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Abstract. Efficient shuffle arguments are essential in mixnet-based e-
voting solutions. Terelius and Wikström (TW) proposed a 5-round shuffle
argument based on unique factorization in polynomial rings. Their ar-
gument is available as the Verificatum software solution for real-world
developers, and has been used in real-world elections. It is also the fastest
non-patented shuffle argument. We will use the same basic idea as TW
but significantly optimize their approach. We generalize the TW char-
acterization of permutation matrices; this enables us to reduce the com-
munication without adding too much to the computation. We make the
TW shuffle argument computationally more efficient by using Groth’s
coefficient-product argument (JOC, 2010). Additionally, we use batch-
ing techniques. The resulting shuffle argument is the fastest known ≤ 5-
message shuffle argument, and, depending on the implementation, can be
faster than Groth’s argument (the fastest 7-message shuffle argument).
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1 Introduction

A (zero knowledge [20]) shuffle argument enables a prover to convince a verifier
that given two lists of ciphertexts (encrypted by using a suitable homomorphic,
blindable public-key cryptosystem like Elgamal [11]) [w] = ([w1], . . . , [wN ]) and
[ŵ] = ([ŵ1], . . . , [ŵN ]), she knows a permutation π ∈ SN and a vector of ran-
domizers s = (s1, . . . , sN ), such that [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)) for
i = 1, . . . , N .3 On top of satisfying the intuitively clear soundness requirement,
it is required that the verifier obtains no additional information except the truth
of the statement; that is, a shuffle argument should be zero knowledge [20]. In
particular, shuffle arguments are important in e-voting applications, [9], allowing
one to anonymize encrypted ballots while preventing one from cheating, e.g., by

3 Here, the computation is done in an additive cyclic group G of prime order q, and
for a fixed generator P = [1] of G, we denote xP = x[1] by [x]. We generalize this
notation to matrices as in ([aij ]) = [(aij)] = (aijP ). Nevertheless, when discussing
efficiency, we use multiplicative terminology by (say) computing the number of ex-
ponentiations instead of the number of scalar multiplications. Finally, recall that an
Elgamal encryption belongs to G2.



changing some of the ballots. Shuffle arguments and mix-nets have several other
prominent applications, see [25] for further references. As an important recent
emerging application, shuffle arguments have become popular in cryptocurren-
cies, [15].

Since the prover may not know any of the corresponding plaintexts, the con-
struction of efficient shuffle arguments is nontrivial. While contemporary shuffle
arguments are relatively efficient, they are conceptually quite complicated, often
relying on (say) a novel characterization of permutation matrices. In particular,
computationally most efficient shuffle arguments either offer less security (for ex-
ample, the argument of [18] is not zero-knowledge) or rely on the CRS-model [6]
and require a large number of rounds (unless one relies on the random oracle
model [4] to make the argument non-interactive by using the Fiat-Shamir heuris-
tic [16]). On the other hand, the proposed random oracle-less CRS-model non-
interactive shuffle arguments [23,27,12,14,13] are computationally considerably
less efficient. While the random oracle model and the Fiat-Shamir heuristic are
dubious from the security viewpoint [8,19], there are no known attacks on random
oracle-model shuffle arguments. Moreover, the most efficient random oracle-less
shuffle arguments [27,12,14,13] are only proven to be sound in the generic group
model that is also known to be problematic. For the sake of efficiency, we only
consider interactive shuffle arguments with the implicit understanding that they
can be made non-interactive by using the Fiat-Shamir heuristic. Nevertheless, it
is preferable to minimize the number of rounds.

We recall three main paradigms used in the known computationally most
efficient shuffle arguments. Other approaches are known, but they have, up to
now, resulted in significantly less computation-efficient shuffle arguments. For
example, an orthogonal direction is to minimize the communication and the
verifier’s computation at the cost of possibly larger prover’s computation and
the number of rounds; see [1].

First, the approach of Furukawa and Sako [18] relies on a specific character-
ization of permutation matrices. Namely, a matrix M is a permutation matrix
if 〈M (i),M (j)〉 = δij and 〈M (i),M (j) �M (k)〉 = δijk, where M (i) is the ith
column vector of M , δij = [i = j] is the Kronecker delta, δijk = δijδik, � de-
notes the element-wise multiplication, and 〈, 〉 denotes the scalar product. The
Furukawa-Sako argument satisfies a privacy requirement that is weaker than zero
knowledge. Later, Furukawa [17] made it more efficient and zero-knowledge. Im-
portantly, shuffle arguments of this approach have only 3 messages.

Second, the approach of Neff [28] uses the fact that permuting the roots of
polynomial results in the same polynomial. Groth [21] optimized Neff’s argu-
ment, and the resulting argument is the most computationally efficient known
shuffle argument. Unfortunately, the arguments that follow Neff’s approach re-
quire 7 messages.

Terelius and Wikström (TW, [32]) proposed the third approach that uses
the fact that Zq[X] is a unique factorization domain. This approach is based
on another characterization of permutation matrices: namely, M ∈ ZN×Nq is a
permutation matrix iff
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(a)
∏N
i=1〈M (i), Xi〉 =

∏N
i=1Xi, where Xi are independent random variables,

and
(b) M · 1N = 1N .

The TW approach results in shuffle arguments of the intermediate number of
messages (namely, 5). However, up to now, it has resulted in somewhat higher
computational complexity than the first two approaches; see Table 1 for an
efficiency comparison.

Notably, the TW approach has some benefits that are important in prac-
tical applications. First, the first two approaches are patented, while the TW
approach is not. Second, the TW approach is backed up by an available open-
source software package4 that has been used in several real-life electronic elec-
tions. Therefore, we see it as an important open problem to optimize the TW
approach to the level of the first two approaches, if not above.

Our Contributions. We propose a more efficient version of the shuffle ar-
gument of Terelius and Wikström [32] (that is, the TW approach). It provides
better computational and communication complexity than the argument of Tere-
lius and Wikström as described in [32,34], due to the new characterization of
permutation matrices, the use of Groth’s coefficient-product argument, and more
precise security analysis. Computationally, the resulting shuffle argument is the
most efficient known ≤ 5-message shuffle argument, and comparable to the most
efficient 7-message shuffle argument by Groth [21], see Table 1.

We also note that [32] only has a sketch of the security proof (although their
main reduction is precise), while [34] lacks any security proofs. Thus, for the first
time, we give full security proof of a unique-factorization-based shuffle argument.

In some aspects, the new argument is very similar to the 7-message argu-
ment of Groth [21] that corresponds to the second approach. A precise efficiency
comparison between the new argument and Groth’s argument is up to imple-
mentation since we replaced some multi-exponentiations with the same number
of fixed-base exponentiations. See Table 1 for an efficiency comparison.

The new shuffle argument is broadly based on the TW shuffle argument,
with three main technical changes that range from a generalization of the TW’s
characterization of permutation matrices to using a protocol from Groth’s shuffle
argument to using batch verification techniques.

First. In Section 4, we generalize the permutation matrix characterization of
Terelius-Wikström. Namely, we call a family of non-zero polynomials ψi(X),
1 ≤ i ≤ N , PM-evidential, iff neither any non-linear sum of ψi nor any ψ2

i

divides their product. Generalizing a result from [32], we prove that M ∈ ZN×Nq

is a permutation matrix iff the following holds:

(i)
∏N
i=1〈M (i), ψi(X)〉 =

∏N
i=1 ψi(X) for some PM-evidential polynomial

family ψi, and

4 http://www.verificatum.org

3

http://www.verificatum.org


Prover Verifier Prover + Ver. ]round

](
N

-w
id

e
m

.e
.)

]e
x
p
.

N
](
N

-w
id

e
f.

b
.e

.)

](
N

-w
id

e
m

.e
.)

]e
x
p
.

N
](
N

-w
id

e
f.

b
..
e.

)

](
N

-w
id

e
m

.e
.)

]e
x
p
.

N
](
N

-w
id

e
f.

b
.e

.)

Furukawa [17] 3 1 5 6 — — 9 1 6 3

Verificatum [34] 9 1 — 9 — — 18 1 — 5
Current paper 5 — 1 6 — — 11 — 1 5

Groth [21] 6 — — 6 — — 12 — — 7

Table 1: The complexity of some known interactive shuffle arguments, sorted by
the number of rounds. Multi-exponentiations and fixed-based exponentiations
are much more efficient than usual exponentiations.

