
Cracking Matrix Modes of Operation with Goodness-of-Fit
Statistics

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. The Hill cipher is a classical poly-alphabetical cipher based on matrices. Although known
plaintext attacks for the Hill cipher have been known for almost a century, feasible ciphertext only
attacks have been developed only about ten years ago and for small matrix dimensions. In this paper
we extend the ciphertext only attacks for the Hill cipher in two ways. First, we present two attacks
for the affine version of the Hill cipher. Secondly, we show that the presented attacks can be extended
to several modes of operations. We also provide the reader with several experimental results and show
how the message’s language can influence the presented attacks.

1 Introduction

Two classical ciphers based on linear algebra are the Hill cipher [11] and its affine version [12]. Both use
invertible matrices over integers modulo a to encipher messages, where a is the size of the language alphabet
A. The first step of the encryption process is the encoding of each plaintext letter into a numerical equivalent.
The simplest encoding is "a" = 0, "b" = 1 and so on. After encoding, the plaintext is divided into blocks
of size k and, then, each block is multiplied with an invertible matrix of size k. In the affine case, a second
matrix is added to the result. After each block is transformed, the result is converted back into letters. To
decipher messages, one must perform the above steps in reverse.

Although both ciphers are vulnerable to known plaintext attacks3, efficient ciphertext only attacks have
been developed only a decade ago [6] and only for the Hill cipher4 with small ks. Note that as k increases
simple brute force attacks fail. For example, in the case of the Hill cipher with a = 26, we have around
217 keys for k = 2, 240 keys for k = 3 and 273 keys for k = 4 [6]. According to [7, 19], given a and k the
exact number of invertible matrices can be computed. Note that in the case of the affine Hill cipher the
computational effort made to brute force the Hill cipher is multiplied with ak.

In 2007, Bauer and Millward [6] introduced a ciphertext only attack for the Hill cipher5, that was later
improved in [15, 17, 23]. The attack was independently published by Khazaei and Ahmadi [13]. The main
idea of these attacks is to do a brute force attack on the key rows, instead of the whole matrix, and then
recover the decryption matrix.

In [14], Kiele suggests the usage of block-chaining procedures to complicate the algebraic cryptanalytic
techniques developed for the Hill cipher. We will show in this paper how to adapt the attacks described
in [6, 13, 23] to different modes of operation (not only the block-chaining one) for both the Hill cipher and
its affine version. Note that some modes do not require the key to be invertible, thus the attack presented
in [15] does not work for all Hill based modes. For uniformity, we will only extend Yum and Lee’s attack and
leave as future work the extension of [15] to modes requiring invertible matrices. We stress that out of the
three attacks [6, 13,23] Yum and Lee’s attack has the best performance to message recovery ratio.
3 i.e. after a number of known messages are encrypted, one can easily recover the encryption key(s) if he has access

to the corresponding ciphertexts.
4 To the authors’ knowledge no attack against the affine Hill cipher has been published.
5 Bauer and Millward’s attack for k = 3 was previously and independently described online by Wutka [22].

https://orcid.org/0000-0003-3953-2744

Another paper that motivated this study is [5]. The authors of [5] conjecture that the fourth cryptogram
of the Kryptos sculpture [3] is either encrypted using the affine Hill cipher or some other sort of cipher mode
of operation. We provide the reader with a preliminary study of these conjectures. To prove or disprove
these conjectures, one has to find a way to adapt all the presented ciphertext attacks to the secret encoding
versions of the (affine) Hill cipher and their corresponding modes of operation. Various partial answers for
the secret encoding Hill cipher are provided in [23].

Structure of the paper. Notations and definitions are presented in Section 2. The core of the paper consists
of two parts, Sections 3 and 4, that contain several key ranking functions and ciphertext only attacks.
Experimental results are provided in Section 5. We conclude in Section 6. The letter frequencies and the
Vigenère attack used in Section 5 are given in Appendices A and B.

2 Preliminaries

Notations. Throughout the paper, k will denote a security parameter. We use the notation x
$←− X when

selecting a random element x from a sample space X. We also denote by x ← y the assignment of value y
to variable x. The subset {0, . . . , q − 1} ∈ N will be referred to as [0, q]. The set of matrices with α rows, β
columns and entries from G is denoted by M(α, β,G), the set of invertible matrices by GL(α,G) and the
transpose of matrix A by AT . The number of letters in a string m is represented by |m| and the set of all
strings by A×.

In this paper we use some C++ language operators (i.e. == for equality testing, +=, ∗= as compound
assignment operators, ++ for incrementing a variable and & as reference to a variable) as well as some
native function (i.e. size() for returning the size of the object, substring(pos, npos) for returning a substring
starting from pos and containing npos characters, push_back(val) to add val at the end of a vector and sort
to sort a vector in descending order). For initializing all the entries of a vector vec with a value val we use
the notation vec← {val}. When presenting algorithms we consider only lower case messages represented by
ASCII codes (i.e. "c"− "a" = 99− 97 = 2).

Conventions. To minimize repetitions, we employ the following system. When reading the attacks against
the Hill based modes of operation we invite the reader to ignore red colored text, while in the case of the
affine Hill based modes ignore the blue text. Also, when describing algorithms we prefer using verbose names
for variables, while for mathematical descriptions we prefer notations. The last convention used is to store
constants in look-up tables when their size is small (e.g. letter frequencies) and in maps, otherwise (e.g.
quadgraph frequencies).

2.1 Ciphers

A cipher consists of three probabilistic polynomial-time algorithms: Setup, Encrypt and Decrypt. The first
one takes as input a security parameter and outputs the secret key. The secret key together with the Encrypt
algorithm are used to encrypt a message m. The last algorithm decrypts any message encrypted using the
known secret key.

Hill cipher. The Hill cipher is a poly-alphabetical cipher based on linear algebra introduced by Lester S. Hill
in [11]. We briefly provide the algorithms for the Hill cipher. Note that before encrypting/decrypting a text,
the corresponding letters are encoded/decoded as follows: "a" to/from 0, "b" to/from 1 and so on.

Setup(λ): Set an integer k ≥ λ and choose K1
$←− GL(k,Za). Output the secret key sk = K1.

Encrypt(sk,m): Pad message m until |m| ≡ 0 mod k6. Divide m into blocks m = m1∥ . . . ∥mℓ, where
|mi| = k. Compute cTi ← K1 ·mT

i . Output the ciphertext c = c1∥ . . . ∥cℓ.
6 Usually a rarely used letter, such as "x", is appended to m until we get the desired length.

2

Decrypt(sk, c): Divide c into ℓ blocks c = c1∥ . . . ∥cℓ and compute mT
i ← K−1

1 · cTi . Recover m by removing
the padding.

Example 1. For clarity, we further provide the reader with an example from [6]. The message "matrixencryptioniseasy"
is mapped into

12, 0, 19, 17, 8, 23, 4, 13, 2, 17, 24, 15, 19, 8, 14, 13, 8, 18, 4, 0, 18, 24.

If K1 ←
(
1 3
4 11

)
, then the first block is encrypted into

(
1 3
4 11

)
·
(
12
0

)
=

(
12
22

)
. Therefore, we obtain the

ciphertext "mwsdzzrdbnrbribrkweqmy".

