
Cryptocurrencies with Security Policies and Two-Factor Authentication

Florian Breuer∗
KIT

Vipul Goyal
NTT Research and CMU

Giulio Malavolta∗
MPI-SP

Abstract—Blockchain-based cryptocurrencies offer an ap-
pealing alternative to Fiat currencies, due to their decen-
tralized and borderless nature. However the decentralized
settings make the authentication process more challenging:
Standard cryptographic methods often rely on the ability of
users to reliably store a (large) secret information. What
happens if one user’s key is lost or stolen? Blockchain
systems lack of fallback mechanisms that allow one to
recover from such an event, whereas the traditional banking
system has developed and deploys quite effective solutions.

In this work, we develop new cryptographic techniques
to integrate security policies (developed in the traditional
banking domain) in the blockchain settings. We propose
a system where a smart contract is given the custody of
the user’s funds and has the ability to invoke a two-factor
authentication (2FA) procedure in case of an exceptional
event (e.g., a particularly large transaction or a key recovery
request). To enable this, the owner of the account secret-
shares the answers of some security questions among a
committee of users. When the 2FA mechanism is triggered,
the committee members can provide the smart contract
with enough information to check whether an attempt was
successful, and nothing more.

We then design a protocol that securely and efficiently
implements such a functionality: The protocol is round-
optimal, is robust to the corruption of a subset of committee
members, supports low-entropy secrets, and is concretely
efficient. As a stepping stone towards the design of this
protocol, we introduce a new threshold homomorphic en-
cryption scheme for linear predicates from bilinear maps,
which might be of independent interest.

To substantiate the practicality of our approach, we im-
plement the above protocol as a smart contract in Ethereum
and show that it can be used today as an additional safe-
guard for suspicious transactions, at minimal added cost. We
also implement a second scheme where the smart contract
additionally requests a signature from a physical hardware
token, whose verification key is registered upfront by the
owner of the funds. We show how to integrate the widely
used universal two-factor authentication (U2F) tokens in
blockchain environments, thus enabling the deployment of
our system with available hardware.

1. Introduction

Bitcoin and blockchain-based cryptocurrencies
brought us at the brink of a technological revolution:
These systems allow us to bypass the need for centralized
trusted entities to run currencies on a large-scale. While

∗Work done in part while at CMU

their decentralized and borderless nature make them
appealing substitutes for Fiat currencies, a burning
problem with this approach is the lack of a recovery
mechanism if something goes wrong. What happens if
one user’s key is lost or stolen? There is no bank to
call and no authority to rely upon to get your funds
back. Indeed, the number of such high profile attacks
on cryptocurrencies has been rising steadily. Famous
incidents like the Mt. Gox hack [14], the coincheck
hack [2], and the Parity Technology code deletion [3]
saw funds upwards of several hundred million dollars
being lost or stolen. The well-known DAO hack [32]
forced Ethereum to adopt a hard fork which created
two version of the currency: Ethereum and Ethereum
classic. To deal with such problems in future, Ethereum
developers have proposed EIP 867. An ethereum
improvement protocol (EIP) is the process by which
code changes get accepted onto the Ethereum platform.
However EIP 867 has proven to be controversial since it
will again bifurcate the currency into two versions, the
very problem it was trying to solve.

The problems of attackers stealing money or losing
credentials are of course not unique to blockchain-based
cryptocurrencies. The (traditional) banking industry has
been dealing with such issues for decades where a number
of mitigating approaches have worked pretty effectively.
Examples of common security policies to deal with such
attacks include: A waiting period (say 24 hours) for
transferring money to a new recipient and an overall daily
outgoing transfer limit. Bypassing these restrictions could
either require additional verifications (such as two-factor
authentication), or may not be allowed at all. Different
banks could follow different security policies which might
also vary depending on the type of account (business vs
personal) and by the state/region and the local laws. This
motivates the following question:

Can we take the lessons learnt in the traditional
banking domain, and apply them fruitfully to
blockchain-based systems, without compromis-
ing their decentralized nature?

1.1. System Architecture

We propose a system where each user has the opportu-
nity to delegate the custody of its funds to a smart contract.
The security policy (which can be specified by the user
itself) is hardwired in the smart contract and it governs its
decision. All funds transfer will go through the approval
of such a smart contract, which has the power to accept
or reject (or even set on hold) each transaction, depending
on the specified policy. In case of an exceptional event,
such as key theft, or as an additional security safeguard

in case of particularly large transactions or transactions to
new addresses, the smart contract will require additional
verification via two-factor authentication (2FA). We stress
that one does not need to authenticate all transactions but
only a carefully chosen set, at the discretion of the policy
specified by the owner of the funds.

In this work we implement the above idea by develop-
ing solutions for 2FA mechanisms that can coexist with
the decentralized nature of blockchain-based currencies.
To be aligned with the philosophy of decentralized system,
our solutions are guided by the following design princi-
ples.
Distributed Trust. The 2FA must not rely on the ex-
istence of a trusted authority. Instead we propose to
leverage a hardware token or distribute the trust among
a (reasonably-sized) set of parties, which are asked to in-
tervene in case of exceptional event. The members of such
a committee can be chosen by the users or can be selected
through a consensus protocol (e.g., the miners themselves
can play this role). Security must be guaranteed even if a
subset of the committee members behaves maliciously.
Reliability and Guaranteed Output Delivery. We re-
quire the 2FA mechanism to be resilient against (benign)
disconnections and (malicious) denial of service attacks.
That is, even if part of the members of the committee go
offline or become corrupted, one should still be able to
complete the authentication procedure (given that the set
of online parties is large enough).
Low Latency. In distributed environments communication
is typically expensive, as messages have to be broadcasted
to all users in the network. For this reason it is of central
importance to minimize the rounds of communication of
a 2FA mechanism.
Computational Efficiency. General purpose crypto-
graphic solutions are very powerful but are often com-
putationally intensive. We aim to build a solution based
on well-established cryptographic components which is
efficient enough to be integrated in real-life systems.

1.2. Two-Factor Authentication Mechanisms

A popular approach to 2FA in the traditional banking
system is that of security questions: When the 2FA is
triggered, the user is prompted to answer a personal
question and the verification process succeeds if the user’s
answer is correct. If we were to import this idea to the
decentralized setting, the first question that arises is where
to store the correct answers in absence of a trusted author-
ity. Clearly the smart contract cannot hardwire the correct
answers as otherwise they would be public knowledge
(smart contracts do not offer any form of privacy). Since
answers typically come from a low-entropy distribution,
storing the hash of them is also not a good idea since
it is vulnerable to off-line dictionary attacks, where an
attacker recovers the hash and tests locally his guesses
until he succeeds.

Our idea to bypass this obstacle is to secret share the
correct answers among a set of n parties, in such a way
that stealing the secret would require to corrupt at least t
members of this committee (for some threshold parameter
t ≤ n). When the 2FA mechanism is triggered, the user
is asked to authenticate its transaction τ by providing the
correct answers to a set of predefined questions. The user

then broadcasts a message to all committee members, who
perform some computation locally and output a partial
response tied to the transaction τ . The smart contract
then collects sufficiently many responses and publicly
checks whether the authentication was successful. If this
is the case the smart contract allows τ to go through,
otherwise it rejects it. In terms of security, we require
that the above process does not reveal anything beyond
whether the user’s guess was correct or not, even if the
attacker corrupts a certain subset of committee members.
Henceforth, we refer to this procedure as a distributed
zero-tester (DZT).1

We also consider an alternative setup where we lever-
age a physical two-factor authentication token. As an
example, universal two-factor authentication (U2F) tokens
allow a user to sign any message by querying the token.
With this tool at hand, authentication is done as follows:
The smart contract hardwires the verification key of the
U2F token and, when the 2FA mechanism is invoked,
sends the user a nonce. The authentication is successful
if the user provides a correct signature on the nonce.

1.3. Security Policies

Our system is completely flexible in the policy that is
enforced by the smart contract, which can be specified by
the owner of the address. A more conservative usage of
our system is just as an additional safeguard mechanism:
Suspicious transactions (e.g., unusually large amounts or
transactions to a new address) can trigger the 2FA mech-
anism and force the user to provide (human-memorable)
answers to some security questions or a signature from
a physical token. This gives an additional line of defense
even against the catastrophic event where an attacker steals
a user signing key.

On the other side of the spectrum, one user may
want to set the policy such that some transactions are
allowed given only the 2FA, i.e., they are not required to
be digitally signed. This can be useful in scenarios where
a user has lost the signing key for an address and wants
to recover the funds: Answering some security questions
allows him to transfer the coins to a fresh address (with
a newly sampled signing key). However this liberal usage
of our system requires careful thoughts. While on the one
hand it improves the usability of the currency, on the other
hand it opens the doors to a new attack vector: instead
of stealing a secret key, an attacker can compromise
the address by guessing the answers to some security
questions (or stealing a physical token), which is typically
a much easier task. This risk can be mitigated by rate-
limiting the amount of attempts for unsigned transactions
to, e.g., once per week. Since each attempt requires the
user to post a message over the blockchain, the query
limit can be enforced by the smart contract itself, without
the need for the committee members to coordinate or to
update the code of the physical token.

In this work we mainly focus on the former case,
where the 2FA mechanism is invoked in addition to the
standard digital signature check. An in-depth cost analysis

1. The name comes from the fact that the committee members can
jointly check whether an attempt α̃ corresponds to the correct answer α
(i.e., α̃− α = 0) and nothing beyond that.

of the security and usability tradeoff of unsigned transac-
tions is beyond the scope of this work.

1.4. Our Contribution

In this work we propose a new method to safeguard
transactions on blockchain-based cryptocurrencies, in-
spired by the solutions developed in the (traditional) bank-
ing domain. We then develop 2FA mechanisms amenable
to the decentralized nature of cryptocurrencies, offering
different trade-offs in terms of trust assumptions, physical
capabilities, and computational efficiency. Our technical
contributions can be summarized as follows.
(1) Definitions. We develop the notion of distributed zero-
tester (DZT), the central cryptographic building block that
enables efficient 2FA in decentralized system. We give
formal definitions (Section 5) for this primitive and we
characterize the security requirements with a game-based
definition.
(2) Cryptographic Protocol. We propose a cryptographic
instantiation of DZT from standard assumptions on bi-
linear groups (Section 6). The scheme is round optimal,
has guaranteed output delivery, and is concretely efficient.
Along the way, we develop a new threshold homomor-
phic encryption scheme for linear predicates from bilin-
ear groups (Section A), which might be of independent
interest.
(3) Implementation. We implement the DZT scheme as a
smart contract in Ethereum (Section 7). Our performance
evaluation shows that, for reasonably-size committee, the
resulting 2FA mechanism can be deployed by today’s
users at minimal additional cost (around 1$ per authenti-
cated transaction). We also implement a U2F-based 2FA
mechanism as a smart contract in Ethereum (Section 8),
thus enabling 2FA with a hardware token already avail-
able to the public. In terms of added cost, our scheme
introduces (approximately) an additional 3¢ to 28¢ per
transaction, depending on the choice of the curve.

2. Technical Overview

In the following section we give an informal exposi-
tion of the techniques developed in this work. We focus
on the main goal of designing a crytpographic solution for
a DZT: In a DZT a client secret shares an answer α (the
primitive naturally extends to the settings of multiple an-
swers) among a set of n parties. When the 2FA is invoked,
the client (which has an attempt α̃ in his head) crafts a
single query q and sends q (together with the transaction
identifier τ) to all parties, who locally compute a response
pi. Given a large enough set of responses {pi}i∈S , for
some set S of size |S| = t, anyone can publicly determine
the outcome of the authentication process. The transaction
τ is successfully authenticated if and only if α = α̃ and the
protocol should not leak any information beyond whether
the authentication process succeeded or not.