(ii) M · 1N = 1N .

In particular, we show that one can choose ψi(X1, X2) = Xi
1 + X2. The use of

the novel characterization allows us to minimize communication: in one round
of the communication, the TW shuffle verifier returns N new random variables
Xi. In our case, 2 variables suffice.5

Second. In a coefficient-product argument, the prover proves that the product of
the coefficients of a committed vector is equal to a publicly known integer. Al-
most all (non-multi-)exponentiations in the TW shuffle argument are executed
during the coefficient-product argument. Instead of the coefficient-product argu-
ment of [32], we use a more efficient coefficient-product argument by Groth [21].
Together with batch verification techniques [2], this is the main technique that
helps us to decrease the computational complexity of the TW argument.

Third. We use batch verification techniques to speed up the verifier. Intuitively,
batch verification means that instead of checking two (or more) verification equa-
tions, one checks whether a random linear combination of them holds. Depending
on the equations, this allows us to save some verifier’s computation.

Discussion. We compare efficiency in Table 1, see Section 6 for more infor-
mation. Note that Table 1 is not completely precise since many of the single
exponentiations come as part of (say) 2-wide multi-exponentiations. In the new

5 We note that one can use a PRG to generate N random variables from a random
seed, and thus if this method is applicable, one does not have to use our optimization.
However, there might be situations where one does not want to or cannot rely on a
PRG.
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shuffle argument, the prover executes four (≈ N)-wide multi-exponentiations
and in addition approximately N fixed-base exponentiations. Since an N -wide
multi-exponentiation is much more efficient than N (non fixed-base) exponenti-
ations, the new argument is significantly faster than the arguments of the first
approach or the argument of Terelius and Wikström [32].

The comparison of the new shuffle argument with the best arguments fol-
lowing Neff’s approach like [21] is more complicated. Since Neff’s approach does
not use permutation matrices, it only uses multi-exponentiations. However, in
the new shuffle argument, the only non-multi exponentiations are fixed-base
exponentiations, and the prover has only to execute N of them. By using a
version Straus’s algorithm [31], the computation of N fixed-base exponentia-
tions requires one to execute approximately 2N log2 q/ log2(N log2 q) squarings
or multiplications. This is comparable to the time required by Straus’s multi-
exponentiation algorithm, where one has to use approximately the same number
of multiplications.

However, when one uses a parallel computation model (like a modern GPU),
an N -wide multi-exponentiation induces a latency (at least Θ(logN), to com-
bine all N individual exponentiations) while N fixed-base exponentiations can
be computed independently. Hence, a precise comparison depends on the used
hardware platform. Moreover, the bit complexity of (multi-)exponentiations de-
pends heavily on the bit-length of exponents. In the current paper, we provide a
precise analysis of the size of exponents; such analysis in the case of the Groth’s
argument from [21] is still missing.

2 Preliminaries

Let q be a large prime. All arithmetic expressions with integers (for example,
Eqs. (1) to (3)) are in Zq by default, while commitments and ciphertexts belong
to an order q cyclic additive group G of order q. For a fixed generator P = [1]
of G, we denote xP = x[1] by [x]. We generalize this notation to matrices as in
([aij ]) = [(aij)] = (aijP ); e.g., [a, b] = ([a], [b]). We assume that p← (G, q, [1]) is
generated by a public algorithm Pgen(1λ).

Implicitly, all vectors are column vectors. For a vector a, let wt(a) be the
number of its non-zero coefficients. The dimension of all vectors is by default N .
Let 〈a,b〉 =

∑N
i=1 aibi be the scalar product of vectors a and b (in Zq, as usual).

We denote the vertical concatenation of two vectors a and b by a //b. Let ei be
the ith unit vector. For a matrix M = (Mij)ij ∈ ZN×Nq , let M i be its ith row

vector, and M (j) be its jth column vector. Let SN be the symmetric group of
N elements. For a permutation π ∈ SN , the corresponding permutation matrix
M = Mπ ∈ ZN×N2 is defined by Mij = 1 iff i = π(j). Thus, a Boolean matrix
M is a permutation matrix if it has a single 1 in every row and column. When
A is a randomized algorithm, we denote by a ← A(inp; r) the output of A on
input inp given the random tape r.
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Let λ be a security parameter; the complexity of algorithms is computed as
a function of λ. Let poly(λ) / negl(λ) be an arbitrary polynomial / negligible
function, and let f(X) ≈c g(X) iff |f(X)− g(X)| = negl(λ).

Lemma 1 (Schwartz-Zippel [35,30]). Let f ∈ F[X1, . . . , Xn] be a non-zero
polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset of F, and
let x1, . . . , xn be selected at random independently and uniformly from S. Then
Pr[f(x1, . . . , xn) = 0] ≤ d/|S|.

Cryptography. Let λ be the security parameter. For two distributions D1 and
D2, D1 ≈c D2 means that they are computationally indistinguishable by any
non-uniform probabilistic polynomial-time adversary.

In the CRS model [6], a trusted third party generates a CRS crs together with
a trapdoor. The CRS is published and given to all participants. The trapdoor is
however kept secret, and only used in the proof of zero-knowledge to generate a
simulated transcript of the protocol.

Commitment Schemes. A commitment scheme Γ = (Pgen,KGen,Com) in the
CRS model consists of a key generation algorithm KGen, that generates a com-
mitment key ck (the CRS), and a commitment algorithm Comck(a; ·) that first
samples a random r and then uses it to commit to a message a. We also assume
that ck implicitly contains p. Γ is perfectly hiding if a random commitment is
statistically independent from the message. Γ is (T, ε)-binding, if for any prob-

abilistic T -time adversary A, AdvbindingΓ,A (λ) ≤ ε, where

AdvbindingΓ,A (λ) := Pr

[
p← Pgen(1λ); ck← KGen(p); (a0,a1, r0, r1)← A(ck);

Comck(a0; r0) = Comck(a1; r1) ∧ a0 6= a1

]
.

We say that Γ is computationally binding if it is (poly(λ), negl(λ))-binding.

The extended Pedersen commitment scheme Γp [29] is defined as follows. Let
p = (G, q, [1]). KGen samples ck = ([h1], . . . , [hN ])←$GN uniformly at random.

For a ∈ ZNq , let Comck(a; r) := r[1] + 〈a, [h]〉 = r[1] +
∑N
i=1 ai[hi]. Γp is com-

putationally binding under the discrete logarithm assumption [7]. It is perfectly
hiding since the distribution of Comck(a; r), r←$Zq, is uniform in G.

The extended Pedersen commitment scheme is additively homomorphic,
Comck(a0 + a1; r0 + r1) = Comck(a0; r0) + Comck(a1; r1). Clearly, from this
it follows that for any integer n, Comck(na;nr) = n · Comck(a; r).

Cryptosystems. An public-key cryptosystem Π = (Pgen,KGen,Enc,Dec) con-
sists of a key generation algorithm KGen, that generates a public key pk and
a secret key sk, an encryption algorithm [w] ← Encpk(a; ·) that first samples
a random r and then uses it to encrypt a message a, and a decryption algo-
rithm Decck([w]) that uses sk to decrypt [w]. Obviously, it is required that for
(pk, sk)← KGen(p), Decsk(Encpk(a; r)) = a for any a, r.
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In the Elgamal cryptosystem [11], one samples sk←$Zq and then defines the

public key as pk = [ 1h ], where [h]← sk·[1]. Let Encpk([m]; r) = [ c1c2 ] =
(

[m]+r[h]
r[1]

)
.

To decrypt a ciphertext, one computes [c1] − sk[c2] = [m]. The Elgamal cryp-
tosystem is IND-CPA secure, assuming that the Decisional Diffie-Hellman prob-
lem is hard. It is group-homomorphic, with Encpk([m]; r) + Encpk([m]′; r′) =
Encpk([m] + [m]′; r + r′).

In the lifted Elgamal, the plaintext m belongs to Zq, and the cipher-

text is
(
m[1]+r[h]

r[1]

)
. Lifted Elgamal is Zq-homomorphic, with Encpk(m; r) +

Encpk(m
′; r′) = Encpk(m+m′; r + r′).