Affine Hill cipher. An affine variation of the Hill cipher was introduced in [12]. We shortly provide the
algorithms for the affine Hill cipher.

Setup(λ): Set an integer k ≥ λ and choose K1
$←− GL(k,Za) and K2

$←− M(k, 1,Za). Output the secret key
sk = (K1,K2).

Encrypt(sk,m): Pad message m until |m| ≡ 0 mod k. Divide m into blocks m = m1∥ . . . ∥mℓ, where |mi| = k.
Compute cTi ← K1 ·mT

i +K2. Output the ciphertext c = c1∥ . . . ∥cℓ.
Decrypt(sk, c): Divide c into ℓ blocks c = c1∥ . . . ∥cℓ and compute mT

i ← K−1
1 · (cTi −K2). Recover m by

removing the padding.

Other affine variations of the Hill cipher. In Table 1 we present all the possible affine variations of the Hill
cipher. Note that K3

$←−M(k, 1,Za). After performing some computations, we can see that for all variations
we can recover mT

i using f(ci) = K ′
1 · cTi + K ′

2. Since we are interested only in recovering the encrypted
messages and not the initial secret keys, all the presented attacks try to recover K ′

1 and K ′
2. Thus, for the

affine Hill cipher we only consider f for recovering mT
i .

Encrypt Decrypt K′
1 K′

2

cTi ← K1 ·mT
i +K2 mT

i ← K−1
1 · (cTi −K2) K−1

1 −K−1
1 K2

cTi ← K1 · (mT
i +K2) mT

i ← K−1
1 · cTi −K2 K−1

1 −K2

cTi ← K1 · (mT
i +K2) +K3 mT

i ← K−1
1 · (cTi −K3)−K2 K−1

1 −K−1
1 K3 −K2

Table 1. Affine variations of the Hill cipher.

2.2 Cipher Modes of Operation

When we encrypt messages block by block7, identical blocks are mapped into identical ciphertexts. Thus,
block patterns are preserved. This is an information leakage that can lead to security breaches. To address
this issue several modes of operation where introduced in [8], such as: CBC, CTR, CFB and OFB.

In [4], the authors introduce a generalization of the CBC-MAC construction8. Based on Alagic et al.’s
generalization, we present a possible adaptation of the CBC, CTR and CFB modes of operation to the
(affine) Hill cipher.

Let Ek, Dk : M(k, k,Za)→M(k, k,Za) be the matrix transformations of the (affine) Hill cipher’s encryp-
tion and decryption. We further describe the encryption and decryption algorithms for CBC and CFB.

Encrypt(sk,m): Choose iv
$←− M(1, k,Za) and pad message m until |m| ≡ 0 mod k. Divide m into blocks

m = m1∥ . . . ∥mℓ, where |mi| = k. Let m0 ← iv. For CBC compute ci ← Ek(ci−1 +mi), while for CFB
compute ci ← Ek(ci−1) +mi. Let c = c1∥ . . . ∥cℓ. The output is ciphertext (iv, c).

7 usually called the ECB mode of operation
8 the XOR operation is replaced with a generic group operation

3

Decrypt(sk, iv, c): Divide c into ℓ blocks c = c1∥ . . . ∥cℓ. For CBC compute mi ← Dk(ci)− ci−1 and for CFB
compute mi ← ci − Ek(ci−1). Recover m by removing the padding.

In the case of CTR, the sender and the receiver each keep a state ctr. The initial value is chosen at
random ctr

$←−M(1, k,Za). Before each encryption ctr is updated as follows:
Update(ctr): Let ctr = (α0, . . . , αk−1) and i← k − 1. Compute the following

1. αi ← (αi + 1) mod a,
2. If αi == 0, then i← (i− 1) mod k and go to step 1.

Now, the encryption and decryption algorithm for this mode of operation are:
Encrypt(sk,m): Pad message m until |m| ≡ 0 mod k. Divide m into blocks m = m1∥ . . . ∥mℓ, where |mi| = k.

Compute ctr ← Update(ctr) and ci ← Ek(ctr) +mi. The output is ciphertext c = c1∥ . . . ∥cℓ.
Decrypt(sk, iv, c): Divide c into ℓ blocks c = c1∥ . . . ∥cℓ. Compute ctr ← Update(ctr) and mi ← ci−Ek(ctr).

Recover m by removing the padding.
Example 2. For clarity, we provide the reader with some examples for the Update function. Let a = 26 and
k = 2. Then Update((1, 2)) = (1, 3), Update((1, 25)) = (2, 0) and Update((25, 25)) = (0, 1).

Although our attacks do not apply to the OFB mode, for completeness we provide its description.

Encrypt(sk,m): Choose iv
$←− M(1, k,Za) and pad message m until |m| ≡ 0 mod k. Divide m into blocks

m = m1∥ . . . ∥mℓ, where |mi| = k. Let x0 ← iv. Compute xi ← Ek(xi−1) and ci ← mi + xi. Let
c = c1∥ . . . ∥cℓ. The output is ciphertext (iv, c).

Decrypt(sk, iv, c): Divide c into ℓ blocks c = c1∥ . . . ∥cℓ. Let x0 ← iv. Compute xi ← Ek(xi−1) and mi ←
ci − xi. Recover m by removing the padding.

Remark 1. Note that the CFB, CTR and OFB modes do not require K1 to be invertible.

2.3 Statistical Models
When brute forcing rows, we cannot tell immediately if the decrypted text is correct or not. But we can
statistically analyze the letters of the resulting text and check if they are reasonable enough. Using the
frequencies of the recovered letters and the frequencies of the characters in original language, we can rank
the rows according to their relevance to the ciphertext.

In order to rank9 all possible rows for the decryption key, Yum and Lee [23] introduce a goodness-of-
fit score function. Compared to the score functions presented in [6, 13], Yum and Lee’s function describes
the exact probability of the recovered plaintext. We briefly describe the goodness-of-fit score function in
Algorithm 1.

Let EK and DK be the encryption and, respectively, decryption function of a cipher. Also, let c← EK(m)
be the given cryptogram and K ′ the key we want to rank. The goodness-of-fit function takes as input the
letter frequency table letter_freq associated with the language m is written in (see Appendix A for some
examples) and the letter frequency table occurence observed in DK′(c).

To automatically separate meaningful messages from random texts, we use an approach similar with
the ones described in [10, 16]. When testing a list of strings for meaning, we first score each of them using
Algorithm 2 and then output the highest scoring message.

The first and second inputs of the score function are a string in and the block frequency map (in
our case either a digraph di_freq or a quadgraph quad_freq frequency map) associated with the lan-
guage we are interested in. The fourth variable num_of_letters controls if we are observing digraphs (i.e.
num_of_letters = 2) or quadgraph (i.e. num_of_letters = 4). When computing block frequency maps,
some blocks may be missing entirely from the training corpus. To avoid assigning a likelihood of zero to
these blocks, we use the ad hoc method found in [16]10.
9 according to their relevance to a given cryptogram

10 i.e. block_default← log10(0.01/ num_of_blocks), where the total number of blocks found in the training corpus
is denoted by num_of_blocks

4

Algorithm 1. The goodness-of-fit score function.
Input: A vector of letter occurrences occurrence.
Output: The vector’s goodness-of-fit score score.