2.1. A Generic Solution

We first discuss a high-level idea of our solution and
then we present an efficient cryptographic instantiation.
Threshold fully-homomorphic encryption [22], [11] al-
lows us to compute any function over encrypted data and

offers a general solution to our problem: The client can
simply compute Enc(pk, α) and distribute the shares of the
secret key (sk1, . . . , skn) to the committee members. To
authenticate a transaction, a user computes Enc(pk, α̃) and
broadcasts it to all parties. Then the committee members
locally compute, using the homomorphic properties of the
scheme,

c = Enc
(
pk, α

?
= α̃

)
and compute and output the partial decryption using their
share ski. The plaintext bit {0, 1} of c can be publicly re-
constructed using a large enough set of decryption shares
and the output of the authentication is set to be this bit.

While this solution satisfies all of our security require-
ments, it introduces a prohibitively high computational
overhead. As of today, implementing a generic fully-
homomorphic encryption in an Ethereum smart contract
is far off the reach of the current infrastructure. Thus,
developing a solution that can be used in today’s systems
requires us to devise a different strategy.

2.2. A Flawed Attempt

In order to understand our solution, it is instructive
to iterate through a simple construction and analyze its
pitfalls. In the setup phase, the client samples an ElGa-
mal [18] key pair (x, h = gx) and encrypts the answer α
under such a key, making the resulting ciphertext

(c0, c1) = (gr, hr · gα)

publicly available to all parties. The secret key x is then
secret shared (using Shamir scheme [36]) among n parties
in such a way that any t shares are sufficient to reconstruct
the secret. Let (xi, i) be the i-th share. To authentication
a transaction τ , a user can compute the encryption of its
attempt

(d0, d1) = (gs, hs · g−α̃)

and broadcast it to all members of the committee. Each
party then computes and broadcasts pi = (c0 ·d0)xi . Given
a set S of responses, the outcome of the authentication can
be publicly recovered by checking∏

i∈S

pλi
i

?
= c1 · d1

where λi is the i-th Lagrange coefficient. Note that if
α = α̃, then c1 ·d1 = hr+s and indeed the above equation
holds true since the secret x is reconstructed in the expo-
nent. Unfortunately this solution has multiple flaws. First
of all, there is no mechanism that ties the transaction τ to
the authentication process so one can authenticate without
the knowledge of α by simply replaying a valid ciphertext
(c0, c1) and swapping the corresponding transaction τ
with a new τ̃ . Furthermore, even if a single member
provides a malformed answer, the entire mechanism for
verification fails.

While these issues can be resolved using non-
interactive zero-knowledge proofs (NIZK) [7], there is a
more serious problem: If the authentication is not success-
ful, then the responses of the committee members reveals
the exact difference α− α̃. This is because

c1 · d1∏
i∈S p

λi
i

=
hr+s · gα−α̃

g(r+s)
∑

i∈S xiλi
=
hr+s · gα−α̃

hr+s
= gα−α̃

which means that the attacker can always guess the correct
α with at most two queries. This is a notorious issue in
threshold cryptography, and current approaches to resolve
this problem (see, e.g., [20], [17], [30]) require one to
add two rounds of interaction. This is not acceptable for
us, since we consider settings where communication is
expensive (i.e., each message is posted on a blockchain)
and thus we aim at a completely non-interactive solution.

2.3. Bilinear Maps at Rescue

The above vulnerability comes from the fact that the
threshold version of ElGamal encryption does not satisfy
the notion of simulation security for equality predicates,
i.e., instead of revealing whether two strings are equal
or not it reveals the exact difference. This problem can
be bypassed by resorting to more powerful cryptographic
machinery.

Our first observation is that the class of predicates
that we need to evaluate is very restricted, so there is
hope to build a solution without the full power of fully-
homomorphic encryption. Our second observation is that
the protocol is already secure if the authentication is
successful, so we only need to worry about the case where
the answer is not correct, i.e., α 6= α̃.

Our central idea is to revisit the ElGamal-based ap-
proach by adding a re-randomization factor to the plaintext
of the evaluated ciphertext, which cancels out only if
α = α̃. This can be done with the help of bilinear groups.
In a bit more detail, in the setup phase, the client publishes

(c0, c1, c2, c3) = (gr, hr · gρα, gr̃, hr̃ · gρ) ∈ G4
1

where h = gx. The secret key x is secret shared as
before. Note that (c0, c1) serves the same role as before,
except that there is an additional factor ρ multiplied by the
answer α. The role of (c2, c3) will be clear in a moment.
The authentication begins with the user computing and
broadcasting the encryption

(d0, d1) = (gs, hs · g−ρα̃) ∈ G2
1.

Note that the user does not know the factor ρ but can still
compute a valid ciphertext for −ρα̃ by obliviously raising
(c2, c3) to the power of −α̃ and then re-randomizing the
resulting ciphertext.

Each committee member computes (c0 · d0)xi as be-
fore, except that it additionally samples a fresh element
k = gκ ∈ G2 using a random oracle and returns

pi = e ((c0 · d0)xi , k) = e(g, g)(r+s)xiκ ∈ GT

as the decryption share. The outcome of the authentication
process can be recovered by checking∏

i∈S

pλi
i

?
= e(c1 · d1, k).

To see why security is preserved even in the case of a
failed authentication, observe that

e(c1 · d1, k)∏
i∈S p

λi
i

=
h(r+s)κ · gκρ(α−α̃)

g(r+s)κ
∑

i∈S xiλi
=
h(r+s)κ · gκρ(α−α̃)

h(r+s)κ

so in case α = α̃ the randomization factor κρ cancels out
and the above equality is verified. For the case case α 6= α̃,

the factor κρ completely masks the difference α− α̃ and
prevents the attack as described above. Since the value
of k = gκ is freshly sampled upon each attempt, the ran-
domization factor is pseudorandom for each authentication
query. Also note that k can be sampled locally by each
party, without the need of any additional interaction.

2.4. Additional Challenges

The above presentation glosses over many important
aspects that need to be taken into account when building
an efficient protocol. As an example, the above protocol
must be augmented with NIZK proofs to make sure that
a malicious player cannot deviate from the specification
of the protocol. However, using generic NIZK schemes
for NP would vanish our efforts to build a practical
system. Fortunately we show that our scheme can be
slightly tweaked to allow us to implement the required
NIZKs using exclusively Schnorr proofs for discrete log-
arithm equality [35], which results in a concretely efficient
scheme.

Another set of challenges arises when implementing
the protocol as a smart contract in Ethereum. In order to
obtain an efficient protocol, we would like to leverage
precompiled instructions to perform bilinear group op-
erations. However the semantic of operations supported
by Solidity (the language of Ethereum smart contracts)
is very limited: It only supports group operations in the
source G1 and pairing-product equation checks. This turns
out to be insufficient to implement the scheme as outlined
above. To circumvent this issue, we further modify our
construction to make it fully compatible with precompiled
instructions in Solidity. This process is not hassle-free:
The new scheme requires us to introduce a new (static)
assumption over bilinear groups, the dual Diffie-Hellman
assumption. We then show that such an assumption holds
true in the generic group model. We refer the reader to
the Section 6.2 sections for further details.

Also the integration of a U2F-based solution in
Ethereum introduces some additional complications. As an
example, a smart contract cannot implement a randomized
algorithm but we need to sample a random challenge to
complete the U2F authentication protocol. Instead of a
truly random string, we use the hash of a unique identifier
of the transaction (to prevent replay attacks) to implement
the challenge sampling procedure. We elaborate in more
detail in Section 8.

3. Related Work

In the following we survey some related work from
the literature.
Multi-Sig Addresses. One of the most prominent ap-
proaches to safeguard accounts in cryptocurrencies is the
creation of multi-sig addresses: A secret key of a digital
signature scheme is secret shared among multiple parties
using a threshold scheme [24], [29], [20], [16]. Approving
transaction requires gathering a large enough set of users
to jointly sign it. This means that compromising a single
device is no longer sufficient to steal coins.

Our approach complements this idea and adds two
important features: (1) Multi-sig address require to gather
multiple parties to sign every transaction regardless of

how small or big it is, whereas in our system a smart
security policy can decide when additional verification is
required. To the best of our knowledge, there has been
no previous work which has this feature. (2) Our system
supports also low-entropy secrets (e.g., human-memorable
passwords or answers to security questions) that can be
used as an additional verification, in case one of the parties
loses his credentials.
Password-Protected Wallets. Another approach to im-
prove the usability of blockchain systems is the so-called
password-protected wallet [21], where the secret keys are
encrypted using a human-memorable password. Unfortu-
nately these systems are vulnerable to exhaustive-search
attacks where one can enumerate all plausible passwords
and attempt to recover the secret. A DZT can be used to
overcome this limitation and to construct a form of dis-
tributed password-protected wallet across some committee
members.
Vaults. Cryptocurrency vaults [33] aim at disincentivizing
key theft by delaying the acceptance transactions: Once
an illegitimate transaction is placed on the blockchain,
the legitimate owner has enough time to prevent the
spending using an appropriate recovery key. The aim of
this mechanism is to reduce the incentive for an attacker
to steal keys, as it will likely result in no financial gain.
However, it does not address the question of recovering
access to an account, in case of unintentional credential
losses.
Password-Authenticated Key Exchange (PAKE). An
area which is closely related to our DZT is that of
threshold PAKE [31], [15], where a human-memorable
password is used to authentication a user against a set
of servers, who collectively know the password but can
be individually corrupted without compromising security.
The main difference with respect to our settings is that
we do not require to exchange any key, instead we want
to tie the authentication process with a transaction chosen
by the client. Additionally, we require that the outcome
of the authentication process is publicly verifiable even by
external parties, which is typically not the case for PAKE
protocols.
Zero-Testing of ElGamal Ciphertexts. One of our main
technical innovation is a new protocol where parties can
jointly test whether an ElGamal ciphertext is an encryp-
tion of 0, without revealing any additional information.
While this is a well-known problem in threshold cryp-
tography [13], known efficient solutions (see, e.g., [20],
[17], [30]) are based on a commit-and-prove approach and
require at least three rounds of interaction. In contrast,
our solution is completely non-interactive: Each party
broadcasts a single message and the verification procedure
is public. This is particularly suitable for settings where
communication is expensive, e.g., where parties exchange
messages by posting them on a blockchain.
Password-Protected Secret-Sharing (PPSS). A PPSS [4]
allows a user to share a secret that can be reconstructed
with the sole knowledge of a password. Recent efficient
protocols [26] can be used as a substitute for DZT in
our 2FA mechanism. However, PPSS would require at
least one more round of interaction between the committee
members and the client. In contrast, the shares in the DZT
can be verified non-interactively and without the need to
set up an off-chain communication infrastructure.

Distributed Point Functions (DPF). A DPF [23] (and
its generalization to function secret sharing [12]) al-
lows a set of parties to secret-share a point function
f → (f1, . . . , fn) whose output can be recovered by
the output of the local evaluation of each parties, i.e.,
f(x) = f1(x) ⊕ · · · ⊕ fn(x). A DZT can be thought
as a threshold version of a DPF with a few important
differences: (i) In a DZT the output shares of the parties
are publicly verifiable, which is in general not the case for
DPFs. Furthermore, (ii) in a DZT the output reconstruction
is not restricted to be a linear function. Finally, (iii) DZT
supports the evaluation of encrypted queries, whereas in
a DPF the inputs are typically public.

4. Preliminaries

We denote by λ ∈ N the security parameter. We say
that a function negl(·) is negligible if it vanishes faster
than any polynomial. Given a set S, we denote by s←$S
the uniform sampling from S. We say that an algorithm is
PPT if it can be implemented by a probabilistic machine
running in time polynomial in the security parameter.

4.1. Bilinear Groups

Let (G1,G2,GT) be an asymmetric bilinear group
of prime order p with an efficiently computable pairing
e : G1 × G2 → GT and let G be the generator of
such a group. We denote by (g1, g2) the generators of the
groups G1 and G2, respectively, and by gT = e(g1, g2) the
generator of GT . In the following we recall the eXternal
Diffie-Hellman (XDH) [9] and the Decisional Bilinear
Diffie-Hellman (DBDH) [27], [10] problems over bilinear
groups.