The new shuffle argument allows to use both lifted and non-lifted El-
gamal. Moreover, it allows one to work with a tuple of plaintexts [m] =
([m1], . . . , [mM ])>, for some M ≥ 1, that is encrypted as Encpk([m]; r) =
(Encpk([m1]; r1) // . . . //Encpk([mM ]; rM )). For the sake of simplicity, we concen-
trate the exposition on the case of (non-lifted) Elgamal and M = 1. However,
the case M > 1 is important in practice, e.g., in the case of complicated ballots.

Arguments. Let R = {(inp, wit)}, with |wit| = poly(|inp|), be a polynomial-
time verifiable relation. Let LR = {inp : ∃wit, (inp, wit) ∈ R}. We allow R
and L to depend on the common reference string (CRS) crs that is generated
by a trusted third party by using an algorithm KGen; crs can say contain the
description p of a group and the commitment key ck = [{hi}] of the extended
Pedersen commitment scheme. In this case, we denote R by Rcrs and LR by
LR:crs. Thus, (crs, inp, wit) ∈ R iff (inp, wit) ∈ Rcrs.

For a randomized two-party protocol (KGen,P,V) between the prover P and
the verifier V in the CRS model, let σp be the number of random choices the
prover can make (thus, dlog2 σpe is the bit-length of the prover’s random tape)
and σv the number of random choices the verifier can make (thus, dlog2 σve
is the bit-length of the verifier’s random tape). We require the protocol to be
public-coin, at the end of which the verifier will either accept (outputs acc)
or reject (outputs rej). We allow the acceptance to be probabilistic, and as-
sume that the verifier does also output the coins he used to decide accep-
tance. For a protocol between prover P and verifier V in the CRS model, let
〈P(crs, inp, wit),V(crs, inp)〉 be the whole transcript between P and V, given
crs, common input inp and prover’s private input (witness) wit. We sometimes
write 〈P(crs, inp, wit),V(crs, inp)〉 = acc to denote that the verifier accepts, and
rej if V rejects. The concrete meaning will be clear from the context.

Then, (Pgen,KGen,P,V) is an argument for relation R if for all non-uniform
probabilistic polynomial-time stateful adversaries A,

Completeness: Pr[p ← Pgen(1λ); crs ← KGen(p); (inp, wit) ← A(crs) :
(inp, wit) 6∈ Rcrs ∨ 〈P(crs, inp, wit),V(crs, inp)〉 = acc] ≈c 1.

Soundness: Pr[p ← Pgen(1λ); crs ← KGen(p); inp ← A(crs) : inp 6∈ LR:crs ∧
〈A(crs, inp),V(crs, inp)〉 = acc] ≈c 0.

We call (KGen,P,V) a proof if soundness holds against unbounded adversaries.
An argument is public coin if the verifier’s subsequent messages correspond to
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subsequent bit-strings from her random tape. In particular, they do not depend
on the prover’s messages.

As noted in [21], the standard definition of a proof of knowledge [3] does not
work in such a setting since the adversary may have non-zero probability of com-
puting some trapdoor pertaining to the common reference string and use that
information in the argument. In this case, it is possible that there exists a prover
with 100% probability of making a convincing argument, where we nonetheless
cannot extract a witness. We prove security by using witness-extended emula-
tion [26], the CRS-model version of which was defined by Groth, [21]. Intuitively,
an argument has witness-extended emulation, if for every prover P there exists
an emulator Emul, such that if P makes V accept, then almost always Emul makes
V accept and outputs P∗’s witness.

Definition 1. A public-coin argument Π = (Pgen,KGen,P,V) has witness-
extended emulation if for all deterministic polynomial-time provers P∗ there
exists an expected polynomial-time emulator Emul, such that for all non-uniform
probabilistic polynomial-time adversaries A, AdvsoundΠ,A (λ) ≈c Advemul

Π,A,Emul(λ),
where

AdvsoundΠ,A (λ) := Pr

[
p← Pgen(1λ); crs← KGen(p);ωP ←$R; (inp, st)← A(crs;ωP);

tr← 〈P∗(crs, inp; st),V(crs, inp)〉 : A(tr) = acc

]
,

Advemul
Π,A,Emul(λ) := Pr

p← Pgen(1λ); crs← KGen(p);ωP ←$R; (inp, st)← A(crs;ωP);

(tr, wit)← Emul〈P
∗(crs,inp;st),V(crs,inp)〉(crs, inp) :

A(tr) = acc ∧ (tr is accepting⇒ (inp, wit) ∈ Rcrs)

 .

Here, Emul can rewind the transcript oracle 〈P∗(crs, inp; st),V(crs, inp)〉 to any
particular round with the verifier choosing fresh random coins, R is the space of
the random coins for A, ωP is the random tape of A, and st is the state of P∗

that also contains his random coins (P is deterministic in inputs (crs, inp, st)).

The verifier’s randomness is a part of the transcript (we recall that this includes
also the random coins used to probabilistically accept the transcript), while P∗

is a deterministic function of (crs, inp; st). Thus combining (crs, inp; st) with the
emulated transcript gives us the view of both the prover and the verifier, and at
the same time gives us the witness.

Then, we have an argument of knowledge in the sense that the emulator is
able to extract the witness whenever P∗ makes a convincing argument. Hence,
this definition implies soundness.

Honest-Verifier Zero Knowledge (HVZK, [10]). An argument Π =
(Pgen,KGen,P,V) is honest-verifier zero knowledge if there exists a probabilis-
tic polynomial-time simulator Sim, such that for any non-uniform probabilistic
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polynomial-time adversary A,

Pr

[
p← Pgen(1λ); crs← KGen(p); (inp, wit, ωV)← A(crs);

tr← 〈P(crs, inp, wit),V(crs, inp;ωV)〉 : (inp, wit) ∈ Rcrs ∧ A(tr) = acc

]

≈c Pr

[
p← Pgen(1λ); crs← KGen(p); (inp, wit, ωV)← A(crs);

tr← Sim(crs, inp;ωV) : (inp, wit) ∈ Rcrs ∧ A(tr) = acc

]
.

That is, given that the verifier is honest, there exists a simulator that can sim-
ulate the view of the prover without knowing the witness. To compensate for
this, Sim is allowed to create the messages of the transcript out-of-order.

3 Coefficient-Product Argument

In the shuffle argument, we need a coefficient-product argument, where the prover
P shows that given a CRS ck = ([h1], . . . , [hN ]) (ck for the Pedersen commitment
scheme), a public commitment [ct] ∈ G and a public value γ ∈ Zq, he knows how

to open [ct] to a vector t, [ct] = Comck(t; rt), so that
∏N
i=1 ti = γ. Formally, it is

an argument for the ck-dependent relation

Rcpack :=
{

(([ct], γ), (t, rt)) : [ct] = Comck(t; rt) ∧
∏N
i=1 ti = γ

}
.

Next, we outline the coefficient-product argument that is closely based on the
coefficient-product argument from [21]. (More precisely, in [21] it was used as a
subargument of a shuffle of known contents. See, for example, [22] for another
prior implicit use of the following argument.) We give a formulation of this
argument as a separate argument of its own worth.

In the coefficient-product argument, P first proves he knows the message in
the commitment [ct] = Comck(t; rt), by using the following standard Σ-protocol.
Here, the verifier’s message comes from a set of σy elements for some σy ≥ 2λ.

1. The prover samples τ ←$ZNq , %t←$Zq, and sends [cτ ] ← Comck(τ ; %t)
to the verifier.

2. The verifier samples y←$ {1, . . . , σy} and sends it to the prover.
3. The prover sends

t∗ ← yt + τ (1)

and r∗t ← yrt + %t to the verifier.
4. The verifier accepts iff y[ct] + [cτ ] =? Comck(t∗; r∗t ).

(As always, the prover’s third message elements are computed modulo q.)

Note that
∏N
i=1 t

∗
i =

∏N
i=1(yti + τi) = yN

∏N
i=1 ti + p(y), where p(Y ) is some

degree ≤ N − 1 polynomial. To finish up the coefficient-vector argument, the
prover now only has to demonstrate the knowledge of p(y), for some degree

≤ N − 1 polynomial p(Y ), such that
∏N
i=1 t

∗
i − p(y) = yNγ.
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For this, using a technique from [21], the prover does the following. Let

Qi ← y
∏i
j=1 tj +∆i , (2)

and ∆i were chosen before y was sent. (Thus, ∆i does not depend on y and Qi is
a linear polynomial on y.) In particular, set Q1 ← t∗1 = yt1 + τ1; thus, ∆1 = τ1.