1 Function goodness_of_fit(letter_freq, occurrence):
2 score← 1;
3 for i ∈ [0, alphabet_size] do
4 score ∗= letter_freq[i]occurrence[i]/ occurrence[i]!
5 end
6 return score;

Algorithm 2. The score function.
Input: A string in, the bound number_of_rows.
Output: The string’s score score.

1 Function score_function(in, block_freq, block_freq, num_of_letters):
2 score← 0;
3 for i ∈ [0, in. size()− num_of_letters] do
4 temp← in.substr(i, num_of_letters);
5 if temp ∈ block_freq then
6 score += block_freq[temp];
7 end
8 else
9 score += block_default;

10 end
11 end
12 return score;

Remark 2. To ease description, all frequency tables/maps will be implicit when presenting algorithms, unless
otherwise specified.

3 Ranking Functions

The first step in attacking the (affine) Hill cipher and the associated modes of operation is to rank all possible
rows according to their relevance to a given cryptogram. In this section we describe the ranking functions
latter used in the attacks presented in Section 4.

3.1 (Affine) ECB

In [23], the authors describe a ranking algorithm for the Hill cipher. We choose to present it in this section
(Algorithm 3, red text) because it is tightly linked with the affine version that we introduce (Algorithm 3,
blue text).

Let matrix_size = k = 2 and let enc = c be a Hill cipher cryptogram. We illustrate the influence of a
given row on the decrypted plaintext p in Figure 1. We observe that if the first and second rows are equal
we obtain the same letter pi after decryption. Thus, is enough to decrypt the ciphertext using only the first
row (hill_line_decrypt). Since we do not have duplicates, the resulting text msg is k times shorter than c.
After decryption we compute the letter frequency observed in msg and use the goodness_of_fit function
to obtain the row’s score. After all the rows have been ranked, we sort them in descending order according
to their score. In the case of the affine Hill cipher the ranking algorithm is similar. The main difference is
that instead of having to brute force k0 and k1, we also have to do an exhaustive search on k2 (Figure 2).
The algorithm for the generic case is given in Algorithm 3.

5

In some cases storing a vector of size ak11 might be troublesome. Thus, we further consider that
fit.size() = B, where B is dependent on the available memory. Note that in this case fit must be sorted
and when an element is inserted we first check if its score is higher than the lowest score from fit and if it
is, the element replaces the lowest scoring element from fit.

We usually work with small values of alphabet_size and the msg.size() and thus we consider the complex-
ity of the goodness_of_fit and of multiplication as O(1). Hence, the Hill version of Algorithm 3 performs
O(ak) hill_line_decryptions and sorts a vector of size B. So, it has a complexity of O(kak+B logB). In the
case of the affine Hill cipher, the only change is that we perform O(ak+1) affine_hill_line_decryptions.
So, the complexity becomes O(kak+1 +B logB).

k0 k1

k0 k1

×
ci0

ci1

=
pi

(a) Line 1.

k0 k1

k0 k1

×
ci0

ci1

=
pi

pi

(b) Line 2.

Fig. 1. Line propagation in ECB.

k0 k1

k0 k1

×
ci0

ci1

+
k2

k2

=
pi

(a) Line 1.

k0 k1

k0 k1

×
ci0

ci1

+
k2

k2

=
pi

pi

(b) Line 2.

Fig. 2. Line propagation in affine ECB.

3.2 (Affine) CBC, CTR, CFB

Again, let matrix_size = 2 and let enc be a Hill cipher cryptogram. The effect of a given row on the
decrypted plaintext is shown in Figure 3 for CBC, in Figure 4 for CTR and in Figure 5 for CFB. Compared
to ECB, we can easily see that if the first and second row are identical the resulting letters are different.
Thus, we need the full decryption of the Hill cipher to rank rows. After decryption, we break the resulting
msg in two parts msg0 and msg1. The first part contains the letters in even positions and the second one
the letters in odd positions. After we score each part, we store them in fit[0] and, respectively, fit[1]. The
last step is to sort the two vectors in descending order by score. The case of the affine Hill cipher is similar.

For the Hill modes attack, we perform O(ak) decryptions, while for the affine version the number of
decryptions is O(ak+1). Both algorithms sort k vectors of size B. Thus, the complexities are O(k2ak +
kB logB) and O(k2ak+1 + kB logB) for the Hill attack and, respectively, for the affine attack.

11 ak+1 for the affine version

6

Algorithm 3. The algorithm for ranking all possible rows for (affine) ECB.
Input: The ciphertext enc.
Output: A vector fit containing all possible rows sorted by the goodness-of-fit score.

1 Function affine_hill_line_decrypt(conv, key1 , key2):
2 msg_int[enc.size()/matrix_size]← {0};
3 for i ∈ [0, conv.size()/matrix_size] do
4 for j ∈ [0,matrix_size] do
5 msg_int[i]← (msg_int[i] + key1[j] · conv[i ·matrix_size+j]) mod alphabet_size;
6 end
7 msg_int[i]← (msg_int[i] + key2[i mod matrix_size]) mod alphabet_size;
8 end
9 return msg_int;

10 Function affine_ ecb_rank(enc):
11 for key1[0], . . . , key1[matrix_size−1] ∈ [0, alphabet_size] do
12 for key2 ∈ [0, alphabet_size] do
13 occurrence[alphabet_size]← {0};
14 conv ← encode(enc);
15 msg_int← hill_line_decrypt(enc, key1);
16 msg_int← affine_hill_line_decrypt(enc, key1, key2);
17 msg ← decode(msg_int)
18 for i ∈ [0,msg.size()] do
19 occurrence[msg[i]− "a"]++;
20 end
21 occurrence.sort(); \\only for Algorithm 6;
22 score← goodness_of_fit(letter_freq, occurrence);
23 fit.push_back((key1, score));
24 fit.push_back((key1, key2, score));
25 end
26 end
27 fit.sort();
28 return fit;

k0 k1

k0 k1

×
ci−1
0

ci−1
1

−
ci0

ci1

=
pi0

(a) Line 1.

k0 k1

k0 k1

×
ci−1
0

ci−1
1

−
ci0

ci1

=
pi0

pi1

(b) Line 2.

Fig. 3. Line propagation in CBC.

ci0

ci1

−
k0 k1

k0 k1

×
n0

n1

=
pi0

pi1

(a) Line 1.

ci0

ci1

−
k0 k1

k0 k1

×
n0

n1

=
pi0

pi1

(b) Line 2.

Fig. 4. Line propagation in CTR.

7

ci0

ci1

−
k0 k1

k0 k1

×
ci−1
0

ci−1
1

=
pi0

pi1

(a) Line 1.

ci0

ci1

−
k0 k1

k0 k1

×
ci−1
0

ci−1
1

=
pi0

pi1

(b) Line 2.

Fig. 5. Line propagation in CFB.