Assumption 1 (XDH). Let G be a bilinear group gen-
erator. G is XDH-hard if for all PPT distinguishers it
holds that the following distributions are computationally
indistinguishable

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

xy
1) ≈

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

z
1)

where (G1,G2,GT , p, g1, g2)←$G(1λ) and
(x, y, z)←$Z∗p.

Assumption 2 (DBDH). Let G be a bilinear group gen-
erator. G is DBDH-hard if for all PPT distinguishers it
holds that the following distributions are computationally
indistinguishable

(G1,G2,GT , p, g1, g2, gx2 , g
y
T , g

xy
T) ≈

(G1,G2,GT , p, g1, g2, gx2 , g
y
T , g

z
T)

where (G1,G2,GT , p, g1, g2)←$G(1λ) and
(x, y, z)←$Z∗p.

4.2. Non-Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof [7]
allows a prover to convince a verifier about the validity
of a certain statement without revealing anything beyond
that. We recall the syntax in the following.

Definition 1 (NIZK). Let L be an NP-language with
relation R. A NIZK system for R consists of the following
efficient algorithms.
Setup(1λ) : On input the security parameter 1λ, the setup
algorithm returns a common reference string crs.
Prove(crs, stmt,wit) : On input the common reference
string crs, a statement stmt, and a witness wit, the prover
algorithm returns a proof π.
Verify(crs, stmt, π) : On input the common reference
string crs, a statement stmt, and a proof π, the verifier
algorithm returns a bit {0, 1}.

Correctness requires that for all λ ∈ N and all pairs
(stmt,wit) ∈ R it holds that

Pr [Verify(crs, stmt,Prove(crs, stmt,wit))] = 1

where crs←$ Setup(1λ). We recall the definition of zero-
knowledge in the following.

Definition 2 (Zero-Knowledge). A NIZK system for
R is zero-knowledge if there exists a PPT algorithm
(Sim0,Sim1) such that for all pairs (stmt,wit) ∈ R and
for all PPT distinguishers the following distributions are
computationally indistinguishable

(crs← Setup(1λ), π ← Prove(crs, stmt,wit)) ≈
(crs∗, π ← Sim1(crs, stmt, td))

where (crs∗, td)← Sim0(1λ).

We require that the protocol satisfies the strong notion
of simulation extractability.

Definition 3 (Simulation Extractability). A NIZK system
for R is simulation-extractable if there exists a PPT
algorithm Ext and a negligible function negl(·) such that
for all λ ∈ N and all PPT algorithms A it holds that

Pr

 Verify(crs, stmt, π)
∧ stmt /∈ Q
∧ (stmt,wit) /∈ R

∣∣∣∣∣∣
(crs, td)← Sim0(1λ)
π ← A(crs)O(·)

wit← ExtA(crs, td, stmt, π)


= negl(λ)

where O takes as input a (possibly false) statement stmt
and returns Sim1(crs, stmt, td) and we denote by Q the
list of queries issued by A.

4.3. Secret Sharing

We recall the threshold secret sharing scheme from
Shamir [36] over a field F where a randomized algorithm
Share takes as input a field element s, a threshold t, and a
number of participants n and returns the evaluations of a
random (t−1)-degree polynomial at the respective points
(1, s1), . . . , (n, sn). Then any subset S ⊆ {1, . . . , n} such
that |S| = t can recover the secret s by computing

s =
∑
i∈S

λi · si

over F, where λi is the i-th Lagrange coefficient.

5. Definitions

In the following we present the notion of a distributed
zero-tester (DZT) and we provide explicit security and
privacy properties. Before delving into the formal defini-
tions, we discuss on a high level our design goals.

5.1. Overview

A DZT allows one to share a secret among a selected
committee of users in such a way that later on one can
authenticate using the knowledge of such a secret, assum-
ing that a large enough portion of committee members is
online. Our definition for a DZT is tailored to distributed
environments where communication is expensive and an
arbitrary subset of parties may decide not to comply with
the protocol specifications. Our definitions (and conse-
quently the instantiation that we propose) are guided by
the following design principles.
Round Optimality. For our applications of interest, the
communication among committee members happens over
a blockchain. This makes communication costly in both
financial and efficiency terms: The rate of exchanged
messages is bounded by the rate at which new blocks
appear, which can be in the order of minutes. For this
reason we aim to minimize interaction as much as possi-
ble. Ideally, an authentication attempt should consist of a
single message from the user to all committee members
and of a single round of response, where the output of the
protocol can be recovered without any further interaction.
Guaranteed Output Delivery. As one cannot trust all
committee members, a corrupted user might decide at any
point not to respond to any query. We want to guarantee
that authentication protocols can still take place even if an
arbitrary subset of committee members (up to some user-
defined threshold) goes offline. This property is commonly
known as guaranteed output delivery.
Public Verifiability. We require that the outcome of the
authentication process is publicly verifiable by any ex-
ternal observer. This feature is needed to allow the smart
contract to decide whether the user transaction should take
place or not.
Resilience Against Offline Dictionary Attacks. The
secrets stored by the user typically come from a low-
entropy distribution (e.g., a human-memorable password
or answer to some security question). For this reason, it
is important the information that an attacker can gather
by eavesdropping the communication does not allow it
to launch brute-force attacks where the authentication
process is run locally until it succeeds. Clearly the attacker
can query the online authentication mechanism, but an
unusual number of attempts will trigger a rate-limiting
mechanism.
Resilience Against Replay Attacks. In our context au-
thentication is tied to a specific bitstring τ , e.g., we want
to make sure that an unusual transaction τ is initiated by
the legitimate user. It is therefore important to ensure that
previous successful authentications for a string τ cannot
be mauled into successful authentications for a different
string τ ′, without the knowledge of the secret.

5.2. Syntax and Security Properties

In the following we present the syntax for a DZT
protocol. To incorporate the fact that a query is associated
with some transaction trans we augment our scheme with
tags τ , which we assume to be λ-bit strings. This is
without loss of generality since one can set τ = H(trans),
where H : {0, 1}∗ → {0, 1}λ is a collision resistant hash
function.

Definition 4 (DZT). A DZT scheme consists of the fol-
lowing efficient algorithms.
Setup(1λ, t, n, α) : On input the security parameter 1λ,
a threshold size t, a committee size n, and a string α ∈
{0, 1}∗, the setup algorithm returns a public key pk and
a vector of secret keys (sk1, . . . , skn).
Query(pk, β, τ) : On input the public key pk, a string
β ∈ {0, 1}∗, and a tag τ ∈ {0, 1}λ, the query algorithm
returns a query q.
Response(pk, ski, q, τ, i) : On input the public key pk, a
secret key ski, a query q, a tag τ , and an index i, the
response algorithm returns a partial response pi.
Verdict(pk, p1, . . . , pt̃, τ) : On input the public key pk, a
set of partial responses (p1, . . . , pt̃), for some t̃ ≤ n, and
a tag τ , the verdict algorithm returns a bit {0, 1}.

For correctness, we require that for all λ ∈ N, all
polynomials n = n(λ), all t ≤ n, all sets S ⊆ {1, . . . , n}
of size |S| ≥ t, all strings α and τ , all (pk, sk1, . . . , skn)
in the support of Setup(1λ, t, n, α) it holds that

Pr [Verdict (pk, {pi}i∈S , τ) = 1] = 1

where pi ← Response(pk, ski,Query(pk, α, τ), τ, i). Note
that correctness is required to hold as long as any set of
committee members of size at least t participates in the
response to the queries. In other words, the protocol has
guaranteed output delivery as long as at most n−t parties
are corrupted and may refuse to respond to queries or give
an incorrect response.

Next we define the notion of security and we ar-
gue why it models the attackers capability in a faithful
way. Our definition are inspired by those of Bellare,
Pointcheval, and Rogaway [6] imported to our settings.
We denote by D set of distinct strings from where the
secret is chosen. Our definition captures both the cases
where D is small and exponentially large, as long as one
can efficiently sample an element from D.

Definition 5 (Security). A DZT is secure if there exists a
negligible function negl(·) such that for all λ ∈ N and
all PPT algorithms A it holds that

Pr
[
ExpA(1λ) = 1

]
≤ (|Q|+ 1)/|D|+ negl(λ)

where the experiment is defined in the following.
ExpA(1λ):

• (t, n)← A(1λ)
• α←$D
• (pk, sk1, . . . , skn)← Setup(1λ, t, n, α)
• S∗ ← A(pk)
• (q∗, τ∗, p∗1, . . . p

∗
t̃
)← AO({ski}i∈S∗)

where |S∗| = t − 1 and O gives the adversary access to
the following interfaces:

1) Accept(τ) : On input a tag τ , the adver-
sary is given q ← Query(pk, α, τ) and pi ←
Response(pk, ski, q, τ, i), for all i /∈ S∗.

2) Reject(τ, f) : On input a tag τ and a function f ,
the adversary is given q ← Query(pk, f(α), τ)
together with pi ← Response(pk, ski, q, τ, i), for
all i /∈ S∗. We require that f is given as a

polynomial-size circuit and that it has no fixed
point, i.e., there exists no x such that f(x) = x.

3) Malicious(q, τ) : On input a query q and
a tag τ , the adversary is given pi ←
Response(pk, ski, q, τ, i), for all i /∈ S∗.

We define Q to be the set of queries to the Malicious
interface and Q′ be the set of queries to the Accept
interface. The experiment returns 1 if and only if

Verdict(pk, p∗1, . . . p
∗
t̃ , τ
∗) = 1 and τ∗ /∈ Q′.

We now discuss how the experiment defined above
models the intuition for the security properties that we
want to ensure. First observe that the adversary is allowed
to see arbitrarily many accepting and rejecting queries
from the honest users without affecting its success prob-
ability. This means that no matter how many queries it
eavesdrops, its advantage in guessing α should not change.
Instead, the Malicious interfaces allows the attacker to
guess the value of α exactly once per query and we
require that nothing is revealed beyond whether his guess
is correct or not. This prevents offline attacks where
the attacker locally tests for the correct value of α and
returns an accepting query without querying the Malicious
interface.

Finally observe that the experiment captures replay
attacks: If the adversary was able to maul an honest
accepting query into a query for a different tag, it could
violate the above definition with a single query to the
Accept interface.

6. Construction of Distributed Zero-Tester

In this section we present our DZT construction and
we show that it satisfies all of the properties of interest. Let
(G1,G2,GT , p, g1, g2) be an asymmetric bilinear group of
prime order p and let H : {0, 1}∗ → G2 be a hash function
modeled as a random oracle. We assume the existence
of NIZK scheme (NIZK.Setup,NIZK.Prove,NIZK.Verify)
for NP. The scheme is described in Figure 1. For com-
pleteness, we also present a self-contained version of the
underlying threshold homomorphic encryption scheme in
Appendix A.

To see why the scheme is correct, note thatc0 · log(p)∏
i=0

c0,i, c1 ·
log(p)∏
i=0

c1,i


=

c0 · log(p)∏
i=0

d2
i·αi

0 · gri1 , c1 ·
log(p)∏
i=0

d2
i·αi

1 · hri


=
(
c0 · dα0 · gr̃1, c1 · dα1 · hr̃

)
=
(
gr1 · gsα+r̃1 , hr · g−ρα1 · gρα1 · hsα+r̃

)
= (gψ1 , h

ψ)

where r̃ =
∑log(p)

i=1 ri and ψ = r+ sα+ r̃. Then we have
that

(b0, b1) = (e(gψ1 , k), e(hψ, k)) = (gψκT , gxψκT)

and therefore for all admissible sets S of size |S| = t we
have ∏

i∈S

bxiλi
0 = gxψκT = b1

Setup(1λ, t, n, α) : On input the security parameter 1λ, a threshold size t, a committee size n, and a string α ∈ Zp,
the setup algorithm samples a tuple (x, r, s, ρ)←$Z∗p and a t-out-of-n Shamir secret sharing (x1, . . . , xn) ←
Share(x, t, n). Then it computes crs← NIZK.Setup(1λ). The algorithm sets the public key of the scheme to

pk = (crs, h, h1, . . . , hn, c0, c1, d0, d1) = (crs, gx1 , g
x1

T , . . . , g
xn

T , gr1, h
r · g−ρα1 , gs1, h

s · gρ1)

and the secret keys to ski = xi, for all i ∈ {1, . . . , n}.
Query(pk, β, τ) : On input the public key pk, a string β ∈ Zp, and a tag τ ∈ {0, 1}λ, the query algorithm does
the following. For all i ∈ {0, . . . , log(p)}, sample a uniform ri←$Z∗p and compute

(c0,i, c1,i) =
(
d2

i·βi

0 · gri1 , d
2i·βi

1 · hri
)

where β = (β1, . . . , βlog(p)) is parsed in its binary representation. Then compute πi ← NIZK.Prove(crs, stmti, ri)
where

stmti =
{
∃ ri s.t. (c0,i, c1,i) = (gri1 , h

ri) OR (c0,i, c1,i) =
(
d2

i

0 · g
ri
1 , d

2i

1 · hri
)∥∥∥τ} .