Also, choose ∆N ← 0, thus

QN = y
∏N
i=1 ti = yγ , (3)

which can be tested by the verifier. (The verifier can recompute QN , as we will
see shortly.) The prover samples the rest of ∆i←$Zq randomly. Now,

y(Qi+1 −∆i+1)
(2)
=yti+1(Qi −∆i)

(1)
= t∗i+1Qi − τi+1Qi − yti+1∆i

(2)
= t∗i+1Qi − τi+1

(
y
∏i
j=1 tj +∆i

)
− yti+1∆i

=t∗i+1Qi − y
(
ti+1∆i + τi+1

∏i
j=1 tj

)
− τi+1∆i .

Define bi ← ∆i+1− ti+1∆i− τi+1

∏i
j=1 tj , βi ← −τi+1∆i, and b∗i ← ybi + βi

as on Fig. 1. Thus, for i = 1, . . . , N − 1,

yQi+1 = t∗i+1Qi + ybi + βi = t∗i+1Qi + b∗i . (4)

The verifier can recompute Qi by using the definition of Q1, and Eq. (4), see
Fig. 1.

Since b∗i is linear in y,

yNγ
(3)
=yN−1QN

(4)
= yN−2(t∗NQN−1 + b∗N−1)

(4)
= . . .

(4)
=
∏N
i=1 t

∗
i + p(y)

=yN
∏N
i=1 ti + p′(y) ,

(5)

where p(X) and p′(X) are degree ≤ N − 1 polynomials. This is equivalent to

yN (γ −
∏N
i=1 ti) + p′(y) = 0. As y was chosen randomly, due to Schwartz-Zippel

lemma Eq. (6), with overwhelming probability this implies that yN (γ−
∏N
i=1 ti)+

p′(y) is a zero polynomial and thus γ =
∏N
i=1 ti. Hence, we are done.

Construction. The full coefficient-product argument Πcpa is depicted by Fig. 1.
Note that the verifier chooses y 6= 0 to avoid division by 0 on the penultimate
line of Fig. 1.

Security. We prove that this argument is perfectly complete, has witness-
extended emulation, and is perfectly special honest-verifier zero knowledge. We
state the security of Πcpa in Theorem 1. Πcpa is essentially the same as a sub-
argument in [21]; it only includes batch verification as an additional step of
optimization, and moreover, [21] did not formalize it as a separate argument.
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CRS: crs = ck = ([h1], . . . , [hN ]) as in the extended Pedersen.
Common inputs: inp = ([ct] = Comck(t; rt), γ).
Witness: wit = (t, rt).

1. The prover P(crs, inp, wit) does:
(a) Sample τ ←$ZNq .
(b) Let ∆1 ← τ1 and ∆N ← 0.
(c) For i = 2, . . . , N − 1: sample ∆i←$Zq.
(d) X0 ← 1; For i = 1, . . . , N − 1:

– Set Xi ← Xi−1ti, bi ← ∆i+1 − ti+1∆i − τi+1Xi, βi ← −τi+1∆i.
(e) Denote b = (b1, . . . , bN−1)>, β = (β1, . . . , βN−1)>.
(f) Sample %t, rb, %b←$Zq.
(g) [cτ ]← Comck(τ ; %t) ; [cb]← Comck(b // 0; rb) ;

(h) [cβ ]← Comck(β // 0; %b) ;
Send [cτ , cb, cβ ] to the verifier.

2. The verifier samples y←$ {1, . . . , σy}, and sends y to the prover.
3. Prover does:

(a) Set t∗ ← yt + τ , r∗t ← yrt + %t, b∗ ← yb + β ∈ ZN−1q , r∗b ← yrb + %b.
(b) Send (t∗, r∗t ,b

∗, r∗b) to the verifier.
4. The verifier samples z←$ {0, . . . , σz − 1}. He checks that

y[ct] + [cτ ] + z(y[cb] + [cβ ]) =? Comck(t
∗ + z(b∗ // 0); r∗t + zr∗b) . (6)

Set Q1 ← t∗1, Q2 ← (t∗2Q1 +b∗1)/y, . . . , QN ← (t∗NQN−1 +b∗N−1)/y. Check

that QN =? yγ.
The verifier outputs (acc, z) iff both checks succeed, and (rej, z) otherwise.

Fig. 1: The coefficient-product argument. Dotted formulas correspond to expen-
sive (that is, Ω(N)) computations.

First, note that if either of the following equations does not hold,

y[ct] + [cτ ] =? Comck(t
∗; r∗t ) , y[cb] + [cβ ] =? Comck(b

∗ // 0; r∗b) , (7)

then according to Schwartz-Zippel lemma, Eq. (6) holds for a random z at most
with probability 1/σz. To simplify the proofs of both following theorem, we
define another coefficient-product argument Π ′cpa that differs from Πcpa only by
removing the batch verification: namely, the verifier checks Eq. (7) instead of
Eq. (6). Clearly, if an adversary succeeds with probability ε against Πcpa, then
it succeeds with probability not larger than ε′, ε ≥ ε′ ≥ ε− 1/σz, against Π ′cpa.

Fix p ← Pgen(1λ) and crs ← KGen(p). Let us denote with ωP the random
coins of the adversary and with ωV the random coins of the verifier in Π ′cpa. Since
Π ′cpa is a public-coin protocol, each ωV corresponds to a different value verifier’s
challenge y. Let V = V crs be a crs-dependent matrix with an entry V ωP,ωV

=

11



V (ωP, ωV) = 1 if for (inp, st) ← A(crs;ωP), 〈P∗(crs, inp; st),V(crs, inp;ωV)〉 =
acc and V (ωP, ωV) = 0 otherwise.

Theorem 1. Πcpa is a three-message public-coin argument for [ct] being a com-

mitment to a message t such that
∏N
i=1 ti = γ. It is perfectly complete and

perfectly HVZK. It has witness-extended emulation, assuming the commitment
scheme is binding.

Proof. Completeness: obvious.

Witness-extended emulation: Fix p ← Pgen(1λ) and crs ← KGen(p).
Let V′ be the verifier of Π ′cpa. Let P∗ be a prover that makes V′ to accept a false
statement with some non-negligible probability ε′crs.

To extract a witness, Emul rewinds a runs 〈P∗,V′〉 on the same
challenge x until it gets another acceptable argument. Let trj =
(inp; [cτ , cb, cβ ]; yj ; t∗j , r

∗
t:j ,b

∗
j , r
∗
b:j), j ∈ {1, 2}, be the two acceptable arguments.

Emul uses the last two transcripts to open the commitments. Since y1 6= y2
and Eq. (7) holds, from Eq. (7) (left) it follows that [ct] = Comck(t; rt), where
t← (t∗1− t∗2)/(y1−y2) and rt ← (r∗t:1−r∗t:2)/(y1−y2). Thus, Emul has succeeded
in extracting an opening of [ct].

Following Theorem 1 in [21], we can argue that Emul runs in expected poly-
nomial time. If we are in a situation where P∗ can make the verifier to accept
with probability ε > 0 on challenge x, then the expected number of rewindings
to get an acceptable transcript is 1/ε. If P∗ fails then we do not have to rewind
at all, and thus the number of expected queries to 〈P∗,V′〉 is 2. Since Emul does
an expected polynomial number of queries, there is only negligible probability
of ending in a run where y = y′ or some other unlikely event (e.g., breaking
the binding of the commitment scheme) occurs. Hence, with an overwhelming
probability, either P∗ did not succeed or Emul succeeded in extraction.

Next, we argue that the probability for extracting an opening of [ct], such

that
∏N
i=1 ti 6= γ, is negligible. Assume that P∗ has a non-negligible success prob-

ability 1/f(λ), for a polynomial f(X), to produce an acceptable argument. We
now run P∗ and rewind to get three random challenges y1, y2, y3. With proba-
bility at least 1/f(λ)3, P∗ succeeds in creating accepting arguments for all three
challenges. Since y1 6= y2, with an overwhelming probability, and Eq. (7) holds,
Emul can open the following commitments from the first two transcripts (with
an overwhelming probability).

(1) From Eq. (7) (left) it follows that [ct] = Comck(t; rt), where t ← (t∗1 −
t∗2)/(y1 − y2); rt ← (r∗t:1 − r∗t:2)/(y1 − y2).