Algorithm 4. The algorithm for ranking all possible rows for (affine) CBC, CTR, CFB.
Input: The ciphertext enc and the initialization vector iv.
Output: A family of vectors fit containing all possible rows sorted by the goodness-of-fit score.

1 Function affine_mode_rank(enc, iv):
2 for a[0], . . . , a[matrix_size−1] ∈ [0, alphabet_size] do
3 for b ∈ [0, alphabet_size] do
4 occurrence[matrix_size][alphabet_size]← {0};
5 for i ∈ [0,matrix_size] do
6 for j ∈ [0,matrix_size] do
7 key1[i][j]← a[j];
8 end
9 key2[i]← b;

10 end
11 conv ← encode(enc);
12 msg_int← mode_decrypt(enc, iv, key1);
13 msg_int← affine_mode_decrypt(enc, iv, key1, key2);
14 msg ← decode(msg_int)
15 for i ∈ [0,msg.size()/matrix_size] do
16 for j ∈ [0,matrix_size] do
17 occurrence[j][msg[i ·matrix_size+j]− "a"]++;
18 end
19 end
20 for i ∈ [0,matrix_size] do
21 occurrence[i]. sort(); \\only for Algorithm 8;
22 score← goodness_of_fit(letter_freq, occurrence[i]);
23 fit[i]. push_back((a, score));
24 fit[i]. push_back((a, b, score));
25 end
26 end
27 end
28 for i ∈ [0,matrix_size] do
29 fit[i]. sort();
30 end
31 return fit;

4 Message Recovering Attacks

After the ranking step is over, we can proceed to the recovering step. When searching for the original
message a lot of random text is produced. To filter random messages from ones with meaning we use the
score_function to score each message and we always output the highest scoring one.

8

4.1 (Affine) ECB

The authors of [6,23] describe the message recovering algorithm for the Hill cipher, but they do not provide
an automatic detection method for the original message. On the other hand, the authors of [13] trade-off
success probability for an unique output. The gap is filled in [15]. We present the algorithm in this section
(Algorithm 5, red text), instead of Section 2, because of its link to the affine version we introduce (Algorithm 5,
blue text). Due to better results in practice, in Algorithm 5 we use a different scoring function12 than the
one from [15]13. Also, compared to [15], we only output the highest scoring message without lowering the
success probability.

After ranking all possible rows, we need to find the decryption key’s rows (check_variants) and their
order (check_variant). Hence, Algorithm 5 checks all possible row combinations with index less than
number_of_rows = B. Note that the success probability is dependent on number_of_rows14. After
selecting k rows from fit, we test all possible row permutations15, decrypt enc and rank the result. If one of
the decrypted texts has a higher score than the stored message global_msg, we overwrite global_msg and
update global_score. The main differences between the Hill cipher attack and the affine Hill cipher attack
are: the call to the affine ranking algorithm, the creation of k2 and the call to the affine decryption algorithm.

For the same reasons as in Section 3.1, we further consider the complexity of the score_function as
O(1). After the row ranking step, both message recovering algorithms perform O(B!/(B − k)!) decryptions.
Thus, the complexities for the Hill attack and for the affine attack are O(kak + B logB + k2B!/(B − k)!)
and, respectively, O(kak+1 +B logB + k2B!/(B − k)!).

4.2 Affine ECB (Second Approach)

In [23], the authors propose a ranking method for the Hill cipher with unknown encoding and decoding func-
tions. The basic idea is that encoding functions act as substitution ciphers and thus leave letter distributions
intact. According to their method, to score a row one needs to sort in ascending order both letter_freq and
occurrence and then use Algorithm 1 to obtain the row’s score. Note that Yum and Lee do not provide a
message recovering algorithm.

The affine Hill cipher can be seen as the composition of a Hill cipher and a Vigenère cipher. Thus, we
use Yum and Lee’s ranking method to find K ′

1’s rows (ecb_rank), decrypt the cryptogram using the trial
K ′

1 (hill_decrypt) and then use a Vigenère message recovery algorithm (break_vigenere) to find K ′
2. This

method is formally described in Algorithm 6. Note that break_vigenere16 returns the score of the trial_msg.
Unfortunately, we can not use only this score to filter messages. For example, when k = 2 the texts easy and
aeys have the same trial_score. Hence, we use a second scoring system based on quadgrams to differentiate
between trial messages with the same score. Note that the only difference between check_variants_2 and
check_variants is that the latter is using the check_variant_2 function.

We consider the complexity of break_vigenere as being O(1), since it is linear in the cryptogram’s size.
Then, the complexity of the second algorithm is O(kak +B logB + k2B!/(B − k)!).

4.3 (Affine) CBC, CTR, CFB

The main difference between ECB and the other the modes is that after the ranking step is over, in the
former case we know the exact position of the key rows. Thus, in Algorithm 7 we iterate over all rows
(check_variants_mode), decrypt the cryptogram and then score the result (check_variant_mode).

The check_variants_mode function performs O(Bk) decryptions. Thus, Algorithm 7’s complexity for
the Hill based modes attack and for the affine versions is O(k2ak + kB logB + k2Bk) and, respectively,
O(k2ak+1 + kB logB + k2Bk).
12 based on quadgraphs
13 based on the index of coincidence
14 see Section 5 for the experimental results
15 σi denotes the ith permutation of length mat_size
16 see Appendix B for a concrete algorithm

9

Algorithm 5. The algorithm for breaking (affine) ECB.
Input: The ciphertext enc, the bound number_of_rows.
Output: The best possible message global_msg and its associated score global_score.

1 Function check_variant(enc, rows,& global_score,& global_msg):
2 best_score← −∞;
3 for i ∈ [0,matrix_size!] do
4 for s ∈ [0,matrix_size] do
5 for t ∈ [0,matrix_size] do
6 key1[s][t]← rows[σi[s]]. key1[t];
7 end
8 key2[s]← rows[σi[s]]. key2;
9 end

10 trial_msg ← hill_decrypt(enc, key1);
11 trial_msg ← affine_hill_decrypt(enc, key1, key2);
12 trial_score← score_function(trial_msg, quad_freq, quad_default, 4);
13 if trial_score > best_score then
14 best_score← trial_score;
15 best_msg ← trial_msg;
16 end
17 end
18 if best_score > global_score then
19 global_score← best_score;
20 global_msg ← best_msg;
21 end
22 Function check_variants(enc, fit, number_of_rows):
23 global_score← −∞;
24 global_msg ← "";
25 for i0 ∈ [0, number_of_rows] do
26 for i1 ∈ [i0 + 1, number_of_rows] do
27 · · ·
28 for imatrix_size−1 ∈ [imatrix_size−2 + 1, number_of_rows] do
29 trial_rows← ∅;
30 for j ∈ [0,matrix_size] do
31 trial_rows.push_back(fit[ij]);
32 end
33 check_variant(enc, trial_rows, global_score, global_msg);
34 end
35 end
36 end
37 return (global_score, global_msg);
38 Function affine_ ecb_attack(enc, number_of_rows):
39 fit← affine_ ecb_rank(enc);
40 return check_variants(enc, fit, number_of_rows);

4.4 Affine CBC, CTR, CFB (Second Approach)

As in the case of the affine Hill cipher, attacking a affine based mode can be interpreted as attacking a
Hill-Vigenère cipher mode of operation. We present this complementary attack in Algorithm 8. Note that
the only difference between check_variants_mode and check_variants_mode_2 is that the former uses
the check_variant_mode_2 function. The time complexity of Algorithm 8 is O(k2ak + kB logB + k2Bk).