The algorithm returns q = (c0,0, c1,0, π0, . . . , c0,log(p), c1,log(p), πlog(p)).
Response(pk, ski, q, τ, i) : On input the public key pk, a secret key ski, a query q, a tag τ , and an index i, the
response algorithm checks whether for all i ∈ {0, . . . , log(p)} it holds that

NIZK.Verify(crs, stmti, πi) = 1

and aborts if this condition is not verified. Then the algorithm evaluates k ← H(pk, q, τ) and computes

b0 = e

c0 · log(p)∏
i=0

c0,i, k

 and b1 = e

c1 · log(p)∏
i=0

c1,i, k

 .

Furthermore, the algorithm computes b(i) = bxi
0 and an equality proof π̃ ← NIZK.Prove(crs, ˜stmti, xi) where

˜stmti =
{
∃ xi s.t. b(i) = bxi

0 AND hi = gxi

T

∥∥∥τ} .
The algorithm returns pi = (b(i), b1, π̃, τ, i).
Verdict(pk, p1, . . . , pt̃, τ) : On input the public key pk, a set of partial responses (p1, . . . , pt̃), and a tag τ , the
verdict algorithm checks whether there exists a set S of responses of size |S| = t such that the corresponding
values (b1, τ) are identical for all responses and

NIZK.Verify(crs, ˜stmti, π̃i) = 1

for all i ∈ S. If this is the case, the algorithm checks whether∏
i∈S

(
b(i)
)λi

= b1

and returns 1 if and only if all of the above conditions are satisfied.

Figure 1. Our DZT protocol.

with probability 1. We now show that our DZT scheme
satisfies the notion of security.

Theorem 1 (Security). If the XDH and the DBDH prob-
lems are hard over (G1,G2,GT , p, g1, g2) then the DZT
construction as described in Figure 1 is secure.

Proof. We assume without loss of generality that the
adversary outputs a maximally corrupted subset of parties
S∗ of size |S| = t − 1. Then we gradually modify the
experiment in the following sequence of hybrids.

Hybrid 0: This is the original experiment ExpA(1λ).

Hybrid 1: In this hybrid all NIZK proof issued to the
adversary on behalf of honest parties are computed using
the simulator instead of the real witness. This modifica-
tion is computationally indistinguishable by a standard

hybrid argument against the zero-knowledge property of
the NIZK system.

Hybrid 2: In this hybrid all NIZK proof sent by the
adversary are extracted using the Ext algorithm, provided
by the simulation extractability property of the NIZK
system. If any of the outputs of the extractor does not
constitute a valid witness for the corresponding relation,
then the experiment aborts. A standard hybrid argument
can be used to show that the probability that an abort
is triggered is bounded by a negligible function in the
security parameter, by the simulation extractability of the
NIZK system.

Hybrid 3: In this hybrid we change how the responses
of the honest parties are computed for all queries of the
adversary. Fix a query of the adversary (to any of the

interfaces) and let (b0, b1) be defined as in the Response
algorithm. The output of the i-th honest party is identical
to the original experiment except for

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj · gκρ·(α̃−α)T

)λ−1
i

.

where k = gκ2 , and α̃ depends on the type query that the
adversary is asking:

(1) For queries to the Accept interface, α̃ is set to α.
(2) For queries to the Reject interface, α̃ is set to

f(α).
(3) For queries to the Malicious interface, the values

of (β0, . . . , βlog(p)) are read from the extracted
NIZK sent by the adversary, and the value of α̃
is set to

∑log(p)
i=0 2i · βi.

Observe that such a response is correctly distributed since(
b(i)
)λi

·
∏
j∈S∗

(
b
xj

0

)λj
=

b1

g
κρ·(α̃−α)
T

=
hr̃ · gκρ·(α̃−α)T

g
κρ·(α̃−α)
T

= hr̃

for some adversarially chosen r̃. It follows that this mod-
ification is only syntactical and the view of the adversary
is identical to that of the previous hybrid.

Hybrid 4: In this hybrid the shares xi, for all i ∈ S∗, are
sampled uniformly from Zp, instead of being computed
using the Share algorithm. Then the element hi corre-
sponding to the i-th honest party is computed as

hi =

(
h∏

i∈S∗ h
λj

j

)λ−1
i

.

Since |S∗| < t it follows that the view of the adversary is
identical to that induced by the previous hybrid.

Hybrid 5: In this hybrid we compute the ciphertexts
(c0, c1) and (d0, d1) as encryptions of zero, i.e.,

(c0, c1) = (gr1, h
r) and (d0, d1) = (gs1, h

s)

where (r, s)←$Z∗p. Indistinguishability follows from two
invocations of the XDH assumption.

Hybrid 6: This hybrid is identical to the previous one,
except that the responses of the honest parties for all
adversarial queries are computed as

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj · gγ·(α̃−α)T

)λ−1
i

.

where γ←$Z∗p is sampled freshly for each adversarial
query and α̃ is defined as before.

Let Q be the set of queries issued by the adversary to
the decryption oracle. For all i ∈ {1, . . . , |Q|} we define
the following hybrid distribution(
gκ1
2 , . . . , g

κQ

2 , gρκ1

T , . . . , g
ρκi−1

T , gρκi

T , g
γi+1

T . . . , g
γQ
T

)
.

Note that on the one extreme we have that the distribution
corresponds to the computation done in in Hybrid 5(

gκ1
2 , . . . , g

κQ

2 , gρκ1

T , . . . , g
ρκQ

T

)

whereas on the other extreme the distribution is identical
to the computation done in Hybrid 6(

gκ1
2 , . . . , g

κQ

2 , gγ1T , . . . , g
γQ
T

)
.

One can easily show that the distance between the
i-th and the (i + 1)-th hybrids is negligible by
an invocation of the the DBDH assumption: Let
(G1,G2,GT , p, g1, g2, gx2 , g

y
T , g

z
T) be the tuple taken as

input by the distinguisher. The reduction sets gρT = gyT and
answers the queries {1, . . . , i− 1} as specified in Hybrid
5 and the queries {i+ 1, . . . , |Q|} as specified in Hybrid
6, programming the random oracle to some value with
know discrete logarithm κ. For the i-th query the reduction
programs the random oracle to k = gx2 and computes

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj · gz·(α̃−α)T

)λ−1
i

.

Observe that if z = xy then the view of the adversary is
identical to that of the i-th hybrid distribution, whereas if z
is uniform in Z∗p then the view of the adversary is identical
to that of the (i+1)-th hybrid. This shows that the hybrid
distributions must be computationally indistinguishable.

Hybrid 7: In this hybrid we change the response of the
honest parties to all adversarial queries. Specifically we
compute

b(i) =

 b1∏
j∈S∗

(
b
xj

0

)λj · gγ·b̃T

λ−1
i

.

where the bit b̃ is defined as follows:

(1) For queries to the Accept interface, we set b̃ = 0.
(2) For queries to the Reject interface, we set b̃ = 1.
(3) For queries to the Malicious interface, we set

b̃ = 0 if and only if α =
∑log(p)

i=0 2i · βi, where
(β0, . . . , βlog(p)) is extracted from the NIZK pro-
duced by the adversary.

First observe that if α̃ = α, then the distribution is
indentical as b̃ = α̃−α = 0. Furthermore, observe that for
all constants c 6= 0 and c′ 6= 0 the following distributions

(c, c′, c · γ) ≡ (c, c′, c′ · γ)

where γ←$Z∗p, are identical. It follows that the view of
the adversary is unchanged.

Analysis: We are now in the position of analyzing the
success probability of the adversary in Hybrid 7. First
observe that the public parameters of the scheme do not
contain any information about α. Furthermore, the re-
sponses of the queries to the Accept and Reject interfaces
are computed independently of α. On the other hand, each
query to the Malicious interface reveals a single bit of
information, i.e., whether α̃ = α, for some adversarially
chosen α̃. Let Q be the set of queries to the Malicious
interface, we can then bound the probability that the
adversary guesses the correct α by (|Q|+ 1)/|D|.

It remains to analyze the success probability that the
adversary has without guessing a correct α, which is
equivalent to the probability of producing a false proof
for a (fresh) rejecting statement and can be bounded

to a negligible value by the simulation extractability of
the NIZK system. Thus, the success probability of the
adversary against Hybrid 7 is bounded from above by
(|Q| + 1)/|D| + negl (λ). By the above analysis, the
same bound holds for an adversary playing against the
original experiment, up to a negligible additive factor in
the security parameter.

6.1. Efficient Non-Interactive Zero-Knowledge

In the following we discuss an efficient instantiation
for the NIZK system, which will allow us to scale the
efficiency of our system to the regime of practicality.
First observe that our NIZK system must support proofs
for discrete logarithm equality. This class of NIZKs can
be instantiated very efficiently with the classical protocol
from Schnorr [35], which we recall in the following. Let
(g, h) be a pair of elements of a group of prime order p
and let (g̃, h̃) be two group elements. We want to prove
the existence of some w ∈ Zp such that gw = g̃ and
hw = h̃. The prover samples a uniform r←$Zp and
computes the commitment (gr, hr), then the challenge
c ∈ Zp is computed by hashing the commitment together
with the statement. In our case the statement includes also
the string τ , that is concatenated to the group elements and
hashed to compute the challenge c. The prover computes
z = wc + r and returns π = (gr, hr, z). The proof is
considered valid if g̃c · gr = gz and h̃c · hr = hz . It is
well known [34] that the protocol is zero-knowledge and
simulation sound2 in the random oracle model.

The above protocol can be extended to handle disjunc-
tions (i.e., the OR-composition of proofs) using a standard
trick: For the case of two statements, the two proofs are
computed in parallel using the same algorithm as above,
except that the prover is allowed to choose the challenges
c0 and c1 under the constraint that c0 + c1 = c where c is
computed hashing both statements and the corresponding
commitments. The proof is considered valid if both of the
resulting proofs correctly verify.

Finally we remark that Schnorr’s NIZKs have a so
called transparent setup which is not required to be gener-
ated by a trusted party, i.e., the setup consists of sampling
the random oracle.

6.2. Implementation in Ethereum

Implementing our construction as a smart contract
in Ethereum entails a new set of challenges: While in
principle bilinear group operations and pairings are effi-
cient enough to be performed on commodity machines,
the integration in Ethereum of our DZT requires one to
implement them in Solidity, the language of Ethereum
smart contracts. Such a language imposes a hard limit on
the amount of computation that each smart contract can
perform, which makes implementation of cryptographic
operations particularly challenging. Fortunately, Solidity
has precompiled instructions for the following (bilinear)
group operations:

1) Group operations in G1.

2. While our DZT construction requires the stronger notion of simu-
lation extractable NIZK, we settle for simulation soundness in favor of
a more efficient scheme, as commonly done in the literature.

2) Modular exponentiations in G1.
3) Checks of pairing product equations PPEq :

Gn1 ×Gn2 → {0, 1} of the form

e(x1, y1) · · · e(xn, yn)
?
= 1.