(2) Since it knows t∗1, t, r∗t:1 and rt, Emul can compute τ ← t∗1 − y1t; %t ←
r∗t:1 − y1rt; thus [cτ ] = Comck(τ ; %t).

(3) From Eq. (7) (right) it follows that [cb] = Comck(b // 0; rb), where b ←
(b∗1 − b∗2)/(y1 − y2); rb ← (r∗b:1 − r∗b:2)/(y1 − y2).

(4) Since it knows b∗1, b, r∗b:1 and rb, Emul can compute β ← b∗1 − y1b; %b ←
r∗b:1 − y1rb; thus [cβ ] = Comck(β // 0; %b).

12



Sample t∗ ←$ZNq , r∗t ←$Zq;
Set [cτ ]← Comck(t

∗; r∗t )− y[ct];
Set Q1 ← t∗1, Qi ←$Zq for i ∈ {2, . . . , N − 1}, and QN ← yγ;
Sample rb ←$Zq;

1 Set [cb]← Comck(0N ; rb);
Set b∗1 ← yQ2 − t∗2Q1, . . . , b∗N−1 ← yQN − t∗NQN−1;
Sample r∗b ←$Zq;
Set [cβ ]← Comck(b

∗ // 0; r∗b )− y[cb];
Return ([cτ , cb, cβ ]; y; t∗, r∗t , b

∗, r∗b ; acc, z);

Fig. 2: Simulator Sim(ck, inp, (y, z)) of the coefficient-product argument

Thus, Emul has extracted t, rt, τ , %t,b, rb,β, %b, and thus also t∗ ← yt + τ and
b∗ ← yb + β.

Consider now the third transcript with y3. Since QN = yγ, we obtain from
Eq. (5) that P (y3) := yN3 (γ −

∏N
i=1 ti)− p′(y3) = 0, where p′(Y ) is some degree

≤ N − 1 polynomial. Since the emulator knows t∗ and b∗, it knows P (Y ). Since
a non-zero degree-(≤ N) polynomial P (Y ) has ≤ N roots, then the probability
that P (y3) = 0 and P (Y ) 6= 0 is at most N/σy. Since P (Y ) = 0 implies that γ =∏N
i=1 ti, Emul has retrieved a witness wit = (t, rt), such that [ct] = Comck(t; rt)

and γ =
∏N
i=1 ti, with an overwhelming probability. Thus, this argument has

witness-extended emulation.
Perfect SHVZK: We construct the following simulator Sim. (This part of

the proof follows [21] quite closely.) The simulator is depicted in Fig. 2. Since
Sim’s output does not depend on t or rt, it reveals no information about the
witness. Clearly, Sim’s output will be accepted by the verifier.

We use the same idea as [21] to show that this simulator provides output
from the correct distribution. First, consider the following simulator Simt that
otherwise outputs the same thing as Sim, except that it uses the knowledge of
t and rb to construct [cb] as [cb]← Comck(b // 0; rb). More precisely, it works as
Sim, except that Line 1 in Fig. 2 is replaced with the following three steps:

for i ∈ [1 .. N ] do ∆i ← Qi − y
∏i
j=1 ti

for i ∈ [1 .. N − 1] do bi ← ∆i+1 − ti+1∆i − τi+1

∏i
j=1 tj

[cb]← Comck(b // 0; rb);

Clearly, the output of Simt comes from the same distribution as the output
of Sim, but it has constructed [cb] as needed due to the knowledge of t and rt.

Finally, clearly Simt chooses the values from the same distribution as the real
prover (given that y and z are chosen randomly), but in a different order. ut

Complexity. Clearly, the prover’s computational complexity is dominated by
three ≈ N -wide multi-exponentiations, while the verifier’s computational com-
plexity is dominated by one≈ N -wide multi-exponentiation. The communication
complexity is dominated by ≈ 2N elements of Zq.
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4 A Characterization of Permutation Matrices

Next, we prove the following theorem that generalizes a result from [32].
Namely, [32] let the verifier to choose N random values X1, . . . , XN . To re-
duce communication (by avoiding sending all N variables to the prover), they
used a pseudo-random number generator to obtain N values Xi out of a short
seed X0. Our result shows that the pseudo-random number generator can be
replaced by a what we call PM-evidential family of multivariate polynomials.
On top of the efficiency aspect, we obtain a novel mathematical characterization
of permutation matrices of independent interest.

Definition 2 (PM-evidential). Let F be a field. A family of N -degree ν-
variate polynomials {ψi(X)}Ni=1, ψi ∈ F[X1, . . . , Xν ], is PM-evidential over F,

if for Ψ(X) :=
∏N
i=1 ψi(X),

(i) ψi(X) 6= 0 for each i,

(ii) for each a ∈ Fn with wt(a) > 1,
(∑N

i=1 aiψi(X)
)
- Ψ(X), and

(iii) (ψi(X))
2 - Ψ(X) for each i.

One can use PM-evidential polynomials to efficiently check whether a matrix
is a permutation matrix, as explained by the following result.

Lemma 2. Let F be a field. Let M be an N × N matrix over F, let X =
(X1, . . . , Xν) be a vector of ν ≤ N indeterminates, and let {ψi(X)}Ni=1

be PM-evidential over F. Let ψ(X) := (ψ1(X), . . . , ψN (X))>, ΨM (X) :=∏N
i=1〈M>

i ,ψ(X)〉, and Ψ(X) :=
∏N
i=1 ψi(X) in F[X]. Then M is a permu-

tation matrix iff ΨM (X) = Ψ(X) and M · 1N = 1N .

Proof. (⇒) Assume M is a permutation matrix. Then clearly, ΨM (X) = Ψ(X)
(since then ΨM (X) is a product of ψi-s in a permuted order) and M ·1N = 1N .

(⇐) Assume that ΨM (X) = Ψ(X). Consider the following three cases. First, if
some rowM i is a zero vector, then ΨM is a zero polynomial, and thus Ψ(X) = 0,
a contradiction to Item i in Definition 2. Second, if the ith rowM i contains more
than one non-zero element, then (

∑
Mijψj(X)) | ΨM (X), where wt(M i) > 1. A

contradiction with Item ii in Definition 2. Third, if the jth columnM (j) contains
more than one non-zero element, then — since each row contains exactly one
non-zero element — ψ2

j (X) | ΨM (X), contradicting Item iii in Definition 2).
Hence, each row and column ofM have exactly one non-zero element. Finally,

since M · 1N = 1N , the non-zero elements of M must equal one. ut

Intuitively, Terelius and Wikström proved that the family {ψi(X) = Xi} is
PM-evidential. Next, we construct a simple family of PM-evidential polynomials,
where the number of indeterminates is just two. More precisely, we show that
the family of polynomials {ψk(X,Y ) = Xk+Y }Nk=0 in F[X,Y ] is PM-evidential.

Lemma 3. The family of polynomials {ψk}Nk=1, where ψk(X,Y ) = Xk−1 + Y ,
is PM-evidential.
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To prove Lemma 3, we need to show that the polynomials Xk + Y are irre-
ducible. For the latter, we will use the well-known Eisenstein’s criterion.

Proposition 1 (Eisenstein’s Criterion [24]). Let V be a unique factorization

domain. Let p(X) =
∑k
i=0 aiX

i ∈ V[X]. Then p(X) is irreducible in V[X] if
there exists an irreducible element s ∈ V such that the following three conditions
hold:

(i) s | ai for every i ∈ [0 .. k − 1],
(ii) s - ak,

(iii) s2 - a0

Proof (Proof of Lemma 3). Item i of Definition 2 holds trivially.
To show that Items ii and iii hold, we first use Eisenstein’s criterion to show

Xk + Y is irreducible, for k ∈ [0 .. N − 1]. Think of Xk + Y as a polynomial in
V[X], where V = F[Y ]. Then, a0 = Y , ai = 0 for i ∈ [1 .. k − 1] and ak = 1.
Taking s = Y , it is easy to see that the three conditions of the Eisenstein’s
criterion are satisfied. Thus, Xk + Y is irreducible.

To see that Item ii holds, suppose that∑N−1
i=1 aiψi(X,Y ) = L(X,Y ) , (8)

where L(X,Y ) | Ψ(X,Y ). Since F[X,Y ] is a unique factorization domain and
ψk are all irreducible, we get that L(X,Y ) is a product of some of ψi. Since on
the left hand side of Eq. (8), the degree of Y is 1, then also also the degree of
Y on the right hand is also 1. Thus, L(X,Y ) = ψj(X,Y ) for some j, and hence,∑N−1
i=1 aiψi(X,Y ) = ψj(X,Y ). Because they have distinct degrees, ψi(X,Y ) are

linearly independent. Thus we get that ai = 0 if i 6= j and aj = 1. Thus,
wt(a) = 1 and Item ii holds.