10

Algorithm 6. The algorithm for breaking affine ECB (second approach).
Input: The ciphertext enc, the bound number_of_rows.
Output: The best possible message global_msg and its associated score global_score.

1 Function check_variant _2(enc, rows,& global_score,& global_msg):
2 best_score← −∞;
3 for i ∈ [0,matrix_size!] do
4 for s ∈ [0,matrix_size] do
5 for t ∈ [0,matrix_size] do
6 key1[s][t]← rows[σi[s]]. key1[t];
7 end
8 end
9 hill_msg ← hill_decrypt(enc, key1);

10 (trial_score, trial_msg)← break_vigenere(hill_msg);
11 if trial_score > best_score then
12 best_score← trial_score;
13 best_msg ← trial_msg;
14 end
15 if trial_score == best_score then
16 first_quad_score← score_function(best_msg, quad_freq, quad_default, 4);
17 second_quad_score← score_function(trial_msg, quad_freq, quad_default, 4);
18 if second_quad_score > first_quad_score then
19 best_msg ← trial_msg;
20 end
21 end
22 end
23 if best_score > global_score then
24 global_score← best_score;
25 global_msg ← best_msg;
26 end
27 Function affine_ecb_attack_2(enc, number_of_rows):
28 fit← ecb_rank(enc);
29 return check_variants_2(enc, fit, number_of_rows);

5 Experimental Results

We implemented Algorithms 5 to 8 in order to see the relation between B and the algorithms’ success
probability17. To see the influence of the message’s native language on the attack algorithms’ recovery
rate, we tested this type of relation for eight languages: Danish (DN), English (EN), Finnish (FN), French
(FR), German (GE), Polish (PL), Spanish (SP) and Swedish (SW). We also computed the running time of
Algorithms 5 to 8 for the English language and k = 2 (Section 5.5). Besides providing the reader with some
benchmarks, we also wanted to have a precise comparison18 between the two affine attack approaches.

In our implementations, frequency tables have a = 26 values and are derived from the frequencies provided
in [16]. For completeness, we describe the tables in Appendix A. The quadgrams for the English language are
downloaded from [16], while the digraph19 frequencies are computed from the quadgraph map. The algorithm
for breaking Vigenère is given in Appendix B.

For computing the success probability we used 100 texts with 100 letters (without diacritical marks)
for each language. Each text was encrypted with a different key(s)/initialization vector/counter. The texts
are taken from news items found in the Leipzig Corpora Collection [9]. The keys, initialization vectors and
17 We refer the reader to Sections 5.2 to 5.4 for the results.
18 that takes into account the hidden constants found in asymptotic notations
19 If abcd is a quadgraph, we consider ac as a digraph.

11

Algorithm 7. The algorithm for breaking (affine) CBC, CTR, CFB.
Input: The ciphertext enc, the initialization vector iv, the bound number_of_rows.
Output: The best possible message global_msg and its associated score global_score.

1 Function check_variant_mode(enc, iv, rows,& global_score,& global_msg):
2 for s ∈ [0,matrix_size] do
3 for t ∈ [0,matrix_size] do
4 key1[s][t]← rows[s].a[t];
5 end
6 key2[s]← rows[s].b;
7 end
8 trial_msg ← mode_decrypt(enc, iv, key1);
9 trial_msg ← affine_mode_decrypt(enc, iv, key1, key2);

10 trial_score← score_function(trial_msg, quad_freq, quad_default, 4);
11 if trial_score > global_score then
12 global_score← trial_score;
13 global_msg ← trial_msg;
14 end
15 Function check_variants_mode(enc, fit, number_of_rows):
16 global_score← −∞;
17 global_msg ← "";
18 for i0 ∈ [0, number_of_rows] do
19 for i1 ∈ [0, number_of_rows] do
20 · · ·
21 for imatrix_size−1 ∈ [0, number_of_rows] do
22 trial_rows← ∅;
23 for j ∈ [0,matrix_size] do
24 trial_rows.push_back(fit[j][ij]);
25 end
26 check_variant_mode(enc, iv, trial_rows, global_score, global_msg);
27 end
28 end
29 end
30 return (global_score, global_msg);
31 Function affine_mode_attack(enc, number_of_rows):
32 fit← affine_mode_rank(enc, iv);
33 return check_variants_mode(enc, iv, fit, number_of_rows);

counters are generated using the default generator found in the GMP library [2]. When invertible keys were
needed, we computed the inverse using the Armadillo library [20] and tested if the determinant is coprime
with 26.

5.1 Unicity Distance of a Cipher

When analyzing the experimental results, the reader will observe different message recovery rates for different
languages. These differences arise from distinct unicity distances20 for distinct languages. The exact formula
for the unicity distance when a = 26 is log2 26

k/(log2 26 − H), where H is the language’s entropy. Note
that in our case the unicity distance is computed for one key row and we estimated the entropy from the
frequency tables provided in Appendix A. The results for the unicity distance are provided in Table 2. We
can see that in the case of the Polish language we need more letters per row than for the Finnish language.
This gap will be more pronounced when determining the message recovery rates.
20 The minimum ciphertext length required to determine the secret key almost uniquely.

12

Algorithm 8. The algorithm for breaking affine CBC, CTR, CFB (second approach).
Input: The ciphertext enc, the initialization vector iv, the bound number_of_rows.
Output: The best possible message global_msg and its associated score global_score.

1 Function check_variant_mode_2(enc, iv, rows,& global_score,& global_msg):
2 for s ∈ [0,matrix_size] do
3 for t ∈ [0,matrix_size] do
4 key1[s][t]← rows[s].a[t];
5 end
6 end
7 hill_msg ← mode_decrypt(enc, iv, key1);
8 (trial_score, trial_msg)← break_vigenere(hill_msg);
9 if trial_score > global_score then

10 global_score← trial_score;
11 global_msg ← trial_msg;
12 end
13 Function affine_mode_attack_2(enc, number_of_rows):
14 fit← mode_rank(enc, iv);
15 return check_variants_mode_2(enc, iv, fit, number_of_rows);

Language k = 2 k = 3 k = 4

Danish 15.4323 23.1485 30.8647
English 18.2180 27.3270 36.4359
Finnish 12.0307 18.0460 24.0614
French 13.3713 20.0569 26.7425

German 15.6257 23.4386 31.2515
Polish 22.3918 33.5878 44.7837

Spanish 13.7891 20.6836 27.5781
Swedish 16.4837 24.7256 32.9674

Table 2. Unicity distance.