However this semantic turns out to be insufficient to im-
plement our scheme. The reason is that our smart contract
(whose computational load consists mainly of calls to the
Verdict algorithm in Figure 1) requires us to compute
group operations in the target group GT , which are not
natively supported by Solidity. One solution to circumvent
this issue could be to implement group operations in GT
from scratch, without leveraging precompiled instructions.
Unfortunately elliptic curve operations in the target group
are notoriously expensive, and this approach causes the
smart contract to exceed the maximum amount of com-
putation allowed by the specifications of Ethereum.

To circumvent this issue, we modify our scheme to
be compatible with precompiled instructions in Solidity.
Our solution is sketched in what follows. Recall that in
our scheme each committee member provides the smart
contract with a target group element

b(i) = e(c̄, k)ski

(along with other information that is irrelevant for this
overview). In our modified scheme, each member pub-
lishes instead

c̄ski·ψ and k1/ψ,

where ψ is a uniformly sampled integer in Z∗p. Note that
we can now compute the Verdict algorithm with a pre-
compiled instruction PPEq (3) and the newly introduced
term ψ does not affect the correctness of the scheme, since
it cancels out with the pairing. To see why this is the case,
observe that

e
(
c̄ski·ψ, k1/ψ

)
= e(c̄, k)ski = b(i).

We stress that the presence of the randomness ψ is crucial
to avoid mix-and-match attacks. We proceed by presenting
our modified scheme more formally.
Construction. We present our modified DZT construc-
tion. Let (G1,G2,GT , p, g1, g2) be an asymmetric bilinear
group of prime order p and let H : {0, 1}∗ → G2 be a
hash function modeled as a random oracle. We assume the
existence of a NIZK scheme (NIZK.Setup,NIZK.Prove,
NIZK.Verify) for NP. The scheme is described in Figure 2.
Correctness follows by a routine calculation.

Note that the modified statement that we need to prove
in the response algorithm is again a proof of discrete log-
arithm equality, except that the first equation involves the
comparison of target group elements, which is inefficient.
To circumvent this issue, we run the Schnorr NIZK over
the source group G1 and we augment the verification with
a pairing. More specifically, we let the prover sample a
uniform r←$Zp and compute the commitment (c̃r0, g

r
1).

The challenge c is obtained by hashing the commiment
and the statement, then the prover computes z = xi ·c+r.
The proof consists of (c̃r0, g

r
1, z). The verifier accepts if

e
((
c
(i)
0

)c
, k(i)

)
· e (c̃r0, k) = e (c̃z0, k)

and
hci · gr1 = gz1

Setup(1λ, t, n, α) : On input the security parameter 1λ, a threshold size t, a committee size n, and a string α ∈ Zp,
the setup algorithm samples a tuple (x, r, s, ρ)←$Z∗p and a t-out-of-n Shamir secret sharing (x1, . . . , xn) ←
Share(x, t, n). Then it computes crs← NIZK.Setup(1λ). The algorithm sets the public key of the scheme to

pk = (crs, h, h1, . . . , hn, c0, c1, d0, d1) = (crs, gx1 , g
x1
1 , . . . , gxn

1 , gr1, h
r · g−ρα1 , gs1, h

s · gρ1)

and the secret keys to ski = xi, for all i ∈ {1, . . . , n}.
Query(pk, β, τ) : Same as Figure 1.
Response(pk, ski, q, τ, i) : On input the public key pk, a secret key ski, a query q, a tag τ , and an index i, the
response algorithm checks whether for all i ∈ {0, . . . , log(p)} it holds that

NIZK.Verify(crs, stmti, πi) = 1

and aborts if this condition is not verified. Then the algorithm evaluates k ← H(pk, q, τ) and computes

c̃0 = c0 ·
log(p)∏
i=0

c0,i and c̃1 = c1 ·
log(p)∏
i=0

c1,i.

Furthermore, the algorithm samples some ψ←$Z∗p and sets c(i)0 = c̃ψ·xi

0 and k(i) = k1/ψ. Then it computes an
equality proof π̃ ← NIZK.Prove(crs, ˜stmti, xi) where

˜stmti =
{
∃ xi s.t. e

(
c
(i)
0 , k(i)

)
= e (c̃0, k)

xi AND hi = gxi
1

∥∥∥τ} .
The algorithm returns pi =

(
c
(i)
0 , c̃0, c̃1, k

(i), k, π̃, τ, i
)

.

Verdict(pk, p1, . . . , pt̃, τ) : On input the public key pk, a set of partial responses (p1, . . . , pt̃), and a tag τ , the
verdict algorithm checks whether there exists a set S of responses of size |S| = t such that the corresponding
values (c̃0, c̃1, k, τ) are identical for all responses and

NIZK.Verify(crs, ˜stmti, π̃i) = 1

for all i ∈ S. If this is the case, the algorithm checks whether∏
i∈S

e

((
c
(i)
0

)λi

, k(i)
)

= e (c̃1, k)

and returns 1 if and only if all of the above conditions are satisfied.

Figure 2. Ethereum-compatible DZT protocol.

where the challenge c is recomputed locally by the verifier.
Since such a protocol is an instance of Schnorr NIZK,
zero-knowledge and simulation extractability are immedi-
ate.
Analysis. We now analyze the security of our new scheme.
One downside of this modification is that its security relies
on a new (static) assumption over asymmetric bilinear
groups that we introduce in this work, which we refer to as
the dual Diffie-Hellman (dDH) assumption. As a positive
evidence that the problem is likely to be intractable, we
show that the assumption holds in the generic group
model [37] in Appendix B.

Assumption 3 (dDH). Let G be a bilinear group gen-
erator. G is dDH-hard if for all PPT distinguishers it
holds that the following distributions are computationally
indistinguishable

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

z
1 , g

zy/x
1 , gv2 , g

xv
2 , gw2 , g

yw
2) ≈

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

z
1 , g

u
1 , g

v
2 , g

xv
2 , gw2 , g

yw
2)

where (G1,G2,GT , p, g1, g2)←$G(1λ) and
(u, v, w, x, y, z)←$Z∗p.

We are now ready to show that the scheme satisfies the
security notion for a DZT, assuming the hardness of the
XDH and the dDH problems. Due to space constraints,
the proof is deferred to Appendix B.

Theorem 2 (Security). If the XDH and the dDH prob-
lems are hard over (G1,G2,GT , p, g1, g2) then the DZT
construction as described in Figure 2 is secure.

7. Experimental Evaluations

We implement the DZT-based solution as a smart
contract on the Ethereum blockchain. The smart contract
is written in Solidity, an Ethereum specific language.
Contracts written in Solidity are compiled into bytecode
for the Ethereum Virtual Machine (EVM). The code is
available at [1]. The runtime of programs on the EVM
is limited by a unit called gas. Every operation in the
EVM costs gas and there is a hard limit as to how much
gas a transaction can consume. This gives a hard limit on
how much computation can be done in one transaction.
Since the price of Ethereum and gas is fluctuating, all costs
displayed in Dollars are calculated with a fixed conversion
rate of 1 gas costing 1 GWei and 1 Ether costing 180$.

Figure 3. System architecture of our DZT implementation

The non-blockchain parts of the implementations use the
JSON-RPC API of an Ethereum node to interact with
the smart contracts. A pictorial description of the system
architecture is given in Figure 3.

7.1. Security Policies

The security policy of a smart contract determines
when a transaction triggers the usage of a second factor for
authentication. In our implementation, the smart contract
tracks the total flow of money and the amounts transferred
to specific addresses. This allows us to set fine-grained se-
curity policies that depends on the history of transactions.
We say that a transaction is flagged if the security policy
invokes the 2FA protocol for such a transaction. In our
prototype, we consider four types of security policies:

(1) Flag every transaction to any new beneficiary.
(2) Flag a transaction if the sum of all coins trans-

ferred (since the last flag) is above a predefined
threshold.

(3) Flag a transaction if the sum of all funds that
are transferred in a specific timeframe (a sliding
window) exceeds a predefined threshold.

(4) Flag a transaction if the sum of all coins sent to
a specific beneficiary (since the last flag) exceeds
a predefined threshold.

This list of policies is non-exclusive and multiple policies
can coexist in the same smart contract. If any security
policy flags a transaction, the counter for such a policy
is reset if and only if the transaction is successfully
authenticated.

We measured the overhead that the implementation of
each policy adds to processing transactions. For policy
(1), it cost 0.005$ for a user to set it up. If a transaction
is flagged because it is sent to a therefore unknown
beneficiary, the user has to pay 0.008$ to now save that
the beneficiary is verified for further transactions. For
policies (2) and (4), the setup cost is 0.009$ and each
transaction costs an additional 0.006$ to sum up the coins
transferred. If the threshold is reached, the user has to
spend 0.004$ (and 0.006$, respectively) to reset the sum
of all coins spent to 0. The cost of policy (3) varies with
the size of the sliding window, which we measure for
values ranging from 0 to 100 transactions. The added cost
does not exceed 0.5$, in a non-optimized implementation.

0 10 20 30 40

0

1

2

3

Threshold Parameter (t)

C
os

t
of

op
er

at
io

n
(i

n
$) Group creation cost

Query submission cost
Total query cost

Figure 4. Cost of the creation of a DZT group (blue) cost for a client
querying the group (green) and cost of submitting and verifying a query
(red).

7.2. Performance Evaluation

The steps of the 2FA mechanism are implemented as
functions on a smart contract. The smart contract notifies
the committee members via Ethereum events if a new
protocol step has to be executed, i.e., this happens if
a new query is submitted. The contract then runs the
Verdict algorithm, which internally verifies the NIZKs and
checks whether the conditions dictated by the algorithm
are all verified. We stress that the worst-case runtime of
the Verdict algorithm is only proportional to t̃ (the number
of partial responses fed as input). Recall that the Verdict
algorithm consist of two subroutines:

1) Checking the NIZKs: There are at most t̃ NIZKs,
so this step can be done in time linear in t̃.

2) Partition the responses in sets with the same value
of (b1, τ): This operation can also be done in time
proportional to t̃.

At this point we can check whether there exists a set with
more than t elements where all NIZKs verify. Note that,
within such a set, any subset of the shares in this set is
considered valid (since all the NIZKs verify correctly), so
the Verdict algorithm can just pick an arbitrary one (e.g.
the lexicographically smallest one).

We use the 256bit version of the Barreto-Naehrig
(BN) curves to instantiate the pairings [5]. This curve is
especially suited for use in Ethereum, since an elements
of its base field fits into the 256bit wide registers of the
EVM. We show the costs associated with all operations in
Figure 4. For our experiments, we set the threshold size
(t) to be equal to the group size (n), since decreasing the
value of t only decreases the costs of each algorithm. For
the client, the cost of the setup phase grows linearly with
the size of the committee. The cost of the queries depends
only on the threshold parameter t, i.e., the maximum size
of parties that the attacker can corrupt. The cost to verify
a query is identical for all members of the committee and
we only display the cumulative cost (i.e. the sum of the
costs for each committee member), which grows linearly
with t. We stress that a lower value of t implies a lower
corruption threshold but at the same time an increase in
reliability, as only t parties need to be online in order to
run protocol.

8. A Solution Based on U2F Tokens

The Universal Second Factor (U2F) is a token-
based authentication protocol specified by the FIDO Al-
liance [38]. It is used to enhance the security of standard
password-based authentication with a cryptographic secret
stored on a hardware token. This protocol is supported
by all major browser and by many web services (such
as Gmail, Facebook, and Dropbox). The U2F protocol
consists of three interacting entities: (1) A hardware token,
(2) a client, and (3) a relying party, which guards access to
the resources. The U2F protocol specifies two subroutines,
a one-time registration and and unbounded number of
authentications, which we briefly describe below.
Registration. The registration allows the relying party
to bind a physical token to a user account. The relying
party is associated with some application identifier (e.g.,
the url of its website) and begins the registration phase
by sending a challenge to the token. The hardware token
generates a fresh ECDSA key pair (sk, vk) and sends back
the verification key and a key-handle to the relying party.
At this point the relying party associates the key handle
and vk with the account of the user.
Authentication. Upon each authentication request, the
relying party sends the key handle, the identifier, and a
challenge to the token. The key handle is used by the
token to recover the corresponding signing key, which is
used to sign the challenge of the relying party. In addition
to the challenge, the token also signs a counter, which
is maintained by the token locally and increased upon
each authentication run. The relaying party considers the
authentication successful if the signature correctly verifies
against the verification key vk associated with the user
account and if the counter (also included in the signed
message) increased from the previous authentication.