Finally, Item iii follows from the fact that ψi(X,Y ) are irreducible and dis-
tinct. ut

While we believe that the proposed solution is close to optimal, we leave it as
an open question of whether some other families give even better communication
and computational complexity for the final shuffle argument.

Additionally, in the proof of the new shuffle argument of Section 5, we will
need to invert a certain matrix (ψi(xj))i,j obtained by rewinding the argument.
We need to show that the probability that this matrix is invertible is overwhelm-
ing. For that analysis, we give the following definition.

Definition 3. Define

ni(ψ, σx, q) := max
x0,...,xN−2

 Pr
xN−1

[(ψi(xj))i,j is not invertible] |
x0,i, . . . , xN−1,i are
pairwise different
for every i

 .

Here, we assume that x0, . . . ,xN−1 ∈ {0, . . . , σx − 1}ν .
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For good values in the proof, we want to make this value as small as possible.

Lemma 4. Let x1, . . . , xN be distinct random elements of {0, . . . , σx − 1}, and
let y1, . . . , yN be distinct random elements of {0, . . . , σx−1}. Let M be the matrix
with elements (xj−1i +yi)

N
i,j=1 in Zq. Then, det(M) = 0 with probability at most

1/q. Additionally, for fixed distinct x1, . . . , xN and fixed distinct y1, . . . , yN−1,
there exists at most one yN , such that M is not invertible.

Proof. Let the determinant of M be D. Denote x = (x1, . . . , xN ) and S :=
[1 .. N ]. For a subset S′ ⊆ S, let MS be the matrix, where the ith row is

(xj−1i )Nj=1, if i ∈ S′, and (yi)
N
j=1, if i /∈ S′. Since det

(
A

b+c
D

)
= det

(
A
b
D

)
+det

(
A
c
D

)
,

we get by induction that D =
∑
S′⊆S det(MS′).

Moreover, if |S′| < N−1, then det(MS′) = 0. Really, in this case, there exist
at least two rows i and j, where the elements are just yi and yj . The determinant
of every 2×2-submatrix from these two rows is 0. Thus, by the cofactor expansion
of a determinant, det(MS′) = 0. Thus,D = det(MS)+

∑N
i=1 det(MS\{i}). Now,

MS is a Vandermonde matrix and thus det(MS) =
∏

1≤i<j≤N (xj − xi) 6= 0.
On the other hand, observe that det(MS\{i}) is equal to yi times Pi(x) for

some polynomial Pi. There are two possible cases. Either Pi(x) = 0, for all i, or
at least one Pi(x) is nonzero. In the first case, D = det(MS) 6= 0. Note that then,
there exists no yI such that det(MS) = 0. In the second case, say PI(x) 6= 0
holds for a concrete I. Then, D = 0 iff yI = −(det(MS)+

∑
i6=I yiPi(x))/PI(x),

which is true for precisely one value of yI .
Thus, presuming that x1, . . . , xN are pairwise different and taking the prob-

ability over the choice yN ,

Pr[D = 0] = 0 · Pr[∀i ∈ S, Pi(x) = 0] + 1
q · (1− Pr[∀i ∈ S, Pi(x) = 0]) ≤ 1

q .

This proves the claim. ut

5 Shuffle Argument

Let N be the number of shuffled ciphertexts, let [w] and [ŵ] be two tuples of
the ciphertexts. Assume that pk is the public key of an additively homomorphic
(in our case, the lifted Elgamal [11]) cryptosystem. In a shuffle argument, the
prover aims to convince the verifier that, for a fixed pk, he knows a permutation
π ∈ SN and a vector of randomizers s ∈ ZNq , such that [ŵi] = [wπ−1(i)] +
Encpk(0; sπ−1(i)). Formally, it is an argument for the relation

Rpk :=

{
(([w], [ŵ]), (π, s) ∈ SN × ZNq ) :

∀i ∈ [1 .. N ], [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i))

}
.

Before going on, we recall that if for some matrix M ∈ ZN×Nq ,

[ui] = Comck(M
(i); r̂i), then for any t ∈ ZNq ,
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〈[u], t〉 =
∑N
i=1 ti[ui] = Comck

(∑N
i=1M

(i)ti;
∑N
i=1 r̂iti

)
= Comck(Mt; 〈r̂, t〉) . (9)

Next, we will give a short explanation of the argument on Fig. 3. The prover P
and the verifier V do the following:

(1) P commits to the permutation matrix M , where [ui] is a commitment to
M (i) for i < N , and [uN ] is homomorphically computed as a commitment

to 1N −
∑N−1
i=1 M (i). (This guarantees that

∑N
i=1M

(i) = 1N .)

(2) V chooses x after P committed to M . Let t = ψ(x). Both parties compute
a permuted vector t̂, t̂i = tπ−1(i), of the vector t.

(3) P proves that he knows how to open 〈t, [u]〉 as a commitment of Mt.

(4) P proves, by using the coefficient-product argument, that
∏N
i=1 t̂i =

∏N
i=1 ti.

Hence, the verifier is convinced (via Lemma 2) that M is a permutation
matrix. Thus, t̂ is a permutation of t.
The coefficient-product argument is interleaved with the main argument for
efficiency reasons. For easier readability, we have added the symbol($) to the
lines in Fig. 3 that contain the coefficient-product argument.

(5) Finally, P proves that he used the same matrix M (together with some
additional randomness) to form [ŵ] from [w]. Since M is a permutation
matrix, the shuffle argument is sound (more precisely, has witness-extended
emulation).

Construction. The new shuffle argument Πsh is depicted by Fig. 3. Here, we
assume σx, σy, σz ≥ 2λ, G is a group of order q, andN is the number of ciphertexts
with N < 20.5λ Fix a family of PM-evidential polynomials ψi ∈ Z[X1, . . . , Xν ]
for some ν ≤ N , such that ni(ψ, σx, q) is negligible. The common inputs of the
prover and the verifier are the ciphertext tuples [w] = ([w1], . . . , [wN ]) and [ŵ] =
([ŵ1], . . . , [ŵN ]), with [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)). The prover’s witness

is (π, s) ∈ SN × ZNq . The CRS consists of pk = [1 // h], and ck = [h1, . . . , hN ] as
in the extended Pedersen.

We will use the terms and algorithms from the coefficient-product argument
and we will add a subscript G to them to distinguish them from the analogous
terms in the main argument.

Theorem 2 (Security of the shuffle argument). Πsh is perfectly complete
and perfectly SHVZK. If the commitment scheme is computationally binding
then this shuffle argument has witness-extended emulation. More precisely, let
d = maxi degψi(X) and dsum =

∑N
i=1 degψi(X). Let ε ≥ ζ+1/σz be the success

probability of P∗ to make V to accept, ε ≥ ε′ ≥ ε−1/σz, and ζ = ni+N(N−1)
2σνx

+ N
σy

.

The emulator either recovers the witness or breaks the binding property of the
commitment scheme with probability at least 1 − dsum/σx − N/σy − 1/σz and
makes ≤ (2N + 1)/(ε′ − ζ) queries to V , where ζ is defined as above.
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1. The prover P(crs, ([w], [ŵ]), (π, s)) does:

(a) For i ∈ [1 .. N−1]: ri ←$Zq; [ui]← Comck(eπ(i); rπ(i)) ; //= [hπ(i)] + rπ(i)[1]

(b) [uN ]← Comck(1N ; 0)−
∑N−1
i=1 [ui].

(c) Sample τ ←$ZNq , %t ←$Zq, %f ←$Zq.($)
(d) Set [cτ ]← Comck(τ ; %t) . ($)
(e) Set ∆1 ← τ1, ∆N ← 0. For i ∈ [2 .. N − 1]: sample ∆i ←$Zq.($)
(f) For i ∈ [1 .. N − 1]: set βi ← −τi+1∆i.($)
(g) Sample %b ←$Zq. Denote β = (β1, . . . , βN−1)>.