5.2 Hill Modes of Operation Message Recovery Rates

B DN EN FN FR GE PL SP SW

EC
B 2 94 93 100 96 95 84 96 95

4 99 100 100 98 100 91 100 100

C
B

C 1 95 95 100 99 97 84 99 99
2 99 99 100 100 100 90 100 100

C
T

R 1 96 93 100 96 98 87 100 98
2 99 98 100 99 100 90 100 100

C
FB 1 97 92 99 96 95 87 98 98

2 100 99 100 100 99 91 100 100
Table 3. Number of recovered messages for the Hill modes of operation when k = 2.

13

B DN EN FN FR GE PL SP SW

EC
B 8 88 59 97 90 71 22 87 80

16 95 77 100 95 86 45 96 94
32 97 87 100 98 94 68 99 99

C
B

C 4 86 57 99 92 71 18 91 78
8 93 68 99 96 80 34 96 86
16 96 80 100 96 89 55 97 96

C
T

R 4 64 40 84 65 46 11 68 45
8 80 59 94 87 67 19 83 66
16 91 75 97 93 80 48 92 77

C
FB

4 85 53 99 90 73 12 89 78
8 93 66 99 94 81 36 94 87
16 96 79 100 97 91 52 96 96

Table 4. Number of recovered messages for the Hill modes of operation when k = 3.

B DN EN FN FR GE PL SP SW

EC
B 512 78 48 97 89 72 10 85 74

1024 88 65 98 91 89 19 94 86
2048 95 80 99 95 94 39 95 93

C
B

C 32 78 50 97 89 69 13 88 72
64 87 67 99 91 86 21 93 84
128 93 78 99 95 94 45 95 93

C
T

R 32 71 37 91 77 55 6 80 64
64 87 58 97 90 79 21 90 83
128 93 75 100 95 94 40 99 88

C
FB

32 78 48 97 88 69 14 86 73
64 87 65 98 91 85 18 92 85
128 93 75 99 95 95 45 94 95

Table 5. Number of recovered messages for the Hill modes of operation when k = 4.

5.3 Affine Hill Modes of Operation Message Recovery Rates (First Approach)

B DN EN FN FR GE PL SP SW

EC
B 2 89 80 100 90 88 54 93 92

4 97 94 100 98 99 79 98 99
8 99 99 100 99 99 87 99 100

C
B

C 1 93 85 100 99 85 57 96 93
2 97 88 100 99 93 68 98 100
4 99 95 100 99 99 78 100 100

C
T

R 1 92 72 100 93 90 48 96 95
2 97 88 100 96 98 68 99 99
4 98 97 100 99 99 78 100 100

C
FB

1 89 80 100 95 91 54 98 93
2 97 92 100 98 97 69 100 99
4 99 97 100 99 99 83 100 100

Table 6. Number of recovered messages for the affine Hill modes of operation when k = 2.

14

B DN EN FN FR GE PL SP SW

EC
B 32 70 43 97 86 49 3 85 63

64 84 50 99 91 62 11 87 75
128 93 65 99 93 79 21 94 88

C
B

C 32 71 40 98 86 47 5 83 61
64 82 50 99 93 65 11 90 74
128 90 65 99 93 78 25 95 97

C
T

R 32 35 13 56 40 19 3 37 18
64 58 28 85 63 36 6 60 45
128 81 49 98 82 59 13 83 77

C
FB

32 70 38 97 87 50 3 83 74
64 84 49 99 93 64 8 89 86
128 91 63 99 93 77 23 94 96

Table 7. Number of recovered messages for the affine Hill modes of operation when k = 3.

B DN EN FN FR GE PL SP SW

EC
B 16384 82 53 98 90 79 14 89 79

32768 92 69 99 93 93 26 94 88
65536 96 83 100 95 95 54 96 94

C
B

C 16384 80 53 98 89 76 14 88 78
32768 89 69 99 93 92 27 94 87
65536 96 80 100 95 95 61 96 93

C
T

R 16384 77 46 95 86 63 11 86 74
32768 87 66 98 92 89 26 92 85
65536 95 79 100 97 95 53 96 92

C
FB

16384 81 53 98 89 76 15 88 77
32768 90 68 99 93 92 27 94 87
65536 96 81 100 95 95 59 96 93

Table 8. Number of recovered messages for the affine Hill modes of operation when k = 4.

5.4 Affine Hill Modes of Operation Message Recovery Rates (Second Approach)

B DN EN FN FR GE PL SP SW

EC
B 128 73 59 59 40 70 7 28 72

256 92 83 98 97 90 32 98 89
512 100 98 100 100 99 100 100 100

C
B

C 16 84 35 99 96 82 2 97 63
32 95 57 100 97 92 4 100 87
64 98 84 100 98 96 10 100 95

C
T

R 16 65 33 94 96 68 1 96 49
32 92 58 100 97 87 5 100 82
64 99 80 100 98 96 12 100 95

C
FB

16 79 39 99 95 80 2 97 63
32 94 60 100 98 91 6 100 86
64 98 80 100 98 95 9 100 95

Table 9. Number of recovered messages for the secret coding affine Hill modes of operation when k = 2.

15

B DN EN FN FR GE PL SP SW

EC
B 4096 24 25 63 71 44 0 71 32

8192 53 54 97 98 71 4 94 64
16384 99 93 100 100 98 89 100 97

C
B

C 4096 34 34 96 91 55 0 92 45
8192 68 62 100 99 79 3 100 76
16384 100 96 100 100 98 47 100 96

C
T

R 4096 30 36 88 88 54 0 91 44
8192 68 60 100 99 81 3 100 77
16384 100 96 100 100 98 41 100 100

C
FB

4096 34 35 96 92 56 0 92 47
8192 65 62 100 99 82 3 100 74
16384 100 95 100 100 98 47 100 100

Table 10. Number of recovered messages for the secret coding affine Hill modes of operation when k = 3.

B DN EN FN FR GE PL SP SW

EC
B 200000 46 32 86 76 30 0 82 53

300000 73 64 96 98 71 2 95 78
400000 93 86 100 100 91 16 100 94

C
B

C 200000 54 38 89 83 37 0 91 56
300000 76 67 97 99 76 1 98 82
400000 93 87 100 100 91 5 100 94

C
T

R 200000 54 41 90 84 38 0 85 56
300000 76 67 96 95 73 2 98 82
400000 95 86 100 100 94 4 100 95

C
FB

200000 54 38 90 83 38 0 91 54
300000 76 66 97 99 76 1 97 81
400000 94 87 100 100 91 6 100 94

Table 11. Number of recovered messages for the secret coding affine Hill modes of operation when k = 4.

5.5 Running time

In this section we provide some benchmarks for Algorithms 5 to 8. The algorithms were run on a CPU Intel
i7-4790 4.00 GHz and compiled with GCC with the O3 flag activated and the omp_get_wtime() function [1]
was used to compute the running times. Due to resource constrains, we stopped the experiments at k = 3
for the Hill attacks and at k = 2 for the affine attacks. To obtain a fair comparison, when computing the
running times, we used higher B values than the one presented in Sections 5.2 to 5.4. We present the exact
margins in Table 12.