8.1. U2F on Ethereum

In the U2F token-based authentication protocol, the
smart contract impersonates the relying party. The authen-
tication protocol for a transaction τ begins with the client
querying the smart contract for a challenge and receives a
random nonce and a key handle that is used by the token
to specify the correct key to use. The client queries the
token for a signature on the nonce and on τ and sends it to
the smart contract, which can publicly verify the validity
of the signature. A client can use the same token with
multiple smart contracts, since U2F tokens allow one to
generate an arbitrary number of key pairs, each associated
to a unique identifier. In our case, the identifier consists
of the address of the smart contract and the chain identity.
Nonce Sampling. A subtlety that needs to be addresses
is that Ethereum smart contracts do not support non-
deterministic operation and therefore cannot sample truly
random nonces. We circumvent this limitation by setting
the nonce to H(τ), where H is a hash function modeled
as a random oracle and τ is a unique identifier of the
transaction. In Ethereum, a transaction can be uniquely
identified by the concatenation of the receiver and sender
addresses and the value of a counter, which denotes the
number of the transaction from the sending address and
can only grow over time.

Registration Verification Creation

0

0.1

0.2

0.3

Operation on the contract

O
pe

ra
tio

n
co

st
(i

n
$)

SECP256k
SECP256r

Figure 5. Transaction registration, verification and creation costs on curve
SECP256k (blue) and curve SECP256r (red).

Implementation. U2F specifies curve SECP256r1 or P-
256 as the basis for signature creation and verification
[19]. On the other hand, Ethereum uses signatures over
the curve SECP256k1 internally and offers an EVM in-
struction to access the signature verification capabilities
that is part of the official standard [39]. To make the two
choices compatible, we design the smart contract to allow
a user to decide at registration time which curve should
be used for verification.

The costs for authenticating transactions are shown
in Figure 5. All measurements are taken using a simu-
lated token. The use of a soft token does not impact the
messages that are exchanged on the blockchain and the
interaction between the smart contract and the user client,
so this change does not affect the costs. The measurements
are taken as the average over 100 transactions. The cost
of verifying signatures on the standard curve SECP256r
of U2F is significantly higher compared to verification
on curve SECP256k: Standard U2F tokens have a one-
time registration fee of 0.31$ and a recurring fee of 0.28$
for verifying transaction requests. For the costs over the
SECP256k curve, the one-time registration costs 0.07$
and the recurring transaction verification costs 0.03$. The
evaluation shows that the usage of U2F in the blockchain
setting is feasible in terms of costs. There is a big cost
benefit in switching the standard U2F signature curve to
one which can be natively verified by a smart contract,
however this also requires custom made tokens.

9. Conclusions

In this work we proposed a new system to safeguard
users’ transactions, where a smart contract is entitled to
request for a two-factor authentication, in case of excep-
tional events. We designed and implemented two 2FA
protocols in Ethereum. Our performance evaluation shows
that augmenting Ethereum with 2FA comes at minimal
additional cost.

Acknowledgements. We wish to thank Nishanth Chan-
dran, Satya Lokam, Divya Gupta, Manoj Prabhakaran,
Sambhav Satija and Yifan Song for helpful discussions.
Research supported in part by the NSF award 1916939,
a gift from Ripple, a DoE NETL award, a JP Morgan
Faculty Fellowship, a PNC center for financial services

innovation award, a Cylab seed funding award, the Inter-
ACT network, and a Baden-Württemberg scholarship.

References

[1] https://github.com/FBreuer2/security-policies-in-crypto.

[2] “How to steal $500 million in cryptocurrency,” https://fortune.com/
2018/01/31/coincheck-hack-how/.

[3] “Parity technologies,” https://www.parity.io/security-alert-2/.

[4] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-
protected secret sharing,” in Proceedings of the 18th ACM confer-
ence on Computer and Communications Security, 2011, pp. 433–
444.

[5] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves
of prime order,” in International Workshop on Selected Areas in
Cryptography. Springer, 2005, pp. 319–331.

[6] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in International con-
ference on the theory and applications of cryptographic techniques.
Springer, 2000, pp. 139–155.

[7] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” 1988.

[8] D. Boneh and X. Boyen, “Secure identity based encryption without
random oracles,” in Annual International Cryptology Conference.
Springer, 2004, pp. 443–459.

[9] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,”
in Annual international cryptology conference. Springer, 2004,
pp. 41–55.

[10] D. Boneh and M. Franklin, “Identity-based encryption from the
weil pairing,” in Annual international cryptology conference.
Springer, 2001, pp. 213–229.

[11] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Ras-
mussen, and A. Sahai, “Threshold cryptosystems from threshold
fully homomorphic encryption,” in Annual International Cryptol-
ogy Conference. Springer, 2018, pp. 565–596.

[12] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in
Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2015, pp. 337–367.

[13] R. Canetti and S. Goldwasser, “An efficient threshold public key
cryptosystem secure against adaptive chosen ciphertext attack,”
in International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 1999, pp. 90–106.

[14] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability
and mtgox,” in European Symposium on Research in Computer
Security. Springer, 2014, pp. 313–326.

[15] M. Di Raimondo and R. Gennaro, “Provably secure threshold
password-authenticated key exchange,” in International Conference
on the Theory and Applications of Cryptographic Techniques.
Springer, 2003, pp. 507–523.

[16] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Secure two-party
threshold ecdsa from ecdsa assumptions,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 980–997.

[17] ——, “Threshold ecdsa from ecdsa assumptions: The multiparty
case,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 1051–1066.

[18] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information
theory, vol. 31, no. 4, pp. 469–472, 1985.

[19] S. for Efficient Cryptography Group, “Sec 2: Recommended
elliptic curve domain parameters,” 10 2019. [Online]. Available:
https://www.secg.org/sec2-v2.pdf

[20] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa
with fast trustless setup,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2018, pp. 1179–1194.

[21] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal
dsa/ecdsa signatures and an application to bitcoin wallet security,”
in International Conference on Applied Cryptography and Network
Security. Springer, 2016, pp. 156–174.

[22] C. Gentry et al., “Fully homomorphic encryption using ideal
lattices.” in Stoc, vol. 9, no. 2009, 2009, pp. 169–178.

[23] N. Gilboa and Y. Ishai, “Distributed point functions and their
applications,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2014,
pp. 640–658.

[24] S. Goldfeder, R. Gennaro, H. Kalodner, J. Bonneau, J. A. Kroll,
E. W. Felten, and A. Narayanan, “Securing bitcoin wallets via a
new dsa/ecdsa threshold signature scheme,” 2015.

[25] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
computer and system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[26] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Toppss: cost-
minimal password-protected secret sharing based on threshold
oprf,” in International Conference on Applied Cryptography and
Network Security. Springer, 2017, pp. 39–58.

[27] A. Joux, “A one round protocol for tripartite diffie–hellman,” in
International algorithmic number theory symposium. Springer,
2000, pp. 385–393.

[28] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in annual
international conference on the theory and applications of crypto-
graphic techniques. Springer, 2008, pp. 146–162.

[29] Y. Lindell, “Fast secure two-party ecdsa signing,” in Annual Inter-
national Cryptology Conference. Springer, 2017, pp. 613–644.

[30] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with practi-
cal distributed key generation and applications to cryptocurrency
custody,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 1837–1854.

[31] P. MacKenzie, T. Shrimpton, and M. Jakobsson, “Threshold
password-authenticated key exchange,” in Annual International
Cryptology Conference. Springer, 2002, pp. 385–400.

[32] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski, “Understanding
a revolutionary and flawed grand experiment in blockchain: the
dao attack,” Journal of Cases on Information Technology (JCIT),
vol. 21, no. 1, pp. 19–32, 2019.

[33] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants,” in Interna-
tional Conference on Financial Cryptography and Data Security.
Springer, 2016, pp. 126–141.

[34] D. Pointcheval and J. Stern, “Security proofs for signature
schemes,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1996, pp. 387–398.

[35] C.-P. Schnorr, “Efficient signature generation by smart cards,”
Journal of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[36] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[37] V. Shoup, “Lower bounds for discrete logarithms and related prob-
lems,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 1997, pp. 256–266.

[38] S. Srinivas, D. Balfanz, E. Tiffany, A. Czeskis, and F. Alliance,
“Universal 2nd factor (u2f) overview,” FIDO Alliance Proposed
Standard, pp. 1–5, 2015.

[39] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger.”

Appendix

1. Threshold Homomorphic Encryption from Bi-
linear Maps

In the following we present our threshold homomor-
phic encryption scheme for linear predicates from bilinear
maps.

https://github.com/FBreuer2/security-policies-in-crypto
https://fortune.com/2018/01/31/coincheck-hack-how/
https://fortune.com/2018/01/31/coincheck-hack-how/
https://www.parity.io/security-alert-2/
https://www.secg.org/sec2-v2.pdf

Definition. A threshold homomorphic encryption (THE)
allows one to share the keys for a homomorphic encryp-
tion scheme to a set of n parties such that any set that
satisfies the corresponding access structure can reconstruct
the evaluation of some homomorphic computation. We
recall the definition from [11].

Definition 6 (THE). A THE scheme for a function family
F and n parties consists of the following efficient algo-
rithms.
Setup(1λ,A) : On input the security parameter 1λ and an
access structure A, the setup algorithm returns a public
key pk and a set of secret keys (sk1, . . . , skn).
Enc(pk,m) : On input the public key pk and a message
m, the encryption algorithm returns a ciphertext c.
Eval(pk, f, (c1, . . . , c`)) : On input the public key pk, an
`-input function f , and a set of ciphertexts (c1, . . . , c`),
the evaluation algorithm returns an evaluated ciphertext
c.
PDec(sk, c, i) : On input a secret key sk, a ciphertext c,
and an index i, the partial decryption algorithm returns
a decryption share p.
Rec(p1, . . . , pt̃) : On input a set of shares (p1, . . . , pt̃),
for some t̃ ≤ n, the reconstruction algorithm returns a
message m.

We say that a scheme is compact if the size of evalu-
ated ciphertexts does not depend on the circuit represen-
tation of the evaluated function f . Correctness requires
that for all λ ∈ N, all access structures A, all accepting
sets S ∈ A, all `-input functions f ∈ F , all message
vectors (m1, . . . ,m`), all (pk, sk1, . . . , skn) in the support
of Setup(1λ,A) and ci in the support of Enc(pk,mi) it
holds that

Pr

[
Rec ({PDec(ski,Eval(pk, f, (c1, . . . , c`)), i)}i∈S)

= f(m1, . . . ,m`)

]
= 1.

We recall the standard notion of semantic security for
public-key encryption [25].

Definition 7 (Semantic Security). A THE is semantically
secure if there exists a negligible function negl(·) such
that for all λ ∈ N, all access structures A, and all PPT
algorithms A it holds that

Pr

A(c) = b

∣∣∣∣∣∣∣
(pk, sk1, . . . , skn)← Setup(1λ,A)
(m0,m1)← A(pk)
b←$ {0, 1}
c← Enc(pk,mb)


= 1/2 + negl(λ) .

Finally we recall the notion of simulation security
which, roughly speaking, says that the decryption shares
should not reveal anything beyond the output of the eval-
uated function.

Definition 8 (Simulation Security). A THE is simulation
secure if there exists a PPT simulator (Sim0,Sim1) and
negligible function negl(·) such that for all λ ∈ N and all
PPT algorithms A it holds that the following experiments
are computationally indistinguishable

ExpA,Real(1
λ) ≈ ExpA,Ideal(1

λ).

Where the two experiments are defined as follows.