(h) Compute [cβ ]← Comck(β // 0; %b) .($)

(i) Set [Fω]←
∑N
i=1 τi[ŵi] + Encpk(0;−%f ). // The only online step

(j) Send ([u1], . . . , [uN−1], [cτ ], [cβ ], [Fω]) to the verifier.
2. The verifier generates random x← {0, . . . , σx−1}ν . He sends x to the prover.

For i ∈ [1 .. N ]: set ti ← ψi(x).
3. The prover does the following:

(a) For i ∈ [1 .. N ]: set ti ← ψi(x).
(b) For i ∈ [1 .. N ]: set t̂i ← tπ−1(i).
(c) X0 ← 1. For i = [1 .. N − 1]: Xi ← Xi−1t̂i, bi ← ∆i+1 − t̂i+1∆i −

τi+1Xi.($)

(d) Let b := (b1, . . . , bN−1)>. Sample rb ←$Zq. Set [cb]← Comck(b // 0; rb) .
(e) Send [cb] to the verifier.

4. The verifier generates random y← {1, . . . , σy}. He sends y to the prover.
5. The prover does:

(a) Set rt ← 〈̂t, r〉, rf ← 〈t, s〉.
(b) Compute t∗ ← ŷt + τ , r∗t ← yrt + %t, r

∗
f ← yrf + %f .($)

(c) Set b∗ ← yb + β ∈ ZN−1
q , r∗b ← yrb + %b.($)

(d) Send (t∗, r∗t , r
∗
f , b
∗, r∗b ) to the verifier.

6. The verifier sets γ ←
∏N
i=1 ti, [uN ]← Comck(1N ; 0)−

∑N−1
i=1 [ui],

[ĉt]← 〈t, [u]〉 , [F ]← 〈t, [w]〉 . (10)

He generates a random z← {0, . . . , σz − 1} for batch verification. He checks:

y[F ] + [Fω] =?
∑N
i=1 t

∗
i [ŵi] + Encpk(0;−r∗f ) , (11)

y[ĉt] + [cτ ] + z(y[cb] + [cβ ]) =? Comck(t
∗ + z(b∗ // 0); r∗t + zr∗b ) .($) (12)

Set Q1 ← t∗1, Q2 ← (t∗2Q1 +b∗1)/y, . . . , QN ← (t∗NQN−1 +b∗N−1)/y. He checks
that QN =? yγ.($)
Return (acc, z) iff all checks accept. Otherwise, return (rej, z).

Fig. 3: The new shuffle argument Πsh. Dashed / Dotted formulas correspond
to expensive (≈ N fixed-base / multi exponentiations) computations only. A

twice boxed formula signifies ≈ 2N operations.
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Proof. First, if [ui] are honestly generated, then from Eq. (9) we get that [ĉt] =

〈[u], t〉 = Comck(
∑N
i=1 tieπ(i);

∑N
i=1 tirπ(i)) = Comck(

∑
tπ−1(i)ei;

∑
tirπ(i)) =

Comck(̂t; rt) for t̂, rt defined as in Items 3b and 5a in Fig. 3.
Completeness: assume that [wi] = Encpk(mi;Ri) and [ŵi] =

Encpk(mπ−1(i);Rπ−1(i) + sπ−1(i)) for some (possibly unknown) mi, Ri, and si.
According to Eq. (10), [F ] = 〈t, [w]〉 = Encpk(〈t,m〉; 〈t,R〉), and according to
Item 1i,

[Fω] =
∑N
i=1 τi[ŵi] + Encpk(0;−%f )

=
∑N
i=1 τi · Encpk(mπ−1(i);Rπ−1(i) + sπ−1(i)) + Encpk(0;−%f )

=Encpk(〈τ , m̂〉; 〈τ , R̂+ ŝ〉 − %f ) ,

where ŝi = sπ−1(i) and R̂i = Rπ−1(i). Denoting m̂i = mπ−1(i), y[F ] + [Fω] +

Encpk(0; r∗f ) = Encpk(y〈t,m〉 + 〈τ , m̂〉; y〈t,R〉 + 〈τ , R̂ + ŝ〉 − %f + %f ) =

Encpk(〈t∗, m̂〉; 〈t∗, R̂+ ŝ〉), which is equal to 〈t∗, [ŵ]〉 as required by Eq. (11).
Next, if M is the permutation matrix corresponding to the permutation π,

then Mij = 1 iff i = π(j). Hence, M (j) = eπ(j) and [ui] = Comck(eπ(i); r̂i) =

Comck(M
(i); r̂i). According to Eq. (10), [ĉt] = 〈t, [u]〉 = Comck(Mt; 〈r̂, t〉) =

Comck(̂t; 〈r̂, t〉), where t̂i = tπ−1(i). According to Items 1d and 5b, y[ĉt] + [cτ ] =

Comck(ŷt + τ ; yrt + %t) = Comck(t∗; r∗t ). According to Items 1h, 3d and 5c,
y[cb] + [cβ ] = Comck((yb + β) // 0; yrb + %b) = Comck(b∗ // 0; r∗b). Thus, y[ĉt] +
[cτ ] + z(y[cb] + [cβ ]) = Comck(t∗ + z(b∗ // 0); r∗t + zr∗b). Hence, Eq. (12) holds.

Perfect HVZK: Assume that we are given t and y. For fixed t, y, z, the
simulator is depicted in Fig. 4. Clearly, the verifier of Fig. 3 will accept the
simulated proof (this is taken care of by Lines 2, 3 and 5, together with the
definition of b∗i and QN ).

Similarly to the proof of Theorem 1, we can argue that the output of the
simulator Sim follows the correct distribution (we first change Line 4, obtaining
a hybrid simulator Simt, and then argue that the outputs of Sim and Simt come
from the same distribution, and the output of Simt and the real protocol come
from the same distribution). Thus, we get a simulator for the shuffle argument.

Witness-extended emulation: As in the proof of Theorem 1, from
Eq. (12) it follows — since this is a standard batch verification, [2] — that
with probability 1− 1/σz, Eq. (7) holds. Hence, as in the case of the coefficient-
product argument, we define another shuffle argument Π ′sh that is exactly the
same as Πsh, except that the verifier accepts not when Eq. (12) holds but Eq. (7)
holds (that is, we do not use batch verification.) It is clear that if an adversary
succeeds with probability ε against Πsh, then it succeeds with probability not
larger than ε′, ε ≥ ε′ ≥ ε− 1/σz, against Π ′sh. Let V′ be the verifier of Π ′sh.

Let P∗ be a prover that makes V′ to accept with probability ε′. We first
run the argument and obtain one accepting transcript tr. If P∗ fails to produce
an acceptable transcript, then we reject. Assume now that the transcript is
acceptable. In this case we need to extract a witness (π, s) that ([ŵi]) is a shuffle
of ([wi]). For this, we rewind the argument to get more transcripts with randomly
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Compute (x, y, z) from ωV;
Set ti ← ψi(x); γ ←

∏N
i=1 ti;

for i ∈ [1 .. N − 1] do sample ri ←$Zq; set [ui]← Comck(ei; ri);

Set [uN ]← Comck(1N ; 0)−
∑N−1
i=1 [ui]; Set [ĉt]← 〈t, [u]〉;

Sample t∗ ←$ZNq , r∗t ←$Zq;
2 Set [cτ ]← Comck(t

∗; r∗t )− y[ĉt]; // need: y[ĉt] + [cτ ] =
? Comck(t

∗; r∗t )

Set [F ]← 〈t, [w]〉; Sample r∗f ←$Zq;
3 Set [Fω]← 〈t∗, [ŵ]〉+ Encpk(0;−r∗f )− y[F ];

// need: y[F ] + [Fω ] =? 〈t∗, [ŵ]〉+ Encpk(0;−r∗f );
Set Q1 ← t∗1, Qi ←$Zq for i ∈ {2, . . . , N − 1}, and QN ← yγ;
Sample b∗1 ←$Zq; Set b∗2 ← yQ2 − t∗2Q1, . . . , b∗N ← yQN − t∗NQN−1;
Sample r∗b ←$Zq; Sample rb ←$Zq;

4 Set [cb]← Comck(0N ; rb);
5 Set [cβ ]← Comck(b

∗ // 0; r∗b )− y[cb] // need: y[cb] + [cβ ] =
? Comck(b

∗ // 0; r∗b );
Return ([u1], . . . , [uN−1], [cτ ], [cβ ], [Fω]; x; [cb]; y; t∗, r∗t , r

∗
f , b
∗, r∗b ; acc, z);

Fig. 4: The simulator Sim(crs, inp = ([w], [ŵ]);ωV) in the proof of Theorem 2.

chosen challenges x, y, and use the witness-extended emulator of Π ′cpa to get
openings of [ct]. We repeat this until we obtain N+1 acceptable transcripts. Let
tr1 = tr, and let the additional transcripts be trj , j > 1, where trj =

(([w, ŵ])Ni=1; ([ui])
N−1
i=1 ; [cτ , cβ , Fω]; xj ; [cb:j ]; yj ; t

∗
j , r
∗
t:j , r

∗
f :j ,b

∗
j , r
∗
b:j ; acc, zj) .

