptology - ASIACRYPT 2017, Proceed-
ings, Part II (T. Takagi and T. Peyrin, eds.), Lecture Notes in Computer Science,
vol. 10625, Springer, 2017, pp. 606–637.



17. Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche and Ronny Van
Keer, Xoodoo cookbook, Cryptology ePrint Archive, Report 2018/767, 2018.

18. Joan Daemen, Seth Hoffert, Gilles Van Assche and Ronny Van Keer, The design
of xoodoo and xoofff, IACR Transactions on Symmetric Cryptology 2018 (2018), no.
4, 1–38.

19. Gangqiang Yang, Bo Zhu, Valentin Suder, Mark Aagaard and Guang Gong, The
simeck family of lightweight block ciphers, CHES 2015, Springer, pp. 307–329, 2015.

20. Jian Guo, Thomas Peyrin and Axel Poschmann, The PHOTON Family of Light-
weight Hash Functions, Cryptology ePrint Archive, Report 2011/609, 2011.

21. Martin Agren, Martin Hell, Thomas Johansson and Willi Meier, Grain-128a: A
New Version of Grain-128 with Optional Authentication, International Journal of
Wireless and Mobile Computing, 2011.

22. Daniel J. Bernstein, The Salsa20 family of stream ciphers, In Matthew J. B. Rob-
shaw and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM
Final-ists, volume 4986 of LNCS, pages 84–97. Springer, 2008.

23. Daniel J. Bernstein, ChaCha, a variant of Salsa20, SASC 2008: The State of the
Art of Stream Ciphers, 2008. https://cr.yp.to/chacha/chacha-20080128.pdf.

24. Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche, Keccak, In
Advances in Cryptology – EUROCRYPT 2013, pages 313–314, 2013.

25. Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel and Ingrid Verbauwhede, Chaskey: An efficient MAC algorithm for 32-bit
micro-controllers, volume 8781 of LNCS, pages 306–323. Springer, 2014.

26. Michael Kounavis, Ultra-low Latency Advanced Encryption Standard, US Patent
Application, No. 20190229889, 2019.