ExpA,Real(1
λ):

• A← A(1λ)
• (pk, sk1, . . . , skn)← Setup(1λ,A)
• (S∗ /∈ A,m1, . . . ,m`)← A(pk)
• For all i ∈ {1, . . . , `} : ci ← Enc(pk,mi)
• b← AO(c1, . . . , c`, {ski}i∈S∗)

where O takes as input a function f ∈ F and a set S,
computes c ← Eval(pk, f, (c1, . . . , c`)) and returns, for
all i ∈ S, the shares pi ← PDec(ski, c, i).

ExpA,Ideal(1
λ):

• A← A(1λ)
• (pk, sk1, . . . , skn)← Setup(1λ,A)
• (S∗ /∈ A,m1, . . . ,m`)← A(pk)
• ({sk∗i }i∈S∗ , td)← Sim0(pk)
• For all i ∈ {1, . . . , `} : ci ← Enc(pk,mi)

• b← AÕ(c1, . . . , c`, {sk∗i }i∈S∗)

where Õ takes as input a function f ∈ F and a set S and
returns Sim1(f, (c1, . . . , c`), f(m1, . . . ,m`), S), td).

Construction, Let (G1,G2,GT , p, g1, g2) be an asymmet-
ric bilinear group of prime order p and let H : {0, 1}∗ →
G2 be a hash function modeled as a random oracle. In this
section we describe a THE scheme for linear predicates
f : Z`p × Z`p → {0, 1}, i.e., our scheme supports the
evaluation of functions of the form

f~y(~x) =

{
1 if

∑`
i=1 xiyi = 0

0 otherwise.

The scheme is described in Figure 6.
To see why the scheme satisfies correctness, observe

that

(c0, c1) =

(∏̀
i=1

cyii,0,
∏̀
i=1

cyii,1

)

=

(∏̀
i=1

(dmi
0 · g

ri
1)yi ,

∏̀
i=1

(dmi
1 · hri)yi

)

=

(∏̀
i=1

(gri+rmi
1)yi ,

∏̀
i=1

(gρmi

1 · hri+rmi)yi

)
=
(
gψ1 , g

ρ
∑`

i=1miyi
1 · hψ

)
where ψ =

∑`
i=1(ri + rmi)yi. Let k = gκ2 , for some

κ ∈ Zp, since (b0, b1) = (e(c0, k), e(c1, k)) then we have
that∏
i∈S

pλi
i =

∏
i∈S

bxiλi
0 =

∏
i∈S

(gψκT)xiλi = (gψκT)
∑`

i=1 xiλi

= (gψκT)x = hψκ = b1 = P

for all S such that |S| = t, if and only if
∑`

i=1miyi = 0.
Analysis. In the following we show that the scheme is
semantically secure.

Theorem 3 (Semantic Security). If the XDH problem is
hard over (G1,G2,GT , p, g1, g2) then the THE construc-
tion as described in Figure 6 is simulation secure in the
random oracle model.

Setup(1λ, (t, n)) : On input the security parameter 1λ and a pair of threshold parameters (t, n), the setup algorithm
samples a uniform triple (x, r, ρ)←$Z∗p and sets the public key of the scheme to

pk = (h, d0, d1) = (gx1 , g
r
1, h

r · gρ1).

Then it samples a t-out-of-n Shamir secret sharing (x1, . . . , xn) ← Share(x, t, n) and sets ski = xi, for all
i ∈ {1, . . . , n}.
Enc(pk,m) : On input the public key pk = (h, d0, d1) and a message m, the encryption algorithm samples a
uniform s←$Z∗p and computes the ciphertext

c = (c0, c1) = (dm0 · gs1, dm1 · hs).

Eval(pk, f, (c1, . . . , c`)) : On input the public key pk, an `-input function f = (y1, . . . , y`), and a set of ciphertexts
(c1, . . . , c`) = ((c1,0, c1,1), . . . , (c`,0, c`,1)), the evaluation algorithm returns an evaluated ciphertext

c = (c0, c1) =

(∏̀
i=1

cyii,0,
∏̀
i=1

cyii,1

)
.

PDec(sk, c, i) : On input a secret key sk, a ciphertext c = (c0, c1), and an index i, the partial decryption algorithm
evaluates k ← H(pk, c), computes

b0 = e(c0, k) and b1 = e(c1, k)

and returns the decryption share p = (bsk0 , b1, i).
Rec(p1, . . . , pt̃) : On input a set of shares (p1, . . . , pt̃) = ((p1, P, 1), . . . , (pt̃, P, t̃)), the reconstruction algorithm
samples an arbitrary subset of shares S of size |S| = t and outputs 1 if∏

i∈S

pλi
i = P

and outputs 0 otherwise.

Figure 6. Our THE scheme for linear predicates.

Proof. The proof consists in the observation that a freshly
computed ciphertext is of the form

(c0, c1) = (dm0 · gs1, dm1 · hs)
= ((gr1)m · gs1, (hr · g

ρ
1)m · hs)

= (gr·m1 · gs1, hr·m · g
ρ·m
1 · hs)

= (gr·m+s
1 , hr·m+s · gρ·m1)

for a uniform s←$Z∗p, which is a well-formed ElGamal
ciphertext. Therefore semantic security follows from an
invocation of the XDH assumption.

The following shows that the scheme is simulation
secure.

Theorem 4 (Simulation Security). If the XDH and the
DBDH problems are hard over (G1,G2,GT , p, g1, g2)
then the THE construction as described in Figure 6 is
simulation secure.

Proof. We consider without loss of generality an adver-
sary that output a maximally corrupted set S∗ of size
exactly t − 1. We gradually change the view of the
adversary through a series of hybrids and then we describe
the simulator (Sim0,Sim1) in the end of the proof.

Hybrid 0: This is defined as in the experiment
ExpA,Real(1

λ).

Hybrid 1: In this hybrid we change how the output of the
honest share is computed for each query of the adversary.
Let (f = (y1, . . . , y`), S) be the a query of the adversary,

let (c0, c1) be the output of the corresponding evaluation
algorithm, and let (b0, b1) be the pair as defined in the
original PDec algorithm. For the set S ∩ S∗ we compute
the output as specified in the real experiment. For the
complement of such a set, we compute

b(i) =

 b1∏
j∈S∗

(
b
xj

0

)λj · gκρ·
∑`

i=1mi·yi
T

λ−1
i

.

where k = gκ2 , and output (b(i), b1, i). Note that this output
is correctly distributed since(

b(i)
)λi

·
∏
j∈S∗

(
b
xj

0

)λj
=

b1

g
κρ·

∑`
i=1mi·yi

T

=
h
∑`

i=1 ri·yi · gκρ·
∑`

i=1mi·yi
T

g
κρ·

∑`
i=1mi·yi

T

= h
∑`

i=1 ri·yi

which is exactly what we expect. It follows that this
modification is purely syntactical and therefore the view
of the adversary is unchanged.

Hybrid 2: In this hybrid the shares xi, for all i ∈ S∗, are
sampled uniformly from Zp, instead of being computed
using the Share algorithm. Note that we no longer need to
explicitly compute the shares of the non-corrupted parties.
Since |S∗| < t it follows that the view of the adversary is
identical to that induced by the previous hybrid.

Hybrid 3: In this hybrid we compute all ciphertexts ci as
encryptions of zero, i.e.,

ci = (gri1 , h
ri)

where ri←$Z∗p. Indistinguishability follows from a sim-
ple hybrid argument against the XDH assumption.

Hybrid 4: We define the fourth hybrid to be identical to the
previous one, except that in the queries to the decryption
shares of the honest parties are computed as

b(i) =

 b1∏
j∈S∗

(
b
xj

0

)λj · gγ·
∑`

i=1mi·yi
T

λ−1
i

.

where γ←$Z∗p is sampled freshly for each adversarial
query. Let Q be the set of queries issued by the adversary
to the decryption oracle. For all i ∈ {1, . . . , |Q|} we define
the following hybrid distribution(
gκ1
2 , . . . , g

κQ

2 , gρκ1

T , . . . , g
ρκi−1

T , gρκi

T , g
γi+1

T . . . , g
γQ
T

)
.

Note that on the one extreme we have that the distribution
corresponds to the computation done in in Hybrid 3(

gκ1
2 , . . . , g

κQ

2 , gρκ1

T , . . . , g
ρκQ

T

)
whereas on the other extreme the distribution is identical
to the computation done in Hybrid 4(

gκ1
2 , . . . , g

κQ

2 , gγ1T , . . . , g
γQ
T

)
.

One can easily show that that the distance between
the i-th and the (i + 1)-th hybrids is negligible
by an invocation of the the DBDH assumption: Let
(G1,G2,GT , p, g1, g2, gx2 , g

y
T , g

z
T) be the tuple taken as

input by the distinguisher. The reduction sets gρT = gyT and
answers the queries {1, . . . , i−1} as specified in Hybrid 3
and the queries {i+ 1, . . . , |Q|} as specified in Hybrid 4,
programming the random oracle to some value with know
discrete logarithm κ. For the i-th query it programs the
random oracle to k = gx2 and computes

b(i) =

 b1∏
j∈S∗

(
b
xj

0

)λj · gz·
∑`

i=1mi·yi
T

λ−1
i

.

Observe that if z = xy then the view of the adversary is
identical to that of the i-th hybrid distribution, whereas if z
is uniform in Z∗p then the view of the adversary is identical
to that of the (i+1)-th hybrid. This shows that the hybrid
distributions must be computationally indistinguishable.

Hybrid 5: In this hybrid we revert the change made in
Hybrid 3. Indistinguishability follows from another invo-
cation of the XDH assumption.

Hybrid 6: In this hybrid we compute the share of the
honest parties using the output of the function f , i.e.,

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj · gγ·(1−f(m1,...,m`))
T

)λ−1
i

.

Note that if f(m1, . . . ,m`) = 1, then
∑`

i=1mi · yi = 0
and therefore

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj

)λ−1
i

so in this case the view of the adversary is identical. On
the other hand if

∑`
i=1mi · yi 6= 0, then

b(i) =

(
b1∏

j∈S∗
(
b
xj

0

)λj · gγT

)λ−1
i

.

for some uniform γ←$Z∗p. Note that the distributions γ
and c·γ, where γ←$Z∗p and c 6= 0, are identical. It follows
that the change is purely syntactical and the view of the
adversary is unchanged.

Simulator: The simulator (Sim0,Sim1) is defined to be
identical to the previous hybrid. This concludes our proof.

Extensions and Generalizations. We first show that the
class of linear predicates encompasses equality checks as a
special case, i.e., the parties holding the shares can jointly
test whether two ciphertext Enc(pk,m0) and Enc(pk,m1)
encrypt the same message. This can be achieved by eval-
uating the linear function f = (1,−1) homomorphically
and then running the distributed decryption procedure. The
predicate

f(m0,m1) = m0 −m1 = 0

is satisfied if and only if m0 = m1, which gives us exactly
the desired functionality.

Furthermore, we show that linear predicates generalize
to polynomial evaluations of any bounded degree. Let

P(x) = c0 + c1x+ · · ·+ c`x
`

be an `-degree polynomial over Zp. Provided with the en-
cryptions of the coefficients Enc(pk, c0), . . . ,Enc(pk, c`),
the committee members can jointly check whether a point
a is a root of P by setting f = (1, a, . . . , a`) since

f(c0, c1, . . . , c`) =
∑̀
i=0

cia
i = P(a) = 0

if and only if a is indeed a root of P . Using standard
encoding techniques [28], polynomial evaluations imme-
diately generalize to threshold predicates and constant-
variables CNF/DNF formulae.

2. Missing Proofs

In the following we present the missing proofs for the
Ethereum-compatible DZT.
Hardness of the Dual Diffie-Hellman Problem. We
present positive evidence that that the dual Diffie-Hellman
problem is hard, by establishing a bound in the generic
group model [37]. We refer the reader to [8] a compre-
hensive introduction to the bilinear group model. Here
we recall a useful lemma to prove facts about generic
attackers.