Clearly, the expected number of rewindings for this is N/ε. However, since we
only need to extract a witness when the transcript is acceptable, the expected
number of rewindings is only N . (As in [21], one can argue that combining
expected polynomial-time algorithms results in an expected polynomial-time ar-
gument.) Since the emulator uses an expected polynomial number of rewindings,
with an overwhelming probability it is the case that either (1) the argument is
not acceptable, or (2) the argument is acceptable, but no event with negligible
probability (like breaking the binding property of the commitment scheme or
having collisions among randomly chosen challenges) occurs. Assume from now
on that either (2) holds.

Let us show that Emul obtains the witness. Let tj = ψ(xj) and [ĉt:j ] =
〈tj , [u]〉. From Eq. (7) (left) and the jth transcript, we get

yjt
>
j [u] + [cτ ] = yj〈tj , [u]〉+ [cτ ] = yj [ĉt:j ] + [cτ ] = 〈t∗j , [h]〉+ r∗t:j [1] .

Hence,
(yjt

>
j − y1t

>
1 )[u] = 〈t∗j , [h]〉+ r∗t:j [1] .

Denote T y = (y2t2 − y1t1‖ . . . ‖yN+1tN+1 − y1t1)> and T ∗ = (y2t∗2 −
y1t∗1‖ . . . ‖yN+1t∗N+1 − y1t∗1)>. Since T = (t1‖ . . . ‖tN ) is invertible with (this
follows from Lemma 4), then also T y is invertible with overwhelming probabil-
ity. Define M := T−1y T ∗. Thus, T y[u] = T ∗[h] + (r∗t − r∗11N )[1], and thus

[u] = M [h] + T−1y (r∗t − r∗11N )[1] .
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Denote [Ej ] := Encpk(0; r∗f :j). From Eq. (11) (left), we have yjt>j [w]+[Fω] =

(t∗j )
>[ŵ] + [Ej ], and thus (yjtj − y1tj)>[w] = (t∗j − t∗1)>[ŵ] + [Ej −E1]. Thus,

T y[w] = T ∗[ŵ] + [E]− 1N [E1] and thus

[w] = M [ŵ] + T−1y ([E]− 1N [E1]) .

Hence, assuming M is a permutation matrix, we have recovered a permutation
π and a randomness s, such that [ŵi] = [wπ−1(i)] + Encpk(0; sπ−1(i)).

Next, we argue that M is a permutation matrix. Assume that P∗ has a
non-negligible success probability 1/f(λ), for a polynomial f(X), to produce an
acceptable argument. We run P∗ and rewind to get N + 2 random challenges.
We extract M and other values from the first N + 1 transcripts as above.

Consider the (N + 2)th argument. Define t̂N+2 := M>tN+2. Thus,∏N
i=1〈M (i),ψ(xN+2)〉 =

∏N
i=1〈M (i), tN+2〉 =

∏N
i=1 t̂N+2:i. Since Πcpa has

witness-extended emulation, then its emulator returns an opening of [ĉt:N+2]

whose coefficient-product is equal to γN+2 :=
∏N
i=1 tN+2:i. Since the com-

mitment scheme is binding and [ĉt:N+2] = t>N+2[u], the opening is equal to

M>tN+2 = t̂N+2. Thus, by the soundness of the coefficient-product emula-

tion,
∏N
i=1 t̂N+2:i =

∏N
i=1 tN+2:i. Hence,

∏N
i=1〈M (i),ψ(xN+2)〉 =

∏N
i=1 tN+2:i =∏N

i=1 ψi(xN+2:i). Due to the Schwartz-Zippel lemma, from this it follows with an

overwhelming probability that
∏N
i=1〈M (i),ψ(XN+2)〉 =

∏N
i=1 ψi(XN+2:i) as a

polynomial.
The ith row of M · 1N is

∑N
j=1Mij = 1 due to the choice of [uN ], and thus

M̂ · 1N = 1N . It follows now from Lemma 2 that M̂ is a permutation matrix.
Thus, with an overwhelming probability, the emulator has extracted π ∈ SN ,
the permutation corresponding to M̂ , such that t̂i = tπ−1(i). ut

6 Efficiency

Recall that one N -wide multi-exponentiation and N fixed-base exponentiations
by `-bit exponent can be done significantly faster than N arbitrary exponentia-
tions. Importantly, in the new shuffle argument, neither the prover or the verifier
has to execute the latter.

Clearly, the prover’s computation in the shuffle argument of Fig. 3 is dom-
inated by four (≈ N)-wide multi-exponentiations and N fixed-base exponen-
tiations. The verifier’s computation is dominated by six ≈ N -wide multi-
exponentiations. The communication is dominated by ([u1], . . . , [uN−1],b∗), that
is, by (`G + log q)N +O(λ) bits, where `G is the number of bits it takes to rep-
resent an element of G. In practice, we can assume log q = 128 and `G = 256,
in this case the communication is dominated by 388N bits. (Note that in the
introduction, we already gave an extensive comparison with other shuffles.)

Online Computation. As remarked in [33], online computational complexity
(i.e., computation done after the input data — in this case, the ciphertexts —
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has arrived) is an important separate measure of the shuffle arguments. In the
online phase of the protocol on Fig. 3, the prover’s computation is dominated
by two (≈ N)-wide multi-exponentiations (computation of [Fω]), and the veri-
fier’s computation is dominated by four (≈ N)-wide multi-exponentiations (the
computation of [F ] and the verification of [Fω]).

The case of larger ciphertexts. We assumed that each ciphertext [wi] /
[ŵi] corresponds to one Elgamal ciphertext. However, in practice it might be
the case — say, if the ballot is complex — that each [wi] / [ŵi] corresponds
to m > 1 Elgamal ciphertexts. This only changes the “type” of [wi] / [ŵi]
in Fig. 3. Efficiency-wise, the prover then has to perform 2m + 2 (≈ N)-wide
multi-exponentiations and N fixed-base exponentiations, while the verifier has
to perform 4m+ 2 (≈ N)-wide multi-exponentiations.

7 Discussions

Comparison to Bayer-Groth. All shuffle arguments mentioned in Table 1
have linear argument size. Bayer and Groth [1] proposed a shuffle argument that
achieves sublinear argument size but pays with higher computation. While sub-
linear argument size is an excellent property to have, its influence is decreased
because the storage of ciphertexts makes the communication and storage require-
ments linear anyhow. Computation-wise, Bayer and Groth [1] include a compar-
ison with Verificatum [32], claiming that the total computation of the prover
and the verifier in Verificatum is 20N exponentiations, and in Bayer-Groth it is
16N exponentiations. [1] does not distinguish fixed-base exponentiations, multi-
exponentiations, and “usual” exponentiations, Hence, we expect it to be slower
than both [21] and the new shuffle, especially since the latter shuffles do not
include any “usual” exponentiations. Finally, the optimized version of the Bayer
and Groth shuffle takes nine rounds, compared to the five rounds in the new
shuffle.

PM-Evidential Polynomials and Random Oracle Model. In practice,
one would use the Fiat-Shamir heuristic to modify the shuffle argument to be
non-interactive, which results in the security proof being in the random oracle
model. A natural question that may arise is the necessity of minimizing the
verifier’s communication in that case since one would use a random oracle to
generate the verifier’s response. In a setting like in [32], the standard approach
is to generate N random strings by applying the random oracle N times. In the
new shuffle, one only has to apply the random oracle twice instead of N times.

Bellare and Rogaway [5] argue that it is better to rely less on random oracles.
Quoting [5],

But there may remain some lingering fear that the concrete hash function
instantiates the random oracle differs from a random function in some
significant way. So it is good to try to limit reliance on random oracles.

We refer to [5] for more discussion.
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