Mode Hill Afine Hill (1) Afine Hill (2) Hill
(k = 2) (k = 2) (k = 2) (k = 3)

ECB 4 (100%) 8 (99%) 512 (98%) 128 (97%)
CBC 2 (99%) 4 (95%) 256 (96%) 128 (95%)
CTR 2 (98%) 4 (97%) 256 (98%) 128 (96%)
CFB 2 (99%) 4 (97%) 256 (98%) 128 (96%)

Table 12. The threshold B and the corresponding success probability for the English language.

16

In Table 13, the second and third columns contain the total time necessary to recover 100 independent
texts, the fourth and fifth columns the total time necessary to recover 8 texts. It is clear from the presented
results that the first approach (Affine Hill (1)) has significantly lower running times than the second approach
(Affine Hill (2)). Note that in the case of the second approach the difference between the ECB attack and
the rest of the attacks is due to the extra score_function calls made when the trial_score is equal to the
best_score.

Mode Hill Afine Hill (1) Afine Hill (2) Hill
(k = 2) (k = 2) (k = 2) (k = 3)

ECB 0.94057 23.1658 1805.98 1415.60
CBC 1.75324 45.4769 379.762 1502.20
CTR 1.75827 45.9883 374.439 1423.39
CFB 1.75271 48.5864 360.428 1509.62

Table 13. Running times of Algorithms 5 to 8.

Let k = 2. To see if the chosen bounds have the same success rate for other texts, we encrypted 1000
independent texts21 and then we run Algorithms 5 and 7. The number of plaintexts recovered is presented
in Table 14. We can see that for the Hill based modes the success probabilities are almost the same, while
for the affine versions the probabilities are a little lower than the initial estimations.

Cipher ECB CBC CTR CFB
Hill 995 987 982 982

Afine Hill (1) 970 956 945 953
Table 14. Success rates for Algorithms 5 and 7 when k = 2.

6 Conclusions

In this paper we adapted Yum and Lee’s attack to the affine Hill cipher. Also, we introduced new ranking
and message recovery algorithms for the CBC, CTR and CFB modes of operation. We also conducted a
series of experiments to determine and test the success rates of these algorithms.

Future Work. The row ranking algorithms perform the same instructions for disjoint rows. Thus, an inter-
esting implementation direction is to parallelize Algorithms 3 and 4. The recovering algorithms also perform
the same instructions, but for independent keys. Hence, Algorithms 5 and 7 can also be parallelized.

Another possible speed-up is to parallelize the algorithm presented [15] for the Hill cipher. Note that this
speed-up can also be applied to the Hill CBC mode. From a theoretical point of view, it would be interesting
to see if the Leap et.al.’s algorithm can be tweaked to work for the affine Hill cipher. If it can be tweaked
we might obtain faster decryption times for the affine Hill and the corresponding CBC mode.

A time-memory trade-off attack for the Hill cipher is presented in [17]. Thus, it might be interesting to
see if this attack can be adapted to the affine version and to the (affine) modes of operation versions. From
an implementation point of view, it might worth seeing if McDevitt et.al.’s attack can be parallelized.

In [23], the authors provide a ranking algorithm when the the encoding and decoding functions are
unknown, but they do not describe a message recovery algorithm. This cipher can be seen as a composition
of a substitution cipher, a Hill cipher and a second substitution cipher. Note that the two substitution
21 different from the 100 texts used for computing the bounds

17

ciphers do not necessarily have the same key. A generic version of the secret coding cipher can be obtained
by combining a generic Vigenère cipher22, a Hill cipher and a second generic Vigenère cipher. Note that in
this case Yum and Lee’s ranking algorithm still works. Hence, another possible research direction is to find
message recovery algorithms23 for this generic cipher.

In [12], Hill introduces a variation of the affine Hill cipher in which the elements of the key matrix are
matrices. Thus, an interesting problem is to study the impact of the message recovering algorithms on the
version presented in [12].

References

1. OpenMP. https://www.openmp.org/
2. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
3. Kryptos. https://en.wikipedia.org/wiki/Kryptos (accessed 3 February 2018)
4. Alagic, G., Russell, A.: Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts. In: EURO-

CRYPT 2018. Lecture Notes in Computer Science, vol. 10212, pp. 65–93. Springer (2017)
5. Bauer, C., Link, G., Molle, D.: James Sanborn’s Kryptos and the Matrix Encryption Conjecture. Cryptologia

40(6), 541–552 (2016)
6. Bauer, C., Millward, K.: Cracking Matrix Encryption Row by Row. Cryptologia 31(1), 76–83 (2007)
7. Bauer, F.L.: Decrypted Secrets: Methods and Maxims of Cryptology. Springer (2002)
8. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. Methods and Techniques. Tech. rep., NIST

(2001)
9. Goldhahn, D., Eckart, T., Quasthoff, U.: Building Large Monolingual Dictionaries at the Leipzig Corpora Collec-

tion: From 100 to 200 Languages. In: LREC 2012. vol. 29, pp. 31–43. European Language Resources Association
(ELRA) (2012)

10. Hasinoff, S.: Solving Substitution Ciphers. https://people.csail.mit.edu/hasinoff/pubs/
hasinoff-quipster-2003.pdf (accessed 3 February 2018)

11. Hill, L.S.: Cryptography in an Algebraic Alphabet. The American Mathematical Monthly 36(6), 306–312 (1929)
12. Hill, L.S.: Concerning Certain Linear Transformation Apparatus of Cryptography. The American Mathematical

Monthly 38(3), 135–154 (1931)
13. Khazaei, S., Ahmadi, S.: Ciphertext-Only Attack on d× d Hill in O(d13d). Information Processing Letters 118,

25–29 (2017)
14. Kiele, W.A.: A Tensor-Theoretic Enhancement to the Hill Cipher System. Cryptologia 14(3), 225–233 (1990)
15. Leap, T., McDevitt, T., Novak, K., Siermine, N.: Further Improvements to the Bauer-Millward Attack on the

Hill Cipher. Cryptologia 40(5), 452–468 (2016)
16. Lyons, J.: Practical Cryptography, http://practicalcryptography.com/ (accessed 3 February 2018)
17. McDevitt, T., Lehr, J., Gu, T.: A Parallel Time-memory Tradeoff Attack on the Hill Cipher. Cryptologia 42(5),

1–19 (2018)
18. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC press (1996)
19. Overbey, J., Traves, W., Wojdylo, J.: On the Keyspace of the Hill Cipher. Cryptologia 29(1), 59–72 (2005)
20. Sanderson, C., Curtin, R.: Armadillo: A Template-Based C++ Library for Linear Algebra. Journal of Open

Source Software 1(2), 26 (2016)
21. Stinson, D.R.: Cryptography: Theory and Practice. CRC press (2005)
22. Wutka, M.: The Crypto Forum, http://s13.zetaboards.com/Crypto/topic/123721/1/ (accessed 3 February

2018)
23. Yum, D.H., Lee, P.J.: Cracking Hill Ciphers with Goodness-of-Fit Statistics. Cryptologia 33(4), 335–342 (2009)

22 By a generic Vigenère cipher we understand a Vigenère cipher with random alphabets.
23 that might use Yum and Lee’s ranking algorithm

18

https://www.openmp.org/
https://gmplib.org/
https://en.wikipedia.org/wiki/Kryptos
https://people.csail.mit.edu/hasinoff/pubs/hasinoff-quipster-2003.pdf
https://people.csail.mit.edu/hasinoff/pubs/hasinoff-quipster-2003.pdf
http://practicalcryptography.com/
http://s13.zetaboards.com/Crypto/topic/123721/1/

A Letter Frequencies

To have uniform letter frequency tables, we added the probability of letters with diacritical marks to the
probability of their base letter. For example, in Danish, the letter O has a 0.0464 occurrence probability
and the letter Ø one of 0.0094. We added the two and we recorded O’s probability as 0.0558. Note that the
frequency tables we used for computing our tables are from [16].