Lemma 1 (Schwartz-Zippel). Let P (X1, . . . , Xn) be a
non-zero polynomial of degree d ≥ 0 over a field F.
Then the probability that P (x1, ..., xn) = 0 for randomly
chosen values (x1, ..., xn) in Fn is bounded from above
by d
|F| .

Theorem 5. The dual Diffie-Hellman (dDH) problem is
hard in the generic group model.

Proof Sketch. A generic attacker is given the encoding of
the base elements of either of the following distributions

D0 = (g1, g2, g
x
1 , g

y
1 , g

z
1 , g

zy/x
1 , gv2 , g

xv
2 , gw2 , g

yw
2)

or

D1 = (g1, g2, g
x
1 , g

y
1 , g

z
1 , g

u
1 , g

v
2 , g

xv
2 , gw2 , g

yw
2)

where all integers are uniformly chosen from Z∗P , and
has to decide which is the case. The adversary is given
oracle access to a group-operation oracle that supports
linear operations in G1, G2, and GT and pairing between
elements in the source groups. We assume that each
element is assigned a unique identifier, so equality can
be tested locally. Note that the only way for an attacker
to distinguish between the two distributions is to find a
polynomial P of degree at most 2 with a non-trivial zero.
More precisely, the adversary has to find some polynomial
P such that

P (X,Y, Z, {U,ZY/X} , V,XV,W, Y W)

= c0 + c1X + c2Y + c3Z + c4{U,ZY/X}+ c5V + c6XV

+ c7W + c8YW + c9XV + c10X
2V + c11XW + c12XYW

+ c13Y V + c14YW + c15Y
2W + c16ZV + c17ZXV

+ c18ZW + c19ZYW + c20 {UV,ZY V/X}
+ c21 {UXV,ZY V }+ c22 {UW,ZYW/X}
+ c23

{
UY V,ZY 2V/X

}
= 0

where formal variables correspond to the integers sampled
by the challenger. We say that P is non-trivial if all the
coefficients (c20, c21, c22, c23) are non-zero. By lemma 1
the probability that any non-trivial polynomial P evaluates
to 0, over the random choices of the assignments, is
negligibly small.

Proof of Theorem 2. We present the proof of Theorem
2.

Proof. We assume without loss of generality that the
adversary outputs a maximally corrupted subset of parties
S∗ of size |S| = t − 1. Consider the following sequence
of hybrids.

Hybrid 0: This is the original experiment ExpA(1λ).

Hybrid 1: In this hybrid all NIZK proofs from the honest
parties are computed using the simulator. By a standard
hybrid argument over the zero-knowledge property of the
NIZK scheme, this hybrid is computationally indistin-
guishable from the previous one.

Hybrid 2: In this hybrid all NIZK proofs sent by the
adversary are extracted using Ext. If any of the outputs
of the extractor does not constitute a valid witness for
the corresponding relation, then the experiment aborts. A
standard hybrid argument shows the probability that an
abort is triggered is bounded by a negligible function in
the security parameter, by the simulation extractability of
the NIZK scheme.

Hybrid 3: In this hybrid we change how the responses
of the honest parties are computed for all queries of the
adversary. Fix a query of the adversary (to any of the
interfaces) and let (c̃0, c̃1) be defined as in the Response

algorithm. The output of the i-th honest party is identical
to the original experiment except for

c
(i)
0 =

(
c̃1∏

j∈S∗
(
c̃
xj

0

)λj · gρ·(α̃−α)1

)ψ·λ−1
i

where ψ←$Z∗p (note that k(i) is defined as before to be
k1/ψ) and α̃ depends on the type query that the adversary
is asking:

1) For queries to the Accept interface, α̃ is set to α.
2) For queries to the Reject interface, α̃ is set to

f(α).
3) For queries to the Malicious interface, the values

of (β0, . . . , βlog(p)) are read from the extracted
NIZK sent be the adversary, and the value of α̃
is set to

∑log(p)
i=0 2i · βi.

Observe that such a response is correctly distributed
since

e

((
c
(i)
0

)λi

, k(i)
)
·
∏
j∈S∗

e

((
c
(j)
0

)λj

, k(j)
)

= e

((
c
(i)
0

)λi

, k(i)
)
·
∏
j∈S∗

e
(
c
(j)
0 , k(j)

)λj

= e

((
c
(i)
0

)λi

, k(i)
)
·
∏
j∈S∗

e (c̃0, k)
xj ·λj

= e

(c̃1∏
j∈S∗

(
c̃
xj

0

)λj · gρ·(α̃−α)1

)ψ
, k1/ψ

 · ∏
j∈S∗

e (c̃0, k)
xj ·λj

= e

(
c̃1

g
ρ·(α̃−α)
1

, k

)
= e

(
hr̃ · gρ·(α̃−α)1

g
ρ·(α̃−α)
1

, k

)
= e

(
hr̃, k

)
for some adversarially chosen r̃. Here the second and the
fifth equations are guaranteed to hold as otherwise they
would trigger an abort of the simulator. It follows that
this modification is only syntactical and the view of the
adversary is identical to that of the previous hybrid.

Hybrid 4: In this hybrid the shares xi, for all i ∈ S∗, are
sampled uniformly from Zp, instead of being computed
using the Share algorithm. Then the element hi corre-
sponding to the i-th honest party is computed as

hi =

(
h∏

i∈S∗ h
λj

j

)λ−1
i

.

Since |S∗| < t it follows that the view of the adversary is
identical to that induced by the previous hybrid.

Hybrid 5: In this hybrid we compute the ciphertexts
(c0, c1) and (d0, d1) as encryptions of zero, i.e.,

(c0, c1) = (gr1, h
r) and (d0, d1) = (gs1, h

s)

where (r, s)←$Z∗p. Indistinguishability follows from two
invocations of the XDH assumption.

Hybrid 6: This hybrid is identical to the previous one,
except that the responses of the honest parties for all
adversarial queries are computed as

c
(i)
0 =

(
c̃1∏

j∈S∗
(
c̃
xj

0

)λj · gγ·(α̃−α)1

)ψ·λ−1
i

where γ←$Z∗p is sampled freshly for each adversarial
query and α̃ is defined as before.

Before showing a reduction against the hardness of
the dDH assumption, we consider a reformulation of the
problem, that is more convenient to use. I.e., we are going
to construct a distinguisher for the distributions

D0 =

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

xz
1 , gyz1 , g

v/x
2 , gv2 , g

w/y
2 , gw2)

and

D1 =

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

xz
1 , gu1 , g

v/x
2 , gv2 , g

w/y
2 , gw2)

which are identical to the distributions defined by the dDH
problem (up to renaming of the variables).

In the following we describe the reduction against the
dDH problem. On input a tuple

(G1,G2,GT , p, g1, g2, gx1 , g
y
1 , g

xz
1 , gu1 , g

v/x
2 , gv2 , g

w/y
2 , gw2)

sampled either from D0 (in which case u = yz) or from
D1 (where u is uniformly from Z∗p). The reduction sets
the public parameters of the scheme exactly as specified
in Hybrid 5. Let Q be the set of queries issued by the
adversary to the decryption oracle. The reduction samples
a uniform i←$ {1, . . . , |Q|}, then answers all queries {i+
1, . . . , |Q|} as specified in Hybrid 6, programming the
random oracle to some value with know discrete logarithm
κ. For queries {1, . . . , i− 1} (and for each honest party)
the reduction samples a uniform pair (χi, µ)←$Z∗q and
computes

c
(i)
0 =

g
x·r̃·sk·χi·λ−1

i
1∏

j∈S∗ g
x·r̃·skj ·λj ·χi·λ−1

i

1 · gxz·χi·λ−1
i ·(α̃−α)

1

=
c̃
x·χi·λ−1

i
1∏

j∈S∗

(
c̃
skj
0

)λj ·x·χi·λ−1
i · gxz·χi·λ−1

i ·(α̃−α)
1

=

 c̃1∏
j∈S∗

(
c̃
skj
0

)λj

· gz·(α̃−α)1


x·χi·λ−1

i

where r̃ is extracted from the corresponding NIZK of the
adversary. Furthermore, the output of the random oracle
is programmed to gv·µ2 and k(i) is set to gv·µ/x·χi

2 .
On the other hand, for the i-th query (and for each

honest party) the reduction samples ωi←$Z∗q sets

c
(i)
0 =

g
y·ωi·r̃·sk·λ−1

i
1∏

j∈S∗ g
y·ωi·r̃·skj ·λj ·λ−1

i

1 · gu·ωi·λ−1
i ·(α̃−α)

1

=

 c̃1∏
j∈S∗

(
c̃
skj
0

)λj

· g(u/y)·(α̃−α)1


y·ωi·λ−1

i

and programs the output of the random oracle k = gw2
and sets k(i) = g

w/y·ωi

2 . The reduction returns the same
output of the adversary.

It is easy to see that the queries up to i−1 are answered
according to Hybrid 5, whereas the queries after i+ 1 are

answered according to Hybrid 6. Note that if u = yz then
the view of the adversary for the i-th query is identical
to Hybrid 5, since u/y = z. On the other hand, if u
is uniformly distributed, then the view of the adversary
is identical to Hybrid 6. Thus, whenever the reduction
guesses the i-th index correctly, its advantage is identi-
cal to that of the adversary. This shows that the hybrid
distributions must be computationally indistinguishable.

Hybrid 7: In this hybrid we change the response of the
honest parties to all adversarial queries. Specifically we
compute

c
(i)
0 =

 c̃1∏
j∈S∗

(
c̃
xj

0

)λj · gγ·b̃1

ψ·λ−1
i

where the bit b̃ is defined as follows:

(1) For queries to the Accept interface, we set b̃ = 0.
(2) For queries to the Reject interface, we set b̃ = 1.
(3) For queries to the Malicious interface, we set

b̃ = 0 if and only if α =
∑log(p)

i=0 2i · βi, where
(β0, . . . , βlog(p)) is extracted from the NIZK pro-
duced by the adversary.

First observe that if α̃ = α, then the distribution is
identical as b̃ = α̃−α = 0. Furthermore, observe that for
all constants c 6= 0 and c′ 6= 0 the following distributions

(c, c′, c · γ) ≡ (c, c′, c′ · γ)

where γ←$Z∗p, are identical. It follows that the view of
the adversary is unchanged.

Analysis: We are now in the position of analyzing the
success probability of the adversary in Hybrid 7. First
observe that the public parameters of the scheme do not
contain any information about α. Furthermore, the re-
sponses of the queries to the Accept and Reject interfaces
are computed independently of α. On the other hand, each
query to the Malicious interface reveals a single bit of
information, i.e., whether α̃ = α, for some adversarially
chosen α̃. Let Q be the set of queries to the Malicious
interface, we can then bound the probability that the
adversary guesses the correct α by (|Q|+ 1)/|D|.

It remains to analyze the success probability that the
adversary has without guessing a correct α, which is
equivalent to the probability of producing a false proof
for a (fresh) rejecting statement and can be bounded
to a negligible value by the simulation extractability of
the NIZK system. Thus, the success probability of the
adversary against Hybrid 7 is bounded from above by
(|Q| + 1)/|D| + negl (λ). By the above analysis, the
same bound holds for an adversary playing against the
original experiment, up to a negligible additive factor in
the security parameter.

	Introduction
	System Architecture
	Two-Factor Authentication Mechanisms
	Security Policies
	Our Contribution

	Technical Overview
	A Generic Solution
	A Flawed Attempt
	Bilinear Maps at Rescue
	Additional Challenges

	Related Work
	Preliminaries
	Bilinear Groups
	Non-Interactive Zero-Knowledge
	Secret Sharing

	Definitions
	Overview
	Syntax and Security Properties

	Construction of Distributed Zero-Tester
	Efficient Non-Interactive Zero-Knowledge
	Implementation in Ethereum

	Experimental Evaluations
	Security Policies
	Performance Evaluation

	A Solution Based on U2F Tokens
	U2F on Ethereum

	Conclusions
	References
	Appendix
	Threshold Homomorphic Encryption from Bilinear Maps
	Missing Proofs