A, Å, Æ 0.0809 H 0.0162 O, Ø 0.0558 V 0.0233
B 0.0200 I 0.0600 P 0.0176 W 0.0007
C 0.0056 J 0.0073 Q 0.0001 X 0.0003
D 0.0586 K 0.0339 R 0.0896 Y 0.0070
E 0.1545 L 0.0523 S 0.0581 Z 0.0003
F 0.0241 M 0.0324 T 0.0686
G 0.0408 N 0.0724 U 0.0198

Table 15. Relative frequencies of Danish letters.

A 0.0855 H 0.0496 O 0.0747 V 0.0106
B 0.0160 I 0.0733 P 0.0207 W 0.0183
C 0.0316 J 0.0022 Q 0.0010 X 0.0019
D 0.0387 K 0.0081 R 0.0633 Y 0.0172
E 0.1210 L 0.0421 S 0.0673 Z 0.0011
F 0.0218 M 0.0253 T 0.0894
G 0.0209 N 0.0717 U 0.0268

Table 16. Relative frequencies of English letters.

A, Ä 0.1580 H 0.0185 O, Ö 0.0605 V 0.0225
B 0.0028 I 0.1082 P 0.0184 W 0.0009
C 0.0028 J 0.0204 Q 0.0001 X 0.0003
D 0.0104 K 0.0497 R 0.0287 Y 0.0174
E 0.0797 L 0.0576 S 0.0786 Z 0.0005
F 0.0019 M 0.0320 T 0.0875
G 0.0039 N 0.0883 U 0.0501

Table 17. Relative frequencies of Finnish letters.

A, À, Â 0.0808 H 0.0093 O, Ô, Œ 0.0546 V 0.0129
B 0.0096 I, Î, Ï 0.0726 P 0.0298 W 0.0008

C, Ç 0.0344 J 0.0030 Q 0.0085 X 0.0043
D 0.0408 K 0.0016 R 0.0686 Y 0.0034

E, È, É, Ê 0.1745 L 0.0586 S 0.0798 Z 0.0010
F 0.0112 M 0.0278 T 0.0711

G 0.0118 N 0.0732 U, Ù, Û, Ü 0.0559
Table 18. Relative frequencies of French letters.

19

A, Ä 0.0688 H 0.0411 O, Ö 0.0299 V 0.0094
B 0.0221 I 0.0760 P 0.0106 W 0.0140
C 0.0271 J 0.0027 Q 0.0004 X 0.0007
D 0.0492 K 0.0150 R 0.0771 Y 0.0013
E 0.1599 L 0.0372 S, ß 0.0656 Z 0.0122
F 0.0180 M 0.0275 T 0.0643
G 0.0302 N 0.0959 U, Ü 0.0376

Table 19. Relative frequencies of German letters.

A, Ą 0.0997 H 0.0125 O, Ó 0.0879 V 0.0000
B 0.0139 I 0.0809 P 0.0292 W 0.0478

C, Ć 0.0422 J 0.0226 Q 0.0000 X 0.0000
D 0.0323 K 0.0354 R 0.0506 Y 0.0370

E, Ę 0.0849 L, Ł 0.0418 S, Ś 0.0504 Z, Ź, Ż 0.0590
F 0.0041 M 0.0273 T 0.0394

G 0.0154 N, Ń 0.0602 U 0.0259
Table 20. Relative frequencies of Polish letters.

A 0.1250 H 0.0081 O 0.0898 V 0.0098
B 0.0127 I 0.0691 P 0.0275 W 0.0003
C 0.0443 J 0.0045 Q 0.0083 X 0.0019
D 0.0514 K 0.0008 R 0.0662 Y 0.0079
E 0.1324 L 0.0584 S 0.0744 Z 0.0042
F 0.0079 M 0.0261 T 0.0442
G 0.0117 N, Ñ 0.0731 U 0.0400

Table 21. Relative frequencies of Spanish letters.

A, Ä, Å 0.1252 H 0.0209 O, Ö 0.0579 V 0.0242
B 0.0154 I 0.0582 P 0.0184 W 0.0014
C 0.0149 J 0.0061 Q 0.0002 X 0.0016
D 0.0470 K 0.0314 R 0.0843 Y 0.0071
E 0.1015 L 0.0528 S 0.0659 Z 0.0007
F 0.0203 M 0.0347 T 0.0769
G 0.0286 N 0.0854 U 0.0192

Table 22. Relative frequencies of Swedish letters.

20

B Vigenère Cryptanalysis

In [21], the author describes an algorithm for breaking the Vigenère cipher. Because of better results in
practice, we changed the scoring function from [21] with a scoring function based on digraphs. The result is
presented in Algorithm 9.

Algorithm 9. The algorithm for breaking the Vigenère cipher with key length matrix_size.
Input: The ciphertext enc.
Output: The best possible message best_msg and its associated score best_score.

1 Function decrypt_vigenere(enc, key):
2 fragment[matrix_size]← {""};
3 for i ∈ [0, enc.size()/matrix_size] do
4 for j ∈ [0,matrix_size] do
5 fragment[j] += (enc[i ·matrix_size+j]− "a" + key) mod alphabet_size+"a";
6 end
7 end
8 return fragment;
9 Function compute_score(best_fragment_score):

10 best_score← 0;
11 for i ∈ [0,matrix_size] do
12 best_score += best_fragment_score[i];
13 end
14 return best_score;
15 Function recompose_msg(best_fragment):
16 best_msg ← "";
17 for i ∈ [0, enc_size /matrix_size] do
18 for j ∈ [0,matrix_size] do
19 best_msg += best_fragment[j][i];
20 end
21 end
22 return best_msg;
23 Function break_vigenere(enc):
24 best_fragment_score[matrix_size]← {−∞};
25 for key ∈ [0, alphabet_size] do
26 fragment← decrypt_vigenere(enc, key);
27 for i ∈ [0,matrix_size] do
28 fragment_score[i]← score_function(fragment[i], digraph_freq, digraph_default, 2);
29 if fragment_score[i] > best_fragment_score[i] then
30 best_fragment_score[i]← fragment_score[i];
31 best_fragment[i]← fragment[i];
32 end
33 end
34 best_score← compute_score(best_fragment_score);
35 best_msg ← recompose_msg(best_fragment);
36 end
37 return (best_score, best_msg);

21

	Cracking Matrix Modes of Operation with Goodness-of-Fit Statistics

